Add skip_fortran_tests to more Fortran testcases
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
8da61cc4 118
2873700e
KS
119/* Should opaque types be resolved? */
120
491144b5 121static bool opaque_type_resolution = true;
2873700e 122
79bb1944 123/* See gdbtypes.h. */
2873700e
KS
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
491144b5 129static bool strict_type_checking = true;
a451cb65 130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c 184
67607e24 185 type->set_code (TYPE_CODE_UNDEF);
2fdde8f8 186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 187
c16abbde 188 return type;
c906108c
SS
189}
190
e9bb382b
UW
191/* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
8f57eec2 193 on the obstack associated with GDBARCH. */
e9bb382b
UW
194
195struct type *
196alloc_type_arch (struct gdbarch *gdbarch)
197{
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
8f57eec2
PP
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
67607e24 212 type->set_code (TYPE_CODE_UNDEF);
e9bb382b
UW
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216}
217
218/* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222struct type *
223alloc_type_copy (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229}
230
231/* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234struct gdbarch *
235get_type_arch (const struct type *type)
236{
2fabdf33
AB
237 struct gdbarch *arch;
238
e9bb382b 239 if (TYPE_OBJFILE_OWNED (type))
08feed99 240 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 241 else
2fabdf33
AB
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
e9bb382b
UW
250}
251
99ad9427
YQ
252/* See gdbtypes.h. */
253
254struct type *
255get_target_type (struct type *type)
256{
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265}
266
2e056931
SM
267/* See gdbtypes.h. */
268
269unsigned int
270type_length_units (struct type *type)
271{
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276}
277
2fdde8f8
DJ
278/* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282static struct type *
283alloc_type_instance (struct type *oldtype)
284{
285 struct type *type;
286
287 /* Allocate the structure. */
288
e9bb382b 289 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 291 else
1deafd4e
PA
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
2fdde8f8
DJ
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
c16abbde 299 return type;
2fdde8f8
DJ
300}
301
302/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 303 replacing it with something else. Preserve owner information. */
5212577a 304
2fdde8f8
DJ
305static void
306smash_type (struct type *type)
307{
e9bb382b
UW
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
2fdde8f8
DJ
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
e9bb382b
UW
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
2fdde8f8
DJ
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321}
322
c906108c
SS
323/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328struct type *
fba45db2 329make_pointer_type (struct type *type, struct type **typeptr)
c906108c 330{
52f0bd74 331 struct type *ntype; /* New type */
053cb41b 332 struct type *chain;
c906108c
SS
333
334 ntype = TYPE_POINTER_TYPE (type);
335
c5aa993b 336 if (ntype)
c906108c 337 {
c5aa993b 338 if (typeptr == 0)
7ba81444
MS
339 return ntype; /* Don't care about alloc,
340 and have new type. */
c906108c 341 else if (*typeptr == 0)
c5aa993b 342 {
7ba81444 343 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 344 return ntype;
c5aa993b 345 }
c906108c
SS
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
e9bb382b 350 ntype = alloc_type_copy (type);
c906108c
SS
351 if (typeptr)
352 *typeptr = ntype;
353 }
7ba81444 354 else /* We have storage, but need to reset it. */
c906108c
SS
355 {
356 ntype = *typeptr;
053cb41b 357 chain = TYPE_CHAIN (ntype);
2fdde8f8 358 smash_type (ntype);
053cb41b 359 TYPE_CHAIN (ntype) = chain;
c906108c
SS
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
5212577a 365 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 366
50810684
UW
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 369 ntype->set_code (TYPE_CODE_PTR);
c906108c 370
67b2adb2 371 /* Mark pointers as unsigned. The target converts between pointers
76e71323 372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 373 gdbarch_address_to_pointer. */
876cecd0 374 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 375
053cb41b
JB
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
c906108c
SS
384 return ntype;
385}
386
387/* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390struct type *
fba45db2 391lookup_pointer_type (struct type *type)
c906108c 392{
c5aa993b 393 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
394}
395
7ba81444
MS
396/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
401
402struct type *
3b224330
AV
403make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
c906108c 405{
52f0bd74 406 struct type *ntype; /* New type */
3b224330 407 struct type **reftype;
1e98b326 408 struct type *chain;
c906108c 409
3b224330
AV
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 414
c5aa993b 415 if (ntype)
c906108c 416 {
c5aa993b 417 if (typeptr == 0)
7ba81444
MS
418 return ntype; /* Don't care about alloc,
419 and have new type. */
c906108c 420 else if (*typeptr == 0)
c5aa993b 421 {
7ba81444 422 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 423 return ntype;
c5aa993b 424 }
c906108c
SS
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
e9bb382b 429 ntype = alloc_type_copy (type);
c906108c
SS
430 if (typeptr)
431 *typeptr = ntype;
432 }
7ba81444 433 else /* We have storage, but need to reset it. */
c906108c
SS
434 {
435 ntype = *typeptr;
1e98b326 436 chain = TYPE_CHAIN (ntype);
2fdde8f8 437 smash_type (ntype);
1e98b326 438 TYPE_CHAIN (ntype) = chain;
c906108c
SS
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
c906108c 446
7ba81444
MS
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
c906108c 450
50810684
UW
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 453 ntype->set_code (refcode);
c5aa993b 454
3b224330 455 *reftype = ntype;
c906108c 456
1e98b326
JB
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
c906108c
SS
465 return ntype;
466}
467
7ba81444
MS
468/* Same as above, but caller doesn't care about memory allocation
469 details. */
c906108c
SS
470
471struct type *
3b224330
AV
472lookup_reference_type (struct type *type, enum type_code refcode)
473{
474 return make_reference_type (type, (struct type **) 0, refcode);
475}
476
477/* Lookup the lvalue reference type for the type TYPE. */
478
479struct type *
480lookup_lvalue_reference_type (struct type *type)
481{
482 return lookup_reference_type (type, TYPE_CODE_REF);
483}
484
485/* Lookup the rvalue reference type for the type TYPE. */
486
487struct type *
488lookup_rvalue_reference_type (struct type *type)
c906108c 489{
3b224330 490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
491}
492
7ba81444
MS
493/* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 496 function type we return. We allocate new memory if needed. */
c906108c
SS
497
498struct type *
0c8b41f1 499make_function_type (struct type *type, struct type **typeptr)
c906108c 500{
52f0bd74 501 struct type *ntype; /* New type */
c906108c
SS
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
e9bb382b 505 ntype = alloc_type_copy (type);
c906108c
SS
506 if (typeptr)
507 *typeptr = ntype;
508 }
7ba81444 509 else /* We have storage, but need to reset it. */
c906108c
SS
510 {
511 ntype = *typeptr;
2fdde8f8 512 smash_type (ntype);
c906108c
SS
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
67607e24 518 ntype->set_code (TYPE_CODE_FUNC);
c5aa993b 519
b6cdc2c1
JK
520 INIT_FUNC_SPECIFIC (ntype);
521
c906108c
SS
522 return ntype;
523}
524
c906108c
SS
525/* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528struct type *
fba45db2 529lookup_function_type (struct type *type)
c906108c 530{
0c8b41f1 531 return make_function_type (type, (struct type **) 0);
c906108c
SS
532}
533
71918a86 534/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
71918a86
TT
537
538struct type *
539lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542{
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
e314d629 546 if (nparams > 0)
a6fb9c08 547 {
e314d629
TT
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
78134374 553 else if (check_typedef (param_types[nparams - 1])->code ()
e314d629
TT
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
54990598
PA
561 else
562 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
563 }
564
5e33d5f4 565 fn->set_num_fields (nparams);
3cabb6b0
SM
566 fn->set_fields
567 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
71918a86 568 for (i = 0; i < nparams; ++i)
5d14b6e5 569 fn->field (i).set_type (param_types[i]);
71918a86
TT
570
571 return fn;
572}
573
47663de5
MS
574/* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
5212577a
DE
576
577int
61f4b350
TT
578address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
47663de5 580{
8b2dbe47 581 int type_flags;
d8734c88 582
7ba81444 583 /* Check for known address space delimiters. */
47663de5 584 if (!strcmp (space_identifier, "code"))
876cecd0 585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 586 else if (!strcmp (space_identifier, "data"))
876cecd0 587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
8b2dbe47 592 return type_flags;
47663de5 593 else
8a3fe4f8 594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
595}
596
597/* Identify address space identifier by integer flag as defined in
7ba81444 598 gdbtypes.h -- return the string version of the adress space name. */
47663de5 599
321432c0 600const char *
50810684 601address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 602{
876cecd0 603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 604 return "code";
876cecd0 605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 606 return "data";
876cecd0 607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
610 else
611 return NULL;
612}
613
2fdde8f8 614/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
47663de5 618
b9362cc7 619static struct type *
2fdde8f8
DJ
620make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
47663de5
MS
622{
623 struct type *ntype;
624
625 ntype = type;
5f61c20e
JK
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
47663de5 633
2fdde8f8
DJ
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
7ba81444
MS
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
ad766c0a
JB
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
2fdde8f8
DJ
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
47663de5
MS
649
650 /* Pointers or references to the original type are not relevant to
2fdde8f8 651 the new type. */
47663de5
MS
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 654
2fdde8f8
DJ
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 661
ab5d3da6
KB
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
47663de5
MS
665 return ntype;
666}
667
2fdde8f8
DJ
668/* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
7ba81444
MS
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
2fdde8f8
DJ
676
677struct type *
678make_type_with_address_space (struct type *type, int space_flag)
679{
2fdde8f8 680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687}
c906108c
SS
688
689/* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
c906108c 694
ad766c0a
JB
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
5212577a 700
c906108c 701struct type *
7ba81444
MS
702make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
c906108c 705{
52f0bd74 706 struct type *ntype; /* New type */
c906108c 707
2fdde8f8 708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 711
c906108c 712 if (cnst)
876cecd0 713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
714
715 if (voltl)
876cecd0 716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 717
2fdde8f8 718 if (typeptr && *typeptr != NULL)
a02fd225 719 {
ad766c0a
JB
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
733 }
734
7ba81444
MS
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
c906108c 737
2fdde8f8
DJ
738 if (typeptr != NULL)
739 *typeptr = ntype;
a02fd225 740
2fdde8f8 741 return ntype;
a02fd225 742}
c906108c 743
06d66ee9
TT
744/* Make a 'restrict'-qualified version of TYPE. */
745
746struct type *
747make_restrict_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753}
754
f1660027
TT
755/* Make a type without const, volatile, or restrict. */
756
757struct type *
758make_unqualified_type (struct type *type)
759{
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766}
767
a2c2acaf
MW
768/* Make a '_Atomic'-qualified version of TYPE. */
769
770struct type *
771make_atomic_type (struct type *type)
772{
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777}
778
2fdde8f8
DJ
779/* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 782
cda6c68a
JB
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
5212577a 788
dd6bda65
DJ
789void
790replace_type (struct type *ntype, struct type *type)
791{
ab5d3da6 792 struct type *chain;
dd6bda65 793
ad766c0a
JB
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 799
2fdde8f8 800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 801
7ba81444
MS
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
ab5d3da6 804 chain = ntype;
5f61c20e
JK
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
ab5d3da6 819
2fdde8f8
DJ
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
823}
824
c906108c
SS
825/* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830struct type *
0d5de010 831lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 832{
52f0bd74 833 struct type *mtype;
c906108c 834
e9bb382b 835 mtype = alloc_type_copy (type);
0d5de010 836 smash_to_memberptr_type (mtype, domain, type);
c16abbde 837 return mtype;
c906108c
SS
838}
839
0d5de010
DJ
840/* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842struct type *
843lookup_methodptr_type (struct type *to_type)
844{
845 struct type *mtype;
846
e9bb382b 847 mtype = alloc_type_copy (to_type);
0b92b5bb 848 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
849 return mtype;
850}
851
7ba81444
MS
852/* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
c906108c
SS
857
858struct type *
fba45db2 859allocate_stub_method (struct type *type)
c906108c
SS
860{
861 struct type *mtype;
862
e9bb382b 863 mtype = alloc_type_copy (type);
67607e24 864 mtype->set_code (TYPE_CODE_METHOD);
e9bb382b
UW
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
c906108c 867 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 869 return mtype;
c906108c
SS
870}
871
0f59d5fc
PA
872/* See gdbtypes.h. */
873
874bool
875operator== (const dynamic_prop &l, const dynamic_prop &r)
876{
8c2e4e06 877 if (l.kind () != r.kind ())
0f59d5fc
PA
878 return false;
879
8c2e4e06 880 switch (l.kind ())
0f59d5fc
PA
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
8c2e4e06 885 return l.const_val () == r.const_val ();
0f59d5fc
PA
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
8c2e4e06 889 return l.baton () == r.baton ();
ef83a141 890 case PROP_VARIANT_PARTS:
8c2e4e06 891 return l.variant_parts () == r.variant_parts ();
ef83a141 892 case PROP_TYPE:
8c2e4e06 893 return l.original_type () == r.original_type ();
0f59d5fc
PA
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897}
898
899/* See gdbtypes.h. */
900
901bool
902operator== (const range_bounds &l, const range_bounds &r)
903{
904#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
0f59d5fc
PA
911
912#undef FIELD_EQ
913}
914
729efb13
SA
915/* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
917
918struct type *
729efb13
SA
919create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
4e962e74
TT
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
c906108c 923{
b86352cf
AB
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
78134374 926 gdb_assert (index_type->code () != TYPE_CODE_VOID);
b86352cf
AB
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
c906108c 929 if (result_type == NULL)
e9bb382b 930 result_type = alloc_type_copy (index_type);
67607e24 931 result_type->set_code (TYPE_CODE_RANGE);
c906108c 932 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 933 if (TYPE_STUB (index_type))
876cecd0 934 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 937
c4dfcb36
SM
938 range_bounds *bounds
939 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
940 bounds->low = *low_bound;
941 bounds->high = *high_bound;
942 bounds->bias = bias;
8c2e4e06 943 bounds->stride.set_const_val (0);
c4dfcb36
SM
944
945 result_type->set_bounds (bounds);
5bbd8269 946
8c2e4e06 947 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
876cecd0 948 TYPE_UNSIGNED (result_type) = 1;
c906108c 949
45e44d27
JB
950 /* Ada allows the declaration of range types whose upper bound is
951 less than the lower bound, so checking the lower bound is not
952 enough. Make sure we do not mark a range type whose upper bound
953 is negative as unsigned. */
8c2e4e06 954 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
45e44d27
JB
955 TYPE_UNSIGNED (result_type) = 0;
956
a05cf17a
TT
957 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
958 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
959
262452ec 960 return result_type;
c906108c
SS
961}
962
5bbd8269
AB
963/* See gdbtypes.h. */
964
965struct type *
966create_range_type_with_stride (struct type *result_type,
967 struct type *index_type,
968 const struct dynamic_prop *low_bound,
969 const struct dynamic_prop *high_bound,
970 LONGEST bias,
971 const struct dynamic_prop *stride,
972 bool byte_stride_p)
973{
974 result_type = create_range_type (result_type, index_type, low_bound,
975 high_bound, bias);
976
977 gdb_assert (stride != nullptr);
599088e3
SM
978 result_type->bounds ()->stride = *stride;
979 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
5bbd8269
AB
980
981 return result_type;
982}
983
984
985
729efb13
SA
986/* Create a range type using either a blank type supplied in
987 RESULT_TYPE, or creating a new type, inheriting the objfile from
988 INDEX_TYPE.
989
990 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
991 to HIGH_BOUND, inclusive.
992
993 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
994 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
995
996struct type *
997create_static_range_type (struct type *result_type, struct type *index_type,
998 LONGEST low_bound, LONGEST high_bound)
999{
1000 struct dynamic_prop low, high;
1001
8c2e4e06
SM
1002 low.set_const_val (low_bound);
1003 high.set_const_val (high_bound);
729efb13 1004
4e962e74 1005 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1006
1007 return result_type;
1008}
1009
80180f79
SA
1010/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1011 are static, otherwise returns 0. */
1012
5bbd8269 1013static bool
80180f79
SA
1014has_static_range (const struct range_bounds *bounds)
1015{
5bbd8269
AB
1016 /* If the range doesn't have a defined stride then its stride field will
1017 be initialized to the constant 0. */
8c2e4e06
SM
1018 return (bounds->low.kind () == PROP_CONST
1019 && bounds->high.kind () == PROP_CONST
1020 && bounds->stride.kind () == PROP_CONST);
80180f79
SA
1021}
1022
1023
7ba81444 1024/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
7c6f2712
SM
1025 TYPE.
1026
1027 Return 1 if type is a range type with two defined, constant bounds.
1028 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1029 Else, return -1. */
c906108c
SS
1030
1031int
fba45db2 1032get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1033{
f168693b 1034 type = check_typedef (type);
78134374 1035 switch (type->code ())
c906108c
SS
1036 {
1037 case TYPE_CODE_RANGE:
7c6f2712
SM
1038 /* This function currently only works for ranges with two defined,
1039 constant bounds. */
1040 if (type->bounds ()->low.kind () != PROP_CONST
1041 || type->bounds ()->high.kind () != PROP_CONST)
1042 return -1;
1043
5537ddd0
SM
1044 *lowp = type->bounds ()->low.const_val ();
1045 *highp = type->bounds ()->high.const_val ();
7c6f2712 1046
53a47a3e
TT
1047 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1048 {
1049 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1050 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1051 return 0;
1052 }
c906108c
SS
1053 return 1;
1054 case TYPE_CODE_ENUM:
1f704f76 1055 if (type->num_fields () > 0)
c906108c
SS
1056 {
1057 /* The enums may not be sorted by value, so search all
0963b4bd 1058 entries. */
c906108c
SS
1059 int i;
1060
14e75d8e 1061 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1f704f76 1062 for (i = 0; i < type->num_fields (); i++)
c906108c 1063 {
14e75d8e
JK
1064 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1065 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1066 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1067 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1068 }
1069
7ba81444 1070 /* Set unsigned indicator if warranted. */
c5aa993b 1071 if (*lowp >= 0)
c906108c 1072 {
876cecd0 1073 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1074 }
1075 }
1076 else
1077 {
1078 *lowp = 0;
1079 *highp = -1;
1080 }
1081 return 0;
1082 case TYPE_CODE_BOOL:
1083 *lowp = 0;
1084 *highp = 1;
1085 return 0;
1086 case TYPE_CODE_INT:
c5aa993b 1087 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1088 return -1;
1089 if (!TYPE_UNSIGNED (type))
1090 {
c5aa993b 1091 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1092 *highp = -*lowp - 1;
1093 return 0;
1094 }
86a73007 1095 /* fall through */
c906108c
SS
1096 case TYPE_CODE_CHAR:
1097 *lowp = 0;
1098 /* This round-about calculation is to avoid shifting by
7b83ea04 1099 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1100 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1101 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1102 *highp = (*highp - 1) | *highp;
1103 return 0;
1104 default:
1105 return -1;
1106 }
1107}
1108
dbc98a8b
KW
1109/* Assuming TYPE is a simple, non-empty array type, compute its upper
1110 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1111 Save the high bound into HIGH_BOUND if not NULL.
1112
0963b4bd 1113 Return 1 if the operation was successful. Return zero otherwise,
7c6f2712 1114 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
dbc98a8b
KW
1115
1116int
1117get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1118{
3d967001 1119 struct type *index = type->index_type ();
dbc98a8b
KW
1120 LONGEST low = 0;
1121 LONGEST high = 0;
1122 int res;
1123
1124 if (index == NULL)
1125 return 0;
1126
1127 res = get_discrete_bounds (index, &low, &high);
1128 if (res == -1)
1129 return 0;
1130
dbc98a8b
KW
1131 if (low_bound)
1132 *low_bound = low;
1133
1134 if (high_bound)
1135 *high_bound = high;
1136
1137 return 1;
1138}
1139
aa715135
JG
1140/* Assuming that TYPE is a discrete type and VAL is a valid integer
1141 representation of a value of this type, save the corresponding
1142 position number in POS.
1143
1144 Its differs from VAL only in the case of enumeration types. In
1145 this case, the position number of the value of the first listed
1146 enumeration literal is zero; the position number of the value of
1147 each subsequent enumeration literal is one more than that of its
1148 predecessor in the list.
1149
1150 Return 1 if the operation was successful. Return zero otherwise,
1151 in which case the value of POS is unmodified.
1152*/
1153
1154int
1155discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1156{
0bc2354b
TT
1157 if (type->code () == TYPE_CODE_RANGE)
1158 type = TYPE_TARGET_TYPE (type);
1159
78134374 1160 if (type->code () == TYPE_CODE_ENUM)
aa715135
JG
1161 {
1162 int i;
1163
1f704f76 1164 for (i = 0; i < type->num_fields (); i += 1)
aa715135
JG
1165 {
1166 if (val == TYPE_FIELD_ENUMVAL (type, i))
1167 {
1168 *pos = i;
1169 return 1;
1170 }
1171 }
1172 /* Invalid enumeration value. */
1173 return 0;
1174 }
1175 else
1176 {
1177 *pos = val;
1178 return 1;
1179 }
1180}
1181
8dbb1375
HD
1182/* If the array TYPE has static bounds calculate and update its
1183 size, then return true. Otherwise return false and leave TYPE
1184 unchanged. */
1185
1186static bool
1187update_static_array_size (struct type *type)
1188{
78134374 1189 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8dbb1375 1190
3d967001 1191 struct type *range_type = type->index_type ();
8dbb1375 1192
24e99c6c 1193 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
599088e3 1194 && has_static_range (range_type->bounds ())
8dbb1375
HD
1195 && (!type_not_associated (type)
1196 && !type_not_allocated (type)))
1197 {
1198 LONGEST low_bound, high_bound;
1199 int stride;
1200 struct type *element_type;
1201
1202 /* If the array itself doesn't provide a stride value then take
1203 whatever stride the range provides. Don't update BIT_STRIDE as
1204 we don't want to place the stride value from the range into this
1205 arrays bit size field. */
1206 stride = TYPE_FIELD_BITSIZE (type, 0);
1207 if (stride == 0)
107406b7 1208 stride = range_type->bit_stride ();
8dbb1375
HD
1209
1210 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1211 low_bound = high_bound = 0;
1212 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1213 /* Be careful when setting the array length. Ada arrays can be
1214 empty arrays with the high_bound being smaller than the low_bound.
1215 In such cases, the array length should be zero. */
1216 if (high_bound < low_bound)
1217 TYPE_LENGTH (type) = 0;
1218 else if (stride != 0)
1219 {
1220 /* Ensure that the type length is always positive, even in the
1221 case where (for example in Fortran) we have a negative
1222 stride. It is possible to have a single element array with a
1223 negative stride in Fortran (this doesn't mean anything
1224 special, it's still just a single element array) so do
1225 consider that case when touching this code. */
1226 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1227 TYPE_LENGTH (type)
1228 = ((std::abs (stride) * element_count) + 7) / 8;
1229 }
1230 else
1231 TYPE_LENGTH (type) =
1232 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1233
1234 return true;
1235 }
1236
1237 return false;
1238}
1239
7ba81444
MS
1240/* Create an array type using either a blank type supplied in
1241 RESULT_TYPE, or creating a new type, inheriting the objfile from
1242 RANGE_TYPE.
c906108c
SS
1243
1244 Elements will be of type ELEMENT_TYPE, the indices will be of type
1245 RANGE_TYPE.
1246
a405673c
JB
1247 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1248 This byte stride property is added to the resulting array type
1249 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1250 argument can only be used to create types that are objfile-owned
1251 (see add_dyn_prop), meaning that either this function must be called
1252 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1253
1254 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1255 If BIT_STRIDE is not zero, build a packed array type whose element
1256 size is BIT_STRIDE. Otherwise, ignore this parameter.
1257
7ba81444
MS
1258 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1259 sure it is TYPE_CODE_UNDEF before we bash it into an array
1260 type? */
c906108c
SS
1261
1262struct type *
dc53a7ad
JB
1263create_array_type_with_stride (struct type *result_type,
1264 struct type *element_type,
1265 struct type *range_type,
a405673c 1266 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1267 unsigned int bit_stride)
c906108c 1268{
a405673c 1269 if (byte_stride_prop != NULL
8c2e4e06 1270 && byte_stride_prop->kind () == PROP_CONST)
a405673c
JB
1271 {
1272 /* The byte stride is actually not dynamic. Pretend we were
1273 called with bit_stride set instead of byte_stride_prop.
1274 This will give us the same result type, while avoiding
1275 the need to handle this as a special case. */
8c2e4e06 1276 bit_stride = byte_stride_prop->const_val () * 8;
a405673c
JB
1277 byte_stride_prop = NULL;
1278 }
1279
c906108c 1280 if (result_type == NULL)
e9bb382b
UW
1281 result_type = alloc_type_copy (range_type);
1282
67607e24 1283 result_type->set_code (TYPE_CODE_ARRAY);
c906108c 1284 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1285
5e33d5f4 1286 result_type->set_num_fields (1);
3cabb6b0
SM
1287 result_type->set_fields
1288 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
262abc0d 1289 result_type->set_index_type (range_type);
8dbb1375 1290 if (byte_stride_prop != NULL)
5c54719c 1291 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1292 else if (bit_stride > 0)
1293 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1294
8dbb1375 1295 if (!update_static_array_size (result_type))
80180f79
SA
1296 {
1297 /* This type is dynamic and its length needs to be computed
1298 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1299 undefined by setting it to zero. Although we are not expected
1300 to trust TYPE_LENGTH in this case, setting the size to zero
1301 allows us to avoid allocating objects of random sizes in case
1302 we accidently do. */
1303 TYPE_LENGTH (result_type) = 0;
1304 }
1305
a9ff5f12 1306 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1307 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1308 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1309
c16abbde 1310 return result_type;
c906108c
SS
1311}
1312
dc53a7ad
JB
1313/* Same as create_array_type_with_stride but with no bit_stride
1314 (BIT_STRIDE = 0), thus building an unpacked array. */
1315
1316struct type *
1317create_array_type (struct type *result_type,
1318 struct type *element_type,
1319 struct type *range_type)
1320{
1321 return create_array_type_with_stride (result_type, element_type,
a405673c 1322 range_type, NULL, 0);
dc53a7ad
JB
1323}
1324
e3506a9f
UW
1325struct type *
1326lookup_array_range_type (struct type *element_type,
63375b74 1327 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1328{
929b5ad4
JB
1329 struct type *index_type;
1330 struct type *range_type;
1331
1332 if (TYPE_OBJFILE_OWNED (element_type))
1333 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1334 else
1335 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1336 range_type = create_static_range_type (NULL, index_type,
1337 low_bound, high_bound);
d8734c88 1338
e3506a9f
UW
1339 return create_array_type (NULL, element_type, range_type);
1340}
1341
7ba81444
MS
1342/* Create a string type using either a blank type supplied in
1343 RESULT_TYPE, or creating a new type. String types are similar
1344 enough to array of char types that we can use create_array_type to
1345 build the basic type and then bash it into a string type.
c906108c
SS
1346
1347 For fixed length strings, the range type contains 0 as the lower
1348 bound and the length of the string minus one as the upper bound.
1349
7ba81444
MS
1350 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1351 sure it is TYPE_CODE_UNDEF before we bash it into a string
1352 type? */
c906108c
SS
1353
1354struct type *
3b7538c0
UW
1355create_string_type (struct type *result_type,
1356 struct type *string_char_type,
7ba81444 1357 struct type *range_type)
c906108c
SS
1358{
1359 result_type = create_array_type (result_type,
f290d38e 1360 string_char_type,
c906108c 1361 range_type);
67607e24 1362 result_type->set_code (TYPE_CODE_STRING);
c16abbde 1363 return result_type;
c906108c
SS
1364}
1365
e3506a9f
UW
1366struct type *
1367lookup_string_range_type (struct type *string_char_type,
63375b74 1368 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1369{
1370 struct type *result_type;
d8734c88 1371
e3506a9f
UW
1372 result_type = lookup_array_range_type (string_char_type,
1373 low_bound, high_bound);
67607e24 1374 result_type->set_code (TYPE_CODE_STRING);
e3506a9f
UW
1375 return result_type;
1376}
1377
c906108c 1378struct type *
fba45db2 1379create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1380{
c906108c 1381 if (result_type == NULL)
e9bb382b
UW
1382 result_type = alloc_type_copy (domain_type);
1383
67607e24 1384 result_type->set_code (TYPE_CODE_SET);
5e33d5f4 1385 result_type->set_num_fields (1);
3cabb6b0
SM
1386 result_type->set_fields
1387 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
c906108c 1388
74a9bb82 1389 if (!TYPE_STUB (domain_type))
c906108c 1390 {
f9780d5b 1391 LONGEST low_bound, high_bound, bit_length;
d8734c88 1392
c906108c
SS
1393 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1394 low_bound = high_bound = 0;
1395 bit_length = high_bound - low_bound + 1;
1396 TYPE_LENGTH (result_type)
1397 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1398 if (low_bound >= 0)
876cecd0 1399 TYPE_UNSIGNED (result_type) = 1;
c906108c 1400 }
5d14b6e5 1401 result_type->field (0).set_type (domain_type);
c906108c 1402
c16abbde 1403 return result_type;
c906108c
SS
1404}
1405
ea37ba09
DJ
1406/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1407 and any array types nested inside it. */
1408
1409void
1410make_vector_type (struct type *array_type)
1411{
1412 struct type *inner_array, *elt_type;
1413 int flags;
1414
1415 /* Find the innermost array type, in case the array is
1416 multi-dimensional. */
1417 inner_array = array_type;
78134374 1418 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
ea37ba09
DJ
1419 inner_array = TYPE_TARGET_TYPE (inner_array);
1420
1421 elt_type = TYPE_TARGET_TYPE (inner_array);
78134374 1422 if (elt_type->code () == TYPE_CODE_INT)
ea37ba09 1423 {
2844d6b5 1424 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1425 elt_type = make_qualified_type (elt_type, flags, NULL);
1426 TYPE_TARGET_TYPE (inner_array) = elt_type;
1427 }
1428
876cecd0 1429 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1430}
1431
794ac428 1432struct type *
ac3aafc7
EZ
1433init_vector_type (struct type *elt_type, int n)
1434{
1435 struct type *array_type;
d8734c88 1436
e3506a9f 1437 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1438 make_vector_type (array_type);
ac3aafc7
EZ
1439 return array_type;
1440}
1441
09e2d7c7
DE
1442/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1443 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1444 confusing. "self" is a common enough replacement for "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448struct type *
1449internal_type_self_type (struct type *type)
1450{
78134374 1451 switch (type->code ())
09e2d7c7
DE
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 return NULL;
09e2d7c7
DE
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1459 case TYPE_CODE_METHOD:
eaaf76ab
DE
1460 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 return NULL;
09e2d7c7
DE
1462 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1463 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1464 default:
1465 gdb_assert_not_reached ("bad type");
1466 }
1467}
1468
1469/* Set the type of the class that TYPE belongs to.
1470 In c++ this is the class of "this".
1471 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1472 TYPE_CODE_METHOD. */
1473
1474void
1475set_type_self_type (struct type *type, struct type *self_type)
1476{
78134374 1477 switch (type->code ())
09e2d7c7
DE
1478 {
1479 case TYPE_CODE_METHODPTR:
1480 case TYPE_CODE_MEMBERPTR:
1481 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1482 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1483 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1484 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1485 break;
1486 case TYPE_CODE_METHOD:
1487 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1488 INIT_FUNC_SPECIFIC (type);
1489 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1490 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1491 break;
1492 default:
1493 gdb_assert_not_reached ("bad type");
1494 }
1495}
1496
1497/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1498 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1499 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1500 TYPE doesn't include the offset (that's the value of the MEMBER
1501 itself), but does include the structure type into which it points
1502 (for some reason).
c906108c 1503
7ba81444
MS
1504 When "smashing" the type, we preserve the objfile that the old type
1505 pointed to, since we aren't changing where the type is actually
c906108c
SS
1506 allocated. */
1507
1508void
09e2d7c7 1509smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1510 struct type *to_type)
c906108c 1511{
2fdde8f8 1512 smash_type (type);
67607e24 1513 type->set_code (TYPE_CODE_MEMBERPTR);
c906108c 1514 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1515 set_type_self_type (type, self_type);
0d5de010
DJ
1516 /* Assume that a data member pointer is the same size as a normal
1517 pointer. */
50810684
UW
1518 TYPE_LENGTH (type)
1519 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1520}
1521
0b92b5bb
TT
1522/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1523
1524 When "smashing" the type, we preserve the objfile that the old type
1525 pointed to, since we aren't changing where the type is actually
1526 allocated. */
1527
1528void
1529smash_to_methodptr_type (struct type *type, struct type *to_type)
1530{
1531 smash_type (type);
67607e24 1532 type->set_code (TYPE_CODE_METHODPTR);
0b92b5bb 1533 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1534 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1535 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1536}
1537
09e2d7c7 1538/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1539 METHOD just means `function that gets an extra "this" argument'.
1540
7ba81444
MS
1541 When "smashing" the type, we preserve the objfile that the old type
1542 pointed to, since we aren't changing where the type is actually
c906108c
SS
1543 allocated. */
1544
1545void
09e2d7c7 1546smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1547 struct type *to_type, struct field *args,
1548 int nargs, int varargs)
c906108c 1549{
2fdde8f8 1550 smash_type (type);
67607e24 1551 type->set_code (TYPE_CODE_METHOD);
c906108c 1552 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1553 set_type_self_type (type, self_type);
3cabb6b0 1554 type->set_fields (args);
5e33d5f4 1555 type->set_num_fields (nargs);
ad2f7632 1556 if (varargs)
876cecd0 1557 TYPE_VARARGS (type) = 1;
c906108c 1558 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1559}
1560
a737d952 1561/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1562 Since GCC PR debug/47510 DWARF provides associated information to detect the
1563 anonymous class linkage name from its typedef.
1564
1565 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1566 apply it itself. */
1567
1568const char *
a737d952 1569type_name_or_error (struct type *type)
d8228535
JK
1570{
1571 struct type *saved_type = type;
1572 const char *name;
1573 struct objfile *objfile;
1574
f168693b 1575 type = check_typedef (type);
d8228535 1576
7d93a1e0 1577 name = type->name ();
d8228535
JK
1578 if (name != NULL)
1579 return name;
1580
7d93a1e0 1581 name = saved_type->name ();
d8228535
JK
1582 objfile = TYPE_OBJFILE (saved_type);
1583 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1584 name ? name : "<anonymous>",
1585 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1586}
1587
7ba81444
MS
1588/* Lookup a typedef or primitive type named NAME, visible in lexical
1589 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1590 suitably defined. */
c906108c
SS
1591
1592struct type *
e6c014f2 1593lookup_typename (const struct language_defn *language,
b858499d 1594 const char *name,
34eaf542 1595 const struct block *block, int noerr)
c906108c 1596{
52f0bd74 1597 struct symbol *sym;
c906108c 1598
1994afbf 1599 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1600 language->la_language, NULL).symbol;
c51fe631
DE
1601 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1602 return SYMBOL_TYPE (sym);
1603
c51fe631
DE
1604 if (noerr)
1605 return NULL;
1606 error (_("No type named %s."), name);
c906108c
SS
1607}
1608
1609struct type *
e6c014f2 1610lookup_unsigned_typename (const struct language_defn *language,
b858499d 1611 const char *name)
c906108c 1612{
224c3ddb 1613 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1614
1615 strcpy (uns, "unsigned ");
1616 strcpy (uns + 9, name);
b858499d 1617 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1618}
1619
1620struct type *
b858499d 1621lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1622{
1623 struct type *t;
224c3ddb 1624 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1625
1626 strcpy (uns, "signed ");
1627 strcpy (uns + 7, name);
b858499d 1628 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1629 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1630 if (t != NULL)
1631 return t;
b858499d 1632 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1633}
1634
1635/* Lookup a structure type named "struct NAME",
1636 visible in lexical block BLOCK. */
1637
1638struct type *
270140bd 1639lookup_struct (const char *name, const struct block *block)
c906108c 1640{
52f0bd74 1641 struct symbol *sym;
c906108c 1642
d12307c1 1643 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1644
1645 if (sym == NULL)
1646 {
8a3fe4f8 1647 error (_("No struct type named %s."), name);
c906108c 1648 }
78134374 1649 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1650 {
7ba81444
MS
1651 error (_("This context has class, union or enum %s, not a struct."),
1652 name);
c906108c
SS
1653 }
1654 return (SYMBOL_TYPE (sym));
1655}
1656
1657/* Lookup a union type named "union NAME",
1658 visible in lexical block BLOCK. */
1659
1660struct type *
270140bd 1661lookup_union (const char *name, const struct block *block)
c906108c 1662{
52f0bd74 1663 struct symbol *sym;
c5aa993b 1664 struct type *t;
c906108c 1665
d12307c1 1666 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1667
1668 if (sym == NULL)
8a3fe4f8 1669 error (_("No union type named %s."), name);
c906108c 1670
c5aa993b 1671 t = SYMBOL_TYPE (sym);
c906108c 1672
78134374 1673 if (t->code () == TYPE_CODE_UNION)
c16abbde 1674 return t;
c906108c 1675
7ba81444
MS
1676 /* If we get here, it's not a union. */
1677 error (_("This context has class, struct or enum %s, not a union."),
1678 name);
c906108c
SS
1679}
1680
c906108c
SS
1681/* Lookup an enum type named "enum NAME",
1682 visible in lexical block BLOCK. */
1683
1684struct type *
270140bd 1685lookup_enum (const char *name, const struct block *block)
c906108c 1686{
52f0bd74 1687 struct symbol *sym;
c906108c 1688
d12307c1 1689 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1690 if (sym == NULL)
1691 {
8a3fe4f8 1692 error (_("No enum type named %s."), name);
c906108c 1693 }
78134374 1694 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
c906108c 1695 {
7ba81444
MS
1696 error (_("This context has class, struct or union %s, not an enum."),
1697 name);
c906108c
SS
1698 }
1699 return (SYMBOL_TYPE (sym));
1700}
1701
1702/* Lookup a template type named "template NAME<TYPE>",
1703 visible in lexical block BLOCK. */
1704
1705struct type *
61f4b350 1706lookup_template_type (const char *name, struct type *type,
270140bd 1707 const struct block *block)
c906108c
SS
1708{
1709 struct symbol *sym;
7ba81444 1710 char *nam = (char *)
7d93a1e0 1711 alloca (strlen (name) + strlen (type->name ()) + 4);
d8734c88 1712
c906108c
SS
1713 strcpy (nam, name);
1714 strcat (nam, "<");
7d93a1e0 1715 strcat (nam, type->name ());
0963b4bd 1716 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1717
d12307c1 1718 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1719
1720 if (sym == NULL)
1721 {
8a3fe4f8 1722 error (_("No template type named %s."), name);
c906108c 1723 }
78134374 1724 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1725 {
7ba81444
MS
1726 error (_("This context has class, union or enum %s, not a struct."),
1727 name);
c906108c
SS
1728 }
1729 return (SYMBOL_TYPE (sym));
1730}
1731
ef0bd204 1732/* See gdbtypes.h. */
c906108c 1733
ef0bd204
JB
1734struct_elt
1735lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1736{
1737 int i;
1738
1739 for (;;)
1740 {
f168693b 1741 type = check_typedef (type);
78134374
SM
1742 if (type->code () != TYPE_CODE_PTR
1743 && type->code () != TYPE_CODE_REF)
c906108c
SS
1744 break;
1745 type = TYPE_TARGET_TYPE (type);
1746 }
1747
78134374
SM
1748 if (type->code () != TYPE_CODE_STRUCT
1749 && type->code () != TYPE_CODE_UNION)
c906108c 1750 {
2f408ecb
PA
1751 std::string type_name = type_to_string (type);
1752 error (_("Type %s is not a structure or union type."),
1753 type_name.c_str ());
c906108c
SS
1754 }
1755
1f704f76 1756 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
c906108c 1757 {
0d5cff50 1758 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1759
db577aea 1760 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1761 {
ceacbf6e 1762 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1763 }
f5a010c0
PM
1764 else if (!t_field_name || *t_field_name == '\0')
1765 {
ef0bd204 1766 struct_elt elt
940da03e 1767 = lookup_struct_elt (type->field (i).type (), name, 1);
ef0bd204
JB
1768 if (elt.field != NULL)
1769 {
1770 elt.offset += TYPE_FIELD_BITPOS (type, i);
1771 return elt;
1772 }
f5a010c0 1773 }
c906108c
SS
1774 }
1775
1776 /* OK, it's not in this class. Recursively check the baseclasses. */
1777 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1778 {
ef0bd204
JB
1779 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1780 if (elt.field != NULL)
1781 return elt;
c906108c
SS
1782 }
1783
1784 if (noerr)
ef0bd204 1785 return {nullptr, 0};
c5aa993b 1786
2f408ecb
PA
1787 std::string type_name = type_to_string (type);
1788 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1789}
1790
ef0bd204
JB
1791/* See gdbtypes.h. */
1792
1793struct type *
1794lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1795{
1796 struct_elt elt = lookup_struct_elt (type, name, noerr);
1797 if (elt.field != NULL)
b6cdac4b 1798 return elt.field->type ();
ef0bd204
JB
1799 else
1800 return NULL;
1801}
1802
ed3ef339
DE
1803/* Store in *MAX the largest number representable by unsigned integer type
1804 TYPE. */
1805
1806void
1807get_unsigned_type_max (struct type *type, ULONGEST *max)
1808{
1809 unsigned int n;
1810
f168693b 1811 type = check_typedef (type);
78134374 1812 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
ed3ef339
DE
1813 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1814
1815 /* Written this way to avoid overflow. */
1816 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1817 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1818}
1819
1820/* Store in *MIN, *MAX the smallest and largest numbers representable by
1821 signed integer type TYPE. */
1822
1823void
1824get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1825{
1826 unsigned int n;
1827
f168693b 1828 type = check_typedef (type);
78134374 1829 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
ed3ef339
DE
1830 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1831
1832 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1833 *min = -((ULONGEST) 1 << (n - 1));
1834 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1835}
1836
ae6ae975
DE
1837/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1838 cplus_stuff.vptr_fieldno.
1839
1840 cplus_stuff is initialized to cplus_struct_default which does not
1841 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1842 designated initializers). We cope with that here. */
1843
1844int
1845internal_type_vptr_fieldno (struct type *type)
1846{
f168693b 1847 type = check_typedef (type);
78134374
SM
1848 gdb_assert (type->code () == TYPE_CODE_STRUCT
1849 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1850 if (!HAVE_CPLUS_STRUCT (type))
1851 return -1;
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1853}
1854
1855/* Set the value of cplus_stuff.vptr_fieldno. */
1856
1857void
1858set_type_vptr_fieldno (struct type *type, int fieldno)
1859{
f168693b 1860 type = check_typedef (type);
78134374
SM
1861 gdb_assert (type->code () == TYPE_CODE_STRUCT
1862 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1866}
1867
1868/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1869 cplus_stuff.vptr_basetype. */
1870
1871struct type *
1872internal_type_vptr_basetype (struct type *type)
1873{
f168693b 1874 type = check_typedef (type);
78134374
SM
1875 gdb_assert (type->code () == TYPE_CODE_STRUCT
1876 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1877 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1878 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1879}
1880
1881/* Set the value of cplus_stuff.vptr_basetype. */
1882
1883void
1884set_type_vptr_basetype (struct type *type, struct type *basetype)
1885{
f168693b 1886 type = check_typedef (type);
78134374
SM
1887 gdb_assert (type->code () == TYPE_CODE_STRUCT
1888 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1889 if (!HAVE_CPLUS_STRUCT (type))
1890 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1891 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1892}
1893
81fe8080
DE
1894/* Lookup the vptr basetype/fieldno values for TYPE.
1895 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1896 vptr_fieldno. Also, if found and basetype is from the same objfile,
1897 cache the results.
1898 If not found, return -1 and ignore BASETYPEP.
1899 Callers should be aware that in some cases (for example,
c906108c 1900 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1901 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1902 this function will not be able to find the
7ba81444 1903 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1904 vptr_basetype will remain NULL or incomplete. */
c906108c 1905
81fe8080
DE
1906int
1907get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1908{
f168693b 1909 type = check_typedef (type);
c906108c
SS
1910
1911 if (TYPE_VPTR_FIELDNO (type) < 0)
1912 {
1913 int i;
1914
7ba81444
MS
1915 /* We must start at zero in case the first (and only) baseclass
1916 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1917 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1918 {
81fe8080
DE
1919 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1920 int fieldno;
1921 struct type *basetype;
1922
1923 fieldno = get_vptr_fieldno (baseclass, &basetype);
1924 if (fieldno >= 0)
c906108c 1925 {
81fe8080 1926 /* If the type comes from a different objfile we can't cache
0963b4bd 1927 it, it may have a different lifetime. PR 2384 */
5ef73790 1928 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1929 {
ae6ae975
DE
1930 set_type_vptr_fieldno (type, fieldno);
1931 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1932 }
1933 if (basetypep)
1934 *basetypep = basetype;
1935 return fieldno;
c906108c
SS
1936 }
1937 }
81fe8080
DE
1938
1939 /* Not found. */
1940 return -1;
1941 }
1942 else
1943 {
1944 if (basetypep)
1945 *basetypep = TYPE_VPTR_BASETYPE (type);
1946 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1947 }
1948}
1949
44e1a9eb
DJ
1950static void
1951stub_noname_complaint (void)
1952{
b98664d3 1953 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1954}
1955
a405673c
JB
1956/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1957 attached to it, and that property has a non-constant value. */
1958
1959static int
1960array_type_has_dynamic_stride (struct type *type)
1961{
24e99c6c 1962 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c 1963
8c2e4e06 1964 return (prop != NULL && prop->kind () != PROP_CONST);
a405673c
JB
1965}
1966
d98b7a16 1967/* Worker for is_dynamic_type. */
80180f79 1968
d98b7a16 1969static int
ee715b5a 1970is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1971{
1972 type = check_typedef (type);
1973
e771e4be 1974 /* We only want to recognize references at the outermost level. */
78134374 1975 if (top_level && type->code () == TYPE_CODE_REF)
e771e4be
PMR
1976 type = check_typedef (TYPE_TARGET_TYPE (type));
1977
3cdcd0ce
JB
1978 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1979 dynamic, even if the type itself is statically defined.
1980 From a user's point of view, this may appear counter-intuitive;
1981 but it makes sense in this context, because the point is to determine
1982 whether any part of the type needs to be resolved before it can
1983 be exploited. */
1984 if (TYPE_DATA_LOCATION (type) != NULL
1985 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1986 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1987 return 1;
1988
3f2f83dd
KB
1989 if (TYPE_ASSOCIATED_PROP (type))
1990 return 1;
1991
1992 if (TYPE_ALLOCATED_PROP (type))
1993 return 1;
1994
24e99c6c 1995 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 1996 if (prop != nullptr && prop->kind () != PROP_TYPE)
ef83a141
TT
1997 return 1;
1998
f8e89861
TT
1999 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2000 return 1;
2001
78134374 2002 switch (type->code ())
80180f79 2003 {
6f8a3220 2004 case TYPE_CODE_RANGE:
ddb87a81
JB
2005 {
2006 /* A range type is obviously dynamic if it has at least one
2007 dynamic bound. But also consider the range type to be
2008 dynamic when its subtype is dynamic, even if the bounds
2009 of the range type are static. It allows us to assume that
2010 the subtype of a static range type is also static. */
599088e3 2011 return (!has_static_range (type->bounds ())
ee715b5a 2012 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2013 }
6f8a3220 2014
216a7e6b
AB
2015 case TYPE_CODE_STRING:
2016 /* Strings are very much like an array of characters, and can be
2017 treated as one here. */
80180f79
SA
2018 case TYPE_CODE_ARRAY:
2019 {
1f704f76 2020 gdb_assert (type->num_fields () == 1);
6f8a3220 2021
a405673c 2022 /* The array is dynamic if either the bounds are dynamic... */
3d967001 2023 if (is_dynamic_type_internal (type->index_type (), 0))
80180f79 2024 return 1;
a405673c
JB
2025 /* ... or the elements it contains have a dynamic contents... */
2026 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2027 return 1;
2028 /* ... or if it has a dynamic stride... */
2029 if (array_type_has_dynamic_stride (type))
2030 return 1;
2031 return 0;
80180f79 2032 }
012370f6
TT
2033
2034 case TYPE_CODE_STRUCT:
2035 case TYPE_CODE_UNION:
2036 {
2037 int i;
2038
7d79de9a
TT
2039 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2040
1f704f76 2041 for (i = 0; i < type->num_fields (); ++i)
7d79de9a
TT
2042 {
2043 /* Static fields can be ignored here. */
ceacbf6e 2044 if (field_is_static (&type->field (i)))
7d79de9a
TT
2045 continue;
2046 /* If the field has dynamic type, then so does TYPE. */
940da03e 2047 if (is_dynamic_type_internal (type->field (i).type (), 0))
7d79de9a
TT
2048 return 1;
2049 /* If the field is at a fixed offset, then it is not
2050 dynamic. */
2051 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2052 continue;
2053 /* Do not consider C++ virtual base types to be dynamic
2054 due to the field's offset being dynamic; these are
2055 handled via other means. */
2056 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2057 continue;
012370f6 2058 return 1;
7d79de9a 2059 }
012370f6
TT
2060 }
2061 break;
80180f79 2062 }
92e2a17f
TT
2063
2064 return 0;
80180f79
SA
2065}
2066
d98b7a16
TT
2067/* See gdbtypes.h. */
2068
2069int
2070is_dynamic_type (struct type *type)
2071{
ee715b5a 2072 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2073}
2074
df25ebbd 2075static struct type *resolve_dynamic_type_internal
ee715b5a 2076 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2077
df25ebbd
JB
2078/* Given a dynamic range type (dyn_range_type) and a stack of
2079 struct property_addr_info elements, return a static version
2080 of that type. */
d190df30 2081
80180f79 2082static struct type *
df25ebbd
JB
2083resolve_dynamic_range (struct type *dyn_range_type,
2084 struct property_addr_info *addr_stack)
80180f79
SA
2085{
2086 CORE_ADDR value;
ddb87a81 2087 struct type *static_range_type, *static_target_type;
5bbd8269 2088 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2089
78134374 2090 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
80180f79 2091
599088e3 2092 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
63e43d3a 2093 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2094 low_bound.set_const_val (value);
80180f79 2095 else
8c2e4e06 2096 low_bound.set_undefined ();
80180f79 2097
599088e3 2098 prop = &dyn_range_type->bounds ()->high;
63e43d3a 2099 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79 2100 {
8c2e4e06 2101 high_bound.set_const_val (value);
c451ebe5 2102
599088e3 2103 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
8c2e4e06
SM
2104 high_bound.set_const_val
2105 (low_bound.const_val () + high_bound.const_val () - 1);
80180f79
SA
2106 }
2107 else
8c2e4e06 2108 high_bound.set_undefined ();
80180f79 2109
599088e3
SM
2110 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2111 prop = &dyn_range_type->bounds ()->stride;
5bbd8269
AB
2112 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2113 {
8c2e4e06 2114 stride.set_const_val (value);
5bbd8269
AB
2115
2116 /* If we have a bit stride that is not an exact number of bytes then
2117 I really don't think this is going to work with current GDB, the
2118 array indexing code in GDB seems to be pretty heavily tied to byte
2119 offsets right now. Assuming 8 bits in a byte. */
2120 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2121 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2122 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2123 error (_("bit strides that are not a multiple of the byte size "
2124 "are currently not supported"));
2125 }
2126 else
2127 {
8c2e4e06 2128 stride.set_undefined ();
5bbd8269
AB
2129 byte_stride_p = true;
2130 }
2131
ddb87a81
JB
2132 static_target_type
2133 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2134 addr_stack, 0);
599088e3 2135 LONGEST bias = dyn_range_type->bounds ()->bias;
5bbd8269
AB
2136 static_range_type = create_range_type_with_stride
2137 (copy_type (dyn_range_type), static_target_type,
2138 &low_bound, &high_bound, bias, &stride, byte_stride_p);
599088e3 2139 static_range_type->bounds ()->flag_bound_evaluated = 1;
6f8a3220
JB
2140 return static_range_type;
2141}
2142
216a7e6b
AB
2143/* Resolves dynamic bound values of an array or string type TYPE to static
2144 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2145 needed during the dynamic resolution. */
6f8a3220
JB
2146
2147static struct type *
216a7e6b
AB
2148resolve_dynamic_array_or_string (struct type *type,
2149 struct property_addr_info *addr_stack)
6f8a3220
JB
2150{
2151 CORE_ADDR value;
2152 struct type *elt_type;
2153 struct type *range_type;
2154 struct type *ary_dim;
3f2f83dd 2155 struct dynamic_prop *prop;
a405673c 2156 unsigned int bit_stride = 0;
6f8a3220 2157
216a7e6b
AB
2158 /* For dynamic type resolution strings can be treated like arrays of
2159 characters. */
78134374
SM
2160 gdb_assert (type->code () == TYPE_CODE_ARRAY
2161 || type->code () == TYPE_CODE_STRING);
6f8a3220 2162
3f2f83dd
KB
2163 type = copy_type (type);
2164
6f8a3220 2165 elt_type = type;
3d967001 2166 range_type = check_typedef (elt_type->index_type ());
df25ebbd 2167 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2168
3f2f83dd
KB
2169 /* Resolve allocated/associated here before creating a new array type, which
2170 will update the length of the array accordingly. */
2171 prop = TYPE_ALLOCATED_PROP (type);
2172 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06
SM
2173 prop->set_const_val (value);
2174
3f2f83dd
KB
2175 prop = TYPE_ASSOCIATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2177 prop->set_const_val (value);
3f2f83dd 2178
80180f79
SA
2179 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2180
78134374 2181 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
216a7e6b 2182 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2183 else
2184 elt_type = TYPE_TARGET_TYPE (type);
2185
24e99c6c 2186 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2187 if (prop != NULL)
2188 {
603490bf 2189 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c 2190 {
7aa91313 2191 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2192 bit_stride = (unsigned int) (value * 8);
2193 }
2194 else
2195 {
2196 /* Could be a bug in our code, but it could also happen
2197 if the DWARF info is not correct. Issue a warning,
2198 and assume no byte/bit stride (leave bit_stride = 0). */
2199 warning (_("cannot determine array stride for type %s"),
7d93a1e0 2200 type->name () ? type->name () : "<no name>");
a405673c
JB
2201 }
2202 }
2203 else
2204 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2205
2206 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2207 bit_stride);
80180f79
SA
2208}
2209
012370f6 2210/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2211 bounds. ADDR_STACK is a stack of struct property_addr_info
2212 to be used if needed during the dynamic resolution. */
012370f6
TT
2213
2214static struct type *
df25ebbd
JB
2215resolve_dynamic_union (struct type *type,
2216 struct property_addr_info *addr_stack)
012370f6
TT
2217{
2218 struct type *resolved_type;
2219 int i;
2220 unsigned int max_len = 0;
2221
78134374 2222 gdb_assert (type->code () == TYPE_CODE_UNION);
012370f6
TT
2223
2224 resolved_type = copy_type (type);
3cabb6b0
SM
2225 resolved_type->set_fields
2226 ((struct field *)
2227 TYPE_ALLOC (resolved_type,
2228 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2229 memcpy (resolved_type->fields (),
2230 type->fields (),
1f704f76
SM
2231 resolved_type->num_fields () * sizeof (struct field));
2232 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6
TT
2233 {
2234 struct type *t;
2235
ceacbf6e 2236 if (field_is_static (&type->field (i)))
012370f6
TT
2237 continue;
2238
940da03e 2239 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
ee715b5a 2240 addr_stack, 0);
5d14b6e5 2241 resolved_type->field (i).set_type (t);
2f33032a
KS
2242
2243 struct type *real_type = check_typedef (t);
2244 if (TYPE_LENGTH (real_type) > max_len)
2245 max_len = TYPE_LENGTH (real_type);
012370f6
TT
2246 }
2247
2248 TYPE_LENGTH (resolved_type) = max_len;
2249 return resolved_type;
2250}
2251
ef83a141
TT
2252/* See gdbtypes.h. */
2253
2254bool
2255variant::matches (ULONGEST value, bool is_unsigned) const
2256{
2257 for (const discriminant_range &range : discriminants)
2258 if (range.contains (value, is_unsigned))
2259 return true;
2260 return false;
2261}
2262
2263static void
2264compute_variant_fields_inner (struct type *type,
2265 struct property_addr_info *addr_stack,
2266 const variant_part &part,
2267 std::vector<bool> &flags);
2268
2269/* A helper function to determine which variant fields will be active.
2270 This handles both the variant's direct fields, and any variant
2271 parts embedded in this variant. TYPE is the type we're examining.
2272 ADDR_STACK holds information about the concrete object. VARIANT is
2273 the current variant to be handled. FLAGS is where the results are
2274 stored -- this function sets the Nth element in FLAGS if the
2275 corresponding field is enabled. ENABLED is whether this variant is
2276 enabled or not. */
2277
2278static void
2279compute_variant_fields_recurse (struct type *type,
2280 struct property_addr_info *addr_stack,
2281 const variant &variant,
2282 std::vector<bool> &flags,
2283 bool enabled)
2284{
2285 for (int field = variant.first_field; field < variant.last_field; ++field)
2286 flags[field] = enabled;
2287
2288 for (const variant_part &new_part : variant.parts)
2289 {
2290 if (enabled)
2291 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2292 else
2293 {
2294 for (const auto &sub_variant : new_part.variants)
2295 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2296 flags, enabled);
2297 }
2298 }
2299}
2300
2301/* A helper function to determine which variant fields will be active.
2302 This evaluates the discriminant, decides which variant (if any) is
2303 active, and then updates FLAGS to reflect which fields should be
2304 available. TYPE is the type we're examining. ADDR_STACK holds
2305 information about the concrete object. VARIANT is the current
2306 variant to be handled. FLAGS is where the results are stored --
2307 this function sets the Nth element in FLAGS if the corresponding
2308 field is enabled. */
2309
2310static void
2311compute_variant_fields_inner (struct type *type,
2312 struct property_addr_info *addr_stack,
2313 const variant_part &part,
2314 std::vector<bool> &flags)
2315{
2316 /* Evaluate the discriminant. */
2317 gdb::optional<ULONGEST> discr_value;
2318 if (part.discriminant_index != -1)
2319 {
2320 int idx = part.discriminant_index;
2321
2322 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2323 error (_("Cannot determine struct field location"
2324 " (invalid location kind)"));
2325
b249d2c2
TT
2326 if (addr_stack->valaddr.data () != NULL)
2327 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2328 idx);
ef83a141
TT
2329 else
2330 {
2331 CORE_ADDR addr = (addr_stack->addr
2332 + (TYPE_FIELD_BITPOS (type, idx)
2333 / TARGET_CHAR_BIT));
2334
2335 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2336 LONGEST size = bitsize / 8;
2337 if (size == 0)
940da03e 2338 size = TYPE_LENGTH (type->field (idx).type ());
ef83a141
TT
2339
2340 gdb_byte bits[sizeof (ULONGEST)];
2341 read_memory (addr, bits, size);
2342
2343 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2344 % TARGET_CHAR_BIT);
2345
940da03e 2346 discr_value = unpack_bits_as_long (type->field (idx).type (),
ef83a141
TT
2347 bits, bitpos, bitsize);
2348 }
2349 }
2350
2351 /* Go through each variant and see which applies. */
2352 const variant *default_variant = nullptr;
2353 const variant *applied_variant = nullptr;
2354 for (const auto &variant : part.variants)
2355 {
2356 if (variant.is_default ())
2357 default_variant = &variant;
2358 else if (discr_value.has_value ()
2359 && variant.matches (*discr_value, part.is_unsigned))
2360 {
2361 applied_variant = &variant;
2362 break;
2363 }
2364 }
2365 if (applied_variant == nullptr)
2366 applied_variant = default_variant;
2367
2368 for (const auto &variant : part.variants)
2369 compute_variant_fields_recurse (type, addr_stack, variant,
2370 flags, applied_variant == &variant);
2371}
2372
2373/* Determine which variant fields are available in TYPE. The enabled
2374 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2375 about the concrete object. PARTS describes the top-level variant
2376 parts for this type. */
2377
2378static void
2379compute_variant_fields (struct type *type,
2380 struct type *resolved_type,
2381 struct property_addr_info *addr_stack,
2382 const gdb::array_view<variant_part> &parts)
2383{
2384 /* Assume all fields are included by default. */
1f704f76 2385 std::vector<bool> flags (resolved_type->num_fields (), true);
ef83a141
TT
2386
2387 /* Now disable fields based on the variants that control them. */
2388 for (const auto &part : parts)
2389 compute_variant_fields_inner (type, addr_stack, part, flags);
2390
5e33d5f4
SM
2391 resolved_type->set_num_fields
2392 (std::count (flags.begin (), flags.end (), true));
3cabb6b0
SM
2393 resolved_type->set_fields
2394 ((struct field *)
2395 TYPE_ALLOC (resolved_type,
2396 resolved_type->num_fields () * sizeof (struct field)));
2397
ef83a141 2398 int out = 0;
1f704f76 2399 for (int i = 0; i < type->num_fields (); ++i)
ef83a141
TT
2400 {
2401 if (!flags[i])
2402 continue;
2403
ceacbf6e 2404 resolved_type->field (out) = type->field (i);
ef83a141
TT
2405 ++out;
2406 }
2407}
2408
012370f6 2409/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2410 bounds. ADDR_STACK is a stack of struct property_addr_info to
2411 be used if needed during the dynamic resolution. */
012370f6
TT
2412
2413static struct type *
df25ebbd
JB
2414resolve_dynamic_struct (struct type *type,
2415 struct property_addr_info *addr_stack)
012370f6
TT
2416{
2417 struct type *resolved_type;
2418 int i;
6908c509 2419 unsigned resolved_type_bit_length = 0;
012370f6 2420
78134374 2421 gdb_assert (type->code () == TYPE_CODE_STRUCT);
1f704f76 2422 gdb_assert (type->num_fields () > 0);
012370f6
TT
2423
2424 resolved_type = copy_type (type);
ef83a141 2425
24e99c6c 2426 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2427 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
ef83a141
TT
2428 {
2429 compute_variant_fields (type, resolved_type, addr_stack,
8c2e4e06 2430 *variant_prop->variant_parts ());
ef83a141
TT
2431 /* We want to leave the property attached, so that the Rust code
2432 can tell whether the type was originally an enum. */
8c2e4e06 2433 variant_prop->set_original_type (type);
ef83a141
TT
2434 }
2435 else
2436 {
3cabb6b0
SM
2437 resolved_type->set_fields
2438 ((struct field *)
2439 TYPE_ALLOC (resolved_type,
2440 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2441 memcpy (resolved_type->fields (),
2442 type->fields (),
1f704f76 2443 resolved_type->num_fields () * sizeof (struct field));
ef83a141
TT
2444 }
2445
1f704f76 2446 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6 2447 {
6908c509 2448 unsigned new_bit_length;
df25ebbd 2449 struct property_addr_info pinfo;
012370f6 2450
ceacbf6e 2451 if (field_is_static (&resolved_type->field (i)))
012370f6
TT
2452 continue;
2453
7d79de9a
TT
2454 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2455 {
2456 struct dwarf2_property_baton baton;
2457 baton.property_type
940da03e 2458 = lookup_pointer_type (resolved_type->field (i).type ());
7d79de9a
TT
2459 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2460
2461 struct dynamic_prop prop;
8c2e4e06 2462 prop.set_locexpr (&baton);
7d79de9a
TT
2463
2464 CORE_ADDR addr;
2465 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2466 true))
ceacbf6e 2467 SET_FIELD_BITPOS (resolved_type->field (i),
7d79de9a
TT
2468 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2469 }
2470
6908c509
JB
2471 /* As we know this field is not a static field, the field's
2472 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2473 this is the case, but only trigger a simple error rather
2474 than an internal error if that fails. While failing
2475 that verification indicates a bug in our code, the error
2476 is not severe enough to suggest to the user he stops
2477 his debugging session because of it. */
ef83a141 2478 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2479 error (_("Cannot determine struct field location"
2480 " (invalid location kind)"));
df25ebbd 2481
940da03e 2482 pinfo.type = check_typedef (resolved_type->field (i).type ());
c3345124 2483 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2484 pinfo.addr
2485 = (addr_stack->addr
2486 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2487 pinfo.next = addr_stack;
2488
5d14b6e5 2489 resolved_type->field (i).set_type
940da03e 2490 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
5d14b6e5 2491 &pinfo, 0));
df25ebbd
JB
2492 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2493 == FIELD_LOC_KIND_BITPOS);
2494
6908c509
JB
2495 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2496 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2497 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2498 else
2f33032a
KS
2499 {
2500 struct type *real_type
2501 = check_typedef (resolved_type->field (i).type ());
2502
2503 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2504 }
6908c509
JB
2505
2506 /* Normally, we would use the position and size of the last field
2507 to determine the size of the enclosing structure. But GCC seems
2508 to be encoding the position of some fields incorrectly when
2509 the struct contains a dynamic field that is not placed last.
2510 So we compute the struct size based on the field that has
2511 the highest position + size - probably the best we can do. */
2512 if (new_bit_length > resolved_type_bit_length)
2513 resolved_type_bit_length = new_bit_length;
012370f6
TT
2514 }
2515
9920b434
BH
2516 /* The length of a type won't change for fortran, but it does for C and Ada.
2517 For fortran the size of dynamic fields might change over time but not the
2518 type length of the structure. If we adapt it, we run into problems
2519 when calculating the element offset for arrays of structs. */
2520 if (current_language->la_language != language_fortran)
2521 TYPE_LENGTH (resolved_type)
2522 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2523
9e195661
PMR
2524 /* The Ada language uses this field as a cache for static fixed types: reset
2525 it as RESOLVED_TYPE must have its own static fixed type. */
2526 TYPE_TARGET_TYPE (resolved_type) = NULL;
2527
012370f6
TT
2528 return resolved_type;
2529}
2530
d98b7a16 2531/* Worker for resolved_dynamic_type. */
80180f79 2532
d98b7a16 2533static struct type *
df25ebbd 2534resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2535 struct property_addr_info *addr_stack,
2536 int top_level)
80180f79
SA
2537{
2538 struct type *real_type = check_typedef (type);
f8e89861 2539 struct type *resolved_type = nullptr;
d9823cbb 2540 struct dynamic_prop *prop;
3cdcd0ce 2541 CORE_ADDR value;
80180f79 2542
ee715b5a 2543 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2544 return type;
2545
f8e89861
TT
2546 gdb::optional<CORE_ADDR> type_length;
2547 prop = TYPE_DYNAMIC_LENGTH (type);
2548 if (prop != NULL
2549 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2550 type_length = value;
2551
78134374 2552 if (type->code () == TYPE_CODE_TYPEDEF)
6f8a3220 2553 {
cac9b138
JK
2554 resolved_type = copy_type (type);
2555 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2556 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2557 top_level);
5537b577
JK
2558 }
2559 else
2560 {
2561 /* Before trying to resolve TYPE, make sure it is not a stub. */
2562 type = real_type;
012370f6 2563
78134374 2564 switch (type->code ())
5537b577 2565 {
e771e4be
PMR
2566 case TYPE_CODE_REF:
2567 {
2568 struct property_addr_info pinfo;
2569
2570 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2571 pinfo.valaddr = {};
2572 if (addr_stack->valaddr.data () != NULL)
2573 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2574 type);
c3345124
JB
2575 else
2576 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2577 pinfo.next = addr_stack;
2578
2579 resolved_type = copy_type (type);
2580 TYPE_TARGET_TYPE (resolved_type)
2581 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2582 &pinfo, top_level);
2583 break;
2584 }
2585
216a7e6b
AB
2586 case TYPE_CODE_STRING:
2587 /* Strings are very much like an array of characters, and can be
2588 treated as one here. */
5537b577 2589 case TYPE_CODE_ARRAY:
216a7e6b 2590 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2591 break;
2592
2593 case TYPE_CODE_RANGE:
df25ebbd 2594 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2595 break;
2596
2597 case TYPE_CODE_UNION:
df25ebbd 2598 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2599 break;
2600
2601 case TYPE_CODE_STRUCT:
df25ebbd 2602 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2603 break;
2604 }
6f8a3220 2605 }
80180f79 2606
f8e89861
TT
2607 if (resolved_type == nullptr)
2608 return type;
2609
2610 if (type_length.has_value ())
2611 {
2612 TYPE_LENGTH (resolved_type) = *type_length;
7aa91313 2613 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
f8e89861
TT
2614 }
2615
3cdcd0ce
JB
2616 /* Resolve data_location attribute. */
2617 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2618 if (prop != NULL
2619 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2620 prop->set_const_val (value);
3cdcd0ce 2621
80180f79
SA
2622 return resolved_type;
2623}
2624
d98b7a16
TT
2625/* See gdbtypes.h */
2626
2627struct type *
b249d2c2
TT
2628resolve_dynamic_type (struct type *type,
2629 gdb::array_view<const gdb_byte> valaddr,
c3345124 2630 CORE_ADDR addr)
d98b7a16 2631{
c3345124
JB
2632 struct property_addr_info pinfo
2633 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2634
ee715b5a 2635 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2636}
2637
d9823cbb
KB
2638/* See gdbtypes.h */
2639
24e99c6c
SM
2640dynamic_prop *
2641type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2642{
98d48915 2643 dynamic_prop_list *node = this->main_type->dyn_prop_list;
d9823cbb
KB
2644
2645 while (node != NULL)
2646 {
2647 if (node->prop_kind == prop_kind)
283a9958 2648 return &node->prop;
d9823cbb
KB
2649 node = node->next;
2650 }
2651 return NULL;
2652}
2653
2654/* See gdbtypes.h */
2655
2656void
5c54719c 2657type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2658{
2659 struct dynamic_prop_list *temp;
2660
5c54719c 2661 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2662
5c54719c 2663 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2664 struct dynamic_prop_list);
d9823cbb 2665 temp->prop_kind = prop_kind;
283a9958 2666 temp->prop = prop;
98d48915 2667 temp->next = this->main_type->dyn_prop_list;
d9823cbb 2668
98d48915 2669 this->main_type->dyn_prop_list = temp;
d9823cbb
KB
2670}
2671
7aa91313 2672/* See gdbtypes.h. */
9920b434
BH
2673
2674void
7aa91313 2675type::remove_dyn_prop (dynamic_prop_node_kind kind)
9920b434
BH
2676{
2677 struct dynamic_prop_list *prev_node, *curr_node;
2678
98d48915 2679 curr_node = this->main_type->dyn_prop_list;
9920b434
BH
2680 prev_node = NULL;
2681
2682 while (NULL != curr_node)
2683 {
7aa91313 2684 if (curr_node->prop_kind == kind)
9920b434
BH
2685 {
2686 /* Update the linked list but don't free anything.
2687 The property was allocated on objstack and it is not known
2688 if we are on top of it. Nevertheless, everything is released
2689 when the complete objstack is freed. */
2690 if (NULL == prev_node)
98d48915 2691 this->main_type->dyn_prop_list = curr_node->next;
9920b434
BH
2692 else
2693 prev_node->next = curr_node->next;
2694
2695 return;
2696 }
2697
2698 prev_node = curr_node;
2699 curr_node = curr_node->next;
2700 }
2701}
d9823cbb 2702
92163a10
JK
2703/* Find the real type of TYPE. This function returns the real type,
2704 after removing all layers of typedefs, and completing opaque or stub
2705 types. Completion changes the TYPE argument, but stripping of
2706 typedefs does not.
2707
2708 Instance flags (e.g. const/volatile) are preserved as typedefs are
2709 stripped. If necessary a new qualified form of the underlying type
2710 is created.
2711
2712 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2713 not been computed and we're either in the middle of reading symbols, or
2714 there was no name for the typedef in the debug info.
2715
9bc118a5
DE
2716 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2717 QUITs in the symbol reading code can also throw.
2718 Thus this function can throw an exception.
2719
92163a10
JK
2720 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2721 the target type.
c906108c
SS
2722
2723 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2724 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2725 definition, so we can use it in future. There used to be a comment
2726 (but not any code) that if we don't find a full definition, we'd
2727 set a flag so we don't spend time in the future checking the same
2728 type. That would be a mistake, though--we might load in more
92163a10 2729 symbols which contain a full definition for the type. */
c906108c
SS
2730
2731struct type *
a02fd225 2732check_typedef (struct type *type)
c906108c
SS
2733{
2734 struct type *orig_type = type;
92163a10
JK
2735 /* While we're removing typedefs, we don't want to lose qualifiers.
2736 E.g., const/volatile. */
2737 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2738
423c0af8
MS
2739 gdb_assert (type);
2740
78134374 2741 while (type->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
2742 {
2743 if (!TYPE_TARGET_TYPE (type))
2744 {
0d5cff50 2745 const char *name;
c906108c
SS
2746 struct symbol *sym;
2747
2748 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2749 reading a symtab. Infinite recursion is one danger. */
c906108c 2750 if (currently_reading_symtab)
92163a10 2751 return make_qualified_type (type, instance_flags, NULL);
c906108c 2752
7d93a1e0 2753 name = type->name ();
e86ca25f
TT
2754 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2755 VAR_DOMAIN as appropriate? */
c906108c
SS
2756 if (name == NULL)
2757 {
23136709 2758 stub_noname_complaint ();
92163a10 2759 return make_qualified_type (type, instance_flags, NULL);
c906108c 2760 }
d12307c1 2761 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2762 if (sym)
2763 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2764 else /* TYPE_CODE_UNDEF */
e9bb382b 2765 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2766 }
2767 type = TYPE_TARGET_TYPE (type);
c906108c 2768
92163a10
JK
2769 /* Preserve the instance flags as we traverse down the typedef chain.
2770
2771 Handling address spaces/classes is nasty, what do we do if there's a
2772 conflict?
2773 E.g., what if an outer typedef marks the type as class_1 and an inner
2774 typedef marks the type as class_2?
2775 This is the wrong place to do such error checking. We leave it to
2776 the code that created the typedef in the first place to flag the
2777 error. We just pick the outer address space (akin to letting the
2778 outer cast in a chain of casting win), instead of assuming
2779 "it can't happen". */
2780 {
2781 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2782 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2783 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2784 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2785
2786 /* Treat code vs data spaces and address classes separately. */
2787 if ((instance_flags & ALL_SPACES) != 0)
2788 new_instance_flags &= ~ALL_SPACES;
2789 if ((instance_flags & ALL_CLASSES) != 0)
2790 new_instance_flags &= ~ALL_CLASSES;
2791
2792 instance_flags |= new_instance_flags;
2793 }
2794 }
a02fd225 2795
7ba81444
MS
2796 /* If this is a struct/class/union with no fields, then check
2797 whether a full definition exists somewhere else. This is for
2798 systems where a type definition with no fields is issued for such
2799 types, instead of identifying them as stub types in the first
2800 place. */
c5aa993b 2801
7ba81444
MS
2802 if (TYPE_IS_OPAQUE (type)
2803 && opaque_type_resolution
2804 && !currently_reading_symtab)
c906108c 2805 {
7d93a1e0 2806 const char *name = type->name ();
c5aa993b 2807 struct type *newtype;
d8734c88 2808
c906108c
SS
2809 if (name == NULL)
2810 {
23136709 2811 stub_noname_complaint ();
92163a10 2812 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2813 }
2814 newtype = lookup_transparent_type (name);
ad766c0a 2815
c906108c 2816 if (newtype)
ad766c0a 2817 {
7ba81444
MS
2818 /* If the resolved type and the stub are in the same
2819 objfile, then replace the stub type with the real deal.
2820 But if they're in separate objfiles, leave the stub
2821 alone; we'll just look up the transparent type every time
2822 we call check_typedef. We can't create pointers between
2823 types allocated to different objfiles, since they may
2824 have different lifetimes. Trying to copy NEWTYPE over to
2825 TYPE's objfile is pointless, too, since you'll have to
2826 move over any other types NEWTYPE refers to, which could
2827 be an unbounded amount of stuff. */
ad766c0a 2828 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2829 type = make_qualified_type (newtype,
2830 TYPE_INSTANCE_FLAGS (type),
2831 type);
ad766c0a
JB
2832 else
2833 type = newtype;
2834 }
c906108c 2835 }
7ba81444
MS
2836 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2837 types. */
74a9bb82 2838 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2839 {
7d93a1e0 2840 const char *name = type->name ();
e86ca25f
TT
2841 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2842 as appropriate? */
c906108c 2843 struct symbol *sym;
d8734c88 2844
c906108c
SS
2845 if (name == NULL)
2846 {
23136709 2847 stub_noname_complaint ();
92163a10 2848 return make_qualified_type (type, instance_flags, NULL);
c906108c 2849 }
d12307c1 2850 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2851 if (sym)
c26f2453
JB
2852 {
2853 /* Same as above for opaque types, we can replace the stub
92163a10 2854 with the complete type only if they are in the same
c26f2453 2855 objfile. */
78134374 2856 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
92163a10
JK
2857 type = make_qualified_type (SYMBOL_TYPE (sym),
2858 TYPE_INSTANCE_FLAGS (type),
2859 type);
c26f2453
JB
2860 else
2861 type = SYMBOL_TYPE (sym);
2862 }
c906108c
SS
2863 }
2864
74a9bb82 2865 if (TYPE_TARGET_STUB (type))
c906108c 2866 {
c906108c
SS
2867 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2868
74a9bb82 2869 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2870 {
73e2eb35 2871 /* Nothing we can do. */
c5aa993b 2872 }
78134374 2873 else if (type->code () == TYPE_CODE_RANGE)
c906108c
SS
2874 {
2875 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2876 TYPE_TARGET_STUB (type) = 0;
c906108c 2877 }
78134374 2878 else if (type->code () == TYPE_CODE_ARRAY
8dbb1375
HD
2879 && update_static_array_size (type))
2880 TYPE_TARGET_STUB (type) = 0;
c906108c 2881 }
92163a10
JK
2882
2883 type = make_qualified_type (type, instance_flags, NULL);
2884
7ba81444 2885 /* Cache TYPE_LENGTH for future use. */
c906108c 2886 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2887
c906108c
SS
2888 return type;
2889}
2890
7ba81444 2891/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2892 occurs, silently return a void type. */
c91ecb25 2893
b9362cc7 2894static struct type *
48319d1f 2895safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2896{
2897 struct ui_file *saved_gdb_stderr;
34365054 2898 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2899
7ba81444 2900 /* Suppress error messages. */
c91ecb25 2901 saved_gdb_stderr = gdb_stderr;
d7e74731 2902 gdb_stderr = &null_stream;
c91ecb25 2903
7ba81444 2904 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2905 try
8e7b59a5
KS
2906 {
2907 type = parse_and_eval_type (p, length);
2908 }
230d2906 2909 catch (const gdb_exception_error &except)
492d29ea
PA
2910 {
2911 type = builtin_type (gdbarch)->builtin_void;
2912 }
c91ecb25 2913
7ba81444 2914 /* Stop suppressing error messages. */
c91ecb25
ND
2915 gdb_stderr = saved_gdb_stderr;
2916
2917 return type;
2918}
2919
c906108c
SS
2920/* Ugly hack to convert method stubs into method types.
2921
7ba81444
MS
2922 He ain't kiddin'. This demangles the name of the method into a
2923 string including argument types, parses out each argument type,
2924 generates a string casting a zero to that type, evaluates the
2925 string, and stuffs the resulting type into an argtype vector!!!
2926 Then it knows the type of the whole function (including argument
2927 types for overloading), which info used to be in the stab's but was
2928 removed to hack back the space required for them. */
c906108c 2929
de17c821 2930static void
fba45db2 2931check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2932{
50810684 2933 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2934 struct fn_field *f;
2935 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2936 char *demangled_name = gdb_demangle (mangled_name,
2937 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2938 char *argtypetext, *p;
2939 int depth = 0, argcount = 1;
ad2f7632 2940 struct field *argtypes;
c906108c
SS
2941 struct type *mtype;
2942
2943 /* Make sure we got back a function string that we can use. */
2944 if (demangled_name)
2945 p = strchr (demangled_name, '(');
502dcf4e
AC
2946 else
2947 p = NULL;
c906108c
SS
2948
2949 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2950 error (_("Internal: Cannot demangle mangled name `%s'."),
2951 mangled_name);
c906108c
SS
2952
2953 /* Now, read in the parameters that define this type. */
2954 p += 1;
2955 argtypetext = p;
2956 while (*p)
2957 {
070ad9f0 2958 if (*p == '(' || *p == '<')
c906108c
SS
2959 {
2960 depth += 1;
2961 }
070ad9f0 2962 else if (*p == ')' || *p == '>')
c906108c
SS
2963 {
2964 depth -= 1;
2965 }
2966 else if (*p == ',' && depth == 0)
2967 {
2968 argcount += 1;
2969 }
2970
2971 p += 1;
2972 }
2973
ad2f7632 2974 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2975 if (startswith (argtypetext, "(void)"))
ad2f7632 2976 argcount -= 1;
c906108c 2977
ad2f7632
DJ
2978 /* We need one extra slot, for the THIS pointer. */
2979
2980 argtypes = (struct field *)
2981 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2982 p = argtypetext;
4a1970e4
DJ
2983
2984 /* Add THIS pointer for non-static methods. */
2985 f = TYPE_FN_FIELDLIST1 (type, method_id);
2986 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2987 argcount = 0;
2988 else
2989 {
5d14b6e5 2990 argtypes[0].set_type (lookup_pointer_type (type));
4a1970e4
DJ
2991 argcount = 1;
2992 }
c906108c 2993
0963b4bd 2994 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2995 {
2996 depth = 0;
2997 while (*p)
2998 {
2999 if (depth <= 0 && (*p == ',' || *p == ')'))
3000 {
ad2f7632
DJ
3001 /* Avoid parsing of ellipsis, they will be handled below.
3002 Also avoid ``void'' as above. */
3003 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3004 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3005 {
5d14b6e5
SM
3006 argtypes[argcount].set_type
3007 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
c906108c
SS
3008 argcount += 1;
3009 }
3010 argtypetext = p + 1;
3011 }
3012
070ad9f0 3013 if (*p == '(' || *p == '<')
c906108c
SS
3014 {
3015 depth += 1;
3016 }
070ad9f0 3017 else if (*p == ')' || *p == '>')
c906108c
SS
3018 {
3019 depth -= 1;
3020 }
3021
3022 p += 1;
3023 }
3024 }
3025
c906108c
SS
3026 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3027
3028 /* Now update the old "stub" type into a real type. */
3029 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3030 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3031 We want a method (TYPE_CODE_METHOD). */
3032 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3033 argtypes, argcount, p[-2] == '.');
876cecd0 3034 TYPE_STUB (mtype) = 0;
c906108c 3035 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3036
3037 xfree (demangled_name);
c906108c
SS
3038}
3039
7ba81444
MS
3040/* This is the external interface to check_stub_method, above. This
3041 function unstubs all of the signatures for TYPE's METHOD_ID method
3042 name. After calling this function TYPE_FN_FIELD_STUB will be
3043 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3044 correct.
de17c821
DJ
3045
3046 This function unfortunately can not die until stabs do. */
3047
3048void
3049check_stub_method_group (struct type *type, int method_id)
3050{
3051 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3052 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3053
041be526
SM
3054 for (int j = 0; j < len; j++)
3055 {
3056 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3057 check_stub_method (type, method_id, j);
de17c821
DJ
3058 }
3059}
3060
405feb71 3061/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3062const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3063
3064void
fba45db2 3065allocate_cplus_struct_type (struct type *type)
c906108c 3066{
b4ba55a1
JB
3067 if (HAVE_CPLUS_STRUCT (type))
3068 /* Structure was already allocated. Nothing more to do. */
3069 return;
3070
3071 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3072 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3073 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3074 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3075 set_type_vptr_fieldno (type, -1);
c906108c
SS
3076}
3077
b4ba55a1
JB
3078const struct gnat_aux_type gnat_aux_default =
3079 { NULL };
3080
3081/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3082 and allocate the associated gnat-specific data. The gnat-specific
3083 data is also initialized to gnat_aux_default. */
5212577a 3084
b4ba55a1
JB
3085void
3086allocate_gnat_aux_type (struct type *type)
3087{
3088 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3089 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3090 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3091 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3092}
3093
ae438bc5
UW
3094/* Helper function to initialize a newly allocated type. Set type code
3095 to CODE and initialize the type-specific fields accordingly. */
3096
3097static void
3098set_type_code (struct type *type, enum type_code code)
3099{
67607e24 3100 type->set_code (code);
ae438bc5
UW
3101
3102 switch (code)
3103 {
3104 case TYPE_CODE_STRUCT:
3105 case TYPE_CODE_UNION:
3106 case TYPE_CODE_NAMESPACE:
3107 INIT_CPLUS_SPECIFIC (type);
3108 break;
3109 case TYPE_CODE_FLT:
3110 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3111 break;
3112 case TYPE_CODE_FUNC:
3113 INIT_FUNC_SPECIFIC (type);
3114 break;
3115 }
3116}
3117
19f392bc
UW
3118/* Helper function to verify floating-point format and size.
3119 BIT is the type size in bits; if BIT equals -1, the size is
3120 determined by the floatformat. Returns size to be used. */
3121
3122static int
0db7851f 3123verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3124{
0db7851f 3125 gdb_assert (floatformat != NULL);
9b790ce7 3126
19f392bc 3127 if (bit == -1)
0db7851f 3128 bit = floatformat->totalsize;
19f392bc 3129
0db7851f
UW
3130 gdb_assert (bit >= 0);
3131 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3132
3133 return bit;
3134}
3135
0db7851f
UW
3136/* Return the floating-point format for a floating-point variable of
3137 type TYPE. */
3138
3139const struct floatformat *
3140floatformat_from_type (const struct type *type)
3141{
78134374 3142 gdb_assert (type->code () == TYPE_CODE_FLT);
0db7851f
UW
3143 gdb_assert (TYPE_FLOATFORMAT (type));
3144 return TYPE_FLOATFORMAT (type);
3145}
3146
c906108c
SS
3147/* Helper function to initialize the standard scalar types.
3148
86f62fd7
TT
3149 If NAME is non-NULL, then it is used to initialize the type name.
3150 Note that NAME is not copied; it is required to have a lifetime at
3151 least as long as OBJFILE. */
c906108c
SS
3152
3153struct type *
77b7c781 3154init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3155 const char *name)
c906108c 3156{
52f0bd74 3157 struct type *type;
c906108c
SS
3158
3159 type = alloc_type (objfile);
ae438bc5 3160 set_type_code (type, code);
77b7c781
UW
3161 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3162 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
d0e39ea2 3163 type->set_name (name);
c906108c 3164
c16abbde 3165 return type;
c906108c 3166}
19f392bc 3167
46a4882b
PA
3168/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3169 to use with variables that have no debug info. NAME is the type
3170 name. */
3171
3172static struct type *
3173init_nodebug_var_type (struct objfile *objfile, const char *name)
3174{
3175 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3176}
3177
19f392bc
UW
3178/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3179 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3180 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3181
3182struct type *
3183init_integer_type (struct objfile *objfile,
3184 int bit, int unsigned_p, const char *name)
3185{
3186 struct type *t;
3187
77b7c781 3188 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3189 if (unsigned_p)
3190 TYPE_UNSIGNED (t) = 1;
3191
3192 return t;
3193}
3194
3195/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3196 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3197 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3198
3199struct type *
3200init_character_type (struct objfile *objfile,
3201 int bit, int unsigned_p, const char *name)
3202{
3203 struct type *t;
3204
77b7c781 3205 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3206 if (unsigned_p)
3207 TYPE_UNSIGNED (t) = 1;
3208
3209 return t;
3210}
3211
3212/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3213 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3214 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3215
3216struct type *
3217init_boolean_type (struct objfile *objfile,
3218 int bit, int unsigned_p, const char *name)
3219{
3220 struct type *t;
3221
77b7c781 3222 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3223 if (unsigned_p)
3224 TYPE_UNSIGNED (t) = 1;
3225
3226 return t;
3227}
3228
3229/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3230 BIT is the type size in bits; if BIT equals -1, the size is
3231 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3232 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3233 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3234 order of the objfile's architecture is used. */
19f392bc
UW
3235
3236struct type *
3237init_float_type (struct objfile *objfile,
3238 int bit, const char *name,
103a685e
TT
3239 const struct floatformat **floatformats,
3240 enum bfd_endian byte_order)
19f392bc 3241{
103a685e
TT
3242 if (byte_order == BFD_ENDIAN_UNKNOWN)
3243 {
08feed99 3244 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3245 byte_order = gdbarch_byte_order (gdbarch);
3246 }
3247 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3248 struct type *t;
3249
0db7851f 3250 bit = verify_floatformat (bit, fmt);
77b7c781 3251 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3252 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3253
3254 return t;
3255}
3256
3257/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3258 BIT is the type size in bits. NAME is the type name. */
3259
3260struct type *
3261init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3262{
3263 struct type *t;
3264
77b7c781 3265 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3266 return t;
3267}
3268
5b930b45
TT
3269/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3270 name. TARGET_TYPE is the component type. */
19f392bc
UW
3271
3272struct type *
5b930b45 3273init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3274{
3275 struct type *t;
3276
78134374
SM
3277 gdb_assert (target_type->code () == TYPE_CODE_INT
3278 || target_type->code () == TYPE_CODE_FLT);
5b930b45
TT
3279
3280 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3281 {
3282 if (name == nullptr)
3283 {
3284 char *new_name
3285 = (char *) TYPE_ALLOC (target_type,
7d93a1e0 3286 strlen (target_type->name ())
5b930b45
TT
3287 + strlen ("_Complex ") + 1);
3288 strcpy (new_name, "_Complex ");
7d93a1e0 3289 strcat (new_name, target_type->name ());
5b930b45
TT
3290 name = new_name;
3291 }
3292
3293 t = alloc_type_copy (target_type);
3294 set_type_code (t, TYPE_CODE_COMPLEX);
3295 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
d0e39ea2 3296 t->set_name (name);
5b930b45
TT
3297
3298 TYPE_TARGET_TYPE (t) = target_type;
3299 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3300 }
3301
3302 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3303}
3304
3305/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3306 BIT is the pointer type size in bits. NAME is the type name.
3307 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3308 TYPE_UNSIGNED flag. */
3309
3310struct type *
3311init_pointer_type (struct objfile *objfile,
3312 int bit, const char *name, struct type *target_type)
3313{
3314 struct type *t;
3315
77b7c781 3316 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3317 TYPE_TARGET_TYPE (t) = target_type;
3318 TYPE_UNSIGNED (t) = 1;
3319 return t;
3320}
3321
2b4424c3
TT
3322/* See gdbtypes.h. */
3323
3324unsigned
3325type_raw_align (struct type *type)
3326{
3327 if (type->align_log2 != 0)
3328 return 1 << (type->align_log2 - 1);
3329 return 0;
3330}
3331
3332/* See gdbtypes.h. */
3333
3334unsigned
3335type_align (struct type *type)
3336{
5561fc30 3337 /* Check alignment provided in the debug information. */
2b4424c3
TT
3338 unsigned raw_align = type_raw_align (type);
3339 if (raw_align != 0)
3340 return raw_align;
3341
5561fc30
AB
3342 /* Allow the architecture to provide an alignment. */
3343 struct gdbarch *arch = get_type_arch (type);
3344 ULONGEST align = gdbarch_type_align (arch, type);
3345 if (align != 0)
3346 return align;
3347
78134374 3348 switch (type->code ())
2b4424c3
TT
3349 {
3350 case TYPE_CODE_PTR:
3351 case TYPE_CODE_FUNC:
3352 case TYPE_CODE_FLAGS:
3353 case TYPE_CODE_INT:
75ba10dc 3354 case TYPE_CODE_RANGE:
2b4424c3
TT
3355 case TYPE_CODE_FLT:
3356 case TYPE_CODE_ENUM:
3357 case TYPE_CODE_REF:
3358 case TYPE_CODE_RVALUE_REF:
3359 case TYPE_CODE_CHAR:
3360 case TYPE_CODE_BOOL:
3361 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3362 case TYPE_CODE_METHODPTR:
3363 case TYPE_CODE_MEMBERPTR:
5561fc30 3364 align = type_length_units (check_typedef (type));
2b4424c3
TT
3365 break;
3366
3367 case TYPE_CODE_ARRAY:
3368 case TYPE_CODE_COMPLEX:
3369 case TYPE_CODE_TYPEDEF:
3370 align = type_align (TYPE_TARGET_TYPE (type));
3371 break;
3372
3373 case TYPE_CODE_STRUCT:
3374 case TYPE_CODE_UNION:
3375 {
41077b66 3376 int number_of_non_static_fields = 0;
1f704f76 3377 for (unsigned i = 0; i < type->num_fields (); ++i)
2b4424c3 3378 {
ceacbf6e 3379 if (!field_is_static (&type->field (i)))
2b4424c3 3380 {
41077b66 3381 number_of_non_static_fields++;
940da03e 3382 ULONGEST f_align = type_align (type->field (i).type ());
bf9a735e
AB
3383 if (f_align == 0)
3384 {
3385 /* Don't pretend we know something we don't. */
3386 align = 0;
3387 break;
3388 }
3389 if (f_align > align)
3390 align = f_align;
2b4424c3 3391 }
2b4424c3 3392 }
41077b66
AB
3393 /* A struct with no fields, or with only static fields has an
3394 alignment of 1. */
3395 if (number_of_non_static_fields == 0)
3396 align = 1;
2b4424c3
TT
3397 }
3398 break;
3399
3400 case TYPE_CODE_SET:
2b4424c3
TT
3401 case TYPE_CODE_STRING:
3402 /* Not sure what to do here, and these can't appear in C or C++
3403 anyway. */
3404 break;
3405
2b4424c3
TT
3406 case TYPE_CODE_VOID:
3407 align = 1;
3408 break;
3409
3410 case TYPE_CODE_ERROR:
3411 case TYPE_CODE_METHOD:
3412 default:
3413 break;
3414 }
3415
3416 if ((align & (align - 1)) != 0)
3417 {
3418 /* Not a power of 2, so pass. */
3419 align = 0;
3420 }
3421
3422 return align;
3423}
3424
3425/* See gdbtypes.h. */
3426
3427bool
3428set_type_align (struct type *type, ULONGEST align)
3429{
3430 /* Must be a power of 2. Zero is ok. */
3431 gdb_assert ((align & (align - 1)) == 0);
3432
3433 unsigned result = 0;
3434 while (align != 0)
3435 {
3436 ++result;
3437 align >>= 1;
3438 }
3439
3440 if (result >= (1 << TYPE_ALIGN_BITS))
3441 return false;
3442
3443 type->align_log2 = result;
3444 return true;
3445}
3446
5212577a
DE
3447\f
3448/* Queries on types. */
c906108c 3449
c906108c 3450int
fba45db2 3451can_dereference (struct type *t)
c906108c 3452{
7ba81444
MS
3453 /* FIXME: Should we return true for references as well as
3454 pointers? */
f168693b 3455 t = check_typedef (t);
c906108c
SS
3456 return
3457 (t != NULL
78134374
SM
3458 && t->code () == TYPE_CODE_PTR
3459 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
c906108c
SS
3460}
3461
adf40b2e 3462int
fba45db2 3463is_integral_type (struct type *t)
adf40b2e 3464{
f168693b 3465 t = check_typedef (t);
adf40b2e
JM
3466 return
3467 ((t != NULL)
78134374
SM
3468 && ((t->code () == TYPE_CODE_INT)
3469 || (t->code () == TYPE_CODE_ENUM)
3470 || (t->code () == TYPE_CODE_FLAGS)
3471 || (t->code () == TYPE_CODE_CHAR)
3472 || (t->code () == TYPE_CODE_RANGE)
3473 || (t->code () == TYPE_CODE_BOOL)));
adf40b2e
JM
3474}
3475
70100014
UW
3476int
3477is_floating_type (struct type *t)
3478{
3479 t = check_typedef (t);
3480 return
3481 ((t != NULL)
78134374
SM
3482 && ((t->code () == TYPE_CODE_FLT)
3483 || (t->code () == TYPE_CODE_DECFLOAT)));
70100014
UW
3484}
3485
e09342b5
TJB
3486/* Return true if TYPE is scalar. */
3487
220475ed 3488int
e09342b5
TJB
3489is_scalar_type (struct type *type)
3490{
f168693b 3491 type = check_typedef (type);
e09342b5 3492
78134374 3493 switch (type->code ())
e09342b5
TJB
3494 {
3495 case TYPE_CODE_ARRAY:
3496 case TYPE_CODE_STRUCT:
3497 case TYPE_CODE_UNION:
3498 case TYPE_CODE_SET:
3499 case TYPE_CODE_STRING:
e09342b5
TJB
3500 return 0;
3501 default:
3502 return 1;
3503 }
3504}
3505
3506/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3507 the memory layout of a scalar type. E.g., an array or struct with only
3508 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3509
3510int
3511is_scalar_type_recursive (struct type *t)
3512{
f168693b 3513 t = check_typedef (t);
e09342b5
TJB
3514
3515 if (is_scalar_type (t))
3516 return 1;
3517 /* Are we dealing with an array or string of known dimensions? */
78134374 3518 else if ((t->code () == TYPE_CODE_ARRAY
1f704f76 3519 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3d967001 3520 && t->index_type ()->code () == TYPE_CODE_RANGE)
e09342b5
TJB
3521 {
3522 LONGEST low_bound, high_bound;
3523 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3524
3d967001 3525 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
e09342b5
TJB
3526
3527 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3528 }
3529 /* Are we dealing with a struct with one element? */
1f704f76 3530 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
940da03e 3531 return is_scalar_type_recursive (t->field (0).type ());
78134374 3532 else if (t->code () == TYPE_CODE_UNION)
e09342b5 3533 {
1f704f76 3534 int i, n = t->num_fields ();
e09342b5
TJB
3535
3536 /* If all elements of the union are scalar, then the union is scalar. */
3537 for (i = 0; i < n; i++)
940da03e 3538 if (!is_scalar_type_recursive (t->field (i).type ()))
e09342b5
TJB
3539 return 0;
3540
3541 return 1;
3542 }
3543
3544 return 0;
3545}
3546
6c659fc2
SC
3547/* Return true is T is a class or a union. False otherwise. */
3548
3549int
3550class_or_union_p (const struct type *t)
3551{
78134374
SM
3552 return (t->code () == TYPE_CODE_STRUCT
3553 || t->code () == TYPE_CODE_UNION);
6c659fc2
SC
3554}
3555
4e8f195d
TT
3556/* A helper function which returns true if types A and B represent the
3557 "same" class type. This is true if the types have the same main
3558 type, or the same name. */
3559
3560int
3561class_types_same_p (const struct type *a, const struct type *b)
3562{
3563 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
7d93a1e0
SM
3564 || (a->name () && b->name ()
3565 && !strcmp (a->name (), b->name ())));
4e8f195d
TT
3566}
3567
a9d5ef47
SW
3568/* If BASE is an ancestor of DCLASS return the distance between them.
3569 otherwise return -1;
3570 eg:
3571
3572 class A {};
3573 class B: public A {};
3574 class C: public B {};
3575 class D: C {};
3576
3577 distance_to_ancestor (A, A, 0) = 0
3578 distance_to_ancestor (A, B, 0) = 1
3579 distance_to_ancestor (A, C, 0) = 2
3580 distance_to_ancestor (A, D, 0) = 3
3581
3582 If PUBLIC is 1 then only public ancestors are considered,
3583 and the function returns the distance only if BASE is a public ancestor
3584 of DCLASS.
3585 Eg:
3586
0963b4bd 3587 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3588
0526b37a 3589static int
fe978cb0 3590distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3591{
3592 int i;
a9d5ef47 3593 int d;
c5aa993b 3594
f168693b
SM
3595 base = check_typedef (base);
3596 dclass = check_typedef (dclass);
c906108c 3597
4e8f195d 3598 if (class_types_same_p (base, dclass))
a9d5ef47 3599 return 0;
c906108c
SS
3600
3601 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3602 {
fe978cb0 3603 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3604 continue;
3605
fe978cb0 3606 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3607 if (d >= 0)
3608 return 1 + d;
4e8f195d 3609 }
c906108c 3610
a9d5ef47 3611 return -1;
c906108c 3612}
4e8f195d 3613
0526b37a
SW
3614/* Check whether BASE is an ancestor or base class or DCLASS
3615 Return 1 if so, and 0 if not.
3616 Note: If BASE and DCLASS are of the same type, this function
3617 will return 1. So for some class A, is_ancestor (A, A) will
3618 return 1. */
3619
3620int
3621is_ancestor (struct type *base, struct type *dclass)
3622{
a9d5ef47 3623 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3624}
3625
4e8f195d
TT
3626/* Like is_ancestor, but only returns true when BASE is a public
3627 ancestor of DCLASS. */
3628
3629int
3630is_public_ancestor (struct type *base, struct type *dclass)
3631{
a9d5ef47 3632 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3633}
3634
3635/* A helper function for is_unique_ancestor. */
3636
3637static int
3638is_unique_ancestor_worker (struct type *base, struct type *dclass,
3639 int *offset,
8af8e3bc
PA
3640 const gdb_byte *valaddr, int embedded_offset,
3641 CORE_ADDR address, struct value *val)
4e8f195d
TT
3642{
3643 int i, count = 0;
3644
f168693b
SM
3645 base = check_typedef (base);
3646 dclass = check_typedef (dclass);
4e8f195d
TT
3647
3648 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3649 {
8af8e3bc
PA
3650 struct type *iter;
3651 int this_offset;
4e8f195d 3652
8af8e3bc
PA
3653 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3654
3655 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3656 address, val);
4e8f195d
TT
3657
3658 if (class_types_same_p (base, iter))
3659 {
3660 /* If this is the first subclass, set *OFFSET and set count
3661 to 1. Otherwise, if this is at the same offset as
3662 previous instances, do nothing. Otherwise, increment
3663 count. */
3664 if (*offset == -1)
3665 {
3666 *offset = this_offset;
3667 count = 1;
3668 }
3669 else if (this_offset == *offset)
3670 {
3671 /* Nothing. */
3672 }
3673 else
3674 ++count;
3675 }
3676 else
3677 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3678 valaddr,
3679 embedded_offset + this_offset,
3680 address, val);
4e8f195d
TT
3681 }
3682
3683 return count;
3684}
3685
3686/* Like is_ancestor, but only returns true if BASE is a unique base
3687 class of the type of VAL. */
3688
3689int
3690is_unique_ancestor (struct type *base, struct value *val)
3691{
3692 int offset = -1;
3693
3694 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3695 value_contents_for_printing (val),
3696 value_embedded_offset (val),
3697 value_address (val), val) == 1;
4e8f195d
TT
3698}
3699
7ab4a236
TT
3700/* See gdbtypes.h. */
3701
3702enum bfd_endian
3703type_byte_order (const struct type *type)
3704{
3705 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3706 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3707 {
3708 if (byteorder == BFD_ENDIAN_BIG)
3709 return BFD_ENDIAN_LITTLE;
3710 else
3711 {
3712 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3713 return BFD_ENDIAN_BIG;
3714 }
3715 }
3716
3717 return byteorder;
3718}
3719
c906108c 3720\f
5212577a 3721/* Overload resolution. */
c906108c 3722
6403aeea
SW
3723/* Return the sum of the rank of A with the rank of B. */
3724
3725struct rank
3726sum_ranks (struct rank a, struct rank b)
3727{
3728 struct rank c;
3729 c.rank = a.rank + b.rank;
a9d5ef47 3730 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3731 return c;
3732}
3733
3734/* Compare rank A and B and return:
3735 0 if a = b
3736 1 if a is better than b
3737 -1 if b is better than a. */
3738
3739int
3740compare_ranks (struct rank a, struct rank b)
3741{
3742 if (a.rank == b.rank)
a9d5ef47
SW
3743 {
3744 if (a.subrank == b.subrank)
3745 return 0;
3746 if (a.subrank < b.subrank)
3747 return 1;
3748 if (a.subrank > b.subrank)
3749 return -1;
3750 }
6403aeea
SW
3751
3752 if (a.rank < b.rank)
3753 return 1;
3754
0963b4bd 3755 /* a.rank > b.rank */
6403aeea
SW
3756 return -1;
3757}
c5aa993b 3758
0963b4bd 3759/* Functions for overload resolution begin here. */
c906108c
SS
3760
3761/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3762 0 => A and B are identical
3763 1 => A and B are incomparable
3764 2 => A is better than B
3765 3 => A is worse than B */
c906108c
SS
3766
3767int
82ceee50 3768compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3769{
3770 int i;
3771 int tmp;
c5aa993b
JM
3772 short found_pos = 0; /* any positives in c? */
3773 short found_neg = 0; /* any negatives in c? */
3774
82ceee50
PA
3775 /* differing sizes => incomparable */
3776 if (a.size () != b.size ())
c906108c
SS
3777 return 1;
3778
c5aa993b 3779 /* Subtract b from a */
82ceee50 3780 for (i = 0; i < a.size (); i++)
c906108c 3781 {
82ceee50 3782 tmp = compare_ranks (b[i], a[i]);
c906108c 3783 if (tmp > 0)
c5aa993b 3784 found_pos = 1;
c906108c 3785 else if (tmp < 0)
c5aa993b 3786 found_neg = 1;
c906108c
SS
3787 }
3788
3789 if (found_pos)
3790 {
3791 if (found_neg)
c5aa993b 3792 return 1; /* incomparable */
c906108c 3793 else
c5aa993b 3794 return 3; /* A > B */
c906108c 3795 }
c5aa993b
JM
3796 else
3797 /* no positives */
c906108c
SS
3798 {
3799 if (found_neg)
c5aa993b 3800 return 2; /* A < B */
c906108c 3801 else
c5aa993b 3802 return 0; /* A == B */
c906108c
SS
3803 }
3804}
3805
6b1747cd 3806/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3807 types of an argument list (ARGS). Return the badness vector. This
3808 has ARGS.size() + 1 entries. */
c906108c 3809
82ceee50 3810badness_vector
6b1747cd
PA
3811rank_function (gdb::array_view<type *> parms,
3812 gdb::array_view<value *> args)
c906108c 3813{
82ceee50
PA
3814 /* add 1 for the length-match rank. */
3815 badness_vector bv;
3816 bv.reserve (1 + args.size ());
c906108c
SS
3817
3818 /* First compare the lengths of the supplied lists.
7ba81444 3819 If there is a mismatch, set it to a high value. */
c5aa993b 3820
c906108c 3821 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3822 arguments and ellipsis parameter lists, we should consider those
3823 and rank the length-match more finely. */
c906108c 3824
82ceee50
PA
3825 bv.push_back ((args.size () != parms.size ())
3826 ? LENGTH_MISMATCH_BADNESS
3827 : EXACT_MATCH_BADNESS);
c906108c 3828
0963b4bd 3829 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3830 size_t min_len = std::min (parms.size (), args.size ());
3831
3832 for (size_t i = 0; i < min_len; i++)
3833 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3834 args[i]));
c906108c 3835
0963b4bd 3836 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3837 for (size_t i = min_len; i < args.size (); i++)
3838 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3839
3840 return bv;
3841}
3842
973ccf8b
DJ
3843/* Compare the names of two integer types, assuming that any sign
3844 qualifiers have been checked already. We do it this way because
3845 there may be an "int" in the name of one of the types. */
3846
3847static int
3848integer_types_same_name_p (const char *first, const char *second)
3849{
3850 int first_p, second_p;
3851
7ba81444
MS
3852 /* If both are shorts, return 1; if neither is a short, keep
3853 checking. */
973ccf8b
DJ
3854 first_p = (strstr (first, "short") != NULL);
3855 second_p = (strstr (second, "short") != NULL);
3856 if (first_p && second_p)
3857 return 1;
3858 if (first_p || second_p)
3859 return 0;
3860
3861 /* Likewise for long. */
3862 first_p = (strstr (first, "long") != NULL);
3863 second_p = (strstr (second, "long") != NULL);
3864 if (first_p && second_p)
3865 return 1;
3866 if (first_p || second_p)
3867 return 0;
3868
3869 /* Likewise for char. */
3870 first_p = (strstr (first, "char") != NULL);
3871 second_p = (strstr (second, "char") != NULL);
3872 if (first_p && second_p)
3873 return 1;
3874 if (first_p || second_p)
3875 return 0;
3876
3877 /* They must both be ints. */
3878 return 1;
3879}
3880
894882e3
TT
3881/* Compares type A to type B. Returns true if they represent the same
3882 type, false otherwise. */
7062b0a0 3883
894882e3 3884bool
7062b0a0
SW
3885types_equal (struct type *a, struct type *b)
3886{
3887 /* Identical type pointers. */
3888 /* However, this still doesn't catch all cases of same type for b
3889 and a. The reason is that builtin types are different from
3890 the same ones constructed from the object. */
3891 if (a == b)
894882e3 3892 return true;
7062b0a0
SW
3893
3894 /* Resolve typedefs */
78134374 3895 if (a->code () == TYPE_CODE_TYPEDEF)
7062b0a0 3896 a = check_typedef (a);
78134374 3897 if (b->code () == TYPE_CODE_TYPEDEF)
7062b0a0
SW
3898 b = check_typedef (b);
3899
3900 /* If after resolving typedefs a and b are not of the same type
3901 code then they are not equal. */
78134374 3902 if (a->code () != b->code ())
894882e3 3903 return false;
7062b0a0
SW
3904
3905 /* If a and b are both pointers types or both reference types then
3906 they are equal of the same type iff the objects they refer to are
3907 of the same type. */
78134374
SM
3908 if (a->code () == TYPE_CODE_PTR
3909 || a->code () == TYPE_CODE_REF)
7062b0a0
SW
3910 return types_equal (TYPE_TARGET_TYPE (a),
3911 TYPE_TARGET_TYPE (b));
3912
0963b4bd 3913 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3914 are exactly the same. This happens when we generate method
3915 stubs. The types won't point to the same address, but they
0963b4bd 3916 really are the same. */
7062b0a0 3917
7d93a1e0
SM
3918 if (a->name () && b->name ()
3919 && strcmp (a->name (), b->name ()) == 0)
894882e3 3920 return true;
7062b0a0
SW
3921
3922 /* Check if identical after resolving typedefs. */
3923 if (a == b)
894882e3 3924 return true;
7062b0a0 3925
9ce98649
TT
3926 /* Two function types are equal if their argument and return types
3927 are equal. */
78134374 3928 if (a->code () == TYPE_CODE_FUNC)
9ce98649
TT
3929 {
3930 int i;
3931
1f704f76 3932 if (a->num_fields () != b->num_fields ())
894882e3 3933 return false;
9ce98649
TT
3934
3935 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3936 return false;
9ce98649 3937
1f704f76 3938 for (i = 0; i < a->num_fields (); ++i)
940da03e 3939 if (!types_equal (a->field (i).type (), b->field (i).type ()))
894882e3 3940 return false;
9ce98649 3941
894882e3 3942 return true;
9ce98649
TT
3943 }
3944
894882e3 3945 return false;
7062b0a0 3946}
ca092b61
DE
3947\f
3948/* Deep comparison of types. */
3949
3950/* An entry in the type-equality bcache. */
3951
894882e3 3952struct type_equality_entry
ca092b61 3953{
894882e3
TT
3954 type_equality_entry (struct type *t1, struct type *t2)
3955 : type1 (t1),
3956 type2 (t2)
3957 {
3958 }
ca092b61 3959
894882e3
TT
3960 struct type *type1, *type2;
3961};
ca092b61 3962
894882e3
TT
3963/* A helper function to compare two strings. Returns true if they are
3964 the same, false otherwise. Handles NULLs properly. */
ca092b61 3965
894882e3 3966static bool
ca092b61
DE
3967compare_maybe_null_strings (const char *s, const char *t)
3968{
894882e3
TT
3969 if (s == NULL || t == NULL)
3970 return s == t;
ca092b61
DE
3971 return strcmp (s, t) == 0;
3972}
3973
3974/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3975 "deep" equality. Returns true if the types are considered the
3976 same, false otherwise. */
ca092b61 3977
894882e3 3978static bool
ca092b61 3979check_types_equal (struct type *type1, struct type *type2,
894882e3 3980 std::vector<type_equality_entry> *worklist)
ca092b61 3981{
f168693b
SM
3982 type1 = check_typedef (type1);
3983 type2 = check_typedef (type2);
ca092b61
DE
3984
3985 if (type1 == type2)
894882e3 3986 return true;
ca092b61 3987
78134374 3988 if (type1->code () != type2->code ()
ca092b61
DE
3989 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3990 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3991 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 3992 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
3993 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3994 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3995 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3996 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
1f704f76 3997 || type1->num_fields () != type2->num_fields ())
894882e3 3998 return false;
ca092b61 3999
7d93a1e0 4000 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4001 return false;
7d93a1e0 4002 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4003 return false;
ca092b61 4004
78134374 4005 if (type1->code () == TYPE_CODE_RANGE)
ca092b61 4006 {
599088e3 4007 if (*type1->bounds () != *type2->bounds ())
894882e3 4008 return false;
ca092b61
DE
4009 }
4010 else
4011 {
4012 int i;
4013
1f704f76 4014 for (i = 0; i < type1->num_fields (); ++i)
ca092b61 4015 {
ceacbf6e
SM
4016 const struct field *field1 = &type1->field (i);
4017 const struct field *field2 = &type2->field (i);
ca092b61
DE
4018
4019 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4020 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4021 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4022 return false;
ca092b61
DE
4023 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4024 FIELD_NAME (*field2)))
894882e3 4025 return false;
ca092b61
DE
4026 switch (FIELD_LOC_KIND (*field1))
4027 {
4028 case FIELD_LOC_KIND_BITPOS:
4029 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4030 return false;
ca092b61
DE
4031 break;
4032 case FIELD_LOC_KIND_ENUMVAL:
4033 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4034 return false;
ca092b61
DE
4035 break;
4036 case FIELD_LOC_KIND_PHYSADDR:
4037 if (FIELD_STATIC_PHYSADDR (*field1)
4038 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4039 return false;
ca092b61
DE
4040 break;
4041 case FIELD_LOC_KIND_PHYSNAME:
4042 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4043 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4044 return false;
ca092b61
DE
4045 break;
4046 case FIELD_LOC_KIND_DWARF_BLOCK:
4047 {
4048 struct dwarf2_locexpr_baton *block1, *block2;
4049
4050 block1 = FIELD_DWARF_BLOCK (*field1);
4051 block2 = FIELD_DWARF_BLOCK (*field2);
4052 if (block1->per_cu != block2->per_cu
4053 || block1->size != block2->size
4054 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4055 return false;
ca092b61
DE
4056 }
4057 break;
4058 default:
4059 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4060 "%d by check_types_equal"),
4061 FIELD_LOC_KIND (*field1));
4062 }
4063
b6cdac4b 4064 worklist->emplace_back (field1->type (), field2->type ());
ca092b61
DE
4065 }
4066 }
4067
4068 if (TYPE_TARGET_TYPE (type1) != NULL)
4069 {
ca092b61 4070 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4071 return false;
ca092b61 4072
894882e3
TT
4073 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4074 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4075 }
4076 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4077 return false;
ca092b61 4078
894882e3 4079 return true;
ca092b61
DE
4080}
4081
894882e3
TT
4082/* Check types on a worklist for equality. Returns false if any pair
4083 is not equal, true if they are all considered equal. */
ca092b61 4084
894882e3
TT
4085static bool
4086check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4087 gdb::bcache *cache)
ca092b61 4088{
894882e3 4089 while (!worklist->empty ())
ca092b61 4090 {
ca092b61
DE
4091 int added;
4092
894882e3
TT
4093 struct type_equality_entry entry = std::move (worklist->back ());
4094 worklist->pop_back ();
ca092b61
DE
4095
4096 /* If the type pair has already been visited, we know it is
4097 ok. */
25629dfd 4098 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4099 if (!added)
4100 continue;
4101
894882e3
TT
4102 if (!check_types_equal (entry.type1, entry.type2, worklist))
4103 return false;
ca092b61 4104 }
7062b0a0 4105
894882e3 4106 return true;
ca092b61
DE
4107}
4108
894882e3
TT
4109/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4110 "deep comparison". Otherwise return false. */
ca092b61 4111
894882e3 4112bool
ca092b61
DE
4113types_deeply_equal (struct type *type1, struct type *type2)
4114{
894882e3 4115 std::vector<type_equality_entry> worklist;
ca092b61
DE
4116
4117 gdb_assert (type1 != NULL && type2 != NULL);
4118
4119 /* Early exit for the simple case. */
4120 if (type1 == type2)
894882e3 4121 return true;
ca092b61 4122
dfb65191 4123 gdb::bcache cache (nullptr, nullptr);
894882e3 4124 worklist.emplace_back (type1, type2);
25629dfd 4125 return check_types_worklist (&worklist, &cache);
ca092b61 4126}
3f2f83dd
KB
4127
4128/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4129 Otherwise return one. */
4130
4131int
4132type_not_allocated (const struct type *type)
4133{
4134 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4135
8a6d5e35 4136 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4137 && prop->const_val () == 0);
3f2f83dd
KB
4138}
4139
4140/* Associated status of type TYPE. Return zero if type TYPE is associated.
4141 Otherwise return one. */
4142
4143int
4144type_not_associated (const struct type *type)
4145{
4146 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4147
8a6d5e35 4148 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4149 && prop->const_val () == 0);
3f2f83dd 4150}
9293fc63
SM
4151
4152/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4153
4154static struct rank
4155rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4156{
4157 struct rank rank = {0,0};
4158
78134374 4159 switch (arg->code ())
9293fc63
SM
4160 {
4161 case TYPE_CODE_PTR:
4162
4163 /* Allowed pointer conversions are:
4164 (a) pointer to void-pointer conversion. */
78134374 4165 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
9293fc63
SM
4166 return VOID_PTR_CONVERSION_BADNESS;
4167
4168 /* (b) pointer to ancestor-pointer conversion. */
4169 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4170 TYPE_TARGET_TYPE (arg),
4171 0);
4172 if (rank.subrank >= 0)
4173 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4174
4175 return INCOMPATIBLE_TYPE_BADNESS;
4176 case TYPE_CODE_ARRAY:
4177 {
4178 struct type *t1 = TYPE_TARGET_TYPE (parm);
4179 struct type *t2 = TYPE_TARGET_TYPE (arg);
4180
4181 if (types_equal (t1, t2))
4182 {
4183 /* Make sure they are CV equal. */
4184 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4185 rank.subrank |= CV_CONVERSION_CONST;
4186 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4187 rank.subrank |= CV_CONVERSION_VOLATILE;
4188 if (rank.subrank != 0)
4189 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4190 return EXACT_MATCH_BADNESS;
4191 }
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 }
4194 case TYPE_CODE_FUNC:
4195 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4196 case TYPE_CODE_INT:
78134374 4197 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
9293fc63
SM
4198 {
4199 if (value_as_long (value) == 0)
4200 {
4201 /* Null pointer conversion: allow it to be cast to a pointer.
4202 [4.10.1 of C++ standard draft n3290] */
4203 return NULL_POINTER_CONVERSION_BADNESS;
4204 }
4205 else
4206 {
4207 /* If type checking is disabled, allow the conversion. */
4208 if (!strict_type_checking)
4209 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4210 }
4211 }
4212 /* fall through */
4213 case TYPE_CODE_ENUM:
4214 case TYPE_CODE_FLAGS:
4215 case TYPE_CODE_CHAR:
4216 case TYPE_CODE_RANGE:
4217 case TYPE_CODE_BOOL:
4218 default:
4219 return INCOMPATIBLE_TYPE_BADNESS;
4220 }
4221}
4222
b9f4512f
SM
4223/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4224
4225static struct rank
4226rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4227{
78134374 4228 switch (arg->code ())
b9f4512f
SM
4229 {
4230 case TYPE_CODE_PTR:
4231 case TYPE_CODE_ARRAY:
4232 return rank_one_type (TYPE_TARGET_TYPE (parm),
4233 TYPE_TARGET_TYPE (arg), NULL);
4234 default:
4235 return INCOMPATIBLE_TYPE_BADNESS;
4236 }
4237}
4238
f1f832d6
SM
4239/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4240
4241static struct rank
4242rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4243{
78134374 4244 switch (arg->code ())
f1f832d6
SM
4245 {
4246 case TYPE_CODE_PTR: /* funcptr -> func */
4247 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251}
4252
34910087
SM
4253/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4254
4255static struct rank
4256rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4257{
78134374 4258 switch (arg->code ())
34910087
SM
4259 {
4260 case TYPE_CODE_INT:
4261 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4262 {
4263 /* Deal with signed, unsigned, and plain chars and
4264 signed and unsigned ints. */
4265 if (TYPE_NOSIGN (parm))
4266 {
4267 /* This case only for character types. */
4268 if (TYPE_NOSIGN (arg))
4269 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4270 else /* signed/unsigned char -> plain char */
4271 return INTEGER_CONVERSION_BADNESS;
4272 }
4273 else if (TYPE_UNSIGNED (parm))
4274 {
4275 if (TYPE_UNSIGNED (arg))
4276 {
4277 /* unsigned int -> unsigned int, or
4278 unsigned long -> unsigned long */
7d93a1e0
SM
4279 if (integer_types_same_name_p (parm->name (),
4280 arg->name ()))
34910087 4281 return EXACT_MATCH_BADNESS;
7d93a1e0 4282 else if (integer_types_same_name_p (arg->name (),
34910087 4283 "int")
7d93a1e0 4284 && integer_types_same_name_p (parm->name (),
34910087
SM
4285 "long"))
4286 /* unsigned int -> unsigned long */
4287 return INTEGER_PROMOTION_BADNESS;
4288 else
4289 /* unsigned long -> unsigned int */
4290 return INTEGER_CONVERSION_BADNESS;
4291 }
4292 else
4293 {
7d93a1e0 4294 if (integer_types_same_name_p (arg->name (),
34910087 4295 "long")
7d93a1e0 4296 && integer_types_same_name_p (parm->name (),
34910087
SM
4297 "int"))
4298 /* signed long -> unsigned int */
4299 return INTEGER_CONVERSION_BADNESS;
4300 else
4301 /* signed int/long -> unsigned int/long */
4302 return INTEGER_CONVERSION_BADNESS;
4303 }
4304 }
4305 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4306 {
7d93a1e0
SM
4307 if (integer_types_same_name_p (parm->name (),
4308 arg->name ()))
34910087 4309 return EXACT_MATCH_BADNESS;
7d93a1e0 4310 else if (integer_types_same_name_p (arg->name (),
34910087 4311 "int")
7d93a1e0 4312 && integer_types_same_name_p (parm->name (),
34910087
SM
4313 "long"))
4314 return INTEGER_PROMOTION_BADNESS;
4315 else
4316 return INTEGER_CONVERSION_BADNESS;
4317 }
4318 else
4319 return INTEGER_CONVERSION_BADNESS;
4320 }
4321 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4322 return INTEGER_PROMOTION_BADNESS;
4323 else
4324 return INTEGER_CONVERSION_BADNESS;
4325 case TYPE_CODE_ENUM:
4326 case TYPE_CODE_FLAGS:
4327 case TYPE_CODE_CHAR:
4328 case TYPE_CODE_RANGE:
4329 case TYPE_CODE_BOOL:
4330 if (TYPE_DECLARED_CLASS (arg))
4331 return INCOMPATIBLE_TYPE_BADNESS;
4332 return INTEGER_PROMOTION_BADNESS;
4333 case TYPE_CODE_FLT:
4334 return INT_FLOAT_CONVERSION_BADNESS;
4335 case TYPE_CODE_PTR:
4336 return NS_POINTER_CONVERSION_BADNESS;
4337 default:
4338 return INCOMPATIBLE_TYPE_BADNESS;
4339 }
4340}
4341
793cd1d2
SM
4342/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4343
4344static struct rank
4345rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4346{
78134374 4347 switch (arg->code ())
793cd1d2
SM
4348 {
4349 case TYPE_CODE_INT:
4350 case TYPE_CODE_CHAR:
4351 case TYPE_CODE_RANGE:
4352 case TYPE_CODE_BOOL:
4353 case TYPE_CODE_ENUM:
4354 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4355 return INCOMPATIBLE_TYPE_BADNESS;
4356 return INTEGER_CONVERSION_BADNESS;
4357 case TYPE_CODE_FLT:
4358 return INT_FLOAT_CONVERSION_BADNESS;
4359 default:
4360 return INCOMPATIBLE_TYPE_BADNESS;
4361 }
4362}
4363
41ea4728
SM
4364/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4365
4366static struct rank
4367rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4368{
78134374 4369 switch (arg->code ())
41ea4728
SM
4370 {
4371 case TYPE_CODE_RANGE:
4372 case TYPE_CODE_BOOL:
4373 case TYPE_CODE_ENUM:
4374 if (TYPE_DECLARED_CLASS (arg))
4375 return INCOMPATIBLE_TYPE_BADNESS;
4376 return INTEGER_CONVERSION_BADNESS;
4377 case TYPE_CODE_FLT:
4378 return INT_FLOAT_CONVERSION_BADNESS;
4379 case TYPE_CODE_INT:
4380 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4381 return INTEGER_CONVERSION_BADNESS;
4382 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4383 return INTEGER_PROMOTION_BADNESS;
4384 /* fall through */
4385 case TYPE_CODE_CHAR:
4386 /* Deal with signed, unsigned, and plain chars for C++ and
4387 with int cases falling through from previous case. */
4388 if (TYPE_NOSIGN (parm))
4389 {
4390 if (TYPE_NOSIGN (arg))
4391 return EXACT_MATCH_BADNESS;
4392 else
4393 return INTEGER_CONVERSION_BADNESS;
4394 }
4395 else if (TYPE_UNSIGNED (parm))
4396 {
4397 if (TYPE_UNSIGNED (arg))
4398 return EXACT_MATCH_BADNESS;
4399 else
4400 return INTEGER_PROMOTION_BADNESS;
4401 }
4402 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4403 return EXACT_MATCH_BADNESS;
4404 else
4405 return INTEGER_CONVERSION_BADNESS;
4406 default:
4407 return INCOMPATIBLE_TYPE_BADNESS;
4408 }
4409}
4410
0dd322dc
SM
4411/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4412
4413static struct rank
4414rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4415{
78134374 4416 switch (arg->code ())
0dd322dc
SM
4417 {
4418 case TYPE_CODE_INT:
4419 case TYPE_CODE_CHAR:
4420 case TYPE_CODE_RANGE:
4421 case TYPE_CODE_BOOL:
4422 case TYPE_CODE_ENUM:
4423 return INTEGER_CONVERSION_BADNESS;
4424 case TYPE_CODE_FLT:
4425 return INT_FLOAT_CONVERSION_BADNESS;
4426 default:
4427 return INCOMPATIBLE_TYPE_BADNESS;
4428 }
4429}
4430
2c509035
SM
4431/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4432
4433static struct rank
4434rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4435{
78134374 4436 switch (arg->code ())
2c509035
SM
4437 {
4438 /* n3290 draft, section 4.12.1 (conv.bool):
4439
4440 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4441 pointer to member type can be converted to a prvalue of type
4442 bool. A zero value, null pointer value, or null member pointer
4443 value is converted to false; any other value is converted to
4444 true. A prvalue of type std::nullptr_t can be converted to a
4445 prvalue of type bool; the resulting value is false." */
4446 case TYPE_CODE_INT:
4447 case TYPE_CODE_CHAR:
4448 case TYPE_CODE_ENUM:
4449 case TYPE_CODE_FLT:
4450 case TYPE_CODE_MEMBERPTR:
4451 case TYPE_CODE_PTR:
4452 return BOOL_CONVERSION_BADNESS;
4453 case TYPE_CODE_RANGE:
4454 return INCOMPATIBLE_TYPE_BADNESS;
4455 case TYPE_CODE_BOOL:
4456 return EXACT_MATCH_BADNESS;
4457 default:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 }
4460}
4461
7f17b20d
SM
4462/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4463
4464static struct rank
4465rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4466{
78134374 4467 switch (arg->code ())
7f17b20d
SM
4468 {
4469 case TYPE_CODE_FLT:
4470 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4471 return FLOAT_PROMOTION_BADNESS;
4472 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4473 return EXACT_MATCH_BADNESS;
4474 else
4475 return FLOAT_CONVERSION_BADNESS;
4476 case TYPE_CODE_INT:
4477 case TYPE_CODE_BOOL:
4478 case TYPE_CODE_ENUM:
4479 case TYPE_CODE_RANGE:
4480 case TYPE_CODE_CHAR:
4481 return INT_FLOAT_CONVERSION_BADNESS;
4482 default:
4483 return INCOMPATIBLE_TYPE_BADNESS;
4484 }
4485}
4486
2598a94b
SM
4487/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4488
4489static struct rank
4490rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4491{
78134374 4492 switch (arg->code ())
2598a94b
SM
4493 { /* Strictly not needed for C++, but... */
4494 case TYPE_CODE_FLT:
4495 return FLOAT_PROMOTION_BADNESS;
4496 case TYPE_CODE_COMPLEX:
4497 return EXACT_MATCH_BADNESS;
4498 default:
4499 return INCOMPATIBLE_TYPE_BADNESS;
4500 }
4501}
4502
595f96a9
SM
4503/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4504
4505static struct rank
4506rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4507{
4508 struct rank rank = {0, 0};
4509
78134374 4510 switch (arg->code ())
595f96a9
SM
4511 {
4512 case TYPE_CODE_STRUCT:
4513 /* Check for derivation */
4514 rank.subrank = distance_to_ancestor (parm, arg, 0);
4515 if (rank.subrank >= 0)
4516 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4517 /* fall through */
4518 default:
4519 return INCOMPATIBLE_TYPE_BADNESS;
4520 }
4521}
4522
f09ce22d
SM
4523/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4524
4525static struct rank
4526rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4527{
78134374 4528 switch (arg->code ())
f09ce22d
SM
4529 {
4530 /* Not in C++ */
4531 case TYPE_CODE_SET:
940da03e
SM
4532 return rank_one_type (parm->field (0).type (),
4533 arg->field (0).type (), NULL);
f09ce22d
SM
4534 default:
4535 return INCOMPATIBLE_TYPE_BADNESS;
4536 }
4537}
4538
c906108c
SS
4539/* Compare one type (PARM) for compatibility with another (ARG).
4540 * PARM is intended to be the parameter type of a function; and
4541 * ARG is the supplied argument's type. This function tests if
4542 * the latter can be converted to the former.
da096638 4543 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4544 *
4545 * Return 0 if they are identical types;
4546 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4547 * PARM is to ARG. The higher the return value, the worse the match.
4548 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4549
6403aeea 4550struct rank
da096638 4551rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4552{
a9d5ef47 4553 struct rank rank = {0,0};
7062b0a0 4554
c906108c 4555 /* Resolve typedefs */
78134374 4556 if (parm->code () == TYPE_CODE_TYPEDEF)
c906108c 4557 parm = check_typedef (parm);
78134374 4558 if (arg->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
4559 arg = check_typedef (arg);
4560
e15c3eb4 4561 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4562 {
e15c3eb4
KS
4563 if (VALUE_LVAL (value) == not_lval)
4564 {
4565 /* Rvalues should preferably bind to rvalue references or const
4566 lvalue references. */
78134374 4567 if (parm->code () == TYPE_CODE_RVALUE_REF)
e15c3eb4
KS
4568 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4569 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4570 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4571 else
4572 return INCOMPATIBLE_TYPE_BADNESS;
4573 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4574 }
4575 else
4576 {
330f1d38 4577 /* It's illegal to pass an lvalue as an rvalue. */
78134374 4578 if (parm->code () == TYPE_CODE_RVALUE_REF)
330f1d38 4579 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4580 }
15c0a2a9
AV
4581 }
4582
4583 if (types_equal (parm, arg))
15c0a2a9 4584 {
e15c3eb4
KS
4585 struct type *t1 = parm;
4586 struct type *t2 = arg;
15c0a2a9 4587
e15c3eb4 4588 /* For pointers and references, compare target type. */
78134374 4589 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
e15c3eb4
KS
4590 {
4591 t1 = TYPE_TARGET_TYPE (parm);
4592 t2 = TYPE_TARGET_TYPE (arg);
4593 }
15c0a2a9 4594
e15c3eb4
KS
4595 /* Make sure they are CV equal, too. */
4596 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4597 rank.subrank |= CV_CONVERSION_CONST;
4598 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4599 rank.subrank |= CV_CONVERSION_VOLATILE;
4600 if (rank.subrank != 0)
4601 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4602 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4603 }
4604
db577aea 4605 /* See through references, since we can almost make non-references
7ba81444 4606 references. */
aa006118
AV
4607
4608 if (TYPE_IS_REFERENCE (arg))
da096638 4609 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4610 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4611 if (TYPE_IS_REFERENCE (parm))
da096638 4612 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4613 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4614 if (overload_debug)
7ba81444 4615 /* Debugging only. */
78134374 4616 fprintf_filtered (gdb_stderr,
7ba81444 4617 "------ Arg is %s [%d], parm is %s [%d]\n",
7d93a1e0
SM
4618 arg->name (), arg->code (),
4619 parm->name (), parm->code ());
c906108c 4620
0963b4bd 4621 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c 4622
78134374 4623 switch (parm->code ())
c906108c 4624 {
c5aa993b 4625 case TYPE_CODE_PTR:
9293fc63 4626 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4627 case TYPE_CODE_ARRAY:
b9f4512f 4628 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4629 case TYPE_CODE_FUNC:
f1f832d6 4630 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4631 case TYPE_CODE_INT:
34910087 4632 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4633 case TYPE_CODE_ENUM:
793cd1d2 4634 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4635 case TYPE_CODE_CHAR:
41ea4728 4636 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4637 case TYPE_CODE_RANGE:
0dd322dc 4638 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4639 case TYPE_CODE_BOOL:
2c509035 4640 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4641 case TYPE_CODE_FLT:
7f17b20d 4642 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4643 case TYPE_CODE_COMPLEX:
2598a94b 4644 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4645 case TYPE_CODE_STRUCT:
595f96a9 4646 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4647 case TYPE_CODE_SET:
f09ce22d 4648 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4649 default:
4650 return INCOMPATIBLE_TYPE_BADNESS;
78134374 4651 } /* switch (arg->code ()) */
c906108c
SS
4652}
4653
0963b4bd 4654/* End of functions for overload resolution. */
5212577a
DE
4655\f
4656/* Routines to pretty-print types. */
c906108c 4657
c906108c 4658static void
fba45db2 4659print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4660{
4661 int bitno;
4662
4663 for (bitno = 0; bitno < nbits; bitno++)
4664 {
4665 if ((bitno % 8) == 0)
4666 {
4667 puts_filtered (" ");
4668 }
4669 if (B_TST (bits, bitno))
a3f17187 4670 printf_filtered (("1"));
c906108c 4671 else
a3f17187 4672 printf_filtered (("0"));
c906108c
SS
4673 }
4674}
4675
ad2f7632 4676/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4677 include it since we may get into a infinitely recursive
4678 situation. */
c906108c
SS
4679
4680static void
4c9e8482 4681print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4682{
4683 if (args != NULL)
4684 {
ad2f7632
DJ
4685 int i;
4686
4687 for (i = 0; i < nargs; i++)
4c9e8482
DE
4688 {
4689 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4690 args[i].name != NULL ? args[i].name : "<NULL>");
5d14b6e5 4691 recursive_dump_type (args[i].type (), spaces + 2);
4c9e8482 4692 }
c906108c
SS
4693 }
4694}
4695
d6a843b5
JK
4696int
4697field_is_static (struct field *f)
4698{
4699 /* "static" fields are the fields whose location is not relative
4700 to the address of the enclosing struct. It would be nice to
4701 have a dedicated flag that would be set for static fields when
4702 the type is being created. But in practice, checking the field
254e6b9e 4703 loc_kind should give us an accurate answer. */
d6a843b5
JK
4704 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4705 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4706}
4707
c906108c 4708static void
fba45db2 4709dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4710{
4711 int method_idx;
4712 int overload_idx;
4713 struct fn_field *f;
4714
4715 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4716 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4717 printf_filtered ("\n");
4718 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4719 {
4720 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4721 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4722 method_idx,
4723 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4724 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4725 gdb_stdout);
a3f17187 4726 printf_filtered (_(") length %d\n"),
c906108c
SS
4727 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4728 for (overload_idx = 0;
4729 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4730 overload_idx++)
4731 {
4732 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4733 overload_idx,
4734 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4735 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4736 gdb_stdout);
c906108c
SS
4737 printf_filtered (")\n");
4738 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4739 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4740 gdb_stdout);
c906108c
SS
4741 printf_filtered ("\n");
4742
4743 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4744 spaces + 8 + 2);
4745
4746 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4747 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4748 gdb_stdout);
c906108c 4749 printf_filtered ("\n");
4c9e8482 4750 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
1f704f76 4751 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4c9e8482 4752 spaces + 8 + 2);
c906108c 4753 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4754 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4755 gdb_stdout);
c906108c
SS
4756 printf_filtered ("\n");
4757
4758 printfi_filtered (spaces + 8, "is_const %d\n",
4759 TYPE_FN_FIELD_CONST (f, overload_idx));
4760 printfi_filtered (spaces + 8, "is_volatile %d\n",
4761 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4762 printfi_filtered (spaces + 8, "is_private %d\n",
4763 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4764 printfi_filtered (spaces + 8, "is_protected %d\n",
4765 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4766 printfi_filtered (spaces + 8, "is_stub %d\n",
4767 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4768 printfi_filtered (spaces + 8, "defaulted %d\n",
4769 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_deleted %d\n",
4771 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4772 printfi_filtered (spaces + 8, "voffset %u\n",
4773 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4774 }
4775 }
4776}
4777
4778static void
fba45db2 4779print_cplus_stuff (struct type *type, int spaces)
c906108c 4780{
ae6ae975
DE
4781 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4782 printfi_filtered (spaces, "vptr_basetype ");
4783 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4784 puts_filtered ("\n");
4785 if (TYPE_VPTR_BASETYPE (type) != NULL)
4786 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4787
c906108c
SS
4788 printfi_filtered (spaces, "n_baseclasses %d\n",
4789 TYPE_N_BASECLASSES (type));
4790 printfi_filtered (spaces, "nfn_fields %d\n",
4791 TYPE_NFN_FIELDS (type));
c906108c
SS
4792 if (TYPE_N_BASECLASSES (type) > 0)
4793 {
4794 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4795 TYPE_N_BASECLASSES (type));
7ba81444
MS
4796 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4797 gdb_stdout);
c906108c
SS
4798 printf_filtered (")");
4799
4800 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4801 TYPE_N_BASECLASSES (type));
4802 puts_filtered ("\n");
4803 }
1f704f76 4804 if (type->num_fields () > 0)
c906108c
SS
4805 {
4806 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4807 {
7ba81444
MS
4808 printfi_filtered (spaces,
4809 "private_field_bits (%d bits at *",
1f704f76 4810 type->num_fields ());
7ba81444
MS
4811 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4812 gdb_stdout);
c906108c
SS
4813 printf_filtered (")");
4814 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
1f704f76 4815 type->num_fields ());
c906108c
SS
4816 puts_filtered ("\n");
4817 }
4818 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4819 {
7ba81444
MS
4820 printfi_filtered (spaces,
4821 "protected_field_bits (%d bits at *",
1f704f76 4822 type->num_fields ());
7ba81444
MS
4823 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4824 gdb_stdout);
c906108c
SS
4825 printf_filtered (")");
4826 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
1f704f76 4827 type->num_fields ());
c906108c
SS
4828 puts_filtered ("\n");
4829 }
4830 }
4831 if (TYPE_NFN_FIELDS (type) > 0)
4832 {
4833 dump_fn_fieldlists (type, spaces);
4834 }
e35000a7
TBA
4835
4836 printfi_filtered (spaces, "calling_convention %d\n",
4837 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4838}
4839
b4ba55a1
JB
4840/* Print the contents of the TYPE's type_specific union, assuming that
4841 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4842
4843static void
4844print_gnat_stuff (struct type *type, int spaces)
4845{
4846 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4847
8cd00c59
PMR
4848 if (descriptive_type == NULL)
4849 printfi_filtered (spaces + 2, "no descriptive type\n");
4850 else
4851 {
4852 printfi_filtered (spaces + 2, "descriptive type\n");
4853 recursive_dump_type (descriptive_type, spaces + 4);
4854 }
b4ba55a1
JB
4855}
4856
c906108c
SS
4857static struct obstack dont_print_type_obstack;
4858
4859void
fba45db2 4860recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4861{
4862 int idx;
4863
4864 if (spaces == 0)
4865 obstack_begin (&dont_print_type_obstack, 0);
4866
1f704f76 4867 if (type->num_fields () > 0
b4ba55a1 4868 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4869 {
4870 struct type **first_dont_print
7ba81444 4871 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4872
7ba81444
MS
4873 int i = (struct type **)
4874 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4875
4876 while (--i >= 0)
4877 {
4878 if (type == first_dont_print[i])
4879 {
4880 printfi_filtered (spaces, "type node ");
d4f3574e 4881 gdb_print_host_address (type, gdb_stdout);
a3f17187 4882 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4883 return;
4884 }
4885 }
4886
4887 obstack_ptr_grow (&dont_print_type_obstack, type);
4888 }
4889
4890 printfi_filtered (spaces, "type node ");
d4f3574e 4891 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4892 printf_filtered ("\n");
4893 printfi_filtered (spaces, "name '%s' (",
7d93a1e0
SM
4894 type->name () ? type->name () : "<NULL>");
4895 gdb_print_host_address (type->name (), gdb_stdout);
c906108c 4896 printf_filtered (")\n");
78134374
SM
4897 printfi_filtered (spaces, "code 0x%x ", type->code ());
4898 switch (type->code ())
c906108c 4899 {
c5aa993b
JM
4900 case TYPE_CODE_UNDEF:
4901 printf_filtered ("(TYPE_CODE_UNDEF)");
4902 break;
4903 case TYPE_CODE_PTR:
4904 printf_filtered ("(TYPE_CODE_PTR)");
4905 break;
4906 case TYPE_CODE_ARRAY:
4907 printf_filtered ("(TYPE_CODE_ARRAY)");
4908 break;
4909 case TYPE_CODE_STRUCT:
4910 printf_filtered ("(TYPE_CODE_STRUCT)");
4911 break;
4912 case TYPE_CODE_UNION:
4913 printf_filtered ("(TYPE_CODE_UNION)");
4914 break;
4915 case TYPE_CODE_ENUM:
4916 printf_filtered ("(TYPE_CODE_ENUM)");
4917 break;
4f2aea11
MK
4918 case TYPE_CODE_FLAGS:
4919 printf_filtered ("(TYPE_CODE_FLAGS)");
4920 break;
c5aa993b
JM
4921 case TYPE_CODE_FUNC:
4922 printf_filtered ("(TYPE_CODE_FUNC)");
4923 break;
4924 case TYPE_CODE_INT:
4925 printf_filtered ("(TYPE_CODE_INT)");
4926 break;
4927 case TYPE_CODE_FLT:
4928 printf_filtered ("(TYPE_CODE_FLT)");
4929 break;
4930 case TYPE_CODE_VOID:
4931 printf_filtered ("(TYPE_CODE_VOID)");
4932 break;
4933 case TYPE_CODE_SET:
4934 printf_filtered ("(TYPE_CODE_SET)");
4935 break;
4936 case TYPE_CODE_RANGE:
4937 printf_filtered ("(TYPE_CODE_RANGE)");
4938 break;
4939 case TYPE_CODE_STRING:
4940 printf_filtered ("(TYPE_CODE_STRING)");
4941 break;
4942 case TYPE_CODE_ERROR:
4943 printf_filtered ("(TYPE_CODE_ERROR)");
4944 break;
0d5de010
DJ
4945 case TYPE_CODE_MEMBERPTR:
4946 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4947 break;
4948 case TYPE_CODE_METHODPTR:
4949 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4950 break;
4951 case TYPE_CODE_METHOD:
4952 printf_filtered ("(TYPE_CODE_METHOD)");
4953 break;
4954 case TYPE_CODE_REF:
4955 printf_filtered ("(TYPE_CODE_REF)");
4956 break;
4957 case TYPE_CODE_CHAR:
4958 printf_filtered ("(TYPE_CODE_CHAR)");
4959 break;
4960 case TYPE_CODE_BOOL:
4961 printf_filtered ("(TYPE_CODE_BOOL)");
4962 break;
e9e79dd9
FF
4963 case TYPE_CODE_COMPLEX:
4964 printf_filtered ("(TYPE_CODE_COMPLEX)");
4965 break;
c5aa993b
JM
4966 case TYPE_CODE_TYPEDEF:
4967 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4968 break;
5c4e30ca
DC
4969 case TYPE_CODE_NAMESPACE:
4970 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4971 break;
c5aa993b
JM
4972 default:
4973 printf_filtered ("(UNKNOWN TYPE CODE)");
4974 break;
c906108c
SS
4975 }
4976 puts_filtered ("\n");
cc1defb1 4977 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4978 if (TYPE_OBJFILE_OWNED (type))
4979 {
4980 printfi_filtered (spaces, "objfile ");
4981 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4982 }
4983 else
4984 {
4985 printfi_filtered (spaces, "gdbarch ");
4986 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4987 }
c906108c
SS
4988 printf_filtered ("\n");
4989 printfi_filtered (spaces, "target_type ");
d4f3574e 4990 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4991 printf_filtered ("\n");
4992 if (TYPE_TARGET_TYPE (type) != NULL)
4993 {
4994 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4995 }
4996 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4997 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4998 printf_filtered ("\n");
4999 printfi_filtered (spaces, "reference_type ");
d4f3574e 5000 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5001 printf_filtered ("\n");
2fdde8f8
DJ
5002 printfi_filtered (spaces, "type_chain ");
5003 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5004 printf_filtered ("\n");
7ba81444
MS
5005 printfi_filtered (spaces, "instance_flags 0x%x",
5006 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5007 if (TYPE_CONST (type))
5008 {
a9ff5f12 5009 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5010 }
5011 if (TYPE_VOLATILE (type))
5012 {
a9ff5f12 5013 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5014 }
5015 if (TYPE_CODE_SPACE (type))
5016 {
a9ff5f12 5017 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5018 }
5019 if (TYPE_DATA_SPACE (type))
5020 {
a9ff5f12 5021 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5022 }
8b2dbe47
KB
5023 if (TYPE_ADDRESS_CLASS_1 (type))
5024 {
a9ff5f12 5025 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5026 }
5027 if (TYPE_ADDRESS_CLASS_2 (type))
5028 {
a9ff5f12 5029 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5030 }
06d66ee9
TT
5031 if (TYPE_RESTRICT (type))
5032 {
a9ff5f12 5033 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5034 }
a2c2acaf
MW
5035 if (TYPE_ATOMIC (type))
5036 {
a9ff5f12 5037 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5038 }
2fdde8f8 5039 puts_filtered ("\n");
876cecd0
TT
5040
5041 printfi_filtered (spaces, "flags");
762a036f 5042 if (TYPE_UNSIGNED (type))
c906108c 5043 {
a9ff5f12 5044 puts_filtered (" TYPE_UNSIGNED");
c906108c 5045 }
762a036f
FF
5046 if (TYPE_NOSIGN (type))
5047 {
a9ff5f12 5048 puts_filtered (" TYPE_NOSIGN");
762a036f 5049 }
34877895
PJ
5050 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5051 {
5052 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5053 }
762a036f 5054 if (TYPE_STUB (type))
c906108c 5055 {
a9ff5f12 5056 puts_filtered (" TYPE_STUB");
c906108c 5057 }
762a036f
FF
5058 if (TYPE_TARGET_STUB (type))
5059 {
a9ff5f12 5060 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5061 }
762a036f
FF
5062 if (TYPE_PROTOTYPED (type))
5063 {
a9ff5f12 5064 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5065 }
762a036f
FF
5066 if (TYPE_VARARGS (type))
5067 {
a9ff5f12 5068 puts_filtered (" TYPE_VARARGS");
762a036f 5069 }
f5f8a009
EZ
5070 /* This is used for things like AltiVec registers on ppc. Gcc emits
5071 an attribute for the array type, which tells whether or not we
5072 have a vector, instead of a regular array. */
5073 if (TYPE_VECTOR (type))
5074 {
a9ff5f12 5075 puts_filtered (" TYPE_VECTOR");
f5f8a009 5076 }
876cecd0
TT
5077 if (TYPE_FIXED_INSTANCE (type))
5078 {
5079 puts_filtered (" TYPE_FIXED_INSTANCE");
5080 }
5081 if (TYPE_STUB_SUPPORTED (type))
5082 {
5083 puts_filtered (" TYPE_STUB_SUPPORTED");
5084 }
5085 if (TYPE_NOTTEXT (type))
5086 {
5087 puts_filtered (" TYPE_NOTTEXT");
5088 }
c906108c 5089 puts_filtered ("\n");
1f704f76 5090 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
80fc5e77 5091 gdb_print_host_address (type->fields (), gdb_stdout);
c906108c 5092 puts_filtered ("\n");
1f704f76 5093 for (idx = 0; idx < type->num_fields (); idx++)
c906108c 5094 {
78134374 5095 if (type->code () == TYPE_CODE_ENUM)
14e75d8e
JK
5096 printfi_filtered (spaces + 2,
5097 "[%d] enumval %s type ",
5098 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5099 else
5100 printfi_filtered (spaces + 2,
6b850546
DT
5101 "[%d] bitpos %s bitsize %d type ",
5102 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5103 TYPE_FIELD_BITSIZE (type, idx));
940da03e 5104 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
c906108c
SS
5105 printf_filtered (" name '%s' (",
5106 TYPE_FIELD_NAME (type, idx) != NULL
5107 ? TYPE_FIELD_NAME (type, idx)
5108 : "<NULL>");
d4f3574e 5109 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c 5110 printf_filtered (")\n");
940da03e 5111 if (type->field (idx).type () != NULL)
c906108c 5112 {
940da03e 5113 recursive_dump_type (type->field (idx).type (), spaces + 4);
c906108c
SS
5114 }
5115 }
78134374 5116 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2
PH
5117 {
5118 printfi_filtered (spaces, "low %s%s high %s%s\n",
5537ddd0 5119 plongest (type->bounds ()->low.const_val ()),
064d9cb9
SM
5120 (type->bounds ()->low.kind () == PROP_UNDEFINED
5121 ? " (undefined)" : ""),
5537ddd0 5122 plongest (type->bounds ()->high.const_val ()),
064d9cb9
SM
5123 (type->bounds ()->high.kind () == PROP_UNDEFINED
5124 ? " (undefined)" : ""));
43bbcdc2 5125 }
c906108c 5126
b4ba55a1
JB
5127 switch (TYPE_SPECIFIC_FIELD (type))
5128 {
5129 case TYPE_SPECIFIC_CPLUS_STUFF:
5130 printfi_filtered (spaces, "cplus_stuff ");
5131 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5132 gdb_stdout);
5133 puts_filtered ("\n");
5134 print_cplus_stuff (type, spaces);
5135 break;
8da61cc4 5136
b4ba55a1
JB
5137 case TYPE_SPECIFIC_GNAT_STUFF:
5138 printfi_filtered (spaces, "gnat_stuff ");
5139 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5140 puts_filtered ("\n");
5141 print_gnat_stuff (type, spaces);
5142 break;
701c159d 5143
b4ba55a1
JB
5144 case TYPE_SPECIFIC_FLOATFORMAT:
5145 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5146 if (TYPE_FLOATFORMAT (type) == NULL
5147 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5148 puts_filtered ("(null)");
5149 else
0db7851f 5150 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5151 puts_filtered ("\n");
5152 break;
c906108c 5153
b6cdc2c1 5154 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5155 printfi_filtered (spaces, "calling_convention %d\n",
5156 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5157 /* tail_call_list is not printed. */
b4ba55a1 5158 break;
09e2d7c7
DE
5159
5160 case TYPE_SPECIFIC_SELF_TYPE:
5161 printfi_filtered (spaces, "self_type ");
5162 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5163 puts_filtered ("\n");
5164 break;
c906108c 5165 }
b4ba55a1 5166
c906108c
SS
5167 if (spaces == 0)
5168 obstack_free (&dont_print_type_obstack, NULL);
5169}
5212577a 5170\f
ae5a43e0
DJ
5171/* Trivial helpers for the libiberty hash table, for mapping one
5172 type to another. */
5173
fd90ace4 5174struct type_pair : public allocate_on_obstack
ae5a43e0 5175{
fd90ace4
YQ
5176 type_pair (struct type *old_, struct type *newobj_)
5177 : old (old_), newobj (newobj_)
5178 {}
5179
5180 struct type * const old, * const newobj;
ae5a43e0
DJ
5181};
5182
5183static hashval_t
5184type_pair_hash (const void *item)
5185{
9a3c8263 5186 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5187
ae5a43e0
DJ
5188 return htab_hash_pointer (pair->old);
5189}
5190
5191static int
5192type_pair_eq (const void *item_lhs, const void *item_rhs)
5193{
9a3c8263
SM
5194 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5195 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5196
ae5a43e0
DJ
5197 return lhs->old == rhs->old;
5198}
5199
5200/* Allocate the hash table used by copy_type_recursive to walk
5201 types without duplicates. We use OBJFILE's obstack, because
5202 OBJFILE is about to be deleted. */
5203
5204htab_t
5205create_copied_types_hash (struct objfile *objfile)
5206{
5207 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5208 NULL, &objfile->objfile_obstack,
5209 hashtab_obstack_allocate,
5210 dummy_obstack_deallocate);
5211}
5212
d9823cbb
KB
5213/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5214
5215static struct dynamic_prop_list *
5216copy_dynamic_prop_list (struct obstack *objfile_obstack,
5217 struct dynamic_prop_list *list)
5218{
5219 struct dynamic_prop_list *copy = list;
5220 struct dynamic_prop_list **node_ptr = &copy;
5221
5222 while (*node_ptr != NULL)
5223 {
5224 struct dynamic_prop_list *node_copy;
5225
224c3ddb
SM
5226 node_copy = ((struct dynamic_prop_list *)
5227 obstack_copy (objfile_obstack, *node_ptr,
5228 sizeof (struct dynamic_prop_list)));
283a9958 5229 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5230 *node_ptr = node_copy;
5231
5232 node_ptr = &node_copy->next;
5233 }
5234
5235 return copy;
5236}
5237
7ba81444 5238/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5239 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5240 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5241 it is not associated with OBJFILE. */
ae5a43e0
DJ
5242
5243struct type *
7ba81444
MS
5244copy_type_recursive (struct objfile *objfile,
5245 struct type *type,
ae5a43e0
DJ
5246 htab_t copied_types)
5247{
ae5a43e0
DJ
5248 void **slot;
5249 struct type *new_type;
5250
e9bb382b 5251 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5252 return type;
5253
7ba81444
MS
5254 /* This type shouldn't be pointing to any types in other objfiles;
5255 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5256 gdb_assert (TYPE_OBJFILE (type) == objfile);
5257
fd90ace4
YQ
5258 struct type_pair pair (type, nullptr);
5259
ae5a43e0
DJ
5260 slot = htab_find_slot (copied_types, &pair, INSERT);
5261 if (*slot != NULL)
fe978cb0 5262 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5263
e9bb382b 5264 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5265
5266 /* We must add the new type to the hash table immediately, in case
5267 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5268 struct type_pair *stored
5269 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5270
ae5a43e0
DJ
5271 *slot = stored;
5272
876cecd0
TT
5273 /* Copy the common fields of types. For the main type, we simply
5274 copy the entire thing and then update specific fields as needed. */
5275 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5276 TYPE_OBJFILE_OWNED (new_type) = 0;
5277 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5278
7d93a1e0
SM
5279 if (type->name ())
5280 new_type->set_name (xstrdup (type->name ()));
ae5a43e0
DJ
5281
5282 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5283 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5284
5285 /* Copy the fields. */
1f704f76 5286 if (type->num_fields ())
ae5a43e0
DJ
5287 {
5288 int i, nfields;
5289
1f704f76 5290 nfields = type->num_fields ();
3cabb6b0
SM
5291 new_type->set_fields
5292 ((struct field *)
5293 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5294
ae5a43e0
DJ
5295 for (i = 0; i < nfields; i++)
5296 {
7ba81444
MS
5297 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5298 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0 5299 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
940da03e 5300 if (type->field (i).type ())
5d14b6e5 5301 new_type->field (i).set_type
940da03e 5302 (copy_type_recursive (objfile, type->field (i).type (),
5d14b6e5 5303 copied_types));
ae5a43e0 5304 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5305 TYPE_FIELD_NAME (new_type, i) =
5306 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5307 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5308 {
d6a843b5 5309 case FIELD_LOC_KIND_BITPOS:
ceacbf6e 5310 SET_FIELD_BITPOS (new_type->field (i),
d6a843b5
JK
5311 TYPE_FIELD_BITPOS (type, i));
5312 break;
14e75d8e 5313 case FIELD_LOC_KIND_ENUMVAL:
ceacbf6e 5314 SET_FIELD_ENUMVAL (new_type->field (i),
14e75d8e
JK
5315 TYPE_FIELD_ENUMVAL (type, i));
5316 break;
d6a843b5 5317 case FIELD_LOC_KIND_PHYSADDR:
ceacbf6e 5318 SET_FIELD_PHYSADDR (new_type->field (i),
d6a843b5
JK
5319 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5320 break;
5321 case FIELD_LOC_KIND_PHYSNAME:
ceacbf6e 5322 SET_FIELD_PHYSNAME (new_type->field (i),
d6a843b5
JK
5323 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5324 i)));
5325 break;
5326 default:
5327 internal_error (__FILE__, __LINE__,
5328 _("Unexpected type field location kind: %d"),
5329 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5330 }
5331 }
5332 }
5333
0963b4bd 5334 /* For range types, copy the bounds information. */
78134374 5335 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5336 {
c4dfcb36
SM
5337 range_bounds *bounds
5338 = ((struct range_bounds *) TYPE_ALLOC
5339 (new_type, sizeof (struct range_bounds)));
5340
5341 *bounds = *type->bounds ();
5342 new_type->set_bounds (bounds);
43bbcdc2
PH
5343 }
5344
98d48915
SM
5345 if (type->main_type->dyn_prop_list != NULL)
5346 new_type->main_type->dyn_prop_list
d9823cbb 5347 = copy_dynamic_prop_list (&objfile->objfile_obstack,
98d48915 5348 type->main_type->dyn_prop_list);
d9823cbb 5349
3cdcd0ce 5350
ae5a43e0
DJ
5351 /* Copy pointers to other types. */
5352 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5353 TYPE_TARGET_TYPE (new_type) =
5354 copy_type_recursive (objfile,
5355 TYPE_TARGET_TYPE (type),
5356 copied_types);
f6b3afbf 5357
ae5a43e0
DJ
5358 /* Maybe copy the type_specific bits.
5359
5360 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5361 base classes and methods. There's no fundamental reason why we
5362 can't, but at the moment it is not needed. */
5363
f6b3afbf
DE
5364 switch (TYPE_SPECIFIC_FIELD (type))
5365 {
5366 case TYPE_SPECIFIC_NONE:
5367 break;
5368 case TYPE_SPECIFIC_FUNC:
5369 INIT_FUNC_SPECIFIC (new_type);
5370 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5371 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5372 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5373 break;
5374 case TYPE_SPECIFIC_FLOATFORMAT:
5375 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5376 break;
5377 case TYPE_SPECIFIC_CPLUS_STUFF:
5378 INIT_CPLUS_SPECIFIC (new_type);
5379 break;
5380 case TYPE_SPECIFIC_GNAT_STUFF:
5381 INIT_GNAT_SPECIFIC (new_type);
5382 break;
09e2d7c7
DE
5383 case TYPE_SPECIFIC_SELF_TYPE:
5384 set_type_self_type (new_type,
5385 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5386 copied_types));
5387 break;
f6b3afbf
DE
5388 default:
5389 gdb_assert_not_reached ("bad type_specific_kind");
5390 }
ae5a43e0
DJ
5391
5392 return new_type;
5393}
5394
4af88198
JB
5395/* Make a copy of the given TYPE, except that the pointer & reference
5396 types are not preserved.
5397
5398 This function assumes that the given type has an associated objfile.
5399 This objfile is used to allocate the new type. */
5400
5401struct type *
5402copy_type (const struct type *type)
5403{
5404 struct type *new_type;
5405
e9bb382b 5406 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5407
e9bb382b 5408 new_type = alloc_type_copy (type);
4af88198
JB
5409 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5410 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5411 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5412 sizeof (struct main_type));
98d48915
SM
5413 if (type->main_type->dyn_prop_list != NULL)
5414 new_type->main_type->dyn_prop_list
d9823cbb 5415 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
98d48915 5416 type->main_type->dyn_prop_list);
4af88198
JB
5417
5418 return new_type;
5419}
5212577a 5420\f
e9bb382b
UW
5421/* Helper functions to initialize architecture-specific types. */
5422
5423/* Allocate a type structure associated with GDBARCH and set its
5424 CODE, LENGTH, and NAME fields. */
5212577a 5425
e9bb382b
UW
5426struct type *
5427arch_type (struct gdbarch *gdbarch,
77b7c781 5428 enum type_code code, int bit, const char *name)
e9bb382b
UW
5429{
5430 struct type *type;
5431
5432 type = alloc_type_arch (gdbarch);
ae438bc5 5433 set_type_code (type, code);
77b7c781
UW
5434 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5435 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5436
5437 if (name)
d0e39ea2 5438 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
e9bb382b
UW
5439
5440 return type;
5441}
5442
5443/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5444 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5445 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5446
e9bb382b
UW
5447struct type *
5448arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5449 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5450{
5451 struct type *t;
5452
77b7c781 5453 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5454 if (unsigned_p)
5455 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5456
5457 return t;
5458}
5459
5460/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5461 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5462 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5463
e9bb382b
UW
5464struct type *
5465arch_character_type (struct gdbarch *gdbarch,
695bfa52 5466 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5467{
5468 struct type *t;
5469
77b7c781 5470 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5471 if (unsigned_p)
5472 TYPE_UNSIGNED (t) = 1;
5473
5474 return t;
5475}
5476
5477/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5478 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5479 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5480
e9bb382b
UW
5481struct type *
5482arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5483 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5484{
5485 struct type *t;
5486
77b7c781 5487 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5488 if (unsigned_p)
5489 TYPE_UNSIGNED (t) = 1;
5490
5491 return t;
5492}
5493
5494/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5495 BIT is the type size in bits; if BIT equals -1, the size is
5496 determined by the floatformat. NAME is the type name. Set the
5497 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5498
27067745 5499struct type *
e9bb382b 5500arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5501 int bit, const char *name,
5502 const struct floatformat **floatformats)
8da61cc4 5503{
0db7851f 5504 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5505 struct type *t;
5506
0db7851f 5507 bit = verify_floatformat (bit, fmt);
77b7c781 5508 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5509 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5510
8da61cc4
DJ
5511 return t;
5512}
5513
88dfca6c
UW
5514/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5515 BIT is the type size in bits. NAME is the type name. */
5516
5517struct type *
5518arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5519{
5520 struct type *t;
5521
77b7c781 5522 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5523 return t;
5524}
5525
88dfca6c
UW
5526/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5527 BIT is the pointer type size in bits. NAME is the type name.
5528 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5529 TYPE_UNSIGNED flag. */
5530
5531struct type *
5532arch_pointer_type (struct gdbarch *gdbarch,
5533 int bit, const char *name, struct type *target_type)
5534{
5535 struct type *t;
5536
77b7c781 5537 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5538 TYPE_TARGET_TYPE (t) = target_type;
5539 TYPE_UNSIGNED (t) = 1;
5540 return t;
5541}
5542
e9bb382b 5543/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5544 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5545
e9bb382b 5546struct type *
77b7c781 5547arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5548{
e9bb382b
UW
5549 struct type *type;
5550
77b7c781 5551 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5552 TYPE_UNSIGNED (type) = 1;
5e33d5f4 5553 type->set_num_fields (0);
81516450 5554 /* Pre-allocate enough space assuming every field is one bit. */
3cabb6b0
SM
5555 type->set_fields
5556 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
e9bb382b
UW
5557
5558 return type;
5559}
5560
5561/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5562 position BITPOS is called NAME. Pass NAME as "" for fields that
5563 should not be printed. */
5564
5565void
5566append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5567 struct type *field_type, const char *name)
81516450
DE
5568{
5569 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1f704f76 5570 int field_nr = type->num_fields ();
81516450 5571
78134374 5572 gdb_assert (type->code () == TYPE_CODE_FLAGS);
1f704f76 5573 gdb_assert (type->num_fields () + 1 <= type_bitsize);
81516450
DE
5574 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5575 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5576 gdb_assert (name != NULL);
5577
5578 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5d14b6e5 5579 type->field (field_nr).set_type (field_type);
ceacbf6e 5580 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
81516450 5581 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5e33d5f4 5582 type->set_num_fields (type->num_fields () + 1);
81516450
DE
5583}
5584
5585/* Special version of append_flags_type_field to add a flag field.
5586 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5587 position BITPOS is called NAME. */
5212577a 5588
e9bb382b 5589void
695bfa52 5590append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5591{
81516450 5592 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5593
81516450
DE
5594 append_flags_type_field (type, bitpos, 1,
5595 builtin_type (gdbarch)->builtin_bool,
5596 name);
e9bb382b
UW
5597}
5598
5599/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5600 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5601
e9bb382b 5602struct type *
695bfa52
TT
5603arch_composite_type (struct gdbarch *gdbarch, const char *name,
5604 enum type_code code)
e9bb382b
UW
5605{
5606 struct type *t;
d8734c88 5607
e9bb382b
UW
5608 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5609 t = arch_type (gdbarch, code, 0, NULL);
d0e39ea2 5610 t->set_name (name);
e9bb382b
UW
5611 INIT_CPLUS_SPECIFIC (t);
5612 return t;
5613}
5614
5615/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5616 Do not set the field's position or adjust the type's length;
5617 the caller should do so. Return the new field. */
5212577a 5618
f5dff777 5619struct field *
695bfa52 5620append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5621 struct type *field)
e9bb382b
UW
5622{
5623 struct field *f;
d8734c88 5624
1f704f76 5625 t->set_num_fields (t->num_fields () + 1);
80fc5e77 5626 t->set_fields (XRESIZEVEC (struct field, t->fields (),
3cabb6b0 5627 t->num_fields ()));
80fc5e77 5628 f = &t->field (t->num_fields () - 1);
e9bb382b 5629 memset (f, 0, sizeof f[0]);
5d14b6e5 5630 f[0].set_type (field);
e9bb382b 5631 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5632 return f;
5633}
5634
5635/* Add new field with name NAME and type FIELD to composite type T.
5636 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5637
f5dff777 5638void
695bfa52 5639append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5640 struct type *field, int alignment)
5641{
5642 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5643
78134374 5644 if (t->code () == TYPE_CODE_UNION)
e9bb382b
UW
5645 {
5646 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5647 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5648 }
78134374 5649 else if (t->code () == TYPE_CODE_STRUCT)
e9bb382b
UW
5650 {
5651 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1f704f76 5652 if (t->num_fields () > 1)
e9bb382b 5653 {
f41f5e61
PA
5654 SET_FIELD_BITPOS (f[0],
5655 (FIELD_BITPOS (f[-1])
b6cdac4b 5656 + (TYPE_LENGTH (f[-1].type ())
f41f5e61 5657 * TARGET_CHAR_BIT)));
e9bb382b
UW
5658
5659 if (alignment)
5660 {
86c3c1fc
AB
5661 int left;
5662
5663 alignment *= TARGET_CHAR_BIT;
5664 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5665
e9bb382b
UW
5666 if (left)
5667 {
f41f5e61 5668 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5669 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5670 }
5671 }
5672 }
5673 }
5674}
5675
5676/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5677
e9bb382b 5678void
695bfa52 5679append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5680 struct type *field)
5681{
5682 append_composite_type_field_aligned (t, name, field, 0);
5683}
5684
000177f0
AC
5685static struct gdbarch_data *gdbtypes_data;
5686
5687const struct builtin_type *
5688builtin_type (struct gdbarch *gdbarch)
5689{
9a3c8263 5690 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5691}
5692
5693static void *
5694gdbtypes_post_init (struct gdbarch *gdbarch)
5695{
5696 struct builtin_type *builtin_type
5697 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5698
46bf5051 5699 /* Basic types. */
e9bb382b 5700 builtin_type->builtin_void
77b7c781 5701 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5702 builtin_type->builtin_char
5703 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5704 !gdbarch_char_signed (gdbarch), "char");
c413c448 5705 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5706 builtin_type->builtin_signed_char
5707 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5708 0, "signed char");
5709 builtin_type->builtin_unsigned_char
5710 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5711 1, "unsigned char");
5712 builtin_type->builtin_short
5713 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5714 0, "short");
5715 builtin_type->builtin_unsigned_short
5716 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5717 1, "unsigned short");
5718 builtin_type->builtin_int
5719 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5720 0, "int");
5721 builtin_type->builtin_unsigned_int
5722 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5723 1, "unsigned int");
5724 builtin_type->builtin_long
5725 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5726 0, "long");
5727 builtin_type->builtin_unsigned_long
5728 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5729 1, "unsigned long");
5730 builtin_type->builtin_long_long
5731 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5732 0, "long long");
5733 builtin_type->builtin_unsigned_long_long
5734 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5735 1, "unsigned long long");
a6d0f249
AH
5736 builtin_type->builtin_half
5737 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5738 "half", gdbarch_half_format (gdbarch));
70bd8e24 5739 builtin_type->builtin_float
e9bb382b 5740 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5741 "float", gdbarch_float_format (gdbarch));
70bd8e24 5742 builtin_type->builtin_double
e9bb382b 5743 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5744 "double", gdbarch_double_format (gdbarch));
70bd8e24 5745 builtin_type->builtin_long_double
e9bb382b 5746 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5747 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5748 builtin_type->builtin_complex
5b930b45 5749 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5750 builtin_type->builtin_double_complex
5b930b45 5751 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5752 builtin_type->builtin_string
77b7c781 5753 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5754 builtin_type->builtin_bool
77b7c781 5755 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5756
7678ef8f
TJB
5757 /* The following three are about decimal floating point types, which
5758 are 32-bits, 64-bits and 128-bits respectively. */
5759 builtin_type->builtin_decfloat
88dfca6c 5760 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5761 builtin_type->builtin_decdouble
88dfca6c 5762 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5763 builtin_type->builtin_declong
88dfca6c 5764 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5765
69feb676 5766 /* "True" character types. */
e9bb382b
UW
5767 builtin_type->builtin_true_char
5768 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5769 builtin_type->builtin_true_unsigned_char
5770 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5771
df4df182 5772 /* Fixed-size integer types. */
e9bb382b
UW
5773 builtin_type->builtin_int0
5774 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5775 builtin_type->builtin_int8
5776 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5777 builtin_type->builtin_uint8
5778 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5779 builtin_type->builtin_int16
5780 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5781 builtin_type->builtin_uint16
5782 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5783 builtin_type->builtin_int24
5784 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5785 builtin_type->builtin_uint24
5786 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5787 builtin_type->builtin_int32
5788 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5789 builtin_type->builtin_uint32
5790 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5791 builtin_type->builtin_int64
5792 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5793 builtin_type->builtin_uint64
5794 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5795 builtin_type->builtin_int128
5796 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5797 builtin_type->builtin_uint128
5798 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5799 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5800 TYPE_INSTANCE_FLAG_NOTTEXT;
5801 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5802 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5803
9a22f0d0
PM
5804 /* Wide character types. */
5805 builtin_type->builtin_char16
53e710ac 5806 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5807 builtin_type->builtin_char32
53e710ac 5808 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5809 builtin_type->builtin_wchar
5810 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5811 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5812
46bf5051 5813 /* Default data/code pointer types. */
e9bb382b
UW
5814 builtin_type->builtin_data_ptr
5815 = lookup_pointer_type (builtin_type->builtin_void);
5816 builtin_type->builtin_func_ptr
5817 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5818 builtin_type->builtin_func_func
5819 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5820
78267919 5821 /* This type represents a GDB internal function. */
e9bb382b
UW
5822 builtin_type->internal_fn
5823 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5824 "<internal function>");
78267919 5825
e81e7f5e
SC
5826 /* This type represents an xmethod. */
5827 builtin_type->xmethod
5828 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5829
46bf5051
UW
5830 return builtin_type;
5831}
5832
46bf5051
UW
5833/* This set of objfile-based types is intended to be used by symbol
5834 readers as basic types. */
5835
7a102139
TT
5836static const struct objfile_key<struct objfile_type,
5837 gdb::noop_deleter<struct objfile_type>>
5838 objfile_type_data;
46bf5051
UW
5839
5840const struct objfile_type *
5841objfile_type (struct objfile *objfile)
5842{
5843 struct gdbarch *gdbarch;
7a102139 5844 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5845
5846 if (objfile_type)
5847 return objfile_type;
5848
5849 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5850 1, struct objfile_type);
5851
5852 /* Use the objfile architecture to determine basic type properties. */
08feed99 5853 gdbarch = objfile->arch ();
46bf5051
UW
5854
5855 /* Basic types. */
5856 objfile_type->builtin_void
77b7c781 5857 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5858 objfile_type->builtin_char
19f392bc
UW
5859 = init_integer_type (objfile, TARGET_CHAR_BIT,
5860 !gdbarch_char_signed (gdbarch), "char");
c413c448 5861 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5862 objfile_type->builtin_signed_char
19f392bc
UW
5863 = init_integer_type (objfile, TARGET_CHAR_BIT,
5864 0, "signed char");
46bf5051 5865 objfile_type->builtin_unsigned_char
19f392bc
UW
5866 = init_integer_type (objfile, TARGET_CHAR_BIT,
5867 1, "unsigned char");
46bf5051 5868 objfile_type->builtin_short
19f392bc
UW
5869 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5870 0, "short");
46bf5051 5871 objfile_type->builtin_unsigned_short
19f392bc
UW
5872 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5873 1, "unsigned short");
46bf5051 5874 objfile_type->builtin_int
19f392bc
UW
5875 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5876 0, "int");
46bf5051 5877 objfile_type->builtin_unsigned_int
19f392bc
UW
5878 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5879 1, "unsigned int");
46bf5051 5880 objfile_type->builtin_long
19f392bc
UW
5881 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5882 0, "long");
46bf5051 5883 objfile_type->builtin_unsigned_long
19f392bc
UW
5884 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5885 1, "unsigned long");
46bf5051 5886 objfile_type->builtin_long_long
19f392bc
UW
5887 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5888 0, "long long");
46bf5051 5889 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5890 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5891 1, "unsigned long long");
46bf5051 5892 objfile_type->builtin_float
19f392bc
UW
5893 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5894 "float", gdbarch_float_format (gdbarch));
46bf5051 5895 objfile_type->builtin_double
19f392bc
UW
5896 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5897 "double", gdbarch_double_format (gdbarch));
46bf5051 5898 objfile_type->builtin_long_double
19f392bc
UW
5899 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5900 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5901
5902 /* This type represents a type that was unrecognized in symbol read-in. */
5903 objfile_type->builtin_error
19f392bc 5904 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5905
5906 /* The following set of types is used for symbols with no
5907 debug information. */
5908 objfile_type->nodebug_text_symbol
77b7c781 5909 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5910 "<text variable, no debug info>");
0875794a 5911 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5912 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5913 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5914 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5915 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5916 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5917 "<text from jump slot in .got.plt, no debug info>",
5918 objfile_type->nodebug_text_symbol);
46bf5051 5919 objfile_type->nodebug_data_symbol
46a4882b 5920 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5921 objfile_type->nodebug_unknown_symbol
46a4882b 5922 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5923 objfile_type->nodebug_tls_symbol
46a4882b 5924 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5925
5926 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5927 the same.
000177f0
AC
5928
5929 The upshot is:
5930 - gdb's `struct type' always describes the target's
5931 representation.
5932 - gdb's `struct value' objects should always hold values in
5933 target form.
5934 - gdb's CORE_ADDR values are addresses in the unified virtual
5935 address space that the assembler and linker work with. Thus,
5936 since target_read_memory takes a CORE_ADDR as an argument, it
5937 can access any memory on the target, even if the processor has
5938 separate code and data address spaces.
5939
46bf5051
UW
5940 In this context, objfile_type->builtin_core_addr is a bit odd:
5941 it's a target type for a value the target will never see. It's
5942 only used to hold the values of (typeless) linker symbols, which
5943 are indeed in the unified virtual address space. */
000177f0 5944
46bf5051 5945 objfile_type->builtin_core_addr
19f392bc
UW
5946 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5947 "__CORE_ADDR");
64c50499 5948
7a102139 5949 objfile_type_data.set (objfile, objfile_type);
46bf5051 5950 return objfile_type;
000177f0
AC
5951}
5952
6c265988 5953void _initialize_gdbtypes ();
c906108c 5954void
6c265988 5955_initialize_gdbtypes ()
c906108c 5956{
5674de60
UW
5957 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5958
ccce17b0
YQ
5959 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5960 _("Set debugging of C++ overloading."),
5961 _("Show debugging of C++ overloading."),
5962 _("When enabled, ranking of the "
5963 "functions is displayed."),
5964 NULL,
5965 show_overload_debug,
5966 &setdebuglist, &showdebuglist);
5674de60 5967
7ba81444 5968 /* Add user knob for controlling resolution of opaque types. */
5674de60 5969 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5970 &opaque_type_resolution,
5971 _("Set resolution of opaque struct/class/union"
5972 " types (if set before loading symbols)."),
5973 _("Show resolution of opaque struct/class/union"
5974 " types (if set before loading symbols)."),
5975 NULL, NULL,
5674de60
UW
5976 show_opaque_type_resolution,
5977 &setlist, &showlist);
a451cb65
KS
5978
5979 /* Add an option to permit non-strict type checking. */
5980 add_setshow_boolean_cmd ("type", class_support,
5981 &strict_type_checking,
5982 _("Set strict type checking."),
5983 _("Show strict type checking."),
5984 NULL, NULL,
5985 show_strict_type_checking,
5986 &setchecklist, &showchecklist);
c906108c 5987}
This page took 2.216616 seconds and 4 git commands to generate.