From Craig Silverstein: Templatize the Dwarf reader.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
7ba81444
MS
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4f2aea11 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
ae5a43e0 40#include "hashtab.h"
c906108c
SS
41
42/* These variables point to the objects
43 representing the predefined C data types. */
44
449a5da4 45struct type *builtin_type_int0;
c906108c
SS
46struct type *builtin_type_int8;
47struct type *builtin_type_uint8;
48struct type *builtin_type_int16;
49struct type *builtin_type_uint16;
50struct type *builtin_type_int32;
51struct type *builtin_type_uint32;
52struct type *builtin_type_int64;
53struct type *builtin_type_uint64;
8b982acf
EZ
54struct type *builtin_type_int128;
55struct type *builtin_type_uint128;
ac3aafc7 56
8da61cc4
DJ
57/* Floatformat pairs. */
58const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61};
62const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65};
66const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69};
70const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73};
74const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77};
78const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81};
82const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85};
86const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89};
90const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93};
94const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97};
98
99struct type *builtin_type_ieee_single;
100struct type *builtin_type_ieee_double;
598f52df
AC
101struct type *builtin_type_i387_ext;
102struct type *builtin_type_m68881_ext;
8da61cc4
DJ
103struct type *builtin_type_arm_ext;
104struct type *builtin_type_ia64_spill;
105struct type *builtin_type_ia64_quad;
106
c906108c
SS
107
108int opaque_type_resolution = 1;
920d2a44
AC
109static void
110show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
111 struct cmd_list_element *c,
112 const char *value)
920d2a44
AC
113{
114 fprintf_filtered (file, _("\
115Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
116 value);
117}
118
5d161b24 119int overload_debug = 0;
920d2a44
AC
120static void
121show_overload_debug (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
7ba81444
MS
124 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
125 value);
920d2a44 126}
c906108c 127
c5aa993b
JM
128struct extra
129 {
130 char str[128];
131 int len;
7ba81444 132 }; /* Maximum extension is 128! FIXME */
c906108c 133
a14ed312 134static void print_bit_vector (B_TYPE *, int);
ad2f7632 135static void print_arg_types (struct field *, int, int);
a14ed312
KB
136static void dump_fn_fieldlists (struct type *, int);
137static void print_cplus_stuff (struct type *, int);
7a292a7a 138
c906108c
SS
139
140/* Alloc a new type structure and fill it with some defaults. If
141 OBJFILE is non-NULL, then allocate the space for the type structure
7ba81444
MS
142 in that objfile's objfile_obstack. Otherwise allocate the new type
143 structure by xmalloc () (for permanent types). */
c906108c
SS
144
145struct type *
fba45db2 146alloc_type (struct objfile *objfile)
c906108c 147{
52f0bd74 148 struct type *type;
c906108c 149
7ba81444 150 /* Alloc the structure and start off with all fields zeroed. */
c906108c
SS
151
152 if (objfile == NULL)
153 {
2fdde8f8
DJ
154 type = xmalloc (sizeof (struct type));
155 memset (type, 0, sizeof (struct type));
156 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
c906108c
SS
157 }
158 else
159 {
b99607ea 160 type = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8
DJ
161 sizeof (struct type));
162 memset (type, 0, sizeof (struct type));
b99607ea 163 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
2fdde8f8 164 sizeof (struct main_type));
c906108c
SS
165 OBJSTAT (objfile, n_types++);
166 }
2fdde8f8 167 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_OBJFILE (type) = objfile;
173 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 174 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c
SS
175
176 return (type);
177}
178
2fdde8f8
DJ
179/* Alloc a new type instance structure, fill it with some defaults,
180 and point it at OLDTYPE. Allocate the new type instance from the
181 same place as OLDTYPE. */
182
183static struct type *
184alloc_type_instance (struct type *oldtype)
185{
186 struct type *type;
187
188 /* Allocate the structure. */
189
190 if (TYPE_OBJFILE (oldtype) == NULL)
191 {
192 type = xmalloc (sizeof (struct type));
193 memset (type, 0, sizeof (struct type));
194 }
195 else
196 {
b99607ea 197 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
2fdde8f8
DJ
198 sizeof (struct type));
199 memset (type, 0, sizeof (struct type));
200 }
201 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
202
203 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
204
205 return (type);
206}
207
208/* Clear all remnants of the previous type at TYPE, in preparation for
209 replacing it with something else. */
210static void
211smash_type (struct type *type)
212{
213 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
214
215 /* For now, delete the rings. */
216 TYPE_CHAIN (type) = type;
217
218 /* For now, leave the pointer/reference types alone. */
219}
220
c906108c
SS
221/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
222 to a pointer to memory where the pointer type should be stored.
223 If *TYPEPTR is zero, update it to point to the pointer type we return.
224 We allocate new memory if needed. */
225
226struct type *
fba45db2 227make_pointer_type (struct type *type, struct type **typeptr)
c906108c 228{
52f0bd74 229 struct type *ntype; /* New type */
c906108c 230 struct objfile *objfile;
053cb41b 231 struct type *chain;
c906108c
SS
232
233 ntype = TYPE_POINTER_TYPE (type);
234
c5aa993b 235 if (ntype)
c906108c 236 {
c5aa993b 237 if (typeptr == 0)
7ba81444
MS
238 return ntype; /* Don't care about alloc,
239 and have new type. */
c906108c 240 else if (*typeptr == 0)
c5aa993b 241 {
7ba81444 242 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 243 return ntype;
c5aa993b 244 }
c906108c
SS
245 }
246
247 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
248 {
249 ntype = alloc_type (TYPE_OBJFILE (type));
250 if (typeptr)
251 *typeptr = ntype;
252 }
7ba81444 253 else /* We have storage, but need to reset it. */
c906108c
SS
254 {
255 ntype = *typeptr;
256 objfile = TYPE_OBJFILE (ntype);
053cb41b 257 chain = TYPE_CHAIN (ntype);
2fdde8f8 258 smash_type (ntype);
053cb41b 259 TYPE_CHAIN (ntype) = chain;
c906108c
SS
260 TYPE_OBJFILE (ntype) = objfile;
261 }
262
263 TYPE_TARGET_TYPE (ntype) = type;
264 TYPE_POINTER_TYPE (type) = ntype;
265
7ba81444
MS
266 /* FIXME! Assume the machine has only one representation for
267 pointers! */
c906108c 268
7ba81444
MS
269 TYPE_LENGTH (ntype) =
270 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c
SS
271 TYPE_CODE (ntype) = TYPE_CODE_PTR;
272
67b2adb2 273 /* Mark pointers as unsigned. The target converts between pointers
76e71323 274 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 275 gdbarch_address_to_pointer. */
c906108c 276 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 277
c906108c
SS
278 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
279 TYPE_POINTER_TYPE (type) = ntype;
280
053cb41b
JB
281 /* Update the length of all the other variants of this type. */
282 chain = TYPE_CHAIN (ntype);
283 while (chain != ntype)
284 {
285 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
286 chain = TYPE_CHAIN (chain);
287 }
288
c906108c
SS
289 return ntype;
290}
291
292/* Given a type TYPE, return a type of pointers to that type.
293 May need to construct such a type if this is the first use. */
294
295struct type *
fba45db2 296lookup_pointer_type (struct type *type)
c906108c 297{
c5aa993b 298 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
299}
300
7ba81444
MS
301/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
302 points to a pointer to memory where the reference type should be
303 stored. If *TYPEPTR is zero, update it to point to the reference
304 type we return. We allocate new memory if needed. */
c906108c
SS
305
306struct type *
fba45db2 307make_reference_type (struct type *type, struct type **typeptr)
c906108c 308{
52f0bd74 309 struct type *ntype; /* New type */
c906108c 310 struct objfile *objfile;
1e98b326 311 struct type *chain;
c906108c
SS
312
313 ntype = TYPE_REFERENCE_TYPE (type);
314
c5aa993b 315 if (ntype)
c906108c 316 {
c5aa993b 317 if (typeptr == 0)
7ba81444
MS
318 return ntype; /* Don't care about alloc,
319 and have new type. */
c906108c 320 else if (*typeptr == 0)
c5aa993b 321 {
7ba81444 322 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 323 return ntype;
c5aa993b 324 }
c906108c
SS
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type (TYPE_OBJFILE (type));
330 if (typeptr)
331 *typeptr = ntype;
332 }
7ba81444 333 else /* We have storage, but need to reset it. */
c906108c
SS
334 {
335 ntype = *typeptr;
336 objfile = TYPE_OBJFILE (ntype);
1e98b326 337 chain = TYPE_CHAIN (ntype);
2fdde8f8 338 smash_type (ntype);
1e98b326 339 TYPE_CHAIN (ntype) = chain;
c906108c
SS
340 TYPE_OBJFILE (ntype) = objfile;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_REFERENCE_TYPE (type) = ntype;
345
7ba81444
MS
346 /* FIXME! Assume the machine has only one representation for
347 references, and that it matches the (only) representation for
348 pointers! */
c906108c 349
819844ad 350 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
c906108c 351 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 352
c906108c
SS
353 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
354 TYPE_REFERENCE_TYPE (type) = ntype;
355
1e98b326
JB
356 /* Update the length of all the other variants of this type. */
357 chain = TYPE_CHAIN (ntype);
358 while (chain != ntype)
359 {
360 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
361 chain = TYPE_CHAIN (chain);
362 }
363
c906108c
SS
364 return ntype;
365}
366
7ba81444
MS
367/* Same as above, but caller doesn't care about memory allocation
368 details. */
c906108c
SS
369
370struct type *
fba45db2 371lookup_reference_type (struct type *type)
c906108c 372{
c5aa993b 373 return make_reference_type (type, (struct type **) 0);
c906108c
SS
374}
375
7ba81444
MS
376/* Lookup a function type that returns type TYPE. TYPEPTR, if
377 nonzero, points to a pointer to memory where the function type
378 should be stored. If *TYPEPTR is zero, update it to point to the
379 function type we return. We allocate new memory if needed. */
c906108c
SS
380
381struct type *
fba45db2 382make_function_type (struct type *type, struct type **typeptr)
c906108c 383{
52f0bd74 384 struct type *ntype; /* New type */
c906108c
SS
385 struct objfile *objfile;
386
387 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
388 {
389 ntype = alloc_type (TYPE_OBJFILE (type));
390 if (typeptr)
391 *typeptr = ntype;
392 }
7ba81444 393 else /* We have storage, but need to reset it. */
c906108c
SS
394 {
395 ntype = *typeptr;
396 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 397 smash_type (ntype);
c906108c
SS
398 TYPE_OBJFILE (ntype) = objfile;
399 }
400
401 TYPE_TARGET_TYPE (ntype) = type;
402
403 TYPE_LENGTH (ntype) = 1;
404 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 405
c906108c
SS
406 return ntype;
407}
408
409
410/* Given a type TYPE, return a type of functions that return that type.
411 May need to construct such a type if this is the first use. */
412
413struct type *
fba45db2 414lookup_function_type (struct type *type)
c906108c 415{
c5aa993b 416 return make_function_type (type, (struct type **) 0);
c906108c
SS
417}
418
47663de5
MS
419/* Identify address space identifier by name --
420 return the integer flag defined in gdbtypes.h. */
421extern int
422address_space_name_to_int (char *space_identifier)
423{
5f11f355 424 struct gdbarch *gdbarch = current_gdbarch;
8b2dbe47 425 int type_flags;
7ba81444 426 /* Check for known address space delimiters. */
47663de5
MS
427 if (!strcmp (space_identifier, "code"))
428 return TYPE_FLAG_CODE_SPACE;
429 else if (!strcmp (space_identifier, "data"))
430 return TYPE_FLAG_DATA_SPACE;
5f11f355
AC
431 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
432 && gdbarch_address_class_name_to_type_flags (gdbarch,
433 space_identifier,
434 &type_flags))
8b2dbe47 435 return type_flags;
47663de5 436 else
8a3fe4f8 437 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
438}
439
440/* Identify address space identifier by integer flag as defined in
7ba81444 441 gdbtypes.h -- return the string version of the adress space name. */
47663de5 442
321432c0 443const char *
47663de5
MS
444address_space_int_to_name (int space_flag)
445{
5f11f355 446 struct gdbarch *gdbarch = current_gdbarch;
47663de5
MS
447 if (space_flag & TYPE_FLAG_CODE_SPACE)
448 return "code";
449 else if (space_flag & TYPE_FLAG_DATA_SPACE)
450 return "data";
8b2dbe47 451 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
452 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
453 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
454 else
455 return NULL;
456}
457
2fdde8f8 458/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
459
460 If STORAGE is non-NULL, create the new type instance there.
461 STORAGE must be in the same obstack as TYPE. */
47663de5 462
b9362cc7 463static struct type *
2fdde8f8
DJ
464make_qualified_type (struct type *type, int new_flags,
465 struct type *storage)
47663de5
MS
466{
467 struct type *ntype;
468
469 ntype = type;
470 do {
2fdde8f8 471 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
47663de5 472 return ntype;
2fdde8f8 473 ntype = TYPE_CHAIN (ntype);
47663de5
MS
474 } while (ntype != type);
475
2fdde8f8
DJ
476 /* Create a new type instance. */
477 if (storage == NULL)
478 ntype = alloc_type_instance (type);
479 else
480 {
7ba81444
MS
481 /* If STORAGE was provided, it had better be in the same objfile
482 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
483 if one objfile is freed and the other kept, we'd have
484 dangling pointers. */
ad766c0a
JB
485 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
486
2fdde8f8
DJ
487 ntype = storage;
488 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
489 TYPE_CHAIN (ntype) = ntype;
490 }
47663de5
MS
491
492 /* Pointers or references to the original type are not relevant to
2fdde8f8 493 the new type. */
47663de5
MS
494 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
495 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 496
2fdde8f8
DJ
497 /* Chain the new qualified type to the old type. */
498 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
499 TYPE_CHAIN (type) = ntype;
500
501 /* Now set the instance flags and return the new type. */
502 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 503
ab5d3da6
KB
504 /* Set length of new type to that of the original type. */
505 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
506
47663de5
MS
507 return ntype;
508}
509
2fdde8f8
DJ
510/* Make an address-space-delimited variant of a type -- a type that
511 is identical to the one supplied except that it has an address
512 space attribute attached to it (such as "code" or "data").
513
7ba81444
MS
514 The space attributes "code" and "data" are for Harvard
515 architectures. The address space attributes are for architectures
516 which have alternately sized pointers or pointers with alternate
517 representations. */
2fdde8f8
DJ
518
519struct type *
520make_type_with_address_space (struct type *type, int space_flag)
521{
522 struct type *ntype;
523 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
8b2dbe47
KB
524 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
525 | TYPE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
526 | space_flag);
527
528 return make_qualified_type (type, new_flags, NULL);
529}
c906108c
SS
530
531/* Make a "c-v" variant of a type -- a type that is identical to the
532 one supplied except that it may have const or volatile attributes
533 CNST is a flag for setting the const attribute
534 VOLTL is a flag for setting the volatile attribute
535 TYPE is the base type whose variant we are creating.
c906108c 536
ad766c0a
JB
537 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
538 storage to hold the new qualified type; *TYPEPTR and TYPE must be
539 in the same objfile. Otherwise, allocate fresh memory for the new
540 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
541 new type we construct. */
c906108c 542struct type *
7ba81444
MS
543make_cv_type (int cnst, int voltl,
544 struct type *type,
545 struct type **typeptr)
c906108c 546{
52f0bd74
AC
547 struct type *ntype; /* New type */
548 struct type *tmp_type = type; /* tmp type */
c906108c
SS
549 struct objfile *objfile;
550
2fdde8f8
DJ
551 int new_flags = (TYPE_INSTANCE_FLAGS (type)
552 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
c906108c 553
c906108c 554 if (cnst)
2fdde8f8 555 new_flags |= TYPE_FLAG_CONST;
c906108c
SS
556
557 if (voltl)
2fdde8f8 558 new_flags |= TYPE_FLAG_VOLATILE;
a02fd225 559
2fdde8f8 560 if (typeptr && *typeptr != NULL)
a02fd225 561 {
ad766c0a
JB
562 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
563 a C-V variant chain that threads across objfiles: if one
564 objfile gets freed, then the other has a broken C-V chain.
565
566 This code used to try to copy over the main type from TYPE to
567 *TYPEPTR if they were in different objfiles, but that's
568 wrong, too: TYPE may have a field list or member function
569 lists, which refer to types of their own, etc. etc. The
570 whole shebang would need to be copied over recursively; you
571 can't have inter-objfile pointers. The only thing to do is
572 to leave stub types as stub types, and look them up afresh by
573 name each time you encounter them. */
574 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
575 }
576
7ba81444
MS
577 ntype = make_qualified_type (type, new_flags,
578 typeptr ? *typeptr : NULL);
c906108c 579
2fdde8f8
DJ
580 if (typeptr != NULL)
581 *typeptr = ntype;
a02fd225 582
2fdde8f8 583 return ntype;
a02fd225 584}
c906108c 585
2fdde8f8
DJ
586/* Replace the contents of ntype with the type *type. This changes the
587 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
588 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 589
cda6c68a
JB
590 In order to build recursive types, it's inevitable that we'll need
591 to update types in place --- but this sort of indiscriminate
592 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
593 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
594 clear if more steps are needed. */
dd6bda65
DJ
595void
596replace_type (struct type *ntype, struct type *type)
597{
ab5d3da6 598 struct type *chain;
dd6bda65 599
ad766c0a
JB
600 /* These two types had better be in the same objfile. Otherwise,
601 the assignment of one type's main type structure to the other
602 will produce a type with references to objects (names; field
603 lists; etc.) allocated on an objfile other than its own. */
604 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
605
2fdde8f8 606 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 607
7ba81444
MS
608 /* The type length is not a part of the main type. Update it for
609 each type on the variant chain. */
ab5d3da6
KB
610 chain = ntype;
611 do {
612 /* Assert that this element of the chain has no address-class bits
613 set in its flags. Such type variants might have type lengths
614 which are supposed to be different from the non-address-class
615 variants. This assertion shouldn't ever be triggered because
616 symbol readers which do construct address-class variants don't
617 call replace_type(). */
618 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
619
787cbe14 620 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
ab5d3da6
KB
621 chain = TYPE_CHAIN (chain);
622 } while (ntype != chain);
623
2fdde8f8
DJ
624 /* Assert that the two types have equivalent instance qualifiers.
625 This should be true for at least all of our debug readers. */
626 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
627}
628
c906108c
SS
629/* Implement direct support for MEMBER_TYPE in GNU C++.
630 May need to construct such a type if this is the first use.
631 The TYPE is the type of the member. The DOMAIN is the type
632 of the aggregate that the member belongs to. */
633
634struct type *
0d5de010 635lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 636{
52f0bd74 637 struct type *mtype;
c906108c
SS
638
639 mtype = alloc_type (TYPE_OBJFILE (type));
0d5de010 640 smash_to_memberptr_type (mtype, domain, type);
c906108c
SS
641 return (mtype);
642}
643
0d5de010
DJ
644/* Return a pointer-to-method type, for a method of type TO_TYPE. */
645
646struct type *
647lookup_methodptr_type (struct type *to_type)
648{
649 struct type *mtype;
650
651 mtype = alloc_type (TYPE_OBJFILE (to_type));
652 TYPE_TARGET_TYPE (mtype) = to_type;
653 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
654 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
655 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
656 return mtype;
657}
658
7ba81444
MS
659/* Allocate a stub method whose return type is TYPE. This apparently
660 happens for speed of symbol reading, since parsing out the
661 arguments to the method is cpu-intensive, the way we are doing it.
662 So, we will fill in arguments later. This always returns a fresh
663 type. */
c906108c
SS
664
665struct type *
fba45db2 666allocate_stub_method (struct type *type)
c906108c
SS
667{
668 struct type *mtype;
669
7e956337
FF
670 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
671 TYPE_OBJFILE (type));
c906108c
SS
672 TYPE_TARGET_TYPE (mtype) = type;
673 /* _DOMAIN_TYPE (mtype) = unknown yet */
c906108c
SS
674 return (mtype);
675}
676
7ba81444
MS
677/* Create a range type using either a blank type supplied in
678 RESULT_TYPE, or creating a new type, inheriting the objfile from
679 INDEX_TYPE.
c906108c 680
7ba81444
MS
681 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
682 to HIGH_BOUND, inclusive.
c906108c 683
7ba81444
MS
684 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
685 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
686
687struct type *
fba45db2
KB
688create_range_type (struct type *result_type, struct type *index_type,
689 int low_bound, int high_bound)
c906108c
SS
690{
691 if (result_type == NULL)
692 {
693 result_type = alloc_type (TYPE_OBJFILE (index_type));
694 }
695 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
696 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 697 if (TYPE_STUB (index_type))
c906108c
SS
698 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
699 else
700 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
701 TYPE_NFIELDS (result_type) = 2;
702 TYPE_FIELDS (result_type) = (struct field *)
703 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
704 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
705 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
706 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c906108c 707
c5aa993b 708 if (low_bound >= 0)
c906108c
SS
709 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
710
711 return (result_type);
712}
713
7ba81444
MS
714/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
715 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
716 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
717
718int
fba45db2 719get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
720{
721 CHECK_TYPEDEF (type);
722 switch (TYPE_CODE (type))
723 {
724 case TYPE_CODE_RANGE:
725 *lowp = TYPE_LOW_BOUND (type);
726 *highp = TYPE_HIGH_BOUND (type);
727 return 1;
728 case TYPE_CODE_ENUM:
729 if (TYPE_NFIELDS (type) > 0)
730 {
731 /* The enums may not be sorted by value, so search all
732 entries */
733 int i;
734
735 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
736 for (i = 0; i < TYPE_NFIELDS (type); i++)
737 {
738 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
739 *lowp = TYPE_FIELD_BITPOS (type, i);
740 if (TYPE_FIELD_BITPOS (type, i) > *highp)
741 *highp = TYPE_FIELD_BITPOS (type, i);
742 }
743
7ba81444 744 /* Set unsigned indicator if warranted. */
c5aa993b 745 if (*lowp >= 0)
c906108c
SS
746 {
747 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
748 }
749 }
750 else
751 {
752 *lowp = 0;
753 *highp = -1;
754 }
755 return 0;
756 case TYPE_CODE_BOOL:
757 *lowp = 0;
758 *highp = 1;
759 return 0;
760 case TYPE_CODE_INT:
c5aa993b 761 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
762 return -1;
763 if (!TYPE_UNSIGNED (type))
764 {
c5aa993b 765 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
766 *highp = -*lowp - 1;
767 return 0;
768 }
7ba81444 769 /* ... fall through for unsigned ints ... */
c906108c
SS
770 case TYPE_CODE_CHAR:
771 *lowp = 0;
772 /* This round-about calculation is to avoid shifting by
7b83ea04 773 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 774 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
775 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
776 *highp = (*highp - 1) | *highp;
777 return 0;
778 default:
779 return -1;
780 }
781}
782
7ba81444
MS
783/* Create an array type using either a blank type supplied in
784 RESULT_TYPE, or creating a new type, inheriting the objfile from
785 RANGE_TYPE.
c906108c
SS
786
787 Elements will be of type ELEMENT_TYPE, the indices will be of type
788 RANGE_TYPE.
789
7ba81444
MS
790 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
791 sure it is TYPE_CODE_UNDEF before we bash it into an array
792 type? */
c906108c
SS
793
794struct type *
7ba81444
MS
795create_array_type (struct type *result_type,
796 struct type *element_type,
fba45db2 797 struct type *range_type)
c906108c
SS
798{
799 LONGEST low_bound, high_bound;
800
801 if (result_type == NULL)
802 {
803 result_type = alloc_type (TYPE_OBJFILE (range_type));
804 }
805 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
806 TYPE_TARGET_TYPE (result_type) = element_type;
807 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
808 low_bound = high_bound = 0;
809 CHECK_TYPEDEF (element_type);
810 TYPE_LENGTH (result_type) =
811 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
812 TYPE_NFIELDS (result_type) = 1;
813 TYPE_FIELDS (result_type) =
814 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
815 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
816 TYPE_FIELD_TYPE (result_type, 0) = range_type;
817 TYPE_VPTR_FIELDNO (result_type) = -1;
818
819 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
820 if (TYPE_LENGTH (result_type) == 0)
821 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
822
823 return (result_type);
824}
825
7ba81444
MS
826/* Create a string type using either a blank type supplied in
827 RESULT_TYPE, or creating a new type. String types are similar
828 enough to array of char types that we can use create_array_type to
829 build the basic type and then bash it into a string type.
c906108c
SS
830
831 For fixed length strings, the range type contains 0 as the lower
832 bound and the length of the string minus one as the upper bound.
833
7ba81444
MS
834 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
835 sure it is TYPE_CODE_UNDEF before we bash it into a string
836 type? */
c906108c
SS
837
838struct type *
7ba81444
MS
839create_string_type (struct type *result_type,
840 struct type *range_type)
c906108c 841{
f290d38e
AC
842 struct type *string_char_type;
843
844 string_char_type = language_string_char_type (current_language,
845 current_gdbarch);
c906108c 846 result_type = create_array_type (result_type,
f290d38e 847 string_char_type,
c906108c
SS
848 range_type);
849 TYPE_CODE (result_type) = TYPE_CODE_STRING;
850 return (result_type);
851}
852
853struct type *
fba45db2 854create_set_type (struct type *result_type, struct type *domain_type)
c906108c 855{
c906108c
SS
856 if (result_type == NULL)
857 {
858 result_type = alloc_type (TYPE_OBJFILE (domain_type));
859 }
860 TYPE_CODE (result_type) = TYPE_CODE_SET;
861 TYPE_NFIELDS (result_type) = 1;
862 TYPE_FIELDS (result_type) = (struct field *)
863 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
864 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
865
74a9bb82 866 if (!TYPE_STUB (domain_type))
c906108c 867 {
f9780d5b 868 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
869 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
870 low_bound = high_bound = 0;
871 bit_length = high_bound - low_bound + 1;
872 TYPE_LENGTH (result_type)
873 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b
MS
874 if (low_bound >= 0)
875 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
c906108c
SS
876 }
877 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
878
c906108c
SS
879 return (result_type);
880}
881
4f2aea11
MK
882void
883append_flags_type_flag (struct type *type, int bitpos, char *name)
884{
885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
886 gdb_assert (bitpos < TYPE_NFIELDS (type));
887 gdb_assert (bitpos >= 0);
888
889 if (name)
890 {
891 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
892 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
893 }
894 else
895 {
896 /* Don't show this field to the user. */
897 TYPE_FIELD_BITPOS (type, bitpos) = -1;
898 }
899}
900
901struct type *
902init_flags_type (char *name, int length)
903{
904 int nfields = length * TARGET_CHAR_BIT;
905 struct type *type;
906
7ba81444
MS
907 type = init_type (TYPE_CODE_FLAGS, length,
908 TYPE_FLAG_UNSIGNED, name, NULL);
4f2aea11 909 TYPE_NFIELDS (type) = nfields;
7ba81444
MS
910 TYPE_FIELDS (type) = TYPE_ALLOC (type,
911 nfields * sizeof (struct field));
76b7178d 912 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
4f2aea11
MK
913
914 return type;
915}
916
ea37ba09
DJ
917/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
918 and any array types nested inside it. */
919
920void
921make_vector_type (struct type *array_type)
922{
923 struct type *inner_array, *elt_type;
924 int flags;
925
926 /* Find the innermost array type, in case the array is
927 multi-dimensional. */
928 inner_array = array_type;
929 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
930 inner_array = TYPE_TARGET_TYPE (inner_array);
931
932 elt_type = TYPE_TARGET_TYPE (inner_array);
933 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
934 {
935 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
936 elt_type = make_qualified_type (elt_type, flags, NULL);
937 TYPE_TARGET_TYPE (inner_array) = elt_type;
938 }
939
940 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
941}
942
794ac428 943struct type *
ac3aafc7
EZ
944init_vector_type (struct type *elt_type, int n)
945{
946 struct type *array_type;
947
948 array_type = create_array_type (0, elt_type,
7ba81444 949 create_range_type (0,
1969d2ed 950 builtin_type_int32,
ac3aafc7 951 0, n-1));
ea37ba09 952 make_vector_type (array_type);
ac3aafc7
EZ
953 return array_type;
954}
955
0d5de010
DJ
956/* Smash TYPE to be a type of pointers to members of DOMAIN with type
957 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
958 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
959 TYPE doesn't include the offset (that's the value of the MEMBER
960 itself), but does include the structure type into which it points
961 (for some reason).
c906108c 962
7ba81444
MS
963 When "smashing" the type, we preserve the objfile that the old type
964 pointed to, since we aren't changing where the type is actually
c906108c
SS
965 allocated. */
966
967void
0d5de010
DJ
968smash_to_memberptr_type (struct type *type, struct type *domain,
969 struct type *to_type)
c906108c
SS
970{
971 struct objfile *objfile;
972
973 objfile = TYPE_OBJFILE (type);
974
2fdde8f8 975 smash_type (type);
c906108c
SS
976 TYPE_OBJFILE (type) = objfile;
977 TYPE_TARGET_TYPE (type) = to_type;
978 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
979 /* Assume that a data member pointer is the same size as a normal
980 pointer. */
819844ad 981 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
0d5de010 982 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
983}
984
985/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
986 METHOD just means `function that gets an extra "this" argument'.
987
7ba81444
MS
988 When "smashing" the type, we preserve the objfile that the old type
989 pointed to, since we aren't changing where the type is actually
c906108c
SS
990 allocated. */
991
992void
fba45db2 993smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
994 struct type *to_type, struct field *args,
995 int nargs, int varargs)
c906108c
SS
996{
997 struct objfile *objfile;
998
999 objfile = TYPE_OBJFILE (type);
1000
2fdde8f8 1001 smash_type (type);
c906108c
SS
1002 TYPE_OBJFILE (type) = objfile;
1003 TYPE_TARGET_TYPE (type) = to_type;
1004 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1005 TYPE_FIELDS (type) = args;
1006 TYPE_NFIELDS (type) = nargs;
1007 if (varargs)
1008 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
c906108c
SS
1009 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1010 TYPE_CODE (type) = TYPE_CODE_METHOD;
1011}
1012
1013/* Return a typename for a struct/union/enum type without "struct ",
1014 "union ", or "enum ". If the type has a NULL name, return NULL. */
1015
1016char *
aa1ee363 1017type_name_no_tag (const struct type *type)
c906108c
SS
1018{
1019 if (TYPE_TAG_NAME (type) != NULL)
1020 return TYPE_TAG_NAME (type);
1021
7ba81444
MS
1022 /* Is there code which expects this to return the name if there is
1023 no tag name? My guess is that this is mainly used for C++ in
1024 cases where the two will always be the same. */
c906108c
SS
1025 return TYPE_NAME (type);
1026}
1027
7ba81444
MS
1028/* Lookup a typedef or primitive type named NAME, visible in lexical
1029 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1030 suitably defined. */
c906108c
SS
1031
1032struct type *
fba45db2 1033lookup_typename (char *name, struct block *block, int noerr)
c906108c 1034{
52f0bd74
AC
1035 struct symbol *sym;
1036 struct type *tmp;
c906108c 1037
7ba81444
MS
1038 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1039 (struct symtab **) NULL);
c906108c
SS
1040 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1041 {
54a5b07d
AC
1042 tmp = language_lookup_primitive_type_by_name (current_language,
1043 current_gdbarch,
1044 name);
c906108c
SS
1045 if (tmp)
1046 {
1047 return (tmp);
1048 }
1049 else if (!tmp && noerr)
1050 {
1051 return (NULL);
1052 }
1053 else
1054 {
8a3fe4f8 1055 error (_("No type named %s."), name);
c906108c
SS
1056 }
1057 }
1058 return (SYMBOL_TYPE (sym));
1059}
1060
1061struct type *
fba45db2 1062lookup_unsigned_typename (char *name)
c906108c
SS
1063{
1064 char *uns = alloca (strlen (name) + 10);
1065
1066 strcpy (uns, "unsigned ");
1067 strcpy (uns + 9, name);
1068 return (lookup_typename (uns, (struct block *) NULL, 0));
1069}
1070
1071struct type *
fba45db2 1072lookup_signed_typename (char *name)
c906108c
SS
1073{
1074 struct type *t;
1075 char *uns = alloca (strlen (name) + 8);
1076
1077 strcpy (uns, "signed ");
1078 strcpy (uns + 7, name);
1079 t = lookup_typename (uns, (struct block *) NULL, 1);
7ba81444 1080 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1081 if (t != NULL)
1082 return t;
1083 return lookup_typename (name, (struct block *) NULL, 0);
1084}
1085
1086/* Lookup a structure type named "struct NAME",
1087 visible in lexical block BLOCK. */
1088
1089struct type *
fba45db2 1090lookup_struct (char *name, struct block *block)
c906108c 1091{
52f0bd74 1092 struct symbol *sym;
c906108c 1093
176620f1 1094 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1095 (struct symtab **) NULL);
1096
1097 if (sym == NULL)
1098 {
8a3fe4f8 1099 error (_("No struct type named %s."), name);
c906108c
SS
1100 }
1101 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1102 {
7ba81444
MS
1103 error (_("This context has class, union or enum %s, not a struct."),
1104 name);
c906108c
SS
1105 }
1106 return (SYMBOL_TYPE (sym));
1107}
1108
1109/* Lookup a union type named "union NAME",
1110 visible in lexical block BLOCK. */
1111
1112struct type *
fba45db2 1113lookup_union (char *name, struct block *block)
c906108c 1114{
52f0bd74 1115 struct symbol *sym;
c5aa993b 1116 struct type *t;
c906108c 1117
176620f1 1118 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1119 (struct symtab **) NULL);
1120
1121 if (sym == NULL)
8a3fe4f8 1122 error (_("No union type named %s."), name);
c906108c 1123
c5aa993b 1124 t = SYMBOL_TYPE (sym);
c906108c
SS
1125
1126 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1127 return (t);
1128
1129 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1130 * a further "declared_type" field to discover it is really a union.
1131 */
c5aa993b
JM
1132 if (HAVE_CPLUS_STRUCT (t))
1133 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1134 return (t);
1135
7ba81444
MS
1136 /* If we get here, it's not a union. */
1137 error (_("This context has class, struct or enum %s, not a union."),
1138 name);
c906108c
SS
1139}
1140
1141
1142/* Lookup an enum type named "enum NAME",
1143 visible in lexical block BLOCK. */
1144
1145struct type *
fba45db2 1146lookup_enum (char *name, struct block *block)
c906108c 1147{
52f0bd74 1148 struct symbol *sym;
c906108c 1149
176620f1 1150 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
c906108c
SS
1151 (struct symtab **) NULL);
1152 if (sym == NULL)
1153 {
8a3fe4f8 1154 error (_("No enum type named %s."), name);
c906108c
SS
1155 }
1156 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1157 {
7ba81444
MS
1158 error (_("This context has class, struct or union %s, not an enum."),
1159 name);
c906108c
SS
1160 }
1161 return (SYMBOL_TYPE (sym));
1162}
1163
1164/* Lookup a template type named "template NAME<TYPE>",
1165 visible in lexical block BLOCK. */
1166
1167struct type *
7ba81444
MS
1168lookup_template_type (char *name, struct type *type,
1169 struct block *block)
c906108c
SS
1170{
1171 struct symbol *sym;
7ba81444
MS
1172 char *nam = (char *)
1173 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1174 strcpy (nam, name);
1175 strcat (nam, "<");
0004e5a2 1176 strcat (nam, TYPE_NAME (type));
7ba81444 1177 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1178
7ba81444
MS
1179 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1180 (struct symtab **) NULL);
c906108c
SS
1181
1182 if (sym == NULL)
1183 {
8a3fe4f8 1184 error (_("No template type named %s."), name);
c906108c
SS
1185 }
1186 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1187 {
7ba81444
MS
1188 error (_("This context has class, union or enum %s, not a struct."),
1189 name);
c906108c
SS
1190 }
1191 return (SYMBOL_TYPE (sym));
1192}
1193
7ba81444
MS
1194/* Given a type TYPE, lookup the type of the component of type named
1195 NAME.
c906108c 1196
7ba81444
MS
1197 TYPE can be either a struct or union, or a pointer or reference to
1198 a struct or union. If it is a pointer or reference, its target
1199 type is automatically used. Thus '.' and '->' are interchangable,
1200 as specified for the definitions of the expression element types
1201 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1202
1203 If NOERR is nonzero, return zero if NAME is not suitably defined.
1204 If NAME is the name of a baseclass type, return that type. */
1205
1206struct type *
fba45db2 1207lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1208{
1209 int i;
1210
1211 for (;;)
1212 {
1213 CHECK_TYPEDEF (type);
1214 if (TYPE_CODE (type) != TYPE_CODE_PTR
1215 && TYPE_CODE (type) != TYPE_CODE_REF)
1216 break;
1217 type = TYPE_TARGET_TYPE (type);
1218 }
1219
687d6395
MS
1220 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1221 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1222 {
1223 target_terminal_ours ();
1224 gdb_flush (gdb_stdout);
1225 fprintf_unfiltered (gdb_stderr, "Type ");
1226 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1227 error (_(" is not a structure or union type."));
c906108c
SS
1228 }
1229
1230#if 0
7ba81444
MS
1231 /* FIXME: This change put in by Michael seems incorrect for the case
1232 where the structure tag name is the same as the member name.
1233 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1234 foo; } bell;" Disabled by fnf. */
c906108c
SS
1235 {
1236 char *typename;
1237
1238 typename = type_name_no_tag (type);
762f08a3 1239 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1240 return type;
1241 }
1242#endif
1243
1244 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1245 {
1246 char *t_field_name = TYPE_FIELD_NAME (type, i);
1247
db577aea 1248 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1249 {
1250 return TYPE_FIELD_TYPE (type, i);
1251 }
1252 }
1253
1254 /* OK, it's not in this class. Recursively check the baseclasses. */
1255 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1256 {
1257 struct type *t;
1258
9733fc94 1259 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1260 if (t != NULL)
1261 {
1262 return t;
1263 }
1264 }
1265
1266 if (noerr)
1267 {
1268 return NULL;
1269 }
c5aa993b 1270
c906108c
SS
1271 target_terminal_ours ();
1272 gdb_flush (gdb_stdout);
1273 fprintf_unfiltered (gdb_stderr, "Type ");
1274 type_print (type, "", gdb_stderr, -1);
1275 fprintf_unfiltered (gdb_stderr, " has no component named ");
1276 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1277 error (("."));
c5aa993b 1278 return (struct type *) -1; /* For lint */
c906108c
SS
1279}
1280
1281/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1282 valid. Callers should be aware that in some cases (for example,
1283 the type or one of its baseclasses is a stub type and we are
7ba81444
MS
1284 debugging a .o file), this function will not be able to find the
1285 virtual function table pointer, and vptr_fieldno will remain -1 and
1286 vptr_basetype will remain NULL. */
c906108c
SS
1287
1288void
fba45db2 1289fill_in_vptr_fieldno (struct type *type)
c906108c
SS
1290{
1291 CHECK_TYPEDEF (type);
1292
1293 if (TYPE_VPTR_FIELDNO (type) < 0)
1294 {
1295 int i;
1296
7ba81444
MS
1297 /* We must start at zero in case the first (and only) baseclass
1298 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1299 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1300 {
7ba81444
MS
1301 struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
1302 i));
cef4f5dd
DJ
1303 fill_in_vptr_fieldno (baseclass);
1304 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
c906108c 1305 {
cef4f5dd
DJ
1306 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1307 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
c906108c
SS
1308 break;
1309 }
1310 }
1311 }
1312}
1313
1314/* Find the method and field indices for the destructor in class type T.
1315 Return 1 if the destructor was found, otherwise, return 0. */
1316
1317int
7ba81444
MS
1318get_destructor_fn_field (struct type *t,
1319 int *method_indexp,
1320 int *field_indexp)
c906108c
SS
1321{
1322 int i;
1323
1324 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1325 {
1326 int j;
1327 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1328
1329 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1330 {
015a42b4 1331 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1332 {
1333 *method_indexp = i;
1334 *field_indexp = j;
1335 return 1;
1336 }
1337 }
1338 }
1339 return 0;
1340}
1341
44e1a9eb
DJ
1342static void
1343stub_noname_complaint (void)
1344{
e2e0b3e5 1345 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1346}
1347
c906108c
SS
1348/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1349
1350 If this is a stubbed struct (i.e. declared as struct foo *), see if
1351 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1352 definition, so we can use it in future. There used to be a comment
1353 (but not any code) that if we don't find a full definition, we'd
1354 set a flag so we don't spend time in the future checking the same
1355 type. That would be a mistake, though--we might load in more
1356 symbols which contain a full definition for the type.
c906108c 1357
7b83ea04 1358 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1359 often enough to merit such treatment. */
1360
7ba81444
MS
1361/* Find the real type of TYPE. This function returns the real type,
1362 after removing all layers of typedefs and completing opaque or stub
1363 types. Completion changes the TYPE argument, but stripping of
1364 typedefs does not. */
c906108c
SS
1365
1366struct type *
a02fd225 1367check_typedef (struct type *type)
c906108c
SS
1368{
1369 struct type *orig_type = type;
a02fd225
DJ
1370 int is_const, is_volatile;
1371
423c0af8
MS
1372 gdb_assert (type);
1373
c906108c
SS
1374 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1375 {
1376 if (!TYPE_TARGET_TYPE (type))
1377 {
c5aa993b 1378 char *name;
c906108c
SS
1379 struct symbol *sym;
1380
1381 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1382 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1383 if (currently_reading_symtab)
1384 return type;
1385
1386 name = type_name_no_tag (type);
7ba81444
MS
1387 /* FIXME: shouldn't we separately check the TYPE_NAME and
1388 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1389 VAR_DOMAIN as appropriate? (this code was written before
1390 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1391 if (name == NULL)
1392 {
23136709 1393 stub_noname_complaint ();
c906108c
SS
1394 return type;
1395 }
176620f1 1396 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
c906108c
SS
1397 (struct symtab **) NULL);
1398 if (sym)
1399 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444
MS
1400 else /* TYPE_CODE_UNDEF */
1401 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
c906108c
SS
1402 }
1403 type = TYPE_TARGET_TYPE (type);
1404 }
1405
a02fd225
DJ
1406 is_const = TYPE_CONST (type);
1407 is_volatile = TYPE_VOLATILE (type);
1408
7ba81444
MS
1409 /* If this is a struct/class/union with no fields, then check
1410 whether a full definition exists somewhere else. This is for
1411 systems where a type definition with no fields is issued for such
1412 types, instead of identifying them as stub types in the first
1413 place. */
c5aa993b 1414
7ba81444
MS
1415 if (TYPE_IS_OPAQUE (type)
1416 && opaque_type_resolution
1417 && !currently_reading_symtab)
c906108c 1418 {
c5aa993b
JM
1419 char *name = type_name_no_tag (type);
1420 struct type *newtype;
c906108c
SS
1421 if (name == NULL)
1422 {
23136709 1423 stub_noname_complaint ();
c906108c
SS
1424 return type;
1425 }
1426 newtype = lookup_transparent_type (name);
ad766c0a 1427
c906108c 1428 if (newtype)
ad766c0a 1429 {
7ba81444
MS
1430 /* If the resolved type and the stub are in the same
1431 objfile, then replace the stub type with the real deal.
1432 But if they're in separate objfiles, leave the stub
1433 alone; we'll just look up the transparent type every time
1434 we call check_typedef. We can't create pointers between
1435 types allocated to different objfiles, since they may
1436 have different lifetimes. Trying to copy NEWTYPE over to
1437 TYPE's objfile is pointless, too, since you'll have to
1438 move over any other types NEWTYPE refers to, which could
1439 be an unbounded amount of stuff. */
ad766c0a
JB
1440 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1441 make_cv_type (is_const, is_volatile, newtype, &type);
1442 else
1443 type = newtype;
1444 }
c906108c 1445 }
7ba81444
MS
1446 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1447 types. */
74a9bb82 1448 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1449 {
c5aa993b 1450 char *name = type_name_no_tag (type);
c906108c 1451 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1452 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1453 as appropriate? (this code was written before TYPE_NAME and
1454 TYPE_TAG_NAME were separate). */
c906108c
SS
1455 struct symbol *sym;
1456 if (name == NULL)
1457 {
23136709 1458 stub_noname_complaint ();
c906108c
SS
1459 return type;
1460 }
7ba81444
MS
1461 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1462 0, (struct symtab **) NULL);
c906108c 1463 if (sym)
c26f2453
JB
1464 {
1465 /* Same as above for opaque types, we can replace the stub
1466 with the complete type only if they are int the same
1467 objfile. */
1468 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1469 make_cv_type (is_const, is_volatile,
1470 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1471 else
1472 type = SYMBOL_TYPE (sym);
1473 }
c906108c
SS
1474 }
1475
74a9bb82 1476 if (TYPE_TARGET_STUB (type))
c906108c
SS
1477 {
1478 struct type *range_type;
1479 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1480
74a9bb82 1481 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1482 {
7ba81444 1483 /* Empty. */
c5aa993b 1484 }
c906108c
SS
1485 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1486 && TYPE_NFIELDS (type) == 1
1487 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1488 == TYPE_CODE_RANGE))
1489 {
1490 /* Now recompute the length of the array type, based on its
1491 number of elements and the target type's length. */
1492 TYPE_LENGTH (type) =
1493 ((TYPE_FIELD_BITPOS (range_type, 1)
7ba81444 1494 - TYPE_FIELD_BITPOS (range_type, 0) + 1)
c906108c
SS
1495 * TYPE_LENGTH (target_type));
1496 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1497 }
1498 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1499 {
1500 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1501 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1502 }
1503 }
7ba81444 1504 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1505 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1506 return type;
1507}
1508
7ba81444
MS
1509/* Parse a type expression in the string [P..P+LENGTH). If an error
1510 occurs, silently return builtin_type_void. */
c91ecb25 1511
b9362cc7 1512static struct type *
c91ecb25
ND
1513safe_parse_type (char *p, int length)
1514{
1515 struct ui_file *saved_gdb_stderr;
1516 struct type *type;
1517
7ba81444 1518 /* Suppress error messages. */
c91ecb25
ND
1519 saved_gdb_stderr = gdb_stderr;
1520 gdb_stderr = ui_file_new ();
1521
7ba81444 1522 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25
ND
1523 if (!gdb_parse_and_eval_type (p, length, &type))
1524 type = builtin_type_void;
1525
7ba81444 1526 /* Stop suppressing error messages. */
c91ecb25
ND
1527 ui_file_delete (gdb_stderr);
1528 gdb_stderr = saved_gdb_stderr;
1529
1530 return type;
1531}
1532
c906108c
SS
1533/* Ugly hack to convert method stubs into method types.
1534
7ba81444
MS
1535 He ain't kiddin'. This demangles the name of the method into a
1536 string including argument types, parses out each argument type,
1537 generates a string casting a zero to that type, evaluates the
1538 string, and stuffs the resulting type into an argtype vector!!!
1539 Then it knows the type of the whole function (including argument
1540 types for overloading), which info used to be in the stab's but was
1541 removed to hack back the space required for them. */
c906108c 1542
de17c821 1543static void
fba45db2 1544check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1545{
1546 struct fn_field *f;
1547 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1548 char *demangled_name = cplus_demangle (mangled_name,
1549 DMGL_PARAMS | DMGL_ANSI);
1550 char *argtypetext, *p;
1551 int depth = 0, argcount = 1;
ad2f7632 1552 struct field *argtypes;
c906108c
SS
1553 struct type *mtype;
1554
1555 /* Make sure we got back a function string that we can use. */
1556 if (demangled_name)
1557 p = strchr (demangled_name, '(');
502dcf4e
AC
1558 else
1559 p = NULL;
c906108c
SS
1560
1561 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1562 error (_("Internal: Cannot demangle mangled name `%s'."),
1563 mangled_name);
c906108c
SS
1564
1565 /* Now, read in the parameters that define this type. */
1566 p += 1;
1567 argtypetext = p;
1568 while (*p)
1569 {
070ad9f0 1570 if (*p == '(' || *p == '<')
c906108c
SS
1571 {
1572 depth += 1;
1573 }
070ad9f0 1574 else if (*p == ')' || *p == '>')
c906108c
SS
1575 {
1576 depth -= 1;
1577 }
1578 else if (*p == ',' && depth == 0)
1579 {
1580 argcount += 1;
1581 }
1582
1583 p += 1;
1584 }
1585
ad2f7632
DJ
1586 /* If we read one argument and it was ``void'', don't count it. */
1587 if (strncmp (argtypetext, "(void)", 6) == 0)
1588 argcount -= 1;
c906108c 1589
ad2f7632
DJ
1590 /* We need one extra slot, for the THIS pointer. */
1591
1592 argtypes = (struct field *)
1593 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1594 p = argtypetext;
4a1970e4
DJ
1595
1596 /* Add THIS pointer for non-static methods. */
1597 f = TYPE_FN_FIELDLIST1 (type, method_id);
1598 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1599 argcount = 0;
1600 else
1601 {
ad2f7632 1602 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1603 argcount = 1;
1604 }
c906108c 1605
c5aa993b 1606 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1607 {
1608 depth = 0;
1609 while (*p)
1610 {
1611 if (depth <= 0 && (*p == ',' || *p == ')'))
1612 {
ad2f7632
DJ
1613 /* Avoid parsing of ellipsis, they will be handled below.
1614 Also avoid ``void'' as above. */
1615 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1616 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1617 {
ad2f7632 1618 argtypes[argcount].type =
c91ecb25 1619 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1620 argcount += 1;
1621 }
1622 argtypetext = p + 1;
1623 }
1624
070ad9f0 1625 if (*p == '(' || *p == '<')
c906108c
SS
1626 {
1627 depth += 1;
1628 }
070ad9f0 1629 else if (*p == ')' || *p == '>')
c906108c
SS
1630 {
1631 depth -= 1;
1632 }
1633
1634 p += 1;
1635 }
1636 }
1637
c906108c
SS
1638 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1639
1640 /* Now update the old "stub" type into a real type. */
1641 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1642 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1643 TYPE_FIELDS (mtype) = argtypes;
1644 TYPE_NFIELDS (mtype) = argcount;
c906108c
SS
1645 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1646 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
1647 if (p[-2] == '.')
1648 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1649
1650 xfree (demangled_name);
c906108c
SS
1651}
1652
7ba81444
MS
1653/* This is the external interface to check_stub_method, above. This
1654 function unstubs all of the signatures for TYPE's METHOD_ID method
1655 name. After calling this function TYPE_FN_FIELD_STUB will be
1656 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1657 correct.
de17c821
DJ
1658
1659 This function unfortunately can not die until stabs do. */
1660
1661void
1662check_stub_method_group (struct type *type, int method_id)
1663{
1664 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1665 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1666 int j, found_stub = 0;
de17c821
DJ
1667
1668 for (j = 0; j < len; j++)
1669 if (TYPE_FN_FIELD_STUB (f, j))
1670 {
1671 found_stub = 1;
1672 check_stub_method (type, method_id, j);
1673 }
1674
7ba81444
MS
1675 /* GNU v3 methods with incorrect names were corrected when we read
1676 in type information, because it was cheaper to do it then. The
1677 only GNU v2 methods with incorrect method names are operators and
1678 destructors; destructors were also corrected when we read in type
1679 information.
de17c821
DJ
1680
1681 Therefore the only thing we need to handle here are v2 operator
1682 names. */
1683 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1684 {
1685 int ret;
1686 char dem_opname[256];
1687
7ba81444
MS
1688 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1689 method_id),
de17c821
DJ
1690 dem_opname, DMGL_ANSI);
1691 if (!ret)
7ba81444
MS
1692 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1693 method_id),
de17c821
DJ
1694 dem_opname, 0);
1695 if (ret)
1696 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1697 }
1698}
1699
c906108c
SS
1700const struct cplus_struct_type cplus_struct_default;
1701
1702void
fba45db2 1703allocate_cplus_struct_type (struct type *type)
c906108c
SS
1704{
1705 if (!HAVE_CPLUS_STRUCT (type))
1706 {
1707 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1708 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1709 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1710 }
1711}
1712
1713/* Helper function to initialize the standard scalar types.
1714
7ba81444
MS
1715 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1716 the string pointed to by name in the objfile_obstack for that
1717 objfile, and initialize the type name to that copy. There are
1718 places (mipsread.c in particular, where init_type is called with a
1719 NULL value for NAME). */
c906108c
SS
1720
1721struct type *
7ba81444
MS
1722init_type (enum type_code code, int length, int flags,
1723 char *name, struct objfile *objfile)
c906108c 1724{
52f0bd74 1725 struct type *type;
c906108c
SS
1726
1727 type = alloc_type (objfile);
1728 TYPE_CODE (type) = code;
1729 TYPE_LENGTH (type) = length;
1730 TYPE_FLAGS (type) |= flags;
1731 if ((name != NULL) && (objfile != NULL))
1732 {
7ba81444
MS
1733 TYPE_NAME (type) = obsavestring (name, strlen (name),
1734 &objfile->objfile_obstack);
c906108c
SS
1735 }
1736 else
1737 {
1738 TYPE_NAME (type) = name;
1739 }
1740
1741 /* C++ fancies. */
1742
973ccf8b
DJ
1743 if (name && strcmp (name, "char") == 0)
1744 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1745
5c4e30ca
DC
1746 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1747 || code == TYPE_CODE_NAMESPACE)
c906108c
SS
1748 {
1749 INIT_CPLUS_SPECIFIC (type);
1750 }
1751 return (type);
1752}
1753
0e101458
AC
1754/* Helper function. Create an empty composite type. */
1755
1756struct type *
1757init_composite_type (char *name, enum type_code code)
1758{
1759 struct type *t;
1760 gdb_assert (code == TYPE_CODE_STRUCT
1761 || code == TYPE_CODE_UNION);
1762 t = init_type (code, 0, 0, NULL, NULL);
1763 TYPE_TAG_NAME (t) = name;
1764 return t;
1765}
1766
1767/* Helper function. Append a field to a composite type. */
1768
1769void
7ba81444
MS
1770append_composite_type_field (struct type *t, char *name,
1771 struct type *field)
0e101458
AC
1772{
1773 struct field *f;
1774 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1775 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1776 sizeof (struct field) * TYPE_NFIELDS (t));
1777 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1778 memset (f, 0, sizeof f[0]);
1779 FIELD_TYPE (f[0]) = field;
1780 FIELD_NAME (f[0]) = name;
1781 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1782 {
73d322b1 1783 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1784 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1785 }
1786 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1787 {
1788 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1789 if (TYPE_NFIELDS (t) > 1)
1790 {
1791 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1792 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1793 }
1794 }
1795}
1796
c906108c
SS
1797/* Look up a fundamental type for the specified objfile.
1798 May need to construct such a type if this is the first use.
1799
1800 Some object file formats (ELF, COFF, etc) do not define fundamental
1801 types such as "int" or "double". Others (stabs for example), do
1802 define fundamental types.
1803
7ba81444
MS
1804 For the formats which don't provide fundamental types, gdb can
1805 create such types, using defaults reasonable for the current
1806 language and the current target machine.
c906108c 1807
7ba81444 1808 NOTE: This routine is obsolescent. Each debugging format reader
c906108c
SS
1809 should manage it's own fundamental types, either creating them from
1810 suitable defaults or reading them from the debugging information,
7ba81444
MS
1811 whichever is appropriate. The DWARF reader has already been fixed
1812 to do this. Once the other readers are fixed, this routine will go
1813 away. Also note that fundamental types should be managed on a
1814 compilation unit basis in a multi-language environment, not on a
1815 linkage unit basis as is done here. */
c906108c
SS
1816
1817
1818struct type *
fba45db2 1819lookup_fundamental_type (struct objfile *objfile, int typeid)
c906108c 1820{
52f0bd74
AC
1821 struct type **typep;
1822 int nbytes;
c906108c
SS
1823
1824 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1825 {
7ba81444
MS
1826 error (_("internal error - invalid fundamental type id %d"),
1827 typeid);
c906108c
SS
1828 }
1829
7ba81444
MS
1830 /* If this is the first time we need a fundamental type for this
1831 objfile then we need to initialize the vector of type
1832 pointers. */
c5aa993b
JM
1833
1834 if (objfile->fundamental_types == NULL)
c906108c
SS
1835 {
1836 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
c5aa993b 1837 objfile->fundamental_types = (struct type **)
b99607ea 1838 obstack_alloc (&objfile->objfile_obstack, nbytes);
c5aa993b 1839 memset ((char *) objfile->fundamental_types, 0, nbytes);
c906108c
SS
1840 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1841 }
1842
7ba81444
MS
1843 /* Look for this particular type in the fundamental type vector. If
1844 one is not found, create and install one appropriate for the
1845 current language. */
c906108c 1846
c5aa993b 1847 typep = objfile->fundamental_types + typeid;
c906108c
SS
1848 if (*typep == NULL)
1849 {
1850 *typep = create_fundamental_type (objfile, typeid);
1851 }
1852
1853 return (*typep);
1854}
1855
1856int
fba45db2 1857can_dereference (struct type *t)
c906108c 1858{
7ba81444
MS
1859 /* FIXME: Should we return true for references as well as
1860 pointers? */
c906108c
SS
1861 CHECK_TYPEDEF (t);
1862 return
1863 (t != NULL
1864 && TYPE_CODE (t) == TYPE_CODE_PTR
1865 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1866}
1867
adf40b2e 1868int
fba45db2 1869is_integral_type (struct type *t)
adf40b2e
JM
1870{
1871 CHECK_TYPEDEF (t);
1872 return
1873 ((t != NULL)
d4f3574e
SS
1874 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1875 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1876 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1877 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1878 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1879 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1880}
1881
7b83ea04 1882/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1883 Return 1 if so, and 0 if not.
1884 Note: callers may want to check for identity of the types before
1885 calling this function -- identical types are considered to satisfy
7ba81444 1886 the ancestor relationship even if they're identical. */
c906108c
SS
1887
1888int
fba45db2 1889is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1890{
1891 int i;
c5aa993b 1892
c906108c
SS
1893 CHECK_TYPEDEF (base);
1894 CHECK_TYPEDEF (dclass);
1895
1896 if (base == dclass)
1897 return 1;
687d6395
MS
1898 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1899 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1900 return 1;
c906108c
SS
1901
1902 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1903 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1904 return 1;
1905
1906 return 0;
1907}
c906108c
SS
1908\f
1909
c5aa993b 1910
c906108c
SS
1911/* Functions for overload resolution begin here */
1912
1913/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1914 0 => A and B are identical
1915 1 => A and B are incomparable
1916 2 => A is better than B
1917 3 => A is worse than B */
c906108c
SS
1918
1919int
fba45db2 1920compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1921{
1922 int i;
1923 int tmp;
c5aa993b
JM
1924 short found_pos = 0; /* any positives in c? */
1925 short found_neg = 0; /* any negatives in c? */
1926
1927 /* differing lengths => incomparable */
c906108c
SS
1928 if (a->length != b->length)
1929 return 1;
1930
c5aa993b
JM
1931 /* Subtract b from a */
1932 for (i = 0; i < a->length; i++)
c906108c
SS
1933 {
1934 tmp = a->rank[i] - b->rank[i];
1935 if (tmp > 0)
c5aa993b 1936 found_pos = 1;
c906108c 1937 else if (tmp < 0)
c5aa993b 1938 found_neg = 1;
c906108c
SS
1939 }
1940
1941 if (found_pos)
1942 {
1943 if (found_neg)
c5aa993b 1944 return 1; /* incomparable */
c906108c 1945 else
c5aa993b 1946 return 3; /* A > B */
c906108c 1947 }
c5aa993b
JM
1948 else
1949 /* no positives */
c906108c
SS
1950 {
1951 if (found_neg)
c5aa993b 1952 return 2; /* A < B */
c906108c 1953 else
c5aa993b 1954 return 0; /* A == B */
c906108c
SS
1955 }
1956}
1957
7ba81444
MS
1958/* Rank a function by comparing its parameter types (PARMS, length
1959 NPARMS), to the types of an argument list (ARGS, length NARGS).
1960 Return a pointer to a badness vector. This has NARGS + 1
1961 entries. */
c906108c
SS
1962
1963struct badness_vector *
7ba81444
MS
1964rank_function (struct type **parms, int nparms,
1965 struct type **args, int nargs)
c906108c
SS
1966{
1967 int i;
c5aa993b 1968 struct badness_vector *bv;
c906108c
SS
1969 int min_len = nparms < nargs ? nparms : nargs;
1970
1971 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1972 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1973 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1974
1975 /* First compare the lengths of the supplied lists.
7ba81444 1976 If there is a mismatch, set it to a high value. */
c5aa993b 1977
c906108c 1978 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1979 arguments and ellipsis parameter lists, we should consider those
1980 and rank the length-match more finely. */
c906108c
SS
1981
1982 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1983
1984 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1985 for (i = 1; i <= min_len; i++)
1986 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1987
c5aa993b
JM
1988 /* If more arguments than parameters, add dummy entries */
1989 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1990 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1991
1992 return bv;
1993}
1994
973ccf8b
DJ
1995/* Compare the names of two integer types, assuming that any sign
1996 qualifiers have been checked already. We do it this way because
1997 there may be an "int" in the name of one of the types. */
1998
1999static int
2000integer_types_same_name_p (const char *first, const char *second)
2001{
2002 int first_p, second_p;
2003
7ba81444
MS
2004 /* If both are shorts, return 1; if neither is a short, keep
2005 checking. */
973ccf8b
DJ
2006 first_p = (strstr (first, "short") != NULL);
2007 second_p = (strstr (second, "short") != NULL);
2008 if (first_p && second_p)
2009 return 1;
2010 if (first_p || second_p)
2011 return 0;
2012
2013 /* Likewise for long. */
2014 first_p = (strstr (first, "long") != NULL);
2015 second_p = (strstr (second, "long") != NULL);
2016 if (first_p && second_p)
2017 return 1;
2018 if (first_p || second_p)
2019 return 0;
2020
2021 /* Likewise for char. */
2022 first_p = (strstr (first, "char") != NULL);
2023 second_p = (strstr (second, "char") != NULL);
2024 if (first_p && second_p)
2025 return 1;
2026 if (first_p || second_p)
2027 return 0;
2028
2029 /* They must both be ints. */
2030 return 1;
2031}
2032
c906108c
SS
2033/* Compare one type (PARM) for compatibility with another (ARG).
2034 * PARM is intended to be the parameter type of a function; and
2035 * ARG is the supplied argument's type. This function tests if
2036 * the latter can be converted to the former.
2037 *
2038 * Return 0 if they are identical types;
2039 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2040 * PARM is to ARG. The higher the return value, the worse the match.
2041 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
2042
2043int
fba45db2 2044rank_one_type (struct type *parm, struct type *arg)
c906108c 2045{
7ba81444 2046 /* Identical type pointers. */
c906108c 2047 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
2048 and param. The reason is that builtin types are different from
2049 the same ones constructed from the object. */
c906108c
SS
2050 if (parm == arg)
2051 return 0;
2052
2053 /* Resolve typedefs */
2054 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2055 parm = check_typedef (parm);
2056 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2057 arg = check_typedef (arg);
2058
070ad9f0 2059 /*
7ba81444
MS
2060 Well, damnit, if the names are exactly the same, I'll say they
2061 are exactly the same. This happens when we generate method
2062 stubs. The types won't point to the same address, but they
070ad9f0
DB
2063 really are the same.
2064 */
2065
687d6395
MS
2066 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2067 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 2068 return 0;
070ad9f0 2069
7ba81444 2070 /* Check if identical after resolving typedefs. */
c906108c
SS
2071 if (parm == arg)
2072 return 0;
2073
db577aea 2074 /* See through references, since we can almost make non-references
7ba81444 2075 references. */
db577aea 2076 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2077 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2078 + REFERENCE_CONVERSION_BADNESS);
2079 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2080 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2081 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2082 if (overload_debug)
7ba81444
MS
2083 /* Debugging only. */
2084 fprintf_filtered (gdb_stderr,
2085 "------ Arg is %s [%d], parm is %s [%d]\n",
2086 TYPE_NAME (arg), TYPE_CODE (arg),
2087 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2088
2089 /* x -> y means arg of type x being supplied for parameter of type y */
2090
2091 switch (TYPE_CODE (parm))
2092 {
c5aa993b
JM
2093 case TYPE_CODE_PTR:
2094 switch (TYPE_CODE (arg))
2095 {
2096 case TYPE_CODE_PTR:
2097 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2098 return VOID_PTR_CONVERSION_BADNESS;
2099 else
7ba81444
MS
2100 return rank_one_type (TYPE_TARGET_TYPE (parm),
2101 TYPE_TARGET_TYPE (arg));
c5aa993b 2102 case TYPE_CODE_ARRAY:
7ba81444
MS
2103 return rank_one_type (TYPE_TARGET_TYPE (parm),
2104 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2105 case TYPE_CODE_FUNC:
2106 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2107 case TYPE_CODE_INT:
2108 case TYPE_CODE_ENUM:
4f2aea11 2109 case TYPE_CODE_FLAGS:
c5aa993b
JM
2110 case TYPE_CODE_CHAR:
2111 case TYPE_CODE_RANGE:
2112 case TYPE_CODE_BOOL:
2113 return POINTER_CONVERSION_BADNESS;
2114 default:
2115 return INCOMPATIBLE_TYPE_BADNESS;
2116 }
2117 case TYPE_CODE_ARRAY:
2118 switch (TYPE_CODE (arg))
2119 {
2120 case TYPE_CODE_PTR:
2121 case TYPE_CODE_ARRAY:
7ba81444
MS
2122 return rank_one_type (TYPE_TARGET_TYPE (parm),
2123 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2124 default:
2125 return INCOMPATIBLE_TYPE_BADNESS;
2126 }
2127 case TYPE_CODE_FUNC:
2128 switch (TYPE_CODE (arg))
2129 {
2130 case TYPE_CODE_PTR: /* funcptr -> func */
2131 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2132 default:
2133 return INCOMPATIBLE_TYPE_BADNESS;
2134 }
2135 case TYPE_CODE_INT:
2136 switch (TYPE_CODE (arg))
2137 {
2138 case TYPE_CODE_INT:
2139 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2140 {
2141 /* Deal with signed, unsigned, and plain chars and
7ba81444 2142 signed and unsigned ints. */
c5aa993b
JM
2143 if (TYPE_NOSIGN (parm))
2144 {
2145 /* This case only for character types */
7ba81444
MS
2146 if (TYPE_NOSIGN (arg))
2147 return 0; /* plain char -> plain char */
2148 else /* signed/unsigned char -> plain char */
2149 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2150 }
2151 else if (TYPE_UNSIGNED (parm))
2152 {
2153 if (TYPE_UNSIGNED (arg))
2154 {
7ba81444
MS
2155 /* unsigned int -> unsigned int, or
2156 unsigned long -> unsigned long */
2157 if (integer_types_same_name_p (TYPE_NAME (parm),
2158 TYPE_NAME (arg)))
973ccf8b 2159 return 0;
7ba81444
MS
2160 else if (integer_types_same_name_p (TYPE_NAME (arg),
2161 "int")
2162 && integer_types_same_name_p (TYPE_NAME (parm),
2163 "long"))
c5aa993b
JM
2164 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2165 else
1c5cb38e 2166 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2167 }
2168 else
2169 {
7ba81444
MS
2170 if (integer_types_same_name_p (TYPE_NAME (arg),
2171 "long")
2172 && integer_types_same_name_p (TYPE_NAME (parm),
2173 "int"))
1c5cb38e 2174 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2175 else
2176 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2177 }
2178 }
2179 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2180 {
7ba81444
MS
2181 if (integer_types_same_name_p (TYPE_NAME (parm),
2182 TYPE_NAME (arg)))
c5aa993b 2183 return 0;
7ba81444
MS
2184 else if (integer_types_same_name_p (TYPE_NAME (arg),
2185 "int")
2186 && integer_types_same_name_p (TYPE_NAME (parm),
2187 "long"))
c5aa993b
JM
2188 return INTEGER_PROMOTION_BADNESS;
2189 else
1c5cb38e 2190 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2191 }
2192 else
1c5cb38e 2193 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2194 }
2195 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2196 return INTEGER_PROMOTION_BADNESS;
2197 else
1c5cb38e 2198 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2199 case TYPE_CODE_ENUM:
4f2aea11 2200 case TYPE_CODE_FLAGS:
c5aa993b
JM
2201 case TYPE_CODE_CHAR:
2202 case TYPE_CODE_RANGE:
2203 case TYPE_CODE_BOOL:
2204 return INTEGER_PROMOTION_BADNESS;
2205 case TYPE_CODE_FLT:
2206 return INT_FLOAT_CONVERSION_BADNESS;
2207 case TYPE_CODE_PTR:
2208 return NS_POINTER_CONVERSION_BADNESS;
2209 default:
2210 return INCOMPATIBLE_TYPE_BADNESS;
2211 }
2212 break;
2213 case TYPE_CODE_ENUM:
2214 switch (TYPE_CODE (arg))
2215 {
2216 case TYPE_CODE_INT:
2217 case TYPE_CODE_CHAR:
2218 case TYPE_CODE_RANGE:
2219 case TYPE_CODE_BOOL:
2220 case TYPE_CODE_ENUM:
1c5cb38e 2221 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2222 case TYPE_CODE_FLT:
2223 return INT_FLOAT_CONVERSION_BADNESS;
2224 default:
2225 return INCOMPATIBLE_TYPE_BADNESS;
2226 }
2227 break;
2228 case TYPE_CODE_CHAR:
2229 switch (TYPE_CODE (arg))
2230 {
2231 case TYPE_CODE_RANGE:
2232 case TYPE_CODE_BOOL:
2233 case TYPE_CODE_ENUM:
1c5cb38e 2234 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2235 case TYPE_CODE_FLT:
2236 return INT_FLOAT_CONVERSION_BADNESS;
2237 case TYPE_CODE_INT:
2238 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2239 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2240 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2241 return INTEGER_PROMOTION_BADNESS;
2242 /* >>> !! else fall through !! <<< */
2243 case TYPE_CODE_CHAR:
7ba81444
MS
2244 /* Deal with signed, unsigned, and plain chars for C++ and
2245 with int cases falling through from previous case. */
c5aa993b
JM
2246 if (TYPE_NOSIGN (parm))
2247 {
2248 if (TYPE_NOSIGN (arg))
2249 return 0;
2250 else
1c5cb38e 2251 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2252 }
2253 else if (TYPE_UNSIGNED (parm))
2254 {
2255 if (TYPE_UNSIGNED (arg))
2256 return 0;
2257 else
2258 return INTEGER_PROMOTION_BADNESS;
2259 }
2260 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2261 return 0;
2262 else
1c5cb38e 2263 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2264 default:
2265 return INCOMPATIBLE_TYPE_BADNESS;
2266 }
2267 break;
2268 case TYPE_CODE_RANGE:
2269 switch (TYPE_CODE (arg))
2270 {
2271 case TYPE_CODE_INT:
2272 case TYPE_CODE_CHAR:
2273 case TYPE_CODE_RANGE:
2274 case TYPE_CODE_BOOL:
2275 case TYPE_CODE_ENUM:
1c5cb38e 2276 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2277 case TYPE_CODE_FLT:
2278 return INT_FLOAT_CONVERSION_BADNESS;
2279 default:
2280 return INCOMPATIBLE_TYPE_BADNESS;
2281 }
2282 break;
2283 case TYPE_CODE_BOOL:
2284 switch (TYPE_CODE (arg))
2285 {
2286 case TYPE_CODE_INT:
2287 case TYPE_CODE_CHAR:
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_ENUM:
2290 case TYPE_CODE_FLT:
2291 case TYPE_CODE_PTR:
2292 return BOOLEAN_CONVERSION_BADNESS;
2293 case TYPE_CODE_BOOL:
2294 return 0;
2295 default:
2296 return INCOMPATIBLE_TYPE_BADNESS;
2297 }
2298 break;
2299 case TYPE_CODE_FLT:
2300 switch (TYPE_CODE (arg))
2301 {
2302 case TYPE_CODE_FLT:
2303 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2304 return FLOAT_PROMOTION_BADNESS;
2305 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2306 return 0;
2307 else
2308 return FLOAT_CONVERSION_BADNESS;
2309 case TYPE_CODE_INT:
2310 case TYPE_CODE_BOOL:
2311 case TYPE_CODE_ENUM:
2312 case TYPE_CODE_RANGE:
2313 case TYPE_CODE_CHAR:
2314 return INT_FLOAT_CONVERSION_BADNESS;
2315 default:
2316 return INCOMPATIBLE_TYPE_BADNESS;
2317 }
2318 break;
2319 case TYPE_CODE_COMPLEX:
2320 switch (TYPE_CODE (arg))
7ba81444 2321 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2322 case TYPE_CODE_FLT:
2323 return FLOAT_PROMOTION_BADNESS;
2324 case TYPE_CODE_COMPLEX:
2325 return 0;
2326 default:
2327 return INCOMPATIBLE_TYPE_BADNESS;
2328 }
2329 break;
2330 case TYPE_CODE_STRUCT:
c906108c 2331 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2332 switch (TYPE_CODE (arg))
2333 {
2334 case TYPE_CODE_STRUCT:
2335 /* Check for derivation */
2336 if (is_ancestor (parm, arg))
2337 return BASE_CONVERSION_BADNESS;
2338 /* else fall through */
2339 default:
2340 return INCOMPATIBLE_TYPE_BADNESS;
2341 }
2342 break;
2343 case TYPE_CODE_UNION:
2344 switch (TYPE_CODE (arg))
2345 {
2346 case TYPE_CODE_UNION:
2347 default:
2348 return INCOMPATIBLE_TYPE_BADNESS;
2349 }
2350 break;
0d5de010 2351 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2352 switch (TYPE_CODE (arg))
2353 {
2354 default:
2355 return INCOMPATIBLE_TYPE_BADNESS;
2356 }
2357 break;
2358 case TYPE_CODE_METHOD:
2359 switch (TYPE_CODE (arg))
2360 {
2361
2362 default:
2363 return INCOMPATIBLE_TYPE_BADNESS;
2364 }
2365 break;
2366 case TYPE_CODE_REF:
2367 switch (TYPE_CODE (arg))
2368 {
2369
2370 default:
2371 return INCOMPATIBLE_TYPE_BADNESS;
2372 }
2373
2374 break;
2375 case TYPE_CODE_SET:
2376 switch (TYPE_CODE (arg))
2377 {
2378 /* Not in C++ */
2379 case TYPE_CODE_SET:
7ba81444
MS
2380 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2381 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2382 default:
2383 return INCOMPATIBLE_TYPE_BADNESS;
2384 }
2385 break;
2386 case TYPE_CODE_VOID:
2387 default:
2388 return INCOMPATIBLE_TYPE_BADNESS;
2389 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2390}
2391
c5aa993b
JM
2392
2393/* End of functions for overload resolution */
c906108c 2394
c906108c 2395static void
fba45db2 2396print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2397{
2398 int bitno;
2399
2400 for (bitno = 0; bitno < nbits; bitno++)
2401 {
2402 if ((bitno % 8) == 0)
2403 {
2404 puts_filtered (" ");
2405 }
2406 if (B_TST (bits, bitno))
a3f17187 2407 printf_filtered (("1"));
c906108c 2408 else
a3f17187 2409 printf_filtered (("0"));
c906108c
SS
2410 }
2411}
2412
ad2f7632 2413/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2414 include it since we may get into a infinitely recursive
2415 situation. */
c906108c
SS
2416
2417static void
ad2f7632 2418print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2419{
2420 if (args != NULL)
2421 {
ad2f7632
DJ
2422 int i;
2423
2424 for (i = 0; i < nargs; i++)
2425 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2426 }
2427}
2428
2429static void
fba45db2 2430dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2431{
2432 int method_idx;
2433 int overload_idx;
2434 struct fn_field *f;
2435
2436 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2437 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2438 printf_filtered ("\n");
2439 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2440 {
2441 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2442 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2443 method_idx,
2444 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2445 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2446 gdb_stdout);
a3f17187 2447 printf_filtered (_(") length %d\n"),
c906108c
SS
2448 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2449 for (overload_idx = 0;
2450 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2451 overload_idx++)
2452 {
2453 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2454 overload_idx,
2455 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2456 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2457 gdb_stdout);
c906108c
SS
2458 printf_filtered (")\n");
2459 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2460 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2461 gdb_stdout);
c906108c
SS
2462 printf_filtered ("\n");
2463
2464 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2465 spaces + 8 + 2);
2466
2467 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2468 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2469 gdb_stdout);
c906108c
SS
2470 printf_filtered ("\n");
2471
ad2f7632 2472 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2473 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2474 overload_idx)),
ad2f7632 2475 spaces);
c906108c 2476 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2477 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2478 gdb_stdout);
c906108c
SS
2479 printf_filtered ("\n");
2480
2481 printfi_filtered (spaces + 8, "is_const %d\n",
2482 TYPE_FN_FIELD_CONST (f, overload_idx));
2483 printfi_filtered (spaces + 8, "is_volatile %d\n",
2484 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2485 printfi_filtered (spaces + 8, "is_private %d\n",
2486 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2487 printfi_filtered (spaces + 8, "is_protected %d\n",
2488 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2489 printfi_filtered (spaces + 8, "is_stub %d\n",
2490 TYPE_FN_FIELD_STUB (f, overload_idx));
2491 printfi_filtered (spaces + 8, "voffset %u\n",
2492 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2493 }
2494 }
2495}
2496
2497static void
fba45db2 2498print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2499{
2500 printfi_filtered (spaces, "n_baseclasses %d\n",
2501 TYPE_N_BASECLASSES (type));
2502 printfi_filtered (spaces, "nfn_fields %d\n",
2503 TYPE_NFN_FIELDS (type));
2504 printfi_filtered (spaces, "nfn_fields_total %d\n",
2505 TYPE_NFN_FIELDS_TOTAL (type));
2506 if (TYPE_N_BASECLASSES (type) > 0)
2507 {
2508 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2509 TYPE_N_BASECLASSES (type));
7ba81444
MS
2510 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2511 gdb_stdout);
c906108c
SS
2512 printf_filtered (")");
2513
2514 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2515 TYPE_N_BASECLASSES (type));
2516 puts_filtered ("\n");
2517 }
2518 if (TYPE_NFIELDS (type) > 0)
2519 {
2520 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2521 {
7ba81444
MS
2522 printfi_filtered (spaces,
2523 "private_field_bits (%d bits at *",
c906108c 2524 TYPE_NFIELDS (type));
7ba81444
MS
2525 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2526 gdb_stdout);
c906108c
SS
2527 printf_filtered (")");
2528 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2529 TYPE_NFIELDS (type));
2530 puts_filtered ("\n");
2531 }
2532 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2533 {
7ba81444
MS
2534 printfi_filtered (spaces,
2535 "protected_field_bits (%d bits at *",
c906108c 2536 TYPE_NFIELDS (type));
7ba81444
MS
2537 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2538 gdb_stdout);
c906108c
SS
2539 printf_filtered (")");
2540 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2541 TYPE_NFIELDS (type));
2542 puts_filtered ("\n");
2543 }
2544 }
2545 if (TYPE_NFN_FIELDS (type) > 0)
2546 {
2547 dump_fn_fieldlists (type, spaces);
2548 }
2549}
2550
e9e79dd9
FF
2551static void
2552print_bound_type (int bt)
2553{
2554 switch (bt)
2555 {
2556 case BOUND_CANNOT_BE_DETERMINED:
2557 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2558 break;
2559 case BOUND_BY_REF_ON_STACK:
2560 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2561 break;
2562 case BOUND_BY_VALUE_ON_STACK:
2563 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2564 break;
2565 case BOUND_BY_REF_IN_REG:
2566 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2567 break;
2568 case BOUND_BY_VALUE_IN_REG:
2569 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2570 break;
2571 case BOUND_SIMPLE:
2572 printf_filtered ("(BOUND_SIMPLE)");
2573 break;
2574 default:
a3f17187 2575 printf_filtered (_("(unknown bound type)"));
e9e79dd9
FF
2576 break;
2577 }
2578}
2579
c906108c
SS
2580static struct obstack dont_print_type_obstack;
2581
2582void
fba45db2 2583recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2584{
2585 int idx;
2586
2587 if (spaces == 0)
2588 obstack_begin (&dont_print_type_obstack, 0);
2589
2590 if (TYPE_NFIELDS (type) > 0
2591 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2592 {
2593 struct type **first_dont_print
7ba81444 2594 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2595
7ba81444
MS
2596 int i = (struct type **)
2597 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2598
2599 while (--i >= 0)
2600 {
2601 if (type == first_dont_print[i])
2602 {
2603 printfi_filtered (spaces, "type node ");
d4f3574e 2604 gdb_print_host_address (type, gdb_stdout);
a3f17187 2605 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2606 return;
2607 }
2608 }
2609
2610 obstack_ptr_grow (&dont_print_type_obstack, type);
2611 }
2612
2613 printfi_filtered (spaces, "type node ");
d4f3574e 2614 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2615 printf_filtered ("\n");
2616 printfi_filtered (spaces, "name '%s' (",
2617 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2618 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2619 printf_filtered (")\n");
e9e79dd9
FF
2620 printfi_filtered (spaces, "tagname '%s' (",
2621 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2622 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2623 printf_filtered (")\n");
c906108c
SS
2624 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2625 switch (TYPE_CODE (type))
2626 {
c5aa993b
JM
2627 case TYPE_CODE_UNDEF:
2628 printf_filtered ("(TYPE_CODE_UNDEF)");
2629 break;
2630 case TYPE_CODE_PTR:
2631 printf_filtered ("(TYPE_CODE_PTR)");
2632 break;
2633 case TYPE_CODE_ARRAY:
2634 printf_filtered ("(TYPE_CODE_ARRAY)");
2635 break;
2636 case TYPE_CODE_STRUCT:
2637 printf_filtered ("(TYPE_CODE_STRUCT)");
2638 break;
2639 case TYPE_CODE_UNION:
2640 printf_filtered ("(TYPE_CODE_UNION)");
2641 break;
2642 case TYPE_CODE_ENUM:
2643 printf_filtered ("(TYPE_CODE_ENUM)");
2644 break;
4f2aea11
MK
2645 case TYPE_CODE_FLAGS:
2646 printf_filtered ("(TYPE_CODE_FLAGS)");
2647 break;
c5aa993b
JM
2648 case TYPE_CODE_FUNC:
2649 printf_filtered ("(TYPE_CODE_FUNC)");
2650 break;
2651 case TYPE_CODE_INT:
2652 printf_filtered ("(TYPE_CODE_INT)");
2653 break;
2654 case TYPE_CODE_FLT:
2655 printf_filtered ("(TYPE_CODE_FLT)");
2656 break;
2657 case TYPE_CODE_VOID:
2658 printf_filtered ("(TYPE_CODE_VOID)");
2659 break;
2660 case TYPE_CODE_SET:
2661 printf_filtered ("(TYPE_CODE_SET)");
2662 break;
2663 case TYPE_CODE_RANGE:
2664 printf_filtered ("(TYPE_CODE_RANGE)");
2665 break;
2666 case TYPE_CODE_STRING:
2667 printf_filtered ("(TYPE_CODE_STRING)");
2668 break;
e9e79dd9
FF
2669 case TYPE_CODE_BITSTRING:
2670 printf_filtered ("(TYPE_CODE_BITSTRING)");
2671 break;
c5aa993b
JM
2672 case TYPE_CODE_ERROR:
2673 printf_filtered ("(TYPE_CODE_ERROR)");
2674 break;
0d5de010
DJ
2675 case TYPE_CODE_MEMBERPTR:
2676 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2677 break;
2678 case TYPE_CODE_METHODPTR:
2679 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2680 break;
2681 case TYPE_CODE_METHOD:
2682 printf_filtered ("(TYPE_CODE_METHOD)");
2683 break;
2684 case TYPE_CODE_REF:
2685 printf_filtered ("(TYPE_CODE_REF)");
2686 break;
2687 case TYPE_CODE_CHAR:
2688 printf_filtered ("(TYPE_CODE_CHAR)");
2689 break;
2690 case TYPE_CODE_BOOL:
2691 printf_filtered ("(TYPE_CODE_BOOL)");
2692 break;
e9e79dd9
FF
2693 case TYPE_CODE_COMPLEX:
2694 printf_filtered ("(TYPE_CODE_COMPLEX)");
2695 break;
c5aa993b
JM
2696 case TYPE_CODE_TYPEDEF:
2697 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2698 break;
e9e79dd9
FF
2699 case TYPE_CODE_TEMPLATE:
2700 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2701 break;
2702 case TYPE_CODE_TEMPLATE_ARG:
2703 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2704 break;
5c4e30ca
DC
2705 case TYPE_CODE_NAMESPACE:
2706 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2707 break;
c5aa993b
JM
2708 default:
2709 printf_filtered ("(UNKNOWN TYPE CODE)");
2710 break;
c906108c
SS
2711 }
2712 puts_filtered ("\n");
2713 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
2714 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2715 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2716 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2717 puts_filtered ("\n");
2718 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2719 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2720 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2721 puts_filtered ("\n");
c906108c 2722 printfi_filtered (spaces, "objfile ");
d4f3574e 2723 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
2724 printf_filtered ("\n");
2725 printfi_filtered (spaces, "target_type ");
d4f3574e 2726 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2727 printf_filtered ("\n");
2728 if (TYPE_TARGET_TYPE (type) != NULL)
2729 {
2730 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2731 }
2732 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2733 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2734 printf_filtered ("\n");
2735 printfi_filtered (spaces, "reference_type ");
d4f3574e 2736 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2737 printf_filtered ("\n");
2fdde8f8
DJ
2738 printfi_filtered (spaces, "type_chain ");
2739 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2740 printf_filtered ("\n");
7ba81444
MS
2741 printfi_filtered (spaces, "instance_flags 0x%x",
2742 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2743 if (TYPE_CONST (type))
2744 {
2745 puts_filtered (" TYPE_FLAG_CONST");
2746 }
2747 if (TYPE_VOLATILE (type))
2748 {
2749 puts_filtered (" TYPE_FLAG_VOLATILE");
2750 }
2751 if (TYPE_CODE_SPACE (type))
2752 {
2753 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2754 }
2755 if (TYPE_DATA_SPACE (type))
2756 {
2757 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2758 }
8b2dbe47
KB
2759 if (TYPE_ADDRESS_CLASS_1 (type))
2760 {
2761 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2762 }
2763 if (TYPE_ADDRESS_CLASS_2 (type))
2764 {
2765 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2766 }
2fdde8f8 2767 puts_filtered ("\n");
c906108c 2768 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 2769 if (TYPE_UNSIGNED (type))
c906108c
SS
2770 {
2771 puts_filtered (" TYPE_FLAG_UNSIGNED");
2772 }
762a036f
FF
2773 if (TYPE_NOSIGN (type))
2774 {
2775 puts_filtered (" TYPE_FLAG_NOSIGN");
2776 }
2777 if (TYPE_STUB (type))
c906108c
SS
2778 {
2779 puts_filtered (" TYPE_FLAG_STUB");
2780 }
762a036f
FF
2781 if (TYPE_TARGET_STUB (type))
2782 {
2783 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2784 }
2785 if (TYPE_STATIC (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_STATIC");
2788 }
762a036f
FF
2789 if (TYPE_PROTOTYPED (type))
2790 {
2791 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2792 }
2793 if (TYPE_INCOMPLETE (type))
2794 {
2795 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2796 }
762a036f
FF
2797 if (TYPE_VARARGS (type))
2798 {
2799 puts_filtered (" TYPE_FLAG_VARARGS");
2800 }
f5f8a009
EZ
2801 /* This is used for things like AltiVec registers on ppc. Gcc emits
2802 an attribute for the array type, which tells whether or not we
2803 have a vector, instead of a regular array. */
2804 if (TYPE_VECTOR (type))
2805 {
2806 puts_filtered (" TYPE_FLAG_VECTOR");
2807 }
c906108c
SS
2808 puts_filtered ("\n");
2809 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2810 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2811 puts_filtered ("\n");
2812 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2813 {
2814 printfi_filtered (spaces + 2,
2815 "[%d] bitpos %d bitsize %d type ",
2816 idx, TYPE_FIELD_BITPOS (type, idx),
2817 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2818 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2819 printf_filtered (" name '%s' (",
2820 TYPE_FIELD_NAME (type, idx) != NULL
2821 ? TYPE_FIELD_NAME (type, idx)
2822 : "<NULL>");
d4f3574e 2823 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2824 printf_filtered (")\n");
2825 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2826 {
2827 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2828 }
2829 }
2830 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2831 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2832 puts_filtered ("\n");
2833 if (TYPE_VPTR_BASETYPE (type) != NULL)
2834 {
2835 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2836 }
7ba81444
MS
2837 printfi_filtered (spaces, "vptr_fieldno %d\n",
2838 TYPE_VPTR_FIELDNO (type));
c906108c
SS
2839 switch (TYPE_CODE (type))
2840 {
c5aa993b
JM
2841 case TYPE_CODE_STRUCT:
2842 printfi_filtered (spaces, "cplus_stuff ");
7ba81444
MS
2843 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2844 gdb_stdout);
c5aa993b
JM
2845 puts_filtered ("\n");
2846 print_cplus_stuff (type, spaces);
2847 break;
c906108c 2848
701c159d
AC
2849 case TYPE_CODE_FLT:
2850 printfi_filtered (spaces, "floatformat ");
8da61cc4 2851 if (TYPE_FLOATFORMAT (type) == NULL)
701c159d
AC
2852 puts_filtered ("(null)");
2853 else
8da61cc4
DJ
2854 {
2855 puts_filtered ("{ ");
2856 if (TYPE_FLOATFORMAT (type)[0] == NULL
2857 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2858 puts_filtered ("(null)");
2859 else
2860 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2861
2862 puts_filtered (", ");
2863 if (TYPE_FLOATFORMAT (type)[1] == NULL
2864 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2865 puts_filtered ("(null)");
2866 else
2867 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2868
2869 puts_filtered (" }");
2870 }
701c159d
AC
2871 puts_filtered ("\n");
2872 break;
2873
c5aa993b 2874 default:
7ba81444
MS
2875 /* We have to pick one of the union types to be able print and
2876 test the value. Pick cplus_struct_type, even though we know
2877 it isn't any particular one. */
c5aa993b 2878 printfi_filtered (spaces, "type_specific ");
d4f3574e 2879 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
2880 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2881 {
a3f17187 2882 printf_filtered (_(" (unknown data form)"));
c5aa993b
JM
2883 }
2884 printf_filtered ("\n");
2885 break;
c906108c
SS
2886
2887 }
2888 if (spaces == 0)
2889 obstack_free (&dont_print_type_obstack, NULL);
2890}
2891
ae5a43e0
DJ
2892/* Trivial helpers for the libiberty hash table, for mapping one
2893 type to another. */
2894
2895struct type_pair
2896{
2897 struct type *old, *new;
2898};
2899
2900static hashval_t
2901type_pair_hash (const void *item)
2902{
2903 const struct type_pair *pair = item;
2904 return htab_hash_pointer (pair->old);
2905}
2906
2907static int
2908type_pair_eq (const void *item_lhs, const void *item_rhs)
2909{
2910 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2911 return lhs->old == rhs->old;
2912}
2913
2914/* Allocate the hash table used by copy_type_recursive to walk
2915 types without duplicates. We use OBJFILE's obstack, because
2916 OBJFILE is about to be deleted. */
2917
2918htab_t
2919create_copied_types_hash (struct objfile *objfile)
2920{
2921 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2922 NULL, &objfile->objfile_obstack,
2923 hashtab_obstack_allocate,
2924 dummy_obstack_deallocate);
2925}
2926
7ba81444
MS
2927/* Recursively copy (deep copy) TYPE, if it is associated with
2928 OBJFILE. Return a new type allocated using malloc, a saved type if
2929 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2930 not associated with OBJFILE. */
ae5a43e0
DJ
2931
2932struct type *
7ba81444
MS
2933copy_type_recursive (struct objfile *objfile,
2934 struct type *type,
ae5a43e0
DJ
2935 htab_t copied_types)
2936{
2937 struct type_pair *stored, pair;
2938 void **slot;
2939 struct type *new_type;
2940
2941 if (TYPE_OBJFILE (type) == NULL)
2942 return type;
2943
7ba81444
MS
2944 /* This type shouldn't be pointing to any types in other objfiles;
2945 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2946 gdb_assert (TYPE_OBJFILE (type) == objfile);
2947
2948 pair.old = type;
2949 slot = htab_find_slot (copied_types, &pair, INSERT);
2950 if (*slot != NULL)
2951 return ((struct type_pair *) *slot)->new;
2952
2953 new_type = alloc_type (NULL);
2954
2955 /* We must add the new type to the hash table immediately, in case
2956 we encounter this type again during a recursive call below. */
2957 stored = xmalloc (sizeof (struct type_pair));
2958 stored->old = type;
2959 stored->new = new_type;
2960 *slot = stored;
2961
2962 /* Copy the common fields of types. */
2963 TYPE_CODE (new_type) = TYPE_CODE (type);
7ba81444
MS
2964 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2965 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2966 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2967 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
ae5a43e0
DJ
2968 if (TYPE_NAME (type))
2969 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2970 if (TYPE_TAG_NAME (type))
2971 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2972 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2973 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2974
2975 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2976 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2977
2978 /* Copy the fields. */
2979 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2980 if (TYPE_NFIELDS (type))
2981 {
2982 int i, nfields;
2983
2984 nfields = TYPE_NFIELDS (type);
2985 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2986 for (i = 0; i < nfields; i++)
2987 {
7ba81444
MS
2988 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2989 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2990 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2991 if (TYPE_FIELD_TYPE (type, i))
2992 TYPE_FIELD_TYPE (new_type, i)
2993 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2994 copied_types);
2995 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
2996 TYPE_FIELD_NAME (new_type, i) =
2997 xstrdup (TYPE_FIELD_NAME (type, i));
ae5a43e0
DJ
2998 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
2999 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3000 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3001 else if (TYPE_FIELD_STATIC (type, i))
3002 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
7ba81444
MS
3003 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3004 i)));
ae5a43e0
DJ
3005 else
3006 {
7ba81444
MS
3007 TYPE_FIELD_BITPOS (new_type, i) =
3008 TYPE_FIELD_BITPOS (type, i);
ae5a43e0
DJ
3009 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
3010 }
3011 }
3012 }
3013
3014 /* Copy pointers to other types. */
3015 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3016 TYPE_TARGET_TYPE (new_type) =
3017 copy_type_recursive (objfile,
3018 TYPE_TARGET_TYPE (type),
3019 copied_types);
ae5a43e0 3020 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3021 TYPE_VPTR_BASETYPE (new_type) =
3022 copy_type_recursive (objfile,
3023 TYPE_VPTR_BASETYPE (type),
3024 copied_types);
ae5a43e0
DJ
3025 /* Maybe copy the type_specific bits.
3026
3027 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3028 base classes and methods. There's no fundamental reason why we
3029 can't, but at the moment it is not needed. */
3030
3031 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3032 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3033 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3034 || TYPE_CODE (type) == TYPE_CODE_UNION
3035 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3036 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3037 INIT_CPLUS_SPECIFIC (new_type);
3038
3039 return new_type;
3040}
3041
8da61cc4
DJ
3042static struct type *
3043build_flt (int bit, char *name, const struct floatformat **floatformats)
3044{
3045 struct type *t;
3046
3047 if (bit == -1)
3048 {
3049 gdb_assert (floatformats != NULL);
3050 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3051 bit = floatformats[0]->totalsize;
3052 }
3053 gdb_assert (bit >= 0);
3054
3055 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3056 TYPE_FLOATFORMAT (t) = floatformats;
3057 return t;
3058}
3059
000177f0
AC
3060static struct gdbarch_data *gdbtypes_data;
3061
3062const struct builtin_type *
3063builtin_type (struct gdbarch *gdbarch)
3064{
3065 return gdbarch_data (gdbarch, gdbtypes_data);
3066}
3067
70bd8e24 3068
70bd8e24
AC
3069static struct type *
3070build_complex (int bit, char *name, struct type *target_type)
3071{
3072 struct type *t;
3073 if (bit <= 0 || target_type == builtin_type_error)
3074 {
3075 gdb_assert (builtin_type_error != NULL);
3076 return builtin_type_error;
3077 }
3078 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3079 0, name, (struct objfile *) NULL);
3080 TYPE_TARGET_TYPE (t) = target_type;
3081 return t;
3082}
3083
000177f0
AC
3084static void *
3085gdbtypes_post_init (struct gdbarch *gdbarch)
3086{
3087 struct builtin_type *builtin_type
3088 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3089
3090 builtin_type->builtin_void =
3091 init_type (TYPE_CODE_VOID, 1,
3092 0,
3093 "void", (struct objfile *) NULL);
3094 builtin_type->builtin_char =
3095 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3096 (TYPE_FLAG_NOSIGN
8a7e34d8 3097 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
000177f0 3098 "char", (struct objfile *) NULL);
685419e2 3099 builtin_type->builtin_true_char =
000177f0
AC
3100 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3101 0,
3102 "true character", (struct objfile *) NULL);
ea37ba09
DJ
3103 builtin_type->builtin_true_unsigned_char =
3104 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3105 TYPE_FLAG_UNSIGNED,
3106 "true character", (struct objfile *) NULL);
000177f0
AC
3107 builtin_type->builtin_signed_char =
3108 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3109 0,
3110 "signed char", (struct objfile *) NULL);
3111 builtin_type->builtin_unsigned_char =
3112 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3113 TYPE_FLAG_UNSIGNED,
3114 "unsigned char", (struct objfile *) NULL);
3115 builtin_type->builtin_short =
7ba81444 3116 init_type (TYPE_CODE_INT,
8a7e34d8 3117 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3118 0, "short", (struct objfile *) NULL);
000177f0 3119 builtin_type->builtin_unsigned_short =
7ba81444 3120 init_type (TYPE_CODE_INT,
8a7e34d8 3121 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3122 TYPE_FLAG_UNSIGNED, "unsigned short",
3123 (struct objfile *) NULL);
000177f0 3124 builtin_type->builtin_int =
7ba81444 3125 init_type (TYPE_CODE_INT,
8a7e34d8 3126 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3127 0, "int", (struct objfile *) NULL);
000177f0 3128 builtin_type->builtin_unsigned_int =
7ba81444 3129 init_type (TYPE_CODE_INT,
8a7e34d8 3130 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3131 TYPE_FLAG_UNSIGNED, "unsigned int",
3132 (struct objfile *) NULL);
000177f0 3133 builtin_type->builtin_long =
7ba81444 3134 init_type (TYPE_CODE_INT,
8a7e34d8 3135 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444 3136 0, "long", (struct objfile *) NULL);
000177f0 3137 builtin_type->builtin_unsigned_long =
7ba81444 3138 init_type (TYPE_CODE_INT,
8a7e34d8 3139 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
7ba81444
MS
3140 TYPE_FLAG_UNSIGNED, "unsigned long",
3141 (struct objfile *) NULL);
000177f0 3142 builtin_type->builtin_long_long =
9a76efb6 3143 init_type (TYPE_CODE_INT,
8a7e34d8 3144 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 3145 0, "long long", (struct objfile *) NULL);
000177f0 3146 builtin_type->builtin_unsigned_long_long =
9a76efb6 3147 init_type (TYPE_CODE_INT,
8a7e34d8 3148 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6
UW
3149 TYPE_FLAG_UNSIGNED, "unsigned long long",
3150 (struct objfile *) NULL);
70bd8e24
AC
3151 builtin_type->builtin_float
3152 = build_flt (gdbarch_float_bit (gdbarch), "float",
3153 gdbarch_float_format (gdbarch));
3154 builtin_type->builtin_double
3155 = build_flt (gdbarch_double_bit (gdbarch), "double",
3156 gdbarch_double_format (gdbarch));
3157 builtin_type->builtin_long_double
3158 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3159 gdbarch_long_double_format (gdbarch));
3160 builtin_type->builtin_complex
3161 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3162 builtin_type->builtin_float);
3163 builtin_type->builtin_double_complex
3164 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3165 builtin_type->builtin_double);
000177f0
AC
3166 builtin_type->builtin_string =
3167 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3168 0,
3169 "string", (struct objfile *) NULL);
000177f0
AC
3170 builtin_type->builtin_bool =
3171 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3172 0,
3173 "bool", (struct objfile *) NULL);
3174
7678ef8f
TJB
3175 /* The following three are about decimal floating point types, which
3176 are 32-bits, 64-bits and 128-bits respectively. */
3177 builtin_type->builtin_decfloat
3178 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3179 0,
3180 "decimal float", (struct objfile *) NULL);
3181 builtin_type->builtin_decdouble
3182 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3183 0,
3184 "decimal double", (struct objfile *) NULL);
3185 builtin_type->builtin_declong
3186 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3187 0,
3188 "decimal long double", (struct objfile *) NULL);
3189
7ba81444 3190 /* Pointer/Address types. */
000177f0
AC
3191
3192 /* NOTE: on some targets, addresses and pointers are not necessarily
3193 the same --- for example, on the D10V, pointers are 16 bits long,
3194 but addresses are 32 bits long. See doc/gdbint.texinfo,
3195 ``Pointers Are Not Always Addresses''.
3196
3197 The upshot is:
3198 - gdb's `struct type' always describes the target's
3199 representation.
3200 - gdb's `struct value' objects should always hold values in
3201 target form.
3202 - gdb's CORE_ADDR values are addresses in the unified virtual
3203 address space that the assembler and linker work with. Thus,
3204 since target_read_memory takes a CORE_ADDR as an argument, it
3205 can access any memory on the target, even if the processor has
3206 separate code and data address spaces.
3207
3208 So, for example:
3209 - If v is a value holding a D10V code pointer, its contents are
3210 in target form: a big-endian address left-shifted two bits.
3211 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3212 sizeof (void *) == 2 on the target.
3213
3214 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3215 target type for a value the target will never see. It's only
3216 used to hold the values of (typeless) linker symbols, which are
3217 indeed in the unified virtual address space. */
7ba81444
MS
3218
3219 builtin_type->builtin_data_ptr =
3220 make_pointer_type (builtin_type->builtin_void, NULL);
3221 builtin_type->builtin_func_ptr =
3222 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
000177f0 3223 builtin_type->builtin_core_addr =
7ba81444 3224 init_type (TYPE_CODE_INT,
8a7e34d8 3225 gdbarch_addr_bit (gdbarch) / 8,
000177f0
AC
3226 TYPE_FLAG_UNSIGNED,
3227 "__CORE_ADDR", (struct objfile *) NULL);
3228
64c50499
UW
3229
3230 /* The following set of types is used for symbols with no
3231 debug information. */
7ba81444
MS
3232 builtin_type->nodebug_text_symbol =
3233 init_type (TYPE_CODE_FUNC, 1, 0,
3234 "<text variable, no debug info>", NULL);
3235 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3236 builtin_type->builtin_int;
3237 builtin_type->nodebug_data_symbol =
3238 init_type (TYPE_CODE_INT,
3239 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3240 "<data variable, no debug info>", NULL);
3241 builtin_type->nodebug_unknown_symbol =
3242 init_type (TYPE_CODE_INT, 1, 0,
3243 "<variable (not text or data), no debug info>", NULL);
3244 builtin_type->nodebug_tls_symbol =
3245 init_type (TYPE_CODE_INT,
3246 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3247 "<thread local variable, no debug info>", NULL);
64c50499 3248
000177f0
AC
3249 return builtin_type;
3250}
3251
a14ed312 3252extern void _initialize_gdbtypes (void);
c906108c 3253void
fba45db2 3254_initialize_gdbtypes (void)
c906108c 3255{
5674de60
UW
3256 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3257
7ba81444
MS
3258 /* FIXME: The following types are architecture-neutral. However,
3259 they contain pointer_type and reference_type fields potentially
3260 caching pointer or reference types that *are* architecture
3261 dependent. */
7ad6570d
AC
3262
3263 builtin_type_int0 =
3264 init_type (TYPE_CODE_INT, 0 / 8,
3265 0,
3266 "int0_t", (struct objfile *) NULL);
3267 builtin_type_int8 =
3268 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3269 TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3270 "int8_t", (struct objfile *) NULL);
3271 builtin_type_uint8 =
3272 init_type (TYPE_CODE_INT, 8 / 8,
ea37ba09 3273 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
7ad6570d
AC
3274 "uint8_t", (struct objfile *) NULL);
3275 builtin_type_int16 =
3276 init_type (TYPE_CODE_INT, 16 / 8,
3277 0,
3278 "int16_t", (struct objfile *) NULL);
3279 builtin_type_uint16 =
3280 init_type (TYPE_CODE_INT, 16 / 8,
3281 TYPE_FLAG_UNSIGNED,
3282 "uint16_t", (struct objfile *) NULL);
3283 builtin_type_int32 =
3284 init_type (TYPE_CODE_INT, 32 / 8,
3285 0,
3286 "int32_t", (struct objfile *) NULL);
3287 builtin_type_uint32 =
3288 init_type (TYPE_CODE_INT, 32 / 8,
3289 TYPE_FLAG_UNSIGNED,
3290 "uint32_t", (struct objfile *) NULL);
3291 builtin_type_int64 =
3292 init_type (TYPE_CODE_INT, 64 / 8,
3293 0,
3294 "int64_t", (struct objfile *) NULL);
3295 builtin_type_uint64 =
3296 init_type (TYPE_CODE_INT, 64 / 8,
3297 TYPE_FLAG_UNSIGNED,
3298 "uint64_t", (struct objfile *) NULL);
3299 builtin_type_int128 =
3300 init_type (TYPE_CODE_INT, 128 / 8,
3301 0,
3302 "int128_t", (struct objfile *) NULL);
3303 builtin_type_uint128 =
3304 init_type (TYPE_CODE_INT, 128 / 8,
3305 TYPE_FLAG_UNSIGNED,
3306 "uint128_t", (struct objfile *) NULL);
3307
7ba81444
MS
3308 builtin_type_ieee_single =
3309 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3310 builtin_type_ieee_double =
3311 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3312 builtin_type_i387_ext =
3313 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3314 builtin_type_m68881_ext =
3315 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3316 builtin_type_arm_ext =
3317 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3318 builtin_type_ia64_spill =
3319 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3320 builtin_type_ia64_quad =
3321 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
598f52df 3322
85c07804
AC
3323 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3324Set debugging of C++ overloading."), _("\
3325Show debugging of C++ overloading."), _("\
3326When enabled, ranking of the functions is displayed."),
3327 NULL,
920d2a44 3328 show_overload_debug,
85c07804 3329 &setdebuglist, &showdebuglist);
5674de60 3330
7ba81444 3331 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3332 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3333 &opaque_type_resolution, _("\
3334Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3335Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3336 NULL,
3337 show_opaque_type_resolution,
3338 &setlist, &showlist);
c906108c 3339}
This page took 0.744679 seconds and 4 git commands to generate.