Add debug trace in amd64-windows-tdep.c::amd64_windows_frame_decode_insns
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
0e9f083f 23#include <string.h>
c906108c
SS
24#include "bfd.h"
25#include "symtab.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "gdbtypes.h"
29#include "expression.h"
30#include "language.h"
31#include "target.h"
32#include "value.h"
33#include "demangle.h"
34#include "complaints.h"
35#include "gdbcmd.h"
015a42b4 36#include "cp-abi.h"
a02fd225 37#include "gdb_assert.h"
ae5a43e0 38#include "hashtab.h"
8e7b59a5 39#include "exceptions.h"
8de20a37 40#include "cp-support.h"
ca092b61
DE
41#include "bcache.h"
42#include "dwarf2loc.h"
80180f79 43#include "gdbcore.h"
ac3aafc7 44
6403aeea
SW
45/* Initialize BADNESS constants. */
46
a9d5ef47 47const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 48
a9d5ef47
SW
49const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 51
a9d5ef47 52const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 53
a9d5ef47
SW
54const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 64const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 65const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 66const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 67
8da61cc4 68/* Floatformat pairs. */
f9e9243a
UW
69const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72};
8da61cc4
DJ
73const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76};
77const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80};
81const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84};
85const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88};
89const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92};
93const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96};
97const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100};
101const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104};
105const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108};
109const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112};
b14d30e1 113const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
b14d30e1 116};
8da61cc4 117
2873700e
KS
118/* Should opaque types be resolved? */
119
120static int opaque_type_resolution = 1;
121
122/* A flag to enable printing of debugging information of C++
123 overloading. */
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
129static int strict_type_checking = 1;
130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 186 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 188
c16abbde 189 return type;
c906108c
SS
190}
191
e9bb382b
UW
192/* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196struct type *
197alloc_type_arch (struct gdbarch *gdbarch)
198{
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
41bf6aca
TT
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218}
219
220/* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224struct type *
225alloc_type_copy (const struct type *type)
226{
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231}
232
233/* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236struct gdbarch *
237get_type_arch (const struct type *type)
238{
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243}
244
99ad9427
YQ
245/* See gdbtypes.h. */
246
247struct type *
248get_target_type (struct type *type)
249{
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258}
259
2fdde8f8
DJ
260/* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264static struct type *
265alloc_type_instance (struct type *oldtype)
266{
267 struct type *type;
268
269 /* Allocate the structure. */
270
e9bb382b 271 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 272 type = XCNEW (struct type);
2fdde8f8 273 else
1deafd4e
PA
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
2fdde8f8
DJ
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
c16abbde 281 return type;
2fdde8f8
DJ
282}
283
284/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 285 replacing it with something else. Preserve owner information. */
5212577a 286
2fdde8f8
DJ
287static void
288smash_type (struct type *type)
289{
e9bb382b
UW
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
2fdde8f8
DJ
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
e9bb382b
UW
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
2fdde8f8
DJ
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303}
304
c906108c
SS
305/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310struct type *
fba45db2 311make_pointer_type (struct type *type, struct type **typeptr)
c906108c 312{
52f0bd74 313 struct type *ntype; /* New type */
053cb41b 314 struct type *chain;
c906108c
SS
315
316 ntype = TYPE_POINTER_TYPE (type);
317
c5aa993b 318 if (ntype)
c906108c 319 {
c5aa993b 320 if (typeptr == 0)
7ba81444
MS
321 return ntype; /* Don't care about alloc,
322 and have new type. */
c906108c 323 else if (*typeptr == 0)
c5aa993b 324 {
7ba81444 325 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 326 return ntype;
c5aa993b 327 }
c906108c
SS
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
e9bb382b 332 ntype = alloc_type_copy (type);
c906108c
SS
333 if (typeptr)
334 *typeptr = ntype;
335 }
7ba81444 336 else /* We have storage, but need to reset it. */
c906108c
SS
337 {
338 ntype = *typeptr;
053cb41b 339 chain = TYPE_CHAIN (ntype);
2fdde8f8 340 smash_type (ntype);
053cb41b 341 TYPE_CHAIN (ntype) = chain;
c906108c
SS
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
5212577a 347 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 348
50810684
UW
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
67b2adb2 353 /* Mark pointers as unsigned. The target converts between pointers
76e71323 354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 355 gdbarch_address_to_pointer. */
876cecd0 356 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 357
053cb41b
JB
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
c906108c
SS
366 return ntype;
367}
368
369/* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372struct type *
fba45db2 373lookup_pointer_type (struct type *type)
c906108c 374{
c5aa993b 375 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
376}
377
7ba81444
MS
378/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
c906108c
SS
382
383struct type *
fba45db2 384make_reference_type (struct type *type, struct type **typeptr)
c906108c 385{
52f0bd74 386 struct type *ntype; /* New type */
1e98b326 387 struct type *chain;
c906108c
SS
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
c5aa993b 391 if (ntype)
c906108c 392 {
c5aa993b 393 if (typeptr == 0)
7ba81444
MS
394 return ntype; /* Don't care about alloc,
395 and have new type. */
c906108c 396 else if (*typeptr == 0)
c5aa993b 397 {
7ba81444 398 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 399 return ntype;
c5aa993b 400 }
c906108c
SS
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
e9bb382b 405 ntype = alloc_type_copy (type);
c906108c
SS
406 if (typeptr)
407 *typeptr = ntype;
408 }
7ba81444 409 else /* We have storage, but need to reset it. */
c906108c
SS
410 {
411 ntype = *typeptr;
1e98b326 412 chain = TYPE_CHAIN (ntype);
2fdde8f8 413 smash_type (ntype);
1e98b326 414 TYPE_CHAIN (ntype) = chain;
c906108c
SS
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
7ba81444
MS
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
c906108c 423
50810684
UW
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 426 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 427
c906108c
SS
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
1e98b326
JB
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
c906108c
SS
439 return ntype;
440}
441
7ba81444
MS
442/* Same as above, but caller doesn't care about memory allocation
443 details. */
c906108c
SS
444
445struct type *
fba45db2 446lookup_reference_type (struct type *type)
c906108c 447{
c5aa993b 448 return make_reference_type (type, (struct type **) 0);
c906108c
SS
449}
450
7ba81444
MS
451/* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 454 function type we return. We allocate new memory if needed. */
c906108c
SS
455
456struct type *
0c8b41f1 457make_function_type (struct type *type, struct type **typeptr)
c906108c 458{
52f0bd74 459 struct type *ntype; /* New type */
c906108c
SS
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
e9bb382b 463 ntype = alloc_type_copy (type);
c906108c
SS
464 if (typeptr)
465 *typeptr = ntype;
466 }
7ba81444 467 else /* We have storage, but need to reset it. */
c906108c
SS
468 {
469 ntype = *typeptr;
2fdde8f8 470 smash_type (ntype);
c906108c
SS
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 477
b6cdc2c1
JK
478 INIT_FUNC_SPECIFIC (ntype);
479
c906108c
SS
480 return ntype;
481}
482
c906108c
SS
483/* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486struct type *
fba45db2 487lookup_function_type (struct type *type)
c906108c 488{
0c8b41f1 489 return make_function_type (type, (struct type **) 0);
c906108c
SS
490}
491
71918a86 492/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
71918a86
TT
495
496struct type *
497lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500{
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
e314d629 504 if (nparams > 0)
a6fb9c08 505 {
e314d629
TT
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
a6fb9c08
TT
519 }
520
71918a86
TT
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527}
528
47663de5
MS
529/* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
5212577a
DE
531
532int
50810684 533address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 534{
8b2dbe47 535 int type_flags;
d8734c88 536
7ba81444 537 /* Check for known address space delimiters. */
47663de5 538 if (!strcmp (space_identifier, "code"))
876cecd0 539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 540 else if (!strcmp (space_identifier, "data"))
876cecd0 541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
8b2dbe47 546 return type_flags;
47663de5 547 else
8a3fe4f8 548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
549}
550
551/* Identify address space identifier by integer flag as defined in
7ba81444 552 gdbtypes.h -- return the string version of the adress space name. */
47663de5 553
321432c0 554const char *
50810684 555address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 556{
876cecd0 557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 558 return "code";
876cecd0 559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 560 return "data";
876cecd0 561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
564 else
565 return NULL;
566}
567
2fdde8f8 568/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
47663de5 572
b9362cc7 573static struct type *
2fdde8f8
DJ
574make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
47663de5
MS
576{
577 struct type *ntype;
578
579 ntype = type;
5f61c20e
JK
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
47663de5 587
2fdde8f8
DJ
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
7ba81444
MS
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
ad766c0a
JB
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
2fdde8f8
DJ
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
47663de5
MS
603
604 /* Pointers or references to the original type are not relevant to
2fdde8f8 605 the new type. */
47663de5
MS
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 608
2fdde8f8
DJ
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 615
ab5d3da6
KB
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
47663de5
MS
619 return ntype;
620}
621
2fdde8f8
DJ
622/* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
7ba81444
MS
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
2fdde8f8
DJ
630
631struct type *
632make_type_with_address_space (struct type *type, int space_flag)
633{
2fdde8f8 634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641}
c906108c
SS
642
643/* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
c906108c 648
ad766c0a
JB
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
5212577a 654
c906108c 655struct type *
7ba81444
MS
656make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
c906108c 659{
52f0bd74 660 struct type *ntype; /* New type */
c906108c 661
2fdde8f8 662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 665
c906108c 666 if (cnst)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
668
669 if (voltl)
876cecd0 670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 671
2fdde8f8 672 if (typeptr && *typeptr != NULL)
a02fd225 673 {
ad766c0a
JB
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
687 }
688
7ba81444
MS
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
c906108c 691
2fdde8f8
DJ
692 if (typeptr != NULL)
693 *typeptr = ntype;
a02fd225 694
2fdde8f8 695 return ntype;
a02fd225 696}
c906108c 697
06d66ee9
TT
698/* Make a 'restrict'-qualified version of TYPE. */
699
700struct type *
701make_restrict_type (struct type *type)
702{
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707}
708
2fdde8f8
DJ
709/* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 712
cda6c68a
JB
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
5212577a 718
dd6bda65
DJ
719void
720replace_type (struct type *ntype, struct type *type)
721{
ab5d3da6 722 struct type *chain;
dd6bda65 723
ad766c0a
JB
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
2fdde8f8 730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 731
7ba81444
MS
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
ab5d3da6 734 chain = ntype;
5f61c20e
JK
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
ab5d3da6 749
2fdde8f8
DJ
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
753}
754
c906108c
SS
755/* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760struct type *
0d5de010 761lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 762{
52f0bd74 763 struct type *mtype;
c906108c 764
e9bb382b 765 mtype = alloc_type_copy (type);
0d5de010 766 smash_to_memberptr_type (mtype, domain, type);
c16abbde 767 return mtype;
c906108c
SS
768}
769
0d5de010
DJ
770/* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772struct type *
773lookup_methodptr_type (struct type *to_type)
774{
775 struct type *mtype;
776
e9bb382b 777 mtype = alloc_type_copy (to_type);
0b92b5bb 778 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
779 return mtype;
780}
781
7ba81444
MS
782/* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
c906108c
SS
787
788struct type *
fba45db2 789allocate_stub_method (struct type *type)
c906108c
SS
790{
791 struct type *mtype;
792
e9bb382b
UW
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
c906108c
SS
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 799 return mtype;
c906108c
SS
800}
801
729efb13
SA
802/* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
804
805struct type *
729efb13
SA
806create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
c906108c
SS
809{
810 if (result_type == NULL)
e9bb382b 811 result_type = alloc_type_copy (index_type);
c906108c
SS
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 814 if (TYPE_STUB (index_type))
876cecd0 815 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 818
43bbcdc2
PH
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 823
729efb13 824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 825 TYPE_UNSIGNED (result_type) = 1;
c906108c 826
262452ec 827 return result_type;
c906108c
SS
828}
829
729efb13
SA
830/* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840struct type *
841create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843{
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855}
856
80180f79
SA
857/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860static int
861has_static_range (const struct range_bounds *bounds)
862{
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865}
866
867
7ba81444
MS
868/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
871
872int
fba45db2 873get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
874{
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
0963b4bd 886 entries. */
c906108c
SS
887 int i;
888
14e75d8e 889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
14e75d8e
JK
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
896 }
897
7ba81444 898 /* Set unsigned indicator if warranted. */
c5aa993b 899 if (*lowp >= 0)
c906108c 900 {
876cecd0 901 TYPE_UNSIGNED (type) = 1;
c906108c
SS
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
c5aa993b 915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
c5aa993b 919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
920 *highp = -*lowp - 1;
921 return 0;
922 }
7ba81444 923 /* ... fall through for unsigned ints ... */
c906108c
SS
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
7b83ea04 927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935}
936
dbc98a8b
KW
937/* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
0963b4bd 941 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951int
952get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953{
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979}
980
7ba81444
MS
981/* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
c906108c
SS
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
dc53a7ad
JB
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
7ba81444
MS
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
c906108c
SS
994
995struct type *
dc53a7ad
JB
996create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
c906108c 1000{
c906108c 1001 if (result_type == NULL)
e9bb382b
UW
1002 result_type = alloc_type_copy (range_type);
1003
c906108c
SS
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
ab0d6e0d 1025 else
80180f79
SA
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
c906108c
SS
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1deafd4e 1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1039 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1040 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1043
0963b4bd 1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1045 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1046 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1047
c16abbde 1048 return result_type;
c906108c
SS
1049}
1050
dc53a7ad
JB
1051/* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054struct type *
1055create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058{
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061}
1062
e3506a9f
UW
1063struct type *
1064lookup_array_range_type (struct type *element_type,
63375b74 1065 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1066{
50810684 1067 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
0c9c3474 1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1071
e3506a9f
UW
1072 return create_array_type (NULL, element_type, range_type);
1073}
1074
7ba81444
MS
1075/* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
c906108c
SS
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
7ba81444
MS
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
c906108c
SS
1086
1087struct type *
3b7538c0
UW
1088create_string_type (struct type *result_type,
1089 struct type *string_char_type,
7ba81444 1090 struct type *range_type)
c906108c
SS
1091{
1092 result_type = create_array_type (result_type,
f290d38e 1093 string_char_type,
c906108c
SS
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1096 return result_type;
c906108c
SS
1097}
1098
e3506a9f
UW
1099struct type *
1100lookup_string_range_type (struct type *string_char_type,
63375b74 1101 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1102{
1103 struct type *result_type;
d8734c88 1104
e3506a9f
UW
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109}
1110
c906108c 1111struct type *
fba45db2 1112create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1113{
c906108c 1114 if (result_type == NULL)
e9bb382b
UW
1115 result_type = alloc_type_copy (domain_type);
1116
c906108c
SS
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1120
74a9bb82 1121 if (!TYPE_STUB (domain_type))
c906108c 1122 {
f9780d5b 1123 LONGEST low_bound, high_bound, bit_length;
d8734c88 1124
c906108c
SS
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1130 if (low_bound >= 0)
876cecd0 1131 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
c16abbde 1135 return result_type;
c906108c
SS
1136}
1137
ea37ba09
DJ
1138/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141void
1142make_vector_type (struct type *array_type)
1143{
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
2844d6b5 1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
876cecd0 1161 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1162}
1163
794ac428 1164struct type *
ac3aafc7
EZ
1165init_vector_type (struct type *elt_type, int n)
1166{
1167 struct type *array_type;
d8734c88 1168
e3506a9f 1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1170 make_vector_type (array_type);
ac3aafc7
EZ
1171 return array_type;
1172}
1173
0d5de010
DJ
1174/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
c906108c 1180
7ba81444
MS
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
c906108c
SS
1183 allocated. */
1184
1185void
0d5de010
DJ
1186smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
c906108c 1188{
2fdde8f8 1189 smash_type (type);
c906108c
SS
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
50810684
UW
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1197}
1198
0b92b5bb
TT
1199/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205void
1206smash_to_methodptr_type (struct type *type, struct type *to_type)
1207{
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213}
1214
c906108c
SS
1215/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
7ba81444
MS
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
c906108c
SS
1220 allocated. */
1221
1222void
fba45db2 1223smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
c906108c 1226{
2fdde8f8 1227 smash_type (type);
c906108c
SS
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
876cecd0 1233 TYPE_VARARGS (type) = 1;
c906108c
SS
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236}
1237
1238/* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
0d5cff50 1241const char *
aa1ee363 1242type_name_no_tag (const struct type *type)
c906108c
SS
1243{
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
7ba81444
MS
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
c906108c
SS
1250 return TYPE_NAME (type);
1251}
1252
d8228535
JK
1253/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260const char *
1261type_name_no_tag_or_error (struct type *type)
1262{
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1278}
1279
7ba81444
MS
1280/* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
c906108c
SS
1283
1284struct type *
e6c014f2 1285lookup_typename (const struct language_defn *language,
ddd49eee 1286 struct gdbarch *gdbarch, const char *name,
34eaf542 1287 const struct block *block, int noerr)
c906108c 1288{
52f0bd74 1289 struct symbol *sym;
659c9f3a 1290 struct type *type;
c906108c 1291
774b6a14 1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
659c9f3a
DE
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
c51fe631
DE
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
c906108c
SS
1303}
1304
1305struct type *
e6c014f2 1306lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1307 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1308{
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
e6c014f2 1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1314}
1315
1316struct type *
e6c014f2 1317lookup_signed_typename (const struct language_defn *language,
0d5cff50 1318 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1319{
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
e6c014f2 1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1327 if (t != NULL)
1328 return t;
e6c014f2 1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1330}
1331
1332/* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335struct type *
270140bd 1336lookup_struct (const char *name, const struct block *block)
c906108c 1337{
52f0bd74 1338 struct symbol *sym;
c906108c 1339
2570f2b7 1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1341
1342 if (sym == NULL)
1343 {
8a3fe4f8 1344 error (_("No struct type named %s."), name);
c906108c
SS
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
7ba81444
MS
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
c906108c
SS
1350 }
1351 return (SYMBOL_TYPE (sym));
1352}
1353
1354/* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357struct type *
270140bd 1358lookup_union (const char *name, const struct block *block)
c906108c 1359{
52f0bd74 1360 struct symbol *sym;
c5aa993b 1361 struct type *t;
c906108c 1362
2570f2b7 1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1364
1365 if (sym == NULL)
8a3fe4f8 1366 error (_("No union type named %s."), name);
c906108c 1367
c5aa993b 1368 t = SYMBOL_TYPE (sym);
c906108c
SS
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1371 return t;
c906108c 1372
7ba81444
MS
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
c906108c
SS
1376}
1377
c906108c
SS
1378/* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381struct type *
270140bd 1382lookup_enum (const char *name, const struct block *block)
c906108c 1383{
52f0bd74 1384 struct symbol *sym;
c906108c 1385
2570f2b7 1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1387 if (sym == NULL)
1388 {
8a3fe4f8 1389 error (_("No enum type named %s."), name);
c906108c
SS
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
7ba81444
MS
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
c906108c
SS
1395 }
1396 return (SYMBOL_TYPE (sym));
1397}
1398
1399/* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402struct type *
7ba81444 1403lookup_template_type (char *name, struct type *type,
270140bd 1404 const struct block *block)
c906108c
SS
1405{
1406 struct symbol *sym;
7ba81444
MS
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1409
c906108c
SS
1410 strcpy (nam, name);
1411 strcat (nam, "<");
0004e5a2 1412 strcat (nam, TYPE_NAME (type));
0963b4bd 1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1414
2570f2b7 1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1416
1417 if (sym == NULL)
1418 {
8a3fe4f8 1419 error (_("No template type named %s."), name);
c906108c
SS
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
7ba81444
MS
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
c906108c
SS
1425 }
1426 return (SYMBOL_TYPE (sym));
1427}
1428
7ba81444
MS
1429/* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
c906108c 1431
7ba81444
MS
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441struct type *
d7561cbb 1442lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1443{
1444 int i;
c92817ce 1445 char *typename;
c906108c
SS
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
687d6395
MS
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1458 {
c92817ce
TT
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1462 }
1463
1464#if 0
7ba81444
MS
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
0963b4bd 1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1468 foo; } bell;" Disabled by fnf. */
c906108c
SS
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
762f08a3 1473 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1474 return type;
1475 }
1476#endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
0d5cff50 1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1481
db577aea 1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
f5a010c0
PM
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
d8734c88
MS
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
f5a010c0
PM
1491 if (subtype != NULL)
1492 return subtype;
1493 }
c906108c
SS
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
9733fc94 1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
c5aa993b 1512
c92817ce
TT
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1516}
1517
ed3ef339
DE
1518/* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521void
1522get_unsigned_type_max (struct type *type, ULONGEST *max)
1523{
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533}
1534
1535/* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538void
1539get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540{
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550}
1551
81fe8080
DE
1552/* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
c906108c 1558 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
7ba81444 1561 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1562 vptr_basetype will remain NULL or incomplete. */
c906108c 1563
81fe8080
DE
1564int
1565get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1566{
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
7ba81444
MS
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
81fe8080
DE
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
c906108c 1583 {
81fe8080 1584 /* If the type comes from a different objfile we can't cache
0963b4bd 1585 it, it may have a different lifetime. PR 2384 */
5ef73790 1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
c906108c
SS
1594 }
1595 }
81fe8080
DE
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1605 }
1606}
1607
44e1a9eb
DJ
1608static void
1609stub_noname_complaint (void)
1610{
e2e0b3e5 1611 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1612}
1613
d98b7a16 1614/* Worker for is_dynamic_type. */
80180f79 1615
d98b7a16
TT
1616static int
1617is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1618{
1619 type = check_typedef (type);
1620
d98b7a16
TT
1621 /* We only want to recognize references at the outermost level. */
1622 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1623 type = check_typedef (TYPE_TARGET_TYPE (type));
1624
1625 switch (TYPE_CODE (type))
1626 {
6f8a3220
JB
1627 case TYPE_CODE_RANGE:
1628 return !has_static_range (TYPE_RANGE_DATA (type));
6f8a3220 1629
80180f79
SA
1630 case TYPE_CODE_ARRAY:
1631 {
80180f79 1632 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1633
1634 /* The array is dynamic if either the bounds are dynamic,
1635 or the elements it contains have a dynamic contents. */
d98b7a16 1636 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1637 return 1;
d98b7a16 1638 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1639 }
012370f6
TT
1640
1641 case TYPE_CODE_STRUCT:
1642 case TYPE_CODE_UNION:
1643 {
1644 int i;
1645
1646 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1647 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1648 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1649 return 1;
1650 }
1651 break;
80180f79 1652 }
92e2a17f
TT
1653
1654 return 0;
80180f79
SA
1655}
1656
d98b7a16
TT
1657/* See gdbtypes.h. */
1658
1659int
1660is_dynamic_type (struct type *type)
1661{
1662 return is_dynamic_type_internal (type, 1);
1663}
1664
1665static struct type *resolve_dynamic_type_internal (struct type *type,
1666 CORE_ADDR addr,
1667 int top_level);
1668
d190df30
JB
1669/* Given a dynamic range type (dyn_range_type), return a static version
1670 of that type. */
1671
80180f79 1672static struct type *
1cfdf534 1673resolve_dynamic_range (struct type *dyn_range_type)
80180f79
SA
1674{
1675 CORE_ADDR value;
6f8a3220 1676 struct type *static_range_type;
80180f79
SA
1677 const struct dynamic_prop *prop;
1678 const struct dwarf2_locexpr_baton *baton;
1679 struct dynamic_prop low_bound, high_bound;
1680
6f8a3220 1681 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1682
6f8a3220 1683 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1cfdf534 1684 if (dwarf2_evaluate_property (prop, &value))
80180f79
SA
1685 {
1686 low_bound.kind = PROP_CONST;
1687 low_bound.data.const_val = value;
1688 }
1689 else
1690 {
1691 low_bound.kind = PROP_UNDEFINED;
1692 low_bound.data.const_val = 0;
1693 }
1694
6f8a3220 1695 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1cfdf534 1696 if (dwarf2_evaluate_property (prop, &value))
80180f79
SA
1697 {
1698 high_bound.kind = PROP_CONST;
1699 high_bound.data.const_val = value;
c451ebe5 1700
6f8a3220 1701 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1702 high_bound.data.const_val
1703 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1704 }
1705 else
1706 {
1707 high_bound.kind = PROP_UNDEFINED;
1708 high_bound.data.const_val = 0;
1709 }
1710
6f8a3220
JB
1711 static_range_type = create_range_type (copy_type (dyn_range_type),
1712 TYPE_TARGET_TYPE (dyn_range_type),
1713 &low_bound, &high_bound);
1714 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1715 return static_range_type;
1716}
1717
1718/* Resolves dynamic bound values of an array type TYPE to static ones.
1719 ADDRESS might be needed to resolve the subrange bounds, it is the location
1720 of the associated array. */
1721
1722static struct type *
1cfdf534 1723resolve_dynamic_array (struct type *type)
6f8a3220
JB
1724{
1725 CORE_ADDR value;
1726 struct type *elt_type;
1727 struct type *range_type;
1728 struct type *ary_dim;
1729
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1731
1732 elt_type = type;
1733 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1cfdf534 1734 range_type = resolve_dynamic_range (range_type);
6f8a3220 1735
80180f79
SA
1736 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1737
1738 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1cfdf534 1739 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
80180f79
SA
1740 else
1741 elt_type = TYPE_TARGET_TYPE (type);
1742
80180f79
SA
1743 return create_array_type (copy_type (type),
1744 elt_type,
1745 range_type);
1746}
1747
012370f6
TT
1748/* Resolve dynamic bounds of members of the union TYPE to static
1749 bounds. */
1750
1751static struct type *
1752resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1753{
1754 struct type *resolved_type;
1755 int i;
1756 unsigned int max_len = 0;
1757
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1759
1760 resolved_type = copy_type (type);
1761 TYPE_FIELDS (resolved_type)
1762 = TYPE_ALLOC (resolved_type,
1763 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1764 memcpy (TYPE_FIELDS (resolved_type),
1765 TYPE_FIELDS (type),
1766 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1767 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1768 {
1769 struct type *t;
1770
1771 if (field_is_static (&TYPE_FIELD (type, i)))
1772 continue;
1773
d98b7a16
TT
1774 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1775 addr, 0);
012370f6
TT
1776 TYPE_FIELD_TYPE (resolved_type, i) = t;
1777 if (TYPE_LENGTH (t) > max_len)
1778 max_len = TYPE_LENGTH (t);
1779 }
1780
1781 TYPE_LENGTH (resolved_type) = max_len;
1782 return resolved_type;
1783}
1784
1785/* Resolve dynamic bounds of members of the struct TYPE to static
1786 bounds. */
1787
1788static struct type *
1789resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1790{
1791 struct type *resolved_type;
1792 int i;
1793 int vla_field = TYPE_NFIELDS (type) - 1;
1794
1795 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1796 gdb_assert (TYPE_NFIELDS (type) > 0);
1797
1798 resolved_type = copy_type (type);
1799 TYPE_FIELDS (resolved_type)
1800 = TYPE_ALLOC (resolved_type,
1801 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1802 memcpy (TYPE_FIELDS (resolved_type),
1803 TYPE_FIELDS (type),
1804 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1805 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1806 {
1807 struct type *t;
1808
1809 if (field_is_static (&TYPE_FIELD (type, i)))
1810 continue;
1811
d98b7a16
TT
1812 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1813 addr, 0);
012370f6
TT
1814
1815 /* This is a bit odd. We do not support a VLA in any position
1816 of a struct except for the last. GCC does have an extension
1817 that allows a VLA in the middle of a structure, but the DWARF
1818 it emits is relatively useless to us, so we can't represent
1819 such a type properly -- and even if we could, we do not have
1820 enough information to redo structure layout anyway.
1821 Nevertheless, we check all the fields in case something odd
1822 slips through, since it's better to see an error than
1823 incorrect results. */
1824 if (t != TYPE_FIELD_TYPE (resolved_type, i)
1825 && i != vla_field)
1826 error (_("Attempt to resolve a variably-sized type which appears "
1827 "in the interior of a structure type"));
1828
1829 TYPE_FIELD_TYPE (resolved_type, i) = t;
1830 }
1831
1832 /* Due to the above restrictions we can successfully compute
1833 the size of the resulting structure here, as the offset of
1834 the final field plus its size. */
1835 TYPE_LENGTH (resolved_type)
1836 = (TYPE_FIELD_BITPOS (resolved_type, vla_field) / TARGET_CHAR_BIT
1837 + TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, vla_field)));
1838 return resolved_type;
1839}
1840
d98b7a16 1841/* Worker for resolved_dynamic_type. */
80180f79 1842
d98b7a16
TT
1843static struct type *
1844resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1845 int top_level)
80180f79
SA
1846{
1847 struct type *real_type = check_typedef (type);
6f8a3220 1848 struct type *resolved_type = type;
80180f79 1849
d98b7a16 1850 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
1851 return type;
1852
6f8a3220
JB
1853 switch (TYPE_CODE (type))
1854 {
1855 case TYPE_CODE_TYPEDEF:
1856 resolved_type = copy_type (type);
1857 TYPE_TARGET_TYPE (resolved_type)
d98b7a16
TT
1858 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1859 top_level);
6f8a3220
JB
1860 break;
1861
1862 case TYPE_CODE_REF:
1863 {
1864 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1865
1866 resolved_type = copy_type (type);
1867 TYPE_TARGET_TYPE (resolved_type)
d98b7a16
TT
1868 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1869 target_addr, top_level);
6f8a3220
JB
1870 break;
1871 }
1872
1873 case TYPE_CODE_ARRAY:
1cfdf534 1874 resolved_type = resolve_dynamic_array (type);
6f8a3220
JB
1875 break;
1876
1877 case TYPE_CODE_RANGE:
1cfdf534 1878 resolved_type = resolve_dynamic_range (type);
6f8a3220 1879 break;
012370f6
TT
1880
1881 case TYPE_CODE_UNION:
1882 resolved_type = resolve_dynamic_union (type, addr);
1883 break;
1884
1885 case TYPE_CODE_STRUCT:
1886 resolved_type = resolve_dynamic_struct (type, addr);
1887 break;
6f8a3220 1888 }
80180f79
SA
1889
1890 return resolved_type;
1891}
1892
d98b7a16
TT
1893/* See gdbtypes.h */
1894
1895struct type *
1896resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1897{
1898 return resolve_dynamic_type_internal (type, addr, 1);
1899}
1900
92163a10
JK
1901/* Find the real type of TYPE. This function returns the real type,
1902 after removing all layers of typedefs, and completing opaque or stub
1903 types. Completion changes the TYPE argument, but stripping of
1904 typedefs does not.
1905
1906 Instance flags (e.g. const/volatile) are preserved as typedefs are
1907 stripped. If necessary a new qualified form of the underlying type
1908 is created.
1909
1910 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1911 not been computed and we're either in the middle of reading symbols, or
1912 there was no name for the typedef in the debug info.
1913
9bc118a5
DE
1914 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1915 QUITs in the symbol reading code can also throw.
1916 Thus this function can throw an exception.
1917
92163a10
JK
1918 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1919 the target type.
c906108c
SS
1920
1921 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1922 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1923 definition, so we can use it in future. There used to be a comment
1924 (but not any code) that if we don't find a full definition, we'd
1925 set a flag so we don't spend time in the future checking the same
1926 type. That would be a mistake, though--we might load in more
92163a10 1927 symbols which contain a full definition for the type. */
c906108c
SS
1928
1929struct type *
a02fd225 1930check_typedef (struct type *type)
c906108c
SS
1931{
1932 struct type *orig_type = type;
92163a10
JK
1933 /* While we're removing typedefs, we don't want to lose qualifiers.
1934 E.g., const/volatile. */
1935 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1936
423c0af8
MS
1937 gdb_assert (type);
1938
c906108c
SS
1939 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1940 {
1941 if (!TYPE_TARGET_TYPE (type))
1942 {
0d5cff50 1943 const char *name;
c906108c
SS
1944 struct symbol *sym;
1945
1946 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1947 reading a symtab. Infinite recursion is one danger. */
c906108c 1948 if (currently_reading_symtab)
92163a10 1949 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1950
1951 name = type_name_no_tag (type);
7ba81444
MS
1952 /* FIXME: shouldn't we separately check the TYPE_NAME and
1953 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1954 VAR_DOMAIN as appropriate? (this code was written before
1955 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1956 if (name == NULL)
1957 {
23136709 1958 stub_noname_complaint ();
92163a10 1959 return make_qualified_type (type, instance_flags, NULL);
c906108c 1960 }
2570f2b7 1961 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1962 if (sym)
1963 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1964 else /* TYPE_CODE_UNDEF */
e9bb382b 1965 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1966 }
1967 type = TYPE_TARGET_TYPE (type);
c906108c 1968
92163a10
JK
1969 /* Preserve the instance flags as we traverse down the typedef chain.
1970
1971 Handling address spaces/classes is nasty, what do we do if there's a
1972 conflict?
1973 E.g., what if an outer typedef marks the type as class_1 and an inner
1974 typedef marks the type as class_2?
1975 This is the wrong place to do such error checking. We leave it to
1976 the code that created the typedef in the first place to flag the
1977 error. We just pick the outer address space (akin to letting the
1978 outer cast in a chain of casting win), instead of assuming
1979 "it can't happen". */
1980 {
1981 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1982 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1983 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1984 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1985
1986 /* Treat code vs data spaces and address classes separately. */
1987 if ((instance_flags & ALL_SPACES) != 0)
1988 new_instance_flags &= ~ALL_SPACES;
1989 if ((instance_flags & ALL_CLASSES) != 0)
1990 new_instance_flags &= ~ALL_CLASSES;
1991
1992 instance_flags |= new_instance_flags;
1993 }
1994 }
a02fd225 1995
7ba81444
MS
1996 /* If this is a struct/class/union with no fields, then check
1997 whether a full definition exists somewhere else. This is for
1998 systems where a type definition with no fields is issued for such
1999 types, instead of identifying them as stub types in the first
2000 place. */
c5aa993b 2001
7ba81444
MS
2002 if (TYPE_IS_OPAQUE (type)
2003 && opaque_type_resolution
2004 && !currently_reading_symtab)
c906108c 2005 {
0d5cff50 2006 const char *name = type_name_no_tag (type);
c5aa993b 2007 struct type *newtype;
d8734c88 2008
c906108c
SS
2009 if (name == NULL)
2010 {
23136709 2011 stub_noname_complaint ();
92163a10 2012 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2013 }
2014 newtype = lookup_transparent_type (name);
ad766c0a 2015
c906108c 2016 if (newtype)
ad766c0a 2017 {
7ba81444
MS
2018 /* If the resolved type and the stub are in the same
2019 objfile, then replace the stub type with the real deal.
2020 But if they're in separate objfiles, leave the stub
2021 alone; we'll just look up the transparent type every time
2022 we call check_typedef. We can't create pointers between
2023 types allocated to different objfiles, since they may
2024 have different lifetimes. Trying to copy NEWTYPE over to
2025 TYPE's objfile is pointless, too, since you'll have to
2026 move over any other types NEWTYPE refers to, which could
2027 be an unbounded amount of stuff. */
ad766c0a 2028 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2029 type = make_qualified_type (newtype,
2030 TYPE_INSTANCE_FLAGS (type),
2031 type);
ad766c0a
JB
2032 else
2033 type = newtype;
2034 }
c906108c 2035 }
7ba81444
MS
2036 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2037 types. */
74a9bb82 2038 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2039 {
0d5cff50 2040 const char *name = type_name_no_tag (type);
c906108c 2041 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2042 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2043 as appropriate? (this code was written before TYPE_NAME and
2044 TYPE_TAG_NAME were separate). */
c906108c 2045 struct symbol *sym;
d8734c88 2046
c906108c
SS
2047 if (name == NULL)
2048 {
23136709 2049 stub_noname_complaint ();
92163a10 2050 return make_qualified_type (type, instance_flags, NULL);
c906108c 2051 }
2570f2b7 2052 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2053 if (sym)
c26f2453
JB
2054 {
2055 /* Same as above for opaque types, we can replace the stub
92163a10 2056 with the complete type only if they are in the same
c26f2453
JB
2057 objfile. */
2058 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2059 type = make_qualified_type (SYMBOL_TYPE (sym),
2060 TYPE_INSTANCE_FLAGS (type),
2061 type);
c26f2453
JB
2062 else
2063 type = SYMBOL_TYPE (sym);
2064 }
c906108c
SS
2065 }
2066
74a9bb82 2067 if (TYPE_TARGET_STUB (type))
c906108c
SS
2068 {
2069 struct type *range_type;
2070 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2071
74a9bb82 2072 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2073 {
73e2eb35 2074 /* Nothing we can do. */
c5aa993b 2075 }
c906108c
SS
2076 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2077 {
2078 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2079 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2080 }
2081 }
92163a10
JK
2082
2083 type = make_qualified_type (type, instance_flags, NULL);
2084
7ba81444 2085 /* Cache TYPE_LENGTH for future use. */
c906108c 2086 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2087
c906108c
SS
2088 return type;
2089}
2090
7ba81444 2091/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2092 occurs, silently return a void type. */
c91ecb25 2093
b9362cc7 2094static struct type *
48319d1f 2095safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2096{
2097 struct ui_file *saved_gdb_stderr;
34365054 2098 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2099 volatile struct gdb_exception except;
c91ecb25 2100
7ba81444 2101 /* Suppress error messages. */
c91ecb25
ND
2102 saved_gdb_stderr = gdb_stderr;
2103 gdb_stderr = ui_file_new ();
2104
7ba81444 2105 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2106 TRY_CATCH (except, RETURN_MASK_ERROR)
2107 {
2108 type = parse_and_eval_type (p, length);
2109 }
2110
2111 if (except.reason < 0)
48319d1f 2112 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2113
7ba81444 2114 /* Stop suppressing error messages. */
c91ecb25
ND
2115 ui_file_delete (gdb_stderr);
2116 gdb_stderr = saved_gdb_stderr;
2117
2118 return type;
2119}
2120
c906108c
SS
2121/* Ugly hack to convert method stubs into method types.
2122
7ba81444
MS
2123 He ain't kiddin'. This demangles the name of the method into a
2124 string including argument types, parses out each argument type,
2125 generates a string casting a zero to that type, evaluates the
2126 string, and stuffs the resulting type into an argtype vector!!!
2127 Then it knows the type of the whole function (including argument
2128 types for overloading), which info used to be in the stab's but was
2129 removed to hack back the space required for them. */
c906108c 2130
de17c821 2131static void
fba45db2 2132check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2133{
50810684 2134 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2135 struct fn_field *f;
2136 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2137 char *demangled_name = gdb_demangle (mangled_name,
2138 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2139 char *argtypetext, *p;
2140 int depth = 0, argcount = 1;
ad2f7632 2141 struct field *argtypes;
c906108c
SS
2142 struct type *mtype;
2143
2144 /* Make sure we got back a function string that we can use. */
2145 if (demangled_name)
2146 p = strchr (demangled_name, '(');
502dcf4e
AC
2147 else
2148 p = NULL;
c906108c
SS
2149
2150 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2151 error (_("Internal: Cannot demangle mangled name `%s'."),
2152 mangled_name);
c906108c
SS
2153
2154 /* Now, read in the parameters that define this type. */
2155 p += 1;
2156 argtypetext = p;
2157 while (*p)
2158 {
070ad9f0 2159 if (*p == '(' || *p == '<')
c906108c
SS
2160 {
2161 depth += 1;
2162 }
070ad9f0 2163 else if (*p == ')' || *p == '>')
c906108c
SS
2164 {
2165 depth -= 1;
2166 }
2167 else if (*p == ',' && depth == 0)
2168 {
2169 argcount += 1;
2170 }
2171
2172 p += 1;
2173 }
2174
ad2f7632
DJ
2175 /* If we read one argument and it was ``void'', don't count it. */
2176 if (strncmp (argtypetext, "(void)", 6) == 0)
2177 argcount -= 1;
c906108c 2178
ad2f7632
DJ
2179 /* We need one extra slot, for the THIS pointer. */
2180
2181 argtypes = (struct field *)
2182 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2183 p = argtypetext;
4a1970e4
DJ
2184
2185 /* Add THIS pointer for non-static methods. */
2186 f = TYPE_FN_FIELDLIST1 (type, method_id);
2187 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2188 argcount = 0;
2189 else
2190 {
ad2f7632 2191 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2192 argcount = 1;
2193 }
c906108c 2194
0963b4bd 2195 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2196 {
2197 depth = 0;
2198 while (*p)
2199 {
2200 if (depth <= 0 && (*p == ',' || *p == ')'))
2201 {
ad2f7632
DJ
2202 /* Avoid parsing of ellipsis, they will be handled below.
2203 Also avoid ``void'' as above. */
2204 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2205 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2206 {
ad2f7632 2207 argtypes[argcount].type =
48319d1f 2208 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2209 argcount += 1;
2210 }
2211 argtypetext = p + 1;
2212 }
2213
070ad9f0 2214 if (*p == '(' || *p == '<')
c906108c
SS
2215 {
2216 depth += 1;
2217 }
070ad9f0 2218 else if (*p == ')' || *p == '>')
c906108c
SS
2219 {
2220 depth -= 1;
2221 }
2222
2223 p += 1;
2224 }
2225 }
2226
c906108c
SS
2227 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2228
2229 /* Now update the old "stub" type into a real type. */
2230 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2231 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2232 TYPE_FIELDS (mtype) = argtypes;
2233 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2234 TYPE_STUB (mtype) = 0;
c906108c 2235 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2236 if (p[-2] == '.')
876cecd0 2237 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2238
2239 xfree (demangled_name);
c906108c
SS
2240}
2241
7ba81444
MS
2242/* This is the external interface to check_stub_method, above. This
2243 function unstubs all of the signatures for TYPE's METHOD_ID method
2244 name. After calling this function TYPE_FN_FIELD_STUB will be
2245 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2246 correct.
de17c821
DJ
2247
2248 This function unfortunately can not die until stabs do. */
2249
2250void
2251check_stub_method_group (struct type *type, int method_id)
2252{
2253 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2254 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2255 int j, found_stub = 0;
de17c821
DJ
2256
2257 for (j = 0; j < len; j++)
2258 if (TYPE_FN_FIELD_STUB (f, j))
2259 {
2260 found_stub = 1;
2261 check_stub_method (type, method_id, j);
2262 }
2263
7ba81444
MS
2264 /* GNU v3 methods with incorrect names were corrected when we read
2265 in type information, because it was cheaper to do it then. The
2266 only GNU v2 methods with incorrect method names are operators and
2267 destructors; destructors were also corrected when we read in type
2268 information.
de17c821
DJ
2269
2270 Therefore the only thing we need to handle here are v2 operator
2271 names. */
2272 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2273 {
2274 int ret;
2275 char dem_opname[256];
2276
7ba81444
MS
2277 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2278 method_id),
de17c821
DJ
2279 dem_opname, DMGL_ANSI);
2280 if (!ret)
7ba81444
MS
2281 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2282 method_id),
de17c821
DJ
2283 dem_opname, 0);
2284 if (ret)
2285 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2286 }
2287}
2288
9655fd1a
JK
2289/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2290const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2291
2292void
fba45db2 2293allocate_cplus_struct_type (struct type *type)
c906108c 2294{
b4ba55a1
JB
2295 if (HAVE_CPLUS_STRUCT (type))
2296 /* Structure was already allocated. Nothing more to do. */
2297 return;
2298
2299 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2300 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2301 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2302 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2303}
2304
b4ba55a1
JB
2305const struct gnat_aux_type gnat_aux_default =
2306 { NULL };
2307
2308/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2309 and allocate the associated gnat-specific data. The gnat-specific
2310 data is also initialized to gnat_aux_default. */
5212577a 2311
b4ba55a1
JB
2312void
2313allocate_gnat_aux_type (struct type *type)
2314{
2315 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2316 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2317 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2318 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2319}
2320
c906108c
SS
2321/* Helper function to initialize the standard scalar types.
2322
86f62fd7
TT
2323 If NAME is non-NULL, then it is used to initialize the type name.
2324 Note that NAME is not copied; it is required to have a lifetime at
2325 least as long as OBJFILE. */
c906108c
SS
2326
2327struct type *
7ba81444 2328init_type (enum type_code code, int length, int flags,
748e18ae 2329 const char *name, struct objfile *objfile)
c906108c 2330{
52f0bd74 2331 struct type *type;
c906108c
SS
2332
2333 type = alloc_type (objfile);
2334 TYPE_CODE (type) = code;
2335 TYPE_LENGTH (type) = length;
876cecd0
TT
2336
2337 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2338 if (flags & TYPE_FLAG_UNSIGNED)
2339 TYPE_UNSIGNED (type) = 1;
2340 if (flags & TYPE_FLAG_NOSIGN)
2341 TYPE_NOSIGN (type) = 1;
2342 if (flags & TYPE_FLAG_STUB)
2343 TYPE_STUB (type) = 1;
2344 if (flags & TYPE_FLAG_TARGET_STUB)
2345 TYPE_TARGET_STUB (type) = 1;
2346 if (flags & TYPE_FLAG_STATIC)
2347 TYPE_STATIC (type) = 1;
2348 if (flags & TYPE_FLAG_PROTOTYPED)
2349 TYPE_PROTOTYPED (type) = 1;
2350 if (flags & TYPE_FLAG_INCOMPLETE)
2351 TYPE_INCOMPLETE (type) = 1;
2352 if (flags & TYPE_FLAG_VARARGS)
2353 TYPE_VARARGS (type) = 1;
2354 if (flags & TYPE_FLAG_VECTOR)
2355 TYPE_VECTOR (type) = 1;
2356 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2357 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2358 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2359 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2360 if (flags & TYPE_FLAG_GNU_IFUNC)
2361 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2362
86f62fd7 2363 TYPE_NAME (type) = name;
c906108c
SS
2364
2365 /* C++ fancies. */
2366
973ccf8b 2367 if (name && strcmp (name, "char") == 0)
876cecd0 2368 TYPE_NOSIGN (type) = 1;
973ccf8b 2369
b4ba55a1 2370 switch (code)
c906108c 2371 {
b4ba55a1
JB
2372 case TYPE_CODE_STRUCT:
2373 case TYPE_CODE_UNION:
2374 case TYPE_CODE_NAMESPACE:
2375 INIT_CPLUS_SPECIFIC (type);
2376 break;
2377 case TYPE_CODE_FLT:
2378 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2379 break;
2380 case TYPE_CODE_FUNC:
b6cdc2c1 2381 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2382 break;
c906108c 2383 }
c16abbde 2384 return type;
c906108c 2385}
5212577a
DE
2386\f
2387/* Queries on types. */
c906108c 2388
c906108c 2389int
fba45db2 2390can_dereference (struct type *t)
c906108c 2391{
7ba81444
MS
2392 /* FIXME: Should we return true for references as well as
2393 pointers? */
c906108c
SS
2394 CHECK_TYPEDEF (t);
2395 return
2396 (t != NULL
2397 && TYPE_CODE (t) == TYPE_CODE_PTR
2398 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2399}
2400
adf40b2e 2401int
fba45db2 2402is_integral_type (struct type *t)
adf40b2e
JM
2403{
2404 CHECK_TYPEDEF (t);
2405 return
2406 ((t != NULL)
d4f3574e
SS
2407 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2408 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2409 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2410 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2411 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2412 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2413}
2414
e09342b5
TJB
2415/* Return true if TYPE is scalar. */
2416
2417static int
2418is_scalar_type (struct type *type)
2419{
2420 CHECK_TYPEDEF (type);
2421
2422 switch (TYPE_CODE (type))
2423 {
2424 case TYPE_CODE_ARRAY:
2425 case TYPE_CODE_STRUCT:
2426 case TYPE_CODE_UNION:
2427 case TYPE_CODE_SET:
2428 case TYPE_CODE_STRING:
e09342b5
TJB
2429 return 0;
2430 default:
2431 return 1;
2432 }
2433}
2434
2435/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2436 the memory layout of a scalar type. E.g., an array or struct with only
2437 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2438
2439int
2440is_scalar_type_recursive (struct type *t)
2441{
2442 CHECK_TYPEDEF (t);
2443
2444 if (is_scalar_type (t))
2445 return 1;
2446 /* Are we dealing with an array or string of known dimensions? */
2447 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2448 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2449 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2450 {
2451 LONGEST low_bound, high_bound;
2452 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2453
2454 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2455
2456 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2457 }
2458 /* Are we dealing with a struct with one element? */
2459 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2460 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2461 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2462 {
2463 int i, n = TYPE_NFIELDS (t);
2464
2465 /* If all elements of the union are scalar, then the union is scalar. */
2466 for (i = 0; i < n; i++)
2467 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2468 return 0;
2469
2470 return 1;
2471 }
2472
2473 return 0;
2474}
2475
4e8f195d
TT
2476/* A helper function which returns true if types A and B represent the
2477 "same" class type. This is true if the types have the same main
2478 type, or the same name. */
2479
2480int
2481class_types_same_p (const struct type *a, const struct type *b)
2482{
2483 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2484 || (TYPE_NAME (a) && TYPE_NAME (b)
2485 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2486}
2487
a9d5ef47
SW
2488/* If BASE is an ancestor of DCLASS return the distance between them.
2489 otherwise return -1;
2490 eg:
2491
2492 class A {};
2493 class B: public A {};
2494 class C: public B {};
2495 class D: C {};
2496
2497 distance_to_ancestor (A, A, 0) = 0
2498 distance_to_ancestor (A, B, 0) = 1
2499 distance_to_ancestor (A, C, 0) = 2
2500 distance_to_ancestor (A, D, 0) = 3
2501
2502 If PUBLIC is 1 then only public ancestors are considered,
2503 and the function returns the distance only if BASE is a public ancestor
2504 of DCLASS.
2505 Eg:
2506
0963b4bd 2507 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2508
0526b37a 2509static int
a9d5ef47 2510distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2511{
2512 int i;
a9d5ef47 2513 int d;
c5aa993b 2514
c906108c
SS
2515 CHECK_TYPEDEF (base);
2516 CHECK_TYPEDEF (dclass);
2517
4e8f195d 2518 if (class_types_same_p (base, dclass))
a9d5ef47 2519 return 0;
c906108c
SS
2520
2521 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2522 {
0526b37a
SW
2523 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2524 continue;
2525
a9d5ef47
SW
2526 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2527 if (d >= 0)
2528 return 1 + d;
4e8f195d 2529 }
c906108c 2530
a9d5ef47 2531 return -1;
c906108c 2532}
4e8f195d 2533
0526b37a
SW
2534/* Check whether BASE is an ancestor or base class or DCLASS
2535 Return 1 if so, and 0 if not.
2536 Note: If BASE and DCLASS are of the same type, this function
2537 will return 1. So for some class A, is_ancestor (A, A) will
2538 return 1. */
2539
2540int
2541is_ancestor (struct type *base, struct type *dclass)
2542{
a9d5ef47 2543 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2544}
2545
4e8f195d
TT
2546/* Like is_ancestor, but only returns true when BASE is a public
2547 ancestor of DCLASS. */
2548
2549int
2550is_public_ancestor (struct type *base, struct type *dclass)
2551{
a9d5ef47 2552 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2553}
2554
2555/* A helper function for is_unique_ancestor. */
2556
2557static int
2558is_unique_ancestor_worker (struct type *base, struct type *dclass,
2559 int *offset,
8af8e3bc
PA
2560 const gdb_byte *valaddr, int embedded_offset,
2561 CORE_ADDR address, struct value *val)
4e8f195d
TT
2562{
2563 int i, count = 0;
2564
2565 CHECK_TYPEDEF (base);
2566 CHECK_TYPEDEF (dclass);
2567
2568 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2569 {
8af8e3bc
PA
2570 struct type *iter;
2571 int this_offset;
4e8f195d 2572
8af8e3bc
PA
2573 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2574
2575 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2576 address, val);
4e8f195d
TT
2577
2578 if (class_types_same_p (base, iter))
2579 {
2580 /* If this is the first subclass, set *OFFSET and set count
2581 to 1. Otherwise, if this is at the same offset as
2582 previous instances, do nothing. Otherwise, increment
2583 count. */
2584 if (*offset == -1)
2585 {
2586 *offset = this_offset;
2587 count = 1;
2588 }
2589 else if (this_offset == *offset)
2590 {
2591 /* Nothing. */
2592 }
2593 else
2594 ++count;
2595 }
2596 else
2597 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2598 valaddr,
2599 embedded_offset + this_offset,
2600 address, val);
4e8f195d
TT
2601 }
2602
2603 return count;
2604}
2605
2606/* Like is_ancestor, but only returns true if BASE is a unique base
2607 class of the type of VAL. */
2608
2609int
2610is_unique_ancestor (struct type *base, struct value *val)
2611{
2612 int offset = -1;
2613
2614 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2615 value_contents_for_printing (val),
2616 value_embedded_offset (val),
2617 value_address (val), val) == 1;
4e8f195d
TT
2618}
2619
c906108c 2620\f
5212577a 2621/* Overload resolution. */
c906108c 2622
6403aeea
SW
2623/* Return the sum of the rank of A with the rank of B. */
2624
2625struct rank
2626sum_ranks (struct rank a, struct rank b)
2627{
2628 struct rank c;
2629 c.rank = a.rank + b.rank;
a9d5ef47 2630 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2631 return c;
2632}
2633
2634/* Compare rank A and B and return:
2635 0 if a = b
2636 1 if a is better than b
2637 -1 if b is better than a. */
2638
2639int
2640compare_ranks (struct rank a, struct rank b)
2641{
2642 if (a.rank == b.rank)
a9d5ef47
SW
2643 {
2644 if (a.subrank == b.subrank)
2645 return 0;
2646 if (a.subrank < b.subrank)
2647 return 1;
2648 if (a.subrank > b.subrank)
2649 return -1;
2650 }
6403aeea
SW
2651
2652 if (a.rank < b.rank)
2653 return 1;
2654
0963b4bd 2655 /* a.rank > b.rank */
6403aeea
SW
2656 return -1;
2657}
c5aa993b 2658
0963b4bd 2659/* Functions for overload resolution begin here. */
c906108c
SS
2660
2661/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2662 0 => A and B are identical
2663 1 => A and B are incomparable
2664 2 => A is better than B
2665 3 => A is worse than B */
c906108c
SS
2666
2667int
fba45db2 2668compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2669{
2670 int i;
2671 int tmp;
c5aa993b
JM
2672 short found_pos = 0; /* any positives in c? */
2673 short found_neg = 0; /* any negatives in c? */
2674
2675 /* differing lengths => incomparable */
c906108c
SS
2676 if (a->length != b->length)
2677 return 1;
2678
c5aa993b
JM
2679 /* Subtract b from a */
2680 for (i = 0; i < a->length; i++)
c906108c 2681 {
6403aeea 2682 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2683 if (tmp > 0)
c5aa993b 2684 found_pos = 1;
c906108c 2685 else if (tmp < 0)
c5aa993b 2686 found_neg = 1;
c906108c
SS
2687 }
2688
2689 if (found_pos)
2690 {
2691 if (found_neg)
c5aa993b 2692 return 1; /* incomparable */
c906108c 2693 else
c5aa993b 2694 return 3; /* A > B */
c906108c 2695 }
c5aa993b
JM
2696 else
2697 /* no positives */
c906108c
SS
2698 {
2699 if (found_neg)
c5aa993b 2700 return 2; /* A < B */
c906108c 2701 else
c5aa993b 2702 return 0; /* A == B */
c906108c
SS
2703 }
2704}
2705
7ba81444
MS
2706/* Rank a function by comparing its parameter types (PARMS, length
2707 NPARMS), to the types of an argument list (ARGS, length NARGS).
2708 Return a pointer to a badness vector. This has NARGS + 1
2709 entries. */
c906108c
SS
2710
2711struct badness_vector *
7ba81444 2712rank_function (struct type **parms, int nparms,
da096638 2713 struct value **args, int nargs)
c906108c
SS
2714{
2715 int i;
c5aa993b 2716 struct badness_vector *bv;
c906108c
SS
2717 int min_len = nparms < nargs ? nparms : nargs;
2718
2719 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2720 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2721 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2722
2723 /* First compare the lengths of the supplied lists.
7ba81444 2724 If there is a mismatch, set it to a high value. */
c5aa993b 2725
c906108c 2726 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2727 arguments and ellipsis parameter lists, we should consider those
2728 and rank the length-match more finely. */
c906108c 2729
6403aeea
SW
2730 LENGTH_MATCH (bv) = (nargs != nparms)
2731 ? LENGTH_MISMATCH_BADNESS
2732 : EXACT_MATCH_BADNESS;
c906108c 2733
0963b4bd 2734 /* Now rank all the parameters of the candidate function. */
74cc24b0 2735 for (i = 1; i <= min_len; i++)
da096638
KS
2736 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2737 args[i - 1]);
c906108c 2738
0963b4bd 2739 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2740 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2741 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2742
2743 return bv;
2744}
2745
973ccf8b
DJ
2746/* Compare the names of two integer types, assuming that any sign
2747 qualifiers have been checked already. We do it this way because
2748 there may be an "int" in the name of one of the types. */
2749
2750static int
2751integer_types_same_name_p (const char *first, const char *second)
2752{
2753 int first_p, second_p;
2754
7ba81444
MS
2755 /* If both are shorts, return 1; if neither is a short, keep
2756 checking. */
973ccf8b
DJ
2757 first_p = (strstr (first, "short") != NULL);
2758 second_p = (strstr (second, "short") != NULL);
2759 if (first_p && second_p)
2760 return 1;
2761 if (first_p || second_p)
2762 return 0;
2763
2764 /* Likewise for long. */
2765 first_p = (strstr (first, "long") != NULL);
2766 second_p = (strstr (second, "long") != NULL);
2767 if (first_p && second_p)
2768 return 1;
2769 if (first_p || second_p)
2770 return 0;
2771
2772 /* Likewise for char. */
2773 first_p = (strstr (first, "char") != NULL);
2774 second_p = (strstr (second, "char") != NULL);
2775 if (first_p && second_p)
2776 return 1;
2777 if (first_p || second_p)
2778 return 0;
2779
2780 /* They must both be ints. */
2781 return 1;
2782}
2783
7062b0a0
SW
2784/* Compares type A to type B returns 1 if the represent the same type
2785 0 otherwise. */
2786
bd69fc68 2787int
7062b0a0
SW
2788types_equal (struct type *a, struct type *b)
2789{
2790 /* Identical type pointers. */
2791 /* However, this still doesn't catch all cases of same type for b
2792 and a. The reason is that builtin types are different from
2793 the same ones constructed from the object. */
2794 if (a == b)
2795 return 1;
2796
2797 /* Resolve typedefs */
2798 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2799 a = check_typedef (a);
2800 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2801 b = check_typedef (b);
2802
2803 /* If after resolving typedefs a and b are not of the same type
2804 code then they are not equal. */
2805 if (TYPE_CODE (a) != TYPE_CODE (b))
2806 return 0;
2807
2808 /* If a and b are both pointers types or both reference types then
2809 they are equal of the same type iff the objects they refer to are
2810 of the same type. */
2811 if (TYPE_CODE (a) == TYPE_CODE_PTR
2812 || TYPE_CODE (a) == TYPE_CODE_REF)
2813 return types_equal (TYPE_TARGET_TYPE (a),
2814 TYPE_TARGET_TYPE (b));
2815
0963b4bd 2816 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2817 are exactly the same. This happens when we generate method
2818 stubs. The types won't point to the same address, but they
0963b4bd 2819 really are the same. */
7062b0a0
SW
2820
2821 if (TYPE_NAME (a) && TYPE_NAME (b)
2822 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2823 return 1;
2824
2825 /* Check if identical after resolving typedefs. */
2826 if (a == b)
2827 return 1;
2828
9ce98649
TT
2829 /* Two function types are equal if their argument and return types
2830 are equal. */
2831 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2832 {
2833 int i;
2834
2835 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2836 return 0;
2837
2838 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2839 return 0;
2840
2841 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2842 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2843 return 0;
2844
2845 return 1;
2846 }
2847
7062b0a0
SW
2848 return 0;
2849}
ca092b61
DE
2850\f
2851/* Deep comparison of types. */
2852
2853/* An entry in the type-equality bcache. */
2854
2855typedef struct type_equality_entry
2856{
2857 struct type *type1, *type2;
2858} type_equality_entry_d;
2859
2860DEF_VEC_O (type_equality_entry_d);
2861
2862/* A helper function to compare two strings. Returns 1 if they are
2863 the same, 0 otherwise. Handles NULLs properly. */
2864
2865static int
2866compare_maybe_null_strings (const char *s, const char *t)
2867{
2868 if (s == NULL && t != NULL)
2869 return 0;
2870 else if (s != NULL && t == NULL)
2871 return 0;
2872 else if (s == NULL && t== NULL)
2873 return 1;
2874 return strcmp (s, t) == 0;
2875}
2876
2877/* A helper function for check_types_worklist that checks two types for
2878 "deep" equality. Returns non-zero if the types are considered the
2879 same, zero otherwise. */
2880
2881static int
2882check_types_equal (struct type *type1, struct type *type2,
2883 VEC (type_equality_entry_d) **worklist)
2884{
2885 CHECK_TYPEDEF (type1);
2886 CHECK_TYPEDEF (type2);
2887
2888 if (type1 == type2)
2889 return 1;
2890
2891 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2892 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2893 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2894 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2895 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2896 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2897 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2898 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2899 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2900 return 0;
2901
2902 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2903 TYPE_TAG_NAME (type2)))
2904 return 0;
2905 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2906 return 0;
2907
2908 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2909 {
2910 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2911 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2912 return 0;
2913 }
2914 else
2915 {
2916 int i;
2917
2918 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2919 {
2920 const struct field *field1 = &TYPE_FIELD (type1, i);
2921 const struct field *field2 = &TYPE_FIELD (type2, i);
2922 struct type_equality_entry entry;
2923
2924 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2925 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2926 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2927 return 0;
2928 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2929 FIELD_NAME (*field2)))
2930 return 0;
2931 switch (FIELD_LOC_KIND (*field1))
2932 {
2933 case FIELD_LOC_KIND_BITPOS:
2934 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2935 return 0;
2936 break;
2937 case FIELD_LOC_KIND_ENUMVAL:
2938 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2939 return 0;
2940 break;
2941 case FIELD_LOC_KIND_PHYSADDR:
2942 if (FIELD_STATIC_PHYSADDR (*field1)
2943 != FIELD_STATIC_PHYSADDR (*field2))
2944 return 0;
2945 break;
2946 case FIELD_LOC_KIND_PHYSNAME:
2947 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2948 FIELD_STATIC_PHYSNAME (*field2)))
2949 return 0;
2950 break;
2951 case FIELD_LOC_KIND_DWARF_BLOCK:
2952 {
2953 struct dwarf2_locexpr_baton *block1, *block2;
2954
2955 block1 = FIELD_DWARF_BLOCK (*field1);
2956 block2 = FIELD_DWARF_BLOCK (*field2);
2957 if (block1->per_cu != block2->per_cu
2958 || block1->size != block2->size
2959 || memcmp (block1->data, block2->data, block1->size) != 0)
2960 return 0;
2961 }
2962 break;
2963 default:
2964 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2965 "%d by check_types_equal"),
2966 FIELD_LOC_KIND (*field1));
2967 }
2968
2969 entry.type1 = FIELD_TYPE (*field1);
2970 entry.type2 = FIELD_TYPE (*field2);
2971 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2972 }
2973 }
2974
2975 if (TYPE_TARGET_TYPE (type1) != NULL)
2976 {
2977 struct type_equality_entry entry;
2978
2979 if (TYPE_TARGET_TYPE (type2) == NULL)
2980 return 0;
2981
2982 entry.type1 = TYPE_TARGET_TYPE (type1);
2983 entry.type2 = TYPE_TARGET_TYPE (type2);
2984 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2985 }
2986 else if (TYPE_TARGET_TYPE (type2) != NULL)
2987 return 0;
2988
2989 return 1;
2990}
2991
2992/* Check types on a worklist for equality. Returns zero if any pair
2993 is not equal, non-zero if they are all considered equal. */
2994
2995static int
2996check_types_worklist (VEC (type_equality_entry_d) **worklist,
2997 struct bcache *cache)
2998{
2999 while (!VEC_empty (type_equality_entry_d, *worklist))
3000 {
3001 struct type_equality_entry entry;
3002 int added;
3003
3004 entry = *VEC_last (type_equality_entry_d, *worklist);
3005 VEC_pop (type_equality_entry_d, *worklist);
3006
3007 /* If the type pair has already been visited, we know it is
3008 ok. */
3009 bcache_full (&entry, sizeof (entry), cache, &added);
3010 if (!added)
3011 continue;
3012
3013 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3014 return 0;
3015 }
7062b0a0 3016
ca092b61
DE
3017 return 1;
3018}
3019
3020/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3021 "deep comparison". Otherwise return zero. */
3022
3023int
3024types_deeply_equal (struct type *type1, struct type *type2)
3025{
3026 volatile struct gdb_exception except;
3027 int result = 0;
3028 struct bcache *cache;
3029 VEC (type_equality_entry_d) *worklist = NULL;
3030 struct type_equality_entry entry;
3031
3032 gdb_assert (type1 != NULL && type2 != NULL);
3033
3034 /* Early exit for the simple case. */
3035 if (type1 == type2)
3036 return 1;
3037
3038 cache = bcache_xmalloc (NULL, NULL);
3039
3040 entry.type1 = type1;
3041 entry.type2 = type2;
3042 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3043
3044 TRY_CATCH (except, RETURN_MASK_ALL)
3045 {
3046 result = check_types_worklist (&worklist, cache);
3047 }
3048 /* check_types_worklist calls several nested helper functions,
3049 some of which can raise a GDB Exception, so we just check
3050 and rethrow here. If there is a GDB exception, a comparison
3051 is not capable (or trusted), so exit. */
3052 bcache_xfree (cache);
3053 VEC_free (type_equality_entry_d, worklist);
3054 /* Rethrow if there was a problem. */
3055 if (except.reason < 0)
3056 throw_exception (except);
3057
3058 return result;
3059}
3060\f
c906108c
SS
3061/* Compare one type (PARM) for compatibility with another (ARG).
3062 * PARM is intended to be the parameter type of a function; and
3063 * ARG is the supplied argument's type. This function tests if
3064 * the latter can be converted to the former.
da096638 3065 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3066 *
3067 * Return 0 if they are identical types;
3068 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3069 * PARM is to ARG. The higher the return value, the worse the match.
3070 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3071
6403aeea 3072struct rank
da096638 3073rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3074{
a9d5ef47 3075 struct rank rank = {0,0};
7062b0a0
SW
3076
3077 if (types_equal (parm, arg))
6403aeea 3078 return EXACT_MATCH_BADNESS;
c906108c
SS
3079
3080 /* Resolve typedefs */
3081 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3082 parm = check_typedef (parm);
3083 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3084 arg = check_typedef (arg);
3085
db577aea 3086 /* See through references, since we can almost make non-references
7ba81444 3087 references. */
db577aea 3088 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3089 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3090 REFERENCE_CONVERSION_BADNESS));
db577aea 3091 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3092 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3093 REFERENCE_CONVERSION_BADNESS));
5d161b24 3094 if (overload_debug)
7ba81444
MS
3095 /* Debugging only. */
3096 fprintf_filtered (gdb_stderr,
3097 "------ Arg is %s [%d], parm is %s [%d]\n",
3098 TYPE_NAME (arg), TYPE_CODE (arg),
3099 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3100
0963b4bd 3101 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3102
3103 switch (TYPE_CODE (parm))
3104 {
c5aa993b
JM
3105 case TYPE_CODE_PTR:
3106 switch (TYPE_CODE (arg))
3107 {
3108 case TYPE_CODE_PTR:
7062b0a0
SW
3109
3110 /* Allowed pointer conversions are:
3111 (a) pointer to void-pointer conversion. */
3112 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3113 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3114
3115 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3116 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3117 TYPE_TARGET_TYPE (arg),
3118 0);
3119 if (rank.subrank >= 0)
3120 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3121
3122 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3123 case TYPE_CODE_ARRAY:
7062b0a0
SW
3124 if (types_equal (TYPE_TARGET_TYPE (parm),
3125 TYPE_TARGET_TYPE (arg)))
6403aeea 3126 return EXACT_MATCH_BADNESS;
7062b0a0 3127 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3128 case TYPE_CODE_FUNC:
da096638 3129 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3130 case TYPE_CODE_INT:
a451cb65 3131 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3132 {
a451cb65
KS
3133 if (value_as_long (value) == 0)
3134 {
3135 /* Null pointer conversion: allow it to be cast to a pointer.
3136 [4.10.1 of C++ standard draft n3290] */
3137 return NULL_POINTER_CONVERSION_BADNESS;
3138 }
3139 else
3140 {
3141 /* If type checking is disabled, allow the conversion. */
3142 if (!strict_type_checking)
3143 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3144 }
da096638
KS
3145 }
3146 /* fall through */
c5aa993b 3147 case TYPE_CODE_ENUM:
4f2aea11 3148 case TYPE_CODE_FLAGS:
c5aa993b
JM
3149 case TYPE_CODE_CHAR:
3150 case TYPE_CODE_RANGE:
3151 case TYPE_CODE_BOOL:
c5aa993b
JM
3152 default:
3153 return INCOMPATIBLE_TYPE_BADNESS;
3154 }
3155 case TYPE_CODE_ARRAY:
3156 switch (TYPE_CODE (arg))
3157 {
3158 case TYPE_CODE_PTR:
3159 case TYPE_CODE_ARRAY:
7ba81444 3160 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3161 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3162 default:
3163 return INCOMPATIBLE_TYPE_BADNESS;
3164 }
3165 case TYPE_CODE_FUNC:
3166 switch (TYPE_CODE (arg))
3167 {
3168 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3169 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3170 default:
3171 return INCOMPATIBLE_TYPE_BADNESS;
3172 }
3173 case TYPE_CODE_INT:
3174 switch (TYPE_CODE (arg))
3175 {
3176 case TYPE_CODE_INT:
3177 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3178 {
3179 /* Deal with signed, unsigned, and plain chars and
7ba81444 3180 signed and unsigned ints. */
c5aa993b
JM
3181 if (TYPE_NOSIGN (parm))
3182 {
0963b4bd 3183 /* This case only for character types. */
7ba81444 3184 if (TYPE_NOSIGN (arg))
6403aeea 3185 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3186 else /* signed/unsigned char -> plain char */
3187 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3188 }
3189 else if (TYPE_UNSIGNED (parm))
3190 {
3191 if (TYPE_UNSIGNED (arg))
3192 {
7ba81444
MS
3193 /* unsigned int -> unsigned int, or
3194 unsigned long -> unsigned long */
3195 if (integer_types_same_name_p (TYPE_NAME (parm),
3196 TYPE_NAME (arg)))
6403aeea 3197 return EXACT_MATCH_BADNESS;
7ba81444
MS
3198 else if (integer_types_same_name_p (TYPE_NAME (arg),
3199 "int")
3200 && integer_types_same_name_p (TYPE_NAME (parm),
3201 "long"))
3e43a32a
MS
3202 /* unsigned int -> unsigned long */
3203 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3204 else
3e43a32a
MS
3205 /* unsigned long -> unsigned int */
3206 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3207 }
3208 else
3209 {
7ba81444
MS
3210 if (integer_types_same_name_p (TYPE_NAME (arg),
3211 "long")
3212 && integer_types_same_name_p (TYPE_NAME (parm),
3213 "int"))
3e43a32a
MS
3214 /* signed long -> unsigned int */
3215 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3216 else
3e43a32a
MS
3217 /* signed int/long -> unsigned int/long */
3218 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3219 }
3220 }
3221 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3222 {
7ba81444
MS
3223 if (integer_types_same_name_p (TYPE_NAME (parm),
3224 TYPE_NAME (arg)))
6403aeea 3225 return EXACT_MATCH_BADNESS;
7ba81444
MS
3226 else if (integer_types_same_name_p (TYPE_NAME (arg),
3227 "int")
3228 && integer_types_same_name_p (TYPE_NAME (parm),
3229 "long"))
c5aa993b
JM
3230 return INTEGER_PROMOTION_BADNESS;
3231 else
1c5cb38e 3232 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3233 }
3234 else
1c5cb38e 3235 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3236 }
3237 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3238 return INTEGER_PROMOTION_BADNESS;
3239 else
1c5cb38e 3240 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3241 case TYPE_CODE_ENUM:
4f2aea11 3242 case TYPE_CODE_FLAGS:
c5aa993b
JM
3243 case TYPE_CODE_CHAR:
3244 case TYPE_CODE_RANGE:
3245 case TYPE_CODE_BOOL:
3d567982
TT
3246 if (TYPE_DECLARED_CLASS (arg))
3247 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3248 return INTEGER_PROMOTION_BADNESS;
3249 case TYPE_CODE_FLT:
3250 return INT_FLOAT_CONVERSION_BADNESS;
3251 case TYPE_CODE_PTR:
3252 return NS_POINTER_CONVERSION_BADNESS;
3253 default:
3254 return INCOMPATIBLE_TYPE_BADNESS;
3255 }
3256 break;
3257 case TYPE_CODE_ENUM:
3258 switch (TYPE_CODE (arg))
3259 {
3260 case TYPE_CODE_INT:
3261 case TYPE_CODE_CHAR:
3262 case TYPE_CODE_RANGE:
3263 case TYPE_CODE_BOOL:
3264 case TYPE_CODE_ENUM:
3d567982
TT
3265 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3266 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3267 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3268 case TYPE_CODE_FLT:
3269 return INT_FLOAT_CONVERSION_BADNESS;
3270 default:
3271 return INCOMPATIBLE_TYPE_BADNESS;
3272 }
3273 break;
3274 case TYPE_CODE_CHAR:
3275 switch (TYPE_CODE (arg))
3276 {
3277 case TYPE_CODE_RANGE:
3278 case TYPE_CODE_BOOL:
3279 case TYPE_CODE_ENUM:
3d567982
TT
3280 if (TYPE_DECLARED_CLASS (arg))
3281 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3282 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3283 case TYPE_CODE_FLT:
3284 return INT_FLOAT_CONVERSION_BADNESS;
3285 case TYPE_CODE_INT:
3286 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3287 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3288 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3289 return INTEGER_PROMOTION_BADNESS;
3290 /* >>> !! else fall through !! <<< */
3291 case TYPE_CODE_CHAR:
7ba81444
MS
3292 /* Deal with signed, unsigned, and plain chars for C++ and
3293 with int cases falling through from previous case. */
c5aa993b
JM
3294 if (TYPE_NOSIGN (parm))
3295 {
3296 if (TYPE_NOSIGN (arg))
6403aeea 3297 return EXACT_MATCH_BADNESS;
c5aa993b 3298 else
1c5cb38e 3299 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3300 }
3301 else if (TYPE_UNSIGNED (parm))
3302 {
3303 if (TYPE_UNSIGNED (arg))
6403aeea 3304 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3305 else
3306 return INTEGER_PROMOTION_BADNESS;
3307 }
3308 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3309 return EXACT_MATCH_BADNESS;
c5aa993b 3310 else
1c5cb38e 3311 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3312 default:
3313 return INCOMPATIBLE_TYPE_BADNESS;
3314 }
3315 break;
3316 case TYPE_CODE_RANGE:
3317 switch (TYPE_CODE (arg))
3318 {
3319 case TYPE_CODE_INT:
3320 case TYPE_CODE_CHAR:
3321 case TYPE_CODE_RANGE:
3322 case TYPE_CODE_BOOL:
3323 case TYPE_CODE_ENUM:
1c5cb38e 3324 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3325 case TYPE_CODE_FLT:
3326 return INT_FLOAT_CONVERSION_BADNESS;
3327 default:
3328 return INCOMPATIBLE_TYPE_BADNESS;
3329 }
3330 break;
3331 case TYPE_CODE_BOOL:
3332 switch (TYPE_CODE (arg))
3333 {
5b4f6e25
KS
3334 /* n3290 draft, section 4.12.1 (conv.bool):
3335
3336 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3337 pointer to member type can be converted to a prvalue of type
3338 bool. A zero value, null pointer value, or null member pointer
3339 value is converted to false; any other value is converted to
3340 true. A prvalue of type std::nullptr_t can be converted to a
3341 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3342 case TYPE_CODE_INT:
3343 case TYPE_CODE_CHAR:
c5aa993b
JM
3344 case TYPE_CODE_ENUM:
3345 case TYPE_CODE_FLT:
5b4f6e25 3346 case TYPE_CODE_MEMBERPTR:
c5aa993b 3347 case TYPE_CODE_PTR:
5b4f6e25
KS
3348 return BOOL_CONVERSION_BADNESS;
3349 case TYPE_CODE_RANGE:
3350 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3351 case TYPE_CODE_BOOL:
6403aeea 3352 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3353 default:
3354 return INCOMPATIBLE_TYPE_BADNESS;
3355 }
3356 break;
3357 case TYPE_CODE_FLT:
3358 switch (TYPE_CODE (arg))
3359 {
3360 case TYPE_CODE_FLT:
3361 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3362 return FLOAT_PROMOTION_BADNESS;
3363 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3364 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3365 else
3366 return FLOAT_CONVERSION_BADNESS;
3367 case TYPE_CODE_INT:
3368 case TYPE_CODE_BOOL:
3369 case TYPE_CODE_ENUM:
3370 case TYPE_CODE_RANGE:
3371 case TYPE_CODE_CHAR:
3372 return INT_FLOAT_CONVERSION_BADNESS;
3373 default:
3374 return INCOMPATIBLE_TYPE_BADNESS;
3375 }
3376 break;
3377 case TYPE_CODE_COMPLEX:
3378 switch (TYPE_CODE (arg))
7ba81444 3379 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3380 case TYPE_CODE_FLT:
3381 return FLOAT_PROMOTION_BADNESS;
3382 case TYPE_CODE_COMPLEX:
6403aeea 3383 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3384 default:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 }
3387 break;
3388 case TYPE_CODE_STRUCT:
0963b4bd 3389 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
3390 switch (TYPE_CODE (arg))
3391 {
3392 case TYPE_CODE_STRUCT:
3393 /* Check for derivation */
a9d5ef47
SW
3394 rank.subrank = distance_to_ancestor (parm, arg, 0);
3395 if (rank.subrank >= 0)
3396 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3397 /* else fall through */
3398 default:
3399 return INCOMPATIBLE_TYPE_BADNESS;
3400 }
3401 break;
3402 case TYPE_CODE_UNION:
3403 switch (TYPE_CODE (arg))
3404 {
3405 case TYPE_CODE_UNION:
3406 default:
3407 return INCOMPATIBLE_TYPE_BADNESS;
3408 }
3409 break;
0d5de010 3410 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3411 switch (TYPE_CODE (arg))
3412 {
3413 default:
3414 return INCOMPATIBLE_TYPE_BADNESS;
3415 }
3416 break;
3417 case TYPE_CODE_METHOD:
3418 switch (TYPE_CODE (arg))
3419 {
3420
3421 default:
3422 return INCOMPATIBLE_TYPE_BADNESS;
3423 }
3424 break;
3425 case TYPE_CODE_REF:
3426 switch (TYPE_CODE (arg))
3427 {
3428
3429 default:
3430 return INCOMPATIBLE_TYPE_BADNESS;
3431 }
3432
3433 break;
3434 case TYPE_CODE_SET:
3435 switch (TYPE_CODE (arg))
3436 {
3437 /* Not in C++ */
3438 case TYPE_CODE_SET:
7ba81444 3439 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3440 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3441 default:
3442 return INCOMPATIBLE_TYPE_BADNESS;
3443 }
3444 break;
3445 case TYPE_CODE_VOID:
3446 default:
3447 return INCOMPATIBLE_TYPE_BADNESS;
3448 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3449}
3450
0963b4bd 3451/* End of functions for overload resolution. */
5212577a
DE
3452\f
3453/* Routines to pretty-print types. */
c906108c 3454
c906108c 3455static void
fba45db2 3456print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3457{
3458 int bitno;
3459
3460 for (bitno = 0; bitno < nbits; bitno++)
3461 {
3462 if ((bitno % 8) == 0)
3463 {
3464 puts_filtered (" ");
3465 }
3466 if (B_TST (bits, bitno))
a3f17187 3467 printf_filtered (("1"));
c906108c 3468 else
a3f17187 3469 printf_filtered (("0"));
c906108c
SS
3470 }
3471}
3472
ad2f7632 3473/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3474 include it since we may get into a infinitely recursive
3475 situation. */
c906108c
SS
3476
3477static void
ad2f7632 3478print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
3479{
3480 if (args != NULL)
3481 {
ad2f7632
DJ
3482 int i;
3483
3484 for (i = 0; i < nargs; i++)
3485 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
3486 }
3487}
3488
d6a843b5
JK
3489int
3490field_is_static (struct field *f)
3491{
3492 /* "static" fields are the fields whose location is not relative
3493 to the address of the enclosing struct. It would be nice to
3494 have a dedicated flag that would be set for static fields when
3495 the type is being created. But in practice, checking the field
254e6b9e 3496 loc_kind should give us an accurate answer. */
d6a843b5
JK
3497 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3498 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3499}
3500
c906108c 3501static void
fba45db2 3502dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3503{
3504 int method_idx;
3505 int overload_idx;
3506 struct fn_field *f;
3507
3508 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3509 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3510 printf_filtered ("\n");
3511 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3512 {
3513 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3514 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3515 method_idx,
3516 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3517 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3518 gdb_stdout);
a3f17187 3519 printf_filtered (_(") length %d\n"),
c906108c
SS
3520 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3521 for (overload_idx = 0;
3522 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3523 overload_idx++)
3524 {
3525 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3526 overload_idx,
3527 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3528 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3529 gdb_stdout);
c906108c
SS
3530 printf_filtered (")\n");
3531 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3532 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3533 gdb_stdout);
c906108c
SS
3534 printf_filtered ("\n");
3535
3536 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3537 spaces + 8 + 2);
3538
3539 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3540 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3541 gdb_stdout);
c906108c
SS
3542 printf_filtered ("\n");
3543
ad2f7632 3544 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
3545 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3546 overload_idx)),
ad2f7632 3547 spaces);
c906108c 3548 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3549 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3550 gdb_stdout);
c906108c
SS
3551 printf_filtered ("\n");
3552
3553 printfi_filtered (spaces + 8, "is_const %d\n",
3554 TYPE_FN_FIELD_CONST (f, overload_idx));
3555 printfi_filtered (spaces + 8, "is_volatile %d\n",
3556 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3557 printfi_filtered (spaces + 8, "is_private %d\n",
3558 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3559 printfi_filtered (spaces + 8, "is_protected %d\n",
3560 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3561 printfi_filtered (spaces + 8, "is_stub %d\n",
3562 TYPE_FN_FIELD_STUB (f, overload_idx));
3563 printfi_filtered (spaces + 8, "voffset %u\n",
3564 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3565 }
3566 }
3567}
3568
3569static void
fba45db2 3570print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3571{
3572 printfi_filtered (spaces, "n_baseclasses %d\n",
3573 TYPE_N_BASECLASSES (type));
3574 printfi_filtered (spaces, "nfn_fields %d\n",
3575 TYPE_NFN_FIELDS (type));
c906108c
SS
3576 if (TYPE_N_BASECLASSES (type) > 0)
3577 {
3578 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3579 TYPE_N_BASECLASSES (type));
7ba81444
MS
3580 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3581 gdb_stdout);
c906108c
SS
3582 printf_filtered (")");
3583
3584 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3585 TYPE_N_BASECLASSES (type));
3586 puts_filtered ("\n");
3587 }
3588 if (TYPE_NFIELDS (type) > 0)
3589 {
3590 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3591 {
7ba81444
MS
3592 printfi_filtered (spaces,
3593 "private_field_bits (%d bits at *",
c906108c 3594 TYPE_NFIELDS (type));
7ba81444
MS
3595 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3596 gdb_stdout);
c906108c
SS
3597 printf_filtered (")");
3598 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3599 TYPE_NFIELDS (type));
3600 puts_filtered ("\n");
3601 }
3602 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3603 {
7ba81444
MS
3604 printfi_filtered (spaces,
3605 "protected_field_bits (%d bits at *",
c906108c 3606 TYPE_NFIELDS (type));
7ba81444
MS
3607 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3608 gdb_stdout);
c906108c
SS
3609 printf_filtered (")");
3610 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3611 TYPE_NFIELDS (type));
3612 puts_filtered ("\n");
3613 }
3614 }
3615 if (TYPE_NFN_FIELDS (type) > 0)
3616 {
3617 dump_fn_fieldlists (type, spaces);
3618 }
3619}
3620
b4ba55a1
JB
3621/* Print the contents of the TYPE's type_specific union, assuming that
3622 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3623
3624static void
3625print_gnat_stuff (struct type *type, int spaces)
3626{
3627 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3628
3629 recursive_dump_type (descriptive_type, spaces + 2);
3630}
3631
c906108c
SS
3632static struct obstack dont_print_type_obstack;
3633
3634void
fba45db2 3635recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3636{
3637 int idx;
3638
3639 if (spaces == 0)
3640 obstack_begin (&dont_print_type_obstack, 0);
3641
3642 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3643 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3644 {
3645 struct type **first_dont_print
7ba81444 3646 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3647
7ba81444
MS
3648 int i = (struct type **)
3649 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3650
3651 while (--i >= 0)
3652 {
3653 if (type == first_dont_print[i])
3654 {
3655 printfi_filtered (spaces, "type node ");
d4f3574e 3656 gdb_print_host_address (type, gdb_stdout);
a3f17187 3657 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3658 return;
3659 }
3660 }
3661
3662 obstack_ptr_grow (&dont_print_type_obstack, type);
3663 }
3664
3665 printfi_filtered (spaces, "type node ");
d4f3574e 3666 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3667 printf_filtered ("\n");
3668 printfi_filtered (spaces, "name '%s' (",
3669 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3670 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3671 printf_filtered (")\n");
e9e79dd9
FF
3672 printfi_filtered (spaces, "tagname '%s' (",
3673 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3674 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3675 printf_filtered (")\n");
c906108c
SS
3676 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3677 switch (TYPE_CODE (type))
3678 {
c5aa993b
JM
3679 case TYPE_CODE_UNDEF:
3680 printf_filtered ("(TYPE_CODE_UNDEF)");
3681 break;
3682 case TYPE_CODE_PTR:
3683 printf_filtered ("(TYPE_CODE_PTR)");
3684 break;
3685 case TYPE_CODE_ARRAY:
3686 printf_filtered ("(TYPE_CODE_ARRAY)");
3687 break;
3688 case TYPE_CODE_STRUCT:
3689 printf_filtered ("(TYPE_CODE_STRUCT)");
3690 break;
3691 case TYPE_CODE_UNION:
3692 printf_filtered ("(TYPE_CODE_UNION)");
3693 break;
3694 case TYPE_CODE_ENUM:
3695 printf_filtered ("(TYPE_CODE_ENUM)");
3696 break;
4f2aea11
MK
3697 case TYPE_CODE_FLAGS:
3698 printf_filtered ("(TYPE_CODE_FLAGS)");
3699 break;
c5aa993b
JM
3700 case TYPE_CODE_FUNC:
3701 printf_filtered ("(TYPE_CODE_FUNC)");
3702 break;
3703 case TYPE_CODE_INT:
3704 printf_filtered ("(TYPE_CODE_INT)");
3705 break;
3706 case TYPE_CODE_FLT:
3707 printf_filtered ("(TYPE_CODE_FLT)");
3708 break;
3709 case TYPE_CODE_VOID:
3710 printf_filtered ("(TYPE_CODE_VOID)");
3711 break;
3712 case TYPE_CODE_SET:
3713 printf_filtered ("(TYPE_CODE_SET)");
3714 break;
3715 case TYPE_CODE_RANGE:
3716 printf_filtered ("(TYPE_CODE_RANGE)");
3717 break;
3718 case TYPE_CODE_STRING:
3719 printf_filtered ("(TYPE_CODE_STRING)");
3720 break;
3721 case TYPE_CODE_ERROR:
3722 printf_filtered ("(TYPE_CODE_ERROR)");
3723 break;
0d5de010
DJ
3724 case TYPE_CODE_MEMBERPTR:
3725 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3726 break;
3727 case TYPE_CODE_METHODPTR:
3728 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3729 break;
3730 case TYPE_CODE_METHOD:
3731 printf_filtered ("(TYPE_CODE_METHOD)");
3732 break;
3733 case TYPE_CODE_REF:
3734 printf_filtered ("(TYPE_CODE_REF)");
3735 break;
3736 case TYPE_CODE_CHAR:
3737 printf_filtered ("(TYPE_CODE_CHAR)");
3738 break;
3739 case TYPE_CODE_BOOL:
3740 printf_filtered ("(TYPE_CODE_BOOL)");
3741 break;
e9e79dd9
FF
3742 case TYPE_CODE_COMPLEX:
3743 printf_filtered ("(TYPE_CODE_COMPLEX)");
3744 break;
c5aa993b
JM
3745 case TYPE_CODE_TYPEDEF:
3746 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3747 break;
5c4e30ca
DC
3748 case TYPE_CODE_NAMESPACE:
3749 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3750 break;
c5aa993b
JM
3751 default:
3752 printf_filtered ("(UNKNOWN TYPE CODE)");
3753 break;
c906108c
SS
3754 }
3755 puts_filtered ("\n");
3756 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3757 if (TYPE_OBJFILE_OWNED (type))
3758 {
3759 printfi_filtered (spaces, "objfile ");
3760 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3761 }
3762 else
3763 {
3764 printfi_filtered (spaces, "gdbarch ");
3765 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3766 }
c906108c
SS
3767 printf_filtered ("\n");
3768 printfi_filtered (spaces, "target_type ");
d4f3574e 3769 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3770 printf_filtered ("\n");
3771 if (TYPE_TARGET_TYPE (type) != NULL)
3772 {
3773 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3774 }
3775 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3776 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3777 printf_filtered ("\n");
3778 printfi_filtered (spaces, "reference_type ");
d4f3574e 3779 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3780 printf_filtered ("\n");
2fdde8f8
DJ
3781 printfi_filtered (spaces, "type_chain ");
3782 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3783 printf_filtered ("\n");
7ba81444
MS
3784 printfi_filtered (spaces, "instance_flags 0x%x",
3785 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3786 if (TYPE_CONST (type))
3787 {
3788 puts_filtered (" TYPE_FLAG_CONST");
3789 }
3790 if (TYPE_VOLATILE (type))
3791 {
3792 puts_filtered (" TYPE_FLAG_VOLATILE");
3793 }
3794 if (TYPE_CODE_SPACE (type))
3795 {
3796 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3797 }
3798 if (TYPE_DATA_SPACE (type))
3799 {
3800 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3801 }
8b2dbe47
KB
3802 if (TYPE_ADDRESS_CLASS_1 (type))
3803 {
3804 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3805 }
3806 if (TYPE_ADDRESS_CLASS_2 (type))
3807 {
3808 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3809 }
06d66ee9
TT
3810 if (TYPE_RESTRICT (type))
3811 {
3812 puts_filtered (" TYPE_FLAG_RESTRICT");
3813 }
2fdde8f8 3814 puts_filtered ("\n");
876cecd0
TT
3815
3816 printfi_filtered (spaces, "flags");
762a036f 3817 if (TYPE_UNSIGNED (type))
c906108c
SS
3818 {
3819 puts_filtered (" TYPE_FLAG_UNSIGNED");
3820 }
762a036f
FF
3821 if (TYPE_NOSIGN (type))
3822 {
3823 puts_filtered (" TYPE_FLAG_NOSIGN");
3824 }
3825 if (TYPE_STUB (type))
c906108c
SS
3826 {
3827 puts_filtered (" TYPE_FLAG_STUB");
3828 }
762a036f
FF
3829 if (TYPE_TARGET_STUB (type))
3830 {
3831 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3832 }
3833 if (TYPE_STATIC (type))
3834 {
3835 puts_filtered (" TYPE_FLAG_STATIC");
3836 }
762a036f
FF
3837 if (TYPE_PROTOTYPED (type))
3838 {
3839 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3840 }
3841 if (TYPE_INCOMPLETE (type))
3842 {
3843 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3844 }
762a036f
FF
3845 if (TYPE_VARARGS (type))
3846 {
3847 puts_filtered (" TYPE_FLAG_VARARGS");
3848 }
f5f8a009
EZ
3849 /* This is used for things like AltiVec registers on ppc. Gcc emits
3850 an attribute for the array type, which tells whether or not we
3851 have a vector, instead of a regular array. */
3852 if (TYPE_VECTOR (type))
3853 {
3854 puts_filtered (" TYPE_FLAG_VECTOR");
3855 }
876cecd0
TT
3856 if (TYPE_FIXED_INSTANCE (type))
3857 {
3858 puts_filtered (" TYPE_FIXED_INSTANCE");
3859 }
3860 if (TYPE_STUB_SUPPORTED (type))
3861 {
3862 puts_filtered (" TYPE_STUB_SUPPORTED");
3863 }
3864 if (TYPE_NOTTEXT (type))
3865 {
3866 puts_filtered (" TYPE_NOTTEXT");
3867 }
c906108c
SS
3868 puts_filtered ("\n");
3869 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3870 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3871 puts_filtered ("\n");
3872 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3873 {
14e75d8e
JK
3874 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3875 printfi_filtered (spaces + 2,
3876 "[%d] enumval %s type ",
3877 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3878 else
3879 printfi_filtered (spaces + 2,
3880 "[%d] bitpos %d bitsize %d type ",
3881 idx, TYPE_FIELD_BITPOS (type, idx),
3882 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3883 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3884 printf_filtered (" name '%s' (",
3885 TYPE_FIELD_NAME (type, idx) != NULL
3886 ? TYPE_FIELD_NAME (type, idx)
3887 : "<NULL>");
d4f3574e 3888 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3889 printf_filtered (")\n");
3890 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3891 {
3892 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3893 }
3894 }
43bbcdc2
PH
3895 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3896 {
3897 printfi_filtered (spaces, "low %s%s high %s%s\n",
3898 plongest (TYPE_LOW_BOUND (type)),
3899 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3900 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3901 TYPE_HIGH_BOUND_UNDEFINED (type)
3902 ? " (undefined)" : "");
43bbcdc2 3903 }
c906108c 3904 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3905 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3906 puts_filtered ("\n");
3907 if (TYPE_VPTR_BASETYPE (type) != NULL)
3908 {
3909 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3910 }
7ba81444
MS
3911 printfi_filtered (spaces, "vptr_fieldno %d\n",
3912 TYPE_VPTR_FIELDNO (type));
c906108c 3913
b4ba55a1
JB
3914 switch (TYPE_SPECIFIC_FIELD (type))
3915 {
3916 case TYPE_SPECIFIC_CPLUS_STUFF:
3917 printfi_filtered (spaces, "cplus_stuff ");
3918 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3919 gdb_stdout);
3920 puts_filtered ("\n");
3921 print_cplus_stuff (type, spaces);
3922 break;
8da61cc4 3923
b4ba55a1
JB
3924 case TYPE_SPECIFIC_GNAT_STUFF:
3925 printfi_filtered (spaces, "gnat_stuff ");
3926 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3927 puts_filtered ("\n");
3928 print_gnat_stuff (type, spaces);
3929 break;
701c159d 3930
b4ba55a1
JB
3931 case TYPE_SPECIFIC_FLOATFORMAT:
3932 printfi_filtered (spaces, "floatformat ");
3933 if (TYPE_FLOATFORMAT (type) == NULL)
3934 puts_filtered ("(null)");
3935 else
3936 {
3937 puts_filtered ("{ ");
3938 if (TYPE_FLOATFORMAT (type)[0] == NULL
3939 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3940 puts_filtered ("(null)");
3941 else
3942 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3943
3944 puts_filtered (", ");
3945 if (TYPE_FLOATFORMAT (type)[1] == NULL
3946 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3947 puts_filtered ("(null)");
3948 else
3949 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3950
3951 puts_filtered (" }");
3952 }
3953 puts_filtered ("\n");
3954 break;
c906108c 3955
b6cdc2c1 3956 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3957 printfi_filtered (spaces, "calling_convention %d\n",
3958 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3959 /* tail_call_list is not printed. */
b4ba55a1 3960 break;
c906108c 3961 }
b4ba55a1 3962
c906108c
SS
3963 if (spaces == 0)
3964 obstack_free (&dont_print_type_obstack, NULL);
3965}
5212577a 3966\f
ae5a43e0
DJ
3967/* Trivial helpers for the libiberty hash table, for mapping one
3968 type to another. */
3969
3970struct type_pair
3971{
3972 struct type *old, *new;
3973};
3974
3975static hashval_t
3976type_pair_hash (const void *item)
3977{
3978 const struct type_pair *pair = item;
d8734c88 3979
ae5a43e0
DJ
3980 return htab_hash_pointer (pair->old);
3981}
3982
3983static int
3984type_pair_eq (const void *item_lhs, const void *item_rhs)
3985{
3986 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3987
ae5a43e0
DJ
3988 return lhs->old == rhs->old;
3989}
3990
3991/* Allocate the hash table used by copy_type_recursive to walk
3992 types without duplicates. We use OBJFILE's obstack, because
3993 OBJFILE is about to be deleted. */
3994
3995htab_t
3996create_copied_types_hash (struct objfile *objfile)
3997{
3998 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3999 NULL, &objfile->objfile_obstack,
4000 hashtab_obstack_allocate,
4001 dummy_obstack_deallocate);
4002}
4003
7ba81444
MS
4004/* Recursively copy (deep copy) TYPE, if it is associated with
4005 OBJFILE. Return a new type allocated using malloc, a saved type if
4006 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4007 not associated with OBJFILE. */
ae5a43e0
DJ
4008
4009struct type *
7ba81444
MS
4010copy_type_recursive (struct objfile *objfile,
4011 struct type *type,
ae5a43e0
DJ
4012 htab_t copied_types)
4013{
4014 struct type_pair *stored, pair;
4015 void **slot;
4016 struct type *new_type;
4017
e9bb382b 4018 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4019 return type;
4020
7ba81444
MS
4021 /* This type shouldn't be pointing to any types in other objfiles;
4022 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4023 gdb_assert (TYPE_OBJFILE (type) == objfile);
4024
4025 pair.old = type;
4026 slot = htab_find_slot (copied_types, &pair, INSERT);
4027 if (*slot != NULL)
4028 return ((struct type_pair *) *slot)->new;
4029
e9bb382b 4030 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4031
4032 /* We must add the new type to the hash table immediately, in case
4033 we encounter this type again during a recursive call below. */
3e43a32a
MS
4034 stored
4035 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4036 stored->old = type;
4037 stored->new = new_type;
4038 *slot = stored;
4039
876cecd0
TT
4040 /* Copy the common fields of types. For the main type, we simply
4041 copy the entire thing and then update specific fields as needed. */
4042 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4043 TYPE_OBJFILE_OWNED (new_type) = 0;
4044 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4045
ae5a43e0
DJ
4046 if (TYPE_NAME (type))
4047 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4048 if (TYPE_TAG_NAME (type))
4049 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4050
4051 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4052 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4053
4054 /* Copy the fields. */
ae5a43e0
DJ
4055 if (TYPE_NFIELDS (type))
4056 {
4057 int i, nfields;
4058
4059 nfields = TYPE_NFIELDS (type);
fc270c35 4060 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4061 for (i = 0; i < nfields; i++)
4062 {
7ba81444
MS
4063 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4064 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4065 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4066 if (TYPE_FIELD_TYPE (type, i))
4067 TYPE_FIELD_TYPE (new_type, i)
4068 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4069 copied_types);
4070 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4071 TYPE_FIELD_NAME (new_type, i) =
4072 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4073 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4074 {
d6a843b5
JK
4075 case FIELD_LOC_KIND_BITPOS:
4076 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4077 TYPE_FIELD_BITPOS (type, i));
4078 break;
14e75d8e
JK
4079 case FIELD_LOC_KIND_ENUMVAL:
4080 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4081 TYPE_FIELD_ENUMVAL (type, i));
4082 break;
d6a843b5
JK
4083 case FIELD_LOC_KIND_PHYSADDR:
4084 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4085 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4086 break;
4087 case FIELD_LOC_KIND_PHYSNAME:
4088 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4089 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4090 i)));
4091 break;
4092 default:
4093 internal_error (__FILE__, __LINE__,
4094 _("Unexpected type field location kind: %d"),
4095 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4096 }
4097 }
4098 }
4099
0963b4bd 4100 /* For range types, copy the bounds information. */
43bbcdc2
PH
4101 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4102 {
4103 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4104 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4105 }
4106
ae5a43e0
DJ
4107 /* Copy pointers to other types. */
4108 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4109 TYPE_TARGET_TYPE (new_type) =
4110 copy_type_recursive (objfile,
4111 TYPE_TARGET_TYPE (type),
4112 copied_types);
ae5a43e0 4113 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
4114 TYPE_VPTR_BASETYPE (new_type) =
4115 copy_type_recursive (objfile,
4116 TYPE_VPTR_BASETYPE (type),
4117 copied_types);
ae5a43e0
DJ
4118 /* Maybe copy the type_specific bits.
4119
4120 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4121 base classes and methods. There's no fundamental reason why we
4122 can't, but at the moment it is not needed. */
4123
4124 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 4125 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
4126 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4127 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
4128 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4129 INIT_CPLUS_SPECIFIC (new_type);
4130
4131 return new_type;
4132}
4133
4af88198
JB
4134/* Make a copy of the given TYPE, except that the pointer & reference
4135 types are not preserved.
4136
4137 This function assumes that the given type has an associated objfile.
4138 This objfile is used to allocate the new type. */
4139
4140struct type *
4141copy_type (const struct type *type)
4142{
4143 struct type *new_type;
4144
e9bb382b 4145 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4146
e9bb382b 4147 new_type = alloc_type_copy (type);
4af88198
JB
4148 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4149 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4150 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4151 sizeof (struct main_type));
4152
4153 return new_type;
4154}
5212577a 4155\f
e9bb382b
UW
4156/* Helper functions to initialize architecture-specific types. */
4157
4158/* Allocate a type structure associated with GDBARCH and set its
4159 CODE, LENGTH, and NAME fields. */
5212577a 4160
e9bb382b
UW
4161struct type *
4162arch_type (struct gdbarch *gdbarch,
4163 enum type_code code, int length, char *name)
4164{
4165 struct type *type;
4166
4167 type = alloc_type_arch (gdbarch);
4168 TYPE_CODE (type) = code;
4169 TYPE_LENGTH (type) = length;
4170
4171 if (name)
4172 TYPE_NAME (type) = xstrdup (name);
4173
4174 return type;
4175}
4176
4177/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4178 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4179 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4180
e9bb382b
UW
4181struct type *
4182arch_integer_type (struct gdbarch *gdbarch,
4183 int bit, int unsigned_p, char *name)
4184{
4185 struct type *t;
4186
4187 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4188 if (unsigned_p)
4189 TYPE_UNSIGNED (t) = 1;
4190 if (name && strcmp (name, "char") == 0)
4191 TYPE_NOSIGN (t) = 1;
4192
4193 return t;
4194}
4195
4196/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4197 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4198 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4199
e9bb382b
UW
4200struct type *
4201arch_character_type (struct gdbarch *gdbarch,
4202 int bit, int unsigned_p, char *name)
4203{
4204 struct type *t;
4205
4206 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4207 if (unsigned_p)
4208 TYPE_UNSIGNED (t) = 1;
4209
4210 return t;
4211}
4212
4213/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4214 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4215 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4216
e9bb382b
UW
4217struct type *
4218arch_boolean_type (struct gdbarch *gdbarch,
4219 int bit, int unsigned_p, char *name)
4220{
4221 struct type *t;
4222
4223 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4224 if (unsigned_p)
4225 TYPE_UNSIGNED (t) = 1;
4226
4227 return t;
4228}
4229
4230/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4231 BIT is the type size in bits; if BIT equals -1, the size is
4232 determined by the floatformat. NAME is the type name. Set the
4233 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4234
27067745 4235struct type *
e9bb382b
UW
4236arch_float_type (struct gdbarch *gdbarch,
4237 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4238{
4239 struct type *t;
4240
4241 if (bit == -1)
4242 {
4243 gdb_assert (floatformats != NULL);
4244 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4245 bit = floatformats[0]->totalsize;
4246 }
4247 gdb_assert (bit >= 0);
4248
e9bb382b 4249 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4250 TYPE_FLOATFORMAT (t) = floatformats;
4251 return t;
4252}
4253
e9bb382b
UW
4254/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4255 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4256
27067745 4257struct type *
e9bb382b
UW
4258arch_complex_type (struct gdbarch *gdbarch,
4259 char *name, struct type *target_type)
27067745
UW
4260{
4261 struct type *t;
d8734c88 4262
e9bb382b
UW
4263 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4264 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4265 TYPE_TARGET_TYPE (t) = target_type;
4266 return t;
4267}
4268
e9bb382b 4269/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4270 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4271
e9bb382b
UW
4272struct type *
4273arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4274{
4275 int nfields = length * TARGET_CHAR_BIT;
4276 struct type *type;
4277
4278 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4279 TYPE_UNSIGNED (type) = 1;
4280 TYPE_NFIELDS (type) = nfields;
4281 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4282
4283 return type;
4284}
4285
4286/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4287 position BITPOS is called NAME. */
5212577a 4288
e9bb382b
UW
4289void
4290append_flags_type_flag (struct type *type, int bitpos, char *name)
4291{
4292 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4293 gdb_assert (bitpos < TYPE_NFIELDS (type));
4294 gdb_assert (bitpos >= 0);
4295
4296 if (name)
4297 {
4298 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4299 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4300 }
4301 else
4302 {
4303 /* Don't show this field to the user. */
945b3a32 4304 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4305 }
4306}
4307
4308/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4309 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4310
e9bb382b
UW
4311struct type *
4312arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4313{
4314 struct type *t;
d8734c88 4315
e9bb382b
UW
4316 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4317 t = arch_type (gdbarch, code, 0, NULL);
4318 TYPE_TAG_NAME (t) = name;
4319 INIT_CPLUS_SPECIFIC (t);
4320 return t;
4321}
4322
4323/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4324 Do not set the field's position or adjust the type's length;
4325 the caller should do so. Return the new field. */
5212577a 4326
f5dff777
DJ
4327struct field *
4328append_composite_type_field_raw (struct type *t, char *name,
4329 struct type *field)
e9bb382b
UW
4330{
4331 struct field *f;
d8734c88 4332
e9bb382b
UW
4333 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4334 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4335 sizeof (struct field) * TYPE_NFIELDS (t));
4336 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4337 memset (f, 0, sizeof f[0]);
4338 FIELD_TYPE (f[0]) = field;
4339 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4340 return f;
4341}
4342
4343/* Add new field with name NAME and type FIELD to composite type T.
4344 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4345
f5dff777
DJ
4346void
4347append_composite_type_field_aligned (struct type *t, char *name,
4348 struct type *field, int alignment)
4349{
4350 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4351
e9bb382b
UW
4352 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4353 {
4354 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4355 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4356 }
4357 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4358 {
4359 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4360 if (TYPE_NFIELDS (t) > 1)
4361 {
f41f5e61
PA
4362 SET_FIELD_BITPOS (f[0],
4363 (FIELD_BITPOS (f[-1])
4364 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4365 * TARGET_CHAR_BIT)));
e9bb382b
UW
4366
4367 if (alignment)
4368 {
86c3c1fc
AB
4369 int left;
4370
4371 alignment *= TARGET_CHAR_BIT;
4372 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4373
e9bb382b
UW
4374 if (left)
4375 {
f41f5e61 4376 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4377 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4378 }
4379 }
4380 }
4381 }
4382}
4383
4384/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4385
e9bb382b
UW
4386void
4387append_composite_type_field (struct type *t, char *name,
4388 struct type *field)
4389{
4390 append_composite_type_field_aligned (t, name, field, 0);
4391}
4392
000177f0
AC
4393static struct gdbarch_data *gdbtypes_data;
4394
4395const struct builtin_type *
4396builtin_type (struct gdbarch *gdbarch)
4397{
4398 return gdbarch_data (gdbarch, gdbtypes_data);
4399}
4400
4401static void *
4402gdbtypes_post_init (struct gdbarch *gdbarch)
4403{
4404 struct builtin_type *builtin_type
4405 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4406
46bf5051 4407 /* Basic types. */
e9bb382b
UW
4408 builtin_type->builtin_void
4409 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4410 builtin_type->builtin_char
4411 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4412 !gdbarch_char_signed (gdbarch), "char");
4413 builtin_type->builtin_signed_char
4414 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4415 0, "signed char");
4416 builtin_type->builtin_unsigned_char
4417 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4418 1, "unsigned char");
4419 builtin_type->builtin_short
4420 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4421 0, "short");
4422 builtin_type->builtin_unsigned_short
4423 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4424 1, "unsigned short");
4425 builtin_type->builtin_int
4426 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4427 0, "int");
4428 builtin_type->builtin_unsigned_int
4429 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4430 1, "unsigned int");
4431 builtin_type->builtin_long
4432 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4433 0, "long");
4434 builtin_type->builtin_unsigned_long
4435 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4436 1, "unsigned long");
4437 builtin_type->builtin_long_long
4438 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4439 0, "long long");
4440 builtin_type->builtin_unsigned_long_long
4441 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4442 1, "unsigned long long");
70bd8e24 4443 builtin_type->builtin_float
e9bb382b 4444 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4445 "float", gdbarch_float_format (gdbarch));
70bd8e24 4446 builtin_type->builtin_double
e9bb382b 4447 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4448 "double", gdbarch_double_format (gdbarch));
70bd8e24 4449 builtin_type->builtin_long_double
e9bb382b 4450 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4451 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4452 builtin_type->builtin_complex
e9bb382b
UW
4453 = arch_complex_type (gdbarch, "complex",
4454 builtin_type->builtin_float);
70bd8e24 4455 builtin_type->builtin_double_complex
e9bb382b
UW
4456 = arch_complex_type (gdbarch, "double complex",
4457 builtin_type->builtin_double);
4458 builtin_type->builtin_string
4459 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4460 builtin_type->builtin_bool
4461 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4462
7678ef8f
TJB
4463 /* The following three are about decimal floating point types, which
4464 are 32-bits, 64-bits and 128-bits respectively. */
4465 builtin_type->builtin_decfloat
e9bb382b 4466 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4467 builtin_type->builtin_decdouble
e9bb382b 4468 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4469 builtin_type->builtin_declong
e9bb382b 4470 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4471
69feb676 4472 /* "True" character types. */
e9bb382b
UW
4473 builtin_type->builtin_true_char
4474 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4475 builtin_type->builtin_true_unsigned_char
4476 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4477
df4df182 4478 /* Fixed-size integer types. */
e9bb382b
UW
4479 builtin_type->builtin_int0
4480 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4481 builtin_type->builtin_int8
4482 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4483 builtin_type->builtin_uint8
4484 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4485 builtin_type->builtin_int16
4486 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4487 builtin_type->builtin_uint16
4488 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4489 builtin_type->builtin_int32
4490 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4491 builtin_type->builtin_uint32
4492 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4493 builtin_type->builtin_int64
4494 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4495 builtin_type->builtin_uint64
4496 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4497 builtin_type->builtin_int128
4498 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4499 builtin_type->builtin_uint128
4500 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4501 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4502 TYPE_INSTANCE_FLAG_NOTTEXT;
4503 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4504 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4505
9a22f0d0
PM
4506 /* Wide character types. */
4507 builtin_type->builtin_char16
4508 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4509 builtin_type->builtin_char32
4510 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4511
4512
46bf5051 4513 /* Default data/code pointer types. */
e9bb382b
UW
4514 builtin_type->builtin_data_ptr
4515 = lookup_pointer_type (builtin_type->builtin_void);
4516 builtin_type->builtin_func_ptr
4517 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4518 builtin_type->builtin_func_func
4519 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4520
78267919 4521 /* This type represents a GDB internal function. */
e9bb382b
UW
4522 builtin_type->internal_fn
4523 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4524 "<internal function>");
78267919 4525
e81e7f5e
SC
4526 /* This type represents an xmethod. */
4527 builtin_type->xmethod
4528 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4529
46bf5051
UW
4530 return builtin_type;
4531}
4532
46bf5051
UW
4533/* This set of objfile-based types is intended to be used by symbol
4534 readers as basic types. */
4535
4536static const struct objfile_data *objfile_type_data;
4537
4538const struct objfile_type *
4539objfile_type (struct objfile *objfile)
4540{
4541 struct gdbarch *gdbarch;
4542 struct objfile_type *objfile_type
4543 = objfile_data (objfile, objfile_type_data);
4544
4545 if (objfile_type)
4546 return objfile_type;
4547
4548 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4549 1, struct objfile_type);
4550
4551 /* Use the objfile architecture to determine basic type properties. */
4552 gdbarch = get_objfile_arch (objfile);
4553
4554 /* Basic types. */
4555 objfile_type->builtin_void
4556 = init_type (TYPE_CODE_VOID, 1,
4557 0,
4558 "void", objfile);
4559
4560 objfile_type->builtin_char
4561 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4562 (TYPE_FLAG_NOSIGN
4563 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4564 "char", objfile);
4565 objfile_type->builtin_signed_char
4566 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4567 0,
4568 "signed char", objfile);
4569 objfile_type->builtin_unsigned_char
4570 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4571 TYPE_FLAG_UNSIGNED,
4572 "unsigned char", objfile);
4573 objfile_type->builtin_short
4574 = init_type (TYPE_CODE_INT,
4575 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4576 0, "short", objfile);
4577 objfile_type->builtin_unsigned_short
4578 = init_type (TYPE_CODE_INT,
4579 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4580 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4581 objfile_type->builtin_int
4582 = init_type (TYPE_CODE_INT,
4583 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4584 0, "int", objfile);
4585 objfile_type->builtin_unsigned_int
4586 = init_type (TYPE_CODE_INT,
4587 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4588 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4589 objfile_type->builtin_long
4590 = init_type (TYPE_CODE_INT,
4591 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4592 0, "long", objfile);
4593 objfile_type->builtin_unsigned_long
4594 = init_type (TYPE_CODE_INT,
4595 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4596 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4597 objfile_type->builtin_long_long
4598 = init_type (TYPE_CODE_INT,
4599 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4600 0, "long long", objfile);
4601 objfile_type->builtin_unsigned_long_long
4602 = init_type (TYPE_CODE_INT,
4603 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4604 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4605
4606 objfile_type->builtin_float
4607 = init_type (TYPE_CODE_FLT,
4608 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4609 0, "float", objfile);
4610 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4611 = gdbarch_float_format (gdbarch);
4612 objfile_type->builtin_double
4613 = init_type (TYPE_CODE_FLT,
4614 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4615 0, "double", objfile);
4616 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4617 = gdbarch_double_format (gdbarch);
4618 objfile_type->builtin_long_double
4619 = init_type (TYPE_CODE_FLT,
4620 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4621 0, "long double", objfile);
4622 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4623 = gdbarch_long_double_format (gdbarch);
4624
4625 /* This type represents a type that was unrecognized in symbol read-in. */
4626 objfile_type->builtin_error
4627 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4628
4629 /* The following set of types is used for symbols with no
4630 debug information. */
4631 objfile_type->nodebug_text_symbol
4632 = init_type (TYPE_CODE_FUNC, 1, 0,
4633 "<text variable, no debug info>", objfile);
4634 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4635 = objfile_type->builtin_int;
0875794a
JK
4636 objfile_type->nodebug_text_gnu_ifunc_symbol
4637 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4638 "<text gnu-indirect-function variable, no debug info>",
4639 objfile);
4640 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4641 = objfile_type->nodebug_text_symbol;
4642 objfile_type->nodebug_got_plt_symbol
4643 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4644 "<text from jump slot in .got.plt, no debug info>",
4645 objfile);
4646 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4647 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4648 objfile_type->nodebug_data_symbol
4649 = init_type (TYPE_CODE_INT,
4650 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4651 "<data variable, no debug info>", objfile);
4652 objfile_type->nodebug_unknown_symbol
4653 = init_type (TYPE_CODE_INT, 1, 0,
4654 "<variable (not text or data), no debug info>", objfile);
4655 objfile_type->nodebug_tls_symbol
4656 = init_type (TYPE_CODE_INT,
4657 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4658 "<thread local variable, no debug info>", objfile);
000177f0
AC
4659
4660 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4661 the same.
000177f0
AC
4662
4663 The upshot is:
4664 - gdb's `struct type' always describes the target's
4665 representation.
4666 - gdb's `struct value' objects should always hold values in
4667 target form.
4668 - gdb's CORE_ADDR values are addresses in the unified virtual
4669 address space that the assembler and linker work with. Thus,
4670 since target_read_memory takes a CORE_ADDR as an argument, it
4671 can access any memory on the target, even if the processor has
4672 separate code and data address spaces.
4673
46bf5051
UW
4674 In this context, objfile_type->builtin_core_addr is a bit odd:
4675 it's a target type for a value the target will never see. It's
4676 only used to hold the values of (typeless) linker symbols, which
4677 are indeed in the unified virtual address space. */
000177f0 4678
46bf5051
UW
4679 objfile_type->builtin_core_addr
4680 = init_type (TYPE_CODE_INT,
4681 gdbarch_addr_bit (gdbarch) / 8,
4682 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4683
46bf5051
UW
4684 set_objfile_data (objfile, objfile_type_data, objfile_type);
4685 return objfile_type;
000177f0
AC
4686}
4687
5212577a 4688extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4689
c906108c 4690void
fba45db2 4691_initialize_gdbtypes (void)
c906108c 4692{
5674de60 4693 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4694 objfile_type_data = register_objfile_data ();
5674de60 4695
ccce17b0
YQ
4696 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4697 _("Set debugging of C++ overloading."),
4698 _("Show debugging of C++ overloading."),
4699 _("When enabled, ranking of the "
4700 "functions is displayed."),
4701 NULL,
4702 show_overload_debug,
4703 &setdebuglist, &showdebuglist);
5674de60 4704
7ba81444 4705 /* Add user knob for controlling resolution of opaque types. */
5674de60 4706 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4707 &opaque_type_resolution,
4708 _("Set resolution of opaque struct/class/union"
4709 " types (if set before loading symbols)."),
4710 _("Show resolution of opaque struct/class/union"
4711 " types (if set before loading symbols)."),
4712 NULL, NULL,
5674de60
UW
4713 show_opaque_type_resolution,
4714 &setlist, &showlist);
a451cb65
KS
4715
4716 /* Add an option to permit non-strict type checking. */
4717 add_setshow_boolean_cmd ("type", class_support,
4718 &strict_type_checking,
4719 _("Set strict type checking."),
4720 _("Show strict type checking."),
4721 NULL, NULL,
4722 show_strict_type_checking,
4723 &setchecklist, &showchecklist);
c906108c 4724}
This page took 2.263784 seconds and 4 git commands to generate.