If a region is specified assign it to all sections inside the overlay unless they...
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
CommitLineData
9846de1b 1/* *INDENT-OFF* */ /* keep in sync with glibc */
c906108c
SS
2/* Extended regular expression matching and search library,
3 version 0.12.
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
b6ba6518
KB
6 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000
7 Free Software Foundation, Inc.
c906108c
SS
8
9 NOTE: The canonical source of this file is maintained with the
2df3850c 10 GNU C Library. Bugs can be reported to bug-glibc@gnu.org.
c906108c
SS
11
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the
14 Free Software Foundation; either version 2, or (at your option) any
15 later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software Foundation,
c5aa993b
JM
24 Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27/* AIX requires this to be the first thing in the file. */
28#if defined _AIX && !defined REGEX_MALLOC
29 #pragma alloca
30#endif
31
32#undef _GNU_SOURCE
33#define _GNU_SOURCE
34
35#ifdef HAVE_CONFIG_H
36# include <config.h>
37#endif
38
39#ifndef PARAMS
40# if defined __GNUC__ || (defined __STDC__ && __STDC__)
41# define PARAMS(args) args
42# else
43# define PARAMS(args) ()
44# endif /* GCC. */
45#endif /* Not PARAMS. */
46
47#if defined STDC_HEADERS && !defined emacs
48# include <stddef.h>
49#else
50/* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
51# include <sys/types.h>
52#endif
53
54/* For platform which support the ISO C amendement 1 functionality we
55 support user defined character classes. */
56#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
57 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
58# include <wchar.h>
59# include <wctype.h>
60#endif
61
62/* This is for other GNU distributions with internationalized messages. */
63/* CYGNUS LOCAL: ../intl will handle this for us */
64#ifdef ENABLE_NLS
65# include <libintl.h>
66#else
67# define gettext(msgid) (msgid)
68#endif
69
70#ifndef gettext_noop
71/* This define is so xgettext can find the internationalizable
72 strings. */
73# define gettext_noop(String) String
74#endif
75
76/* The `emacs' switch turns on certain matching commands
77 that make sense only in Emacs. */
78#ifdef emacs
79
80# include "lisp.h"
81# include "buffer.h"
82# include "syntax.h"
83
84#else /* not emacs */
85
86/* If we are not linking with Emacs proper,
87 we can't use the relocating allocator
88 even if config.h says that we can. */
89# undef REL_ALLOC
90
91# if defined STDC_HEADERS || defined _LIBC
92# include <stdlib.h>
93# else
94char *malloc ();
95char *realloc ();
96# endif
97
98/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
99 If nothing else has been done, use the method below. */
100# ifdef INHIBIT_STRING_HEADER
101# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
102# if !defined bzero && !defined bcopy
103# undef INHIBIT_STRING_HEADER
104# endif
105# endif
106# endif
107
108/* This is the normal way of making sure we have a bcopy and a bzero.
109 This is used in most programs--a few other programs avoid this
110 by defining INHIBIT_STRING_HEADER. */
111# ifndef INHIBIT_STRING_HEADER
112# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
113# include <string.h>
114# ifndef bzero
115# ifndef _LIBC
116# define bzero(s, n) (memset (s, '\0', n), (s))
117# else
118# define bzero(s, n) __bzero (s, n)
119# endif
120# endif
121# else
122# include <strings.h>
123# ifndef memcmp
124# define memcmp(s1, s2, n) bcmp (s1, s2, n)
125# endif
126# ifndef memcpy
127# define memcpy(d, s, n) (bcopy (s, d, n), (d))
128# endif
129# endif
130# endif
131
132/* Define the syntax stuff for \<, \>, etc. */
133
134/* This must be nonzero for the wordchar and notwordchar pattern
135 commands in re_match_2. */
136# ifndef Sword
137# define Sword 1
138# endif
139
140# ifdef SWITCH_ENUM_BUG
141# define SWITCH_ENUM_CAST(x) ((int)(x))
142# else
143# define SWITCH_ENUM_CAST(x) (x)
144# endif
145
146/* How many characters in the character set. */
147# define CHAR_SET_SIZE 256
148
149/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
150#ifndef _REGEX_RE_COMP
151#define _REGEX_RE_COMP
152#endif
153
154# ifdef SYNTAX_TABLE
155
156extern char *re_syntax_table;
157
158# else /* not SYNTAX_TABLE */
159
160static char re_syntax_table[CHAR_SET_SIZE];
161
162static void
163init_syntax_once ()
164{
165 register int c;
166 static int done = 0;
167
168 if (done)
169 return;
170
171 bzero (re_syntax_table, sizeof re_syntax_table);
172
173 for (c = 'a'; c <= 'z'; c++)
174 re_syntax_table[c] = Sword;
175
176 for (c = 'A'; c <= 'Z'; c++)
177 re_syntax_table[c] = Sword;
178
179 for (c = '0'; c <= '9'; c++)
180 re_syntax_table[c] = Sword;
181
182 re_syntax_table['_'] = Sword;
183
184 done = 1;
185}
186
187# endif /* not SYNTAX_TABLE */
188
189# define SYNTAX(c) re_syntax_table[c]
190
191#endif /* not emacs */
192\f
193/* Get the interface, including the syntax bits. */
194/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
195#include "gnu-regex.h"
196
197/* isalpha etc. are used for the character classes. */
198#include <ctype.h>
199
200/* Jim Meyering writes:
201
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
211
212#undef ISASCII
213#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214# define ISASCII(c) 1
215#else
216# define ISASCII(c) isascii(c)
217#endif
218
219#ifdef isblank
220# define ISBLANK(c) (ISASCII (c) && isblank (c))
221#else
222# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223#endif
224#ifdef isgraph
225# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226#else
227# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228#endif
229
230#undef ISPRINT
231#define ISPRINT(c) (ISASCII (c) && isprint (c))
232#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233#define ISALNUM(c) (ISASCII (c) && isalnum (c))
234#define ISALPHA(c) (ISASCII (c) && isalpha (c))
235#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236#define ISLOWER(c) (ISASCII (c) && islower (c))
237#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238#define ISSPACE(c) (ISASCII (c) && isspace (c))
239#define ISUPPER(c) (ISASCII (c) && isupper (c))
240#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242#ifndef NULL
243# define NULL (void *)0
244#endif
245
246/* We remove any previous definition of `SIGN_EXTEND_CHAR',
247 since ours (we hope) works properly with all combinations of
248 machines, compilers, `char' and `unsigned char' argument types.
249 (Per Bothner suggested the basic approach.) */
250#undef SIGN_EXTEND_CHAR
251#if __STDC__
252# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
253#else /* not __STDC__ */
254/* As in Harbison and Steele. */
255# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
256#endif
257\f
258/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
259 use `alloca' instead of `malloc'. This is because using malloc in
260 re_search* or re_match* could cause memory leaks when C-g is used in
261 Emacs; also, malloc is slower and causes storage fragmentation. On
262 the other hand, malloc is more portable, and easier to debug.
263
264 Because we sometimes use alloca, some routines have to be macros,
265 not functions -- `alloca'-allocated space disappears at the end of the
266 function it is called in. */
267
268#ifdef REGEX_MALLOC
269
270# define REGEX_ALLOCATE malloc
271# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
272# define REGEX_FREE free
273
274#else /* not REGEX_MALLOC */
275
276/* Emacs already defines alloca, sometimes. */
277# ifndef alloca
278
279/* Make alloca work the best possible way. */
280# ifdef __GNUC__
281# define alloca __builtin_alloca
282# else /* not __GNUC__ */
283# if HAVE_ALLOCA_H
284# include <alloca.h>
285# endif /* HAVE_ALLOCA_H */
286# endif /* not __GNUC__ */
287
288# endif /* not alloca */
289
290# define REGEX_ALLOCATE alloca
291
292/* Assumes a `char *destination' variable. */
293# define REGEX_REALLOCATE(source, osize, nsize) \
294 (destination = (char *) alloca (nsize), \
295 memcpy (destination, source, osize))
296
297/* No need to do anything to free, after alloca. */
298# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
299
300#endif /* not REGEX_MALLOC */
301
302/* Define how to allocate the failure stack. */
303
304#if defined REL_ALLOC && defined REGEX_MALLOC
305
306# define REGEX_ALLOCATE_STACK(size) \
307 r_alloc (&failure_stack_ptr, (size))
308# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
309 r_re_alloc (&failure_stack_ptr, (nsize))
310# define REGEX_FREE_STACK(ptr) \
311 r_alloc_free (&failure_stack_ptr)
312
313#else /* not using relocating allocator */
314
315# ifdef REGEX_MALLOC
316
317# define REGEX_ALLOCATE_STACK malloc
318# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
319# define REGEX_FREE_STACK free
320
321# else /* not REGEX_MALLOC */
322
323# define REGEX_ALLOCATE_STACK alloca
324
325# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
326 REGEX_REALLOCATE (source, osize, nsize)
327/* No need to explicitly free anything. */
328# define REGEX_FREE_STACK(arg)
329
330# endif /* not REGEX_MALLOC */
331#endif /* not using relocating allocator */
332
333
334/* True if `size1' is non-NULL and PTR is pointing anywhere inside
335 `string1' or just past its end. This works if PTR is NULL, which is
336 a good thing. */
337#define FIRST_STRING_P(ptr) \
338 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
339
340/* (Re)Allocate N items of type T using malloc, or fail. */
341#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
342#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
343#define RETALLOC_IF(addr, n, t) \
344 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
345#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
346
347#define BYTEWIDTH 8 /* In bits. */
348
349#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
350
351#undef MAX
352#undef MIN
353#define MAX(a, b) ((a) > (b) ? (a) : (b))
354#define MIN(a, b) ((a) < (b) ? (a) : (b))
355
356typedef char boolean;
357#define false 0
358#define true 1
359
6cf01405
KB
360static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
361 const char *string1, int size1,
362 const char *string2, int size2,
363 int pos,
364 struct re_registers *regs,
365 int stop));
c906108c
SS
366\f
367/* These are the command codes that appear in compiled regular
368 expressions. Some opcodes are followed by argument bytes. A
369 command code can specify any interpretation whatsoever for its
370 arguments. Zero bytes may appear in the compiled regular expression. */
371
372typedef enum
373{
374 no_op = 0,
375
376 /* Succeed right away--no more backtracking. */
377 succeed,
378
379 /* Followed by one byte giving n, then by n literal bytes. */
380 exactn,
381
382 /* Matches any (more or less) character. */
383 anychar,
384
385 /* Matches any one char belonging to specified set. First
386 following byte is number of bitmap bytes. Then come bytes
387 for a bitmap saying which chars are in. Bits in each byte
388 are ordered low-bit-first. A character is in the set if its
389 bit is 1. A character too large to have a bit in the map is
390 automatically not in the set. */
391 charset,
392
393 /* Same parameters as charset, but match any character that is
394 not one of those specified. */
395 charset_not,
396
397 /* Start remembering the text that is matched, for storing in a
398 register. Followed by one byte with the register number, in
399 the range 0 to one less than the pattern buffer's re_nsub
400 field. Then followed by one byte with the number of groups
401 inner to this one. (This last has to be part of the
402 start_memory only because we need it in the on_failure_jump
403 of re_match_2.) */
404 start_memory,
405
406 /* Stop remembering the text that is matched and store it in a
407 memory register. Followed by one byte with the register
408 number, in the range 0 to one less than `re_nsub' in the
409 pattern buffer, and one byte with the number of inner groups,
410 just like `start_memory'. (We need the number of inner
411 groups here because we don't have any easy way of finding the
412 corresponding start_memory when we're at a stop_memory.) */
413 stop_memory,
414
415 /* Match a duplicate of something remembered. Followed by one
416 byte containing the register number. */
417 duplicate,
418
419 /* Fail unless at beginning of line. */
420 begline,
421
422 /* Fail unless at end of line. */
423 endline,
424
425 /* Succeeds if at beginning of buffer (if emacs) or at beginning
426 of string to be matched (if not). */
427 begbuf,
428
429 /* Analogously, for end of buffer/string. */
430 endbuf,
431
432 /* Followed by two byte relative address to which to jump. */
433 jump,
434
435 /* Same as jump, but marks the end of an alternative. */
436 jump_past_alt,
437
438 /* Followed by two-byte relative address of place to resume at
439 in case of failure. */
440 on_failure_jump,
441
442 /* Like on_failure_jump, but pushes a placeholder instead of the
443 current string position when executed. */
444 on_failure_keep_string_jump,
445
446 /* Throw away latest failure point and then jump to following
447 two-byte relative address. */
448 pop_failure_jump,
449
450 /* Change to pop_failure_jump if know won't have to backtrack to
451 match; otherwise change to jump. This is used to jump
452 back to the beginning of a repeat. If what follows this jump
453 clearly won't match what the repeat does, such that we can be
454 sure that there is no use backtracking out of repetitions
455 already matched, then we change it to a pop_failure_jump.
456 Followed by two-byte address. */
457 maybe_pop_jump,
458
459 /* Jump to following two-byte address, and push a dummy failure
460 point. This failure point will be thrown away if an attempt
461 is made to use it for a failure. A `+' construct makes this
462 before the first repeat. Also used as an intermediary kind
463 of jump when compiling an alternative. */
464 dummy_failure_jump,
465
466 /* Push a dummy failure point and continue. Used at the end of
467 alternatives. */
468 push_dummy_failure,
469
470 /* Followed by two-byte relative address and two-byte number n.
471 After matching N times, jump to the address upon failure. */
472 succeed_n,
473
474 /* Followed by two-byte relative address, and two-byte number n.
475 Jump to the address N times, then fail. */
476 jump_n,
477
478 /* Set the following two-byte relative address to the
479 subsequent two-byte number. The address *includes* the two
480 bytes of number. */
481 set_number_at,
482
483 wordchar, /* Matches any word-constituent character. */
484 notwordchar, /* Matches any char that is not a word-constituent. */
485
486 wordbeg, /* Succeeds if at word beginning. */
487 wordend, /* Succeeds if at word end. */
488
489 wordbound, /* Succeeds if at a word boundary. */
490 notwordbound /* Succeeds if not at a word boundary. */
491
492#ifdef emacs
493 ,before_dot, /* Succeeds if before point. */
494 at_dot, /* Succeeds if at point. */
495 after_dot, /* Succeeds if after point. */
496
497 /* Matches any character whose syntax is specified. Followed by
498 a byte which contains a syntax code, e.g., Sword. */
499 syntaxspec,
500
501 /* Matches any character whose syntax is not that specified. */
502 notsyntaxspec
503#endif /* emacs */
504} re_opcode_t;
505\f
506/* Common operations on the compiled pattern. */
507
508/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
509
510#define STORE_NUMBER(destination, number) \
511 do { \
512 (destination)[0] = (number) & 0377; \
513 (destination)[1] = (number) >> 8; \
514 } while (0)
515
516/* Same as STORE_NUMBER, except increment DESTINATION to
517 the byte after where the number is stored. Therefore, DESTINATION
518 must be an lvalue. */
519
520#define STORE_NUMBER_AND_INCR(destination, number) \
521 do { \
522 STORE_NUMBER (destination, number); \
523 (destination) += 2; \
524 } while (0)
525
526/* Put into DESTINATION a number stored in two contiguous bytes starting
527 at SOURCE. */
528
529#define EXTRACT_NUMBER(destination, source) \
530 do { \
531 (destination) = *(source) & 0377; \
532 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
533 } while (0)
534
535#ifdef DEBUG
536static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
537static void
538extract_number (dest, source)
539 int *dest;
540 unsigned char *source;
541{
542 int temp = SIGN_EXTEND_CHAR (*(source + 1));
543 *dest = *source & 0377;
544 *dest += temp << 8;
545}
546
547# ifndef EXTRACT_MACROS /* To debug the macros. */
548# undef EXTRACT_NUMBER
549# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
550# endif /* not EXTRACT_MACROS */
551
552#endif /* DEBUG */
553
554/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
555 SOURCE must be an lvalue. */
556
557#define EXTRACT_NUMBER_AND_INCR(destination, source) \
558 do { \
559 EXTRACT_NUMBER (destination, source); \
560 (source) += 2; \
561 } while (0)
562
563#ifdef DEBUG
564static void extract_number_and_incr _RE_ARGS ((int *destination,
565 unsigned char **source));
566static void
567extract_number_and_incr (destination, source)
568 int *destination;
569 unsigned char **source;
570{
571 extract_number (destination, *source);
572 *source += 2;
573}
574
575# ifndef EXTRACT_MACROS
576# undef EXTRACT_NUMBER_AND_INCR
577# define EXTRACT_NUMBER_AND_INCR(dest, src) \
578 extract_number_and_incr (&dest, &src)
579# endif /* not EXTRACT_MACROS */
580
581#endif /* DEBUG */
582\f
583/* If DEBUG is defined, Regex prints many voluminous messages about what
584 it is doing (if the variable `debug' is nonzero). If linked with the
585 main program in `iregex.c', you can enter patterns and strings
586 interactively. And if linked with the main program in `main.c' and
587 the other test files, you can run the already-written tests. */
588
589#ifdef DEBUG
590
591/* We use standard I/O for debugging. */
592# include <stdio.h>
593
594/* It is useful to test things that ``must'' be true when debugging. */
595# include <assert.h>
596
597static int debug = 0;
598
599# define DEBUG_STATEMENT(e) e
600# define DEBUG_PRINT1(x) if (debug) printf (x)
601# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
602# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
603# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
604# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
605 if (debug) print_partial_compiled_pattern (s, e)
606# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
607 if (debug) print_double_string (w, s1, sz1, s2, sz2)
608
609
610/* Print the fastmap in human-readable form. */
611
612void
613print_fastmap (fastmap)
614 char *fastmap;
615{
616 unsigned was_a_range = 0;
617 unsigned i = 0;
618
619 while (i < (1 << BYTEWIDTH))
620 {
621 if (fastmap[i++])
622 {
623 was_a_range = 0;
624 putchar (i - 1);
625 while (i < (1 << BYTEWIDTH) && fastmap[i])
626 {
627 was_a_range = 1;
628 i++;
629 }
630 if (was_a_range)
631 {
632 printf ("-");
633 putchar (i - 1);
634 }
635 }
636 }
637 putchar ('\n');
638}
639
640
641/* Print a compiled pattern string in human-readable form, starting at
642 the START pointer into it and ending just before the pointer END. */
643
644void
645print_partial_compiled_pattern (start, end)
646 unsigned char *start;
647 unsigned char *end;
648{
649 int mcnt, mcnt2;
650 unsigned char *p1;
651 unsigned char *p = start;
652 unsigned char *pend = end;
653
654 if (start == NULL)
655 {
656 printf ("(null)\n");
657 return;
658 }
659
660 /* Loop over pattern commands. */
661 while (p < pend)
662 {
663 printf ("%d:\t", p - start);
664
665 switch ((re_opcode_t) *p++)
666 {
667 case no_op:
668 printf ("/no_op");
669 break;
670
671 case exactn:
672 mcnt = *p++;
673 printf ("/exactn/%d", mcnt);
674 do
675 {
676 putchar ('/');
677 putchar (*p++);
678 }
679 while (--mcnt);
680 break;
681
682 case start_memory:
683 mcnt = *p++;
684 printf ("/start_memory/%d/%d", mcnt, *p++);
685 break;
686
687 case stop_memory:
688 mcnt = *p++;
689 printf ("/stop_memory/%d/%d", mcnt, *p++);
690 break;
691
692 case duplicate:
693 printf ("/duplicate/%d", *p++);
694 break;
695
696 case anychar:
697 printf ("/anychar");
698 break;
699
700 case charset:
701 case charset_not:
702 {
703 register int c, last = -100;
704 register int in_range = 0;
705
706 printf ("/charset [%s",
707 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
708
709 assert (p + *p < pend);
710
711 for (c = 0; c < 256; c++)
712 if (c / 8 < *p
713 && (p[1 + (c/8)] & (1 << (c % 8))))
714 {
715 /* Are we starting a range? */
716 if (last + 1 == c && ! in_range)
717 {
718 putchar ('-');
719 in_range = 1;
720 }
721 /* Have we broken a range? */
722 else if (last + 1 != c && in_range)
723 {
724 putchar (last);
725 in_range = 0;
726 }
727
728 if (! in_range)
729 putchar (c);
730
731 last = c;
732 }
733
734 if (in_range)
735 putchar (last);
736
737 putchar (']');
738
739 p += 1 + *p;
740 }
741 break;
742
743 case begline:
744 printf ("/begline");
745 break;
746
747 case endline:
748 printf ("/endline");
749 break;
750
751 case on_failure_jump:
752 extract_number_and_incr (&mcnt, &p);
753 printf ("/on_failure_jump to %d", p + mcnt - start);
754 break;
755
756 case on_failure_keep_string_jump:
757 extract_number_and_incr (&mcnt, &p);
758 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
759 break;
760
761 case dummy_failure_jump:
762 extract_number_and_incr (&mcnt, &p);
763 printf ("/dummy_failure_jump to %d", p + mcnt - start);
764 break;
765
766 case push_dummy_failure:
767 printf ("/push_dummy_failure");
768 break;
769
770 case maybe_pop_jump:
771 extract_number_and_incr (&mcnt, &p);
772 printf ("/maybe_pop_jump to %d", p + mcnt - start);
773 break;
774
775 case pop_failure_jump:
776 extract_number_and_incr (&mcnt, &p);
777 printf ("/pop_failure_jump to %d", p + mcnt - start);
778 break;
779
780 case jump_past_alt:
781 extract_number_and_incr (&mcnt, &p);
782 printf ("/jump_past_alt to %d", p + mcnt - start);
783 break;
784
785 case jump:
786 extract_number_and_incr (&mcnt, &p);
787 printf ("/jump to %d", p + mcnt - start);
788 break;
789
790 case succeed_n:
791 extract_number_and_incr (&mcnt, &p);
792 p1 = p + mcnt;
793 extract_number_and_incr (&mcnt2, &p);
794 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
795 break;
796
797 case jump_n:
798 extract_number_and_incr (&mcnt, &p);
799 p1 = p + mcnt;
800 extract_number_and_incr (&mcnt2, &p);
801 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
802 break;
803
804 case set_number_at:
805 extract_number_and_incr (&mcnt, &p);
806 p1 = p + mcnt;
807 extract_number_and_incr (&mcnt2, &p);
808 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
809 break;
810
811 case wordbound:
812 printf ("/wordbound");
813 break;
814
815 case notwordbound:
816 printf ("/notwordbound");
817 break;
818
819 case wordbeg:
820 printf ("/wordbeg");
821 break;
822
823 case wordend:
824 printf ("/wordend");
825
826# ifdef emacs
827 case before_dot:
828 printf ("/before_dot");
829 break;
830
831 case at_dot:
832 printf ("/at_dot");
833 break;
834
835 case after_dot:
836 printf ("/after_dot");
837 break;
838
839 case syntaxspec:
840 printf ("/syntaxspec");
841 mcnt = *p++;
842 printf ("/%d", mcnt);
843 break;
844
845 case notsyntaxspec:
846 printf ("/notsyntaxspec");
847 mcnt = *p++;
848 printf ("/%d", mcnt);
849 break;
850# endif /* emacs */
851
852 case wordchar:
853 printf ("/wordchar");
854 break;
855
856 case notwordchar:
857 printf ("/notwordchar");
858 break;
859
860 case begbuf:
861 printf ("/begbuf");
862 break;
863
864 case endbuf:
865 printf ("/endbuf");
866 break;
867
868 default:
869 printf ("?%d", *(p-1));
870 }
871
872 putchar ('\n');
873 }
874
875 printf ("%d:\tend of pattern.\n", p - start);
876}
877
878
879void
880print_compiled_pattern (bufp)
881 struct re_pattern_buffer *bufp;
882{
883 unsigned char *buffer = bufp->buffer;
884
885 print_partial_compiled_pattern (buffer, buffer + bufp->used);
886 printf ("%ld bytes used/%ld bytes allocated.\n",
887 bufp->used, bufp->allocated);
888
889 if (bufp->fastmap_accurate && bufp->fastmap)
890 {
891 printf ("fastmap: ");
892 print_fastmap (bufp->fastmap);
893 }
894
895 printf ("re_nsub: %d\t", bufp->re_nsub);
896 printf ("regs_alloc: %d\t", bufp->regs_allocated);
897 printf ("can_be_null: %d\t", bufp->can_be_null);
898 printf ("newline_anchor: %d\n", bufp->newline_anchor);
899 printf ("no_sub: %d\t", bufp->no_sub);
900 printf ("not_bol: %d\t", bufp->not_bol);
901 printf ("not_eol: %d\t", bufp->not_eol);
902 printf ("syntax: %lx\n", bufp->syntax);
903 /* Perhaps we should print the translate table? */
904}
905
906
907void
908print_double_string (where, string1, size1, string2, size2)
909 const char *where;
910 const char *string1;
911 const char *string2;
912 int size1;
913 int size2;
914{
915 int this_char;
916
917 if (where == NULL)
918 printf ("(null)");
919 else
920 {
921 if (FIRST_STRING_P (where))
922 {
923 for (this_char = where - string1; this_char < size1; this_char++)
924 putchar (string1[this_char]);
925
926 where = string2;
927 }
928
929 for (this_char = where - string2; this_char < size2; this_char++)
930 putchar (string2[this_char]);
931 }
932}
933
934void
935printchar (c)
936 int c;
937{
938 putc (c, stderr);
939}
940
941#else /* not DEBUG */
942
943# undef assert
944# define assert(e)
945
946# define DEBUG_STATEMENT(e)
947# define DEBUG_PRINT1(x)
948# define DEBUG_PRINT2(x1, x2)
949# define DEBUG_PRINT3(x1, x2, x3)
950# define DEBUG_PRINT4(x1, x2, x3, x4)
951# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
952# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
953
954#endif /* not DEBUG */
955\f
956/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
957 also be assigned to arbitrarily: each pattern buffer stores its own
958 syntax, so it can be changed between regex compilations. */
959/* This has no initializer because initialized variables in Emacs
960 become read-only after dumping. */
961reg_syntax_t re_syntax_options;
962
963
964/* Specify the precise syntax of regexps for compilation. This provides
965 for compatibility for various utilities which historically have
966 different, incompatible syntaxes.
967
968 The argument SYNTAX is a bit mask comprised of the various bits
969 defined in gnu-regex.h. We return the old syntax. */
970
971reg_syntax_t
972re_set_syntax (syntax)
973 reg_syntax_t syntax;
974{
975 reg_syntax_t ret = re_syntax_options;
976
977 re_syntax_options = syntax;
978#ifdef DEBUG
979 if (syntax & RE_DEBUG)
980 debug = 1;
981 else if (debug) /* was on but now is not */
982 debug = 0;
983#endif /* DEBUG */
984 return ret;
985}
986#ifdef _LIBC
987weak_alias (__re_set_syntax, re_set_syntax)
988#endif
989\f
990/* This table gives an error message for each of the error codes listed
991 in gnu-regex.h. Obviously the order here has to be same as there.
992 POSIX doesn't require that we do anything for REG_NOERROR,
993 but why not be nice? */
994
995static const char *re_error_msgid[] =
996 {
997 gettext_noop ("Success"), /* REG_NOERROR */
998 gettext_noop ("No match"), /* REG_NOMATCH */
999 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1000 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1001 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1002 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1003 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1004 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1005 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1006 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1007 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1008 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1009 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1010 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1011 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1012 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1013 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1014 };
1015\f
1016/* Avoiding alloca during matching, to placate r_alloc. */
1017
1018/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1019 searching and matching functions should not call alloca. On some
1020 systems, alloca is implemented in terms of malloc, and if we're
1021 using the relocating allocator routines, then malloc could cause a
1022 relocation, which might (if the strings being searched are in the
1023 ralloc heap) shift the data out from underneath the regexp
1024 routines.
1025
1026 Here's another reason to avoid allocation: Emacs
1027 processes input from X in a signal handler; processing X input may
1028 call malloc; if input arrives while a matching routine is calling
1029 malloc, then we're scrod. But Emacs can't just block input while
1030 calling matching routines; then we don't notice interrupts when
1031 they come in. So, Emacs blocks input around all regexp calls
1032 except the matching calls, which it leaves unprotected, in the
1033 faith that they will not malloc. */
1034
1035/* Normally, this is fine. */
1036#define MATCH_MAY_ALLOCATE
1037
1038/* When using GNU C, we are not REALLY using the C alloca, no matter
1039 what config.h may say. So don't take precautions for it. */
1040#ifdef __GNUC__
1041# undef C_ALLOCA
1042#endif
1043
1044/* The match routines may not allocate if (1) they would do it with malloc
1045 and (2) it's not safe for them to use malloc.
1046 Note that if REL_ALLOC is defined, matching would not use malloc for the
1047 failure stack, but we would still use it for the register vectors;
1048 so REL_ALLOC should not affect this. */
1049#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1050# undef MATCH_MAY_ALLOCATE
1051#endif
1052
1053\f
1054/* Failure stack declarations and macros; both re_compile_fastmap and
1055 re_match_2 use a failure stack. These have to be macros because of
1056 REGEX_ALLOCATE_STACK. */
1057
1058
1059/* Number of failure points for which to initially allocate space
1060 when matching. If this number is exceeded, we allocate more
1061 space, so it is not a hard limit. */
1062#ifndef INIT_FAILURE_ALLOC
1063# define INIT_FAILURE_ALLOC 5
1064#endif
1065
1066/* Roughly the maximum number of failure points on the stack. Would be
1067 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1068 This is a variable only so users of regex can assign to it; we never
1069 change it ourselves. */
1070
1071#ifdef INT_IS_16BIT
1072
1073# if defined MATCH_MAY_ALLOCATE
1074/* 4400 was enough to cause a crash on Alpha OSF/1,
1075 whose default stack limit is 2mb. */
1076long int re_max_failures = 4000;
1077# else
1078long int re_max_failures = 2000;
1079# endif
1080
1081union fail_stack_elt
1082{
1083 unsigned char *pointer;
1084 long int integer;
1085};
1086
1087typedef union fail_stack_elt fail_stack_elt_t;
1088
1089typedef struct
1090{
1091 fail_stack_elt_t *stack;
1092 unsigned long int size;
1093 unsigned long int avail; /* Offset of next open position. */
1094} fail_stack_type;
1095
1096#else /* not INT_IS_16BIT */
1097
1098# if defined MATCH_MAY_ALLOCATE
1099/* 4400 was enough to cause a crash on Alpha OSF/1,
1100 whose default stack limit is 2mb. */
1101int re_max_failures = 20000;
1102# else
1103int re_max_failures = 2000;
1104# endif
1105
1106union fail_stack_elt
1107{
1108 unsigned char *pointer;
1109 int integer;
1110};
1111
1112typedef union fail_stack_elt fail_stack_elt_t;
1113
1114typedef struct
1115{
1116 fail_stack_elt_t *stack;
1117 unsigned size;
1118 unsigned avail; /* Offset of next open position. */
1119} fail_stack_type;
1120
1121#endif /* INT_IS_16BIT */
1122
1123#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1124#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1125#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1126
1127
1128/* Define macros to initialize and free the failure stack.
1129 Do `return -2' if the alloc fails. */
1130
1131#ifdef MATCH_MAY_ALLOCATE
1132# define INIT_FAIL_STACK() \
1133 do { \
1134 fail_stack.stack = (fail_stack_elt_t *) \
1135 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1136 \
1137 if (fail_stack.stack == NULL) \
1138 return -2; \
1139 \
1140 fail_stack.size = INIT_FAILURE_ALLOC; \
1141 fail_stack.avail = 0; \
1142 } while (0)
1143
1144# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1145#else
1146# define INIT_FAIL_STACK() \
1147 do { \
1148 fail_stack.avail = 0; \
1149 } while (0)
1150
1151# define RESET_FAIL_STACK()
1152#endif
1153
1154
1155/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1156
1157 Return 1 if succeeds, and 0 if either ran out of memory
1158 allocating space for it or it was already too large.
1159
1160 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1161
1162#define DOUBLE_FAIL_STACK(fail_stack) \
1163 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1164 ? 0 \
1165 : ((fail_stack).stack = (fail_stack_elt_t *) \
1166 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1167 (fail_stack).size * sizeof (fail_stack_elt_t), \
1168 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1169 \
1170 (fail_stack).stack == NULL \
1171 ? 0 \
1172 : ((fail_stack).size <<= 1, \
1173 1)))
1174
1175
1176/* Push pointer POINTER on FAIL_STACK.
1177 Return 1 if was able to do so and 0 if ran out of memory allocating
1178 space to do so. */
1179#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1180 ((FAIL_STACK_FULL () \
1181 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1182 ? 0 \
1183 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1184 1))
1185
1186/* Push a pointer value onto the failure stack.
1187 Assumes the variable `fail_stack'. Probably should only
1188 be called from within `PUSH_FAILURE_POINT'. */
1189#define PUSH_FAILURE_POINTER(item) \
1190 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1191
1192/* This pushes an integer-valued item onto the failure stack.
1193 Assumes the variable `fail_stack'. Probably should only
1194 be called from within `PUSH_FAILURE_POINT'. */
1195#define PUSH_FAILURE_INT(item) \
1196 fail_stack.stack[fail_stack.avail++].integer = (item)
1197
1198/* Push a fail_stack_elt_t value onto the failure stack.
1199 Assumes the variable `fail_stack'. Probably should only
1200 be called from within `PUSH_FAILURE_POINT'. */
1201#define PUSH_FAILURE_ELT(item) \
1202 fail_stack.stack[fail_stack.avail++] = (item)
1203
1204/* These three POP... operations complement the three PUSH... operations.
1205 All assume that `fail_stack' is nonempty. */
1206#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1207#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1208#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1209
1210/* Used to omit pushing failure point id's when we're not debugging. */
1211#ifdef DEBUG
1212# define DEBUG_PUSH PUSH_FAILURE_INT
1213# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1214#else
1215# define DEBUG_PUSH(item)
1216# define DEBUG_POP(item_addr)
1217#endif
1218
1219
1220/* Push the information about the state we will need
1221 if we ever fail back to it.
1222
1223 Requires variables fail_stack, regstart, regend, reg_info, and
1224 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1225 be declared.
1226
1227 Does `return FAILURE_CODE' if runs out of memory. */
1228
1229#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1230 do { \
1231 char *destination; \
1232 /* Must be int, so when we don't save any registers, the arithmetic \
1233 of 0 + -1 isn't done as unsigned. */ \
1234 /* Can't be int, since there is not a shred of a guarantee that int \
1235 is wide enough to hold a value of something to which pointer can \
1236 be assigned */ \
1237 active_reg_t this_reg; \
1238 \
1239 DEBUG_STATEMENT (failure_id++); \
1240 DEBUG_STATEMENT (nfailure_points_pushed++); \
1241 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1242 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1243 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1244 \
1245 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1246 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1247 \
1248 /* Ensure we have enough space allocated for what we will push. */ \
1249 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1250 { \
1251 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1252 return failure_code; \
1253 \
1254 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1255 (fail_stack).size); \
1256 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1257 } \
1258 \
1259 /* Push the info, starting with the registers. */ \
1260 DEBUG_PRINT1 ("\n"); \
1261 \
1262 if (1) \
1263 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1264 this_reg++) \
1265 { \
1266 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1267 DEBUG_STATEMENT (num_regs_pushed++); \
1268 \
1269 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1270 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1271 \
1272 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1273 PUSH_FAILURE_POINTER (regend[this_reg]); \
1274 \
1275 DEBUG_PRINT2 (" info: %p\n ", \
1276 reg_info[this_reg].word.pointer); \
1277 DEBUG_PRINT2 (" match_null=%d", \
1278 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1280 DEBUG_PRINT2 (" matched_something=%d", \
1281 MATCHED_SOMETHING (reg_info[this_reg])); \
1282 DEBUG_PRINT2 (" ever_matched=%d", \
1283 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1284 DEBUG_PRINT1 ("\n"); \
1285 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1286 } \
1287 \
1288 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1289 PUSH_FAILURE_INT (lowest_active_reg); \
1290 \
1291 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1292 PUSH_FAILURE_INT (highest_active_reg); \
1293 \
1294 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1295 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1296 PUSH_FAILURE_POINTER (pattern_place); \
1297 \
1298 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1299 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1300 size2); \
1301 DEBUG_PRINT1 ("'\n"); \
1302 PUSH_FAILURE_POINTER (string_place); \
1303 \
1304 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1305 DEBUG_PUSH (failure_id); \
1306 } while (0)
1307
1308/* This is the number of items that are pushed and popped on the stack
1309 for each register. */
1310#define NUM_REG_ITEMS 3
1311
1312/* Individual items aside from the registers. */
1313#ifdef DEBUG
1314# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1315#else
1316# define NUM_NONREG_ITEMS 4
1317#endif
1318
1319/* We push at most this many items on the stack. */
1320/* We used to use (num_regs - 1), which is the number of registers
1321 this regexp will save; but that was changed to 5
1322 to avoid stack overflow for a regexp with lots of parens. */
1323#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1324
1325/* We actually push this many items. */
1326#define NUM_FAILURE_ITEMS \
1327 (((0 \
1328 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1329 * NUM_REG_ITEMS) \
1330 + NUM_NONREG_ITEMS)
1331
1332/* How many items can still be added to the stack without overflowing it. */
1333#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1334
1335
1336/* Pops what PUSH_FAIL_STACK pushes.
1337
1338 We restore into the parameters, all of which should be lvalues:
1339 STR -- the saved data position.
1340 PAT -- the saved pattern position.
1341 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1342 REGSTART, REGEND -- arrays of string positions.
1343 REG_INFO -- array of information about each subexpression.
1344
1345 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1346 `pend', `string1', `size1', `string2', and `size2'. */
1347
1348#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1349{ \
1350 DEBUG_STATEMENT (unsigned failure_id;) \
1351 active_reg_t this_reg; \
1352 const unsigned char *string_temp; \
1353 \
1354 assert (!FAIL_STACK_EMPTY ()); \
1355 \
1356 /* Remove failure points and point to how many regs pushed. */ \
1357 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1358 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1359 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1360 \
1361 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1362 \
1363 DEBUG_POP (&failure_id); \
1364 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1365 \
1366 /* If the saved string location is NULL, it came from an \
1367 on_failure_keep_string_jump opcode, and we want to throw away the \
1368 saved NULL, thus retaining our current position in the string. */ \
1369 string_temp = POP_FAILURE_POINTER (); \
1370 if (string_temp != NULL) \
1371 str = (const char *) string_temp; \
1372 \
1373 DEBUG_PRINT2 (" Popping string %p: `", str); \
1374 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1375 DEBUG_PRINT1 ("'\n"); \
1376 \
1377 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1378 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1379 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1380 \
1381 /* Restore register info. */ \
1382 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1383 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1384 \
1385 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1386 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1387 \
1388 if (1) \
1389 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1390 { \
1391 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1392 \
1393 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1394 DEBUG_PRINT2 (" info: %p\n", \
1395 reg_info[this_reg].word.pointer); \
1396 \
1397 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1398 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1399 \
1400 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1401 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1402 } \
1403 else \
1404 { \
1405 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1406 { \
1407 reg_info[this_reg].word.integer = 0; \
1408 regend[this_reg] = 0; \
1409 regstart[this_reg] = 0; \
1410 } \
1411 highest_active_reg = high_reg; \
1412 } \
1413 \
1414 set_regs_matched_done = 0; \
1415 DEBUG_STATEMENT (nfailure_points_popped++); \
1416} /* POP_FAILURE_POINT */
1417
1418
1419\f
1420/* Structure for per-register (a.k.a. per-group) information.
1421 Other register information, such as the
1422 starting and ending positions (which are addresses), and the list of
1423 inner groups (which is a bits list) are maintained in separate
1424 variables.
1425
1426 We are making a (strictly speaking) nonportable assumption here: that
1427 the compiler will pack our bit fields into something that fits into
1428 the type of `word', i.e., is something that fits into one item on the
1429 failure stack. */
1430
1431
1432/* Declarations and macros for re_match_2. */
1433
1434typedef union
1435{
1436 fail_stack_elt_t word;
1437 struct
1438 {
1439 /* This field is one if this group can match the empty string,
1440 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1441#define MATCH_NULL_UNSET_VALUE 3
1442 unsigned match_null_string_p : 2;
1443 unsigned is_active : 1;
1444 unsigned matched_something : 1;
1445 unsigned ever_matched_something : 1;
1446 } bits;
1447} register_info_type;
1448
1449#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1450#define IS_ACTIVE(R) ((R).bits.is_active)
1451#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1452#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1453
1454
1455/* Call this when have matched a real character; it sets `matched' flags
1456 for the subexpressions which we are currently inside. Also records
1457 that those subexprs have matched. */
1458#define SET_REGS_MATCHED() \
1459 do \
1460 { \
1461 if (!set_regs_matched_done) \
1462 { \
1463 active_reg_t r; \
1464 set_regs_matched_done = 1; \
1465 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1466 { \
1467 MATCHED_SOMETHING (reg_info[r]) \
1468 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1469 = 1; \
1470 } \
1471 } \
1472 } \
1473 while (0)
1474
1475/* Registers are set to a sentinel when they haven't yet matched. */
1476static char reg_unset_dummy;
1477#define REG_UNSET_VALUE (&reg_unset_dummy)
1478#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1479\f
1480/* Subroutine declarations and macros for regex_compile. */
1481
1482static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1483 reg_syntax_t syntax,
1484 struct re_pattern_buffer *bufp));
1485static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1486static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1487 int arg1, int arg2));
1488static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1489 int arg, unsigned char *end));
1490static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1491 int arg1, int arg2, unsigned char *end));
1492static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1493 reg_syntax_t syntax));
1494static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1495 reg_syntax_t syntax));
1496static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1497 const char *pend,
1498 char *translate,
1499 reg_syntax_t syntax,
1500 unsigned char *b));
1501
1502/* Fetch the next character in the uncompiled pattern---translating it
1503 if necessary. Also cast from a signed character in the constant
1504 string passed to us by the user to an unsigned char that we can use
1505 as an array index (in, e.g., `translate'). */
1506#ifndef PATFETCH
1507# define PATFETCH(c) \
1508 do {if (p == pend) return REG_EEND; \
1509 c = (unsigned char) *p++; \
1510 if (translate) c = (unsigned char) translate[c]; \
1511 } while (0)
1512#endif
1513
1514/* Fetch the next character in the uncompiled pattern, with no
1515 translation. */
1516#define PATFETCH_RAW(c) \
1517 do {if (p == pend) return REG_EEND; \
1518 c = (unsigned char) *p++; \
1519 } while (0)
1520
1521/* Go backwards one character in the pattern. */
1522#define PATUNFETCH p--
1523
1524
1525/* If `translate' is non-null, return translate[D], else just D. We
1526 cast the subscript to translate because some data is declared as
1527 `char *', to avoid warnings when a string constant is passed. But
1528 when we use a character as a subscript we must make it unsigned. */
1529#ifndef TRANSLATE
1530# define TRANSLATE(d) \
1531 (translate ? (char) translate[(unsigned char) (d)] : (d))
1532#endif
1533
1534
1535/* Macros for outputting the compiled pattern into `buffer'. */
1536
1537/* If the buffer isn't allocated when it comes in, use this. */
1538#define INIT_BUF_SIZE 32
1539
1540/* Make sure we have at least N more bytes of space in buffer. */
1541#define GET_BUFFER_SPACE(n) \
1542 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1543 EXTEND_BUFFER ()
1544
1545/* Make sure we have one more byte of buffer space and then add C to it. */
1546#define BUF_PUSH(c) \
1547 do { \
1548 GET_BUFFER_SPACE (1); \
1549 *b++ = (unsigned char) (c); \
1550 } while (0)
1551
1552
1553/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1554#define BUF_PUSH_2(c1, c2) \
1555 do { \
1556 GET_BUFFER_SPACE (2); \
1557 *b++ = (unsigned char) (c1); \
1558 *b++ = (unsigned char) (c2); \
1559 } while (0)
1560
1561
1562/* As with BUF_PUSH_2, except for three bytes. */
1563#define BUF_PUSH_3(c1, c2, c3) \
1564 do { \
1565 GET_BUFFER_SPACE (3); \
1566 *b++ = (unsigned char) (c1); \
1567 *b++ = (unsigned char) (c2); \
1568 *b++ = (unsigned char) (c3); \
1569 } while (0)
1570
1571
1572/* Store a jump with opcode OP at LOC to location TO. We store a
1573 relative address offset by the three bytes the jump itself occupies. */
1574#define STORE_JUMP(op, loc, to) \
1575 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1576
1577/* Likewise, for a two-argument jump. */
1578#define STORE_JUMP2(op, loc, to, arg) \
1579 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1580
1581/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1582#define INSERT_JUMP(op, loc, to) \
1583 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1584
1585/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1586#define INSERT_JUMP2(op, loc, to, arg) \
1587 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1588
1589
1590/* This is not an arbitrary limit: the arguments which represent offsets
1591 into the pattern are two bytes long. So if 2^16 bytes turns out to
1592 be too small, many things would have to change. */
0b6a968e
CF
1593#define MAX_BUF_SIZE (1L << 16)
1594#define REALLOC(p,s) realloc ((p), (s))
c906108c
SS
1595
1596/* Extend the buffer by twice its current size via realloc and
1597 reset the pointers that pointed into the old block to point to the
1598 correct places in the new one. If extending the buffer results in it
1599 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1600#define EXTEND_BUFFER() \
1601 do { \
1602 unsigned char *old_buffer = bufp->buffer; \
1603 if (bufp->allocated == MAX_BUF_SIZE) \
1604 return REG_ESIZE; \
1605 bufp->allocated <<= 1; \
1606 if (bufp->allocated > MAX_BUF_SIZE) \
1607 bufp->allocated = MAX_BUF_SIZE; \
1608 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1609 if (bufp->buffer == NULL) \
1610 return REG_ESPACE; \
1611 /* If the buffer moved, move all the pointers into it. */ \
1612 if (old_buffer != bufp->buffer) \
1613 { \
1614 b = (b - old_buffer) + bufp->buffer; \
1615 begalt = (begalt - old_buffer) + bufp->buffer; \
1616 if (fixup_alt_jump) \
1617 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1618 if (laststart) \
1619 laststart = (laststart - old_buffer) + bufp->buffer; \
1620 if (pending_exact) \
1621 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1622 } \
1623 } while (0)
1624
1625
1626/* Since we have one byte reserved for the register number argument to
1627 {start,stop}_memory, the maximum number of groups we can report
1628 things about is what fits in that byte. */
1629#define MAX_REGNUM 255
1630
1631/* But patterns can have more than `MAX_REGNUM' registers. We just
1632 ignore the excess. */
1633typedef unsigned regnum_t;
1634
1635
1636/* Macros for the compile stack. */
1637
1638/* Since offsets can go either forwards or backwards, this type needs to
1639 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1640/* int may be not enough when sizeof(int) == 2. */
1641typedef long pattern_offset_t;
1642
1643typedef struct
1644{
1645 pattern_offset_t begalt_offset;
1646 pattern_offset_t fixup_alt_jump;
1647 pattern_offset_t inner_group_offset;
1648 pattern_offset_t laststart_offset;
1649 regnum_t regnum;
1650} compile_stack_elt_t;
1651
1652
1653typedef struct
1654{
1655 compile_stack_elt_t *stack;
1656 unsigned size;
1657 unsigned avail; /* Offset of next open position. */
1658} compile_stack_type;
1659
1660
1661#define INIT_COMPILE_STACK_SIZE 32
1662
1663#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1664#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1665
1666/* The next available element. */
1667#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1668
1669
1670/* Set the bit for character C in a list. */
1671#define SET_LIST_BIT(c) \
1672 (b[((unsigned char) (c)) / BYTEWIDTH] \
1673 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1674
1675
1676/* Get the next unsigned number in the uncompiled pattern. */
1677#define GET_UNSIGNED_NUMBER(num) \
1678 { if (p != pend) \
1679 { \
1680 PATFETCH (c); \
1681 while (ISDIGIT (c)) \
1682 { \
1683 if (num < 0) \
1684 num = 0; \
1685 num = num * 10 + c - '0'; \
1686 if (p == pend) \
1687 break; \
1688 PATFETCH (c); \
1689 } \
1690 } \
1691 }
1692
7be570e7
JM
1693/* Use this only if they have btowc(), since wctype() is used below
1694 together with btowc(). btowc() is defined in the 1994 Amendment 1
1695 to ISO C and may not be present on systems where we have wchar.h
1696 and wctype.h. */
1697#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
c906108c
SS
1698/* The GNU C library provides support for user-defined character classes
1699 and the functions from ISO C amendement 1. */
1700# ifdef CHARCLASS_NAME_MAX
1701# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1702# else
1703/* This shouldn't happen but some implementation might still have this
1704 problem. Use a reasonable default value. */
1705# define CHAR_CLASS_MAX_LENGTH 256
1706# endif
1707
1708# ifdef _LIBC
1709# define IS_CHAR_CLASS(string) __wctype (string)
1710# else
1711# define IS_CHAR_CLASS(string) wctype (string)
1712# endif
1713#else
1714# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1715
1716# define IS_CHAR_CLASS(string) \
1717 (STREQ (string, "alpha") || STREQ (string, "upper") \
1718 || STREQ (string, "lower") || STREQ (string, "digit") \
1719 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1720 || STREQ (string, "space") || STREQ (string, "print") \
1721 || STREQ (string, "punct") || STREQ (string, "graph") \
1722 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1723#endif
1724\f
1725#ifndef MATCH_MAY_ALLOCATE
1726
1727/* If we cannot allocate large objects within re_match_2_internal,
1728 we make the fail stack and register vectors global.
1729 The fail stack, we grow to the maximum size when a regexp
1730 is compiled.
1731 The register vectors, we adjust in size each time we
1732 compile a regexp, according to the number of registers it needs. */
1733
1734static fail_stack_type fail_stack;
1735
1736/* Size with which the following vectors are currently allocated.
1737 That is so we can make them bigger as needed,
1738 but never make them smaller. */
1739static int regs_allocated_size;
1740
1741static const char ** regstart, ** regend;
1742static const char ** old_regstart, ** old_regend;
1743static const char **best_regstart, **best_regend;
1744static register_info_type *reg_info;
1745static const char **reg_dummy;
1746static register_info_type *reg_info_dummy;
1747
1748/* Make the register vectors big enough for NUM_REGS registers,
1749 but don't make them smaller. */
1750
1751static
1752regex_grow_registers (num_regs)
1753 int num_regs;
1754{
1755 if (num_regs > regs_allocated_size)
1756 {
1757 RETALLOC_IF (regstart, num_regs, const char *);
1758 RETALLOC_IF (regend, num_regs, const char *);
1759 RETALLOC_IF (old_regstart, num_regs, const char *);
1760 RETALLOC_IF (old_regend, num_regs, const char *);
1761 RETALLOC_IF (best_regstart, num_regs, const char *);
1762 RETALLOC_IF (best_regend, num_regs, const char *);
1763 RETALLOC_IF (reg_info, num_regs, register_info_type);
1764 RETALLOC_IF (reg_dummy, num_regs, const char *);
1765 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1766
1767 regs_allocated_size = num_regs;
1768 }
1769}
1770
1771#endif /* not MATCH_MAY_ALLOCATE */
1772\f
1773static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1774 compile_stack,
1775 regnum_t regnum));
1776
1777/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1778 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1779
1780 Assumes the `allocated' (and perhaps `buffer') and `translate'
1781 fields are set in BUFP on entry.
1782
1783 If it succeeds, results are put in BUFP (if it returns an error, the
1784 contents of BUFP are undefined):
1785 `buffer' is the compiled pattern;
1786 `syntax' is set to SYNTAX;
1787 `used' is set to the length of the compiled pattern;
1788 `fastmap_accurate' is zero;
1789 `re_nsub' is the number of subexpressions in PATTERN;
1790 `not_bol' and `not_eol' are zero;
1791
1792 The `fastmap' and `newline_anchor' fields are neither
1793 examined nor set. */
1794
1795/* Return, freeing storage we allocated. */
1796#define FREE_STACK_RETURN(value) \
1797 return (free (compile_stack.stack), value)
1798
1799static reg_errcode_t
1800regex_compile (pattern, size, syntax, bufp)
1801 const char *pattern;
1802 size_t size;
1803 reg_syntax_t syntax;
1804 struct re_pattern_buffer *bufp;
1805{
1806 /* We fetch characters from PATTERN here. Even though PATTERN is
1807 `char *' (i.e., signed), we declare these variables as unsigned, so
1808 they can be reliably used as array indices. */
1809 register unsigned char c, c1;
1810
1811 /* A random temporary spot in PATTERN. */
1812 const char *p1;
1813
1814 /* Points to the end of the buffer, where we should append. */
1815 register unsigned char *b;
1816
1817 /* Keeps track of unclosed groups. */
1818 compile_stack_type compile_stack;
1819
1820 /* Points to the current (ending) position in the pattern. */
1821 const char *p = pattern;
1822 const char *pend = pattern + size;
1823
1824 /* How to translate the characters in the pattern. */
1825 RE_TRANSLATE_TYPE translate = bufp->translate;
1826
1827 /* Address of the count-byte of the most recently inserted `exactn'
1828 command. This makes it possible to tell if a new exact-match
1829 character can be added to that command or if the character requires
1830 a new `exactn' command. */
1831 unsigned char *pending_exact = 0;
1832
1833 /* Address of start of the most recently finished expression.
1834 This tells, e.g., postfix * where to find the start of its
1835 operand. Reset at the beginning of groups and alternatives. */
1836 unsigned char *laststart = 0;
1837
1838 /* Address of beginning of regexp, or inside of last group. */
1839 unsigned char *begalt;
1840
1841 /* Place in the uncompiled pattern (i.e., the {) to
1842 which to go back if the interval is invalid. */
1843 const char *beg_interval;
1844
1845 /* Address of the place where a forward jump should go to the end of
1846 the containing expression. Each alternative of an `or' -- except the
1847 last -- ends with a forward jump of this sort. */
1848 unsigned char *fixup_alt_jump = 0;
1849
1850 /* Counts open-groups as they are encountered. Remembered for the
1851 matching close-group on the compile stack, so the same register
1852 number is put in the stop_memory as the start_memory. */
1853 regnum_t regnum = 0;
1854
1855#ifdef DEBUG
1856 DEBUG_PRINT1 ("\nCompiling pattern: ");
1857 if (debug)
1858 {
1859 unsigned debug_count;
1860
1861 for (debug_count = 0; debug_count < size; debug_count++)
1862 putchar (pattern[debug_count]);
1863 putchar ('\n');
1864 }
1865#endif /* DEBUG */
1866
1867 /* Initialize the compile stack. */
1868 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1869 if (compile_stack.stack == NULL)
1870 return REG_ESPACE;
1871
1872 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1873 compile_stack.avail = 0;
1874
1875 /* Initialize the pattern buffer. */
1876 bufp->syntax = syntax;
1877 bufp->fastmap_accurate = 0;
1878 bufp->not_bol = bufp->not_eol = 0;
1879
1880 /* Set `used' to zero, so that if we return an error, the pattern
1881 printer (for debugging) will think there's no pattern. We reset it
1882 at the end. */
1883 bufp->used = 0;
1884
1885 /* Always count groups, whether or not bufp->no_sub is set. */
1886 bufp->re_nsub = 0;
1887
1888#if !defined emacs && !defined SYNTAX_TABLE
1889 /* Initialize the syntax table. */
1890 init_syntax_once ();
1891#endif
1892
1893 if (bufp->allocated == 0)
1894 {
1895 if (bufp->buffer)
1896 { /* If zero allocated, but buffer is non-null, try to realloc
1897 enough space. This loses if buffer's address is bogus, but
1898 that is the user's responsibility. */
1899 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1900 }
1901 else
1902 { /* Caller did not allocate a buffer. Do it for them. */
1903 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1904 }
1905 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1906
1907 bufp->allocated = INIT_BUF_SIZE;
1908 }
1909
1910 begalt = b = bufp->buffer;
1911
1912 /* Loop through the uncompiled pattern until we're at the end. */
1913 while (p != pend)
1914 {
1915 PATFETCH (c);
1916
1917 switch (c)
1918 {
1919 case '^':
1920 {
1921 if ( /* If at start of pattern, it's an operator. */
1922 p == pattern + 1
1923 /* If context independent, it's an operator. */
1924 || syntax & RE_CONTEXT_INDEP_ANCHORS
1925 /* Otherwise, depends on what's come before. */
1926 || at_begline_loc_p (pattern, p, syntax))
1927 BUF_PUSH (begline);
1928 else
1929 goto normal_char;
1930 }
1931 break;
1932
1933
1934 case '$':
1935 {
1936 if ( /* If at end of pattern, it's an operator. */
1937 p == pend
1938 /* If context independent, it's an operator. */
1939 || syntax & RE_CONTEXT_INDEP_ANCHORS
1940 /* Otherwise, depends on what's next. */
1941 || at_endline_loc_p (p, pend, syntax))
1942 BUF_PUSH (endline);
1943 else
1944 goto normal_char;
1945 }
1946 break;
1947
1948
1949 case '+':
1950 case '?':
1951 if ((syntax & RE_BK_PLUS_QM)
1952 || (syntax & RE_LIMITED_OPS))
1953 goto normal_char;
1954 handle_plus:
1955 case '*':
1956 /* If there is no previous pattern... */
1957 if (!laststart)
1958 {
1959 if (syntax & RE_CONTEXT_INVALID_OPS)
1960 FREE_STACK_RETURN (REG_BADRPT);
1961 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1962 goto normal_char;
1963 }
1964
1965 {
1966 /* Are we optimizing this jump? */
1967 boolean keep_string_p = false;
1968
1969 /* 1 means zero (many) matches is allowed. */
1970 char zero_times_ok = 0, many_times_ok = 0;
1971
1972 /* If there is a sequence of repetition chars, collapse it
1973 down to just one (the right one). We can't combine
1974 interval operators with these because of, e.g., `a{2}*',
1975 which should only match an even number of `a's. */
1976
1977 for (;;)
1978 {
1979 zero_times_ok |= c != '+';
1980 many_times_ok |= c != '?';
1981
1982 if (p == pend)
1983 break;
1984
1985 PATFETCH (c);
1986
1987 if (c == '*'
1988 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1989 ;
1990
1991 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1992 {
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994
1995 PATFETCH (c1);
1996 if (!(c1 == '+' || c1 == '?'))
1997 {
1998 PATUNFETCH;
1999 PATUNFETCH;
2000 break;
2001 }
2002
2003 c = c1;
2004 }
2005 else
2006 {
2007 PATUNFETCH;
2008 break;
2009 }
2010
2011 /* If we get here, we found another repeat character. */
2012 }
2013
2014 /* Star, etc. applied to an empty pattern is equivalent
2015 to an empty pattern. */
2016 if (!laststart)
2017 break;
2018
2019 /* Now we know whether or not zero matches is allowed
2020 and also whether or not two or more matches is allowed. */
2021 if (many_times_ok)
2022 { /* More than one repetition is allowed, so put in at the
2023 end a backward relative jump from `b' to before the next
2024 jump we're going to put in below (which jumps from
2025 laststart to after this jump).
2026
2027 But if we are at the `*' in the exact sequence `.*\n',
2028 insert an unconditional jump backwards to the .,
2029 instead of the beginning of the loop. This way we only
2030 push a failure point once, instead of every time
2031 through the loop. */
2032 assert (p - 1 > pattern);
2033
2034 /* Allocate the space for the jump. */
2035 GET_BUFFER_SPACE (3);
2036
2037 /* We know we are not at the first character of the pattern,
2038 because laststart was nonzero. And we've already
2039 incremented `p', by the way, to be the character after
2040 the `*'. Do we have to do something analogous here
2041 for null bytes, because of RE_DOT_NOT_NULL? */
2042 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2043 && zero_times_ok
2044 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2045 && !(syntax & RE_DOT_NEWLINE))
2046 { /* We have .*\n. */
2047 STORE_JUMP (jump, b, laststart);
2048 keep_string_p = true;
2049 }
2050 else
2051 /* Anything else. */
2052 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2053
2054 /* We've added more stuff to the buffer. */
2055 b += 3;
2056 }
2057
2058 /* On failure, jump from laststart to b + 3, which will be the
2059 end of the buffer after this jump is inserted. */
2060 GET_BUFFER_SPACE (3);
2061 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2062 : on_failure_jump,
2063 laststart, b + 3);
2064 pending_exact = 0;
2065 b += 3;
2066
2067 if (!zero_times_ok)
2068 {
2069 /* At least one repetition is required, so insert a
2070 `dummy_failure_jump' before the initial
2071 `on_failure_jump' instruction of the loop. This
2072 effects a skip over that instruction the first time
2073 we hit that loop. */
2074 GET_BUFFER_SPACE (3);
2075 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2076 b += 3;
2077 }
2078 }
2079 break;
2080
2081
2082 case '.':
2083 laststart = b;
2084 BUF_PUSH (anychar);
2085 break;
2086
2087
2088 case '[':
2089 {
2090 boolean had_char_class = false;
2091
2092 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2093
2094 /* Ensure that we have enough space to push a charset: the
2095 opcode, the length count, and the bitset; 34 bytes in all. */
2096 GET_BUFFER_SPACE (34);
2097
2098 laststart = b;
2099
2100 /* We test `*p == '^' twice, instead of using an if
2101 statement, so we only need one BUF_PUSH. */
2102 BUF_PUSH (*p == '^' ? charset_not : charset);
2103 if (*p == '^')
2104 p++;
2105
2106 /* Remember the first position in the bracket expression. */
2107 p1 = p;
2108
2109 /* Push the number of bytes in the bitmap. */
2110 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2111
2112 /* Clear the whole map. */
2113 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2114
2115 /* charset_not matches newline according to a syntax bit. */
2116 if ((re_opcode_t) b[-2] == charset_not
2117 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2118 SET_LIST_BIT ('\n');
2119
2120 /* Read in characters and ranges, setting map bits. */
2121 for (;;)
2122 {
2123 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2124
2125 PATFETCH (c);
2126
2127 /* \ might escape characters inside [...] and [^...]. */
2128 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2129 {
2130 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2131
2132 PATFETCH (c1);
2133 SET_LIST_BIT (c1);
2134 continue;
2135 }
2136
2137 /* Could be the end of the bracket expression. If it's
2138 not (i.e., when the bracket expression is `[]' so
2139 far), the ']' character bit gets set way below. */
2140 if (c == ']' && p != p1 + 1)
2141 break;
2142
2143 /* Look ahead to see if it's a range when the last thing
2144 was a character class. */
2145 if (had_char_class && c == '-' && *p != ']')
2146 FREE_STACK_RETURN (REG_ERANGE);
2147
2148 /* Look ahead to see if it's a range when the last thing
2149 was a character: if this is a hyphen not at the
2150 beginning or the end of a list, then it's the range
2151 operator. */
2152 if (c == '-'
2153 && !(p - 2 >= pattern && p[-2] == '[')
2154 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2155 && *p != ']')
2156 {
2157 reg_errcode_t ret
2158 = compile_range (&p, pend, translate, syntax, b);
2159 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2160 }
2161
2162 else if (p[0] == '-' && p[1] != ']')
2163 { /* This handles ranges made up of characters only. */
2164 reg_errcode_t ret;
2165
2166 /* Move past the `-'. */
2167 PATFETCH (c1);
2168
2169 ret = compile_range (&p, pend, translate, syntax, b);
2170 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2171 }
2172
2173 /* See if we're at the beginning of a possible character
2174 class. */
2175
2176 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2177 { /* Leave room for the null. */
2178 char str[CHAR_CLASS_MAX_LENGTH + 1];
2179
2180 PATFETCH (c);
2181 c1 = 0;
2182
2183 /* If pattern is `[[:'. */
2184 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2185
2186 for (;;)
2187 {
2188 PATFETCH (c);
2189 if ((c == ':' && *p == ']') || p == pend
2190 || c1 == CHAR_CLASS_MAX_LENGTH)
2191 break;
2192 str[c1++] = c;
2193 }
2194 str[c1] = '\0';
2195
2196 /* If isn't a word bracketed by `[:' and `:]':
2197 undo the ending character, the letters, and leave
2198 the leading `:' and `[' (but set bits for them). */
2199 if (c == ':' && *p == ']')
2200 {
2201/* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2202/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2203/* systems where we have wchar.h and wctype.h. */
2204#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2205 boolean is_lower = STREQ (str, "lower");
2206 boolean is_upper = STREQ (str, "upper");
2207 wctype_t wt;
2208 int ch;
2209
2210 wt = IS_CHAR_CLASS (str);
2211 if (wt == 0)
2212 FREE_STACK_RETURN (REG_ECTYPE);
2213
2214 /* Throw away the ] at the end of the character
2215 class. */
2216 PATFETCH (c);
2217
2218 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2219
2220 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2221 {
2222# ifdef _LIBC
2223 if (__iswctype (__btowc (ch), wt))
2224 SET_LIST_BIT (ch);
2225#else
2226 if (iswctype (btowc (ch), wt))
2227 SET_LIST_BIT (ch);
2228#endif
2229
2230 if (translate && (is_upper || is_lower)
2231 && (ISUPPER (ch) || ISLOWER (ch)))
2232 SET_LIST_BIT (ch);
2233 }
2234
2235 had_char_class = true;
2236#else
2237 int ch;
2238 boolean is_alnum = STREQ (str, "alnum");
2239 boolean is_alpha = STREQ (str, "alpha");
2240 boolean is_blank = STREQ (str, "blank");
2241 boolean is_cntrl = STREQ (str, "cntrl");
2242 boolean is_digit = STREQ (str, "digit");
2243 boolean is_graph = STREQ (str, "graph");
2244 boolean is_lower = STREQ (str, "lower");
2245 boolean is_print = STREQ (str, "print");
2246 boolean is_punct = STREQ (str, "punct");
2247 boolean is_space = STREQ (str, "space");
2248 boolean is_upper = STREQ (str, "upper");
2249 boolean is_xdigit = STREQ (str, "xdigit");
2250
2251 if (!IS_CHAR_CLASS (str))
2252 FREE_STACK_RETURN (REG_ECTYPE);
2253
2254 /* Throw away the ] at the end of the character
2255 class. */
2256 PATFETCH (c);
2257
2258 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2259
2260 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2261 {
2262 /* This was split into 3 if's to
2263 avoid an arbitrary limit in some compiler. */
2264 if ( (is_alnum && ISALNUM (ch))
2265 || (is_alpha && ISALPHA (ch))
2266 || (is_blank && ISBLANK (ch))
2267 || (is_cntrl && ISCNTRL (ch)))
2268 SET_LIST_BIT (ch);
2269 if ( (is_digit && ISDIGIT (ch))
2270 || (is_graph && ISGRAPH (ch))
2271 || (is_lower && ISLOWER (ch))
2272 || (is_print && ISPRINT (ch)))
2273 SET_LIST_BIT (ch);
2274 if ( (is_punct && ISPUNCT (ch))
2275 || (is_space && ISSPACE (ch))
2276 || (is_upper && ISUPPER (ch))
2277 || (is_xdigit && ISXDIGIT (ch)))
2278 SET_LIST_BIT (ch);
2279 if ( translate && (is_upper || is_lower)
2280 && (ISUPPER (ch) || ISLOWER (ch)))
2281 SET_LIST_BIT (ch);
2282 }
2283 had_char_class = true;
2284#endif /* libc || wctype.h */
2285 }
2286 else
2287 {
2288 c1++;
2289 while (c1--)
2290 PATUNFETCH;
2291 SET_LIST_BIT ('[');
2292 SET_LIST_BIT (':');
2293 had_char_class = false;
2294 }
2295 }
2296 else
2297 {
2298 had_char_class = false;
2299 SET_LIST_BIT (c);
2300 }
2301 }
2302
2303 /* Discard any (non)matching list bytes that are all 0 at the
2304 end of the map. Decrease the map-length byte too. */
2305 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2306 b[-1]--;
2307 b += b[-1];
2308 }
2309 break;
2310
2311
2312 case '(':
2313 if (syntax & RE_NO_BK_PARENS)
2314 goto handle_open;
2315 else
2316 goto normal_char;
2317
2318
2319 case ')':
2320 if (syntax & RE_NO_BK_PARENS)
2321 goto handle_close;
2322 else
2323 goto normal_char;
2324
2325
2326 case '\n':
2327 if (syntax & RE_NEWLINE_ALT)
2328 goto handle_alt;
2329 else
2330 goto normal_char;
2331
2332
2333 case '|':
2334 if (syntax & RE_NO_BK_VBAR)
2335 goto handle_alt;
2336 else
2337 goto normal_char;
2338
2339
2340 case '{':
2341 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2342 goto handle_interval;
2343 else
2344 goto normal_char;
2345
2346
2347 case '\\':
2348 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2349
2350 /* Do not translate the character after the \, so that we can
2351 distinguish, e.g., \B from \b, even if we normally would
2352 translate, e.g., B to b. */
2353 PATFETCH_RAW (c);
2354
2355 switch (c)
2356 {
2357 case '(':
2358 if (syntax & RE_NO_BK_PARENS)
2359 goto normal_backslash;
2360
2361 handle_open:
2362 bufp->re_nsub++;
2363 regnum++;
2364
2365 if (COMPILE_STACK_FULL)
2366 {
2367 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2368 compile_stack_elt_t);
2369 if (compile_stack.stack == NULL) return REG_ESPACE;
2370
2371 compile_stack.size <<= 1;
2372 }
2373
2374 /* These are the values to restore when we hit end of this
2375 group. They are all relative offsets, so that if the
2376 whole pattern moves because of realloc, they will still
2377 be valid. */
2378 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2379 COMPILE_STACK_TOP.fixup_alt_jump
2380 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2381 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2382 COMPILE_STACK_TOP.regnum = regnum;
2383
2384 /* We will eventually replace the 0 with the number of
2385 groups inner to this one. But do not push a
2386 start_memory for groups beyond the last one we can
2387 represent in the compiled pattern. */
2388 if (regnum <= MAX_REGNUM)
2389 {
2390 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2391 BUF_PUSH_3 (start_memory, regnum, 0);
2392 }
2393
2394 compile_stack.avail++;
2395
2396 fixup_alt_jump = 0;
2397 laststart = 0;
2398 begalt = b;
2399 /* If we've reached MAX_REGNUM groups, then this open
2400 won't actually generate any code, so we'll have to
2401 clear pending_exact explicitly. */
2402 pending_exact = 0;
2403 break;
2404
2405
2406 case ')':
2407 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2408
2409 if (COMPILE_STACK_EMPTY)
2410 {
2411 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2412 goto normal_backslash;
2413 else
2414 FREE_STACK_RETURN (REG_ERPAREN);
2415 }
2416
2417 handle_close:
2418 if (fixup_alt_jump)
2419 { /* Push a dummy failure point at the end of the
2420 alternative for a possible future
2421 `pop_failure_jump' to pop. See comments at
2422 `push_dummy_failure' in `re_match_2'. */
2423 BUF_PUSH (push_dummy_failure);
2424
2425 /* We allocated space for this jump when we assigned
2426 to `fixup_alt_jump', in the `handle_alt' case below. */
2427 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2428 }
2429
2430 /* See similar code for backslashed left paren above. */
2431 if (COMPILE_STACK_EMPTY)
2432 {
2433 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2434 goto normal_char;
2435 else
2436 FREE_STACK_RETURN (REG_ERPAREN);
2437 }
2438
2439 /* Since we just checked for an empty stack above, this
2440 ``can't happen''. */
2441 assert (compile_stack.avail != 0);
2442 {
2443 /* We don't just want to restore into `regnum', because
2444 later groups should continue to be numbered higher,
2445 as in `(ab)c(de)' -- the second group is #2. */
2446 regnum_t this_group_regnum;
2447
2448 compile_stack.avail--;
2449 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2450 fixup_alt_jump
2451 = COMPILE_STACK_TOP.fixup_alt_jump
2452 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2453 : 0;
2454 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2455 this_group_regnum = COMPILE_STACK_TOP.regnum;
2456 /* If we've reached MAX_REGNUM groups, then this open
2457 won't actually generate any code, so we'll have to
2458 clear pending_exact explicitly. */
2459 pending_exact = 0;
2460
2461 /* We're at the end of the group, so now we know how many
2462 groups were inside this one. */
2463 if (this_group_regnum <= MAX_REGNUM)
2464 {
2465 unsigned char *inner_group_loc
2466 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2467
2468 *inner_group_loc = regnum - this_group_regnum;
2469 BUF_PUSH_3 (stop_memory, this_group_regnum,
2470 regnum - this_group_regnum);
2471 }
2472 }
2473 break;
2474
2475
2476 case '|': /* `\|'. */
2477 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2478 goto normal_backslash;
2479 handle_alt:
2480 if (syntax & RE_LIMITED_OPS)
2481 goto normal_char;
2482
2483 /* Insert before the previous alternative a jump which
2484 jumps to this alternative if the former fails. */
2485 GET_BUFFER_SPACE (3);
2486 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2487 pending_exact = 0;
2488 b += 3;
2489
2490 /* The alternative before this one has a jump after it
2491 which gets executed if it gets matched. Adjust that
2492 jump so it will jump to this alternative's analogous
2493 jump (put in below, which in turn will jump to the next
2494 (if any) alternative's such jump, etc.). The last such
2495 jump jumps to the correct final destination. A picture:
2496 _____ _____
2497 | | | |
2498 | v | v
2499 a | b | c
2500
2501 If we are at `b', then fixup_alt_jump right now points to a
2502 three-byte space after `a'. We'll put in the jump, set
2503 fixup_alt_jump to right after `b', and leave behind three
2504 bytes which we'll fill in when we get to after `c'. */
2505
2506 if (fixup_alt_jump)
2507 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2508
2509 /* Mark and leave space for a jump after this alternative,
2510 to be filled in later either by next alternative or
2511 when know we're at the end of a series of alternatives. */
2512 fixup_alt_jump = b;
2513 GET_BUFFER_SPACE (3);
2514 b += 3;
2515
2516 laststart = 0;
2517 begalt = b;
2518 break;
2519
2520
2521 case '{':
2522 /* If \{ is a literal. */
2523 if (!(syntax & RE_INTERVALS)
2524 /* If we're at `\{' and it's not the open-interval
2525 operator. */
2526 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2527 || (p - 2 == pattern && p == pend))
2528 goto normal_backslash;
2529
2530 handle_interval:
2531 {
2532 /* If got here, then the syntax allows intervals. */
2533
2534 /* At least (most) this many matches must be made. */
2535 int lower_bound = -1, upper_bound = -1;
2536
2537 beg_interval = p - 1;
2538
2539 if (p == pend)
2540 {
2541 if (syntax & RE_NO_BK_BRACES)
2542 goto unfetch_interval;
2543 else
2544 FREE_STACK_RETURN (REG_EBRACE);
2545 }
2546
2547 GET_UNSIGNED_NUMBER (lower_bound);
2548
2549 if (c == ',')
2550 {
2551 GET_UNSIGNED_NUMBER (upper_bound);
2552 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2553 }
2554 else
2555 /* Interval such as `{1}' => match exactly once. */
2556 upper_bound = lower_bound;
2557
2558 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2559 || lower_bound > upper_bound)
2560 {
2561 if (syntax & RE_NO_BK_BRACES)
2562 goto unfetch_interval;
2563 else
2564 FREE_STACK_RETURN (REG_BADBR);
2565 }
2566
2567 if (!(syntax & RE_NO_BK_BRACES))
2568 {
2569 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2570
2571 PATFETCH (c);
2572 }
2573
2574 if (c != '}')
2575 {
2576 if (syntax & RE_NO_BK_BRACES)
2577 goto unfetch_interval;
2578 else
2579 FREE_STACK_RETURN (REG_BADBR);
2580 }
2581
2582 /* We just parsed a valid interval. */
2583
2584 /* If it's invalid to have no preceding re. */
2585 if (!laststart)
2586 {
2587 if (syntax & RE_CONTEXT_INVALID_OPS)
2588 FREE_STACK_RETURN (REG_BADRPT);
2589 else if (syntax & RE_CONTEXT_INDEP_OPS)
2590 laststart = b;
2591 else
2592 goto unfetch_interval;
2593 }
2594
2595 /* If the upper bound is zero, don't want to succeed at
2596 all; jump from `laststart' to `b + 3', which will be
2597 the end of the buffer after we insert the jump. */
2598 if (upper_bound == 0)
2599 {
2600 GET_BUFFER_SPACE (3);
2601 INSERT_JUMP (jump, laststart, b + 3);
2602 b += 3;
2603 }
2604
2605 /* Otherwise, we have a nontrivial interval. When
2606 we're all done, the pattern will look like:
2607 set_number_at <jump count> <upper bound>
2608 set_number_at <succeed_n count> <lower bound>
2609 succeed_n <after jump addr> <succeed_n count>
2610 <body of loop>
2611 jump_n <succeed_n addr> <jump count>
2612 (The upper bound and `jump_n' are omitted if
2613 `upper_bound' is 1, though.) */
2614 else
2615 { /* If the upper bound is > 1, we need to insert
2616 more at the end of the loop. */
2617 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2618
2619 GET_BUFFER_SPACE (nbytes);
2620
2621 /* Initialize lower bound of the `succeed_n', even
2622 though it will be set during matching by its
2623 attendant `set_number_at' (inserted next),
2624 because `re_compile_fastmap' needs to know.
2625 Jump to the `jump_n' we might insert below. */
2626 INSERT_JUMP2 (succeed_n, laststart,
2627 b + 5 + (upper_bound > 1) * 5,
2628 lower_bound);
2629 b += 5;
2630
2631 /* Code to initialize the lower bound. Insert
2632 before the `succeed_n'. The `5' is the last two
2633 bytes of this `set_number_at', plus 3 bytes of
2634 the following `succeed_n'. */
2635 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2636 b += 5;
2637
2638 if (upper_bound > 1)
2639 { /* More than one repetition is allowed, so
2640 append a backward jump to the `succeed_n'
2641 that starts this interval.
2642
2643 When we've reached this during matching,
2644 we'll have matched the interval once, so
2645 jump back only `upper_bound - 1' times. */
2646 STORE_JUMP2 (jump_n, b, laststart + 5,
2647 upper_bound - 1);
2648 b += 5;
2649
2650 /* The location we want to set is the second
2651 parameter of the `jump_n'; that is `b-2' as
2652 an absolute address. `laststart' will be
2653 the `set_number_at' we're about to insert;
2654 `laststart+3' the number to set, the source
2655 for the relative address. But we are
2656 inserting into the middle of the pattern --
2657 so everything is getting moved up by 5.
2658 Conclusion: (b - 2) - (laststart + 3) + 5,
2659 i.e., b - laststart.
2660
2661 We insert this at the beginning of the loop
2662 so that if we fail during matching, we'll
2663 reinitialize the bounds. */
2664 insert_op2 (set_number_at, laststart, b - laststart,
2665 upper_bound - 1, b);
2666 b += 5;
2667 }
2668 }
2669 pending_exact = 0;
2670 beg_interval = NULL;
2671 }
2672 break;
2673
2674 unfetch_interval:
2675 /* If an invalid interval, match the characters as literals. */
2676 assert (beg_interval);
2677 p = beg_interval;
2678 beg_interval = NULL;
2679
2680 /* normal_char and normal_backslash need `c'. */
2681 PATFETCH (c);
2682
2683 if (!(syntax & RE_NO_BK_BRACES))
2684 {
2685 if (p > pattern && p[-1] == '\\')
2686 goto normal_backslash;
2687 }
2688 goto normal_char;
2689
2690#ifdef emacs
2691 /* There is no way to specify the before_dot and after_dot
2692 operators. rms says this is ok. --karl */
2693 case '=':
2694 BUF_PUSH (at_dot);
2695 break;
2696
2697 case 's':
2698 laststart = b;
2699 PATFETCH (c);
2700 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2701 break;
2702
2703 case 'S':
2704 laststart = b;
2705 PATFETCH (c);
2706 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2707 break;
2708#endif /* emacs */
2709
2710
2711 case 'w':
2712 if (syntax & RE_NO_GNU_OPS)
2713 goto normal_char;
2714 laststart = b;
2715 BUF_PUSH (wordchar);
2716 break;
2717
2718
2719 case 'W':
2720 if (syntax & RE_NO_GNU_OPS)
2721 goto normal_char;
2722 laststart = b;
2723 BUF_PUSH (notwordchar);
2724 break;
2725
2726
2727 case '<':
2728 if (syntax & RE_NO_GNU_OPS)
2729 goto normal_char;
2730 BUF_PUSH (wordbeg);
2731 break;
2732
2733 case '>':
2734 if (syntax & RE_NO_GNU_OPS)
2735 goto normal_char;
2736 BUF_PUSH (wordend);
2737 break;
2738
2739 case 'b':
2740 if (syntax & RE_NO_GNU_OPS)
2741 goto normal_char;
2742 BUF_PUSH (wordbound);
2743 break;
2744
2745 case 'B':
2746 if (syntax & RE_NO_GNU_OPS)
2747 goto normal_char;
2748 BUF_PUSH (notwordbound);
2749 break;
2750
2751 case '`':
2752 if (syntax & RE_NO_GNU_OPS)
2753 goto normal_char;
2754 BUF_PUSH (begbuf);
2755 break;
2756
2757 case '\'':
2758 if (syntax & RE_NO_GNU_OPS)
2759 goto normal_char;
2760 BUF_PUSH (endbuf);
2761 break;
2762
2763 case '1': case '2': case '3': case '4': case '5':
2764 case '6': case '7': case '8': case '9':
2765 if (syntax & RE_NO_BK_REFS)
2766 goto normal_char;
2767
2768 c1 = c - '0';
2769
2770 if (c1 > regnum)
2771 FREE_STACK_RETURN (REG_ESUBREG);
2772
2773 /* Can't back reference to a subexpression if inside of it. */
2774 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2775 goto normal_char;
2776
2777 laststart = b;
2778 BUF_PUSH_2 (duplicate, c1);
2779 break;
2780
2781
2782 case '+':
2783 case '?':
2784 if (syntax & RE_BK_PLUS_QM)
2785 goto handle_plus;
2786 else
2787 goto normal_backslash;
2788
2789 default:
2790 normal_backslash:
2791 /* You might think it would be useful for \ to mean
2792 not to translate; but if we don't translate it
2793 it will never match anything. */
2794 c = TRANSLATE (c);
2795 goto normal_char;
2796 }
2797 break;
2798
2799
2800 default:
2801 /* Expects the character in `c'. */
2802 normal_char:
2803 /* If no exactn currently being built. */
2804 if (!pending_exact
2805
2806 /* If last exactn not at current position. */
2807 || pending_exact + *pending_exact + 1 != b
2808
2809 /* We have only one byte following the exactn for the count. */
2810 || *pending_exact == (1 << BYTEWIDTH) - 1
2811
2812 /* If followed by a repetition operator. */
2813 || *p == '*' || *p == '^'
2814 || ((syntax & RE_BK_PLUS_QM)
2815 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2816 : (*p == '+' || *p == '?'))
2817 || ((syntax & RE_INTERVALS)
2818 && ((syntax & RE_NO_BK_BRACES)
2819 ? *p == '{'
2820 : (p[0] == '\\' && p[1] == '{'))))
2821 {
2822 /* Start building a new exactn. */
2823
2824 laststart = b;
2825
2826 BUF_PUSH_2 (exactn, 0);
2827 pending_exact = b - 1;
2828 }
2829
2830 BUF_PUSH (c);
2831 (*pending_exact)++;
2832 break;
2833 } /* switch (c) */
2834 } /* while p != pend */
2835
2836
2837 /* Through the pattern now. */
2838
2839 if (fixup_alt_jump)
2840 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2841
2842 if (!COMPILE_STACK_EMPTY)
2843 FREE_STACK_RETURN (REG_EPAREN);
2844
2845 /* If we don't want backtracking, force success
2846 the first time we reach the end of the compiled pattern. */
2847 if (syntax & RE_NO_POSIX_BACKTRACKING)
2848 BUF_PUSH (succeed);
2849
2850 free (compile_stack.stack);
2851
2852 /* We have succeeded; set the length of the buffer. */
2853 bufp->used = b - bufp->buffer;
2854
2855#ifdef DEBUG
2856 if (debug)
2857 {
2858 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2859 print_compiled_pattern (bufp);
2860 }
2861#endif /* DEBUG */
2862
2863#ifndef MATCH_MAY_ALLOCATE
2864 /* Initialize the failure stack to the largest possible stack. This
2865 isn't necessary unless we're trying to avoid calling alloca in
2866 the search and match routines. */
2867 {
2868 int num_regs = bufp->re_nsub + 1;
2869
2870 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2871 is strictly greater than re_max_failures, the largest possible stack
2872 is 2 * re_max_failures failure points. */
2873 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2874 {
2875 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2876
2877# ifdef emacs
2878 if (! fail_stack.stack)
2879 fail_stack.stack
2880 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2881 * sizeof (fail_stack_elt_t));
2882 else
2883 fail_stack.stack
2884 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2885 (fail_stack.size
2886 * sizeof (fail_stack_elt_t)));
2887# else /* not emacs */
2888 if (! fail_stack.stack)
2889 fail_stack.stack
2890 = (fail_stack_elt_t *) malloc (fail_stack.size
2891 * sizeof (fail_stack_elt_t));
2892 else
2893 fail_stack.stack
2894 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2895 (fail_stack.size
2896 * sizeof (fail_stack_elt_t)));
2897# endif /* not emacs */
2898 }
2899
2900 regex_grow_registers (num_regs);
2901 }
2902#endif /* not MATCH_MAY_ALLOCATE */
2903
2904 return REG_NOERROR;
2905} /* regex_compile */
2906\f
2907/* Subroutines for `regex_compile'. */
2908
2909/* Store OP at LOC followed by two-byte integer parameter ARG. */
2910
2911static void
2912store_op1 (op, loc, arg)
2913 re_opcode_t op;
2914 unsigned char *loc;
2915 int arg;
2916{
2917 *loc = (unsigned char) op;
2918 STORE_NUMBER (loc + 1, arg);
2919}
2920
2921
2922/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2923
2924static void
2925store_op2 (op, loc, arg1, arg2)
2926 re_opcode_t op;
2927 unsigned char *loc;
2928 int arg1, arg2;
2929{
2930 *loc = (unsigned char) op;
2931 STORE_NUMBER (loc + 1, arg1);
2932 STORE_NUMBER (loc + 3, arg2);
2933}
2934
2935
2936/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2937 for OP followed by two-byte integer parameter ARG. */
2938
2939static void
2940insert_op1 (op, loc, arg, end)
2941 re_opcode_t op;
2942 unsigned char *loc;
2943 int arg;
2944 unsigned char *end;
2945{
2946 register unsigned char *pfrom = end;
2947 register unsigned char *pto = end + 3;
2948
2949 while (pfrom != loc)
2950 *--pto = *--pfrom;
2951
2952 store_op1 (op, loc, arg);
2953}
2954
2955
2956/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2957
2958static void
2959insert_op2 (op, loc, arg1, arg2, end)
2960 re_opcode_t op;
2961 unsigned char *loc;
2962 int arg1, arg2;
2963 unsigned char *end;
2964{
2965 register unsigned char *pfrom = end;
2966 register unsigned char *pto = end + 5;
2967
2968 while (pfrom != loc)
2969 *--pto = *--pfrom;
2970
2971 store_op2 (op, loc, arg1, arg2);
2972}
2973
2974
2975/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2976 after an alternative or a begin-subexpression. We assume there is at
2977 least one character before the ^. */
2978
2979static boolean
2980at_begline_loc_p (pattern, p, syntax)
2981 const char *pattern, *p;
2982 reg_syntax_t syntax;
2983{
2984 const char *prev = p - 2;
2985 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2986
2987 return
2988 /* After a subexpression? */
2989 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2990 /* After an alternative? */
2991 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2992}
2993
2994
2995/* The dual of at_begline_loc_p. This one is for $. We assume there is
2996 at least one character after the $, i.e., `P < PEND'. */
2997
2998static boolean
2999at_endline_loc_p (p, pend, syntax)
3000 const char *p, *pend;
3001 reg_syntax_t syntax;
3002{
3003 const char *next = p;
3004 boolean next_backslash = *next == '\\';
3005 const char *next_next = p + 1 < pend ? p + 1 : 0;
3006
3007 return
3008 /* Before a subexpression? */
3009 (syntax & RE_NO_BK_PARENS ? *next == ')'
3010 : next_backslash && next_next && *next_next == ')')
3011 /* Before an alternative? */
3012 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3013 : next_backslash && next_next && *next_next == '|');
3014}
3015
3016
3017/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3018 false if it's not. */
3019
3020static boolean
3021group_in_compile_stack (compile_stack, regnum)
3022 compile_stack_type compile_stack;
3023 regnum_t regnum;
3024{
3025 int this_element;
3026
3027 for (this_element = compile_stack.avail - 1;
3028 this_element >= 0;
3029 this_element--)
3030 if (compile_stack.stack[this_element].regnum == regnum)
3031 return true;
3032
3033 return false;
3034}
3035
3036
3037/* Read the ending character of a range (in a bracket expression) from the
3038 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3039 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3040 Then we set the translation of all bits between the starting and
3041 ending characters (inclusive) in the compiled pattern B.
3042
3043 Return an error code.
3044
3045 We use these short variable names so we can use the same macros as
3046 `regex_compile' itself. */
3047
3048static reg_errcode_t
3049compile_range (p_ptr, pend, translate, syntax, b)
3050 const char **p_ptr, *pend;
3051 RE_TRANSLATE_TYPE translate;
3052 reg_syntax_t syntax;
3053 unsigned char *b;
3054{
3055 unsigned this_char;
3056
3057 const char *p = *p_ptr;
3058 unsigned int range_start, range_end;
3059
3060 if (p == pend)
3061 return REG_ERANGE;
3062
3063 /* Even though the pattern is a signed `char *', we need to fetch
3064 with unsigned char *'s; if the high bit of the pattern character
3065 is set, the range endpoints will be negative if we fetch using a
3066 signed char *.
3067
3068 We also want to fetch the endpoints without translating them; the
3069 appropriate translation is done in the bit-setting loop below. */
3070 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3071 range_start = ((const unsigned char *) p)[-2];
3072 range_end = ((const unsigned char *) p)[0];
3073
3074 /* Have to increment the pointer into the pattern string, so the
3075 caller isn't still at the ending character. */
3076 (*p_ptr)++;
3077
3078 /* If the start is after the end, the range is empty. */
3079 if (range_start > range_end)
3080 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3081
3082 /* Here we see why `this_char' has to be larger than an `unsigned
3083 char' -- the range is inclusive, so if `range_end' == 0xff
3084 (assuming 8-bit characters), we would otherwise go into an infinite
3085 loop, since all characters <= 0xff. */
3086 for (this_char = range_start; this_char <= range_end; this_char++)
3087 {
3088 SET_LIST_BIT (TRANSLATE (this_char));
3089 }
3090
3091 return REG_NOERROR;
3092}
3093\f
3094/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3095 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3096 characters can start a string that matches the pattern. This fastmap
3097 is used by re_search to skip quickly over impossible starting points.
3098
3099 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3100 area as BUFP->fastmap.
3101
3102 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3103 the pattern buffer.
3104
3105 Returns 0 if we succeed, -2 if an internal error. */
3106
3107int
3108re_compile_fastmap (bufp)
3109 struct re_pattern_buffer *bufp;
3110{
3111 int j, k;
3112#ifdef MATCH_MAY_ALLOCATE
3113 fail_stack_type fail_stack;
3114#endif
3115#ifndef REGEX_MALLOC
3116 char *destination;
3117#endif
3118
3119 register char *fastmap = bufp->fastmap;
3120 unsigned char *pattern = bufp->buffer;
3121 unsigned char *p = pattern;
3122 register unsigned char *pend = pattern + bufp->used;
3123
3124#ifdef REL_ALLOC
3125 /* This holds the pointer to the failure stack, when
3126 it is allocated relocatably. */
3127 fail_stack_elt_t *failure_stack_ptr;
3128#endif
3129
3130 /* Assume that each path through the pattern can be null until
3131 proven otherwise. We set this false at the bottom of switch
3132 statement, to which we get only if a particular path doesn't
3133 match the empty string. */
3134 boolean path_can_be_null = true;
3135
3136 /* We aren't doing a `succeed_n' to begin with. */
3137 boolean succeed_n_p = false;
3138
3139 assert (fastmap != NULL && p != NULL);
3140
3141 INIT_FAIL_STACK ();
3142 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3143 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3144 bufp->can_be_null = 0;
3145
3146 while (1)
3147 {
3148 if (p == pend || *p == succeed)
3149 {
3150 /* We have reached the (effective) end of pattern. */
3151 if (!FAIL_STACK_EMPTY ())
3152 {
3153 bufp->can_be_null |= path_can_be_null;
3154
3155 /* Reset for next path. */
3156 path_can_be_null = true;
3157
3158 p = fail_stack.stack[--fail_stack.avail].pointer;
3159
3160 continue;
3161 }
3162 else
3163 break;
3164 }
3165
3166 /* We should never be about to go beyond the end of the pattern. */
3167 assert (p < pend);
3168
3169 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3170 {
3171
3172 /* I guess the idea here is to simply not bother with a fastmap
3173 if a backreference is used, since it's too hard to figure out
3174 the fastmap for the corresponding group. Setting
3175 `can_be_null' stops `re_search_2' from using the fastmap, so
3176 that is all we do. */
3177 case duplicate:
3178 bufp->can_be_null = 1;
3179 goto done;
3180
3181
3182 /* Following are the cases which match a character. These end
3183 with `break'. */
3184
3185 case exactn:
3186 fastmap[p[1]] = 1;
3187 break;
3188
3189
3190 case charset:
3191 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3192 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3193 fastmap[j] = 1;
3194 break;
3195
3196
3197 case charset_not:
3198 /* Chars beyond end of map must be allowed. */
3199 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3200 fastmap[j] = 1;
3201
3202 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3203 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3204 fastmap[j] = 1;
3205 break;
3206
3207
3208 case wordchar:
3209 for (j = 0; j < (1 << BYTEWIDTH); j++)
3210 if (SYNTAX (j) == Sword)
3211 fastmap[j] = 1;
3212 break;
3213
3214
3215 case notwordchar:
3216 for (j = 0; j < (1 << BYTEWIDTH); j++)
3217 if (SYNTAX (j) != Sword)
3218 fastmap[j] = 1;
3219 break;
3220
3221
3222 case anychar:
3223 {
3224 int fastmap_newline = fastmap['\n'];
3225
3226 /* `.' matches anything ... */
3227 for (j = 0; j < (1 << BYTEWIDTH); j++)
3228 fastmap[j] = 1;
3229
3230 /* ... except perhaps newline. */
3231 if (!(bufp->syntax & RE_DOT_NEWLINE))
3232 fastmap['\n'] = fastmap_newline;
3233
3234 /* Return if we have already set `can_be_null'; if we have,
3235 then the fastmap is irrelevant. Something's wrong here. */
3236 else if (bufp->can_be_null)
3237 goto done;
3238
3239 /* Otherwise, have to check alternative paths. */
3240 break;
3241 }
3242
3243#ifdef emacs
3244 case syntaxspec:
3245 k = *p++;
3246 for (j = 0; j < (1 << BYTEWIDTH); j++)
3247 if (SYNTAX (j) == (enum syntaxcode) k)
3248 fastmap[j] = 1;
3249 break;
3250
3251
3252 case notsyntaxspec:
3253 k = *p++;
3254 for (j = 0; j < (1 << BYTEWIDTH); j++)
3255 if (SYNTAX (j) != (enum syntaxcode) k)
3256 fastmap[j] = 1;
3257 break;
3258
3259
3260 /* All cases after this match the empty string. These end with
3261 `continue'. */
3262
3263
3264 case before_dot:
3265 case at_dot:
3266 case after_dot:
3267 continue;
3268#endif /* emacs */
3269
3270
3271 case no_op:
3272 case begline:
3273 case endline:
3274 case begbuf:
3275 case endbuf:
3276 case wordbound:
3277 case notwordbound:
3278 case wordbeg:
3279 case wordend:
3280 case push_dummy_failure:
3281 continue;
3282
3283
3284 case jump_n:
3285 case pop_failure_jump:
3286 case maybe_pop_jump:
3287 case jump:
3288 case jump_past_alt:
3289 case dummy_failure_jump:
3290 EXTRACT_NUMBER_AND_INCR (j, p);
3291 p += j;
3292 if (j > 0)
3293 continue;
3294
3295 /* Jump backward implies we just went through the body of a
3296 loop and matched nothing. Opcode jumped to should be
3297 `on_failure_jump' or `succeed_n'. Just treat it like an
3298 ordinary jump. For a * loop, it has pushed its failure
3299 point already; if so, discard that as redundant. */
3300 if ((re_opcode_t) *p != on_failure_jump
3301 && (re_opcode_t) *p != succeed_n)
3302 continue;
3303
3304 p++;
3305 EXTRACT_NUMBER_AND_INCR (j, p);
3306 p += j;
3307
3308 /* If what's on the stack is where we are now, pop it. */
3309 if (!FAIL_STACK_EMPTY ()
3310 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3311 fail_stack.avail--;
3312
3313 continue;
3314
3315
3316 case on_failure_jump:
3317 case on_failure_keep_string_jump:
3318 handle_on_failure_jump:
3319 EXTRACT_NUMBER_AND_INCR (j, p);
3320
3321 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3322 end of the pattern. We don't want to push such a point,
3323 since when we restore it above, entering the switch will
3324 increment `p' past the end of the pattern. We don't need
3325 to push such a point since we obviously won't find any more
3326 fastmap entries beyond `pend'. Such a pattern can match
3327 the null string, though. */
3328 if (p + j < pend)
3329 {
3330 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3331 {
3332 RESET_FAIL_STACK ();
3333 return -2;
3334 }
3335 }
3336 else
3337 bufp->can_be_null = 1;
3338
3339 if (succeed_n_p)
3340 {
3341 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3342 succeed_n_p = false;
3343 }
3344
3345 continue;
3346
3347
3348 case succeed_n:
3349 /* Get to the number of times to succeed. */
3350 p += 2;
3351
3352 /* Increment p past the n for when k != 0. */
3353 EXTRACT_NUMBER_AND_INCR (k, p);
3354 if (k == 0)
3355 {
3356 p -= 4;
3357 succeed_n_p = true; /* Spaghetti code alert. */
3358 goto handle_on_failure_jump;
3359 }
3360 continue;
3361
3362
3363 case set_number_at:
3364 p += 4;
3365 continue;
3366
3367
3368 case start_memory:
3369 case stop_memory:
3370 p += 2;
3371 continue;
3372
3373
3374 default:
3375 abort (); /* We have listed all the cases. */
3376 } /* switch *p++ */
3377
3378 /* Getting here means we have found the possible starting
3379 characters for one path of the pattern -- and that the empty
3380 string does not match. We need not follow this path further.
3381 Instead, look at the next alternative (remembered on the
3382 stack), or quit if no more. The test at the top of the loop
3383 does these things. */
3384 path_can_be_null = false;
3385 p = pend;
3386 } /* while p */
3387
3388 /* Set `can_be_null' for the last path (also the first path, if the
3389 pattern is empty). */
3390 bufp->can_be_null |= path_can_be_null;
3391
3392 done:
3393 RESET_FAIL_STACK ();
3394 return 0;
3395} /* re_compile_fastmap */
3396#ifdef _LIBC
3397weak_alias (__re_compile_fastmap, re_compile_fastmap)
3398#endif
3399\f
3400/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3401 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3402 this memory for recording register information. STARTS and ENDS
3403 must be allocated using the malloc library routine, and must each
3404 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3405
3406 If NUM_REGS == 0, then subsequent matches should allocate their own
3407 register data.
3408
3409 Unless this function is called, the first search or match using
3410 PATTERN_BUFFER will allocate its own register data, without
3411 freeing the old data. */
3412
3413void
3414re_set_registers (bufp, regs, num_regs, starts, ends)
3415 struct re_pattern_buffer *bufp;
3416 struct re_registers *regs;
3417 unsigned num_regs;
3418 regoff_t *starts, *ends;
3419{
3420 if (num_regs)
3421 {
3422 bufp->regs_allocated = REGS_REALLOCATE;
3423 regs->num_regs = num_regs;
3424 regs->start = starts;
3425 regs->end = ends;
3426 }
3427 else
3428 {
3429 bufp->regs_allocated = REGS_UNALLOCATED;
3430 regs->num_regs = 0;
3431 regs->start = regs->end = (regoff_t *) 0;
3432 }
3433}
3434#ifdef _LIBC
3435weak_alias (__re_set_registers, re_set_registers)
3436#endif
3437\f
3438/* Searching routines. */
3439
3440/* Like re_search_2, below, but only one string is specified, and
3441 doesn't let you say where to stop matching. */
3442
3443int
3444re_search (bufp, string, size, startpos, range, regs)
3445 struct re_pattern_buffer *bufp;
3446 const char *string;
3447 int size, startpos, range;
3448 struct re_registers *regs;
3449{
3450 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3451 regs, size);
3452}
3453#ifdef _LIBC
3454weak_alias (__re_search, re_search)
3455#endif
3456
3457
3458/* Using the compiled pattern in BUFP->buffer, first tries to match the
3459 virtual concatenation of STRING1 and STRING2, starting first at index
3460 STARTPOS, then at STARTPOS + 1, and so on.
3461
3462 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3463
3464 RANGE is how far to scan while trying to match. RANGE = 0 means try
3465 only at STARTPOS; in general, the last start tried is STARTPOS +
3466 RANGE.
3467
3468 In REGS, return the indices of the virtual concatenation of STRING1
3469 and STRING2 that matched the entire BUFP->buffer and its contained
3470 subexpressions.
3471
3472 Do not consider matching one past the index STOP in the virtual
3473 concatenation of STRING1 and STRING2.
3474
3475 We return either the position in the strings at which the match was
3476 found, -1 if no match, or -2 if error (such as failure
3477 stack overflow). */
3478
3479int
3480re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3481 struct re_pattern_buffer *bufp;
3482 const char *string1, *string2;
3483 int size1, size2;
3484 int startpos;
3485 int range;
3486 struct re_registers *regs;
3487 int stop;
3488{
3489 int val;
3490 register char *fastmap = bufp->fastmap;
3491 register RE_TRANSLATE_TYPE translate = bufp->translate;
3492 int total_size = size1 + size2;
3493 int endpos = startpos + range;
3494
3495 /* Check for out-of-range STARTPOS. */
3496 if (startpos < 0 || startpos > total_size)
3497 return -1;
3498
3499 /* Fix up RANGE if it might eventually take us outside
3500 the virtual concatenation of STRING1 and STRING2.
3501 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3502 if (endpos < 0)
3503 range = 0 - startpos;
3504 else if (endpos > total_size)
3505 range = total_size - startpos;
3506
3507 /* If the search isn't to be a backwards one, don't waste time in a
3508 search for a pattern that must be anchored. */
3509 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3510 {
3511 if (startpos > 0)
3512 return -1;
3513 else
3514 range = 1;
3515 }
3516
3517#ifdef emacs
3518 /* In a forward search for something that starts with \=.
3519 don't keep searching past point. */
3520 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3521 {
3522 range = PT - startpos;
3523 if (range <= 0)
3524 return -1;
3525 }
3526#endif /* emacs */
3527
3528 /* Update the fastmap now if not correct already. */
3529 if (fastmap && !bufp->fastmap_accurate)
3530 if (re_compile_fastmap (bufp) == -2)
3531 return -2;
3532
3533 /* Loop through the string, looking for a place to start matching. */
3534 for (;;)
3535 {
3536 /* If a fastmap is supplied, skip quickly over characters that
3537 cannot be the start of a match. If the pattern can match the
3538 null string, however, we don't need to skip characters; we want
3539 the first null string. */
3540 if (fastmap && startpos < total_size && !bufp->can_be_null)
3541 {
3542 if (range > 0) /* Searching forwards. */
3543 {
3544 register const char *d;
3545 register int lim = 0;
3546 int irange = range;
3547
3548 if (startpos < size1 && startpos + range >= size1)
3549 lim = range - (size1 - startpos);
3550
3551 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3552
3553 /* Written out as an if-else to avoid testing `translate'
3554 inside the loop. */
3555 if (translate)
3556 while (range > lim
3557 && !fastmap[(unsigned char)
3558 translate[(unsigned char) *d++]])
3559 range--;
3560 else
3561 while (range > lim && !fastmap[(unsigned char) *d++])
3562 range--;
3563
3564 startpos += irange - range;
3565 }
3566 else /* Searching backwards. */
3567 {
3568 register char c = (size1 == 0 || startpos >= size1
3569 ? string2[startpos - size1]
3570 : string1[startpos]);
3571
3572 if (!fastmap[(unsigned char) TRANSLATE (c)])
3573 goto advance;
3574 }
3575 }
3576
3577 /* If can't match the null string, and that's all we have left, fail. */
3578 if (range >= 0 && startpos == total_size && fastmap
3579 && !bufp->can_be_null)
3580 return -1;
3581
3582 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3583 startpos, regs, stop);
3584#ifndef REGEX_MALLOC
3585# ifdef C_ALLOCA
3586 alloca (0);
3587# endif
3588#endif
3589
3590 if (val >= 0)
3591 return startpos;
3592
3593 if (val == -2)
3594 return -2;
3595
3596 advance:
3597 if (!range)
3598 break;
3599 else if (range > 0)
3600 {
3601 range--;
3602 startpos++;
3603 }
3604 else
3605 {
3606 range++;
3607 startpos--;
3608 }
3609 }
3610 return -1;
3611} /* re_search_2 */
3612#ifdef _LIBC
3613weak_alias (__re_search_2, re_search_2)
3614#endif
3615\f
3616/* This converts PTR, a pointer into one of the search strings `string1'
3617 and `string2' into an offset from the beginning of that string. */
3618#define POINTER_TO_OFFSET(ptr) \
3619 (FIRST_STRING_P (ptr) \
3620 ? ((regoff_t) ((ptr) - string1)) \
3621 : ((regoff_t) ((ptr) - string2 + size1)))
3622
3623/* Macros for dealing with the split strings in re_match_2. */
3624
3625#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3626
3627/* Call before fetching a character with *d. This switches over to
3628 string2 if necessary. */
3629#define PREFETCH() \
3630 while (d == dend) \
3631 { \
3632 /* End of string2 => fail. */ \
3633 if (dend == end_match_2) \
3634 goto fail; \
3635 /* End of string1 => advance to string2. */ \
3636 d = string2; \
3637 dend = end_match_2; \
3638 }
3639
3640
3641/* Test if at very beginning or at very end of the virtual concatenation
3642 of `string1' and `string2'. If only one string, it's `string2'. */
3643#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3644#define AT_STRINGS_END(d) ((d) == end2)
3645
3646
3647/* Test if D points to a character which is word-constituent. We have
3648 two special cases to check for: if past the end of string1, look at
3649 the first character in string2; and if before the beginning of
3650 string2, look at the last character in string1. */
3651#define WORDCHAR_P(d) \
3652 (SYNTAX ((d) == end1 ? *string2 \
3653 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3654 == Sword)
3655
3656/* Disabled due to a compiler bug -- see comment at case wordbound */
3657#if 0
3658/* Test if the character before D and the one at D differ with respect
3659 to being word-constituent. */
3660#define AT_WORD_BOUNDARY(d) \
3661 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3662 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3663#endif
3664
3665/* Free everything we malloc. */
3666#ifdef MATCH_MAY_ALLOCATE
3667# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3668# define FREE_VARIABLES() \
3669 do { \
3670 REGEX_FREE_STACK (fail_stack.stack); \
3671 FREE_VAR (regstart); \
3672 FREE_VAR (regend); \
3673 FREE_VAR (old_regstart); \
3674 FREE_VAR (old_regend); \
3675 FREE_VAR (best_regstart); \
3676 FREE_VAR (best_regend); \
3677 FREE_VAR (reg_info); \
3678 FREE_VAR (reg_dummy); \
3679 FREE_VAR (reg_info_dummy); \
3680 } while (0)
3681#else
3682# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3683#endif /* not MATCH_MAY_ALLOCATE */
3684
3685/* These values must meet several constraints. They must not be valid
3686 register values; since we have a limit of 255 registers (because
3687 we use only one byte in the pattern for the register number), we can
3688 use numbers larger than 255. They must differ by 1, because of
3689 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3690 be larger than the value for the highest register, so we do not try
3691 to actually save any registers when none are active. */
3692#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3693#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3694\f
3695/* Matching routines. */
3696
3697#ifndef emacs /* Emacs never uses this. */
3698/* re_match is like re_match_2 except it takes only a single string. */
3699
3700int
3701re_match (bufp, string, size, pos, regs)
3702 struct re_pattern_buffer *bufp;
3703 const char *string;
3704 int size, pos;
3705 struct re_registers *regs;
3706{
3707 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3708 pos, regs, size);
3709# ifndef REGEX_MALLOC
3710# ifdef C_ALLOCA
3711 alloca (0);
3712# endif
3713# endif
3714 return result;
3715}
3716# ifdef _LIBC
3717weak_alias (__re_match, re_match)
3718# endif
3719#endif /* not emacs */
3720
3721static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3722 unsigned char *end,
3723 register_info_type *reg_info));
3724static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3725 unsigned char *end,
3726 register_info_type *reg_info));
3727static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3728 unsigned char *end,
3729 register_info_type *reg_info));
3730static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3731 int len, char *translate));
3732
3733/* re_match_2 matches the compiled pattern in BUFP against the
3734 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3735 and SIZE2, respectively). We start matching at POS, and stop
3736 matching at STOP.
3737
3738 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3739 store offsets for the substring each group matched in REGS. See the
3740 documentation for exactly how many groups we fill.
3741
3742 We return -1 if no match, -2 if an internal error (such as the
3743 failure stack overflowing). Otherwise, we return the length of the
3744 matched substring. */
3745
3746int
3747re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3748 struct re_pattern_buffer *bufp;
3749 const char *string1, *string2;
3750 int size1, size2;
3751 int pos;
3752 struct re_registers *regs;
3753 int stop;
3754{
3755 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3756 pos, regs, stop);
3757#ifndef REGEX_MALLOC
3758# ifdef C_ALLOCA
3759 alloca (0);
3760# endif
3761#endif
3762 return result;
3763}
3764#ifdef _LIBC
3765weak_alias (__re_match_2, re_match_2)
3766#endif
3767
3768/* This is a separate function so that we can force an alloca cleanup
3769 afterwards. */
3770static int
3771re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3772 struct re_pattern_buffer *bufp;
3773 const char *string1, *string2;
3774 int size1, size2;
3775 int pos;
3776 struct re_registers *regs;
3777 int stop;
3778{
3779 /* General temporaries. */
3780 int mcnt;
3781 unsigned char *p1;
3782
3783 /* Just past the end of the corresponding string. */
3784 const char *end1, *end2;
3785
3786 /* Pointers into string1 and string2, just past the last characters in
3787 each to consider matching. */
3788 const char *end_match_1, *end_match_2;
3789
3790 /* Where we are in the data, and the end of the current string. */
3791 const char *d, *dend;
3792
3793 /* Where we are in the pattern, and the end of the pattern. */
3794 unsigned char *p = bufp->buffer;
3795 register unsigned char *pend = p + bufp->used;
3796
3797 /* Mark the opcode just after a start_memory, so we can test for an
3798 empty subpattern when we get to the stop_memory. */
3799 unsigned char *just_past_start_mem = 0;
3800
3801 /* We use this to map every character in the string. */
3802 RE_TRANSLATE_TYPE translate = bufp->translate;
3803
3804 /* Failure point stack. Each place that can handle a failure further
3805 down the line pushes a failure point on this stack. It consists of
3806 restart, regend, and reg_info for all registers corresponding to
3807 the subexpressions we're currently inside, plus the number of such
3808 registers, and, finally, two char *'s. The first char * is where
3809 to resume scanning the pattern; the second one is where to resume
3810 scanning the strings. If the latter is zero, the failure point is
3811 a ``dummy''; if a failure happens and the failure point is a dummy,
3812 it gets discarded and the next next one is tried. */
3813#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3814 fail_stack_type fail_stack;
3815#endif
3816#ifdef DEBUG
3817 static unsigned failure_id = 0;
3818 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3819#endif
3820
3821#ifdef REL_ALLOC
3822 /* This holds the pointer to the failure stack, when
3823 it is allocated relocatably. */
3824 fail_stack_elt_t *failure_stack_ptr;
3825#endif
3826
3827 /* We fill all the registers internally, independent of what we
3828 return, for use in backreferences. The number here includes
3829 an element for register zero. */
3830 size_t num_regs = bufp->re_nsub + 1;
3831
3832 /* The currently active registers. */
3833 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3834 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3835
3836 /* Information on the contents of registers. These are pointers into
3837 the input strings; they record just what was matched (on this
3838 attempt) by a subexpression part of the pattern, that is, the
3839 regnum-th regstart pointer points to where in the pattern we began
3840 matching and the regnum-th regend points to right after where we
3841 stopped matching the regnum-th subexpression. (The zeroth register
3842 keeps track of what the whole pattern matches.) */
3843#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3844 const char **regstart, **regend;
3845#endif
3846
3847 /* If a group that's operated upon by a repetition operator fails to
3848 match anything, then the register for its start will need to be
3849 restored because it will have been set to wherever in the string we
3850 are when we last see its open-group operator. Similarly for a
3851 register's end. */
3852#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3853 const char **old_regstart, **old_regend;
3854#endif
3855
3856 /* The is_active field of reg_info helps us keep track of which (possibly
3857 nested) subexpressions we are currently in. The matched_something
3858 field of reg_info[reg_num] helps us tell whether or not we have
3859 matched any of the pattern so far this time through the reg_num-th
3860 subexpression. These two fields get reset each time through any
3861 loop their register is in. */
3862#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3863 register_info_type *reg_info;
3864#endif
3865
3866 /* The following record the register info as found in the above
3867 variables when we find a match better than any we've seen before.
3868 This happens as we backtrack through the failure points, which in
3869 turn happens only if we have not yet matched the entire string. */
3870 unsigned best_regs_set = false;
3871#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3872 const char **best_regstart, **best_regend;
3873#endif
3874
3875 /* Logically, this is `best_regend[0]'. But we don't want to have to
3876 allocate space for that if we're not allocating space for anything
3877 else (see below). Also, we never need info about register 0 for
3878 any of the other register vectors, and it seems rather a kludge to
3879 treat `best_regend' differently than the rest. So we keep track of
3880 the end of the best match so far in a separate variable. We
3881 initialize this to NULL so that when we backtrack the first time
3882 and need to test it, it's not garbage. */
3883 const char *match_end = NULL;
3884
3885 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3886 int set_regs_matched_done = 0;
3887
3888 /* Used when we pop values we don't care about. */
3889#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3890 const char **reg_dummy;
3891 register_info_type *reg_info_dummy;
3892#endif
3893
3894#ifdef DEBUG
3895 /* Counts the total number of registers pushed. */
3896 unsigned num_regs_pushed = 0;
3897#endif
3898
3899 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3900
3901 INIT_FAIL_STACK ();
3902
3903#ifdef MATCH_MAY_ALLOCATE
3904 /* Do not bother to initialize all the register variables if there are
3905 no groups in the pattern, as it takes a fair amount of time. If
3906 there are groups, we include space for register 0 (the whole
3907 pattern), even though we never use it, since it simplifies the
3908 array indexing. We should fix this. */
3909 if (bufp->re_nsub)
3910 {
3911 regstart = REGEX_TALLOC (num_regs, const char *);
3912 regend = REGEX_TALLOC (num_regs, const char *);
3913 old_regstart = REGEX_TALLOC (num_regs, const char *);
3914 old_regend = REGEX_TALLOC (num_regs, const char *);
3915 best_regstart = REGEX_TALLOC (num_regs, const char *);
3916 best_regend = REGEX_TALLOC (num_regs, const char *);
3917 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3918 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3919 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3920
3921 if (!(regstart && regend && old_regstart && old_regend && reg_info
3922 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3923 {
3924 FREE_VARIABLES ();
3925 return -2;
3926 }
3927 }
3928 else
3929 {
3930 /* We must initialize all our variables to NULL, so that
3931 `FREE_VARIABLES' doesn't try to free them. */
3932 regstart = regend = old_regstart = old_regend = best_regstart
3933 = best_regend = reg_dummy = NULL;
3934 reg_info = reg_info_dummy = (register_info_type *) NULL;
3935 }
3936#endif /* MATCH_MAY_ALLOCATE */
3937
3938 /* The starting position is bogus. */
3939 if (pos < 0 || pos > size1 + size2)
3940 {
3941 FREE_VARIABLES ();
3942 return -1;
3943 }
3944
3945 /* Initialize subexpression text positions to -1 to mark ones that no
3946 start_memory/stop_memory has been seen for. Also initialize the
3947 register information struct. */
3948 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3949 {
3950 regstart[mcnt] = regend[mcnt]
3951 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3952
3953 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3954 IS_ACTIVE (reg_info[mcnt]) = 0;
3955 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3956 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3957 }
3958
3959 /* We move `string1' into `string2' if the latter's empty -- but not if
3960 `string1' is null. */
3961 if (size2 == 0 && string1 != NULL)
3962 {
3963 string2 = string1;
3964 size2 = size1;
3965 string1 = 0;
3966 size1 = 0;
3967 }
3968 end1 = string1 + size1;
3969 end2 = string2 + size2;
3970
3971 /* Compute where to stop matching, within the two strings. */
3972 if (stop <= size1)
3973 {
3974 end_match_1 = string1 + stop;
3975 end_match_2 = string2;
3976 }
3977 else
3978 {
3979 end_match_1 = end1;
3980 end_match_2 = string2 + stop - size1;
3981 }
3982
3983 /* `p' scans through the pattern as `d' scans through the data.
3984 `dend' is the end of the input string that `d' points within. `d'
3985 is advanced into the following input string whenever necessary, but
3986 this happens before fetching; therefore, at the beginning of the
3987 loop, `d' can be pointing at the end of a string, but it cannot
3988 equal `string2'. */
3989 if (size1 > 0 && pos <= size1)
3990 {
3991 d = string1 + pos;
3992 dend = end_match_1;
3993 }
3994 else
3995 {
3996 d = string2 + pos - size1;
3997 dend = end_match_2;
3998 }
3999
4000 DEBUG_PRINT1 ("The compiled pattern is:\n");
4001 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4002 DEBUG_PRINT1 ("The string to match is: `");
4003 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4004 DEBUG_PRINT1 ("'\n");
4005
4006 /* This loops over pattern commands. It exits by returning from the
4007 function if the match is complete, or it drops through if the match
4008 fails at this starting point in the input data. */
4009 for (;;)
4010 {
4011#ifdef _LIBC
4012 DEBUG_PRINT2 ("\n%p: ", p);
4013#else
4014 DEBUG_PRINT2 ("\n0x%x: ", p);
4015#endif
4016
4017 if (p == pend)
4018 { /* End of pattern means we might have succeeded. */
4019 DEBUG_PRINT1 ("end of pattern ... ");
4020
4021 /* If we haven't matched the entire string, and we want the
4022 longest match, try backtracking. */
4023 if (d != end_match_2)
4024 {
4025 /* 1 if this match ends in the same string (string1 or string2)
4026 as the best previous match. */
4027 boolean same_str_p = (FIRST_STRING_P (match_end)
4028 == MATCHING_IN_FIRST_STRING);
4029 /* 1 if this match is the best seen so far. */
4030 boolean best_match_p;
4031
4032 /* AIX compiler got confused when this was combined
4033 with the previous declaration. */
4034 if (same_str_p)
4035 best_match_p = d > match_end;
4036 else
4037 best_match_p = !MATCHING_IN_FIRST_STRING;
4038
4039 DEBUG_PRINT1 ("backtracking.\n");
4040
4041 if (!FAIL_STACK_EMPTY ())
4042 { /* More failure points to try. */
4043
4044 /* If exceeds best match so far, save it. */
4045 if (!best_regs_set || best_match_p)
4046 {
4047 best_regs_set = true;
4048 match_end = d;
4049
4050 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4051
4052 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4053 {
4054 best_regstart[mcnt] = regstart[mcnt];
4055 best_regend[mcnt] = regend[mcnt];
4056 }
4057 }
4058 goto fail;
4059 }
4060
4061 /* If no failure points, don't restore garbage. And if
4062 last match is real best match, don't restore second
4063 best one. */
4064 else if (best_regs_set && !best_match_p)
4065 {
4066 restore_best_regs:
4067 /* Restore best match. It may happen that `dend ==
4068 end_match_1' while the restored d is in string2.
4069 For example, the pattern `x.*y.*z' against the
4070 strings `x-' and `y-z-', if the two strings are
4071 not consecutive in memory. */
4072 DEBUG_PRINT1 ("Restoring best registers.\n");
4073
4074 d = match_end;
4075 dend = ((d >= string1 && d <= end1)
4076 ? end_match_1 : end_match_2);
4077
4078 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4079 {
4080 regstart[mcnt] = best_regstart[mcnt];
4081 regend[mcnt] = best_regend[mcnt];
4082 }
4083 }
4084 } /* d != end_match_2 */
4085
4086 succeed_label:
4087 DEBUG_PRINT1 ("Accepting match.\n");
4088
4089 /* If caller wants register contents data back, do it. */
4090 if (regs && !bufp->no_sub)
4091 {
4092 /* Have the register data arrays been allocated? */
4093 if (bufp->regs_allocated == REGS_UNALLOCATED)
4094 { /* No. So allocate them with malloc. We need one
4095 extra element beyond `num_regs' for the `-1' marker
4096 GNU code uses. */
4097 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4098 regs->start = TALLOC (regs->num_regs, regoff_t);
4099 regs->end = TALLOC (regs->num_regs, regoff_t);
4100 if (regs->start == NULL || regs->end == NULL)
4101 {
4102 FREE_VARIABLES ();
4103 return -2;
4104 }
4105 bufp->regs_allocated = REGS_REALLOCATE;
4106 }
4107 else if (bufp->regs_allocated == REGS_REALLOCATE)
4108 { /* Yes. If we need more elements than were already
4109 allocated, reallocate them. If we need fewer, just
4110 leave it alone. */
4111 if (regs->num_regs < num_regs + 1)
4112 {
4113 regs->num_regs = num_regs + 1;
4114 RETALLOC (regs->start, regs->num_regs, regoff_t);
4115 RETALLOC (regs->end, regs->num_regs, regoff_t);
4116 if (regs->start == NULL || regs->end == NULL)
4117 {
4118 FREE_VARIABLES ();
4119 return -2;
4120 }
4121 }
4122 }
4123 else
4124 {
4125 /* These braces fend off a "empty body in an else-statement"
4126 warning under GCC when assert expands to nothing. */
4127 assert (bufp->regs_allocated == REGS_FIXED);
4128 }
4129
4130 /* Convert the pointer data in `regstart' and `regend' to
4131 indices. Register zero has to be set differently,
4132 since we haven't kept track of any info for it. */
4133 if (regs->num_regs > 0)
4134 {
4135 regs->start[0] = pos;
4136 regs->end[0] = (MATCHING_IN_FIRST_STRING
4137 ? ((regoff_t) (d - string1))
4138 : ((regoff_t) (d - string2 + size1)));
4139 }
4140
4141 /* Go through the first `min (num_regs, regs->num_regs)'
4142 registers, since that is all we initialized. */
4143 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4144 mcnt++)
4145 {
4146 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4147 regs->start[mcnt] = regs->end[mcnt] = -1;
4148 else
4149 {
4150 regs->start[mcnt]
4151 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4152 regs->end[mcnt]
4153 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4154 }
4155 }
4156
4157 /* If the regs structure we return has more elements than
4158 were in the pattern, set the extra elements to -1. If
4159 we (re)allocated the registers, this is the case,
4160 because we always allocate enough to have at least one
4161 -1 at the end. */
4162 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4163 regs->start[mcnt] = regs->end[mcnt] = -1;
4164 } /* regs && !bufp->no_sub */
4165
4166 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4167 nfailure_points_pushed, nfailure_points_popped,
4168 nfailure_points_pushed - nfailure_points_popped);
4169 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4170
4171 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4172 ? string1
4173 : string2 - size1);
4174
4175 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4176
4177 FREE_VARIABLES ();
4178 return mcnt;
4179 }
4180
4181 /* Otherwise match next pattern command. */
4182 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4183 {
4184 /* Ignore these. Used to ignore the n of succeed_n's which
4185 currently have n == 0. */
4186 case no_op:
4187 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4188 break;
4189
4190 case succeed:
4191 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4192 goto succeed_label;
4193
4194 /* Match the next n pattern characters exactly. The following
4195 byte in the pattern defines n, and the n bytes after that
4196 are the characters to match. */
4197 case exactn:
4198 mcnt = *p++;
4199 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4200
4201 /* This is written out as an if-else so we don't waste time
4202 testing `translate' inside the loop. */
4203 if (translate)
4204 {
4205 do
4206 {
4207 PREFETCH ();
4208 if ((unsigned char) translate[(unsigned char) *d++]
4209 != (unsigned char) *p++)
4210 goto fail;
4211 }
4212 while (--mcnt);
4213 }
4214 else
4215 {
4216 do
4217 {
4218 PREFETCH ();
4219 if (*d++ != (char) *p++) goto fail;
4220 }
4221 while (--mcnt);
4222 }
4223 SET_REGS_MATCHED ();
4224 break;
4225
4226
4227 /* Match any character except possibly a newline or a null. */
4228 case anychar:
4229 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4230
4231 PREFETCH ();
4232
4233 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4234 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4235 goto fail;
4236
4237 SET_REGS_MATCHED ();
4238 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4239 d++;
4240 break;
4241
4242
4243 case charset:
4244 case charset_not:
4245 {
4246 register unsigned char c;
4247 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4248
4249 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4250
4251 PREFETCH ();
4252 c = TRANSLATE (*d); /* The character to match. */
4253
4254 /* Cast to `unsigned' instead of `unsigned char' in case the
4255 bit list is a full 32 bytes long. */
4256 if (c < (unsigned) (*p * BYTEWIDTH)
4257 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4258 not = !not;
4259
4260 p += 1 + *p;
4261
4262 if (!not) goto fail;
4263
4264 SET_REGS_MATCHED ();
4265 d++;
4266 break;
4267 }
4268
4269
4270 /* The beginning of a group is represented by start_memory.
4271 The arguments are the register number in the next byte, and the
4272 number of groups inner to this one in the next. The text
4273 matched within the group is recorded (in the internal
4274 registers data structure) under the register number. */
4275 case start_memory:
4276 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4277
4278 /* Find out if this group can match the empty string. */
4279 p1 = p; /* To send to group_match_null_string_p. */
4280
4281 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4282 REG_MATCH_NULL_STRING_P (reg_info[*p])
4283 = group_match_null_string_p (&p1, pend, reg_info);
4284
4285 /* Save the position in the string where we were the last time
4286 we were at this open-group operator in case the group is
4287 operated upon by a repetition operator, e.g., with `(a*)*b'
4288 against `ab'; then we want to ignore where we are now in
4289 the string in case this attempt to match fails. */
4290 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4291 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4292 : regstart[*p];
4293 DEBUG_PRINT2 (" old_regstart: %d\n",
4294 POINTER_TO_OFFSET (old_regstart[*p]));
4295
4296 regstart[*p] = d;
4297 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4298
4299 IS_ACTIVE (reg_info[*p]) = 1;
4300 MATCHED_SOMETHING (reg_info[*p]) = 0;
4301
4302 /* Clear this whenever we change the register activity status. */
4303 set_regs_matched_done = 0;
4304
4305 /* This is the new highest active register. */
4306 highest_active_reg = *p;
4307
4308 /* If nothing was active before, this is the new lowest active
4309 register. */
4310 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4311 lowest_active_reg = *p;
4312
4313 /* Move past the register number and inner group count. */
4314 p += 2;
4315 just_past_start_mem = p;
4316
4317 break;
4318
4319
4320 /* The stop_memory opcode represents the end of a group. Its
4321 arguments are the same as start_memory's: the register
4322 number, and the number of inner groups. */
4323 case stop_memory:
4324 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4325
4326 /* We need to save the string position the last time we were at
4327 this close-group operator in case the group is operated
4328 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4329 against `aba'; then we want to ignore where we are now in
4330 the string in case this attempt to match fails. */
4331 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4332 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4333 : regend[*p];
4334 DEBUG_PRINT2 (" old_regend: %d\n",
4335 POINTER_TO_OFFSET (old_regend[*p]));
4336
4337 regend[*p] = d;
4338 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4339
4340 /* This register isn't active anymore. */
4341 IS_ACTIVE (reg_info[*p]) = 0;
4342
4343 /* Clear this whenever we change the register activity status. */
4344 set_regs_matched_done = 0;
4345
4346 /* If this was the only register active, nothing is active
4347 anymore. */
4348 if (lowest_active_reg == highest_active_reg)
4349 {
4350 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4351 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4352 }
4353 else
4354 { /* We must scan for the new highest active register, since
4355 it isn't necessarily one less than now: consider
4356 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4357 new highest active register is 1. */
4358 unsigned char r = *p - 1;
4359 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4360 r--;
4361
4362 /* If we end up at register zero, that means that we saved
4363 the registers as the result of an `on_failure_jump', not
4364 a `start_memory', and we jumped to past the innermost
4365 `stop_memory'. For example, in ((.)*) we save
4366 registers 1 and 2 as a result of the *, but when we pop
4367 back to the second ), we are at the stop_memory 1.
4368 Thus, nothing is active. */
4369 if (r == 0)
4370 {
4371 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4372 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4373 }
4374 else
4375 highest_active_reg = r;
4376 }
4377
4378 /* If just failed to match something this time around with a
4379 group that's operated on by a repetition operator, try to
4380 force exit from the ``loop'', and restore the register
4381 information for this group that we had before trying this
4382 last match. */
4383 if ((!MATCHED_SOMETHING (reg_info[*p])
4384 || just_past_start_mem == p - 1)
4385 && (p + 2) < pend)
4386 {
4387 boolean is_a_jump_n = false;
4388
4389 p1 = p + 2;
4390 mcnt = 0;
4391 switch ((re_opcode_t) *p1++)
4392 {
4393 case jump_n:
4394 is_a_jump_n = true;
4395 case pop_failure_jump:
4396 case maybe_pop_jump:
4397 case jump:
4398 case dummy_failure_jump:
4399 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4400 if (is_a_jump_n)
4401 p1 += 2;
4402 break;
4403
4404 default:
4405 /* do nothing */ ;
4406 }
4407 p1 += mcnt;
4408
4409 /* If the next operation is a jump backwards in the pattern
4410 to an on_failure_jump right before the start_memory
4411 corresponding to this stop_memory, exit from the loop
4412 by forcing a failure after pushing on the stack the
4413 on_failure_jump's jump in the pattern, and d. */
4414 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4415 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4416 {
4417 /* If this group ever matched anything, then restore
4418 what its registers were before trying this last
4419 failed match, e.g., with `(a*)*b' against `ab' for
4420 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4421 against `aba' for regend[3].
4422
4423 Also restore the registers for inner groups for,
4424 e.g., `((a*)(b*))*' against `aba' (register 3 would
4425 otherwise get trashed). */
4426
4427 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4428 {
4429 unsigned r;
4430
4431 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4432
4433 /* Restore this and inner groups' (if any) registers. */
4434 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4435 r++)
4436 {
4437 regstart[r] = old_regstart[r];
4438
4439 /* xx why this test? */
4440 if (old_regend[r] >= regstart[r])
4441 regend[r] = old_regend[r];
4442 }
4443 }
4444 p1++;
4445 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4446 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4447
4448 goto fail;
4449 }
4450 }
4451
4452 /* Move past the register number and the inner group count. */
4453 p += 2;
4454 break;
4455
4456
4457 /* \<digit> has been turned into a `duplicate' command which is
4458 followed by the numeric value of <digit> as the register number. */
4459 case duplicate:
4460 {
4461 register const char *d2, *dend2;
4462 int regno = *p++; /* Get which register to match against. */
4463 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4464
4465 /* Can't back reference a group which we've never matched. */
4466 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4467 goto fail;
4468
4469 /* Where in input to try to start matching. */
4470 d2 = regstart[regno];
4471
4472 /* Where to stop matching; if both the place to start and
4473 the place to stop matching are in the same string, then
4474 set to the place to stop, otherwise, for now have to use
4475 the end of the first string. */
4476
4477 dend2 = ((FIRST_STRING_P (regstart[regno])
4478 == FIRST_STRING_P (regend[regno]))
4479 ? regend[regno] : end_match_1);
4480 for (;;)
4481 {
4482 /* If necessary, advance to next segment in register
4483 contents. */
4484 while (d2 == dend2)
4485 {
4486 if (dend2 == end_match_2) break;
4487 if (dend2 == regend[regno]) break;
4488
4489 /* End of string1 => advance to string2. */
4490 d2 = string2;
4491 dend2 = regend[regno];
4492 }
4493 /* At end of register contents => success */
4494 if (d2 == dend2) break;
4495
4496 /* If necessary, advance to next segment in data. */
4497 PREFETCH ();
4498
4499 /* How many characters left in this segment to match. */
4500 mcnt = dend - d;
4501
4502 /* Want how many consecutive characters we can match in
4503 one shot, so, if necessary, adjust the count. */
4504 if (mcnt > dend2 - d2)
4505 mcnt = dend2 - d2;
4506
4507 /* Compare that many; failure if mismatch, else move
4508 past them. */
4509 if (translate
4510 ? bcmp_translate (d, d2, mcnt, translate)
4511 : memcmp (d, d2, mcnt))
4512 goto fail;
4513 d += mcnt, d2 += mcnt;
4514
4515 /* Do this because we've match some characters. */
4516 SET_REGS_MATCHED ();
4517 }
4518 }
4519 break;
4520
4521
4522 /* begline matches the empty string at the beginning of the string
4523 (unless `not_bol' is set in `bufp'), and, if
4524 `newline_anchor' is set, after newlines. */
4525 case begline:
4526 DEBUG_PRINT1 ("EXECUTING begline.\n");
4527
4528 if (AT_STRINGS_BEG (d))
4529 {
4530 if (!bufp->not_bol) break;
4531 }
4532 else if (d[-1] == '\n' && bufp->newline_anchor)
4533 {
4534 break;
4535 }
4536 /* In all other cases, we fail. */
4537 goto fail;
4538
4539
4540 /* endline is the dual of begline. */
4541 case endline:
4542 DEBUG_PRINT1 ("EXECUTING endline.\n");
4543
4544 if (AT_STRINGS_END (d))
4545 {
4546 if (!bufp->not_eol) break;
4547 }
4548
4549 /* We have to ``prefetch'' the next character. */
4550 else if ((d == end1 ? *string2 : *d) == '\n'
4551 && bufp->newline_anchor)
4552 {
4553 break;
4554 }
4555 goto fail;
4556
4557
4558 /* Match at the very beginning of the data. */
4559 case begbuf:
4560 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4561 if (AT_STRINGS_BEG (d))
4562 break;
4563 goto fail;
4564
4565
4566 /* Match at the very end of the data. */
4567 case endbuf:
4568 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4569 if (AT_STRINGS_END (d))
4570 break;
4571 goto fail;
4572
4573
4574 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4575 pushes NULL as the value for the string on the stack. Then
4576 `pop_failure_point' will keep the current value for the
4577 string, instead of restoring it. To see why, consider
4578 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4579 then the . fails against the \n. But the next thing we want
4580 to do is match the \n against the \n; if we restored the
4581 string value, we would be back at the foo.
4582
4583 Because this is used only in specific cases, we don't need to
4584 check all the things that `on_failure_jump' does, to make
4585 sure the right things get saved on the stack. Hence we don't
4586 share its code. The only reason to push anything on the
4587 stack at all is that otherwise we would have to change
4588 `anychar's code to do something besides goto fail in this
4589 case; that seems worse than this. */
4590 case on_failure_keep_string_jump:
4591 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4592
4593 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4594#ifdef _LIBC
4595 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4596#else
4597 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4598#endif
4599
4600 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4601 break;
4602
4603
4604 /* Uses of on_failure_jump:
4605
4606 Each alternative starts with an on_failure_jump that points
4607 to the beginning of the next alternative. Each alternative
4608 except the last ends with a jump that in effect jumps past
4609 the rest of the alternatives. (They really jump to the
4610 ending jump of the following alternative, because tensioning
4611 these jumps is a hassle.)
4612
4613 Repeats start with an on_failure_jump that points past both
4614 the repetition text and either the following jump or
4615 pop_failure_jump back to this on_failure_jump. */
4616 case on_failure_jump:
4617 on_failure:
4618 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4619
4620 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4621#ifdef _LIBC
4622 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4623#else
4624 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4625#endif
4626
4627 /* If this on_failure_jump comes right before a group (i.e.,
4628 the original * applied to a group), save the information
4629 for that group and all inner ones, so that if we fail back
4630 to this point, the group's information will be correct.
4631 For example, in \(a*\)*\1, we need the preceding group,
4632 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4633
4634 /* We can't use `p' to check ahead because we push
4635 a failure point to `p + mcnt' after we do this. */
4636 p1 = p;
4637
4638 /* We need to skip no_op's before we look for the
4639 start_memory in case this on_failure_jump is happening as
4640 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4641 against aba. */
4642 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4643 p1++;
4644
4645 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4646 {
4647 /* We have a new highest active register now. This will
4648 get reset at the start_memory we are about to get to,
4649 but we will have saved all the registers relevant to
4650 this repetition op, as described above. */
4651 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4652 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4653 lowest_active_reg = *(p1 + 1);
4654 }
4655
4656 DEBUG_PRINT1 (":\n");
4657 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4658 break;
4659
4660
4661 /* A smart repeat ends with `maybe_pop_jump'.
4662 We change it to either `pop_failure_jump' or `jump'. */
4663 case maybe_pop_jump:
4664 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4665 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4666 {
4667 register unsigned char *p2 = p;
4668
4669 /* Compare the beginning of the repeat with what in the
4670 pattern follows its end. If we can establish that there
4671 is nothing that they would both match, i.e., that we
4672 would have to backtrack because of (as in, e.g., `a*a')
4673 then we can change to pop_failure_jump, because we'll
4674 never have to backtrack.
4675
4676 This is not true in the case of alternatives: in
4677 `(a|ab)*' we do need to backtrack to the `ab' alternative
4678 (e.g., if the string was `ab'). But instead of trying to
4679 detect that here, the alternative has put on a dummy
4680 failure point which is what we will end up popping. */
4681
4682 /* Skip over open/close-group commands.
4683 If what follows this loop is a ...+ construct,
4684 look at what begins its body, since we will have to
4685 match at least one of that. */
4686 while (1)
4687 {
4688 if (p2 + 2 < pend
4689 && ((re_opcode_t) *p2 == stop_memory
4690 || (re_opcode_t) *p2 == start_memory))
4691 p2 += 3;
4692 else if (p2 + 6 < pend
4693 && (re_opcode_t) *p2 == dummy_failure_jump)
4694 p2 += 6;
4695 else
4696 break;
4697 }
4698
4699 p1 = p + mcnt;
4700 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4701 to the `maybe_finalize_jump' of this case. Examine what
4702 follows. */
4703
4704 /* If we're at the end of the pattern, we can change. */
4705 if (p2 == pend)
4706 {
4707 /* Consider what happens when matching ":\(.*\)"
4708 against ":/". I don't really understand this code
4709 yet. */
4710 p[-3] = (unsigned char) pop_failure_jump;
4711 DEBUG_PRINT1
4712 (" End of pattern: change to `pop_failure_jump'.\n");
4713 }
4714
4715 else if ((re_opcode_t) *p2 == exactn
4716 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4717 {
4718 register unsigned char c
4719 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4720
4721 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4722 {
4723 p[-3] = (unsigned char) pop_failure_jump;
4724 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4725 c, p1[5]);
4726 }
4727
4728 else if ((re_opcode_t) p1[3] == charset
4729 || (re_opcode_t) p1[3] == charset_not)
4730 {
4731 int not = (re_opcode_t) p1[3] == charset_not;
4732
4733 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4734 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4735 not = !not;
4736
4737 /* `not' is equal to 1 if c would match, which means
4738 that we can't change to pop_failure_jump. */
4739 if (!not)
4740 {
4741 p[-3] = (unsigned char) pop_failure_jump;
4742 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4743 }
4744 }
4745 }
4746 else if ((re_opcode_t) *p2 == charset)
4747 {
4748#ifdef DEBUG
4749 register unsigned char c
4750 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4751#endif
4752
4753#if 0
4754 if ((re_opcode_t) p1[3] == exactn
4755 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4756 && (p2[2 + p1[5] / BYTEWIDTH]
4757 & (1 << (p1[5] % BYTEWIDTH)))))
4758#else
4759 if ((re_opcode_t) p1[3] == exactn
4760 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4761 && (p2[2 + p1[4] / BYTEWIDTH]
4762 & (1 << (p1[4] % BYTEWIDTH)))))
4763#endif
4764 {
4765 p[-3] = (unsigned char) pop_failure_jump;
4766 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4767 c, p1[5]);
4768 }
4769
4770 else if ((re_opcode_t) p1[3] == charset_not)
4771 {
4772 int idx;
4773 /* We win if the charset_not inside the loop
4774 lists every character listed in the charset after. */
4775 for (idx = 0; idx < (int) p2[1]; idx++)
4776 if (! (p2[2 + idx] == 0
4777 || (idx < (int) p1[4]
4778 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4779 break;
4780
4781 if (idx == p2[1])
4782 {
4783 p[-3] = (unsigned char) pop_failure_jump;
4784 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4785 }
4786 }
4787 else if ((re_opcode_t) p1[3] == charset)
4788 {
4789 int idx;
4790 /* We win if the charset inside the loop
4791 has no overlap with the one after the loop. */
4792 for (idx = 0;
4793 idx < (int) p2[1] && idx < (int) p1[4];
4794 idx++)
4795 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4796 break;
4797
4798 if (idx == p2[1] || idx == p1[4])
4799 {
4800 p[-3] = (unsigned char) pop_failure_jump;
4801 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4802 }
4803 }
4804 }
4805 }
4806 p -= 2; /* Point at relative address again. */
4807 if ((re_opcode_t) p[-1] != pop_failure_jump)
4808 {
4809 p[-1] = (unsigned char) jump;
4810 DEBUG_PRINT1 (" Match => jump.\n");
4811 goto unconditional_jump;
4812 }
4813 /* Note fall through. */
4814
4815
4816 /* The end of a simple repeat has a pop_failure_jump back to
4817 its matching on_failure_jump, where the latter will push a
4818 failure point. The pop_failure_jump takes off failure
4819 points put on by this pop_failure_jump's matching
4820 on_failure_jump; we got through the pattern to here from the
4821 matching on_failure_jump, so didn't fail. */
4822 case pop_failure_jump:
4823 {
4824 /* We need to pass separate storage for the lowest and
4825 highest registers, even though we don't care about the
4826 actual values. Otherwise, we will restore only one
4827 register from the stack, since lowest will == highest in
4828 `pop_failure_point'. */
4829 active_reg_t dummy_low_reg, dummy_high_reg;
4830 unsigned char *pdummy;
4831 const char *sdummy;
4832
4833 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4834 POP_FAILURE_POINT (sdummy, pdummy,
4835 dummy_low_reg, dummy_high_reg,
4836 reg_dummy, reg_dummy, reg_info_dummy);
4837 }
4838 /* Note fall through. */
4839
4840 unconditional_jump:
4841#ifdef _LIBC
4842 DEBUG_PRINT2 ("\n%p: ", p);
4843#else
4844 DEBUG_PRINT2 ("\n0x%x: ", p);
4845#endif
4846 /* Note fall through. */
4847
4848 /* Unconditionally jump (without popping any failure points). */
4849 case jump:
4850 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4851 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4852 p += mcnt; /* Do the jump. */
4853#ifdef _LIBC
4854 DEBUG_PRINT2 ("(to %p).\n", p);
4855#else
4856 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4857#endif
4858 break;
4859
4860
4861 /* We need this opcode so we can detect where alternatives end
4862 in `group_match_null_string_p' et al. */
4863 case jump_past_alt:
4864 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4865 goto unconditional_jump;
4866
4867
4868 /* Normally, the on_failure_jump pushes a failure point, which
4869 then gets popped at pop_failure_jump. We will end up at
4870 pop_failure_jump, also, and with a pattern of, say, `a+', we
4871 are skipping over the on_failure_jump, so we have to push
4872 something meaningless for pop_failure_jump to pop. */
4873 case dummy_failure_jump:
4874 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4875 /* It doesn't matter what we push for the string here. What
4876 the code at `fail' tests is the value for the pattern. */
4877 PUSH_FAILURE_POINT (NULL, NULL, -2);
4878 goto unconditional_jump;
4879
4880
4881 /* At the end of an alternative, we need to push a dummy failure
4882 point in case we are followed by a `pop_failure_jump', because
4883 we don't want the failure point for the alternative to be
4884 popped. For example, matching `(a|ab)*' against `aab'
4885 requires that we match the `ab' alternative. */
4886 case push_dummy_failure:
4887 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4888 /* See comments just above at `dummy_failure_jump' about the
4889 two zeroes. */
4890 PUSH_FAILURE_POINT (NULL, NULL, -2);
4891 break;
4892
4893 /* Have to succeed matching what follows at least n times.
4894 After that, handle like `on_failure_jump'. */
4895 case succeed_n:
4896 EXTRACT_NUMBER (mcnt, p + 2);
4897 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4898
4899 assert (mcnt >= 0);
4900 /* Originally, this is how many times we HAVE to succeed. */
4901 if (mcnt > 0)
4902 {
4903 mcnt--;
4904 p += 2;
4905 STORE_NUMBER_AND_INCR (p, mcnt);
4906#ifdef _LIBC
4907 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4908#else
4909 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4910#endif
4911 }
4912 else if (mcnt == 0)
4913 {
4914#ifdef _LIBC
4915 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4916#else
4917 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4918#endif
4919 p[2] = (unsigned char) no_op;
4920 p[3] = (unsigned char) no_op;
4921 goto on_failure;
4922 }
4923 break;
4924
4925 case jump_n:
4926 EXTRACT_NUMBER (mcnt, p + 2);
4927 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4928
4929 /* Originally, this is how many times we CAN jump. */
4930 if (mcnt)
4931 {
4932 mcnt--;
4933 STORE_NUMBER (p + 2, mcnt);
4934#ifdef _LIBC
4935 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4936#else
4937 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4938#endif
4939 goto unconditional_jump;
4940 }
4941 /* If don't have to jump any more, skip over the rest of command. */
4942 else
4943 p += 4;
4944 break;
4945
4946 case set_number_at:
4947 {
4948 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4949
4950 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4951 p1 = p + mcnt;
4952 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4953#ifdef _LIBC
4954 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4955#else
4956 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4957#endif
4958 STORE_NUMBER (p1, mcnt);
4959 break;
4960 }
4961
4962#if 0
4963 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4964 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4965 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4966 macro and introducing temporary variables works around the bug. */
4967
4968 case wordbound:
4969 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4970 if (AT_WORD_BOUNDARY (d))
4971 break;
4972 goto fail;
4973
4974 case notwordbound:
4975 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4976 if (AT_WORD_BOUNDARY (d))
4977 goto fail;
4978 break;
4979#else
4980 case wordbound:
4981 {
4982 boolean prevchar, thischar;
4983
4984 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4985 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4986 break;
4987
4988 prevchar = WORDCHAR_P (d - 1);
4989 thischar = WORDCHAR_P (d);
4990 if (prevchar != thischar)
4991 break;
4992 goto fail;
4993 }
4994
4995 case notwordbound:
4996 {
4997 boolean prevchar, thischar;
4998
4999 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5000 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5001 goto fail;
5002
5003 prevchar = WORDCHAR_P (d - 1);
5004 thischar = WORDCHAR_P (d);
5005 if (prevchar != thischar)
5006 goto fail;
5007 break;
5008 }
5009#endif
5010
5011 case wordbeg:
5012 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5013 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5014 break;
5015 goto fail;
5016
5017 case wordend:
5018 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5019 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5020 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5021 break;
5022 goto fail;
5023
5024#ifdef emacs
5025 case before_dot:
5026 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5027 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5028 goto fail;
5029 break;
5030
5031 case at_dot:
5032 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5033 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5034 goto fail;
5035 break;
5036
5037 case after_dot:
5038 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5039 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5040 goto fail;
5041 break;
5042
5043 case syntaxspec:
5044 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5045 mcnt = *p++;
5046 goto matchsyntax;
5047
5048 case wordchar:
5049 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5050 mcnt = (int) Sword;
5051 matchsyntax:
5052 PREFETCH ();
5053 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5054 d++;
5055 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5056 goto fail;
5057 SET_REGS_MATCHED ();
5058 break;
5059
5060 case notsyntaxspec:
5061 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5062 mcnt = *p++;
5063 goto matchnotsyntax;
5064
5065 case notwordchar:
5066 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5067 mcnt = (int) Sword;
5068 matchnotsyntax:
5069 PREFETCH ();
5070 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5071 d++;
5072 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5073 goto fail;
5074 SET_REGS_MATCHED ();
5075 break;
5076
5077#else /* not emacs */
5078 case wordchar:
5079 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5080 PREFETCH ();
5081 if (!WORDCHAR_P (d))
5082 goto fail;
5083 SET_REGS_MATCHED ();
5084 d++;
5085 break;
5086
5087 case notwordchar:
5088 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5089 PREFETCH ();
5090 if (WORDCHAR_P (d))
5091 goto fail;
5092 SET_REGS_MATCHED ();
5093 d++;
5094 break;
5095#endif /* not emacs */
5096
5097 default:
5098 abort ();
5099 }
5100 continue; /* Successfully executed one pattern command; keep going. */
5101
5102
5103 /* We goto here if a matching operation fails. */
5104 fail:
5105 if (!FAIL_STACK_EMPTY ())
5106 { /* A restart point is known. Restore to that state. */
5107 DEBUG_PRINT1 ("\nFAIL:\n");
5108 POP_FAILURE_POINT (d, p,
5109 lowest_active_reg, highest_active_reg,
5110 regstart, regend, reg_info);
5111
5112 /* If this failure point is a dummy, try the next one. */
5113 if (!p)
5114 goto fail;
5115
5116 /* If we failed to the end of the pattern, don't examine *p. */
5117 assert (p <= pend);
5118 if (p < pend)
5119 {
5120 boolean is_a_jump_n = false;
5121
5122 /* If failed to a backwards jump that's part of a repetition
5123 loop, need to pop this failure point and use the next one. */
5124 switch ((re_opcode_t) *p)
5125 {
5126 case jump_n:
5127 is_a_jump_n = true;
5128 case maybe_pop_jump:
5129 case pop_failure_jump:
5130 case jump:
5131 p1 = p + 1;
5132 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5133 p1 += mcnt;
5134
5135 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5136 || (!is_a_jump_n
5137 && (re_opcode_t) *p1 == on_failure_jump))
5138 goto fail;
5139 break;
5140 default:
5141 /* do nothing */ ;
5142 }
5143 }
5144
5145 if (d >= string1 && d <= end1)
5146 dend = end_match_1;
5147 }
5148 else
5149 break; /* Matching at this starting point really fails. */
5150 } /* for (;;) */
5151
5152 if (best_regs_set)
5153 goto restore_best_regs;
5154
5155 FREE_VARIABLES ();
5156
5157 return -1; /* Failure to match. */
5158} /* re_match_2 */
5159\f
5160/* Subroutine definitions for re_match_2. */
5161
5162
5163/* We are passed P pointing to a register number after a start_memory.
5164
5165 Return true if the pattern up to the corresponding stop_memory can
5166 match the empty string, and false otherwise.
5167
5168 If we find the matching stop_memory, sets P to point to one past its number.
5169 Otherwise, sets P to an undefined byte less than or equal to END.
5170
5171 We don't handle duplicates properly (yet). */
5172
5173static boolean
5174group_match_null_string_p (p, end, reg_info)
5175 unsigned char **p, *end;
5176 register_info_type *reg_info;
5177{
5178 int mcnt;
5179 /* Point to after the args to the start_memory. */
5180 unsigned char *p1 = *p + 2;
5181
5182 while (p1 < end)
5183 {
5184 /* Skip over opcodes that can match nothing, and return true or
5185 false, as appropriate, when we get to one that can't, or to the
5186 matching stop_memory. */
5187
5188 switch ((re_opcode_t) *p1)
5189 {
5190 /* Could be either a loop or a series of alternatives. */
5191 case on_failure_jump:
5192 p1++;
5193 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5194
5195 /* If the next operation is not a jump backwards in the
5196 pattern. */
5197
5198 if (mcnt >= 0)
5199 {
5200 /* Go through the on_failure_jumps of the alternatives,
5201 seeing if any of the alternatives cannot match nothing.
5202 The last alternative starts with only a jump,
5203 whereas the rest start with on_failure_jump and end
5204 with a jump, e.g., here is the pattern for `a|b|c':
5205
5206 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5207 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5208 /exactn/1/c
5209
5210 So, we have to first go through the first (n-1)
5211 alternatives and then deal with the last one separately. */
5212
5213
5214 /* Deal with the first (n-1) alternatives, which start
5215 with an on_failure_jump (see above) that jumps to right
5216 past a jump_past_alt. */
5217
5218 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5219 {
5220 /* `mcnt' holds how many bytes long the alternative
5221 is, including the ending `jump_past_alt' and
5222 its number. */
5223
5224 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5225 reg_info))
5226 return false;
5227
5228 /* Move to right after this alternative, including the
5229 jump_past_alt. */
5230 p1 += mcnt;
5231
5232 /* Break if it's the beginning of an n-th alternative
5233 that doesn't begin with an on_failure_jump. */
5234 if ((re_opcode_t) *p1 != on_failure_jump)
5235 break;
5236
5237 /* Still have to check that it's not an n-th
5238 alternative that starts with an on_failure_jump. */
5239 p1++;
5240 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5241 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5242 {
5243 /* Get to the beginning of the n-th alternative. */
5244 p1 -= 3;
5245 break;
5246 }
5247 }
5248
5249 /* Deal with the last alternative: go back and get number
5250 of the `jump_past_alt' just before it. `mcnt' contains
5251 the length of the alternative. */
5252 EXTRACT_NUMBER (mcnt, p1 - 2);
5253
5254 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5255 return false;
5256
5257 p1 += mcnt; /* Get past the n-th alternative. */
5258 } /* if mcnt > 0 */
5259 break;
5260
5261
5262 case stop_memory:
5263 assert (p1[1] == **p);
5264 *p = p1 + 2;
5265 return true;
5266
5267
5268 default:
5269 if (!common_op_match_null_string_p (&p1, end, reg_info))
5270 return false;
5271 }
5272 } /* while p1 < end */
5273
5274 return false;
5275} /* group_match_null_string_p */
5276
5277
5278/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5279 It expects P to be the first byte of a single alternative and END one
5280 byte past the last. The alternative can contain groups. */
5281
5282static boolean
5283alt_match_null_string_p (p, end, reg_info)
5284 unsigned char *p, *end;
5285 register_info_type *reg_info;
5286{
5287 int mcnt;
5288 unsigned char *p1 = p;
5289
5290 while (p1 < end)
5291 {
5292 /* Skip over opcodes that can match nothing, and break when we get
5293 to one that can't. */
5294
5295 switch ((re_opcode_t) *p1)
5296 {
5297 /* It's a loop. */
5298 case on_failure_jump:
5299 p1++;
5300 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5301 p1 += mcnt;
5302 break;
5303
5304 default:
5305 if (!common_op_match_null_string_p (&p1, end, reg_info))
5306 return false;
5307 }
5308 } /* while p1 < end */
5309
5310 return true;
5311} /* alt_match_null_string_p */
5312
5313
5314/* Deals with the ops common to group_match_null_string_p and
5315 alt_match_null_string_p.
5316
5317 Sets P to one after the op and its arguments, if any. */
5318
5319static boolean
5320common_op_match_null_string_p (p, end, reg_info)
5321 unsigned char **p, *end;
5322 register_info_type *reg_info;
5323{
5324 int mcnt;
5325 boolean ret;
5326 int reg_no;
5327 unsigned char *p1 = *p;
5328
5329 switch ((re_opcode_t) *p1++)
5330 {
5331 case no_op:
5332 case begline:
5333 case endline:
5334 case begbuf:
5335 case endbuf:
5336 case wordbeg:
5337 case wordend:
5338 case wordbound:
5339 case notwordbound:
5340#ifdef emacs
5341 case before_dot:
5342 case at_dot:
5343 case after_dot:
5344#endif
5345 break;
5346
5347 case start_memory:
5348 reg_no = *p1;
5349 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5350 ret = group_match_null_string_p (&p1, end, reg_info);
5351
5352 /* Have to set this here in case we're checking a group which
5353 contains a group and a back reference to it. */
5354
5355 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5356 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5357
5358 if (!ret)
5359 return false;
5360 break;
5361
5362 /* If this is an optimized succeed_n for zero times, make the jump. */
5363 case jump:
5364 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5365 if (mcnt >= 0)
5366 p1 += mcnt;
5367 else
5368 return false;
5369 break;
5370
5371 case succeed_n:
5372 /* Get to the number of times to succeed. */
5373 p1 += 2;
5374 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5375
5376 if (mcnt == 0)
5377 {
5378 p1 -= 4;
5379 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5380 p1 += mcnt;
5381 }
5382 else
5383 return false;
5384 break;
5385
5386 case duplicate:
5387 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5388 return false;
5389 break;
5390
5391 case set_number_at:
5392 p1 += 4;
5393
5394 default:
5395 /* All other opcodes mean we cannot match the empty string. */
5396 return false;
5397 }
5398
5399 *p = p1;
5400 return true;
5401} /* common_op_match_null_string_p */
5402
5403
5404/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5405 bytes; nonzero otherwise. */
5406
5407static int
5408bcmp_translate (s1, s2, len, translate)
5409 const char *s1, *s2;
5410 register int len;
5411 RE_TRANSLATE_TYPE translate;
5412{
5413 register const unsigned char *p1 = (const unsigned char *) s1;
5414 register const unsigned char *p2 = (const unsigned char *) s2;
5415 while (len)
5416 {
5417 if (translate[*p1++] != translate[*p2++]) return 1;
5418 len--;
5419 }
5420 return 0;
5421}
5422\f
5423/* Entry points for GNU code. */
5424
5425/* re_compile_pattern is the GNU regular expression compiler: it
5426 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5427 Returns 0 if the pattern was valid, otherwise an error string.
5428
5429 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5430 are set in BUFP on entry.
5431
5432 We call regex_compile to do the actual compilation. */
5433
5434const char *
5435re_compile_pattern (pattern, length, bufp)
5436 const char *pattern;
5437 size_t length;
5438 struct re_pattern_buffer *bufp;
5439{
5440 reg_errcode_t ret;
5441
5442 /* GNU code is written to assume at least RE_NREGS registers will be set
5443 (and at least one extra will be -1). */
5444 bufp->regs_allocated = REGS_UNALLOCATED;
5445
5446 /* And GNU code determines whether or not to get register information
5447 by passing null for the REGS argument to re_match, etc., not by
5448 setting no_sub. */
5449 bufp->no_sub = 0;
5450
5451 /* Match anchors at newline. */
5452 bufp->newline_anchor = 1;
5453
5454 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5455
5456 if (!ret)
5457 return NULL;
5458 return gettext (re_error_msgid[(int) ret]);
5459}
5460#ifdef _LIBC
5461weak_alias (__re_compile_pattern, re_compile_pattern)
5462#endif
5463\f
5464/* Entry points compatible with 4.2 BSD regex library. We don't define
5465 them unless specifically requested. */
5466
5467#if defined _REGEX_RE_COMP || defined _LIBC
5468
5469/* BSD has one and only one pattern buffer. */
5470static struct re_pattern_buffer re_comp_buf;
5471
5472char *
5473#ifdef _LIBC
5474/* Make these definitions weak in libc, so POSIX programs can redefine
5475 these names if they don't use our functions, and still use
5476 regcomp/regexec below without link errors. */
5477weak_function
5478#endif
5479re_comp (s)
5480 const char *s;
5481{
5482 reg_errcode_t ret;
5483
5484 if (!s)
5485 {
5486 if (!re_comp_buf.buffer)
5487 return gettext ("No previous regular expression");
5488 return 0;
5489 }
5490
5491 if (!re_comp_buf.buffer)
5492 {
5493 re_comp_buf.buffer = (unsigned char *) malloc (200);
5494 if (re_comp_buf.buffer == NULL)
5495 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5496 re_comp_buf.allocated = 200;
5497
5498 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5499 if (re_comp_buf.fastmap == NULL)
5500 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5501 }
5502
5503 /* Since `re_exec' always passes NULL for the `regs' argument, we
5504 don't need to initialize the pattern buffer fields which affect it. */
5505
5506 /* Match anchors at newlines. */
5507 re_comp_buf.newline_anchor = 1;
5508
5509 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5510
5511 if (!ret)
5512 return NULL;
5513
5514 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5515 return (char *) gettext (re_error_msgid[(int) ret]);
5516}
5517
5518
5519int
5520#ifdef _LIBC
5521weak_function
5522#endif
5523re_exec (s)
5524 const char *s;
5525{
5526 const int len = strlen (s);
5527 return
5528 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5529}
5530
5531#endif /* _REGEX_RE_COMP */
5532\f
5533/* POSIX.2 functions. Don't define these for Emacs. */
5534
5535#ifndef emacs
5536
5537/* regcomp takes a regular expression as a string and compiles it.
5538
5539 PREG is a regex_t *. We do not expect any fields to be initialized,
5540 since POSIX says we shouldn't. Thus, we set
5541
5542 `buffer' to the compiled pattern;
5543 `used' to the length of the compiled pattern;
5544 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5545 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5546 RE_SYNTAX_POSIX_BASIC;
5547 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5548 `fastmap' and `fastmap_accurate' to zero;
5549 `re_nsub' to the number of subexpressions in PATTERN.
5550
5551 PATTERN is the address of the pattern string.
5552
5553 CFLAGS is a series of bits which affect compilation.
5554
5555 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5556 use POSIX basic syntax.
5557
5558 If REG_NEWLINE is set, then . and [^...] don't match newline.
5559 Also, regexec will try a match beginning after every newline.
5560
5561 If REG_ICASE is set, then we considers upper- and lowercase
5562 versions of letters to be equivalent when matching.
5563
5564 If REG_NOSUB is set, then when PREG is passed to regexec, that
5565 routine will report only success or failure, and nothing about the
5566 registers.
5567
5568 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5569 the return codes and their meanings.) */
5570
5571int
5572regcomp (preg, pattern, cflags)
5573 regex_t *preg;
5574 const char *pattern;
5575 int cflags;
5576{
5577 reg_errcode_t ret;
5578 reg_syntax_t syntax
5579 = (cflags & REG_EXTENDED) ?
5580 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5581
5582 /* regex_compile will allocate the space for the compiled pattern. */
5583 preg->buffer = 0;
5584 preg->allocated = 0;
5585 preg->used = 0;
5586
5587 /* Don't bother to use a fastmap when searching. This simplifies the
5588 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5589 characters after newlines into the fastmap. This way, we just try
5590 every character. */
5591 preg->fastmap = 0;
5592
5593 if (cflags & REG_ICASE)
5594 {
5595 unsigned i;
5596
5597 preg->translate
5598 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5599 * sizeof (*(RE_TRANSLATE_TYPE)0));
5600 if (preg->translate == NULL)
5601 return (int) REG_ESPACE;
5602
5603 /* Map uppercase characters to corresponding lowercase ones. */
5604 for (i = 0; i < CHAR_SET_SIZE; i++)
5605 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5606 }
5607 else
5608 preg->translate = NULL;
5609
5610 /* If REG_NEWLINE is set, newlines are treated differently. */
5611 if (cflags & REG_NEWLINE)
5612 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5613 syntax &= ~RE_DOT_NEWLINE;
5614 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5615 /* It also changes the matching behavior. */
5616 preg->newline_anchor = 1;
5617 }
5618 else
5619 preg->newline_anchor = 0;
5620
5621 preg->no_sub = !!(cflags & REG_NOSUB);
5622
5623 /* POSIX says a null character in the pattern terminates it, so we
5624 can use strlen here in compiling the pattern. */
5625 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5626
5627 /* POSIX doesn't distinguish between an unmatched open-group and an
5628 unmatched close-group: both are REG_EPAREN. */
5629 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5630
5631 return (int) ret;
5632}
5633#ifdef _LIBC
5634weak_alias (__regcomp, regcomp)
5635#endif
5636
5637
5638/* regexec searches for a given pattern, specified by PREG, in the
5639 string STRING.
5640
5641 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5642 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5643 least NMATCH elements, and we set them to the offsets of the
5644 corresponding matched substrings.
5645
5646 EFLAGS specifies `execution flags' which affect matching: if
5647 REG_NOTBOL is set, then ^ does not match at the beginning of the
5648 string; if REG_NOTEOL is set, then $ does not match at the end.
5649
5650 We return 0 if we find a match and REG_NOMATCH if not. */
5651
5652int
5653regexec (preg, string, nmatch, pmatch, eflags)
5654 const regex_t *preg;
5655 const char *string;
5656 size_t nmatch;
5657 regmatch_t pmatch[];
5658 int eflags;
5659{
5660 int ret;
5661 struct re_registers regs;
5662 regex_t private_preg;
5663 int len = strlen (string);
5664 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5665
5666 private_preg = *preg;
5667
5668 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5669 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5670
5671 /* The user has told us exactly how many registers to return
5672 information about, via `nmatch'. We have to pass that on to the
5673 matching routines. */
5674 private_preg.regs_allocated = REGS_FIXED;
5675
5676 if (want_reg_info)
5677 {
5678 regs.num_regs = nmatch;
5679 regs.start = TALLOC (nmatch, regoff_t);
5680 regs.end = TALLOC (nmatch, regoff_t);
5681 if (regs.start == NULL || regs.end == NULL)
5682 return (int) REG_NOMATCH;
5683 }
5684
5685 /* Perform the searching operation. */
5686 ret = re_search (&private_preg, string, len,
5687 /* start: */ 0, /* range: */ len,
5688 want_reg_info ? &regs : (struct re_registers *) 0);
5689
5690 /* Copy the register information to the POSIX structure. */
5691 if (want_reg_info)
5692 {
5693 if (ret >= 0)
5694 {
5695 unsigned r;
5696
5697 for (r = 0; r < nmatch; r++)
5698 {
5699 pmatch[r].rm_so = regs.start[r];
5700 pmatch[r].rm_eo = regs.end[r];
5701 }
5702 }
5703
5704 /* If we needed the temporary register info, free the space now. */
5705 free (regs.start);
5706 free (regs.end);
5707 }
5708
5709 /* We want zero return to mean success, unlike `re_search'. */
5710 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5711}
5712#ifdef _LIBC
5713weak_alias (__regexec, regexec)
5714#endif
5715
5716
5717/* Returns a message corresponding to an error code, ERRCODE, returned
5718 from either regcomp or regexec. We don't use PREG here. */
5719
5720size_t
f25d2425 5721regerror (errcode, preg, errbuf, errbuf_size)
c906108c
SS
5722 int errcode;
5723 const regex_t *preg;
5724 char *errbuf;
5725 size_t errbuf_size;
5726{
5727 const char *msg;
5728 size_t msg_size;
5729
5730 if (errcode < 0
5731 || errcode >= (int) (sizeof (re_error_msgid)
5732 / sizeof (re_error_msgid[0])))
5733 /* Only error codes returned by the rest of the code should be passed
5734 to this routine. If we are given anything else, or if other regex
5735 code generates an invalid error code, then the program has a bug.
5736 Dump core so we can fix it. */
5737 abort ();
5738
5739 msg = gettext (re_error_msgid[errcode]);
5740
5741 msg_size = strlen (msg) + 1; /* Includes the null. */
5742
5743 if (errbuf_size != 0)
5744 {
5745 if (msg_size > errbuf_size)
5746 {
5747#if defined HAVE_MEMPCPY || defined _LIBC
5748 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5749#else
5750 memcpy (errbuf, msg, errbuf_size - 1);
5751 errbuf[errbuf_size - 1] = 0;
5752#endif
5753 }
5754 else
5755 memcpy (errbuf, msg, msg_size);
5756 }
5757
5758 return msg_size;
5759}
5760#ifdef _LIBC
5761weak_alias (__regerror, regerror)
5762#endif
5763
5764
5765/* Free dynamically allocated space used by PREG. */
5766
5767void
5768regfree (preg)
5769 regex_t *preg;
5770{
5771 if (preg->buffer != NULL)
5772 free (preg->buffer);
5773 preg->buffer = NULL;
5774
5775 preg->allocated = 0;
5776 preg->used = 0;
5777
5778 if (preg->fastmap != NULL)
5779 free (preg->fastmap);
5780 preg->fastmap = NULL;
5781 preg->fastmap_accurate = 0;
5782
5783 if (preg->translate != NULL)
5784 free (preg->translate);
5785 preg->translate = NULL;
5786}
5787#ifdef _LIBC
5788weak_alias (__regfree, regfree)
5789#endif
5790
5791#endif /* not emacs */
This page took 0.307264 seconds and 4 git commands to generate.