Wed Jun 10 11:53:42 1998 Jason Molenda (crash@bugshack.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
CommitLineData
9f85ab1a
JM
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
6
9408296b
JM
7 NOTE: The canonical source of this file is maintained with the
8 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
9f85ab1a 9
9408296b
JM
10 This program is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 2, or (at your option) any
13 later version.
14
15 This program is distributed in the hope that it will be useful,
9f85ab1a 16 but WITHOUT ANY WARRANTY; without even the implied warranty of
9408296b
JM
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
9f85ab1a 19
9408296b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software Foundation,
22 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
9f85ab1a
JM
23
24/* AIX requires this to be the first thing in the file. */
25#if defined _AIX && !defined REGEX_MALLOC
26 #pragma alloca
27#endif
dd3b648e 28
9f85ab1a
JM
29#undef _GNU_SOURCE
30#define _GNU_SOURCE
dd3b648e 31
9f85ab1a
JM
32#ifdef HAVE_CONFIG_H
33# include <config.h>
34#endif
dd3b648e 35
9f85ab1a
JM
36#ifndef PARAMS
37# if defined __GNUC__ || (defined __STDC__ && __STDC__)
38# define PARAMS(args) args
39# else
40# define PARAMS(args) ()
41# endif /* GCC. */
42#endif /* Not PARAMS. */
dd3b648e 43
9f85ab1a
JM
44#if defined STDC_HEADERS && !defined emacs
45# include <stddef.h>
46#else
a4122443 47/* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
9f85ab1a
JM
48# include <sys/types.h>
49#endif
dd3b648e 50
9f85ab1a
JM
51/* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
54# include <wctype.h>
55# include <wchar.h>
56
57/* We have to keep the namespace clean. */
58# define regfree(preg) __regfree (preg)
59# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
60# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
61# define regerror(errcode, preg, errbuf, errbuf_size) \
62 __regerror(errcode, preg, errbuf, errbuf_size)
63# define re_set_registers(bu, re, nu, st, en) \
64 __re_set_registers (bu, re, nu, st, en)
65# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
66 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
67# define re_match(bufp, string, size, pos, regs) \
68 __re_match (bufp, string, size, pos, regs)
69# define re_search(bufp, string, size, startpos, range, regs) \
70 __re_search (bufp, string, size, startpos, range, regs)
71# define re_compile_pattern(pattern, length, bufp) \
72 __re_compile_pattern (pattern, length, bufp)
73# define re_set_syntax(syntax) __re_set_syntax (syntax)
74# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
75 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
76# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
77
78#define btowc __btowc
79#endif
dd3b648e 80
9f85ab1a
JM
81/* This is for other GNU distributions with internationalized messages. */
82#if HAVE_LIBINTL_H || defined _LIBC
83# include <libintl.h>
84#else
85# define gettext(msgid) (msgid)
dd3b648e
RP
86#endif
87
9f85ab1a
JM
88#ifndef gettext_noop
89/* This define is so xgettext can find the internationalizable
90 strings. */
91# define gettext_noop(String) String
92#endif
dd3b648e 93
9f85ab1a
JM
94/* The `emacs' switch turns on certain matching commands
95 that make sense only in Emacs. */
96#ifdef emacs
dd3b648e 97
9f85ab1a
JM
98# include "lisp.h"
99# include "buffer.h"
100# include "syntax.h"
dd3b648e 101
9f85ab1a 102#else /* not emacs */
dd3b648e 103
9f85ab1a
JM
104/* If we are not linking with Emacs proper,
105 we can't use the relocating allocator
106 even if config.h says that we can. */
107# undef REL_ALLOC
108
109# if defined STDC_HEADERS || defined _LIBC
110# include <stdlib.h>
111# else
112char *malloc ();
113char *realloc ();
114# endif
115
116/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
117 If nothing else has been done, use the method below. */
118# ifdef INHIBIT_STRING_HEADER
119# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
120# if !defined bzero && !defined bcopy
121# undef INHIBIT_STRING_HEADER
122# endif
123# endif
124# endif
125
126/* This is the normal way of making sure we have a bcopy and a bzero.
127 This is used in most programs--a few other programs avoid this
128 by defining INHIBIT_STRING_HEADER. */
129# ifndef INHIBIT_STRING_HEADER
130# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
131# include <string.h>
132# ifndef bzero
133# ifndef _LIBC
134# define bzero(s, n) (memset (s, '\0', n), (s))
135# else
136# define bzero(s, n) __bzero (s, n)
137# endif
138# endif
139# else
140# include <strings.h>
141# ifndef memcmp
142# define memcmp(s1, s2, n) bcmp (s1, s2, n)
143# endif
144# ifndef memcpy
145# define memcpy(d, s, n) (bcopy (s, d, n), (d))
146# endif
147# endif
148# endif
149
150/* Define the syntax stuff for \<, \>, etc. */
151
152/* This must be nonzero for the wordchar and notwordchar pattern
153 commands in re_match_2. */
154# ifndef Sword
155# define Sword 1
156# endif
157
158# ifdef SWITCH_ENUM_BUG
159# define SWITCH_ENUM_CAST(x) ((int)(x))
160# else
161# define SWITCH_ENUM_CAST(x) (x)
162# endif
163
164/* How many characters in the character set. */
165# define CHAR_SET_SIZE 256
166
167# ifdef SYNTAX_TABLE
168
169extern char *re_syntax_table;
170
171# else /* not SYNTAX_TABLE */
172
173static char re_syntax_table[CHAR_SET_SIZE];
dd3b648e
RP
174
175static void
176init_syntax_once ()
177{
178 register int c;
179 static int done = 0;
180
181 if (done)
182 return;
183
9f85ab1a 184 bzero (re_syntax_table, sizeof re_syntax_table);
dd3b648e
RP
185
186 for (c = 'a'; c <= 'z'; c++)
187 re_syntax_table[c] = Sword;
188
189 for (c = 'A'; c <= 'Z'; c++)
190 re_syntax_table[c] = Sword;
191
192 for (c = '0'; c <= '9'; c++)
193 re_syntax_table[c] = Sword;
194
9f85ab1a
JM
195 re_syntax_table['_'] = Sword;
196
dd3b648e
RP
197 done = 1;
198}
199
9f85ab1a 200# endif /* not SYNTAX_TABLE */
dd3b648e 201
9f85ab1a 202# define SYNTAX(c) re_syntax_table[c]
dd3b648e 203
9f85ab1a
JM
204#endif /* not emacs */
205\f
206/* Get the interface, including the syntax bits. */
a4122443
JM
207/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
208#include "gnu-regex.h"
9f85ab1a
JM
209
210/* isalpha etc. are used for the character classes. */
211#include <ctype.h>
212
213/* Jim Meyering writes:
214
215 "... Some ctype macros are valid only for character codes that
216 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
217 using /bin/cc or gcc but without giving an ansi option). So, all
218 ctype uses should be through macros like ISPRINT... If
219 STDC_HEADERS is defined, then autoconf has verified that the ctype
220 macros don't need to be guarded with references to isascii. ...
221 Defining isascii to 1 should let any compiler worth its salt
222 eliminate the && through constant folding."
223 Solaris defines some of these symbols so we must undefine them first. */
224
225#undef ISASCII
226#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
227# define ISASCII(c) 1
228#else
229# define ISASCII(c) isascii(c)
230#endif
dd3b648e 231
9f85ab1a
JM
232#ifdef isblank
233# define ISBLANK(c) (ISASCII (c) && isblank (c))
234#else
235# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
236#endif
237#ifdef isgraph
238# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
239#else
240# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
241#endif
dd3b648e 242
9f85ab1a
JM
243#undef ISPRINT
244#define ISPRINT(c) (ISASCII (c) && isprint (c))
245#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
246#define ISALNUM(c) (ISASCII (c) && isalnum (c))
247#define ISALPHA(c) (ISASCII (c) && isalpha (c))
248#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
249#define ISLOWER(c) (ISASCII (c) && islower (c))
250#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
251#define ISSPACE(c) (ISASCII (c) && isspace (c))
252#define ISUPPER(c) (ISASCII (c) && isupper (c))
253#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
254
255#ifndef NULL
256# define NULL (void *)0
257#endif
dd3b648e 258
0d98155c
PS
259/* We remove any previous definition of `SIGN_EXTEND_CHAR',
260 since ours (we hope) works properly with all combinations of
261 machines, compilers, `char' and `unsigned char' argument types.
262 (Per Bothner suggested the basic approach.) */
263#undef SIGN_EXTEND_CHAR
264#if __STDC__
9f85ab1a 265# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
0d98155c
PS
266#else /* not __STDC__ */
267/* As in Harbison and Steele. */
9f85ab1a 268# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
dd3b648e
RP
269#endif
270\f
9f85ab1a
JM
271/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
272 use `alloca' instead of `malloc'. This is because using malloc in
273 re_search* or re_match* could cause memory leaks when C-g is used in
274 Emacs; also, malloc is slower and causes storage fragmentation. On
275 the other hand, malloc is more portable, and easier to debug.
dd3b648e 276
9f85ab1a
JM
277 Because we sometimes use alloca, some routines have to be macros,
278 not functions -- `alloca'-allocated space disappears at the end of the
279 function it is called in. */
dd3b648e 280
9f85ab1a 281#ifdef REGEX_MALLOC
dd3b648e 282
9f85ab1a
JM
283# define REGEX_ALLOCATE malloc
284# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
285# define REGEX_FREE free
dd3b648e 286
9f85ab1a 287#else /* not REGEX_MALLOC */
dd3b648e 288
9f85ab1a
JM
289/* Emacs already defines alloca, sometimes. */
290# ifndef alloca
dd3b648e 291
9f85ab1a
JM
292/* Make alloca work the best possible way. */
293# ifdef __GNUC__
294# define alloca __builtin_alloca
295# else /* not __GNUC__ */
296# if HAVE_ALLOCA_H
297# include <alloca.h>
298# endif /* HAVE_ALLOCA_H */
299# endif /* not __GNUC__ */
dd3b648e 300
9f85ab1a 301# endif /* not alloca */
dd3b648e 302
9f85ab1a 303# define REGEX_ALLOCATE alloca
dd3b648e 304
9f85ab1a
JM
305/* Assumes a `char *destination' variable. */
306# define REGEX_REALLOCATE(source, osize, nsize) \
307 (destination = (char *) alloca (nsize), \
308 memcpy (destination, source, osize))
dd3b648e 309
9f85ab1a
JM
310/* No need to do anything to free, after alloca. */
311# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
dd3b648e 312
9f85ab1a 313#endif /* not REGEX_MALLOC */
ee6d646a 314
9f85ab1a 315/* Define how to allocate the failure stack. */
ee6d646a 316
9f85ab1a 317#if defined REL_ALLOC && defined REGEX_MALLOC
dd3b648e 318
9f85ab1a
JM
319# define REGEX_ALLOCATE_STACK(size) \
320 r_alloc (&failure_stack_ptr, (size))
321# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
322 r_re_alloc (&failure_stack_ptr, (nsize))
323# define REGEX_FREE_STACK(ptr) \
324 r_alloc_free (&failure_stack_ptr)
dd3b648e 325
9f85ab1a
JM
326#else /* not using relocating allocator */
327
328# ifdef REGEX_MALLOC
329
330# define REGEX_ALLOCATE_STACK malloc
331# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
332# define REGEX_FREE_STACK free
333
334# else /* not REGEX_MALLOC */
335
336# define REGEX_ALLOCATE_STACK alloca
337
338# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
339 REGEX_REALLOCATE (source, osize, nsize)
340/* No need to explicitly free anything. */
341# define REGEX_FREE_STACK(arg)
342
343# endif /* not REGEX_MALLOC */
344#endif /* not using relocating allocator */
345
346
347/* True if `size1' is non-NULL and PTR is pointing anywhere inside
348 `string1' or just past its end. This works if PTR is NULL, which is
349 a good thing. */
350#define FIRST_STRING_P(ptr) \
351 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
352
353/* (Re)Allocate N items of type T using malloc, or fail. */
354#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
355#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
356#define RETALLOC_IF(addr, n, t) \
357 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
358#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
359
360#define BYTEWIDTH 8 /* In bits. */
361
362#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
363
364#undef MAX
365#undef MIN
366#define MAX(a, b) ((a) > (b) ? (a) : (b))
367#define MIN(a, b) ((a) < (b) ? (a) : (b))
368
369typedef char boolean;
370#define false 0
371#define true 1
372
373static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
374 const char *string1, int size1,
375 const char *string2, int size2,
376 int pos,
377 struct re_registers *regs,
378 int stop));
379\f
380/* These are the command codes that appear in compiled regular
381 expressions. Some opcodes are followed by argument bytes. A
382 command code can specify any interpretation whatsoever for its
383 arguments. Zero bytes may appear in the compiled regular expression. */
384
385typedef enum
dd3b648e 386{
9f85ab1a
JM
387 no_op = 0,
388
389 /* Succeed right away--no more backtracking. */
390 succeed,
391
392 /* Followed by one byte giving n, then by n literal bytes. */
393 exactn,
394
395 /* Matches any (more or less) character. */
396 anychar,
397
398 /* Matches any one char belonging to specified set. First
399 following byte is number of bitmap bytes. Then come bytes
400 for a bitmap saying which chars are in. Bits in each byte
401 are ordered low-bit-first. A character is in the set if its
402 bit is 1. A character too large to have a bit in the map is
403 automatically not in the set. */
404 charset,
405
406 /* Same parameters as charset, but match any character that is
407 not one of those specified. */
408 charset_not,
409
410 /* Start remembering the text that is matched, for storing in a
411 register. Followed by one byte with the register number, in
412 the range 0 to one less than the pattern buffer's re_nsub
413 field. Then followed by one byte with the number of groups
414 inner to this one. (This last has to be part of the
415 start_memory only because we need it in the on_failure_jump
416 of re_match_2.) */
417 start_memory,
418
419 /* Stop remembering the text that is matched and store it in a
420 memory register. Followed by one byte with the register
421 number, in the range 0 to one less than `re_nsub' in the
422 pattern buffer, and one byte with the number of inner groups,
423 just like `start_memory'. (We need the number of inner
424 groups here because we don't have any easy way of finding the
425 corresponding start_memory when we're at a stop_memory.) */
426 stop_memory,
427
428 /* Match a duplicate of something remembered. Followed by one
429 byte containing the register number. */
430 duplicate,
431
432 /* Fail unless at beginning of line. */
433 begline,
434
435 /* Fail unless at end of line. */
436 endline,
437
438 /* Succeeds if at beginning of buffer (if emacs) or at beginning
439 of string to be matched (if not). */
440 begbuf,
441
442 /* Analogously, for end of buffer/string. */
443 endbuf,
444
445 /* Followed by two byte relative address to which to jump. */
446 jump,
447
448 /* Same as jump, but marks the end of an alternative. */
449 jump_past_alt,
450
451 /* Followed by two-byte relative address of place to resume at
452 in case of failure. */
453 on_failure_jump,
454
455 /* Like on_failure_jump, but pushes a placeholder instead of the
456 current string position when executed. */
457 on_failure_keep_string_jump,
458
459 /* Throw away latest failure point and then jump to following
460 two-byte relative address. */
461 pop_failure_jump,
462
463 /* Change to pop_failure_jump if know won't have to backtrack to
464 match; otherwise change to jump. This is used to jump
465 back to the beginning of a repeat. If what follows this jump
466 clearly won't match what the repeat does, such that we can be
467 sure that there is no use backtracking out of repetitions
468 already matched, then we change it to a pop_failure_jump.
469 Followed by two-byte address. */
470 maybe_pop_jump,
471
472 /* Jump to following two-byte address, and push a dummy failure
473 point. This failure point will be thrown away if an attempt
474 is made to use it for a failure. A `+' construct makes this
475 before the first repeat. Also used as an intermediary kind
476 of jump when compiling an alternative. */
477 dummy_failure_jump,
478
479 /* Push a dummy failure point and continue. Used at the end of
480 alternatives. */
481 push_dummy_failure,
482
483 /* Followed by two-byte relative address and two-byte number n.
484 After matching N times, jump to the address upon failure. */
485 succeed_n,
486
487 /* Followed by two-byte relative address, and two-byte number n.
488 Jump to the address N times, then fail. */
489 jump_n,
490
491 /* Set the following two-byte relative address to the
492 subsequent two-byte number. The address *includes* the two
493 bytes of number. */
494 set_number_at,
495
496 wordchar, /* Matches any word-constituent character. */
497 notwordchar, /* Matches any char that is not a word-constituent. */
498
499 wordbeg, /* Succeeds if at word beginning. */
500 wordend, /* Succeeds if at word end. */
501
502 wordbound, /* Succeeds if at a word boundary. */
503 notwordbound /* Succeeds if not at a word boundary. */
504
505#ifdef emacs
506 ,before_dot, /* Succeeds if before point. */
507 at_dot, /* Succeeds if at point. */
508 after_dot, /* Succeeds if after point. */
dd3b648e 509
9f85ab1a
JM
510 /* Matches any character whose syntax is specified. Followed by
511 a byte which contains a syntax code, e.g., Sword. */
512 syntaxspec,
dd3b648e 513
9f85ab1a
JM
514 /* Matches any character whose syntax is not that specified. */
515 notsyntaxspec
516#endif /* emacs */
517} re_opcode_t;
518\f
519/* Common operations on the compiled pattern. */
dd3b648e 520
9f85ab1a 521/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
dd3b648e 522
9f85ab1a
JM
523#define STORE_NUMBER(destination, number) \
524 do { \
525 (destination)[0] = (number) & 0377; \
526 (destination)[1] = (number) >> 8; \
527 } while (0)
dd3b648e 528
9f85ab1a
JM
529/* Same as STORE_NUMBER, except increment DESTINATION to
530 the byte after where the number is stored. Therefore, DESTINATION
531 must be an lvalue. */
dd3b648e 532
9f85ab1a
JM
533#define STORE_NUMBER_AND_INCR(destination, number) \
534 do { \
535 STORE_NUMBER (destination, number); \
536 (destination) += 2; \
537 } while (0)
dd3b648e 538
9f85ab1a
JM
539/* Put into DESTINATION a number stored in two contiguous bytes starting
540 at SOURCE. */
dd3b648e 541
9f85ab1a
JM
542#define EXTRACT_NUMBER(destination, source) \
543 do { \
544 (destination) = *(source) & 0377; \
545 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
546 } while (0)
dd3b648e 547
9f85ab1a
JM
548#ifdef DEBUG
549static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
550static void
551extract_number (dest, source)
552 int *dest;
553 unsigned char *source;
554{
555 int temp = SIGN_EXTEND_CHAR (*(source + 1));
556 *dest = *source & 0377;
557 *dest += temp << 8;
558}
dd3b648e 559
9f85ab1a
JM
560# ifndef EXTRACT_MACROS /* To debug the macros. */
561# undef EXTRACT_NUMBER
562# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
563# endif /* not EXTRACT_MACROS */
dd3b648e 564
9f85ab1a 565#endif /* DEBUG */
dd3b648e 566
9f85ab1a
JM
567/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
568 SOURCE must be an lvalue. */
dd3b648e 569
9f85ab1a
JM
570#define EXTRACT_NUMBER_AND_INCR(destination, source) \
571 do { \
572 EXTRACT_NUMBER (destination, source); \
573 (source) += 2; \
574 } while (0)
dd3b648e 575
9f85ab1a
JM
576#ifdef DEBUG
577static void extract_number_and_incr _RE_ARGS ((int *destination,
578 unsigned char **source));
579static void
580extract_number_and_incr (destination, source)
581 int *destination;
582 unsigned char **source;
583{
584 extract_number (destination, *source);
585 *source += 2;
586}
dd3b648e 587
9f85ab1a
JM
588# ifndef EXTRACT_MACROS
589# undef EXTRACT_NUMBER_AND_INCR
590# define EXTRACT_NUMBER_AND_INCR(dest, src) \
591 extract_number_and_incr (&dest, &src)
592# endif /* not EXTRACT_MACROS */
dd3b648e 593
9f85ab1a
JM
594#endif /* DEBUG */
595\f
596/* If DEBUG is defined, Regex prints many voluminous messages about what
597 it is doing (if the variable `debug' is nonzero). If linked with the
598 main program in `iregex.c', you can enter patterns and strings
599 interactively. And if linked with the main program in `main.c' and
600 the other test files, you can run the already-written tests. */
dd3b648e 601
9f85ab1a 602#ifdef DEBUG
dd3b648e 603
9f85ab1a
JM
604/* We use standard I/O for debugging. */
605# include <stdio.h>
606
607/* It is useful to test things that ``must'' be true when debugging. */
608# include <assert.h>
609
610static int debug = 0;
611
612# define DEBUG_STATEMENT(e) e
613# define DEBUG_PRINT1(x) if (debug) printf (x)
614# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
615# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
616# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
617# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
618 if (debug) print_partial_compiled_pattern (s, e)
619# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
620 if (debug) print_double_string (w, s1, sz1, s2, sz2)
621
622
623/* Print the fastmap in human-readable form. */
624
625void
626print_fastmap (fastmap)
627 char *fastmap;
628{
629 unsigned was_a_range = 0;
630 unsigned i = 0;
631
632 while (i < (1 << BYTEWIDTH))
dd3b648e 633 {
9f85ab1a
JM
634 if (fastmap[i++])
635 {
636 was_a_range = 0;
637 putchar (i - 1);
638 while (i < (1 << BYTEWIDTH) && fastmap[i])
639 {
640 was_a_range = 1;
641 i++;
642 }
643 if (was_a_range)
644 {
645 printf ("-");
646 putchar (i - 1);
647 }
648 }
dd3b648e 649 }
9f85ab1a
JM
650 putchar ('\n');
651}
dd3b648e 652
9f85ab1a
JM
653
654/* Print a compiled pattern string in human-readable form, starting at
655 the START pointer into it and ending just before the pointer END. */
656
657void
658print_partial_compiled_pattern (start, end)
659 unsigned char *start;
660 unsigned char *end;
661{
662 int mcnt, mcnt2;
663 unsigned char *p1;
664 unsigned char *p = start;
665 unsigned char *pend = end;
666
667 if (start == NULL)
dd3b648e 668 {
9f85ab1a
JM
669 printf ("(null)\n");
670 return;
671 }
dd3b648e 672
9f85ab1a
JM
673 /* Loop over pattern commands. */
674 while (p < pend)
675 {
676 printf ("%d:\t", p - start);
dd3b648e 677
9f85ab1a 678 switch ((re_opcode_t) *p++)
dd3b648e 679 {
9f85ab1a
JM
680 case no_op:
681 printf ("/no_op");
682 break;
dd3b648e 683
9f85ab1a
JM
684 case exactn:
685 mcnt = *p++;
686 printf ("/exactn/%d", mcnt);
687 do
dd3b648e 688 {
9f85ab1a
JM
689 putchar ('/');
690 putchar (*p++);
691 }
692 while (--mcnt);
693 break;
dd3b648e 694
9f85ab1a
JM
695 case start_memory:
696 mcnt = *p++;
697 printf ("/start_memory/%d/%d", mcnt, *p++);
698 break;
dd3b648e 699
9f85ab1a
JM
700 case stop_memory:
701 mcnt = *p++;
702 printf ("/stop_memory/%d/%d", mcnt, *p++);
703 break;
704
705 case duplicate:
706 printf ("/duplicate/%d", *p++);
dd3b648e
RP
707 break;
708
9f85ab1a
JM
709 case anychar:
710 printf ("/anychar");
711 break;
712
713 case charset:
714 case charset_not:
715 {
716 register int c, last = -100;
717 register int in_range = 0;
718
719 printf ("/charset [%s",
720 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
721
722 assert (p + *p < pend);
723
724 for (c = 0; c < 256; c++)
725 if (c / 8 < *p
726 && (p[1 + (c/8)] & (1 << (c % 8))))
dd3b648e 727 {
9f85ab1a
JM
728 /* Are we starting a range? */
729 if (last + 1 == c && ! in_range)
dd3b648e 730 {
9f85ab1a
JM
731 putchar ('-');
732 in_range = 1;
733 }
734 /* Have we broken a range? */
735 else if (last + 1 != c && in_range)
736 {
737 putchar (last);
738 in_range = 0;
dd3b648e 739 }
dd3b648e 740
9f85ab1a
JM
741 if (! in_range)
742 putchar (c);
dd3b648e 743
9f85ab1a
JM
744 last = c;
745 }
746
747 if (in_range)
748 putchar (last);
749
750 putchar (']');
751
752 p += 1 + *p;
753 }
dd3b648e
RP
754 break;
755
9f85ab1a
JM
756 case begline:
757 printf ("/begline");
758 break;
759
760 case endline:
761 printf ("/endline");
762 break;
763
764 case on_failure_jump:
765 extract_number_and_incr (&mcnt, &p);
766 printf ("/on_failure_jump to %d", p + mcnt - start);
767 break;
768
769 case on_failure_keep_string_jump:
770 extract_number_and_incr (&mcnt, &p);
771 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
772 break;
773
774 case dummy_failure_jump:
775 extract_number_and_incr (&mcnt, &p);
776 printf ("/dummy_failure_jump to %d", p + mcnt - start);
777 break;
778
779 case push_dummy_failure:
780 printf ("/push_dummy_failure");
781 break;
782
783 case maybe_pop_jump:
784 extract_number_and_incr (&mcnt, &p);
785 printf ("/maybe_pop_jump to %d", p + mcnt - start);
dd3b648e
RP
786 break;
787
9f85ab1a
JM
788 case pop_failure_jump:
789 extract_number_and_incr (&mcnt, &p);
790 printf ("/pop_failure_jump to %d", p + mcnt - start);
791 break;
dd3b648e 792
9f85ab1a
JM
793 case jump_past_alt:
794 extract_number_and_incr (&mcnt, &p);
795 printf ("/jump_past_alt to %d", p + mcnt - start);
dd3b648e
RP
796 break;
797
9f85ab1a
JM
798 case jump:
799 extract_number_and_incr (&mcnt, &p);
800 printf ("/jump to %d", p + mcnt - start);
801 break;
dd3b648e 802
9f85ab1a
JM
803 case succeed_n:
804 extract_number_and_incr (&mcnt, &p);
805 p1 = p + mcnt;
806 extract_number_and_incr (&mcnt2, &p);
807 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
808 break;
809
810 case jump_n:
811 extract_number_and_incr (&mcnt, &p);
812 p1 = p + mcnt;
813 extract_number_and_incr (&mcnt2, &p);
814 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
815 break;
816
817 case set_number_at:
818 extract_number_and_incr (&mcnt, &p);
819 p1 = p + mcnt;
820 extract_number_and_incr (&mcnt2, &p);
821 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
822 break;
823
824 case wordbound:
825 printf ("/wordbound");
826 break;
dd3b648e 827
9f85ab1a
JM
828 case notwordbound:
829 printf ("/notwordbound");
830 break;
dd3b648e 831
9f85ab1a
JM
832 case wordbeg:
833 printf ("/wordbeg");
834 break;
dd3b648e 835
9f85ab1a
JM
836 case wordend:
837 printf ("/wordend");
dd3b648e 838
9f85ab1a
JM
839# ifdef emacs
840 case before_dot:
841 printf ("/before_dot");
842 break;
dd3b648e 843
9f85ab1a
JM
844 case at_dot:
845 printf ("/at_dot");
846 break;
847
848 case after_dot:
849 printf ("/after_dot");
850 break;
851
852 case syntaxspec:
853 printf ("/syntaxspec");
854 mcnt = *p++;
855 printf ("/%d", mcnt);
856 break;
857
858 case notsyntaxspec:
859 printf ("/notsyntaxspec");
860 mcnt = *p++;
861 printf ("/%d", mcnt);
dd3b648e 862 break;
9f85ab1a 863# endif /* emacs */
dd3b648e 864
9f85ab1a
JM
865 case wordchar:
866 printf ("/wordchar");
867 break;
868
869 case notwordchar:
870 printf ("/notwordchar");
871 break;
872
873 case begbuf:
874 printf ("/begbuf");
875 break;
876
877 case endbuf:
878 printf ("/endbuf");
879 break;
880
881 default:
882 printf ("?%d", *(p-1));
dd3b648e 883 }
9f85ab1a
JM
884
885 putchar ('\n');
dd3b648e
RP
886 }
887
9f85ab1a
JM
888 printf ("%d:\tend of pattern.\n", p - start);
889}
dd3b648e 890
dd3b648e 891
9f85ab1a
JM
892void
893print_compiled_pattern (bufp)
894 struct re_pattern_buffer *bufp;
895{
896 unsigned char *buffer = bufp->buffer;
dd3b648e 897
9f85ab1a
JM
898 print_partial_compiled_pattern (buffer, buffer + bufp->used);
899 printf ("%ld bytes used/%ld bytes allocated.\n",
900 bufp->used, bufp->allocated);
dd3b648e 901
9f85ab1a
JM
902 if (bufp->fastmap_accurate && bufp->fastmap)
903 {
904 printf ("fastmap: ");
905 print_fastmap (bufp->fastmap);
906 }
dd3b648e 907
9f85ab1a
JM
908 printf ("re_nsub: %d\t", bufp->re_nsub);
909 printf ("regs_alloc: %d\t", bufp->regs_allocated);
910 printf ("can_be_null: %d\t", bufp->can_be_null);
911 printf ("newline_anchor: %d\n", bufp->newline_anchor);
912 printf ("no_sub: %d\t", bufp->no_sub);
913 printf ("not_bol: %d\t", bufp->not_bol);
914 printf ("not_eol: %d\t", bufp->not_eol);
915 printf ("syntax: %lx\n", bufp->syntax);
916 /* Perhaps we should print the translate table? */
917}
dd3b648e 918
dd3b648e 919
9f85ab1a
JM
920void
921print_double_string (where, string1, size1, string2, size2)
922 const char *where;
923 const char *string1;
924 const char *string2;
925 int size1;
926 int size2;
927{
928 int this_char;
dd3b648e 929
9f85ab1a
JM
930 if (where == NULL)
931 printf ("(null)");
932 else
933 {
934 if (FIRST_STRING_P (where))
935 {
936 for (this_char = where - string1; this_char < size1; this_char++)
937 putchar (string1[this_char]);
dd3b648e 938
9f85ab1a
JM
939 where = string2;
940 }
dd3b648e 941
9f85ab1a
JM
942 for (this_char = where - string2; this_char < size2; this_char++)
943 putchar (string2[this_char]);
944 }
945}
dd3b648e 946
9f85ab1a
JM
947void
948printchar (c)
949 int c;
dd3b648e 950{
9f85ab1a 951 putc (c, stderr);
dd3b648e
RP
952}
953
9f85ab1a 954#else /* not DEBUG */
dd3b648e 955
9f85ab1a
JM
956# undef assert
957# define assert(e)
dd3b648e 958
9f85ab1a
JM
959# define DEBUG_STATEMENT(e)
960# define DEBUG_PRINT1(x)
961# define DEBUG_PRINT2(x1, x2)
962# define DEBUG_PRINT3(x1, x2, x3)
963# define DEBUG_PRINT4(x1, x2, x3, x4)
964# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
965# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
966
967#endif /* not DEBUG */
968\f
969/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
970 also be assigned to arbitrarily: each pattern buffer stores its own
971 syntax, so it can be changed between regex compilations. */
972/* This has no initializer because initialized variables in Emacs
973 become read-only after dumping. */
974reg_syntax_t re_syntax_options;
975
976
977/* Specify the precise syntax of regexps for compilation. This provides
978 for compatibility for various utilities which historically have
979 different, incompatible syntaxes.
980
981 The argument SYNTAX is a bit mask comprised of the various bits
a4122443 982 defined in gnu-regex.h. We return the old syntax. */
9f85ab1a
JM
983
984reg_syntax_t
985re_set_syntax (syntax)
986 reg_syntax_t syntax;
dd3b648e 987{
9f85ab1a
JM
988 reg_syntax_t ret = re_syntax_options;
989
990 re_syntax_options = syntax;
991#ifdef DEBUG
992 if (syntax & RE_DEBUG)
993 debug = 1;
994 else if (debug) /* was on but now is not */
995 debug = 0;
996#endif /* DEBUG */
997 return ret;
dd3b648e 998}
9f85ab1a
JM
999#ifdef _LIBC
1000weak_alias (__re_set_syntax, re_set_syntax)
1001#endif
dd3b648e 1002\f
9f85ab1a 1003/* This table gives an error message for each of the error codes listed
a4122443 1004 in gnu-regex.h. Obviously the order here has to be same as there.
9f85ab1a
JM
1005 POSIX doesn't require that we do anything for REG_NOERROR,
1006 but why not be nice? */
1007
1008static const char *re_error_msgid[] =
1009 {
1010 gettext_noop ("Success"), /* REG_NOERROR */
1011 gettext_noop ("No match"), /* REG_NOMATCH */
1012 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1013 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1014 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1015 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1016 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1017 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1018 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1019 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1020 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1021 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1022 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1023 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1024 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1025 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1026 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1027 };
1028\f
1029/* Avoiding alloca during matching, to placate r_alloc. */
1030
1031/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1032 searching and matching functions should not call alloca. On some
1033 systems, alloca is implemented in terms of malloc, and if we're
1034 using the relocating allocator routines, then malloc could cause a
1035 relocation, which might (if the strings being searched are in the
1036 ralloc heap) shift the data out from underneath the regexp
1037 routines.
1038
1039 Here's another reason to avoid allocation: Emacs
1040 processes input from X in a signal handler; processing X input may
1041 call malloc; if input arrives while a matching routine is calling
1042 malloc, then we're scrod. But Emacs can't just block input while
1043 calling matching routines; then we don't notice interrupts when
1044 they come in. So, Emacs blocks input around all regexp calls
1045 except the matching calls, which it leaves unprotected, in the
1046 faith that they will not malloc. */
1047
1048/* Normally, this is fine. */
1049#define MATCH_MAY_ALLOCATE
1050
1051/* When using GNU C, we are not REALLY using the C alloca, no matter
1052 what config.h may say. So don't take precautions for it. */
1053#ifdef __GNUC__
1054# undef C_ALLOCA
1055#endif
dd3b648e 1056
9f85ab1a
JM
1057/* The match routines may not allocate if (1) they would do it with malloc
1058 and (2) it's not safe for them to use malloc.
1059 Note that if REL_ALLOC is defined, matching would not use malloc for the
1060 failure stack, but we would still use it for the register vectors;
1061 so REL_ALLOC should not affect this. */
1062#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1063# undef MATCH_MAY_ALLOCATE
1064#endif
dd3b648e 1065
9f85ab1a
JM
1066\f
1067/* Failure stack declarations and macros; both re_compile_fastmap and
1068 re_match_2 use a failure stack. These have to be macros because of
1069 REGEX_ALLOCATE_STACK. */
1070
1071
1072/* Number of failure points for which to initially allocate space
1073 when matching. If this number is exceeded, we allocate more
1074 space, so it is not a hard limit. */
1075#ifndef INIT_FAILURE_ALLOC
1076# define INIT_FAILURE_ALLOC 5
1077#endif
1078
1079/* Roughly the maximum number of failure points on the stack. Would be
1080 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1081 This is a variable only so users of regex can assign to it; we never
1082 change it ourselves. */
1083
1084#ifdef INT_IS_16BIT
1085
1086# if defined MATCH_MAY_ALLOCATE
1087/* 4400 was enough to cause a crash on Alpha OSF/1,
1088 whose default stack limit is 2mb. */
1089long int re_max_failures = 4000;
1090# else
1091long int re_max_failures = 2000;
1092# endif
1093
1094union fail_stack_elt
dd3b648e 1095{
9f85ab1a
JM
1096 unsigned char *pointer;
1097 long int integer;
1098};
dd3b648e 1099
9f85ab1a 1100typedef union fail_stack_elt fail_stack_elt_t;
dd3b648e 1101
9f85ab1a
JM
1102typedef struct
1103{
1104 fail_stack_elt_t *stack;
1105 unsigned long int size;
1106 unsigned long int avail; /* Offset of next open position. */
1107} fail_stack_type;
1108
1109#else /* not INT_IS_16BIT */
1110
1111# if defined MATCH_MAY_ALLOCATE
1112/* 4400 was enough to cause a crash on Alpha OSF/1,
1113 whose default stack limit is 2mb. */
1114int re_max_failures = 20000;
1115# else
1116int re_max_failures = 2000;
1117# endif
1118
1119union fail_stack_elt
1120{
1121 unsigned char *pointer;
1122 int integer;
1123};
1124
1125typedef union fail_stack_elt fail_stack_elt_t;
1126
1127typedef struct
1128{
1129 fail_stack_elt_t *stack;
1130 unsigned size;
1131 unsigned avail; /* Offset of next open position. */
1132} fail_stack_type;
1133
1134#endif /* INT_IS_16BIT */
1135
1136#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1137#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1138#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1139
1140
1141/* Define macros to initialize and free the failure stack.
1142 Do `return -2' if the alloc fails. */
1143
1144#ifdef MATCH_MAY_ALLOCATE
1145# define INIT_FAIL_STACK() \
1146 do { \
1147 fail_stack.stack = (fail_stack_elt_t *) \
1148 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1149 \
1150 if (fail_stack.stack == NULL) \
1151 return -2; \
1152 \
1153 fail_stack.size = INIT_FAILURE_ALLOC; \
1154 fail_stack.avail = 0; \
1155 } while (0)
1156
1157# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1158#else
1159# define INIT_FAIL_STACK() \
1160 do { \
1161 fail_stack.avail = 0; \
1162 } while (0)
1163
1164# define RESET_FAIL_STACK()
1165#endif
1166
1167
1168/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1169
1170 Return 1 if succeeds, and 0 if either ran out of memory
1171 allocating space for it or it was already too large.
1172
1173 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1174
1175#define DOUBLE_FAIL_STACK(fail_stack) \
1176 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1177 ? 0 \
1178 : ((fail_stack).stack = (fail_stack_elt_t *) \
1179 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1180 (fail_stack).size * sizeof (fail_stack_elt_t), \
1181 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1182 \
1183 (fail_stack).stack == NULL \
1184 ? 0 \
1185 : ((fail_stack).size <<= 1, \
1186 1)))
1187
1188
1189/* Push pointer POINTER on FAIL_STACK.
1190 Return 1 if was able to do so and 0 if ran out of memory allocating
1191 space to do so. */
1192#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1193 ((FAIL_STACK_FULL () \
1194 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1195 ? 0 \
1196 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1197 1))
1198
1199/* Push a pointer value onto the failure stack.
1200 Assumes the variable `fail_stack'. Probably should only
1201 be called from within `PUSH_FAILURE_POINT'. */
1202#define PUSH_FAILURE_POINTER(item) \
1203 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1204
1205/* This pushes an integer-valued item onto the failure stack.
1206 Assumes the variable `fail_stack'. Probably should only
1207 be called from within `PUSH_FAILURE_POINT'. */
1208#define PUSH_FAILURE_INT(item) \
1209 fail_stack.stack[fail_stack.avail++].integer = (item)
1210
1211/* Push a fail_stack_elt_t value onto the failure stack.
1212 Assumes the variable `fail_stack'. Probably should only
1213 be called from within `PUSH_FAILURE_POINT'. */
1214#define PUSH_FAILURE_ELT(item) \
1215 fail_stack.stack[fail_stack.avail++] = (item)
1216
1217/* These three POP... operations complement the three PUSH... operations.
1218 All assume that `fail_stack' is nonempty. */
1219#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1220#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1221#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1222
1223/* Used to omit pushing failure point id's when we're not debugging. */
1224#ifdef DEBUG
1225# define DEBUG_PUSH PUSH_FAILURE_INT
1226# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1227#else
1228# define DEBUG_PUSH(item)
1229# define DEBUG_POP(item_addr)
1230#endif
1231
1232
1233/* Push the information about the state we will need
1234 if we ever fail back to it.
1235
1236 Requires variables fail_stack, regstart, regend, reg_info, and
1237 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1238 be declared.
1239
1240 Does `return FAILURE_CODE' if runs out of memory. */
1241
1242#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1243 do { \
1244 char *destination; \
1245 /* Must be int, so when we don't save any registers, the arithmetic \
1246 of 0 + -1 isn't done as unsigned. */ \
1247 /* Can't be int, since there is not a shred of a guarantee that int \
1248 is wide enough to hold a value of something to which pointer can \
1249 be assigned */ \
1250 active_reg_t this_reg; \
1251 \
1252 DEBUG_STATEMENT (failure_id++); \
1253 DEBUG_STATEMENT (nfailure_points_pushed++); \
1254 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1255 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1256 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1257 \
1258 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1259 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1260 \
1261 /* Ensure we have enough space allocated for what we will push. */ \
1262 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1263 { \
1264 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1265 return failure_code; \
1266 \
1267 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1268 (fail_stack).size); \
1269 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1270 } \
1271 \
1272 /* Push the info, starting with the registers. */ \
1273 DEBUG_PRINT1 ("\n"); \
1274 \
1275 if (1) \
1276 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1277 this_reg++) \
1278 { \
1279 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1280 DEBUG_STATEMENT (num_regs_pushed++); \
1281 \
1282 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1283 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1284 \
1285 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1286 PUSH_FAILURE_POINTER (regend[this_reg]); \
1287 \
1288 DEBUG_PRINT2 (" info: %p\n ", \
1289 reg_info[this_reg].word.pointer); \
1290 DEBUG_PRINT2 (" match_null=%d", \
1291 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1292 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1293 DEBUG_PRINT2 (" matched_something=%d", \
1294 MATCHED_SOMETHING (reg_info[this_reg])); \
1295 DEBUG_PRINT2 (" ever_matched=%d", \
1296 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1297 DEBUG_PRINT1 ("\n"); \
1298 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1299 } \
1300 \
1301 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1302 PUSH_FAILURE_INT (lowest_active_reg); \
1303 \
1304 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1305 PUSH_FAILURE_INT (highest_active_reg); \
1306 \
1307 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1308 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1309 PUSH_FAILURE_POINTER (pattern_place); \
1310 \
1311 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1312 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1313 size2); \
1314 DEBUG_PRINT1 ("'\n"); \
1315 PUSH_FAILURE_POINTER (string_place); \
1316 \
1317 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1318 DEBUG_PUSH (failure_id); \
1319 } while (0)
1320
1321/* This is the number of items that are pushed and popped on the stack
1322 for each register. */
1323#define NUM_REG_ITEMS 3
1324
1325/* Individual items aside from the registers. */
1326#ifdef DEBUG
1327# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1328#else
1329# define NUM_NONREG_ITEMS 4
1330#endif
1331
1332/* We push at most this many items on the stack. */
1333/* We used to use (num_regs - 1), which is the number of registers
1334 this regexp will save; but that was changed to 5
1335 to avoid stack overflow for a regexp with lots of parens. */
1336#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1337
1338/* We actually push this many items. */
1339#define NUM_FAILURE_ITEMS \
1340 (((0 \
1341 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1342 * NUM_REG_ITEMS) \
1343 + NUM_NONREG_ITEMS)
1344
1345/* How many items can still be added to the stack without overflowing it. */
1346#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1347
1348
1349/* Pops what PUSH_FAIL_STACK pushes.
1350
1351 We restore into the parameters, all of which should be lvalues:
1352 STR -- the saved data position.
1353 PAT -- the saved pattern position.
1354 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1355 REGSTART, REGEND -- arrays of string positions.
1356 REG_INFO -- array of information about each subexpression.
1357
1358 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1359 `pend', `string1', `size1', `string2', and `size2'. */
1360
1361#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1362{ \
1363 DEBUG_STATEMENT (unsigned failure_id;) \
1364 active_reg_t this_reg; \
1365 const unsigned char *string_temp; \
1366 \
1367 assert (!FAIL_STACK_EMPTY ()); \
1368 \
1369 /* Remove failure points and point to how many regs pushed. */ \
1370 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1371 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1372 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1373 \
1374 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1375 \
1376 DEBUG_POP (&failure_id); \
1377 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1378 \
1379 /* If the saved string location is NULL, it came from an \
1380 on_failure_keep_string_jump opcode, and we want to throw away the \
1381 saved NULL, thus retaining our current position in the string. */ \
1382 string_temp = POP_FAILURE_POINTER (); \
1383 if (string_temp != NULL) \
1384 str = (const char *) string_temp; \
1385 \
1386 DEBUG_PRINT2 (" Popping string %p: `", str); \
1387 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1388 DEBUG_PRINT1 ("'\n"); \
1389 \
1390 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1391 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1392 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1393 \
1394 /* Restore register info. */ \
1395 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1396 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1397 \
1398 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1399 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1400 \
1401 if (1) \
1402 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1403 { \
1404 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1405 \
1406 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1407 DEBUG_PRINT2 (" info: %p\n", \
1408 reg_info[this_reg].word.pointer); \
1409 \
1410 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1411 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1412 \
1413 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1414 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1415 } \
1416 else \
1417 { \
1418 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1419 { \
1420 reg_info[this_reg].word.integer = 0; \
1421 regend[this_reg] = 0; \
1422 regstart[this_reg] = 0; \
1423 } \
1424 highest_active_reg = high_reg; \
1425 } \
1426 \
1427 set_regs_matched_done = 0; \
1428 DEBUG_STATEMENT (nfailure_points_popped++); \
1429} /* POP_FAILURE_POINT */
1430
1431
1432\f
1433/* Structure for per-register (a.k.a. per-group) information.
1434 Other register information, such as the
1435 starting and ending positions (which are addresses), and the list of
1436 inner groups (which is a bits list) are maintained in separate
1437 variables.
1438
1439 We are making a (strictly speaking) nonportable assumption here: that
1440 the compiler will pack our bit fields into something that fits into
1441 the type of `word', i.e., is something that fits into one item on the
1442 failure stack. */
1443
1444
1445/* Declarations and macros for re_match_2. */
1446
1447typedef union
1448{
1449 fail_stack_elt_t word;
1450 struct
1451 {
1452 /* This field is one if this group can match the empty string,
1453 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1454#define MATCH_NULL_UNSET_VALUE 3
1455 unsigned match_null_string_p : 2;
1456 unsigned is_active : 1;
1457 unsigned matched_something : 1;
1458 unsigned ever_matched_something : 1;
1459 } bits;
1460} register_info_type;
1461
1462#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1463#define IS_ACTIVE(R) ((R).bits.is_active)
1464#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1465#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1466
1467
1468/* Call this when have matched a real character; it sets `matched' flags
1469 for the subexpressions which we are currently inside. Also records
1470 that those subexprs have matched. */
1471#define SET_REGS_MATCHED() \
1472 do \
1473 { \
1474 if (!set_regs_matched_done) \
1475 { \
1476 active_reg_t r; \
1477 set_regs_matched_done = 1; \
1478 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1479 { \
1480 MATCHED_SOMETHING (reg_info[r]) \
1481 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1482 = 1; \
1483 } \
1484 } \
1485 } \
1486 while (0)
1487
1488/* Registers are set to a sentinel when they haven't yet matched. */
1489static char reg_unset_dummy;
1490#define REG_UNSET_VALUE (&reg_unset_dummy)
1491#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1492\f
1493/* Subroutine declarations and macros for regex_compile. */
1494
1495static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1496 reg_syntax_t syntax,
1497 struct re_pattern_buffer *bufp));
1498static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1499static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1500 int arg1, int arg2));
1501static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1502 int arg, unsigned char *end));
1503static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1504 int arg1, int arg2, unsigned char *end));
1505static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1506 reg_syntax_t syntax));
1507static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1508 reg_syntax_t syntax));
1509static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1510 const char *pend,
1511 char *translate,
1512 reg_syntax_t syntax,
1513 unsigned char *b));
1514
1515/* Fetch the next character in the uncompiled pattern---translating it
1516 if necessary. Also cast from a signed character in the constant
1517 string passed to us by the user to an unsigned char that we can use
1518 as an array index (in, e.g., `translate'). */
1519#ifndef PATFETCH
1520# define PATFETCH(c) \
1521 do {if (p == pend) return REG_EEND; \
1522 c = (unsigned char) *p++; \
1523 if (translate) c = (unsigned char) translate[c]; \
1524 } while (0)
1525#endif
1526
1527/* Fetch the next character in the uncompiled pattern, with no
1528 translation. */
1529#define PATFETCH_RAW(c) \
1530 do {if (p == pend) return REG_EEND; \
1531 c = (unsigned char) *p++; \
1532 } while (0)
1533
1534/* Go backwards one character in the pattern. */
1535#define PATUNFETCH p--
1536
1537
1538/* If `translate' is non-null, return translate[D], else just D. We
1539 cast the subscript to translate because some data is declared as
1540 `char *', to avoid warnings when a string constant is passed. But
1541 when we use a character as a subscript we must make it unsigned. */
1542#ifndef TRANSLATE
1543# define TRANSLATE(d) \
1544 (translate ? (char) translate[(unsigned char) (d)] : (d))
1545#endif
1546
1547
1548/* Macros for outputting the compiled pattern into `buffer'. */
1549
1550/* If the buffer isn't allocated when it comes in, use this. */
1551#define INIT_BUF_SIZE 32
1552
1553/* Make sure we have at least N more bytes of space in buffer. */
1554#define GET_BUFFER_SPACE(n) \
1555 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1556 EXTEND_BUFFER ()
1557
1558/* Make sure we have one more byte of buffer space and then add C to it. */
1559#define BUF_PUSH(c) \
1560 do { \
1561 GET_BUFFER_SPACE (1); \
1562 *b++ = (unsigned char) (c); \
1563 } while (0)
1564
1565
1566/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1567#define BUF_PUSH_2(c1, c2) \
1568 do { \
1569 GET_BUFFER_SPACE (2); \
1570 *b++ = (unsigned char) (c1); \
1571 *b++ = (unsigned char) (c2); \
1572 } while (0)
1573
1574
1575/* As with BUF_PUSH_2, except for three bytes. */
1576#define BUF_PUSH_3(c1, c2, c3) \
1577 do { \
1578 GET_BUFFER_SPACE (3); \
1579 *b++ = (unsigned char) (c1); \
1580 *b++ = (unsigned char) (c2); \
1581 *b++ = (unsigned char) (c3); \
1582 } while (0)
1583
1584
1585/* Store a jump with opcode OP at LOC to location TO. We store a
1586 relative address offset by the three bytes the jump itself occupies. */
1587#define STORE_JUMP(op, loc, to) \
1588 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1589
1590/* Likewise, for a two-argument jump. */
1591#define STORE_JUMP2(op, loc, to, arg) \
1592 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1593
1594/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1595#define INSERT_JUMP(op, loc, to) \
1596 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1597
1598/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1599#define INSERT_JUMP2(op, loc, to, arg) \
1600 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1601
1602
1603/* This is not an arbitrary limit: the arguments which represent offsets
1604 into the pattern are two bytes long. So if 2^16 bytes turns out to
1605 be too small, many things would have to change. */
1606/* Any other compiler which, like MSC, has allocation limit below 2^16
1607 bytes will have to use approach similar to what was done below for
1608 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1609 reallocating to 0 bytes. Such thing is not going to work too well.
1610 You have been warned!! */
1611#if defined _MSC_VER && !defined WIN32
1612/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1613 The REALLOC define eliminates a flurry of conversion warnings,
1614 but is not required. */
1615# define MAX_BUF_SIZE 65500L
1616# define REALLOC(p,s) realloc ((p), (size_t) (s))
1617#else
1618# define MAX_BUF_SIZE (1L << 16)
1619# define REALLOC(p,s) realloc ((p), (s))
1620#endif
1621
1622/* Extend the buffer by twice its current size via realloc and
1623 reset the pointers that pointed into the old block to point to the
1624 correct places in the new one. If extending the buffer results in it
1625 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1626#define EXTEND_BUFFER() \
1627 do { \
1628 unsigned char *old_buffer = bufp->buffer; \
1629 if (bufp->allocated == MAX_BUF_SIZE) \
1630 return REG_ESIZE; \
1631 bufp->allocated <<= 1; \
1632 if (bufp->allocated > MAX_BUF_SIZE) \
1633 bufp->allocated = MAX_BUF_SIZE; \
1634 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1635 if (bufp->buffer == NULL) \
1636 return REG_ESPACE; \
1637 /* If the buffer moved, move all the pointers into it. */ \
1638 if (old_buffer != bufp->buffer) \
1639 { \
1640 b = (b - old_buffer) + bufp->buffer; \
1641 begalt = (begalt - old_buffer) + bufp->buffer; \
1642 if (fixup_alt_jump) \
1643 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1644 if (laststart) \
1645 laststart = (laststart - old_buffer) + bufp->buffer; \
1646 if (pending_exact) \
1647 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1648 } \
1649 } while (0)
1650
1651
1652/* Since we have one byte reserved for the register number argument to
1653 {start,stop}_memory, the maximum number of groups we can report
1654 things about is what fits in that byte. */
1655#define MAX_REGNUM 255
1656
1657/* But patterns can have more than `MAX_REGNUM' registers. We just
1658 ignore the excess. */
1659typedef unsigned regnum_t;
1660
1661
1662/* Macros for the compile stack. */
1663
1664/* Since offsets can go either forwards or backwards, this type needs to
1665 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1666/* int may be not enough when sizeof(int) == 2. */
1667typedef long pattern_offset_t;
1668
1669typedef struct
1670{
1671 pattern_offset_t begalt_offset;
1672 pattern_offset_t fixup_alt_jump;
1673 pattern_offset_t inner_group_offset;
1674 pattern_offset_t laststart_offset;
1675 regnum_t regnum;
1676} compile_stack_elt_t;
1677
1678
1679typedef struct
1680{
1681 compile_stack_elt_t *stack;
1682 unsigned size;
1683 unsigned avail; /* Offset of next open position. */
1684} compile_stack_type;
1685
1686
1687#define INIT_COMPILE_STACK_SIZE 32
1688
1689#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1690#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1691
1692/* The next available element. */
1693#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1694
1695
1696/* Set the bit for character C in a list. */
1697#define SET_LIST_BIT(c) \
1698 (b[((unsigned char) (c)) / BYTEWIDTH] \
1699 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1700
1701
1702/* Get the next unsigned number in the uncompiled pattern. */
1703#define GET_UNSIGNED_NUMBER(num) \
1704 { if (p != pend) \
1705 { \
1706 PATFETCH (c); \
1707 while (ISDIGIT (c)) \
1708 { \
1709 if (num < 0) \
1710 num = 0; \
1711 num = num * 10 + c - '0'; \
1712 if (p == pend) \
1713 break; \
1714 PATFETCH (c); \
1715 } \
1716 } \
1717 }
1718
1719#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1720/* The GNU C library provides support for user-defined character classes
1721 and the functions from ISO C amendement 1. */
1722# ifdef CHARCLASS_NAME_MAX
1723# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1724# else
1725/* This shouldn't happen but some implementation might still have this
1726 problem. Use a reasonable default value. */
1727# define CHAR_CLASS_MAX_LENGTH 256
1728# endif
1729
1730# ifdef _LIBC
1731# define IS_CHAR_CLASS(string) __wctype (string)
1732# else
1733# define IS_CHAR_CLASS(string) wctype (string)
1734# endif
1735#else
1736# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1737
1738# define IS_CHAR_CLASS(string) \
1739 (STREQ (string, "alpha") || STREQ (string, "upper") \
1740 || STREQ (string, "lower") || STREQ (string, "digit") \
1741 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1742 || STREQ (string, "space") || STREQ (string, "print") \
1743 || STREQ (string, "punct") || STREQ (string, "graph") \
1744 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1745#endif
1746\f
1747#ifndef MATCH_MAY_ALLOCATE
1748
1749/* If we cannot allocate large objects within re_match_2_internal,
1750 we make the fail stack and register vectors global.
1751 The fail stack, we grow to the maximum size when a regexp
1752 is compiled.
1753 The register vectors, we adjust in size each time we
1754 compile a regexp, according to the number of registers it needs. */
1755
1756static fail_stack_type fail_stack;
1757
1758/* Size with which the following vectors are currently allocated.
1759 That is so we can make them bigger as needed,
1760 but never make them smaller. */
1761static int regs_allocated_size;
1762
1763static const char ** regstart, ** regend;
1764static const char ** old_regstart, ** old_regend;
1765static const char **best_regstart, **best_regend;
1766static register_info_type *reg_info;
1767static const char **reg_dummy;
1768static register_info_type *reg_info_dummy;
1769
1770/* Make the register vectors big enough for NUM_REGS registers,
1771 but don't make them smaller. */
1772
1773static
1774regex_grow_registers (num_regs)
1775 int num_regs;
1776{
1777 if (num_regs > regs_allocated_size)
dd3b648e 1778 {
9f85ab1a
JM
1779 RETALLOC_IF (regstart, num_regs, const char *);
1780 RETALLOC_IF (regend, num_regs, const char *);
1781 RETALLOC_IF (old_regstart, num_regs, const char *);
1782 RETALLOC_IF (old_regend, num_regs, const char *);
1783 RETALLOC_IF (best_regstart, num_regs, const char *);
1784 RETALLOC_IF (best_regend, num_regs, const char *);
1785 RETALLOC_IF (reg_info, num_regs, register_info_type);
1786 RETALLOC_IF (reg_dummy, num_regs, const char *);
1787 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1788
1789 regs_allocated_size = num_regs;
1790 }
1791}
1792
1793#endif /* not MATCH_MAY_ALLOCATE */
1794\f
1795static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1796 compile_stack,
1797 regnum_t regnum));
1798
1799/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
a4122443 1800 Returns one of error codes defined in `gnu-regex.h', or zero for success.
9f85ab1a
JM
1801
1802 Assumes the `allocated' (and perhaps `buffer') and `translate'
1803 fields are set in BUFP on entry.
1804
1805 If it succeeds, results are put in BUFP (if it returns an error, the
1806 contents of BUFP are undefined):
1807 `buffer' is the compiled pattern;
1808 `syntax' is set to SYNTAX;
1809 `used' is set to the length of the compiled pattern;
1810 `fastmap_accurate' is zero;
1811 `re_nsub' is the number of subexpressions in PATTERN;
1812 `not_bol' and `not_eol' are zero;
1813
1814 The `fastmap' and `newline_anchor' fields are neither
1815 examined nor set. */
1816
1817/* Return, freeing storage we allocated. */
1818#define FREE_STACK_RETURN(value) \
1819 return (free (compile_stack.stack), value)
1820
1821static reg_errcode_t
1822regex_compile (pattern, size, syntax, bufp)
1823 const char *pattern;
1824 size_t size;
1825 reg_syntax_t syntax;
1826 struct re_pattern_buffer *bufp;
1827{
1828 /* We fetch characters from PATTERN here. Even though PATTERN is
1829 `char *' (i.e., signed), we declare these variables as unsigned, so
1830 they can be reliably used as array indices. */
1831 register unsigned char c, c1;
1832
1833 /* A random temporary spot in PATTERN. */
1834 const char *p1;
1835
1836 /* Points to the end of the buffer, where we should append. */
1837 register unsigned char *b;
1838
1839 /* Keeps track of unclosed groups. */
1840 compile_stack_type compile_stack;
1841
1842 /* Points to the current (ending) position in the pattern. */
1843 const char *p = pattern;
1844 const char *pend = pattern + size;
1845
1846 /* How to translate the characters in the pattern. */
1847 RE_TRANSLATE_TYPE translate = bufp->translate;
1848
1849 /* Address of the count-byte of the most recently inserted `exactn'
1850 command. This makes it possible to tell if a new exact-match
1851 character can be added to that command or if the character requires
1852 a new `exactn' command. */
1853 unsigned char *pending_exact = 0;
1854
1855 /* Address of start of the most recently finished expression.
1856 This tells, e.g., postfix * where to find the start of its
1857 operand. Reset at the beginning of groups and alternatives. */
1858 unsigned char *laststart = 0;
1859
1860 /* Address of beginning of regexp, or inside of last group. */
1861 unsigned char *begalt;
1862
1863 /* Place in the uncompiled pattern (i.e., the {) to
1864 which to go back if the interval is invalid. */
1865 const char *beg_interval;
1866
1867 /* Address of the place where a forward jump should go to the end of
1868 the containing expression. Each alternative of an `or' -- except the
1869 last -- ends with a forward jump of this sort. */
1870 unsigned char *fixup_alt_jump = 0;
1871
1872 /* Counts open-groups as they are encountered. Remembered for the
1873 matching close-group on the compile stack, so the same register
1874 number is put in the stop_memory as the start_memory. */
1875 regnum_t regnum = 0;
1876
1877#ifdef DEBUG
1878 DEBUG_PRINT1 ("\nCompiling pattern: ");
1879 if (debug)
1880 {
1881 unsigned debug_count;
1882
1883 for (debug_count = 0; debug_count < size; debug_count++)
1884 putchar (pattern[debug_count]);
1885 putchar ('\n');
1886 }
1887#endif /* DEBUG */
1888
1889 /* Initialize the compile stack. */
1890 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1891 if (compile_stack.stack == NULL)
1892 return REG_ESPACE;
1893
1894 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1895 compile_stack.avail = 0;
1896
1897 /* Initialize the pattern buffer. */
1898 bufp->syntax = syntax;
1899 bufp->fastmap_accurate = 0;
1900 bufp->not_bol = bufp->not_eol = 0;
1901
1902 /* Set `used' to zero, so that if we return an error, the pattern
1903 printer (for debugging) will think there's no pattern. We reset it
1904 at the end. */
1905 bufp->used = 0;
1906
1907 /* Always count groups, whether or not bufp->no_sub is set. */
1908 bufp->re_nsub = 0;
1909
1910#if !defined emacs && !defined SYNTAX_TABLE
1911 /* Initialize the syntax table. */
1912 init_syntax_once ();
1913#endif
1914
1915 if (bufp->allocated == 0)
1916 {
1917 if (bufp->buffer)
1918 { /* If zero allocated, but buffer is non-null, try to realloc
1919 enough space. This loses if buffer's address is bogus, but
1920 that is the user's responsibility. */
1921 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1922 }
1923 else
1924 { /* Caller did not allocate a buffer. Do it for them. */
1925 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1926 }
1927 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1928
1929 bufp->allocated = INIT_BUF_SIZE;
1930 }
1931
1932 begalt = b = bufp->buffer;
1933
1934 /* Loop through the uncompiled pattern until we're at the end. */
1935 while (p != pend)
1936 {
1937 PATFETCH (c);
1938
1939 switch (c)
1940 {
1941 case '^':
1942 {
1943 if ( /* If at start of pattern, it's an operator. */
1944 p == pattern + 1
1945 /* If context independent, it's an operator. */
1946 || syntax & RE_CONTEXT_INDEP_ANCHORS
1947 /* Otherwise, depends on what's come before. */
1948 || at_begline_loc_p (pattern, p, syntax))
1949 BUF_PUSH (begline);
1950 else
1951 goto normal_char;
1952 }
1953 break;
1954
1955
1956 case '$':
1957 {
1958 if ( /* If at end of pattern, it's an operator. */
1959 p == pend
1960 /* If context independent, it's an operator. */
1961 || syntax & RE_CONTEXT_INDEP_ANCHORS
1962 /* Otherwise, depends on what's next. */
1963 || at_endline_loc_p (p, pend, syntax))
1964 BUF_PUSH (endline);
1965 else
1966 goto normal_char;
1967 }
1968 break;
1969
1970
1971 case '+':
1972 case '?':
1973 if ((syntax & RE_BK_PLUS_QM)
1974 || (syntax & RE_LIMITED_OPS))
1975 goto normal_char;
1976 handle_plus:
1977 case '*':
1978 /* If there is no previous pattern... */
1979 if (!laststart)
1980 {
1981 if (syntax & RE_CONTEXT_INVALID_OPS)
1982 FREE_STACK_RETURN (REG_BADRPT);
1983 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1984 goto normal_char;
1985 }
1986
1987 {
1988 /* Are we optimizing this jump? */
1989 boolean keep_string_p = false;
1990
1991 /* 1 means zero (many) matches is allowed. */
1992 char zero_times_ok = 0, many_times_ok = 0;
1993
1994 /* If there is a sequence of repetition chars, collapse it
1995 down to just one (the right one). We can't combine
1996 interval operators with these because of, e.g., `a{2}*',
1997 which should only match an even number of `a's. */
1998
1999 for (;;)
2000 {
2001 zero_times_ok |= c != '+';
2002 many_times_ok |= c != '?';
2003
2004 if (p == pend)
2005 break;
2006
2007 PATFETCH (c);
2008
2009 if (c == '*'
2010 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2011 ;
2012
2013 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2014 {
2015 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2016
2017 PATFETCH (c1);
2018 if (!(c1 == '+' || c1 == '?'))
2019 {
2020 PATUNFETCH;
2021 PATUNFETCH;
2022 break;
2023 }
2024
2025 c = c1;
2026 }
2027 else
2028 {
2029 PATUNFETCH;
2030 break;
2031 }
2032
2033 /* If we get here, we found another repeat character. */
2034 }
2035
2036 /* Star, etc. applied to an empty pattern is equivalent
2037 to an empty pattern. */
2038 if (!laststart)
2039 break;
2040
2041 /* Now we know whether or not zero matches is allowed
2042 and also whether or not two or more matches is allowed. */
2043 if (many_times_ok)
2044 { /* More than one repetition is allowed, so put in at the
2045 end a backward relative jump from `b' to before the next
2046 jump we're going to put in below (which jumps from
2047 laststart to after this jump).
2048
2049 But if we are at the `*' in the exact sequence `.*\n',
2050 insert an unconditional jump backwards to the .,
2051 instead of the beginning of the loop. This way we only
2052 push a failure point once, instead of every time
2053 through the loop. */
2054 assert (p - 1 > pattern);
2055
2056 /* Allocate the space for the jump. */
2057 GET_BUFFER_SPACE (3);
2058
2059 /* We know we are not at the first character of the pattern,
2060 because laststart was nonzero. And we've already
2061 incremented `p', by the way, to be the character after
2062 the `*'. Do we have to do something analogous here
2063 for null bytes, because of RE_DOT_NOT_NULL? */
2064 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2065 && zero_times_ok
2066 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2067 && !(syntax & RE_DOT_NEWLINE))
2068 { /* We have .*\n. */
2069 STORE_JUMP (jump, b, laststart);
2070 keep_string_p = true;
2071 }
2072 else
2073 /* Anything else. */
2074 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2075
2076 /* We've added more stuff to the buffer. */
2077 b += 3;
2078 }
2079
2080 /* On failure, jump from laststart to b + 3, which will be the
2081 end of the buffer after this jump is inserted. */
2082 GET_BUFFER_SPACE (3);
2083 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2084 : on_failure_jump,
2085 laststart, b + 3);
2086 pending_exact = 0;
2087 b += 3;
2088
2089 if (!zero_times_ok)
2090 {
2091 /* At least one repetition is required, so insert a
2092 `dummy_failure_jump' before the initial
2093 `on_failure_jump' instruction of the loop. This
2094 effects a skip over that instruction the first time
2095 we hit that loop. */
2096 GET_BUFFER_SPACE (3);
2097 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2098 b += 3;
2099 }
2100 }
dd3b648e 2101 break;
9f85ab1a
JM
2102
2103
2104 case '.':
2105 laststart = b;
2106 BUF_PUSH (anychar);
2107 break;
2108
2109
2110 case '[':
2111 {
2112 boolean had_char_class = false;
2113
2114 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2115
2116 /* Ensure that we have enough space to push a charset: the
2117 opcode, the length count, and the bitset; 34 bytes in all. */
2118 GET_BUFFER_SPACE (34);
2119
2120 laststart = b;
2121
2122 /* We test `*p == '^' twice, instead of using an if
2123 statement, so we only need one BUF_PUSH. */
2124 BUF_PUSH (*p == '^' ? charset_not : charset);
2125 if (*p == '^')
2126 p++;
2127
2128 /* Remember the first position in the bracket expression. */
2129 p1 = p;
2130
2131 /* Push the number of bytes in the bitmap. */
2132 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2133
2134 /* Clear the whole map. */
2135 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2136
2137 /* charset_not matches newline according to a syntax bit. */
2138 if ((re_opcode_t) b[-2] == charset_not
2139 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2140 SET_LIST_BIT ('\n');
2141
2142 /* Read in characters and ranges, setting map bits. */
2143 for (;;)
2144 {
2145 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2146
2147 PATFETCH (c);
2148
2149 /* \ might escape characters inside [...] and [^...]. */
2150 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2151 {
2152 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2153
2154 PATFETCH (c1);
2155 SET_LIST_BIT (c1);
2156 continue;
2157 }
2158
2159 /* Could be the end of the bracket expression. If it's
2160 not (i.e., when the bracket expression is `[]' so
2161 far), the ']' character bit gets set way below. */
2162 if (c == ']' && p != p1 + 1)
2163 break;
2164
2165 /* Look ahead to see if it's a range when the last thing
2166 was a character class. */
2167 if (had_char_class && c == '-' && *p != ']')
2168 FREE_STACK_RETURN (REG_ERANGE);
2169
2170 /* Look ahead to see if it's a range when the last thing
2171 was a character: if this is a hyphen not at the
2172 beginning or the end of a list, then it's the range
2173 operator. */
2174 if (c == '-'
2175 && !(p - 2 >= pattern && p[-2] == '[')
2176 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2177 && *p != ']')
2178 {
2179 reg_errcode_t ret
2180 = compile_range (&p, pend, translate, syntax, b);
2181 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2182 }
2183
2184 else if (p[0] == '-' && p[1] != ']')
2185 { /* This handles ranges made up of characters only. */
2186 reg_errcode_t ret;
2187
2188 /* Move past the `-'. */
2189 PATFETCH (c1);
2190
2191 ret = compile_range (&p, pend, translate, syntax, b);
2192 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2193 }
2194
2195 /* See if we're at the beginning of a possible character
2196 class. */
2197
2198 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2199 { /* Leave room for the null. */
2200 char str[CHAR_CLASS_MAX_LENGTH + 1];
2201
2202 PATFETCH (c);
2203 c1 = 0;
2204
2205 /* If pattern is `[[:'. */
2206 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2207
2208 for (;;)
2209 {
2210 PATFETCH (c);
2211 if ((c == ':' && *p == ']') || p == pend
2212 || c1 == CHAR_CLASS_MAX_LENGTH)
2213 break;
2214 str[c1++] = c;
2215 }
2216 str[c1] = '\0';
2217
2218 /* If isn't a word bracketed by `[:' and `:]':
2219 undo the ending character, the letters, and leave
2220 the leading `:' and `[' (but set bits for them). */
2221 if (c == ':' && *p == ']')
2222 {
2223#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2224 boolean is_lower = STREQ (str, "lower");
2225 boolean is_upper = STREQ (str, "upper");
2226 wctype_t wt;
2227 int ch;
2228
2229 wt = IS_CHAR_CLASS (str);
2230 if (wt == 0)
2231 FREE_STACK_RETURN (REG_ECTYPE);
2232
2233 /* Throw away the ] at the end of the character
2234 class. */
2235 PATFETCH (c);
2236
2237 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2238
2239 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2240 {
2241# ifdef _LIBC
2242 if (__iswctype (__btowc (ch), wt))
2243 SET_LIST_BIT (ch);
dd3b648e 2244#else
9f85ab1a
JM
2245 if (iswctype (btowc (ch), wt))
2246 SET_LIST_BIT (ch);
dd3b648e 2247#endif
9f85ab1a
JM
2248
2249 if (translate && (is_upper || is_lower)
2250 && (ISUPPER (ch) || ISLOWER (ch)))
2251 SET_LIST_BIT (ch);
2252 }
2253
2254 had_char_class = true;
2255#else
2256 int ch;
2257 boolean is_alnum = STREQ (str, "alnum");
2258 boolean is_alpha = STREQ (str, "alpha");
2259 boolean is_blank = STREQ (str, "blank");
2260 boolean is_cntrl = STREQ (str, "cntrl");
2261 boolean is_digit = STREQ (str, "digit");
2262 boolean is_graph = STREQ (str, "graph");
2263 boolean is_lower = STREQ (str, "lower");
2264 boolean is_print = STREQ (str, "print");
2265 boolean is_punct = STREQ (str, "punct");
2266 boolean is_space = STREQ (str, "space");
2267 boolean is_upper = STREQ (str, "upper");
2268 boolean is_xdigit = STREQ (str, "xdigit");
2269
2270 if (!IS_CHAR_CLASS (str))
2271 FREE_STACK_RETURN (REG_ECTYPE);
2272
2273 /* Throw away the ] at the end of the character
2274 class. */
2275 PATFETCH (c);
2276
2277 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2278
2279 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2280 {
2281 /* This was split into 3 if's to
2282 avoid an arbitrary limit in some compiler. */
2283 if ( (is_alnum && ISALNUM (ch))
2284 || (is_alpha && ISALPHA (ch))
2285 || (is_blank && ISBLANK (ch))
2286 || (is_cntrl && ISCNTRL (ch)))
2287 SET_LIST_BIT (ch);
2288 if ( (is_digit && ISDIGIT (ch))
2289 || (is_graph && ISGRAPH (ch))
2290 || (is_lower && ISLOWER (ch))
2291 || (is_print && ISPRINT (ch)))
2292 SET_LIST_BIT (ch);
2293 if ( (is_punct && ISPUNCT (ch))
2294 || (is_space && ISSPACE (ch))
2295 || (is_upper && ISUPPER (ch))
2296 || (is_xdigit && ISXDIGIT (ch)))
2297 SET_LIST_BIT (ch);
2298 if ( translate && (is_upper || is_lower)
2299 && (ISUPPER (ch) || ISLOWER (ch)))
2300 SET_LIST_BIT (ch);
2301 }
2302 had_char_class = true;
2303#endif /* libc || wctype.h */
2304 }
2305 else
2306 {
2307 c1++;
2308 while (c1--)
2309 PATUNFETCH;
2310 SET_LIST_BIT ('[');
2311 SET_LIST_BIT (':');
2312 had_char_class = false;
2313 }
2314 }
2315 else
2316 {
2317 had_char_class = false;
2318 SET_LIST_BIT (c);
2319 }
2320 }
2321
2322 /* Discard any (non)matching list bytes that are all 0 at the
2323 end of the map. Decrease the map-length byte too. */
2324 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2325 b[-1]--;
2326 b += b[-1];
2327 }
2328 break;
2329
2330
2331 case '(':
2332 if (syntax & RE_NO_BK_PARENS)
2333 goto handle_open;
2334 else
2335 goto normal_char;
2336
2337
2338 case ')':
2339 if (syntax & RE_NO_BK_PARENS)
2340 goto handle_close;
2341 else
2342 goto normal_char;
2343
2344
2345 case '\n':
2346 if (syntax & RE_NEWLINE_ALT)
2347 goto handle_alt;
2348 else
2349 goto normal_char;
2350
2351
2352 case '|':
2353 if (syntax & RE_NO_BK_VBAR)
2354 goto handle_alt;
2355 else
2356 goto normal_char;
2357
2358
2359 case '{':
2360 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2361 goto handle_interval;
2362 else
2363 goto normal_char;
2364
2365
2366 case '\\':
2367 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2368
2369 /* Do not translate the character after the \, so that we can
2370 distinguish, e.g., \B from \b, even if we normally would
2371 translate, e.g., B to b. */
2372 PATFETCH_RAW (c);
2373
2374 switch (c)
2375 {
2376 case '(':
2377 if (syntax & RE_NO_BK_PARENS)
2378 goto normal_backslash;
2379
2380 handle_open:
2381 bufp->re_nsub++;
2382 regnum++;
2383
2384 if (COMPILE_STACK_FULL)
2385 {
2386 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2387 compile_stack_elt_t);
2388 if (compile_stack.stack == NULL) return REG_ESPACE;
2389
2390 compile_stack.size <<= 1;
2391 }
2392
2393 /* These are the values to restore when we hit end of this
2394 group. They are all relative offsets, so that if the
2395 whole pattern moves because of realloc, they will still
2396 be valid. */
2397 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2398 COMPILE_STACK_TOP.fixup_alt_jump
2399 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2400 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2401 COMPILE_STACK_TOP.regnum = regnum;
2402
2403 /* We will eventually replace the 0 with the number of
2404 groups inner to this one. But do not push a
2405 start_memory for groups beyond the last one we can
2406 represent in the compiled pattern. */
2407 if (regnum <= MAX_REGNUM)
2408 {
2409 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2410 BUF_PUSH_3 (start_memory, regnum, 0);
2411 }
2412
2413 compile_stack.avail++;
2414
2415 fixup_alt_jump = 0;
2416 laststart = 0;
2417 begalt = b;
2418 /* If we've reached MAX_REGNUM groups, then this open
2419 won't actually generate any code, so we'll have to
2420 clear pending_exact explicitly. */
2421 pending_exact = 0;
2422 break;
2423
2424
2425 case ')':
2426 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2427
2428 if (COMPILE_STACK_EMPTY)
2429 {
2430 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2431 goto normal_backslash;
2432 else
2433 FREE_STACK_RETURN (REG_ERPAREN);
2434 }
2435
2436 handle_close:
2437 if (fixup_alt_jump)
2438 { /* Push a dummy failure point at the end of the
2439 alternative for a possible future
2440 `pop_failure_jump' to pop. See comments at
2441 `push_dummy_failure' in `re_match_2'. */
2442 BUF_PUSH (push_dummy_failure);
2443
2444 /* We allocated space for this jump when we assigned
2445 to `fixup_alt_jump', in the `handle_alt' case below. */
2446 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2447 }
2448
2449 /* See similar code for backslashed left paren above. */
2450 if (COMPILE_STACK_EMPTY)
2451 {
2452 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2453 goto normal_char;
2454 else
2455 FREE_STACK_RETURN (REG_ERPAREN);
2456 }
2457
2458 /* Since we just checked for an empty stack above, this
2459 ``can't happen''. */
2460 assert (compile_stack.avail != 0);
2461 {
2462 /* We don't just want to restore into `regnum', because
2463 later groups should continue to be numbered higher,
2464 as in `(ab)c(de)' -- the second group is #2. */
2465 regnum_t this_group_regnum;
2466
2467 compile_stack.avail--;
2468 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2469 fixup_alt_jump
2470 = COMPILE_STACK_TOP.fixup_alt_jump
2471 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2472 : 0;
2473 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2474 this_group_regnum = COMPILE_STACK_TOP.regnum;
2475 /* If we've reached MAX_REGNUM groups, then this open
2476 won't actually generate any code, so we'll have to
2477 clear pending_exact explicitly. */
2478 pending_exact = 0;
2479
2480 /* We're at the end of the group, so now we know how many
2481 groups were inside this one. */
2482 if (this_group_regnum <= MAX_REGNUM)
2483 {
2484 unsigned char *inner_group_loc
2485 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2486
2487 *inner_group_loc = regnum - this_group_regnum;
2488 BUF_PUSH_3 (stop_memory, this_group_regnum,
2489 regnum - this_group_regnum);
2490 }
2491 }
2492 break;
2493
2494
2495 case '|': /* `\|'. */
2496 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2497 goto normal_backslash;
2498 handle_alt:
2499 if (syntax & RE_LIMITED_OPS)
2500 goto normal_char;
2501
2502 /* Insert before the previous alternative a jump which
2503 jumps to this alternative if the former fails. */
2504 GET_BUFFER_SPACE (3);
2505 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2506 pending_exact = 0;
2507 b += 3;
2508
2509 /* The alternative before this one has a jump after it
2510 which gets executed if it gets matched. Adjust that
2511 jump so it will jump to this alternative's analogous
2512 jump (put in below, which in turn will jump to the next
2513 (if any) alternative's such jump, etc.). The last such
2514 jump jumps to the correct final destination. A picture:
2515 _____ _____
2516 | | | |
2517 | v | v
2518 a | b | c
2519
2520 If we are at `b', then fixup_alt_jump right now points to a
2521 three-byte space after `a'. We'll put in the jump, set
2522 fixup_alt_jump to right after `b', and leave behind three
2523 bytes which we'll fill in when we get to after `c'. */
2524
2525 if (fixup_alt_jump)
2526 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2527
2528 /* Mark and leave space for a jump after this alternative,
2529 to be filled in later either by next alternative or
2530 when know we're at the end of a series of alternatives. */
2531 fixup_alt_jump = b;
2532 GET_BUFFER_SPACE (3);
2533 b += 3;
2534
2535 laststart = 0;
2536 begalt = b;
2537 break;
2538
2539
2540 case '{':
2541 /* If \{ is a literal. */
2542 if (!(syntax & RE_INTERVALS)
2543 /* If we're at `\{' and it's not the open-interval
2544 operator. */
2545 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2546 || (p - 2 == pattern && p == pend))
2547 goto normal_backslash;
2548
2549 handle_interval:
2550 {
2551 /* If got here, then the syntax allows intervals. */
2552
2553 /* At least (most) this many matches must be made. */
2554 int lower_bound = -1, upper_bound = -1;
2555
2556 beg_interval = p - 1;
2557
2558 if (p == pend)
2559 {
2560 if (syntax & RE_NO_BK_BRACES)
2561 goto unfetch_interval;
2562 else
2563 FREE_STACK_RETURN (REG_EBRACE);
2564 }
2565
2566 GET_UNSIGNED_NUMBER (lower_bound);
2567
2568 if (c == ',')
2569 {
2570 GET_UNSIGNED_NUMBER (upper_bound);
2571 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2572 }
2573 else
2574 /* Interval such as `{1}' => match exactly once. */
2575 upper_bound = lower_bound;
2576
2577 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2578 || lower_bound > upper_bound)
2579 {
2580 if (syntax & RE_NO_BK_BRACES)
2581 goto unfetch_interval;
2582 else
2583 FREE_STACK_RETURN (REG_BADBR);
2584 }
2585
2586 if (!(syntax & RE_NO_BK_BRACES))
2587 {
2588 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2589
2590 PATFETCH (c);
2591 }
2592
2593 if (c != '}')
2594 {
2595 if (syntax & RE_NO_BK_BRACES)
2596 goto unfetch_interval;
2597 else
2598 FREE_STACK_RETURN (REG_BADBR);
2599 }
2600
2601 /* We just parsed a valid interval. */
2602
2603 /* If it's invalid to have no preceding re. */
2604 if (!laststart)
2605 {
2606 if (syntax & RE_CONTEXT_INVALID_OPS)
2607 FREE_STACK_RETURN (REG_BADRPT);
2608 else if (syntax & RE_CONTEXT_INDEP_OPS)
2609 laststart = b;
2610 else
2611 goto unfetch_interval;
2612 }
2613
2614 /* If the upper bound is zero, don't want to succeed at
2615 all; jump from `laststart' to `b + 3', which will be
2616 the end of the buffer after we insert the jump. */
2617 if (upper_bound == 0)
2618 {
2619 GET_BUFFER_SPACE (3);
2620 INSERT_JUMP (jump, laststart, b + 3);
2621 b += 3;
2622 }
2623
2624 /* Otherwise, we have a nontrivial interval. When
2625 we're all done, the pattern will look like:
2626 set_number_at <jump count> <upper bound>
2627 set_number_at <succeed_n count> <lower bound>
2628 succeed_n <after jump addr> <succeed_n count>
2629 <body of loop>
2630 jump_n <succeed_n addr> <jump count>
2631 (The upper bound and `jump_n' are omitted if
2632 `upper_bound' is 1, though.) */
2633 else
2634 { /* If the upper bound is > 1, we need to insert
2635 more at the end of the loop. */
2636 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2637
2638 GET_BUFFER_SPACE (nbytes);
2639
2640 /* Initialize lower bound of the `succeed_n', even
2641 though it will be set during matching by its
2642 attendant `set_number_at' (inserted next),
2643 because `re_compile_fastmap' needs to know.
2644 Jump to the `jump_n' we might insert below. */
2645 INSERT_JUMP2 (succeed_n, laststart,
2646 b + 5 + (upper_bound > 1) * 5,
2647 lower_bound);
2648 b += 5;
2649
2650 /* Code to initialize the lower bound. Insert
2651 before the `succeed_n'. The `5' is the last two
2652 bytes of this `set_number_at', plus 3 bytes of
2653 the following `succeed_n'. */
2654 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2655 b += 5;
2656
2657 if (upper_bound > 1)
2658 { /* More than one repetition is allowed, so
2659 append a backward jump to the `succeed_n'
2660 that starts this interval.
2661
2662 When we've reached this during matching,
2663 we'll have matched the interval once, so
2664 jump back only `upper_bound - 1' times. */
2665 STORE_JUMP2 (jump_n, b, laststart + 5,
2666 upper_bound - 1);
2667 b += 5;
2668
2669 /* The location we want to set is the second
2670 parameter of the `jump_n'; that is `b-2' as
2671 an absolute address. `laststart' will be
2672 the `set_number_at' we're about to insert;
2673 `laststart+3' the number to set, the source
2674 for the relative address. But we are
2675 inserting into the middle of the pattern --
2676 so everything is getting moved up by 5.
2677 Conclusion: (b - 2) - (laststart + 3) + 5,
2678 i.e., b - laststart.
2679
2680 We insert this at the beginning of the loop
2681 so that if we fail during matching, we'll
2682 reinitialize the bounds. */
2683 insert_op2 (set_number_at, laststart, b - laststart,
2684 upper_bound - 1, b);
2685 b += 5;
2686 }
2687 }
2688 pending_exact = 0;
2689 beg_interval = NULL;
2690 }
2691 break;
2692
2693 unfetch_interval:
2694 /* If an invalid interval, match the characters as literals. */
2695 assert (beg_interval);
2696 p = beg_interval;
2697 beg_interval = NULL;
2698
2699 /* normal_char and normal_backslash need `c'. */
2700 PATFETCH (c);
2701
2702 if (!(syntax & RE_NO_BK_BRACES))
2703 {
2704 if (p > pattern && p[-1] == '\\')
2705 goto normal_backslash;
2706 }
2707 goto normal_char;
2708
2709#ifdef emacs
2710 /* There is no way to specify the before_dot and after_dot
2711 operators. rms says this is ok. --karl */
2712 case '=':
2713 BUF_PUSH (at_dot);
2714 break;
2715
2716 case 's':
2717 laststart = b;
2718 PATFETCH (c);
2719 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2720 break;
2721
2722 case 'S':
2723 laststart = b;
2724 PATFETCH (c);
2725 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2726 break;
2727#endif /* emacs */
2728
2729
2730 case 'w':
2731 if (syntax & RE_NO_GNU_OPS)
2732 goto normal_char;
2733 laststart = b;
2734 BUF_PUSH (wordchar);
2735 break;
2736
2737
2738 case 'W':
2739 if (syntax & RE_NO_GNU_OPS)
2740 goto normal_char;
2741 laststart = b;
2742 BUF_PUSH (notwordchar);
2743 break;
2744
2745
2746 case '<':
2747 if (syntax & RE_NO_GNU_OPS)
2748 goto normal_char;
2749 BUF_PUSH (wordbeg);
2750 break;
2751
2752 case '>':
2753 if (syntax & RE_NO_GNU_OPS)
2754 goto normal_char;
2755 BUF_PUSH (wordend);
2756 break;
2757
2758 case 'b':
2759 if (syntax & RE_NO_GNU_OPS)
2760 goto normal_char;
2761 BUF_PUSH (wordbound);
2762 break;
2763
2764 case 'B':
2765 if (syntax & RE_NO_GNU_OPS)
2766 goto normal_char;
2767 BUF_PUSH (notwordbound);
2768 break;
2769
2770 case '`':
2771 if (syntax & RE_NO_GNU_OPS)
2772 goto normal_char;
2773 BUF_PUSH (begbuf);
2774 break;
2775
2776 case '\'':
2777 if (syntax & RE_NO_GNU_OPS)
2778 goto normal_char;
2779 BUF_PUSH (endbuf);
2780 break;
2781
2782 case '1': case '2': case '3': case '4': case '5':
2783 case '6': case '7': case '8': case '9':
2784 if (syntax & RE_NO_BK_REFS)
2785 goto normal_char;
2786
2787 c1 = c - '0';
2788
2789 if (c1 > regnum)
2790 FREE_STACK_RETURN (REG_ESUBREG);
2791
2792 /* Can't back reference to a subexpression if inside of it. */
2793 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2794 goto normal_char;
2795
2796 laststart = b;
2797 BUF_PUSH_2 (duplicate, c1);
2798 break;
2799
2800
2801 case '+':
2802 case '?':
2803 if (syntax & RE_BK_PLUS_QM)
2804 goto handle_plus;
2805 else
2806 goto normal_backslash;
2807
2808 default:
2809 normal_backslash:
2810 /* You might think it would be useful for \ to mean
2811 not to translate; but if we don't translate it
2812 it will never match anything. */
2813 c = TRANSLATE (c);
2814 goto normal_char;
2815 }
2816 break;
2817
2818
2819 default:
2820 /* Expects the character in `c'. */
2821 normal_char:
2822 /* If no exactn currently being built. */
2823 if (!pending_exact
2824
2825 /* If last exactn not at current position. */
2826 || pending_exact + *pending_exact + 1 != b
2827
2828 /* We have only one byte following the exactn for the count. */
2829 || *pending_exact == (1 << BYTEWIDTH) - 1
2830
2831 /* If followed by a repetition operator. */
2832 || *p == '*' || *p == '^'
2833 || ((syntax & RE_BK_PLUS_QM)
2834 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2835 : (*p == '+' || *p == '?'))
2836 || ((syntax & RE_INTERVALS)
2837 && ((syntax & RE_NO_BK_BRACES)
2838 ? *p == '{'
2839 : (p[0] == '\\' && p[1] == '{'))))
2840 {
2841 /* Start building a new exactn. */
2842
2843 laststart = b;
2844
2845 BUF_PUSH_2 (exactn, 0);
2846 pending_exact = b - 1;
2847 }
2848
2849 BUF_PUSH (c);
2850 (*pending_exact)++;
dd3b648e 2851 break;
9f85ab1a
JM
2852 } /* switch (c) */
2853 } /* while p != pend */
dd3b648e 2854
dd3b648e 2855
9f85ab1a
JM
2856 /* Through the pattern now. */
2857
2858 if (fixup_alt_jump)
2859 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2860
2861 if (!COMPILE_STACK_EMPTY)
2862 FREE_STACK_RETURN (REG_EPAREN);
2863
2864 /* If we don't want backtracking, force success
2865 the first time we reach the end of the compiled pattern. */
2866 if (syntax & RE_NO_POSIX_BACKTRACKING)
2867 BUF_PUSH (succeed);
2868
2869 free (compile_stack.stack);
2870
2871 /* We have succeeded; set the length of the buffer. */
2872 bufp->used = b - bufp->buffer;
2873
2874#ifdef DEBUG
2875 if (debug)
2876 {
2877 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2878 print_compiled_pattern (bufp);
2879 }
2880#endif /* DEBUG */
2881
2882#ifndef MATCH_MAY_ALLOCATE
2883 /* Initialize the failure stack to the largest possible stack. This
2884 isn't necessary unless we're trying to avoid calling alloca in
2885 the search and match routines. */
2886 {
2887 int num_regs = bufp->re_nsub + 1;
2888
2889 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2890 is strictly greater than re_max_failures, the largest possible stack
2891 is 2 * re_max_failures failure points. */
2892 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2893 {
2894 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2895
2896# ifdef emacs
2897 if (! fail_stack.stack)
2898 fail_stack.stack
2899 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2900 * sizeof (fail_stack_elt_t));
2901 else
2902 fail_stack.stack
2903 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2904 (fail_stack.size
2905 * sizeof (fail_stack_elt_t)));
2906# else /* not emacs */
2907 if (! fail_stack.stack)
2908 fail_stack.stack
2909 = (fail_stack_elt_t *) malloc (fail_stack.size
2910 * sizeof (fail_stack_elt_t));
2911 else
2912 fail_stack.stack
2913 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2914 (fail_stack.size
2915 * sizeof (fail_stack_elt_t)));
2916# endif /* not emacs */
2917 }
2918
2919 regex_grow_registers (num_regs);
2920 }
2921#endif /* not MATCH_MAY_ALLOCATE */
2922
2923 return REG_NOERROR;
2924} /* regex_compile */
2925\f
2926/* Subroutines for `regex_compile'. */
2927
2928/* Store OP at LOC followed by two-byte integer parameter ARG. */
2929
2930static void
2931store_op1 (op, loc, arg)
2932 re_opcode_t op;
2933 unsigned char *loc;
2934 int arg;
2935{
2936 *loc = (unsigned char) op;
2937 STORE_NUMBER (loc + 1, arg);
2938}
2939
2940
2941/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2942
2943static void
2944store_op2 (op, loc, arg1, arg2)
2945 re_opcode_t op;
2946 unsigned char *loc;
2947 int arg1, arg2;
2948{
2949 *loc = (unsigned char) op;
2950 STORE_NUMBER (loc + 1, arg1);
2951 STORE_NUMBER (loc + 3, arg2);
2952}
2953
2954
2955/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2956 for OP followed by two-byte integer parameter ARG. */
2957
2958static void
2959insert_op1 (op, loc, arg, end)
2960 re_opcode_t op;
2961 unsigned char *loc;
2962 int arg;
2963 unsigned char *end;
2964{
2965 register unsigned char *pfrom = end;
2966 register unsigned char *pto = end + 3;
2967
2968 while (pfrom != loc)
2969 *--pto = *--pfrom;
2970
2971 store_op1 (op, loc, arg);
2972}
2973
2974
2975/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2976
2977static void
2978insert_op2 (op, loc, arg1, arg2, end)
2979 re_opcode_t op;
2980 unsigned char *loc;
2981 int arg1, arg2;
2982 unsigned char *end;
2983{
2984 register unsigned char *pfrom = end;
2985 register unsigned char *pto = end + 5;
2986
2987 while (pfrom != loc)
2988 *--pto = *--pfrom;
2989
2990 store_op2 (op, loc, arg1, arg2);
2991}
2992
2993
2994/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2995 after an alternative or a begin-subexpression. We assume there is at
2996 least one character before the ^. */
2997
2998static boolean
2999at_begline_loc_p (pattern, p, syntax)
3000 const char *pattern, *p;
3001 reg_syntax_t syntax;
3002{
3003 const char *prev = p - 2;
3004 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3005
3006 return
3007 /* After a subexpression? */
3008 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3009 /* After an alternative? */
3010 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3011}
3012
3013
3014/* The dual of at_begline_loc_p. This one is for $. We assume there is
3015 at least one character after the $, i.e., `P < PEND'. */
3016
3017static boolean
3018at_endline_loc_p (p, pend, syntax)
3019 const char *p, *pend;
3020 reg_syntax_t syntax;
3021{
3022 const char *next = p;
3023 boolean next_backslash = *next == '\\';
3024 const char *next_next = p + 1 < pend ? p + 1 : 0;
3025
3026 return
3027 /* Before a subexpression? */
3028 (syntax & RE_NO_BK_PARENS ? *next == ')'
3029 : next_backslash && next_next && *next_next == ')')
3030 /* Before an alternative? */
3031 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3032 : next_backslash && next_next && *next_next == '|');
3033}
3034
3035
3036/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3037 false if it's not. */
3038
3039static boolean
3040group_in_compile_stack (compile_stack, regnum)
3041 compile_stack_type compile_stack;
3042 regnum_t regnum;
3043{
3044 int this_element;
3045
3046 for (this_element = compile_stack.avail - 1;
3047 this_element >= 0;
3048 this_element--)
3049 if (compile_stack.stack[this_element].regnum == regnum)
3050 return true;
3051
3052 return false;
3053}
3054
3055
3056/* Read the ending character of a range (in a bracket expression) from the
3057 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3058 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3059 Then we set the translation of all bits between the starting and
3060 ending characters (inclusive) in the compiled pattern B.
3061
3062 Return an error code.
3063
3064 We use these short variable names so we can use the same macros as
3065 `regex_compile' itself. */
3066
3067static reg_errcode_t
3068compile_range (p_ptr, pend, translate, syntax, b)
3069 const char **p_ptr, *pend;
3070 RE_TRANSLATE_TYPE translate;
3071 reg_syntax_t syntax;
3072 unsigned char *b;
3073{
3074 unsigned this_char;
3075
3076 const char *p = *p_ptr;
3077 unsigned int range_start, range_end;
3078
3079 if (p == pend)
3080 return REG_ERANGE;
3081
3082 /* Even though the pattern is a signed `char *', we need to fetch
3083 with unsigned char *'s; if the high bit of the pattern character
3084 is set, the range endpoints will be negative if we fetch using a
3085 signed char *.
3086
3087 We also want to fetch the endpoints without translating them; the
3088 appropriate translation is done in the bit-setting loop below. */
3089 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3090 range_start = ((const unsigned char *) p)[-2];
3091 range_end = ((const unsigned char *) p)[0];
3092
3093 /* Have to increment the pointer into the pattern string, so the
3094 caller isn't still at the ending character. */
3095 (*p_ptr)++;
3096
3097 /* If the start is after the end, the range is empty. */
3098 if (range_start > range_end)
3099 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3100
3101 /* Here we see why `this_char' has to be larger than an `unsigned
3102 char' -- the range is inclusive, so if `range_end' == 0xff
3103 (assuming 8-bit characters), we would otherwise go into an infinite
3104 loop, since all characters <= 0xff. */
3105 for (this_char = range_start; this_char <= range_end; this_char++)
3106 {
3107 SET_LIST_BIT (TRANSLATE (this_char));
3108 }
3109
3110 return REG_NOERROR;
3111}
3112\f
3113/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3114 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3115 characters can start a string that matches the pattern. This fastmap
3116 is used by re_search to skip quickly over impossible starting points.
3117
3118 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3119 area as BUFP->fastmap.
3120
3121 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3122 the pattern buffer.
3123
3124 Returns 0 if we succeed, -2 if an internal error. */
3125
3126int
3127re_compile_fastmap (bufp)
3128 struct re_pattern_buffer *bufp;
3129{
3130 int j, k;
3131#ifdef MATCH_MAY_ALLOCATE
3132 fail_stack_type fail_stack;
3133#endif
3134#ifndef REGEX_MALLOC
3135 char *destination;
3136#endif
3137
3138 register char *fastmap = bufp->fastmap;
3139 unsigned char *pattern = bufp->buffer;
3140 unsigned char *p = pattern;
3141 register unsigned char *pend = pattern + bufp->used;
3142
3143#ifdef REL_ALLOC
3144 /* This holds the pointer to the failure stack, when
3145 it is allocated relocatably. */
3146 fail_stack_elt_t *failure_stack_ptr;
3147#endif
3148
3149 /* Assume that each path through the pattern can be null until
3150 proven otherwise. We set this false at the bottom of switch
3151 statement, to which we get only if a particular path doesn't
3152 match the empty string. */
3153 boolean path_can_be_null = true;
3154
3155 /* We aren't doing a `succeed_n' to begin with. */
3156 boolean succeed_n_p = false;
3157
3158 assert (fastmap != NULL && p != NULL);
3159
3160 INIT_FAIL_STACK ();
3161 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3162 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3163 bufp->can_be_null = 0;
3164
3165 while (1)
3166 {
3167 if (p == pend || *p == succeed)
3168 {
3169 /* We have reached the (effective) end of pattern. */
3170 if (!FAIL_STACK_EMPTY ())
3171 {
3172 bufp->can_be_null |= path_can_be_null;
3173
3174 /* Reset for next path. */
3175 path_can_be_null = true;
3176
3177 p = fail_stack.stack[--fail_stack.avail].pointer;
3178
3179 continue;
3180 }
dd3b648e 3181 else
9f85ab1a
JM
3182 break;
3183 }
dd3b648e 3184
9f85ab1a
JM
3185 /* We should never be about to go beyond the end of the pattern. */
3186 assert (p < pend);
dd3b648e 3187
9f85ab1a
JM
3188 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3189 {
dd3b648e 3190
9f85ab1a
JM
3191 /* I guess the idea here is to simply not bother with a fastmap
3192 if a backreference is used, since it's too hard to figure out
3193 the fastmap for the corresponding group. Setting
3194 `can_be_null' stops `re_search_2' from using the fastmap, so
3195 that is all we do. */
dd3b648e
RP
3196 case duplicate:
3197 bufp->can_be_null = 1;
9f85ab1a
JM
3198 goto done;
3199
3200
3201 /* Following are the cases which match a character. These end
3202 with `break'. */
3203
3204 case exactn:
3205 fastmap[p[1]] = 1;
dd3b648e
RP
3206 break;
3207
9f85ab1a
JM
3208
3209 case charset:
3210 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3211 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3212 fastmap[j] = 1;
3213 break;
3214
3215
3216 case charset_not:
3217 /* Chars beyond end of map must be allowed. */
3218 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3219 fastmap[j] = 1;
3220
3221 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3222 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3223 fastmap[j] = 1;
3224 break;
3225
3226
dd3b648e
RP
3227 case wordchar:
3228 for (j = 0; j < (1 << BYTEWIDTH); j++)
3229 if (SYNTAX (j) == Sword)
3230 fastmap[j] = 1;
3231 break;
3232
9f85ab1a 3233
dd3b648e
RP
3234 case notwordchar:
3235 for (j = 0; j < (1 << BYTEWIDTH); j++)
3236 if (SYNTAX (j) != Sword)
3237 fastmap[j] = 1;
3238 break;
3239
9f85ab1a
JM
3240
3241 case anychar:
3242 {
3243 int fastmap_newline = fastmap['\n'];
3244
3245 /* `.' matches anything ... */
3246 for (j = 0; j < (1 << BYTEWIDTH); j++)
3247 fastmap[j] = 1;
3248
3249 /* ... except perhaps newline. */
3250 if (!(bufp->syntax & RE_DOT_NEWLINE))
3251 fastmap['\n'] = fastmap_newline;
3252
3253 /* Return if we have already set `can_be_null'; if we have,
3254 then the fastmap is irrelevant. Something's wrong here. */
3255 else if (bufp->can_be_null)
3256 goto done;
3257
3258 /* Otherwise, have to check alternative paths. */
3259 break;
3260 }
3261
dd3b648e 3262#ifdef emacs
9f85ab1a 3263 case syntaxspec:
dd3b648e
RP
3264 k = *p++;
3265 for (j = 0; j < (1 << BYTEWIDTH); j++)
3266 if (SYNTAX (j) == (enum syntaxcode) k)
3267 fastmap[j] = 1;
3268 break;
3269
9f85ab1a 3270
dd3b648e
RP
3271 case notsyntaxspec:
3272 k = *p++;
3273 for (j = 0; j < (1 << BYTEWIDTH); j++)
3274 if (SYNTAX (j) != (enum syntaxcode) k)
3275 fastmap[j] = 1;
3276 break;
9f85ab1a
JM
3277
3278
3279 /* All cases after this match the empty string. These end with
3280 `continue'. */
3281
3282
3283 case before_dot:
3284 case at_dot:
3285 case after_dot:
3286 continue;
dd3b648e
RP
3287#endif /* emacs */
3288
dd3b648e 3289
9f85ab1a
JM
3290 case no_op:
3291 case begline:
3292 case endline:
3293 case begbuf:
3294 case endbuf:
3295 case wordbound:
3296 case notwordbound:
3297 case wordbeg:
3298 case wordend:
3299 case push_dummy_failure:
3300 continue;
3301
3302
3303 case jump_n:
3304 case pop_failure_jump:
3305 case maybe_pop_jump:
3306 case jump:
3307 case jump_past_alt:
3308 case dummy_failure_jump:
3309 EXTRACT_NUMBER_AND_INCR (j, p);
3310 p += j;
3311 if (j > 0)
3312 continue;
3313
3314 /* Jump backward implies we just went through the body of a
3315 loop and matched nothing. Opcode jumped to should be
3316 `on_failure_jump' or `succeed_n'. Just treat it like an
3317 ordinary jump. For a * loop, it has pushed its failure
3318 point already; if so, discard that as redundant. */
3319 if ((re_opcode_t) *p != on_failure_jump
3320 && (re_opcode_t) *p != succeed_n)
3321 continue;
3322
3323 p++;
3324 EXTRACT_NUMBER_AND_INCR (j, p);
3325 p += j;
3326
3327 /* If what's on the stack is where we are now, pop it. */
3328 if (!FAIL_STACK_EMPTY ()
3329 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3330 fail_stack.avail--;
3331
3332 continue;
3333
3334
3335 case on_failure_jump:
3336 case on_failure_keep_string_jump:
3337 handle_on_failure_jump:
3338 EXTRACT_NUMBER_AND_INCR (j, p);
3339
3340 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3341 end of the pattern. We don't want to push such a point,
3342 since when we restore it above, entering the switch will
3343 increment `p' past the end of the pattern. We don't need
3344 to push such a point since we obviously won't find any more
3345 fastmap entries beyond `pend'. Such a pattern can match
3346 the null string, though. */
3347 if (p + j < pend)
3348 {
3349 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3350 {
3351 RESET_FAIL_STACK ();
3352 return -2;
3353 }
3354 }
3355 else
3356 bufp->can_be_null = 1;
3357
3358 if (succeed_n_p)
3359 {
3360 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3361 succeed_n_p = false;
3362 }
3363
3364 continue;
3365
3366
3367 case succeed_n:
3368 /* Get to the number of times to succeed. */
3369 p += 2;
3370
3371 /* Increment p past the n for when k != 0. */
3372 EXTRACT_NUMBER_AND_INCR (k, p);
3373 if (k == 0)
3374 {
3375 p -= 4;
3376 succeed_n_p = true; /* Spaghetti code alert. */
3377 goto handle_on_failure_jump;
3378 }
3379 continue;
3380
3381
3382 case set_number_at:
3383 p += 4;
3384 continue;
3385
3386
3387 case start_memory:
3388 case stop_memory:
3389 p += 2;
3390 continue;
3391
dd3b648e 3392
6b14af2b 3393 default:
9f85ab1a
JM
3394 abort (); /* We have listed all the cases. */
3395 } /* switch *p++ */
3396
3397 /* Getting here means we have found the possible starting
3398 characters for one path of the pattern -- and that the empty
3399 string does not match. We need not follow this path further.
3400 Instead, look at the next alternative (remembered on the
3401 stack), or quit if no more. The test at the top of the loop
3402 does these things. */
3403 path_can_be_null = false;
3404 p = pend;
3405 } /* while p */
3406
3407 /* Set `can_be_null' for the last path (also the first path, if the
3408 pattern is empty). */
3409 bufp->can_be_null |= path_can_be_null;
3410
3411 done:
3412 RESET_FAIL_STACK ();
3413 return 0;
3414} /* re_compile_fastmap */
3415#ifdef _LIBC
3416weak_alias (__re_compile_fastmap, re_compile_fastmap)
3417#endif
3418\f
3419/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3420 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3421 this memory for recording register information. STARTS and ENDS
3422 must be allocated using the malloc library routine, and must each
3423 be at least NUM_REGS * sizeof (regoff_t) bytes long.
dd3b648e 3424
9f85ab1a
JM
3425 If NUM_REGS == 0, then subsequent matches should allocate their own
3426 register data.
3427
3428 Unless this function is called, the first search or match using
3429 PATTERN_BUFFER will allocate its own register data, without
3430 freeing the old data. */
3431
3432void
3433re_set_registers (bufp, regs, num_regs, starts, ends)
3434 struct re_pattern_buffer *bufp;
3435 struct re_registers *regs;
3436 unsigned num_regs;
3437 regoff_t *starts, *ends;
3438{
3439 if (num_regs)
3440 {
3441 bufp->regs_allocated = REGS_REALLOCATE;
3442 regs->num_regs = num_regs;
3443 regs->start = starts;
3444 regs->end = ends;
3445 }
3446 else
3447 {
3448 bufp->regs_allocated = REGS_UNALLOCATED;
3449 regs->num_regs = 0;
3450 regs->start = regs->end = (regoff_t *) 0;
dd3b648e
RP
3451 }
3452}
9f85ab1a
JM
3453#ifdef _LIBC
3454weak_alias (__re_set_registers, re_set_registers)
3455#endif
dd3b648e 3456\f
9f85ab1a
JM
3457/* Searching routines. */
3458
3459/* Like re_search_2, below, but only one string is specified, and
3460 doesn't let you say where to stop matching. */
dd3b648e
RP
3461
3462int
9f85ab1a
JM
3463re_search (bufp, string, size, startpos, range, regs)
3464 struct re_pattern_buffer *bufp;
3465 const char *string;
dd3b648e
RP
3466 int size, startpos, range;
3467 struct re_registers *regs;
3468{
9f85ab1a
JM
3469 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3470 regs, size);
dd3b648e 3471}
9f85ab1a
JM
3472#ifdef _LIBC
3473weak_alias (__re_search, re_search)
3474#endif
dd3b648e 3475
dd3b648e 3476
9f85ab1a
JM
3477/* Using the compiled pattern in BUFP->buffer, first tries to match the
3478 virtual concatenation of STRING1 and STRING2, starting first at index
3479 STARTPOS, then at STARTPOS + 1, and so on.
3480
3481 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3482
3483 RANGE is how far to scan while trying to match. RANGE = 0 means try
3484 only at STARTPOS; in general, the last start tried is STARTPOS +
3485 RANGE.
3486
3487 In REGS, return the indices of the virtual concatenation of STRING1
3488 and STRING2 that matched the entire BUFP->buffer and its contained
3489 subexpressions.
3490
3491 Do not consider matching one past the index STOP in the virtual
3492 concatenation of STRING1 and STRING2.
3493
3494 We return either the position in the strings at which the match was
3495 found, -1 if no match, or -2 if error (such as failure
3496 stack overflow). */
dd3b648e
RP
3497
3498int
9f85ab1a
JM
3499re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3500 struct re_pattern_buffer *bufp;
3501 const char *string1, *string2;
dd3b648e
RP
3502 int size1, size2;
3503 int startpos;
9f85ab1a 3504 int range;
dd3b648e 3505 struct re_registers *regs;
9f85ab1a 3506 int stop;
dd3b648e 3507{
dd3b648e 3508 int val;
9f85ab1a
JM
3509 register char *fastmap = bufp->fastmap;
3510 register RE_TRANSLATE_TYPE translate = bufp->translate;
3511 int total_size = size1 + size2;
3512 int endpos = startpos + range;
3513
3514 /* Check for out-of-range STARTPOS. */
3515 if (startpos < 0 || startpos > total_size)
3516 return -1;
3517
3518 /* Fix up RANGE if it might eventually take us outside
3519 the virtual concatenation of STRING1 and STRING2.
3520 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3521 if (endpos < 0)
3522 range = 0 - startpos;
3523 else if (endpos > total_size)
3524 range = total_size - startpos;
3525
3526 /* If the search isn't to be a backwards one, don't waste time in a
3527 search for a pattern that must be anchored. */
3528 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
dd3b648e
RP
3529 {
3530 if (startpos > 0)
3531 return -1;
3532 else
3533 range = 1;
3534 }
3535
9f85ab1a
JM
3536#ifdef emacs
3537 /* In a forward search for something that starts with \=.
3538 don't keep searching past point. */
3539 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
dd3b648e 3540 {
9f85ab1a
JM
3541 range = PT - startpos;
3542 if (range <= 0)
3543 return -1;
3544 }
3545#endif /* emacs */
3546
3547 /* Update the fastmap now if not correct already. */
3548 if (fastmap && !bufp->fastmap_accurate)
3549 if (re_compile_fastmap (bufp) == -2)
3550 return -2;
dd3b648e 3551
9f85ab1a
JM
3552 /* Loop through the string, looking for a place to start matching. */
3553 for (;;)
3554 {
3555 /* If a fastmap is supplied, skip quickly over characters that
3556 cannot be the start of a match. If the pattern can match the
3557 null string, however, we don't need to skip characters; we want
3558 the first null string. */
3559 if (fastmap && startpos < total_size && !bufp->can_be_null)
dd3b648e 3560 {
9f85ab1a 3561 if (range > 0) /* Searching forwards. */
dd3b648e 3562 {
9f85ab1a 3563 register const char *d;
dd3b648e 3564 register int lim = 0;
dd3b648e 3565 int irange = range;
dd3b648e 3566
9f85ab1a
JM
3567 if (startpos < size1 && startpos + range >= size1)
3568 lim = range - (size1 - startpos);
3569
3570 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
dd3b648e 3571
9f85ab1a
JM
3572 /* Written out as an if-else to avoid testing `translate'
3573 inside the loop. */
dd3b648e 3574 if (translate)
9f85ab1a
JM
3575 while (range > lim
3576 && !fastmap[(unsigned char)
3577 translate[(unsigned char) *d++]])
3578 range--;
dd3b648e 3579 else
9f85ab1a
JM
3580 while (range > lim && !fastmap[(unsigned char) *d++])
3581 range--;
3582
dd3b648e
RP
3583 startpos += irange - range;
3584 }
9f85ab1a 3585 else /* Searching backwards. */
dd3b648e 3586 {
9f85ab1a
JM
3587 register char c = (size1 == 0 || startpos >= size1
3588 ? string2[startpos - size1]
3589 : string1[startpos]);
3590
3591 if (!fastmap[(unsigned char) TRANSLATE (c)])
dd3b648e
RP
3592 goto advance;
3593 }
3594 }
3595
9f85ab1a
JM
3596 /* If can't match the null string, and that's all we have left, fail. */
3597 if (range >= 0 && startpos == total_size && fastmap
3598 && !bufp->can_be_null)
dd3b648e
RP
3599 return -1;
3600
9f85ab1a
JM
3601 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3602 startpos, regs, stop);
3603#ifndef REGEX_MALLOC
3604# ifdef C_ALLOCA
dd3b648e 3605 alloca (0);
9f85ab1a
JM
3606# endif
3607#endif
3608
3609 if (val >= 0)
3610 return startpos;
3611
3612 if (val == -2)
3613 return -2;
dd3b648e
RP
3614
3615 advance:
9f85ab1a
JM
3616 if (!range)
3617 break;
3618 else if (range > 0)
3619 {
3620 range--;
3621 startpos++;
3622 }
3623 else
3624 {
3625 range++;
3626 startpos--;
3627 }
dd3b648e
RP
3628 }
3629 return -1;
9f85ab1a
JM
3630} /* re_search_2 */
3631#ifdef _LIBC
3632weak_alias (__re_search_2, re_search_2)
3633#endif
dd3b648e 3634\f
9f85ab1a
JM
3635/* This converts PTR, a pointer into one of the search strings `string1'
3636 and `string2' into an offset from the beginning of that string. */
3637#define POINTER_TO_OFFSET(ptr) \
3638 (FIRST_STRING_P (ptr) \
3639 ? ((regoff_t) ((ptr) - string1)) \
3640 : ((regoff_t) ((ptr) - string2 + size1)))
3641
3642/* Macros for dealing with the split strings in re_match_2. */
3643
3644#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3645
3646/* Call before fetching a character with *d. This switches over to
3647 string2 if necessary. */
3648#define PREFETCH() \
3649 while (d == dend) \
3650 { \
3651 /* End of string2 => fail. */ \
3652 if (dend == end_match_2) \
3653 goto fail; \
3654 /* End of string1 => advance to string2. */ \
3655 d = string2; \
3656 dend = end_match_2; \
3657 }
dd3b648e 3658
dd3b648e 3659
9f85ab1a
JM
3660/* Test if at very beginning or at very end of the virtual concatenation
3661 of `string1' and `string2'. If only one string, it's `string2'. */
3662#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3663#define AT_STRINGS_END(d) ((d) == end2)
3664
3665
3666/* Test if D points to a character which is word-constituent. We have
3667 two special cases to check for: if past the end of string1, look at
3668 the first character in string2; and if before the beginning of
3669 string2, look at the last character in string1. */
3670#define WORDCHAR_P(d) \
3671 (SYNTAX ((d) == end1 ? *string2 \
3672 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3673 == Sword)
3674
3675/* Disabled due to a compiler bug -- see comment at case wordbound */
3676#if 0
3677/* Test if the character before D and the one at D differ with respect
3678 to being word-constituent. */
3679#define AT_WORD_BOUNDARY(d) \
3680 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3681 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3682#endif
dd3b648e 3683
9f85ab1a
JM
3684/* Free everything we malloc. */
3685#ifdef MATCH_MAY_ALLOCATE
3686# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3687# define FREE_VARIABLES() \
3688 do { \
3689 REGEX_FREE_STACK (fail_stack.stack); \
3690 FREE_VAR (regstart); \
3691 FREE_VAR (regend); \
3692 FREE_VAR (old_regstart); \
3693 FREE_VAR (old_regend); \
3694 FREE_VAR (best_regstart); \
3695 FREE_VAR (best_regend); \
3696 FREE_VAR (reg_info); \
3697 FREE_VAR (reg_dummy); \
3698 FREE_VAR (reg_info_dummy); \
3699 } while (0)
3700#else
3701# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3702#endif /* not MATCH_MAY_ALLOCATE */
3703
3704/* These values must meet several constraints. They must not be valid
3705 register values; since we have a limit of 255 registers (because
3706 we use only one byte in the pattern for the register number), we can
3707 use numbers larger than 255. They must differ by 1, because of
3708 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3709 be larger than the value for the highest register, so we do not try
3710 to actually save any registers when none are active. */
3711#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3712#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3713\f
3714/* Matching routines. */
dd3b648e 3715
9f85ab1a
JM
3716#ifndef emacs /* Emacs never uses this. */
3717/* re_match is like re_match_2 except it takes only a single string. */
dd3b648e 3718
9f85ab1a
JM
3719int
3720re_match (bufp, string, size, pos, regs)
3721 struct re_pattern_buffer *bufp;
3722 const char *string;
3723 int size, pos;
3724 struct re_registers *regs;
3725{
3726 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3727 pos, regs, size);
3728# ifndef REGEX_MALLOC
3729# ifdef C_ALLOCA
3730 alloca (0);
3731# endif
3732# endif
3733 return result;
3734}
3735# ifdef _LIBC
3736weak_alias (__re_match, re_match)
3737# endif
3738#endif /* not emacs */
dd3b648e 3739
9f85ab1a
JM
3740static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3741 unsigned char *end,
3742 register_info_type *reg_info));
3743static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3744 unsigned char *end,
3745 register_info_type *reg_info));
3746static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3747 unsigned char *end,
3748 register_info_type *reg_info));
3749static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3750 int len, char *translate));
3751
3752/* re_match_2 matches the compiled pattern in BUFP against the
3753 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3754 and SIZE2, respectively). We start matching at POS, and stop
3755 matching at STOP.
3756
3757 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3758 store offsets for the substring each group matched in REGS. See the
3759 documentation for exactly how many groups we fill.
3760
3761 We return -1 if no match, -2 if an internal error (such as the
3762 failure stack overflowing). Otherwise, we return the length of the
3763 matched substring. */
dd3b648e
RP
3764
3765int
9f85ab1a
JM
3766re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3767 struct re_pattern_buffer *bufp;
3768 const char *string1, *string2;
3769 int size1, size2;
3770 int pos;
3771 struct re_registers *regs;
3772 int stop;
3773{
3774 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3775 pos, regs, stop);
3776#ifndef REGEX_MALLOC
3777# ifdef C_ALLOCA
3778 alloca (0);
3779# endif
3780#endif
3781 return result;
3782}
3783#ifdef _LIBC
3784weak_alias (__re_match_2, re_match_2)
3785#endif
3786
3787/* This is a separate function so that we can force an alloca cleanup
3788 afterwards. */
3789static int
3790re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3791 struct re_pattern_buffer *bufp;
3792 const char *string1, *string2;
dd3b648e
RP
3793 int size1, size2;
3794 int pos;
3795 struct re_registers *regs;
9f85ab1a 3796 int stop;
dd3b648e 3797{
9f85ab1a
JM
3798 /* General temporaries. */
3799 int mcnt;
3800 unsigned char *p1;
3801
3802 /* Just past the end of the corresponding string. */
3803 const char *end1, *end2;
3804
3805 /* Pointers into string1 and string2, just past the last characters in
3806 each to consider matching. */
3807 const char *end_match_1, *end_match_2;
3808
3809 /* Where we are in the data, and the end of the current string. */
3810 const char *d, *dend;
3811
3812 /* Where we are in the pattern, and the end of the pattern. */
3813 unsigned char *p = bufp->buffer;
3814 register unsigned char *pend = p + bufp->used;
3815
3816 /* Mark the opcode just after a start_memory, so we can test for an
3817 empty subpattern when we get to the stop_memory. */
3818 unsigned char *just_past_start_mem = 0;
3819
3820 /* We use this to map every character in the string. */
3821 RE_TRANSLATE_TYPE translate = bufp->translate;
3822
3823 /* Failure point stack. Each place that can handle a failure further
3824 down the line pushes a failure point on this stack. It consists of
3825 restart, regend, and reg_info for all registers corresponding to
3826 the subexpressions we're currently inside, plus the number of such
3827 registers, and, finally, two char *'s. The first char * is where
3828 to resume scanning the pattern; the second one is where to resume
3829 scanning the strings. If the latter is zero, the failure point is
3830 a ``dummy''; if a failure happens and the failure point is a dummy,
3831 it gets discarded and the next next one is tried. */
3832#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3833 fail_stack_type fail_stack;
3834#endif
3835#ifdef DEBUG
3836 static unsigned failure_id = 0;
3837 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3838#endif
3839
3840#ifdef REL_ALLOC
3841 /* This holds the pointer to the failure stack, when
3842 it is allocated relocatably. */
3843 fail_stack_elt_t *failure_stack_ptr;
3844#endif
3845
3846 /* We fill all the registers internally, independent of what we
3847 return, for use in backreferences. The number here includes
3848 an element for register zero. */
3849 size_t num_regs = bufp->re_nsub + 1;
3850
3851 /* The currently active registers. */
3852 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3853 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3854
3855 /* Information on the contents of registers. These are pointers into
3856 the input strings; they record just what was matched (on this
3857 attempt) by a subexpression part of the pattern, that is, the
3858 regnum-th regstart pointer points to where in the pattern we began
3859 matching and the regnum-th regend points to right after where we
3860 stopped matching the regnum-th subexpression. (The zeroth register
3861 keeps track of what the whole pattern matches.) */
3862#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3863 const char **regstart, **regend;
3864#endif
3865
3866 /* If a group that's operated upon by a repetition operator fails to
3867 match anything, then the register for its start will need to be
3868 restored because it will have been set to wherever in the string we
3869 are when we last see its open-group operator. Similarly for a
3870 register's end. */
3871#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3872 const char **old_regstart, **old_regend;
3873#endif
3874
3875 /* The is_active field of reg_info helps us keep track of which (possibly
3876 nested) subexpressions we are currently in. The matched_something
3877 field of reg_info[reg_num] helps us tell whether or not we have
3878 matched any of the pattern so far this time through the reg_num-th
3879 subexpression. These two fields get reset each time through any
3880 loop their register is in. */
3881#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3882 register_info_type *reg_info;
3883#endif
3884
3885 /* The following record the register info as found in the above
3886 variables when we find a match better than any we've seen before.
3887 This happens as we backtrack through the failure points, which in
3888 turn happens only if we have not yet matched the entire string. */
3889 unsigned best_regs_set = false;
3890#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3891 const char **best_regstart, **best_regend;
3892#endif
3893
3894 /* Logically, this is `best_regend[0]'. But we don't want to have to
3895 allocate space for that if we're not allocating space for anything
3896 else (see below). Also, we never need info about register 0 for
3897 any of the other register vectors, and it seems rather a kludge to
3898 treat `best_regend' differently than the rest. So we keep track of
3899 the end of the best match so far in a separate variable. We
3900 initialize this to NULL so that when we backtrack the first time
3901 and need to test it, it's not garbage. */
3902 const char *match_end = NULL;
3903
3904 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3905 int set_regs_matched_done = 0;
3906
3907 /* Used when we pop values we don't care about. */
3908#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3909 const char **reg_dummy;
3910 register_info_type *reg_info_dummy;
3911#endif
3912
3913#ifdef DEBUG
3914 /* Counts the total number of registers pushed. */
3915 unsigned num_regs_pushed = 0;
3916#endif
3917
3918 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3919
3920 INIT_FAIL_STACK ();
3921
3922#ifdef MATCH_MAY_ALLOCATE
3923 /* Do not bother to initialize all the register variables if there are
3924 no groups in the pattern, as it takes a fair amount of time. If
3925 there are groups, we include space for register 0 (the whole
3926 pattern), even though we never use it, since it simplifies the
3927 array indexing. We should fix this. */
3928 if (bufp->re_nsub)
3929 {
3930 regstart = REGEX_TALLOC (num_regs, const char *);
3931 regend = REGEX_TALLOC (num_regs, const char *);
3932 old_regstart = REGEX_TALLOC (num_regs, const char *);
3933 old_regend = REGEX_TALLOC (num_regs, const char *);
3934 best_regstart = REGEX_TALLOC (num_regs, const char *);
3935 best_regend = REGEX_TALLOC (num_regs, const char *);
3936 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3937 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3938 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3939
3940 if (!(regstart && regend && old_regstart && old_regend && reg_info
3941 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3942 {
3943 FREE_VARIABLES ();
3944 return -2;
3945 }
3946 }
3947 else
3948 {
3949 /* We must initialize all our variables to NULL, so that
3950 `FREE_VARIABLES' doesn't try to free them. */
3951 regstart = regend = old_regstart = old_regend = best_regstart
3952 = best_regend = reg_dummy = NULL;
3953 reg_info = reg_info_dummy = (register_info_type *) NULL;
3954 }
3955#endif /* MATCH_MAY_ALLOCATE */
3956
3957 /* The starting position is bogus. */
3958 if (pos < 0 || pos > size1 + size2)
3959 {
3960 FREE_VARIABLES ();
3961 return -1;
3962 }
3963
3964 /* Initialize subexpression text positions to -1 to mark ones that no
3965 start_memory/stop_memory has been seen for. Also initialize the
3966 register information struct. */
3967 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3968 {
3969 regstart[mcnt] = regend[mcnt]
3970 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3971
3972 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3973 IS_ACTIVE (reg_info[mcnt]) = 0;
3974 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3975 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3976 }
3977
3978 /* We move `string1' into `string2' if the latter's empty -- but not if
3979 `string1' is null. */
3980 if (size2 == 0 && string1 != NULL)
dd3b648e
RP
3981 {
3982 string2 = string1;
3983 size2 = size1;
3984 string1 = 0;
3985 size1 = 0;
3986 }
3987 end1 = string1 + size1;
3988 end2 = string2 + size2;
3989
9f85ab1a
JM
3990 /* Compute where to stop matching, within the two strings. */
3991 if (stop <= size1)
dd3b648e 3992 {
9f85ab1a 3993 end_match_1 = string1 + stop;
dd3b648e
RP
3994 end_match_2 = string2;
3995 }
3996 else
3997 {
3998 end_match_1 = end1;
9f85ab1a 3999 end_match_2 = string2 + stop - size1;
dd3b648e
RP
4000 }
4001
dd3b648e 4002 /* `p' scans through the pattern as `d' scans through the data.
9f85ab1a
JM
4003 `dend' is the end of the input string that `d' points within. `d'
4004 is advanced into the following input string whenever necessary, but
4005 this happens before fetching; therefore, at the beginning of the
4006 loop, `d' can be pointing at the end of a string, but it cannot
4007 equal `string2'. */
4008 if (size1 > 0 && pos <= size1)
4009 {
4010 d = string1 + pos;
4011 dend = end_match_1;
4012 }
dd3b648e 4013 else
9f85ab1a
JM
4014 {
4015 d = string2 + pos - size1;
4016 dend = end_match_2;
4017 }
dd3b648e 4018
9f85ab1a
JM
4019 DEBUG_PRINT1 ("The compiled pattern is:\n");
4020 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4021 DEBUG_PRINT1 ("The string to match is: `");
4022 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4023 DEBUG_PRINT1 ("'\n");
dd3b648e 4024
9f85ab1a
JM
4025 /* This loops over pattern commands. It exits by returning from the
4026 function if the match is complete, or it drops through if the match
4027 fails at this starting point in the input data. */
4028 for (;;)
dd3b648e 4029 {
9f85ab1a
JM
4030#ifdef _LIBC
4031 DEBUG_PRINT2 ("\n%p: ", p);
4032#else
4033 DEBUG_PRINT2 ("\n0x%x: ", p);
4034#endif
4035
dd3b648e 4036 if (p == pend)
9f85ab1a
JM
4037 { /* End of pattern means we might have succeeded. */
4038 DEBUG_PRINT1 ("end of pattern ... ");
4039
4040 /* If we haven't matched the entire string, and we want the
4041 longest match, try backtracking. */
4042 if (d != end_match_2)
dd3b648e 4043 {
9f85ab1a
JM
4044 /* 1 if this match ends in the same string (string1 or string2)
4045 as the best previous match. */
4046 boolean same_str_p = (FIRST_STRING_P (match_end)
4047 == MATCHING_IN_FIRST_STRING);
4048 /* 1 if this match is the best seen so far. */
4049 boolean best_match_p;
4050
4051 /* AIX compiler got confused when this was combined
4052 with the previous declaration. */
4053 if (same_str_p)
4054 best_match_p = d > match_end;
4055 else
4056 best_match_p = !MATCHING_IN_FIRST_STRING;
4057
4058 DEBUG_PRINT1 ("backtracking.\n");
4059
4060 if (!FAIL_STACK_EMPTY ())
4061 { /* More failure points to try. */
4062
4063 /* If exceeds best match so far, save it. */
4064 if (!best_regs_set || best_match_p)
4065 {
4066 best_regs_set = true;
4067 match_end = d;
4068
4069 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4070
4071 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4072 {
4073 best_regstart[mcnt] = regstart[mcnt];
4074 best_regend[mcnt] = regend[mcnt];
4075 }
4076 }
4077 goto fail;
4078 }
4079
4080 /* If no failure points, don't restore garbage. And if
4081 last match is real best match, don't restore second
4082 best one. */
4083 else if (best_regs_set && !best_match_p)
4084 {
4085 restore_best_regs:
4086 /* Restore best match. It may happen that `dend ==
4087 end_match_1' while the restored d is in string2.
4088 For example, the pattern `x.*y.*z' against the
4089 strings `x-' and `y-z-', if the two strings are
4090 not consecutive in memory. */
4091 DEBUG_PRINT1 ("Restoring best registers.\n");
4092
4093 d = match_end;
4094 dend = ((d >= string1 && d <= end1)
4095 ? end_match_1 : end_match_2);
4096
4097 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
dd3b648e 4098 {
9f85ab1a
JM
4099 regstart[mcnt] = best_regstart[mcnt];
4100 regend[mcnt] = best_regend[mcnt];
dd3b648e 4101 }
9f85ab1a
JM
4102 }
4103 } /* d != end_match_2 */
4104
4105 succeed_label:
4106 DEBUG_PRINT1 ("Accepting match.\n");
4107
4108 /* If caller wants register contents data back, do it. */
4109 if (regs && !bufp->no_sub)
4110 {
4111 /* Have the register data arrays been allocated? */
4112 if (bufp->regs_allocated == REGS_UNALLOCATED)
4113 { /* No. So allocate them with malloc. We need one
4114 extra element beyond `num_regs' for the `-1' marker
4115 GNU code uses. */
4116 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4117 regs->start = TALLOC (regs->num_regs, regoff_t);
4118 regs->end = TALLOC (regs->num_regs, regoff_t);
4119 if (regs->start == NULL || regs->end == NULL)
4120 {
4121 FREE_VARIABLES ();
4122 return -2;
4123 }
4124 bufp->regs_allocated = REGS_REALLOCATE;
4125 }
4126 else if (bufp->regs_allocated == REGS_REALLOCATE)
4127 { /* Yes. If we need more elements than were already
4128 allocated, reallocate them. If we need fewer, just
4129 leave it alone. */
4130 if (regs->num_regs < num_regs + 1)
4131 {
4132 regs->num_regs = num_regs + 1;
4133 RETALLOC (regs->start, regs->num_regs, regoff_t);
4134 RETALLOC (regs->end, regs->num_regs, regoff_t);
4135 if (regs->start == NULL || regs->end == NULL)
4136 {
4137 FREE_VARIABLES ();
4138 return -2;
4139 }
4140 }
4141 }
4142 else
4143 {
4144 /* These braces fend off a "empty body in an else-statement"
4145 warning under GCC when assert expands to nothing. */
4146 assert (bufp->regs_allocated == REGS_FIXED);
4147 }
4148
4149 /* Convert the pointer data in `regstart' and `regend' to
4150 indices. Register zero has to be set differently,
4151 since we haven't kept track of any info for it. */
4152 if (regs->num_regs > 0)
4153 {
4154 regs->start[0] = pos;
4155 regs->end[0] = (MATCHING_IN_FIRST_STRING
4156 ? ((regoff_t) (d - string1))
4157 : ((regoff_t) (d - string2 + size1)));
4158 }
4159
4160 /* Go through the first `min (num_regs, regs->num_regs)'
4161 registers, since that is all we initialized. */
4162 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4163 mcnt++)
4164 {
4165 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4166 regs->start[mcnt] = regs->end[mcnt] = -1;
4167 else
4168 {
4169 regs->start[mcnt]
4170 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4171 regs->end[mcnt]
4172 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4173 }
4174 }
4175
4176 /* If the regs structure we return has more elements than
4177 were in the pattern, set the extra elements to -1. If
4178 we (re)allocated the registers, this is the case,
4179 because we always allocate enough to have at least one
4180 -1 at the end. */
4181 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4182 regs->start[mcnt] = regs->end[mcnt] = -1;
4183 } /* regs && !bufp->no_sub */
4184
4185 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4186 nfailure_points_pushed, nfailure_points_popped,
4187 nfailure_points_pushed - nfailure_points_popped);
4188 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4189
4190 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4191 ? string1
4192 : string2 - size1);
4193
4194 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4195
4196 FREE_VARIABLES ();
4197 return mcnt;
4198 }
4199
4200 /* Otherwise match next pattern command. */
4201 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4202 {
4203 /* Ignore these. Used to ignore the n of succeed_n's which
4204 currently have n == 0. */
4205 case no_op:
4206 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4207 break;
4208
4209 case succeed:
4210 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4211 goto succeed_label;
4212
4213 /* Match the next n pattern characters exactly. The following
4214 byte in the pattern defines n, and the n bytes after that
4215 are the characters to match. */
4216 case exactn:
4217 mcnt = *p++;
4218 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4219
4220 /* This is written out as an if-else so we don't waste time
4221 testing `translate' inside the loop. */
4222 if (translate)
4223 {
4224 do
4225 {
4226 PREFETCH ();
4227 if ((unsigned char) translate[(unsigned char) *d++]
4228 != (unsigned char) *p++)
4229 goto fail;
dd3b648e 4230 }
9f85ab1a 4231 while (--mcnt);
dd3b648e 4232 }
dd3b648e 4233 else
9f85ab1a
JM
4234 {
4235 do
4236 {
4237 PREFETCH ();
4238 if (*d++ != (char) *p++) goto fail;
4239 }
4240 while (--mcnt);
4241 }
4242 SET_REGS_MATCHED ();
4243 break;
dd3b648e 4244
dd3b648e 4245
9f85ab1a
JM
4246 /* Match any character except possibly a newline or a null. */
4247 case anychar:
4248 DEBUG_PRINT1 ("EXECUTING anychar.\n");
dd3b648e 4249
9f85ab1a
JM
4250 PREFETCH ();
4251
4252 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4253 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4254 goto fail;
4255
4256 SET_REGS_MATCHED ();
4257 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4258 d++;
dd3b648e
RP
4259 break;
4260
9f85ab1a
JM
4261
4262 case charset:
4263 case charset_not:
4264 {
4265 register unsigned char c;
4266 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4267
4268 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4269
4270 PREFETCH ();
4271 c = TRANSLATE (*d); /* The character to match. */
4272
4273 /* Cast to `unsigned' instead of `unsigned char' in case the
4274 bit list is a full 32 bytes long. */
4275 if (c < (unsigned) (*p * BYTEWIDTH)
4276 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4277 not = !not;
4278
4279 p += 1 + *p;
4280
4281 if (!not) goto fail;
4282
4283 SET_REGS_MATCHED ();
4284 d++;
4285 break;
4286 }
4287
4288
4289 /* The beginning of a group is represented by start_memory.
4290 The arguments are the register number in the next byte, and the
4291 number of groups inner to this one in the next. The text
4292 matched within the group is recorded (in the internal
4293 registers data structure) under the register number. */
4294 case start_memory:
4295 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4296
4297 /* Find out if this group can match the empty string. */
4298 p1 = p; /* To send to group_match_null_string_p. */
4299
4300 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4301 REG_MATCH_NULL_STRING_P (reg_info[*p])
4302 = group_match_null_string_p (&p1, pend, reg_info);
4303
4304 /* Save the position in the string where we were the last time
4305 we were at this open-group operator in case the group is
4306 operated upon by a repetition operator, e.g., with `(a*)*b'
4307 against `ab'; then we want to ignore where we are now in
4308 the string in case this attempt to match fails. */
4309 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4310 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4311 : regstart[*p];
4312 DEBUG_PRINT2 (" old_regstart: %d\n",
4313 POINTER_TO_OFFSET (old_regstart[*p]));
4314
4315 regstart[*p] = d;
4316 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4317
4318 IS_ACTIVE (reg_info[*p]) = 1;
4319 MATCHED_SOMETHING (reg_info[*p]) = 0;
4320
4321 /* Clear this whenever we change the register activity status. */
4322 set_regs_matched_done = 0;
4323
4324 /* This is the new highest active register. */
4325 highest_active_reg = *p;
4326
4327 /* If nothing was active before, this is the new lowest active
4328 register. */
4329 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4330 lowest_active_reg = *p;
4331
4332 /* Move past the register number and inner group count. */
4333 p += 2;
4334 just_past_start_mem = p;
4335
4336 break;
4337
4338
4339 /* The stop_memory opcode represents the end of a group. Its
4340 arguments are the same as start_memory's: the register
4341 number, and the number of inner groups. */
dd3b648e 4342 case stop_memory:
9f85ab1a
JM
4343 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4344
4345 /* We need to save the string position the last time we were at
4346 this close-group operator in case the group is operated
4347 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4348 against `aba'; then we want to ignore where we are now in
4349 the string in case this attempt to match fails. */
4350 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4351 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4352 : regend[*p];
4353 DEBUG_PRINT2 (" old_regend: %d\n",
4354 POINTER_TO_OFFSET (old_regend[*p]));
4355
4356 regend[*p] = d;
4357 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4358
4359 /* This register isn't active anymore. */
4360 IS_ACTIVE (reg_info[*p]) = 0;
4361
4362 /* Clear this whenever we change the register activity status. */
4363 set_regs_matched_done = 0;
4364
4365 /* If this was the only register active, nothing is active
4366 anymore. */
4367 if (lowest_active_reg == highest_active_reg)
4368 {
4369 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4370 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4371 }
4372 else
4373 { /* We must scan for the new highest active register, since
4374 it isn't necessarily one less than now: consider
4375 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4376 new highest active register is 1. */
4377 unsigned char r = *p - 1;
4378 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4379 r--;
4380
4381 /* If we end up at register zero, that means that we saved
4382 the registers as the result of an `on_failure_jump', not
4383 a `start_memory', and we jumped to past the innermost
4384 `stop_memory'. For example, in ((.)*) we save
4385 registers 1 and 2 as a result of the *, but when we pop
4386 back to the second ), we are at the stop_memory 1.
4387 Thus, nothing is active. */
4388 if (r == 0)
4389 {
4390 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4391 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4392 }
4393 else
4394 highest_active_reg = r;
4395 }
4396
4397 /* If just failed to match something this time around with a
4398 group that's operated on by a repetition operator, try to
4399 force exit from the ``loop'', and restore the register
4400 information for this group that we had before trying this
4401 last match. */
4402 if ((!MATCHED_SOMETHING (reg_info[*p])
4403 || just_past_start_mem == p - 1)
4404 && (p + 2) < pend)
4405 {
4406 boolean is_a_jump_n = false;
4407
4408 p1 = p + 2;
4409 mcnt = 0;
4410 switch ((re_opcode_t) *p1++)
4411 {
4412 case jump_n:
4413 is_a_jump_n = true;
4414 case pop_failure_jump:
4415 case maybe_pop_jump:
4416 case jump:
4417 case dummy_failure_jump:
4418 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4419 if (is_a_jump_n)
4420 p1 += 2;
4421 break;
4422
4423 default:
4424 /* do nothing */ ;
4425 }
4426 p1 += mcnt;
4427
4428 /* If the next operation is a jump backwards in the pattern
4429 to an on_failure_jump right before the start_memory
4430 corresponding to this stop_memory, exit from the loop
4431 by forcing a failure after pushing on the stack the
4432 on_failure_jump's jump in the pattern, and d. */
4433 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4434 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4435 {
4436 /* If this group ever matched anything, then restore
4437 what its registers were before trying this last
4438 failed match, e.g., with `(a*)*b' against `ab' for
4439 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4440 against `aba' for regend[3].
dd3b648e 4441
9f85ab1a
JM
4442 Also restore the registers for inner groups for,
4443 e.g., `((a*)(b*))*' against `aba' (register 3 would
4444 otherwise get trashed). */
4445
4446 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4447 {
4448 unsigned r;
4449
4450 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4451
4452 /* Restore this and inner groups' (if any) registers. */
4453 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4454 r++)
4455 {
4456 regstart[r] = old_regstart[r];
4457
4458 /* xx why this test? */
4459 if (old_regend[r] >= regstart[r])
4460 regend[r] = old_regend[r];
4461 }
4462 }
4463 p1++;
4464 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4465 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4466
4467 goto fail;
4468 }
4469 }
4470
4471 /* Move past the register number and the inner group count. */
4472 p += 2;
4473 break;
4474
4475
4476 /* \<digit> has been turned into a `duplicate' command which is
4477 followed by the numeric value of <digit> as the register number. */
4478 case duplicate:
dd3b648e 4479 {
9f85ab1a
JM
4480 register const char *d2, *dend2;
4481 int regno = *p++; /* Get which register to match against. */
4482 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4483
4484 /* Can't back reference a group which we've never matched. */
4485 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4486 goto fail;
4487
4488 /* Where in input to try to start matching. */
4489 d2 = regstart[regno];
4490
4491 /* Where to stop matching; if both the place to start and
4492 the place to stop matching are in the same string, then
4493 set to the place to stop, otherwise, for now have to use
4494 the end of the first string. */
dd3b648e 4495
9f85ab1a
JM
4496 dend2 = ((FIRST_STRING_P (regstart[regno])
4497 == FIRST_STRING_P (regend[regno]))
dd3b648e 4498 ? regend[regno] : end_match_1);
9f85ab1a 4499 for (;;)
dd3b648e 4500 {
9f85ab1a
JM
4501 /* If necessary, advance to next segment in register
4502 contents. */
dd3b648e
RP
4503 while (d2 == dend2)
4504 {
4505 if (dend2 == end_match_2) break;
4506 if (dend2 == regend[regno]) break;
9f85ab1a
JM
4507
4508 /* End of string1 => advance to string2. */
4509 d2 = string2;
4510 dend2 = regend[regno];
dd3b648e
RP
4511 }
4512 /* At end of register contents => success */
4513 if (d2 == dend2) break;
4514
9f85ab1a
JM
4515 /* If necessary, advance to next segment in data. */
4516 PREFETCH ();
dd3b648e 4517
9f85ab1a 4518 /* How many characters left in this segment to match. */
dd3b648e 4519 mcnt = dend - d;
9f85ab1a
JM
4520
4521 /* Want how many consecutive characters we can match in
4522 one shot, so, if necessary, adjust the count. */
4523 if (mcnt > dend2 - d2)
dd3b648e 4524 mcnt = dend2 - d2;
9f85ab1a
JM
4525
4526 /* Compare that many; failure if mismatch, else move
4527 past them. */
4528 if (translate
4529 ? bcmp_translate (d, d2, mcnt, translate)
4530 : memcmp (d, d2, mcnt))
dd3b648e
RP
4531 goto fail;
4532 d += mcnt, d2 += mcnt;
9f85ab1a
JM
4533
4534 /* Do this because we've match some characters. */
4535 SET_REGS_MATCHED ();
dd3b648e
RP
4536 }
4537 }
4538 break;
4539
dd3b648e 4540
9f85ab1a
JM
4541 /* begline matches the empty string at the beginning of the string
4542 (unless `not_bol' is set in `bufp'), and, if
4543 `newline_anchor' is set, after newlines. */
4544 case begline:
4545 DEBUG_PRINT1 ("EXECUTING begline.\n");
dd3b648e 4546
9f85ab1a
JM
4547 if (AT_STRINGS_BEG (d))
4548 {
4549 if (!bufp->not_bol) break;
4550 }
4551 else if (d[-1] == '\n' && bufp->newline_anchor)
4552 {
4553 break;
4554 }
4555 /* In all other cases, we fail. */
4556 goto fail;
dd3b648e 4557
dd3b648e 4558
9f85ab1a
JM
4559 /* endline is the dual of begline. */
4560 case endline:
4561 DEBUG_PRINT1 ("EXECUTING endline.\n");
4562
4563 if (AT_STRINGS_END (d))
4564 {
4565 if (!bufp->not_eol) break;
4566 }
4567
4568 /* We have to ``prefetch'' the next character. */
4569 else if ((d == end1 ? *string2 : *d) == '\n'
4570 && bufp->newline_anchor)
4571 {
4572 break;
4573 }
4574 goto fail;
4575
4576
4577 /* Match at the very beginning of the data. */
4578 case begbuf:
4579 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4580 if (AT_STRINGS_BEG (d))
4581 break;
4582 goto fail;
4583
4584
4585 /* Match at the very end of the data. */
4586 case endbuf:
4587 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4588 if (AT_STRINGS_END (d))
4589 break;
4590 goto fail;
4591
4592
4593 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4594 pushes NULL as the value for the string on the stack. Then
4595 `pop_failure_point' will keep the current value for the
4596 string, instead of restoring it. To see why, consider
4597 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4598 then the . fails against the \n. But the next thing we want
4599 to do is match the \n against the \n; if we restored the
4600 string value, we would be back at the foo.
4601
4602 Because this is used only in specific cases, we don't need to
4603 check all the things that `on_failure_jump' does, to make
4604 sure the right things get saved on the stack. Hence we don't
4605 share its code. The only reason to push anything on the
4606 stack at all is that otherwise we would have to change
4607 `anychar's code to do something besides goto fail in this
4608 case; that seems worse than this. */
4609 case on_failure_keep_string_jump:
4610 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4611
4612 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4613#ifdef _LIBC
4614 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4615#else
4616 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4617#endif
dd3b648e 4618
9f85ab1a
JM
4619 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4620 break;
dd3b648e 4621
dd3b648e 4622
9f85ab1a 4623 /* Uses of on_failure_jump:
dd3b648e 4624
9f85ab1a
JM
4625 Each alternative starts with an on_failure_jump that points
4626 to the beginning of the next alternative. Each alternative
4627 except the last ends with a jump that in effect jumps past
4628 the rest of the alternatives. (They really jump to the
4629 ending jump of the following alternative, because tensioning
4630 these jumps is a hassle.)
dd3b648e 4631
9f85ab1a
JM
4632 Repeats start with an on_failure_jump that points past both
4633 the repetition text and either the following jump or
4634 pop_failure_jump back to this on_failure_jump. */
4635 case on_failure_jump:
4636 on_failure:
4637 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
dd3b648e 4638
9f85ab1a
JM
4639 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4640#ifdef _LIBC
4641 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4642#else
4643 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4644#endif
dd3b648e 4645
9f85ab1a
JM
4646 /* If this on_failure_jump comes right before a group (i.e.,
4647 the original * applied to a group), save the information
4648 for that group and all inner ones, so that if we fail back
4649 to this point, the group's information will be correct.
4650 For example, in \(a*\)*\1, we need the preceding group,
4651 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4652
4653 /* We can't use `p' to check ahead because we push
4654 a failure point to `p + mcnt' after we do this. */
4655 p1 = p;
4656
4657 /* We need to skip no_op's before we look for the
4658 start_memory in case this on_failure_jump is happening as
4659 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4660 against aba. */
4661 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4662 p1++;
4663
4664 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4665 {
4666 /* We have a new highest active register now. This will
4667 get reset at the start_memory we are about to get to,
4668 but we will have saved all the registers relevant to
4669 this repetition op, as described above. */
4670 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4671 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4672 lowest_active_reg = *(p1 + 1);
4673 }
4674
4675 DEBUG_PRINT1 (":\n");
4676 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4677 break;
4678
4679
4680 /* A smart repeat ends with `maybe_pop_jump'.
4681 We change it to either `pop_failure_jump' or `jump'. */
4682 case maybe_pop_jump:
4683 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4684 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4685 {
4686 register unsigned char *p2 = p;
dd3b648e 4687
9f85ab1a
JM
4688 /* Compare the beginning of the repeat with what in the
4689 pattern follows its end. If we can establish that there
4690 is nothing that they would both match, i.e., that we
4691 would have to backtrack because of (as in, e.g., `a*a')
4692 then we can change to pop_failure_jump, because we'll
4693 never have to backtrack.
4694
4695 This is not true in the case of alternatives: in
4696 `(a|ab)*' we do need to backtrack to the `ab' alternative
4697 (e.g., if the string was `ab'). But instead of trying to
4698 detect that here, the alternative has put on a dummy
4699 failure point which is what we will end up popping. */
4700
4701 /* Skip over open/close-group commands.
4702 If what follows this loop is a ...+ construct,
4703 look at what begins its body, since we will have to
4704 match at least one of that. */
4705 while (1)
4706 {
4707 if (p2 + 2 < pend
4708 && ((re_opcode_t) *p2 == stop_memory
4709 || (re_opcode_t) *p2 == start_memory))
4710 p2 += 3;
4711 else if (p2 + 6 < pend
4712 && (re_opcode_t) *p2 == dummy_failure_jump)
4713 p2 += 6;
4714 else
4715 break;
4716 }
dd3b648e 4717
9f85ab1a
JM
4718 p1 = p + mcnt;
4719 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4720 to the `maybe_finalize_jump' of this case. Examine what
4721 follows. */
dd3b648e 4722
9f85ab1a
JM
4723 /* If we're at the end of the pattern, we can change. */
4724 if (p2 == pend)
4725 {
4726 /* Consider what happens when matching ":\(.*\)"
4727 against ":/". I don't really understand this code
4728 yet. */
4729 p[-3] = (unsigned char) pop_failure_jump;
4730 DEBUG_PRINT1
4731 (" End of pattern: change to `pop_failure_jump'.\n");
4732 }
4733
4734 else if ((re_opcode_t) *p2 == exactn
4735 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
dd3b648e 4736 {
9f85ab1a
JM
4737 register unsigned char c
4738 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4739
4740 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4741 {
4742 p[-3] = (unsigned char) pop_failure_jump;
4743 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4744 c, p1[5]);
4745 }
4746
4747 else if ((re_opcode_t) p1[3] == charset
4748 || (re_opcode_t) p1[3] == charset_not)
dd3b648e 4749 {
9f85ab1a
JM
4750 int not = (re_opcode_t) p1[3] == charset_not;
4751
4752 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
dd3b648e
RP
4753 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4754 not = !not;
9f85ab1a
JM
4755
4756 /* `not' is equal to 1 if c would match, which means
4757 that we can't change to pop_failure_jump. */
dd3b648e 4758 if (!not)
9f85ab1a
JM
4759 {
4760 p[-3] = (unsigned char) pop_failure_jump;
4761 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4762 }
4763 }
4764 }
4765 else if ((re_opcode_t) *p2 == charset)
4766 {
4767#ifdef DEBUG
4768 register unsigned char c
4769 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4770#endif
4771
4772#if 0
4773 if ((re_opcode_t) p1[3] == exactn
4774 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4775 && (p2[2 + p1[5] / BYTEWIDTH]
4776 & (1 << (p1[5] % BYTEWIDTH)))))
4777#else
4778 if ((re_opcode_t) p1[3] == exactn
4779 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4780 && (p2[2 + p1[4] / BYTEWIDTH]
4781 & (1 << (p1[4] % BYTEWIDTH)))))
4782#endif
4783 {
4784 p[-3] = (unsigned char) pop_failure_jump;
4785 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4786 c, p1[5]);
4787 }
4788
4789 else if ((re_opcode_t) p1[3] == charset_not)
4790 {
4791 int idx;
4792 /* We win if the charset_not inside the loop
4793 lists every character listed in the charset after. */
4794 for (idx = 0; idx < (int) p2[1]; idx++)
4795 if (! (p2[2 + idx] == 0
4796 || (idx < (int) p1[4]
4797 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4798 break;
4799
4800 if (idx == p2[1])
4801 {
4802 p[-3] = (unsigned char) pop_failure_jump;
4803 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4804 }
4805 }
4806 else if ((re_opcode_t) p1[3] == charset)
4807 {
4808 int idx;
4809 /* We win if the charset inside the loop
4810 has no overlap with the one after the loop. */
4811 for (idx = 0;
4812 idx < (int) p2[1] && idx < (int) p1[4];
4813 idx++)
4814 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4815 break;
4816
4817 if (idx == p2[1] || idx == p1[4])
4818 {
4819 p[-3] = (unsigned char) pop_failure_jump;
4820 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4821 }
dd3b648e
RP
4822 }
4823 }
4824 }
9f85ab1a
JM
4825 p -= 2; /* Point at relative address again. */
4826 if ((re_opcode_t) p[-1] != pop_failure_jump)
dd3b648e
RP
4827 {
4828 p[-1] = (unsigned char) jump;
9f85ab1a
JM
4829 DEBUG_PRINT1 (" Match => jump.\n");
4830 goto unconditional_jump;
dd3b648e 4831 }
9f85ab1a
JM
4832 /* Note fall through. */
4833
4834
4835 /* The end of a simple repeat has a pop_failure_jump back to
4836 its matching on_failure_jump, where the latter will push a
4837 failure point. The pop_failure_jump takes off failure
4838 points put on by this pop_failure_jump's matching
4839 on_failure_jump; we got through the pattern to here from the
4840 matching on_failure_jump, so didn't fail. */
4841 case pop_failure_jump:
4842 {
4843 /* We need to pass separate storage for the lowest and
4844 highest registers, even though we don't care about the
4845 actual values. Otherwise, we will restore only one
4846 register from the stack, since lowest will == highest in
4847 `pop_failure_point'. */
4848 active_reg_t dummy_low_reg, dummy_high_reg;
4849 unsigned char *pdummy;
4850 const char *sdummy;
4851
4852 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4853 POP_FAILURE_POINT (sdummy, pdummy,
4854 dummy_low_reg, dummy_high_reg,
4855 reg_dummy, reg_dummy, reg_info_dummy);
4856 }
4857 /* Note fall through. */
4858
4859 unconditional_jump:
4860#ifdef _LIBC
4861 DEBUG_PRINT2 ("\n%p: ", p);
4862#else
4863 DEBUG_PRINT2 ("\n0x%x: ", p);
4864#endif
4865 /* Note fall through. */
4866
4867 /* Unconditionally jump (without popping any failure points). */
4868 case jump:
4869 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4870 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4871 p += mcnt; /* Do the jump. */
4872#ifdef _LIBC
4873 DEBUG_PRINT2 ("(to %p).\n", p);
4874#else
4875 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4876#endif
4877 break;
dd3b648e 4878
dd3b648e 4879
9f85ab1a
JM
4880 /* We need this opcode so we can detect where alternatives end
4881 in `group_match_null_string_p' et al. */
4882 case jump_past_alt:
4883 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4884 goto unconditional_jump;
4885
4886
4887 /* Normally, the on_failure_jump pushes a failure point, which
4888 then gets popped at pop_failure_jump. We will end up at
4889 pop_failure_jump, also, and with a pattern of, say, `a+', we
4890 are skipping over the on_failure_jump, so we have to push
4891 something meaningless for pop_failure_jump to pop. */
4892 case dummy_failure_jump:
4893 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4894 /* It doesn't matter what we push for the string here. What
4895 the code at `fail' tests is the value for the pattern. */
4896 PUSH_FAILURE_POINT (NULL, NULL, -2);
4897 goto unconditional_jump;
4898
4899
4900 /* At the end of an alternative, we need to push a dummy failure
4901 point in case we are followed by a `pop_failure_jump', because
4902 we don't want the failure point for the alternative to be
4903 popped. For example, matching `(a|ab)*' against `aab'
4904 requires that we match the `ab' alternative. */
4905 case push_dummy_failure:
4906 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4907 /* See comments just above at `dummy_failure_jump' about the
4908 two zeroes. */
4909 PUSH_FAILURE_POINT (NULL, NULL, -2);
4910 break;
4911
4912 /* Have to succeed matching what follows at least n times.
4913 After that, handle like `on_failure_jump'. */
4914 case succeed_n:
4915 EXTRACT_NUMBER (mcnt, p + 2);
4916 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4917
4918 assert (mcnt >= 0);
4919 /* Originally, this is how many times we HAVE to succeed. */
4920 if (mcnt > 0)
4921 {
4922 mcnt--;
4923 p += 2;
4924 STORE_NUMBER_AND_INCR (p, mcnt);
4925#ifdef _LIBC
4926 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4927#else
4928 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4929#endif
4930 }
4931 else if (mcnt == 0)
4932 {
4933#ifdef _LIBC
4934 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4935#else
4936 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4937#endif
4938 p[2] = (unsigned char) no_op;
4939 p[3] = (unsigned char) no_op;
4940 goto on_failure;
4941 }
4942 break;
4943
4944 case jump_n:
4945 EXTRACT_NUMBER (mcnt, p + 2);
4946 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4947
4948 /* Originally, this is how many times we CAN jump. */
4949 if (mcnt)
4950 {
4951 mcnt--;
4952 STORE_NUMBER (p + 2, mcnt);
4953#ifdef _LIBC
4954 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4955#else
4956 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4957#endif
4958 goto unconditional_jump;
4959 }
4960 /* If don't have to jump any more, skip over the rest of command. */
4961 else
4962 p += 4;
4963 break;
4964
4965 case set_number_at:
4966 {
4967 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
dd3b648e 4968
9f85ab1a
JM
4969 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4970 p1 = p + mcnt;
4971 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4972#ifdef _LIBC
4973 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4974#else
4975 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4976#endif
4977 STORE_NUMBER (p1, mcnt);
4978 break;
4979 }
dd3b648e 4980
9f85ab1a
JM
4981#if 0
4982 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4983 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4984 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4985 macro and introducing temporary variables works around the bug. */
dd3b648e
RP
4986
4987 case wordbound:
9f85ab1a
JM
4988 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4989 if (AT_WORD_BOUNDARY (d))
dd3b648e
RP
4990 break;
4991 goto fail;
4992
4993 case notwordbound:
9f85ab1a
JM
4994 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4995 if (AT_WORD_BOUNDARY (d))
dd3b648e
RP
4996 goto fail;
4997 break;
9f85ab1a
JM
4998#else
4999 case wordbound:
5000 {
5001 boolean prevchar, thischar;
dd3b648e 5002
9f85ab1a
JM
5003 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5004 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
dd3b648e 5005 break;
dd3b648e 5006
9f85ab1a
JM
5007 prevchar = WORDCHAR_P (d - 1);
5008 thischar = WORDCHAR_P (d);
5009 if (prevchar != thischar)
dd3b648e
RP
5010 break;
5011 goto fail;
9f85ab1a 5012 }
dd3b648e 5013
9f85ab1a
JM
5014 case notwordbound:
5015 {
5016 boolean prevchar, thischar;
dd3b648e 5017
9f85ab1a
JM
5018 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5019 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
dd3b648e 5020 goto fail;
dd3b648e 5021
9f85ab1a
JM
5022 prevchar = WORDCHAR_P (d - 1);
5023 thischar = WORDCHAR_P (d);
5024 if (prevchar != thischar)
dd3b648e
RP
5025 goto fail;
5026 break;
9f85ab1a
JM
5027 }
5028#endif
dd3b648e 5029
9f85ab1a
JM
5030 case wordbeg:
5031 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5032 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5033 break;
5034 goto fail;
5035
5036 case wordend:
5037 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5038 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5039 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5040 break;
5041 goto fail;
5042
5043#ifdef emacs
5044 case before_dot:
5045 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5046 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5047 goto fail;
5048 break;
5049
5050 case at_dot:
5051 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5052 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5053 goto fail;
5054 break;
5055
5056 case after_dot:
5057 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5058 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5059 goto fail;
5060 break;
dd3b648e
RP
5061
5062 case syntaxspec:
9f85ab1a 5063 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
dd3b648e 5064 mcnt = *p++;
9f85ab1a
JM
5065 goto matchsyntax;
5066
5067 case wordchar:
5068 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
dd3b648e 5069 mcnt = (int) Sword;
9f85ab1a
JM
5070 matchsyntax:
5071 PREFETCH ();
5072 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5073 d++;
5074 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5075 goto fail;
5076 SET_REGS_MATCHED ();
5077 break;
dd3b648e
RP
5078
5079 case notsyntaxspec:
9f85ab1a 5080 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
dd3b648e 5081 mcnt = *p++;
9f85ab1a
JM
5082 goto matchnotsyntax;
5083
5084 case notwordchar:
5085 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5086 mcnt = (int) Sword;
5087 matchnotsyntax:
5088 PREFETCH ();
5089 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5090 d++;
5091 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5092 goto fail;
5093 SET_REGS_MATCHED ();
5094 break;
5095
5096#else /* not emacs */
dd3b648e 5097 case wordchar:
9f85ab1a
JM
5098 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5099 PREFETCH ();
5100 if (!WORDCHAR_P (d))
5101 goto fail;
5102 SET_REGS_MATCHED ();
5103 d++;
dd3b648e 5104 break;
9f85ab1a 5105
dd3b648e 5106 case notwordchar:
9f85ab1a
JM
5107 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5108 PREFETCH ();
5109 if (WORDCHAR_P (d))
5110 goto fail;
5111 SET_REGS_MATCHED ();
5112 d++;
dd3b648e
RP
5113 break;
5114#endif /* not emacs */
5115
9f85ab1a
JM
5116 default:
5117 abort ();
5118 }
5119 continue; /* Successfully executed one pattern command; keep going. */
dd3b648e 5120
dd3b648e 5121
9f85ab1a
JM
5122 /* We goto here if a matching operation fails. */
5123 fail:
5124 if (!FAIL_STACK_EMPTY ())
5125 { /* A restart point is known. Restore to that state. */
5126 DEBUG_PRINT1 ("\nFAIL:\n");
5127 POP_FAILURE_POINT (d, p,
5128 lowest_active_reg, highest_active_reg,
5129 regstart, regend, reg_info);
5130
5131 /* If this failure point is a dummy, try the next one. */
5132 if (!p)
5133 goto fail;
5134
5135 /* If we failed to the end of the pattern, don't examine *p. */
5136 assert (p <= pend);
5137 if (p < pend)
5138 {
5139 boolean is_a_jump_n = false;
5140
5141 /* If failed to a backwards jump that's part of a repetition
5142 loop, need to pop this failure point and use the next one. */
5143 switch ((re_opcode_t) *p)
5144 {
5145 case jump_n:
5146 is_a_jump_n = true;
5147 case maybe_pop_jump:
5148 case pop_failure_jump:
5149 case jump:
5150 p1 = p + 1;
5151 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5152 p1 += mcnt;
5153
5154 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5155 || (!is_a_jump_n
5156 && (re_opcode_t) *p1 == on_failure_jump))
5157 goto fail;
5158 break;
5159 default:
5160 /* do nothing */ ;
5161 }
5162 }
5163
5164 if (d >= string1 && d <= end1)
5165 dend = end_match_1;
5166 }
5167 else
5168 break; /* Matching at this starting point really fails. */
5169 } /* for (;;) */
5170
5171 if (best_regs_set)
5172 goto restore_best_regs;
5173
5174 FREE_VARIABLES ();
5175
5176 return -1; /* Failure to match. */
5177} /* re_match_2 */
5178\f
5179/* Subroutine definitions for re_match_2. */
5180
5181
5182/* We are passed P pointing to a register number after a start_memory.
5183
5184 Return true if the pattern up to the corresponding stop_memory can
5185 match the empty string, and false otherwise.
5186
5187 If we find the matching stop_memory, sets P to point to one past its number.
5188 Otherwise, sets P to an undefined byte less than or equal to END.
5189
5190 We don't handle duplicates properly (yet). */
5191
5192static boolean
5193group_match_null_string_p (p, end, reg_info)
5194 unsigned char **p, *end;
5195 register_info_type *reg_info;
5196{
5197 int mcnt;
5198 /* Point to after the args to the start_memory. */
5199 unsigned char *p1 = *p + 2;
5200
5201 while (p1 < end)
5202 {
5203 /* Skip over opcodes that can match nothing, and return true or
5204 false, as appropriate, when we get to one that can't, or to the
5205 matching stop_memory. */
5206
5207 switch ((re_opcode_t) *p1)
5208 {
5209 /* Could be either a loop or a series of alternatives. */
5210 case on_failure_jump:
5211 p1++;
5212 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5213
5214 /* If the next operation is not a jump backwards in the
5215 pattern. */
5216
5217 if (mcnt >= 0)
dd3b648e 5218 {
9f85ab1a
JM
5219 /* Go through the on_failure_jumps of the alternatives,
5220 seeing if any of the alternatives cannot match nothing.
5221 The last alternative starts with only a jump,
5222 whereas the rest start with on_failure_jump and end
5223 with a jump, e.g., here is the pattern for `a|b|c':
5224
5225 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5226 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5227 /exactn/1/c
5228
5229 So, we have to first go through the first (n-1)
5230 alternatives and then deal with the last one separately. */
5231
5232
5233 /* Deal with the first (n-1) alternatives, which start
5234 with an on_failure_jump (see above) that jumps to right
5235 past a jump_past_alt. */
5236
5237 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5238 {
5239 /* `mcnt' holds how many bytes long the alternative
5240 is, including the ending `jump_past_alt' and
5241 its number. */
5242
5243 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5244 reg_info))
5245 return false;
5246
5247 /* Move to right after this alternative, including the
5248 jump_past_alt. */
5249 p1 += mcnt;
5250
5251 /* Break if it's the beginning of an n-th alternative
5252 that doesn't begin with an on_failure_jump. */
5253 if ((re_opcode_t) *p1 != on_failure_jump)
5254 break;
5255
5256 /* Still have to check that it's not an n-th
5257 alternative that starts with an on_failure_jump. */
5258 p1++;
5259 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5260 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5261 {
5262 /* Get to the beginning of the n-th alternative. */
5263 p1 -= 3;
5264 break;
5265 }
5266 }
5267
5268 /* Deal with the last alternative: go back and get number
5269 of the `jump_past_alt' just before it. `mcnt' contains
5270 the length of the alternative. */
5271 EXTRACT_NUMBER (mcnt, p1 - 2);
5272
5273 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5274 return false;
5275
5276 p1 += mcnt; /* Get past the n-th alternative. */
5277 } /* if mcnt > 0 */
5278 break;
5279
5280
5281 case stop_memory:
5282 assert (p1[1] == **p);
5283 *p = p1 + 2;
5284 return true;
5285
5286
5287 default:
5288 if (!common_op_match_null_string_p (&p1, end, reg_info))
5289 return false;
5290 }
5291 } /* while p1 < end */
5292
5293 return false;
5294} /* group_match_null_string_p */
5295
5296
5297/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5298 It expects P to be the first byte of a single alternative and END one
5299 byte past the last. The alternative can contain groups. */
5300
5301static boolean
5302alt_match_null_string_p (p, end, reg_info)
5303 unsigned char *p, *end;
5304 register_info_type *reg_info;
5305{
5306 int mcnt;
5307 unsigned char *p1 = p;
5308
5309 while (p1 < end)
5310 {
5311 /* Skip over opcodes that can match nothing, and break when we get
5312 to one that can't. */
5313
5314 switch ((re_opcode_t) *p1)
5315 {
5316 /* It's a loop. */
5317 case on_failure_jump:
5318 p1++;
5319 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5320 p1 += mcnt;
5321 break;
5322
6b14af2b 5323 default:
9f85ab1a
JM
5324 if (!common_op_match_null_string_p (&p1, end, reg_info))
5325 return false;
5326 }
5327 } /* while p1 < end */
dd3b648e 5328
9f85ab1a
JM
5329 return true;
5330} /* alt_match_null_string_p */
5331
5332
5333/* Deals with the ops common to group_match_null_string_p and
5334 alt_match_null_string_p.
5335
5336 Sets P to one after the op and its arguments, if any. */
5337
5338static boolean
5339common_op_match_null_string_p (p, end, reg_info)
5340 unsigned char **p, *end;
5341 register_info_type *reg_info;
5342{
5343 int mcnt;
5344 boolean ret;
5345 int reg_no;
5346 unsigned char *p1 = *p;
5347
5348 switch ((re_opcode_t) *p1++)
5349 {
5350 case no_op:
5351 case begline:
5352 case endline:
5353 case begbuf:
5354 case endbuf:
5355 case wordbeg:
5356 case wordend:
5357 case wordbound:
5358 case notwordbound:
5359#ifdef emacs
5360 case before_dot:
5361 case at_dot:
5362 case after_dot:
5363#endif
5364 break;
5365
5366 case start_memory:
5367 reg_no = *p1;
5368 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5369 ret = group_match_null_string_p (&p1, end, reg_info);
5370
5371 /* Have to set this here in case we're checking a group which
5372 contains a group and a back reference to it. */
5373
5374 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5375 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5376
5377 if (!ret)
5378 return false;
5379 break;
5380
5381 /* If this is an optimized succeed_n for zero times, make the jump. */
5382 case jump:
5383 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5384 if (mcnt >= 0)
5385 p1 += mcnt;
5386 else
5387 return false;
5388 break;
5389
5390 case succeed_n:
5391 /* Get to the number of times to succeed. */
5392 p1 += 2;
5393 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5394
5395 if (mcnt == 0)
5396 {
5397 p1 -= 4;
5398 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5399 p1 += mcnt;
5400 }
5401 else
5402 return false;
5403 break;
5404
5405 case duplicate:
5406 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5407 return false;
5408 break;
5409
5410 case set_number_at:
5411 p1 += 4;
5412
5413 default:
5414 /* All other opcodes mean we cannot match the empty string. */
5415 return false;
5416 }
5417
5418 *p = p1;
5419 return true;
5420} /* common_op_match_null_string_p */
5421
5422
5423/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5424 bytes; nonzero otherwise. */
dd3b648e
RP
5425
5426static int
9f85ab1a
JM
5427bcmp_translate (s1, s2, len, translate)
5428 const char *s1, *s2;
dd3b648e 5429 register int len;
9f85ab1a 5430 RE_TRANSLATE_TYPE translate;
dd3b648e 5431{
9f85ab1a
JM
5432 register const unsigned char *p1 = (const unsigned char *) s1;
5433 register const unsigned char *p2 = (const unsigned char *) s2;
dd3b648e
RP
5434 while (len)
5435 {
9f85ab1a 5436 if (translate[*p1++] != translate[*p2++]) return 1;
dd3b648e
RP
5437 len--;
5438 }
5439 return 0;
5440}
5441\f
9f85ab1a 5442/* Entry points for GNU code. */
dd3b648e 5443
9f85ab1a
JM
5444/* re_compile_pattern is the GNU regular expression compiler: it
5445 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5446 Returns 0 if the pattern was valid, otherwise an error string.
5447
5448 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5449 are set in BUFP on entry.
5450
5451 We call regex_compile to do the actual compilation. */
5452
5453const char *
5454re_compile_pattern (pattern, length, bufp)
5455 const char *pattern;
5456 size_t length;
5457 struct re_pattern_buffer *bufp;
5458{
5459 reg_errcode_t ret;
dd3b648e 5460
9f85ab1a
JM
5461 /* GNU code is written to assume at least RE_NREGS registers will be set
5462 (and at least one extra will be -1). */
5463 bufp->regs_allocated = REGS_UNALLOCATED;
5464
5465 /* And GNU code determines whether or not to get register information
5466 by passing null for the REGS argument to re_match, etc., not by
5467 setting no_sub. */
5468 bufp->no_sub = 0;
5469
5470 /* Match anchors at newline. */
5471 bufp->newline_anchor = 1;
5472
5473 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5474
5475 if (!ret)
5476 return NULL;
5477 return gettext (re_error_msgid[(int) ret]);
5478}
5479#ifdef _LIBC
5480weak_alias (__re_compile_pattern, re_compile_pattern)
5481#endif
5482\f
5483/* Entry points compatible with 4.2 BSD regex library. We don't define
5484 them unless specifically requested. */
5485
5486#if defined _REGEX_RE_COMP || defined _LIBC
5487
5488/* BSD has one and only one pattern buffer. */
dd3b648e
RP
5489static struct re_pattern_buffer re_comp_buf;
5490
5491char *
9f85ab1a
JM
5492#ifdef _LIBC
5493/* Make these definitions weak in libc, so POSIX programs can redefine
5494 these names if they don't use our functions, and still use
5495 regcomp/regexec below without link errors. */
5496weak_function
5497#endif
dd3b648e 5498re_comp (s)
9f85ab1a 5499 const char *s;
dd3b648e 5500{
9f85ab1a
JM
5501 reg_errcode_t ret;
5502
dd3b648e
RP
5503 if (!s)
5504 {
5505 if (!re_comp_buf.buffer)
9f85ab1a 5506 return gettext ("No previous regular expression");
dd3b648e
RP
5507 return 0;
5508 }
5509
5510 if (!re_comp_buf.buffer)
5511 {
9f85ab1a
JM
5512 re_comp_buf.buffer = (unsigned char *) malloc (200);
5513 if (re_comp_buf.buffer == NULL)
5514 return gettext (re_error_msgid[(int) REG_ESPACE]);
dd3b648e 5515 re_comp_buf.allocated = 200;
9f85ab1a
JM
5516
5517 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5518 if (re_comp_buf.fastmap == NULL)
5519 return gettext (re_error_msgid[(int) REG_ESPACE]);
dd3b648e 5520 }
9f85ab1a
JM
5521
5522 /* Since `re_exec' always passes NULL for the `regs' argument, we
5523 don't need to initialize the pattern buffer fields which affect it. */
5524
5525 /* Match anchors at newlines. */
5526 re_comp_buf.newline_anchor = 1;
5527
5528 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5529
5530 if (!ret)
5531 return NULL;
5532
5533 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5534 return (char *) gettext (re_error_msgid[(int) ret]);
dd3b648e
RP
5535}
5536
9f85ab1a 5537
dd3b648e 5538int
9f85ab1a
JM
5539#ifdef _LIBC
5540weak_function
5541#endif
dd3b648e 5542re_exec (s)
9f85ab1a 5543 const char *s;
dd3b648e 5544{
9f85ab1a
JM
5545 const int len = strlen (s);
5546 return
5547 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
dd3b648e
RP
5548}
5549
9f85ab1a 5550#endif /* _REGEX_RE_COMP */
dd3b648e 5551\f
9f85ab1a 5552/* POSIX.2 functions. Don't define these for Emacs. */
dd3b648e 5553
9f85ab1a 5554#ifndef emacs
dd3b648e 5555
9f85ab1a 5556/* regcomp takes a regular expression as a string and compiles it.
dd3b648e 5557
9f85ab1a
JM
5558 PREG is a regex_t *. We do not expect any fields to be initialized,
5559 since POSIX says we shouldn't. Thus, we set
dd3b648e 5560
9f85ab1a
JM
5561 `buffer' to the compiled pattern;
5562 `used' to the length of the compiled pattern;
5563 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5564 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5565 RE_SYNTAX_POSIX_BASIC;
5566 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5567 `fastmap' and `fastmap_accurate' to zero;
5568 `re_nsub' to the number of subexpressions in PATTERN.
dd3b648e 5569
9f85ab1a 5570 PATTERN is the address of the pattern string.
dd3b648e 5571
9f85ab1a 5572 CFLAGS is a series of bits which affect compilation.
dd3b648e 5573
9f85ab1a
JM
5574 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5575 use POSIX basic syntax.
dd3b648e 5576
9f85ab1a
JM
5577 If REG_NEWLINE is set, then . and [^...] don't match newline.
5578 Also, regexec will try a match beginning after every newline.
dd3b648e 5579
9f85ab1a
JM
5580 If REG_ICASE is set, then we considers upper- and lowercase
5581 versions of letters to be equivalent when matching.
5582
5583 If REG_NOSUB is set, then when PREG is passed to regexec, that
5584 routine will report only success or failure, and nothing about the
5585 registers.
5586
a4122443 5587 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
9f85ab1a
JM
5588 the return codes and their meanings.) */
5589
5590int
5591regcomp (preg, pattern, cflags)
5592 regex_t *preg;
5593 const char *pattern;
5594 int cflags;
5595{
5596 reg_errcode_t ret;
5597 reg_syntax_t syntax
5598 = (cflags & REG_EXTENDED) ?
5599 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5600
5601 /* regex_compile will allocate the space for the compiled pattern. */
5602 preg->buffer = 0;
5603 preg->allocated = 0;
5604 preg->used = 0;
5605
5606 /* Don't bother to use a fastmap when searching. This simplifies the
5607 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5608 characters after newlines into the fastmap. This way, we just try
5609 every character. */
5610 preg->fastmap = 0;
5611
5612 if (cflags & REG_ICASE)
5613 {
5614 unsigned i;
dd3b648e 5615
9f85ab1a
JM
5616 preg->translate
5617 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5618 * sizeof (*(RE_TRANSLATE_TYPE)0));
5619 if (preg->translate == NULL)
5620 return (int) REG_ESPACE;
dd3b648e 5621
9f85ab1a
JM
5622 /* Map uppercase characters to corresponding lowercase ones. */
5623 for (i = 0; i < CHAR_SET_SIZE; i++)
5624 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5625 }
5626 else
5627 preg->translate = NULL;
5628
5629 /* If REG_NEWLINE is set, newlines are treated differently. */
5630 if (cflags & REG_NEWLINE)
5631 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5632 syntax &= ~RE_DOT_NEWLINE;
5633 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5634 /* It also changes the matching behavior. */
5635 preg->newline_anchor = 1;
dd3b648e 5636 }
9f85ab1a
JM
5637 else
5638 preg->newline_anchor = 0;
5639
5640 preg->no_sub = !!(cflags & REG_NOSUB);
5641
5642 /* POSIX says a null character in the pattern terminates it, so we
5643 can use strlen here in compiling the pattern. */
5644 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5645
5646 /* POSIX doesn't distinguish between an unmatched open-group and an
5647 unmatched close-group: both are REG_EPAREN. */
5648 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5649
5650 return (int) ret;
dd3b648e 5651}
9f85ab1a
JM
5652#ifdef _LIBC
5653weak_alias (__regcomp, regcomp)
5654#endif
dd3b648e 5655
9f85ab1a
JM
5656
5657/* regexec searches for a given pattern, specified by PREG, in the
5658 string STRING.
5659
5660 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5661 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5662 least NMATCH elements, and we set them to the offsets of the
5663 corresponding matched substrings.
5664
5665 EFLAGS specifies `execution flags' which affect matching: if
5666 REG_NOTBOL is set, then ^ does not match at the beginning of the
5667 string; if REG_NOTEOL is set, then $ does not match at the end.
5668
5669 We return 0 if we find a match and REG_NOMATCH if not. */
5670
5671int
5672regexec (preg, string, nmatch, pmatch, eflags)
5673 const regex_t *preg;
5674 const char *string;
5675 size_t nmatch;
5676 regmatch_t pmatch[];
5677 int eflags;
dd3b648e 5678{
9f85ab1a
JM
5679 int ret;
5680 struct re_registers regs;
5681 regex_t private_preg;
5682 int len = strlen (string);
5683 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5684
5685 private_preg = *preg;
5686
5687 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5688 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5689
5690 /* The user has told us exactly how many registers to return
5691 information about, via `nmatch'. We have to pass that on to the
5692 matching routines. */
5693 private_preg.regs_allocated = REGS_FIXED;
5694
5695 if (want_reg_info)
5696 {
5697 regs.num_regs = nmatch;
5698 regs.start = TALLOC (nmatch, regoff_t);
5699 regs.end = TALLOC (nmatch, regoff_t);
5700 if (regs.start == NULL || regs.end == NULL)
5701 return (int) REG_NOMATCH;
5702 }
5703
5704 /* Perform the searching operation. */
5705 ret = re_search (&private_preg, string, len,
5706 /* start: */ 0, /* range: */ len,
5707 want_reg_info ? &regs : (struct re_registers *) 0);
5708
5709 /* Copy the register information to the POSIX structure. */
5710 if (want_reg_info)
5711 {
5712 if (ret >= 0)
5713 {
5714 unsigned r;
5715
5716 for (r = 0; r < nmatch; r++)
5717 {
5718 pmatch[r].rm_so = regs.start[r];
5719 pmatch[r].rm_eo = regs.end[r];
5720 }
5721 }
5722
5723 /* If we needed the temporary register info, free the space now. */
5724 free (regs.start);
5725 free (regs.end);
5726 }
5727
5728 /* We want zero return to mean success, unlike `re_search'. */
5729 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
dd3b648e 5730}
9f85ab1a
JM
5731#ifdef _LIBC
5732weak_alias (__regexec, regexec)
dd3b648e
RP
5733#endif
5734
9f85ab1a
JM
5735
5736/* Returns a message corresponding to an error code, ERRCODE, returned
5737 from either regcomp or regexec. We don't use PREG here. */
5738
5739size_t
5740__regerror (errcode, preg, errbuf, errbuf_size)
5741 int errcode;
5742 const regex_t *preg;
5743 char *errbuf;
5744 size_t errbuf_size;
dd3b648e 5745{
9f85ab1a
JM
5746 const char *msg;
5747 size_t msg_size;
5748
5749 if (errcode < 0
5750 || errcode >= (int) (sizeof (re_error_msgid)
5751 / sizeof (re_error_msgid[0])))
5752 /* Only error codes returned by the rest of the code should be passed
5753 to this routine. If we are given anything else, or if other regex
5754 code generates an invalid error code, then the program has a bug.
5755 Dump core so we can fix it. */
5756 abort ();
5757
5758 msg = gettext (re_error_msgid[errcode]);
5759
5760 msg_size = strlen (msg) + 1; /* Includes the null. */
5761
5762 if (errbuf_size != 0)
dd3b648e 5763 {
9f85ab1a
JM
5764 if (msg_size > errbuf_size)
5765 {
5766#if defined HAVE_MEMPCPY || defined _LIBC
5767 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5768#else
5769 memcpy (errbuf, msg, errbuf_size - 1);
5770 errbuf[errbuf_size - 1] = 0;
5771#endif
5772 }
5773 else
5774 memcpy (errbuf, msg, msg_size);
dd3b648e 5775 }
9f85ab1a
JM
5776
5777 return msg_size;
dd3b648e 5778}
9f85ab1a
JM
5779#ifdef _LIBC
5780weak_alias (__regerror, regerror)
5781#endif
5782
dd3b648e 5783
9f85ab1a
JM
5784/* Free dynamically allocated space used by PREG. */
5785
5786void
5787regfree (preg)
5788 regex_t *preg;
dd3b648e 5789{
9f85ab1a
JM
5790 if (preg->buffer != NULL)
5791 free (preg->buffer);
5792 preg->buffer = NULL;
5793
5794 preg->allocated = 0;
5795 preg->used = 0;
5796
5797 if (preg->fastmap != NULL)
5798 free (preg->fastmap);
5799 preg->fastmap = NULL;
5800 preg->fastmap_accurate = 0;
5801
5802 if (preg->translate != NULL)
5803 free (preg->translate);
5804 preg->translate = NULL;
dd3b648e 5805}
9f85ab1a
JM
5806#ifdef _LIBC
5807weak_alias (__regfree, regfree)
5808#endif
dd3b648e 5809
9f85ab1a 5810#endif /* not emacs */
This page took 0.856253 seconds and 4 git commands to generate.