Commit | Line | Data |
---|---|---|
7ed49443 JB |
1 | /* Abstraction of GNU v3 abi. |
2 | Contributed by Jim Blandy <jimb@redhat.com> | |
451fbdda | 3 | |
42a4f53d | 4 | Copyright (C) 2001-2019 Free Software Foundation, Inc. |
7ed49443 JB |
5 | |
6 | This file is part of GDB. | |
7 | ||
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
7ed49443 JB |
12 | |
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
7ed49443 JB |
20 | |
21 | #include "defs.h" | |
22 | #include "value.h" | |
23 | #include "cp-abi.h" | |
362ff856 | 24 | #include "cp-support.h" |
7ed49443 | 25 | #include "demangle.h" |
b18be20d | 26 | #include "objfiles.h" |
0d5de010 | 27 | #include "valprint.h" |
94af9270 | 28 | #include "c-lang.h" |
79d43c61 | 29 | #include "typeprint.h" |
59d3651b | 30 | #include <algorithm> |
7f6aba03 | 31 | #include "cli/cli-style.h" |
0d5de010 | 32 | |
b27b8843 | 33 | static struct cp_abi_ops gnu_v3_abi_ops; |
7ed49443 | 34 | |
6e72ca20 TT |
35 | /* A gdbarch key for std::type_info, in the event that it can't be |
36 | found in the debug info. */ | |
37 | ||
38 | static struct gdbarch_data *std_type_info_gdbarch_data; | |
39 | ||
40 | ||
7ed49443 JB |
41 | static int |
42 | gnuv3_is_vtable_name (const char *name) | |
43 | { | |
61012eef | 44 | return startswith (name, "_ZTV"); |
7ed49443 JB |
45 | } |
46 | ||
47 | static int | |
48 | gnuv3_is_operator_name (const char *name) | |
49 | { | |
8090b426 | 50 | return startswith (name, CP_OPERATOR_STR); |
7ed49443 JB |
51 | } |
52 | ||
53 | ||
54 | /* To help us find the components of a vtable, we build ourselves a | |
55 | GDB type object representing the vtable structure. Following the | |
56 | V3 ABI, it goes something like this: | |
57 | ||
58 | struct gdb_gnu_v3_abi_vtable { | |
59 | ||
60 | / * An array of virtual call and virtual base offsets. The real | |
61 | length of this array depends on the class hierarchy; we use | |
62 | negative subscripts to access the elements. Yucky, but | |
63 | better than the alternatives. * / | |
64 | ptrdiff_t vcall_and_vbase_offsets[0]; | |
65 | ||
66 | / * The offset from a virtual pointer referring to this table | |
67 | to the top of the complete object. * / | |
68 | ptrdiff_t offset_to_top; | |
69 | ||
70 | / * The type_info pointer for this class. This is really a | |
71 | std::type_info *, but GDB doesn't really look at the | |
72 | type_info object itself, so we don't bother to get the type | |
73 | exactly right. * / | |
74 | void *type_info; | |
75 | ||
76 | / * Virtual table pointers in objects point here. * / | |
77 | ||
78 | / * Virtual function pointers. Like the vcall/vbase array, the | |
79 | real length of this table depends on the class hierarchy. * / | |
80 | void (*virtual_functions[0]) (); | |
81 | ||
82 | }; | |
83 | ||
84 | The catch, of course, is that the exact layout of this table | |
85 | depends on the ABI --- word size, endianness, alignment, etc. So | |
86 | the GDB type object is actually a per-architecture kind of thing. | |
87 | ||
88 | vtable_type_gdbarch_data is a gdbarch per-architecture data pointer | |
89 | which refers to the struct type * for this structure, laid out | |
90 | appropriately for the architecture. */ | |
b27b8843 | 91 | static struct gdbarch_data *vtable_type_gdbarch_data; |
7ed49443 JB |
92 | |
93 | ||
94 | /* Human-readable names for the numbers of the fields above. */ | |
95 | enum { | |
96 | vtable_field_vcall_and_vbase_offsets, | |
97 | vtable_field_offset_to_top, | |
98 | vtable_field_type_info, | |
99 | vtable_field_virtual_functions | |
100 | }; | |
101 | ||
102 | ||
103 | /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable', | |
104 | described above, laid out appropriately for ARCH. | |
105 | ||
106 | We use this function as the gdbarch per-architecture data | |
9970f04b | 107 | initialization function. */ |
7ed49443 JB |
108 | static void * |
109 | build_gdb_vtable_type (struct gdbarch *arch) | |
110 | { | |
111 | struct type *t; | |
112 | struct field *field_list, *field; | |
113 | int offset; | |
114 | ||
115 | struct type *void_ptr_type | |
fde6c819 | 116 | = builtin_type (arch)->builtin_data_ptr; |
7ed49443 | 117 | struct type *ptr_to_void_fn_type |
fde6c819 | 118 | = builtin_type (arch)->builtin_func_ptr; |
7ed49443 JB |
119 | |
120 | /* ARCH can't give us the true ptrdiff_t type, so we guess. */ | |
121 | struct type *ptrdiff_type | |
e9bb382b | 122 | = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t"); |
7ed49443 JB |
123 | |
124 | /* We assume no padding is necessary, since GDB doesn't know | |
125 | anything about alignment at the moment. If this assumption bites | |
126 | us, we should add a gdbarch method which, given a type, returns | |
127 | the alignment that type requires, and then use that here. */ | |
128 | ||
129 | /* Build the field list. */ | |
8d749320 | 130 | field_list = XCNEWVEC (struct field, 4); |
7ed49443 JB |
131 | field = &field_list[0]; |
132 | offset = 0; | |
133 | ||
134 | /* ptrdiff_t vcall_and_vbase_offsets[0]; */ | |
135 | FIELD_NAME (*field) = "vcall_and_vbase_offsets"; | |
e3506a9f | 136 | FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1); |
f41f5e61 | 137 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); |
7ed49443 JB |
138 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); |
139 | field++; | |
140 | ||
141 | /* ptrdiff_t offset_to_top; */ | |
142 | FIELD_NAME (*field) = "offset_to_top"; | |
143 | FIELD_TYPE (*field) = ptrdiff_type; | |
f41f5e61 | 144 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); |
7ed49443 JB |
145 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); |
146 | field++; | |
147 | ||
148 | /* void *type_info; */ | |
149 | FIELD_NAME (*field) = "type_info"; | |
150 | FIELD_TYPE (*field) = void_ptr_type; | |
f41f5e61 | 151 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); |
7ed49443 JB |
152 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); |
153 | field++; | |
154 | ||
155 | /* void (*virtual_functions[0]) (); */ | |
156 | FIELD_NAME (*field) = "virtual_functions"; | |
e3506a9f | 157 | FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1); |
f41f5e61 | 158 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); |
7ed49443 JB |
159 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); |
160 | field++; | |
161 | ||
162 | /* We assumed in the allocation above that there were four fields. */ | |
3d499020 | 163 | gdb_assert (field == (field_list + 4)); |
7ed49443 | 164 | |
77b7c781 | 165 | t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL); |
7ed49443 JB |
166 | TYPE_NFIELDS (t) = field - field_list; |
167 | TYPE_FIELDS (t) = field_list; | |
e86ca25f | 168 | TYPE_NAME (t) = "gdb_gnu_v3_abi_vtable"; |
e9bb382b | 169 | INIT_CPLUS_SPECIFIC (t); |
7ed49443 | 170 | |
706d0883 | 171 | return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE); |
7ed49443 JB |
172 | } |
173 | ||
174 | ||
ed09d7da KB |
175 | /* Return the ptrdiff_t type used in the vtable type. */ |
176 | static struct type * | |
177 | vtable_ptrdiff_type (struct gdbarch *gdbarch) | |
178 | { | |
9a3c8263 SM |
179 | struct type *vtable_type |
180 | = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data); | |
ed09d7da KB |
181 | |
182 | /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */ | |
183 | return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top); | |
184 | } | |
185 | ||
7ed49443 JB |
186 | /* Return the offset from the start of the imaginary `struct |
187 | gdb_gnu_v3_abi_vtable' object to the vtable's "address point" | |
188 | (i.e., where objects' virtual table pointers point). */ | |
189 | static int | |
ad4820ab | 190 | vtable_address_point_offset (struct gdbarch *gdbarch) |
7ed49443 | 191 | { |
9a3c8263 SM |
192 | struct type *vtable_type |
193 | = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data); | |
7ed49443 JB |
194 | |
195 | return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions) | |
196 | / TARGET_CHAR_BIT); | |
197 | } | |
198 | ||
199 | ||
d48cc9dd DJ |
200 | /* Determine whether structure TYPE is a dynamic class. Cache the |
201 | result. */ | |
202 | ||
203 | static int | |
204 | gnuv3_dynamic_class (struct type *type) | |
205 | { | |
206 | int fieldnum, fieldelem; | |
207 | ||
f168693b | 208 | type = check_typedef (type); |
5f4ce105 DE |
209 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT |
210 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
211 | ||
212 | if (TYPE_CODE (type) == TYPE_CODE_UNION) | |
213 | return 0; | |
214 | ||
d48cc9dd DJ |
215 | if (TYPE_CPLUS_DYNAMIC (type)) |
216 | return TYPE_CPLUS_DYNAMIC (type) == 1; | |
217 | ||
218 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
219 | ||
220 | for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++) | |
221 | if (BASETYPE_VIA_VIRTUAL (type, fieldnum) | |
222 | || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum))) | |
223 | { | |
224 | TYPE_CPLUS_DYNAMIC (type) = 1; | |
225 | return 1; | |
226 | } | |
227 | ||
228 | for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) | |
229 | for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); | |
230 | fieldelem++) | |
231 | { | |
232 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum); | |
233 | ||
234 | if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem)) | |
235 | { | |
236 | TYPE_CPLUS_DYNAMIC (type) = 1; | |
237 | return 1; | |
238 | } | |
239 | } | |
240 | ||
241 | TYPE_CPLUS_DYNAMIC (type) = -1; | |
242 | return 0; | |
243 | } | |
244 | ||
245 | /* Find the vtable for a value of CONTAINER_TYPE located at | |
246 | CONTAINER_ADDR. Return a value of the correct vtable type for this | |
247 | architecture, or NULL if CONTAINER does not have a vtable. */ | |
248 | ||
249 | static struct value * | |
250 | gnuv3_get_vtable (struct gdbarch *gdbarch, | |
251 | struct type *container_type, CORE_ADDR container_addr) | |
252 | { | |
9a3c8263 SM |
253 | struct type *vtable_type |
254 | = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data); | |
d48cc9dd DJ |
255 | struct type *vtable_pointer_type; |
256 | struct value *vtable_pointer; | |
257 | CORE_ADDR vtable_address; | |
258 | ||
f168693b | 259 | container_type = check_typedef (container_type); |
5f4ce105 DE |
260 | gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT); |
261 | ||
d48cc9dd DJ |
262 | /* If this type does not have a virtual table, don't read the first |
263 | field. */ | |
5f4ce105 | 264 | if (!gnuv3_dynamic_class (container_type)) |
d48cc9dd DJ |
265 | return NULL; |
266 | ||
267 | /* We do not consult the debug information to find the virtual table. | |
268 | The ABI specifies that it is always at offset zero in any class, | |
269 | and debug information may not represent it. | |
270 | ||
271 | We avoid using value_contents on principle, because the object might | |
272 | be large. */ | |
273 | ||
274 | /* Find the type "pointer to virtual table". */ | |
275 | vtable_pointer_type = lookup_pointer_type (vtable_type); | |
276 | ||
277 | /* Load it from the start of the class. */ | |
278 | vtable_pointer = value_at (vtable_pointer_type, container_addr); | |
279 | vtable_address = value_as_address (vtable_pointer); | |
280 | ||
281 | /* Correct it to point at the start of the virtual table, rather | |
282 | than the address point. */ | |
283 | return value_at_lazy (vtable_type, | |
0963b4bd MS |
284 | vtable_address |
285 | - vtable_address_point_offset (gdbarch)); | |
d48cc9dd DJ |
286 | } |
287 | ||
288 | ||
7ed49443 JB |
289 | static struct type * |
290 | gnuv3_rtti_type (struct value *value, | |
6b850546 | 291 | int *full_p, LONGEST *top_p, int *using_enc_p) |
7ed49443 | 292 | { |
ad4820ab | 293 | struct gdbarch *gdbarch; |
df407dfe | 294 | struct type *values_type = check_typedef (value_type (value)); |
7ed49443 JB |
295 | struct value *vtable; |
296 | struct minimal_symbol *vtable_symbol; | |
297 | const char *vtable_symbol_name; | |
298 | const char *class_name; | |
7ed49443 JB |
299 | struct type *run_time_type; |
300 | LONGEST offset_to_top; | |
e6a959d6 | 301 | const char *atsign; |
7ed49443 | 302 | |
e95a97d4 AA |
303 | /* We only have RTTI for dynamic class objects. */ |
304 | if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT | |
305 | || !gnuv3_dynamic_class (values_type)) | |
7ed49443 JB |
306 | return NULL; |
307 | ||
ad4820ab | 308 | /* Determine architecture. */ |
50810684 | 309 | gdbarch = get_type_arch (values_type); |
7ed49443 | 310 | |
21cfb3b6 DJ |
311 | if (using_enc_p) |
312 | *using_enc_p = 0; | |
313 | ||
5f4ce105 | 314 | vtable = gnuv3_get_vtable (gdbarch, values_type, |
d48cc9dd DJ |
315 | value_as_address (value_addr (value))); |
316 | if (vtable == NULL) | |
317 | return NULL; | |
318 | ||
7ed49443 JB |
319 | /* Find the linker symbol for this vtable. */ |
320 | vtable_symbol | |
42ae5230 | 321 | = lookup_minimal_symbol_by_pc (value_address (vtable) |
7cbd4a93 | 322 | + value_embedded_offset (vtable)).minsym; |
7ed49443 JB |
323 | if (! vtable_symbol) |
324 | return NULL; | |
325 | ||
326 | /* The symbol's demangled name should be something like "vtable for | |
327 | CLASS", where CLASS is the name of the run-time type of VALUE. | |
328 | If we didn't like this approach, we could instead look in the | |
329 | type_info object itself to get the class name. But this way | |
330 | should work just as well, and doesn't read target memory. */ | |
c9d95fa3 | 331 | vtable_symbol_name = vtable_symbol->demangled_name (); |
98081e55 | 332 | if (vtable_symbol_name == NULL |
61012eef | 333 | || !startswith (vtable_symbol_name, "vtable for ")) |
f773fdbb | 334 | { |
8a3fe4f8 | 335 | warning (_("can't find linker symbol for virtual table for `%s' value"), |
0a07729b | 336 | TYPE_SAFE_NAME (values_type)); |
f773fdbb | 337 | if (vtable_symbol_name) |
8a3fe4f8 | 338 | warning (_(" found `%s' instead"), vtable_symbol_name); |
f773fdbb JM |
339 | return NULL; |
340 | } | |
7ed49443 JB |
341 | class_name = vtable_symbol_name + 11; |
342 | ||
8de20a37 TT |
343 | /* Strip off @plt and version suffixes. */ |
344 | atsign = strchr (class_name, '@'); | |
345 | if (atsign != NULL) | |
346 | { | |
347 | char *copy; | |
348 | ||
224c3ddb | 349 | copy = (char *) alloca (atsign - class_name + 1); |
8de20a37 TT |
350 | memcpy (copy, class_name, atsign - class_name); |
351 | copy[atsign - class_name] = '\0'; | |
352 | class_name = copy; | |
353 | } | |
354 | ||
7ed49443 | 355 | /* Try to look up the class name as a type name. */ |
0963b4bd | 356 | /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */ |
362ff856 MC |
357 | run_time_type = cp_lookup_rtti_type (class_name, NULL); |
358 | if (run_time_type == NULL) | |
359 | return NULL; | |
7ed49443 JB |
360 | |
361 | /* Get the offset from VALUE to the top of the complete object. | |
362 | NOTE: this is the reverse of the meaning of *TOP_P. */ | |
363 | offset_to_top | |
364 | = value_as_long (value_field (vtable, vtable_field_offset_to_top)); | |
365 | ||
366 | if (full_p) | |
13c3b5f5 | 367 | *full_p = (- offset_to_top == value_embedded_offset (value) |
4754a64e | 368 | && (TYPE_LENGTH (value_enclosing_type (value)) |
7ed49443 JB |
369 | >= TYPE_LENGTH (run_time_type))); |
370 | if (top_p) | |
371 | *top_p = - offset_to_top; | |
7ed49443 JB |
372 | return run_time_type; |
373 | } | |
374 | ||
0d5de010 DJ |
375 | /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual |
376 | function, of type FNTYPE. */ | |
7ed49443 | 377 | |
0d5de010 | 378 | static struct value * |
ad4820ab UW |
379 | gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container, |
380 | struct type *fntype, int vtable_index) | |
0d5de010 | 381 | { |
d48cc9dd DJ |
382 | struct value *vtable, *vfn; |
383 | ||
384 | /* Every class with virtual functions must have a vtable. */ | |
385 | vtable = gnuv3_get_vtable (gdbarch, value_type (container), | |
386 | value_as_address (value_addr (container))); | |
387 | gdb_assert (vtable != NULL); | |
7ed49443 JB |
388 | |
389 | /* Fetch the appropriate function pointer from the vtable. */ | |
390 | vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions), | |
2497b498 | 391 | vtable_index); |
7ed49443 | 392 | |
0d5de010 DJ |
393 | /* If this architecture uses function descriptors directly in the vtable, |
394 | then the address of the vtable entry is actually a "function pointer" | |
395 | (i.e. points to the descriptor). We don't need to scale the index | |
85102364 | 396 | by the size of a function descriptor; GCC does that before outputting |
0d5de010 | 397 | debug information. */ |
ad4820ab | 398 | if (gdbarch_vtable_function_descriptors (gdbarch)) |
0d5de010 | 399 | vfn = value_addr (vfn); |
7ed49443 | 400 | |
0d5de010 DJ |
401 | /* Cast the function pointer to the appropriate type. */ |
402 | vfn = value_cast (lookup_pointer_type (fntype), vfn); | |
76b79d6e | 403 | |
7ed49443 JB |
404 | return vfn; |
405 | } | |
406 | ||
0d5de010 DJ |
407 | /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h |
408 | for a description of the arguments. */ | |
409 | ||
410 | static struct value * | |
411 | gnuv3_virtual_fn_field (struct value **value_p, | |
412 | struct fn_field *f, int j, | |
413 | struct type *vfn_base, int offset) | |
414 | { | |
415 | struct type *values_type = check_typedef (value_type (*value_p)); | |
ad4820ab | 416 | struct gdbarch *gdbarch; |
0d5de010 DJ |
417 | |
418 | /* Some simple sanity checks. */ | |
4753d33b | 419 | if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT) |
0d5de010 DJ |
420 | error (_("Only classes can have virtual functions.")); |
421 | ||
ad4820ab | 422 | /* Determine architecture. */ |
50810684 | 423 | gdbarch = get_type_arch (values_type); |
ad4820ab | 424 | |
0d5de010 DJ |
425 | /* Cast our value to the base class which defines this virtual |
426 | function. This takes care of any necessary `this' | |
427 | adjustments. */ | |
428 | if (vfn_base != values_type) | |
429 | *value_p = value_cast (vfn_base, *value_p); | |
430 | ||
ad4820ab | 431 | return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j), |
0d5de010 DJ |
432 | TYPE_FN_FIELD_VOFFSET (f, j)); |
433 | } | |
434 | ||
1514d34e DJ |
435 | /* Compute the offset of the baseclass which is |
436 | the INDEXth baseclass of class TYPE, | |
437 | for value at VALADDR (in host) at ADDRESS (in target). | |
438 | The result is the offset of the baseclass value relative | |
439 | to (the address of)(ARG) + OFFSET. | |
440 | ||
0963b4bd MS |
441 | -1 is returned on error. */ |
442 | ||
b9362cc7 | 443 | static int |
8af8e3bc | 444 | gnuv3_baseclass_offset (struct type *type, int index, |
6b850546 | 445 | const bfd_byte *valaddr, LONGEST embedded_offset, |
8af8e3bc | 446 | CORE_ADDR address, const struct value *val) |
1514d34e | 447 | { |
ad4820ab | 448 | struct gdbarch *gdbarch; |
ad4820ab | 449 | struct type *ptr_type; |
79d5b63a | 450 | struct value *vtable; |
2497b498 | 451 | struct value *vbase_array; |
1514d34e | 452 | long int cur_base_offset, base_offset; |
1514d34e | 453 | |
ad4820ab | 454 | /* Determine architecture. */ |
50810684 | 455 | gdbarch = get_type_arch (type); |
ad4820ab UW |
456 | ptr_type = builtin_type (gdbarch)->builtin_data_ptr; |
457 | ||
1514d34e | 458 | /* If it isn't a virtual base, this is easy. The offset is in the |
9c37b5ae TT |
459 | type definition. */ |
460 | if (!BASETYPE_VIA_VIRTUAL (type, index)) | |
1514d34e DJ |
461 | return TYPE_BASECLASS_BITPOS (type, index) / 8; |
462 | ||
463 | /* To access a virtual base, we need to use the vbase offset stored in | |
464 | our vtable. Recent GCC versions provide this information. If it isn't | |
465 | available, we could get what we needed from RTTI, or from drawing the | |
466 | complete inheritance graph based on the debug info. Neither is | |
467 | worthwhile. */ | |
468 | cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8; | |
ad4820ab | 469 | if (cur_base_offset >= - vtable_address_point_offset (gdbarch)) |
8a3fe4f8 | 470 | error (_("Expected a negative vbase offset (old compiler?)")); |
1514d34e | 471 | |
ad4820ab UW |
472 | cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch); |
473 | if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0) | |
8a3fe4f8 | 474 | error (_("Misaligned vbase offset.")); |
ad4820ab | 475 | cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type)); |
1514d34e | 476 | |
8af8e3bc | 477 | vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset); |
d48cc9dd | 478 | gdb_assert (vtable != NULL); |
1514d34e | 479 | vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets); |
2497b498 | 480 | base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset)); |
1514d34e DJ |
481 | return base_offset; |
482 | } | |
7ed49443 | 483 | |
0d5de010 DJ |
484 | /* Locate a virtual method in DOMAIN or its non-virtual base classes |
485 | which has virtual table index VOFFSET. The method has an associated | |
486 | "this" adjustment of ADJUSTMENT bytes. */ | |
487 | ||
2c0b251b | 488 | static const char * |
0d5de010 DJ |
489 | gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset, |
490 | LONGEST adjustment) | |
491 | { | |
492 | int i; | |
0d5de010 DJ |
493 | |
494 | /* Search this class first. */ | |
0d5de010 DJ |
495 | if (adjustment == 0) |
496 | { | |
497 | int len; | |
498 | ||
499 | len = TYPE_NFN_FIELDS (domain); | |
500 | for (i = 0; i < len; i++) | |
501 | { | |
502 | int len2, j; | |
503 | struct fn_field *f; | |
504 | ||
505 | f = TYPE_FN_FIELDLIST1 (domain, i); | |
506 | len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i); | |
507 | ||
508 | check_stub_method_group (domain, i); | |
509 | for (j = 0; j < len2; j++) | |
510 | if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset) | |
511 | return TYPE_FN_FIELD_PHYSNAME (f, j); | |
512 | } | |
513 | } | |
514 | ||
515 | /* Next search non-virtual bases. If it's in a virtual base, | |
516 | we're out of luck. */ | |
517 | for (i = 0; i < TYPE_N_BASECLASSES (domain); i++) | |
518 | { | |
519 | int pos; | |
520 | struct type *basetype; | |
521 | ||
522 | if (BASETYPE_VIA_VIRTUAL (domain, i)) | |
523 | continue; | |
524 | ||
525 | pos = TYPE_BASECLASS_BITPOS (domain, i) / 8; | |
526 | basetype = TYPE_FIELD_TYPE (domain, i); | |
527 | /* Recurse with a modified adjustment. We don't need to adjust | |
528 | voffset. */ | |
529 | if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype)) | |
530 | return gnuv3_find_method_in (basetype, voffset, adjustment - pos); | |
531 | } | |
532 | ||
533 | return NULL; | |
534 | } | |
535 | ||
fead6908 UW |
536 | /* Decode GNU v3 method pointer. */ |
537 | ||
538 | static int | |
ad4820ab UW |
539 | gnuv3_decode_method_ptr (struct gdbarch *gdbarch, |
540 | const gdb_byte *contents, | |
fead6908 UW |
541 | CORE_ADDR *value_p, |
542 | LONGEST *adjustment_p) | |
543 | { | |
ad4820ab | 544 | struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
ed09d7da | 545 | struct type *offset_type = vtable_ptrdiff_type (gdbarch); |
e17a4113 | 546 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
fead6908 UW |
547 | CORE_ADDR ptr_value; |
548 | LONGEST voffset, adjustment; | |
549 | int vbit; | |
550 | ||
551 | /* Extract the pointer to member. The first element is either a pointer | |
552 | or a vtable offset. For pointers, we need to use extract_typed_address | |
553 | to allow the back-end to convert the pointer to a GDB address -- but | |
554 | vtable offsets we must handle as integers. At this point, we do not | |
555 | yet know which case we have, so we extract the value under both | |
556 | interpretations and choose the right one later on. */ | |
557 | ptr_value = extract_typed_address (contents, funcptr_type); | |
e17a4113 UW |
558 | voffset = extract_signed_integer (contents, |
559 | TYPE_LENGTH (funcptr_type), byte_order); | |
fead6908 | 560 | contents += TYPE_LENGTH (funcptr_type); |
e17a4113 UW |
561 | adjustment = extract_signed_integer (contents, |
562 | TYPE_LENGTH (offset_type), byte_order); | |
fead6908 | 563 | |
ad4820ab | 564 | if (!gdbarch_vbit_in_delta (gdbarch)) |
fead6908 UW |
565 | { |
566 | vbit = voffset & 1; | |
567 | voffset = voffset ^ vbit; | |
568 | } | |
569 | else | |
570 | { | |
571 | vbit = adjustment & 1; | |
572 | adjustment = adjustment >> 1; | |
573 | } | |
574 | ||
575 | *value_p = vbit? voffset : ptr_value; | |
576 | *adjustment_p = adjustment; | |
577 | return vbit; | |
578 | } | |
579 | ||
0d5de010 DJ |
580 | /* GNU v3 implementation of cplus_print_method_ptr. */ |
581 | ||
582 | static void | |
583 | gnuv3_print_method_ptr (const gdb_byte *contents, | |
584 | struct type *type, | |
585 | struct ui_file *stream) | |
586 | { | |
09e2d7c7 DE |
587 | struct type *self_type = TYPE_SELF_TYPE (type); |
588 | struct gdbarch *gdbarch = get_type_arch (self_type); | |
0d5de010 DJ |
589 | CORE_ADDR ptr_value; |
590 | LONGEST adjustment; | |
0d5de010 DJ |
591 | int vbit; |
592 | ||
0d5de010 | 593 | /* Extract the pointer to member. */ |
ad4820ab | 594 | vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); |
0d5de010 DJ |
595 | |
596 | /* Check for NULL. */ | |
597 | if (ptr_value == 0 && vbit == 0) | |
598 | { | |
599 | fprintf_filtered (stream, "NULL"); | |
600 | return; | |
601 | } | |
602 | ||
603 | /* Search for a virtual method. */ | |
604 | if (vbit) | |
605 | { | |
606 | CORE_ADDR voffset; | |
607 | const char *physname; | |
608 | ||
609 | /* It's a virtual table offset, maybe in this class. Search | |
610 | for a field with the correct vtable offset. First convert it | |
611 | to an index, as used in TYPE_FN_FIELD_VOFFSET. */ | |
ed09d7da | 612 | voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch)); |
0d5de010 | 613 | |
09e2d7c7 | 614 | physname = gnuv3_find_method_in (self_type, voffset, adjustment); |
0d5de010 DJ |
615 | |
616 | /* If we found a method, print that. We don't bother to disambiguate | |
617 | possible paths to the method based on the adjustment. */ | |
618 | if (physname) | |
619 | { | |
8de20a37 TT |
620 | char *demangled_name = gdb_demangle (physname, |
621 | DMGL_ANSI | DMGL_PARAMS); | |
d8734c88 | 622 | |
94af9270 KS |
623 | fprintf_filtered (stream, "&virtual "); |
624 | if (demangled_name == NULL) | |
625 | fputs_filtered (physname, stream); | |
626 | else | |
0d5de010 | 627 | { |
0d5de010 DJ |
628 | fputs_filtered (demangled_name, stream); |
629 | xfree (demangled_name); | |
0d5de010 | 630 | } |
94af9270 | 631 | return; |
0d5de010 DJ |
632 | } |
633 | } | |
94af9270 KS |
634 | else if (ptr_value != 0) |
635 | { | |
636 | /* Found a non-virtual function: print out the type. */ | |
637 | fputs_filtered ("(", stream); | |
79d43c61 | 638 | c_print_type (type, "", stream, -1, 0, &type_print_raw_options); |
94af9270 KS |
639 | fputs_filtered (") ", stream); |
640 | } | |
0d5de010 DJ |
641 | |
642 | /* We didn't find it; print the raw data. */ | |
643 | if (vbit) | |
644 | { | |
645 | fprintf_filtered (stream, "&virtual table offset "); | |
646 | print_longest (stream, 'd', 1, ptr_value); | |
647 | } | |
648 | else | |
edf0c1b7 TT |
649 | { |
650 | struct value_print_options opts; | |
651 | ||
652 | get_user_print_options (&opts); | |
653 | print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle); | |
654 | } | |
0d5de010 DJ |
655 | |
656 | if (adjustment) | |
657 | { | |
658 | fprintf_filtered (stream, ", this adjustment "); | |
659 | print_longest (stream, 'd', 1, adjustment); | |
660 | } | |
661 | } | |
662 | ||
663 | /* GNU v3 implementation of cplus_method_ptr_size. */ | |
664 | ||
665 | static int | |
ad4820ab | 666 | gnuv3_method_ptr_size (struct type *type) |
0d5de010 | 667 | { |
561d3825 | 668 | struct gdbarch *gdbarch = get_type_arch (type); |
d8734c88 | 669 | |
ad4820ab | 670 | return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); |
0d5de010 DJ |
671 | } |
672 | ||
673 | /* GNU v3 implementation of cplus_make_method_ptr. */ | |
674 | ||
675 | static void | |
ad4820ab UW |
676 | gnuv3_make_method_ptr (struct type *type, gdb_byte *contents, |
677 | CORE_ADDR value, int is_virtual) | |
0d5de010 | 678 | { |
561d3825 | 679 | struct gdbarch *gdbarch = get_type_arch (type); |
ad4820ab | 680 | int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr); |
34877895 | 681 | enum bfd_endian byte_order = type_byte_order (type); |
0d5de010 DJ |
682 | |
683 | /* FIXME drow/2006-12-24: The adjustment of "this" is currently | |
684 | always zero, since the method pointer is of the correct type. | |
685 | But if the method pointer came from a base class, this is | |
686 | incorrect - it should be the offset to the base. The best | |
687 | fix might be to create the pointer to member pointing at the | |
688 | base class and cast it to the derived class, but that requires | |
689 | support for adjusting pointers to members when casting them - | |
690 | not currently supported by GDB. */ | |
691 | ||
ad4820ab | 692 | if (!gdbarch_vbit_in_delta (gdbarch)) |
0d5de010 | 693 | { |
e17a4113 UW |
694 | store_unsigned_integer (contents, size, byte_order, value | is_virtual); |
695 | store_unsigned_integer (contents + size, size, byte_order, 0); | |
0d5de010 DJ |
696 | } |
697 | else | |
698 | { | |
e17a4113 UW |
699 | store_unsigned_integer (contents, size, byte_order, value); |
700 | store_unsigned_integer (contents + size, size, byte_order, is_virtual); | |
0d5de010 DJ |
701 | } |
702 | } | |
703 | ||
704 | /* GNU v3 implementation of cplus_method_ptr_to_value. */ | |
705 | ||
706 | static struct value * | |
707 | gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr) | |
708 | { | |
ad4820ab | 709 | struct gdbarch *gdbarch; |
0d5de010 DJ |
710 | const gdb_byte *contents = value_contents (method_ptr); |
711 | CORE_ADDR ptr_value; | |
09e2d7c7 | 712 | struct type *self_type, *final_type, *method_type; |
0d5de010 | 713 | LONGEST adjustment; |
0d5de010 DJ |
714 | int vbit; |
715 | ||
09e2d7c7 DE |
716 | self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr))); |
717 | final_type = lookup_pointer_type (self_type); | |
0d5de010 DJ |
718 | |
719 | method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr))); | |
720 | ||
fead6908 | 721 | /* Extract the pointer to member. */ |
09e2d7c7 | 722 | gdbarch = get_type_arch (self_type); |
ad4820ab | 723 | vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment); |
0d5de010 DJ |
724 | |
725 | /* First convert THIS to match the containing type of the pointer to | |
726 | member. This cast may adjust the value of THIS. */ | |
727 | *this_p = value_cast (final_type, *this_p); | |
728 | ||
729 | /* Then apply whatever adjustment is necessary. This creates a somewhat | |
730 | strange pointer: it claims to have type FINAL_TYPE, but in fact it | |
731 | might not be a valid FINAL_TYPE. For instance, it might be a | |
732 | base class of FINAL_TYPE. And if it's not the primary base class, | |
733 | then printing it out as a FINAL_TYPE object would produce some pretty | |
734 | garbage. | |
735 | ||
736 | But we don't really know the type of the first argument in | |
737 | METHOD_TYPE either, which is why this happens. We can't | |
738 | dereference this later as a FINAL_TYPE, but once we arrive in the | |
739 | called method we'll have debugging information for the type of | |
740 | "this" - and that'll match the value we produce here. | |
741 | ||
742 | You can provoke this case by casting a Base::* to a Derived::*, for | |
743 | instance. */ | |
ad4820ab | 744 | *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p); |
2497b498 | 745 | *this_p = value_ptradd (*this_p, adjustment); |
0d5de010 DJ |
746 | *this_p = value_cast (final_type, *this_p); |
747 | ||
748 | if (vbit) | |
749 | { | |
ad4820ab | 750 | LONGEST voffset; |
d8734c88 | 751 | |
ed09d7da | 752 | voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch)); |
ad4820ab UW |
753 | return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p), |
754 | method_type, voffset); | |
0d5de010 DJ |
755 | } |
756 | else | |
757 | return value_from_pointer (lookup_pointer_type (method_type), ptr_value); | |
758 | } | |
759 | ||
c4aeac85 TT |
760 | /* Objects of this type are stored in a hash table and a vector when |
761 | printing the vtables for a class. */ | |
762 | ||
763 | struct value_and_voffset | |
764 | { | |
765 | /* The value representing the object. */ | |
766 | struct value *value; | |
767 | ||
768 | /* The maximum vtable offset we've found for any object at this | |
769 | offset in the outermost object. */ | |
770 | int max_voffset; | |
771 | }; | |
772 | ||
c4aeac85 TT |
773 | /* Hash function for value_and_voffset. */ |
774 | ||
775 | static hashval_t | |
776 | hash_value_and_voffset (const void *p) | |
777 | { | |
9a3c8263 | 778 | const struct value_and_voffset *o = (const struct value_and_voffset *) p; |
c4aeac85 TT |
779 | |
780 | return value_address (o->value) + value_embedded_offset (o->value); | |
781 | } | |
782 | ||
783 | /* Equality function for value_and_voffset. */ | |
784 | ||
785 | static int | |
786 | eq_value_and_voffset (const void *a, const void *b) | |
787 | { | |
9a3c8263 SM |
788 | const struct value_and_voffset *ova = (const struct value_and_voffset *) a; |
789 | const struct value_and_voffset *ovb = (const struct value_and_voffset *) b; | |
c4aeac85 TT |
790 | |
791 | return (value_address (ova->value) + value_embedded_offset (ova->value) | |
792 | == value_address (ovb->value) + value_embedded_offset (ovb->value)); | |
793 | } | |
794 | ||
59d3651b | 795 | /* Comparison function for value_and_voffset. */ |
c4aeac85 | 796 | |
59d3651b TT |
797 | static bool |
798 | compare_value_and_voffset (const struct value_and_voffset *va, | |
799 | const struct value_and_voffset *vb) | |
c4aeac85 | 800 | { |
59d3651b TT |
801 | CORE_ADDR addra = (value_address (va->value) |
802 | + value_embedded_offset (va->value)); | |
803 | CORE_ADDR addrb = (value_address (vb->value) | |
804 | + value_embedded_offset (vb->value)); | |
805 | ||
806 | return addra < addrb; | |
c4aeac85 TT |
807 | } |
808 | ||
809 | /* A helper function used when printing vtables. This determines the | |
810 | key (most derived) sub-object at each address and also computes the | |
811 | maximum vtable offset seen for the corresponding vtable. Updates | |
812 | OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if | |
813 | needed. VALUE is the object to examine. */ | |
814 | ||
815 | static void | |
816 | compute_vtable_size (htab_t offset_hash, | |
59d3651b | 817 | std::vector<value_and_voffset *> *offset_vec, |
c4aeac85 TT |
818 | struct value *value) |
819 | { | |
820 | int i; | |
821 | struct type *type = check_typedef (value_type (value)); | |
822 | void **slot; | |
823 | struct value_and_voffset search_vo, *current_vo; | |
c4aeac85 | 824 | |
5f4ce105 DE |
825 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT); |
826 | ||
c4aeac85 TT |
827 | /* If the object is not dynamic, then we are done; as it cannot have |
828 | dynamic base types either. */ | |
829 | if (!gnuv3_dynamic_class (type)) | |
830 | return; | |
831 | ||
832 | /* Update the hash and the vec, if needed. */ | |
833 | search_vo.value = value; | |
834 | slot = htab_find_slot (offset_hash, &search_vo, INSERT); | |
835 | if (*slot) | |
9a3c8263 | 836 | current_vo = (struct value_and_voffset *) *slot; |
c4aeac85 TT |
837 | else |
838 | { | |
839 | current_vo = XNEW (struct value_and_voffset); | |
840 | current_vo->value = value; | |
841 | current_vo->max_voffset = -1; | |
842 | *slot = current_vo; | |
59d3651b | 843 | offset_vec->push_back (current_vo); |
c4aeac85 TT |
844 | } |
845 | ||
846 | /* Update the value_and_voffset object with the highest vtable | |
847 | offset from this class. */ | |
848 | for (i = 0; i < TYPE_NFN_FIELDS (type); ++i) | |
849 | { | |
850 | int j; | |
851 | struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i); | |
852 | ||
853 | for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j) | |
854 | { | |
855 | if (TYPE_FN_FIELD_VIRTUAL_P (fn, j)) | |
856 | { | |
857 | int voffset = TYPE_FN_FIELD_VOFFSET (fn, j); | |
858 | ||
859 | if (voffset > current_vo->max_voffset) | |
860 | current_vo->max_voffset = voffset; | |
861 | } | |
862 | } | |
863 | } | |
864 | ||
865 | /* Recurse into base classes. */ | |
866 | for (i = 0; i < TYPE_N_BASECLASSES (type); ++i) | |
867 | compute_vtable_size (offset_hash, offset_vec, value_field (value, i)); | |
868 | } | |
869 | ||
870 | /* Helper for gnuv3_print_vtable that prints a single vtable. */ | |
871 | ||
872 | static void | |
873 | print_one_vtable (struct gdbarch *gdbarch, struct value *value, | |
874 | int max_voffset, | |
875 | struct value_print_options *opts) | |
876 | { | |
877 | int i; | |
878 | struct type *type = check_typedef (value_type (value)); | |
879 | struct value *vtable; | |
880 | CORE_ADDR vt_addr; | |
881 | ||
882 | vtable = gnuv3_get_vtable (gdbarch, type, | |
883 | value_address (value) | |
884 | + value_embedded_offset (value)); | |
885 | vt_addr = value_address (value_field (vtable, | |
886 | vtable_field_virtual_functions)); | |
887 | ||
888 | printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"), | |
889 | TYPE_SAFE_NAME (type), | |
890 | paddress (gdbarch, vt_addr), | |
891 | paddress (gdbarch, (value_address (value) | |
892 | + value_embedded_offset (value)))); | |
893 | ||
894 | for (i = 0; i <= max_voffset; ++i) | |
895 | { | |
cafe75b0 JK |
896 | /* Initialize it just to avoid a GCC false warning. */ |
897 | CORE_ADDR addr = 0; | |
492d29ea | 898 | int got_error = 0; |
c4aeac85 | 899 | struct value *vfn; |
c4aeac85 TT |
900 | |
901 | printf_filtered ("[%d]: ", i); | |
902 | ||
903 | vfn = value_subscript (value_field (vtable, | |
904 | vtable_field_virtual_functions), | |
905 | i); | |
906 | ||
907 | if (gdbarch_vtable_function_descriptors (gdbarch)) | |
908 | vfn = value_addr (vfn); | |
909 | ||
a70b8144 | 910 | try |
c4aeac85 TT |
911 | { |
912 | addr = value_as_address (vfn); | |
913 | } | |
230d2906 | 914 | catch (const gdb_exception_error &ex) |
492d29ea | 915 | { |
7f6aba03 TT |
916 | fprintf_styled (gdb_stdout, metadata_style.style (), |
917 | _("<error: %s>"), ex.what ()); | |
492d29ea PA |
918 | got_error = 1; |
919 | } | |
492d29ea PA |
920 | |
921 | if (!got_error) | |
edf0c1b7 | 922 | print_function_pointer_address (opts, gdbarch, addr, gdb_stdout); |
c4aeac85 TT |
923 | printf_filtered ("\n"); |
924 | } | |
925 | } | |
926 | ||
927 | /* Implementation of the print_vtable method. */ | |
928 | ||
929 | static void | |
930 | gnuv3_print_vtable (struct value *value) | |
931 | { | |
932 | struct gdbarch *gdbarch; | |
933 | struct type *type; | |
934 | struct value *vtable; | |
935 | struct value_print_options opts; | |
59d3651b | 936 | int count; |
c4aeac85 TT |
937 | |
938 | value = coerce_ref (value); | |
939 | type = check_typedef (value_type (value)); | |
940 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
941 | { | |
942 | value = value_ind (value); | |
943 | type = check_typedef (value_type (value)); | |
944 | } | |
945 | ||
946 | get_user_print_options (&opts); | |
947 | ||
948 | /* Respect 'set print object'. */ | |
949 | if (opts.objectprint) | |
950 | { | |
951 | value = value_full_object (value, NULL, 0, 0, 0); | |
952 | type = check_typedef (value_type (value)); | |
953 | } | |
954 | ||
955 | gdbarch = get_type_arch (type); | |
5f4ce105 DE |
956 | |
957 | vtable = NULL; | |
958 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
959 | vtable = gnuv3_get_vtable (gdbarch, type, | |
960 | value_as_address (value_addr (value))); | |
c4aeac85 TT |
961 | |
962 | if (!vtable) | |
963 | { | |
964 | printf_filtered (_("This object does not have a virtual function table\n")); | |
965 | return; | |
966 | } | |
967 | ||
fc4007c9 TT |
968 | htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset, |
969 | eq_value_and_voffset, | |
970 | xfree, xcalloc, xfree)); | |
59d3651b | 971 | std::vector<value_and_voffset *> result_vec; |
c4aeac85 | 972 | |
fc4007c9 | 973 | compute_vtable_size (offset_hash.get (), &result_vec, value); |
59d3651b TT |
974 | std::sort (result_vec.begin (), result_vec.end (), |
975 | compare_value_and_voffset); | |
c4aeac85 TT |
976 | |
977 | count = 0; | |
59d3651b | 978 | for (value_and_voffset *iter : result_vec) |
c4aeac85 TT |
979 | { |
980 | if (iter->max_voffset >= 0) | |
981 | { | |
982 | if (count > 0) | |
983 | printf_filtered ("\n"); | |
984 | print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts); | |
985 | ++count; | |
986 | } | |
987 | } | |
c4aeac85 TT |
988 | } |
989 | ||
6e72ca20 TT |
990 | /* Return a GDB type representing `struct std::type_info', laid out |
991 | appropriately for ARCH. | |
992 | ||
993 | We use this function as the gdbarch per-architecture data | |
994 | initialization function. */ | |
995 | ||
996 | static void * | |
997 | build_std_type_info_type (struct gdbarch *arch) | |
998 | { | |
999 | struct type *t; | |
1000 | struct field *field_list, *field; | |
1001 | int offset; | |
1002 | struct type *void_ptr_type | |
1003 | = builtin_type (arch)->builtin_data_ptr; | |
1004 | struct type *char_type | |
1005 | = builtin_type (arch)->builtin_char; | |
1006 | struct type *char_ptr_type | |
1007 | = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL); | |
1008 | ||
8d749320 | 1009 | field_list = XCNEWVEC (struct field, 2); |
6e72ca20 TT |
1010 | field = &field_list[0]; |
1011 | offset = 0; | |
1012 | ||
1013 | /* The vtable. */ | |
1014 | FIELD_NAME (*field) = "_vptr.type_info"; | |
1015 | FIELD_TYPE (*field) = void_ptr_type; | |
1016 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); | |
1017 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); | |
1018 | field++; | |
1019 | ||
1020 | /* The name. */ | |
1021 | FIELD_NAME (*field) = "__name"; | |
1022 | FIELD_TYPE (*field) = char_ptr_type; | |
1023 | SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT); | |
1024 | offset += TYPE_LENGTH (FIELD_TYPE (*field)); | |
1025 | field++; | |
1026 | ||
1027 | gdb_assert (field == (field_list + 2)); | |
1028 | ||
77b7c781 | 1029 | t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL); |
6e72ca20 TT |
1030 | TYPE_NFIELDS (t) = field - field_list; |
1031 | TYPE_FIELDS (t) = field_list; | |
e86ca25f | 1032 | TYPE_NAME (t) = "gdb_gnu_v3_type_info"; |
6e72ca20 TT |
1033 | INIT_CPLUS_SPECIFIC (t); |
1034 | ||
1035 | return t; | |
1036 | } | |
1037 | ||
1038 | /* Implement the 'get_typeid_type' method. */ | |
1039 | ||
1040 | static struct type * | |
1041 | gnuv3_get_typeid_type (struct gdbarch *gdbarch) | |
1042 | { | |
1043 | struct symbol *typeinfo; | |
1044 | struct type *typeinfo_type; | |
1045 | ||
d12307c1 PMR |
1046 | typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN, |
1047 | NULL).symbol; | |
6e72ca20 | 1048 | if (typeinfo == NULL) |
9a3c8263 SM |
1049 | typeinfo_type |
1050 | = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data); | |
6e72ca20 TT |
1051 | else |
1052 | typeinfo_type = SYMBOL_TYPE (typeinfo); | |
1053 | ||
1054 | return typeinfo_type; | |
1055 | } | |
1056 | ||
1057 | /* Implement the 'get_typeid' method. */ | |
1058 | ||
1059 | static struct value * | |
1060 | gnuv3_get_typeid (struct value *value) | |
1061 | { | |
1062 | struct type *typeinfo_type; | |
1063 | struct type *type; | |
1064 | struct gdbarch *gdbarch; | |
6e72ca20 | 1065 | struct value *result; |
2f408ecb | 1066 | std::string type_name, canonical; |
6e72ca20 TT |
1067 | |
1068 | /* We have to handle values a bit trickily here, to allow this code | |
1069 | to work properly with non_lvalue values that are really just | |
1070 | disguised types. */ | |
1071 | if (value_lval_const (value) == lval_memory) | |
1072 | value = coerce_ref (value); | |
1073 | ||
1074 | type = check_typedef (value_type (value)); | |
1075 | ||
1076 | /* In the non_lvalue case, a reference might have slipped through | |
1077 | here. */ | |
1078 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
1079 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1080 | ||
1081 | /* Ignore top-level cv-qualifiers. */ | |
1082 | type = make_cv_type (0, 0, type, NULL); | |
1083 | gdbarch = get_type_arch (type); | |
1084 | ||
fe978cb0 | 1085 | type_name = type_to_string (type); |
2f408ecb | 1086 | if (type_name.empty ()) |
6e72ca20 | 1087 | error (_("cannot find typeinfo for unnamed type")); |
6e72ca20 TT |
1088 | |
1089 | /* We need to canonicalize the type name here, because we do lookups | |
1090 | using the demangled name, and so we must match the format it | |
1091 | uses. E.g., GDB tends to use "const char *" as a type name, but | |
1092 | the demangler uses "char const *". */ | |
2f408ecb PA |
1093 | canonical = cp_canonicalize_string (type_name.c_str ()); |
1094 | if (!canonical.empty ()) | |
1095 | type_name = canonical; | |
6e72ca20 TT |
1096 | |
1097 | typeinfo_type = gnuv3_get_typeid_type (gdbarch); | |
1098 | ||
1099 | /* We check for lval_memory because in the "typeid (type-id)" case, | |
1100 | the type is passed via a not_lval value object. */ | |
4753d33b | 1101 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
6e72ca20 TT |
1102 | && value_lval_const (value) == lval_memory |
1103 | && gnuv3_dynamic_class (type)) | |
1104 | { | |
1105 | struct value *vtable, *typeinfo_value; | |
1106 | CORE_ADDR address = value_address (value) + value_embedded_offset (value); | |
1107 | ||
1108 | vtable = gnuv3_get_vtable (gdbarch, type, address); | |
1109 | if (vtable == NULL) | |
2f408ecb PA |
1110 | error (_("cannot find typeinfo for object of type '%s'"), |
1111 | type_name.c_str ()); | |
6e72ca20 TT |
1112 | typeinfo_value = value_field (vtable, vtable_field_type_info); |
1113 | result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL), | |
1114 | typeinfo_value)); | |
1115 | } | |
1116 | else | |
1117 | { | |
2f408ecb PA |
1118 | std::string sym_name = std::string ("typeinfo for ") + type_name; |
1119 | bound_minimal_symbol minsym | |
1120 | = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL); | |
6e72ca20 | 1121 | |
3b7344d5 | 1122 | if (minsym.minsym == NULL) |
2f408ecb | 1123 | error (_("could not find typeinfo symbol for '%s'"), type_name.c_str ()); |
6e72ca20 | 1124 | |
77e371c0 | 1125 | result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym)); |
6e72ca20 TT |
1126 | } |
1127 | ||
6e72ca20 TT |
1128 | return result; |
1129 | } | |
1130 | ||
cc16e6c9 | 1131 | /* Implement the 'get_typename_from_type_info' method. */ |
72f1fe8a | 1132 | |
2f408ecb | 1133 | static std::string |
72f1fe8a TT |
1134 | gnuv3_get_typename_from_type_info (struct value *type_info_ptr) |
1135 | { | |
1136 | struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr)); | |
1137 | struct bound_minimal_symbol typeinfo_sym; | |
1138 | CORE_ADDR addr; | |
1139 | const char *symname; | |
1140 | const char *class_name; | |
1141 | const char *atsign; | |
1142 | ||
1143 | addr = value_as_address (type_info_ptr); | |
1144 | typeinfo_sym = lookup_minimal_symbol_by_pc (addr); | |
1145 | if (typeinfo_sym.minsym == NULL) | |
1146 | error (_("could not find minimal symbol for typeinfo address %s"), | |
1147 | paddress (gdbarch, addr)); | |
1148 | ||
1149 | #define TYPEINFO_PREFIX "typeinfo for " | |
1150 | #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1) | |
c9d95fa3 | 1151 | symname = typeinfo_sym.minsym->demangled_name (); |
72f1fe8a TT |
1152 | if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX, |
1153 | TYPEINFO_PREFIX_LEN)) | |
1154 | error (_("typeinfo symbol '%s' has unexpected name"), | |
c9d95fa3 | 1155 | typeinfo_sym.minsym->linkage_name ()); |
72f1fe8a TT |
1156 | class_name = symname + TYPEINFO_PREFIX_LEN; |
1157 | ||
1158 | /* Strip off @plt and version suffixes. */ | |
1159 | atsign = strchr (class_name, '@'); | |
1160 | if (atsign != NULL) | |
2f408ecb PA |
1161 | return std::string (class_name, atsign - class_name); |
1162 | return class_name; | |
72f1fe8a TT |
1163 | } |
1164 | ||
1165 | /* Implement the 'get_type_from_type_info' method. */ | |
1166 | ||
1167 | static struct type * | |
1168 | gnuv3_get_type_from_type_info (struct value *type_info_ptr) | |
1169 | { | |
72f1fe8a TT |
1170 | /* We have to parse the type name, since in general there is not a |
1171 | symbol for a type. This is somewhat bogus since there may be a | |
1172 | mis-parse. Another approach might be to re-use the demangler's | |
1173 | internal form to reconstruct the type somehow. */ | |
2f408ecb PA |
1174 | std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr); |
1175 | expression_up expr (parse_expression (type_name.c_str ())); | |
1176 | struct value *type_val = evaluate_type (expr.get ()); | |
1177 | return value_type (type_val); | |
72f1fe8a TT |
1178 | } |
1179 | ||
b18be20d DJ |
1180 | /* Determine if we are currently in a C++ thunk. If so, get the address |
1181 | of the routine we are thunking to and continue to there instead. */ | |
1182 | ||
1183 | static CORE_ADDR | |
52f729a7 | 1184 | gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc) |
b18be20d | 1185 | { |
a513d1e8 | 1186 | CORE_ADDR real_stop_pc, method_stop_pc, func_addr; |
9970f04b | 1187 | struct gdbarch *gdbarch = get_frame_arch (frame); |
3b7344d5 | 1188 | struct bound_minimal_symbol thunk_sym, fn_sym; |
b18be20d | 1189 | struct obj_section *section; |
0d5cff50 | 1190 | const char *thunk_name, *fn_name; |
b18be20d | 1191 | |
9970f04b | 1192 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
b18be20d DJ |
1193 | if (real_stop_pc == 0) |
1194 | real_stop_pc = stop_pc; | |
1195 | ||
1196 | /* Find the linker symbol for this potential thunk. */ | |
3b7344d5 | 1197 | thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc); |
b18be20d | 1198 | section = find_pc_section (real_stop_pc); |
3b7344d5 | 1199 | if (thunk_sym.minsym == NULL || section == NULL) |
b18be20d DJ |
1200 | return 0; |
1201 | ||
1202 | /* The symbol's demangled name should be something like "virtual | |
1203 | thunk to FUNCTION", where FUNCTION is the name of the function | |
1204 | being thunked to. */ | |
c9d95fa3 | 1205 | thunk_name = thunk_sym.minsym->demangled_name (); |
b18be20d DJ |
1206 | if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL) |
1207 | return 0; | |
1208 | ||
1209 | fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to "); | |
1210 | fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile); | |
3b7344d5 | 1211 | if (fn_sym.minsym == NULL) |
b18be20d DJ |
1212 | return 0; |
1213 | ||
77e371c0 | 1214 | method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym); |
a513d1e8 LM |
1215 | |
1216 | /* Some targets have minimal symbols pointing to function descriptors | |
1217 | (powerpc 64 for example). Make sure to retrieve the address | |
1218 | of the real function from the function descriptor before passing on | |
1219 | the address to other layers of GDB. */ | |
1220 | func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc, | |
8b88a78e | 1221 | current_top_target ()); |
a513d1e8 LM |
1222 | if (func_addr != 0) |
1223 | method_stop_pc = func_addr; | |
1224 | ||
e76f05fa | 1225 | real_stop_pc = gdbarch_skip_trampoline_code |
9970f04b | 1226 | (gdbarch, frame, method_stop_pc); |
b18be20d DJ |
1227 | if (real_stop_pc == 0) |
1228 | real_stop_pc = method_stop_pc; | |
1229 | ||
1230 | return real_stop_pc; | |
1231 | } | |
1232 | ||
41f1b697 DJ |
1233 | /* Return nonzero if a type should be passed by reference. |
1234 | ||
1235 | The rule in the v3 ABI document comes from section 3.1.1. If the | |
1236 | type has a non-trivial copy constructor or destructor, then the | |
1237 | caller must make a copy (by calling the copy constructor if there | |
1238 | is one or perform the copy itself otherwise), pass the address of | |
1239 | the copy, and then destroy the temporary (if necessary). | |
1240 | ||
1241 | For return values with non-trivial copy constructors or | |
1242 | destructors, space will be allocated in the caller, and a pointer | |
1243 | will be passed as the first argument (preceding "this"). | |
1244 | ||
1245 | We don't have a bulletproof mechanism for determining whether a | |
1246 | constructor or destructor is trivial. For GCC and DWARF2 debug | |
1247 | information, we can check the artificial flag. | |
1248 | ||
1249 | We don't do anything with the constructors or destructors, | |
1250 | but we have to get the argument passing right anyway. */ | |
1251 | static int | |
1252 | gnuv3_pass_by_reference (struct type *type) | |
1253 | { | |
1254 | int fieldnum, fieldelem; | |
1255 | ||
f168693b | 1256 | type = check_typedef (type); |
41f1b697 DJ |
1257 | |
1258 | /* We're only interested in things that can have methods. */ | |
1259 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
41f1b697 DJ |
1260 | && TYPE_CODE (type) != TYPE_CODE_UNION) |
1261 | return 0; | |
1262 | ||
ebb8ece2 SC |
1263 | /* A dynamic class has a non-trivial copy constructor. |
1264 | See c++98 section 12.8 Copying class objects [class.copy]. */ | |
1265 | if (gnuv3_dynamic_class (type)) | |
1266 | return 1; | |
1267 | ||
41f1b697 DJ |
1268 | for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++) |
1269 | for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum); | |
1270 | fieldelem++) | |
1271 | { | |
1272 | struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum); | |
0d5cff50 | 1273 | const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum); |
41f1b697 DJ |
1274 | struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem); |
1275 | ||
1276 | /* If this function is marked as artificial, it is compiler-generated, | |
1277 | and we assume it is trivial. */ | |
1278 | if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem)) | |
1279 | continue; | |
1280 | ||
1281 | /* If we've found a destructor, we must pass this by reference. */ | |
1282 | if (name[0] == '~') | |
1283 | return 1; | |
1284 | ||
1285 | /* If the mangled name of this method doesn't indicate that it | |
1286 | is a constructor, we're not interested. | |
1287 | ||
1288 | FIXME drow/2007-09-23: We could do this using the name of | |
1289 | the method and the name of the class instead of dealing | |
1290 | with the mangled name. We don't have a convenient function | |
1291 | to strip off both leading scope qualifiers and trailing | |
1292 | template arguments yet. */ | |
7d27a96d TT |
1293 | if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)) |
1294 | && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem)) | |
41f1b697 DJ |
1295 | continue; |
1296 | ||
1297 | /* If this method takes two arguments, and the second argument is | |
1298 | a reference to this class, then it is a copy constructor. */ | |
82c48ac7 SC |
1299 | if (TYPE_NFIELDS (fieldtype) == 2) |
1300 | { | |
1301 | struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1); | |
82c48ac7 | 1302 | |
3433cfa5 SC |
1303 | if (TYPE_CODE (arg_type) == TYPE_CODE_REF) |
1304 | { | |
1305 | struct type *arg_target_type; | |
82c48ac7 | 1306 | |
3433cfa5 SC |
1307 | arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type)); |
1308 | if (class_types_same_p (arg_target_type, type)) | |
1309 | return 1; | |
1310 | } | |
82c48ac7 | 1311 | } |
41f1b697 DJ |
1312 | } |
1313 | ||
1314 | /* Even if all the constructors and destructors were artificial, one | |
1315 | of them may have invoked a non-artificial constructor or | |
1316 | destructor in a base class. If any base class needs to be passed | |
1317 | by reference, so does this class. Similarly for members, which | |
1318 | are constructed whenever this class is. We do not need to worry | |
1319 | about recursive loops here, since we are only looking at members | |
bceffbf3 | 1320 | of complete class type. Also ignore any static members. */ |
41f1b697 | 1321 | for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++) |
bceffbf3 JK |
1322 | if (! field_is_static (&TYPE_FIELD (type, fieldnum)) |
1323 | && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum))) | |
41f1b697 DJ |
1324 | return 1; |
1325 | ||
1326 | return 0; | |
1327 | } | |
1328 | ||
7ed49443 JB |
1329 | static void |
1330 | init_gnuv3_ops (void) | |
1331 | { | |
0963b4bd MS |
1332 | vtable_type_gdbarch_data |
1333 | = gdbarch_data_register_post_init (build_gdb_vtable_type); | |
6e72ca20 TT |
1334 | std_type_info_gdbarch_data |
1335 | = gdbarch_data_register_post_init (build_std_type_info_type); | |
7ed49443 JB |
1336 | |
1337 | gnu_v3_abi_ops.shortname = "gnu-v3"; | |
1338 | gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI"; | |
1339 | gnu_v3_abi_ops.doc = "G++ Version 3 ABI"; | |
358777b0 EZ |
1340 | gnu_v3_abi_ops.is_destructor_name = |
1341 | (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor; | |
1342 | gnu_v3_abi_ops.is_constructor_name = | |
1343 | (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor; | |
7ed49443 JB |
1344 | gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name; |
1345 | gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name; | |
1346 | gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type; | |
1347 | gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field; | |
1514d34e | 1348 | gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset; |
0d5de010 DJ |
1349 | gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr; |
1350 | gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size; | |
1351 | gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr; | |
1352 | gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value; | |
c4aeac85 | 1353 | gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable; |
6e72ca20 TT |
1354 | gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid; |
1355 | gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type; | |
72f1fe8a | 1356 | gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info; |
cc16e6c9 TT |
1357 | gnu_v3_abi_ops.get_typename_from_type_info |
1358 | = gnuv3_get_typename_from_type_info; | |
b18be20d | 1359 | gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline; |
41f1b697 | 1360 | gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference; |
7ed49443 JB |
1361 | } |
1362 | ||
7ed49443 JB |
1363 | void |
1364 | _initialize_gnu_v3_abi (void) | |
1365 | { | |
1366 | init_gnuv3_ops (); | |
1367 | ||
fe1f4a5e | 1368 | register_cp_abi (&gnu_v3_abi_ops); |
1605ef26 | 1369 | set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname); |
7ed49443 | 1370 | } |