* gdb.base/attach.exp (do_attach_tests): Don't forget to kill second
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
85a453d5 1/* Target-machine dependent code for Renesas H8/300, for GDB.
cda5a58a
AC
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
1e698235 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/*
c5aa993b
JM
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
c906108c
SS
26 */
27
28#include "defs.h"
c906108c 29#include "value.h"
928e48af
CV
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
928e48af
CV
34#include "gdbcore.h"
35#include "objfiles.h"
36#include "gdbcmd.h"
4904ba5b 37#include "gdb_assert.h"
a89aa300 38#include "dis-asm.h"
c906108c 39
928e48af
CV
40/* Extra info which is saved in each frame_info. */
41struct frame_extra_info
42{
43 CORE_ADDR from_pc;
928e48af 44};
c906108c 45
928e48af
CV
46enum
47{
48 h8300_reg_size = 2,
49 h8300h_reg_size = 4,
50 h8300_max_reg_size = 4,
51};
454d0511
DD
52
53static int is_h8300hmode (struct gdbarch *gdbarch);
54static int is_h8300smode (struct gdbarch *gdbarch);
55static int is_h8300sxmode (struct gdbarch *gdbarch);
56static int is_h8300_normal_mode (struct gdbarch *gdbarch);
57
58#define BINWORD (is_h8300hmode (current_gdbarch) && \
59 !is_h8300_normal_mode (current_gdbarch) ? h8300h_reg_size : h8300_reg_size)
928e48af
CV
60
61enum gdb_regnum
62{
63 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
0261a0d0
CV
64 E_RET0_REGNUM = E_R0_REGNUM,
65 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
928e48af
CV
66 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
67 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
68 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
69 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
70 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
71 E_SP_REGNUM,
72 E_CCR_REGNUM,
73 E_PC_REGNUM,
74 E_CYCLES_REGNUM,
75 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
76 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
084edea5
CV
77 E_INSTS_REGNUM,
78 E_MACH_REGNUM,
79 E_MACL_REGNUM,
80 E_SBR_REGNUM,
81 E_VBR_REGNUM
928e48af 82};
c906108c 83
4bb1dc5e
CV
84#define E_PSEUDO_CCR_REGNUM (NUM_REGS)
85#define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
86
c906108c
SS
87#define UNSIGNED_SHORT(X) ((X) & 0xffff)
88
89#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
90#define IS_PUSH_FP(x) (x == 0x6df6)
91#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
92#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
93#define IS_SUB2_SP(x) (x==0x1b87)
94#define IS_SUB4_SP(x) (x==0x1b97)
95#define IS_SUBL_SP(x) (x==0x7a37)
96#define IS_MOVK_R5(x) (x==0x7905)
97#define IS_SUB_R5SP(x) (x==0x1957)
98
928e48af
CV
99/* If the instruction at PC is an argument register spill, return its
100 length. Otherwise, return zero.
c906108c 101
928e48af
CV
102 An argument register spill is an instruction that moves an argument
103 from the register in which it was passed to the stack slot in which
104 it really lives. It is a byte, word, or longword move from an
4bb1dc5e
CV
105 argument register to a negative offset from the frame pointer.
106
107 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
108 is used, it could be a byte, word or long move to registers r3-r5. */
c906108c 109
928e48af
CV
110static int
111h8300_is_argument_spill (CORE_ADDR pc)
112{
113 int w = read_memory_unsigned_integer (pc, 2);
114
4bb1dc5e
CV
115 if (((w & 0xff88) == 0x0c88 /* mov.b Rsl, Rdl */
116 || (w & 0xff88) == 0x0d00 /* mov.w Rs, Rd */
117 || (w & 0xff88) == 0x0f80) /* mov.l Rs, Rd */
118 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
119 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
120 return 2;
121
928e48af
CV
122 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
123 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 /* ... and d:16 is negative. */
128 if (w2 < 0)
129 return 4;
130 }
131 else if (w == 0x7860)
132 {
133 int w2 = read_memory_integer (pc + 2, 2);
c906108c 134
928e48af
CV
135 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
136 {
137 LONGEST disp = read_memory_integer (pc + 4, 4);
c906108c 138
928e48af
CV
139 /* ... and d:24 is negative. */
140 if (disp < 0 && disp > 0xffffff)
141 return 8;
142 }
143 }
144 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
145 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
146 {
147 int w2 = read_memory_integer (pc + 2, 2);
c906108c 148
928e48af
CV
149 /* ... and d:16 is negative. */
150 if (w2 < 0)
151 return 4;
152 }
153 else if (w == 0x78e0)
154 {
155 int w2 = read_memory_integer (pc + 2, 2);
c906108c 156
928e48af
CV
157 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
158 {
159 LONGEST disp = read_memory_integer (pc + 4, 4);
160
161 /* ... and d:24 is negative. */
162 if (disp < 0 && disp > 0xffffff)
163 return 8;
164 }
165 }
166 else if (w == 0x0100)
167 {
168 int w2 = read_memory_integer (pc + 2, 2);
169
170 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
171 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
172 {
173 int w3 = read_memory_integer (pc + 4, 2);
174
175 /* ... and d:16 is negative. */
176 if (w3 < 0)
177 return 6;
178 }
179 else if (w2 == 0x78e0)
180 {
181 int w3 = read_memory_integer (pc + 4, 2);
182
183 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
184 {
185 LONGEST disp = read_memory_integer (pc + 6, 4);
186
187 /* ... and d:24 is negative. */
188 if (disp < 0 && disp > 0xffffff)
189 return 10;
190 }
191 }
192 }
193
194 return 0;
195}
196
197static CORE_ADDR
fba45db2 198h8300_skip_prologue (CORE_ADDR start_pc)
c906108c
SS
199{
200 short int w;
201 int adjust = 0;
202
203 /* Skip past all push and stm insns. */
204 while (1)
205 {
206 w = read_memory_unsigned_integer (start_pc, 2);
207 /* First look for push insns. */
208 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
209 {
210 w = read_memory_unsigned_integer (start_pc + 2, 2);
211 adjust = 2;
212 }
213
214 if (IS_PUSH (w))
215 {
216 start_pc += 2 + adjust;
217 w = read_memory_unsigned_integer (start_pc, 2);
218 continue;
219 }
220 adjust = 0;
221 break;
222 }
223
224 /* Skip past a move to FP, either word or long sized */
225 w = read_memory_unsigned_integer (start_pc, 2);
226 if (w == 0x0100)
227 {
228 w = read_memory_unsigned_integer (start_pc + 2, 2);
229 adjust += 2;
230 }
231
232 if (IS_MOVE_FP (w))
233 {
234 start_pc += 2 + adjust;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Check for loading either a word constant into r5;
239 long versions are handled by the SUBL_SP below. */
240 if (IS_MOVK_R5 (w))
241 {
242 start_pc += 2;
243 w = read_memory_unsigned_integer (start_pc, 2);
244 }
245
246 /* Now check for subtracting r5 from sp, word sized only. */
247 if (IS_SUB_R5SP (w))
248 {
249 start_pc += 2 + adjust;
250 w = read_memory_unsigned_integer (start_pc, 2);
251 }
252
253 /* Check for subs #2 and subs #4. */
254 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
255 {
256 start_pc += 2 + adjust;
257 w = read_memory_unsigned_integer (start_pc, 2);
258 }
259
260 /* Check for a 32bit subtract. */
261 if (IS_SUBL_SP (w))
262 start_pc += 6 + adjust;
263
4bb1dc5e
CV
264 /* Skip past another possible stm insn for registers R3 to R5 (possibly used
265 for register qualified arguments. */
266 w = read_memory_unsigned_integer (start_pc, 2);
267 /* First look for push insns. */
268 if (w == 0x0110 || w == 0x0120 || w == 0x0130)
269 {
270 w = read_memory_unsigned_integer (start_pc + 2, 2);
271 if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
272 start_pc += 4;
273 }
274
928e48af
CV
275 /* Check for spilling an argument register to the stack frame.
276 This could also be an initializing store from non-prologue code,
277 but I don't think there's any harm in skipping that. */
278 for (;;)
279 {
280 int spill_size = h8300_is_argument_spill (start_pc);
281 if (spill_size == 0)
282 break;
283 start_pc += spill_size;
284 }
285
c906108c
SS
286 return start_pc;
287}
288
c906108c
SS
289/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
290 is not the address of a valid instruction, the address of the next
291 instruction beyond ADDR otherwise. *PWORD1 receives the first word
c5aa993b 292 of the instruction. */
c906108c 293
928e48af 294static CORE_ADDR
884a26c8
MS
295h8300_next_prologue_insn (CORE_ADDR addr,
296 CORE_ADDR lim,
297 unsigned short* pword1)
c906108c
SS
298{
299 char buf[2];
300 if (addr < lim + 8)
301 {
302 read_memory (addr, buf, 2);
303 *pword1 = extract_signed_integer (buf, 2);
304
305 return addr + 2;
306 }
307 return 0;
308}
309
310/* Examine the prologue of a function. `ip' points to the first instruction.
311 `limit' is the limit of the prologue (e.g. the addr of the first
312 linenumber, or perhaps the program counter if we're stepping through).
313 `frame_sp' is the stack pointer value in use in this frame.
314 `fsr' is a pointer to a frame_saved_regs structure into which we put
315 info about the registers saved by this frame.
316 `fi' is a struct frame_info pointer; we fill in various fields in it
317 to reflect the offsets of the arg pointer and the locals pointer. */
318
928e48af
CV
319/* Any function with a frame looks like this
320 SECOND ARG
321 FIRST ARG
322 RET PC
323 SAVED R2
324 SAVED R3
325 SAVED FP <-FP POINTS HERE
326 LOCALS0
327 LOCALS1 <-SP POINTS HERE
328 */
329
c906108c 330static CORE_ADDR
aa1ee363 331h8300_examine_prologue (CORE_ADDR ip, CORE_ADDR limit,
928e48af
CV
332 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
333 struct frame_info *fi)
c906108c 334{
52f0bd74 335 CORE_ADDR next_ip;
c906108c
SS
336 int r;
337 int have_fp = 0;
928e48af 338 unsigned short insn_word;
c906108c
SS
339 /* Number of things pushed onto stack, starts at 2/4, 'cause the
340 PC is already there */
928e48af 341 unsigned int reg_save_depth = BINWORD;
c906108c
SS
342
343 unsigned int auto_depth = 0; /* Number of bytes of autos */
344
345 char in_frame[11]; /* One for each reg */
346
347 int adjust = 0;
348
349 memset (in_frame, 1, 11);
350 for (r = 0; r < 8; r++)
351 {
928e48af 352 fsr[r] = 0;
c906108c
SS
353 }
354 if (after_prolog_fp == 0)
355 {
928e48af 356 after_prolog_fp = read_register (E_SP_REGNUM);
c906108c
SS
357 }
358
359 /* If the PC isn't valid, quit now. */
454d0511
DD
360 if (ip == 0 || ip & (is_h8300hmode (current_gdbarch) &&
361 !is_h8300_normal_mode (current_gdbarch) ? ~0xffffff : ~0xffff))
c906108c
SS
362 return 0;
363
d1a8e808 364 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c 365
4bb1dc5e 366 if (insn_word == 0x0100) /* mov.l */
c906108c
SS
367 {
368 insn_word = read_memory_unsigned_integer (ip + 2, 2);
369 adjust = 2;
370 }
371
372 /* Skip over any fp push instructions */
928e48af 373 fsr[E_FP_REGNUM] = after_prolog_fp;
c906108c
SS
374 while (next_ip && IS_PUSH_FP (insn_word))
375 {
376 ip = next_ip + adjust;
377
378 in_frame[insn_word & 0x7] = reg_save_depth;
d1a8e808 379 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
380 reg_save_depth += 2 + adjust;
381 }
382
383 /* Is this a move into the fp */
384 if (next_ip && IS_MOV_SP_FP (insn_word))
385 {
386 ip = next_ip;
d1a8e808 387 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
388 have_fp = 1;
389 }
390
391 /* Skip over any stack adjustment, happens either with a number of
392 sub#2,sp or a mov #x,r5 sub r5,sp */
393
394 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
395 {
396 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
397 {
398 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
399 ip = next_ip;
d1a8e808 400 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
401 }
402 }
403 else
404 {
405 if (next_ip && IS_MOVK_R5 (insn_word))
406 {
407 ip = next_ip;
d1a8e808 408 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
409 auto_depth += insn_word;
410
d1a8e808 411 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
c906108c
SS
412 auto_depth += insn_word;
413 }
414 if (next_ip && IS_SUBL_SP (insn_word))
415 {
416 ip = next_ip;
417 auto_depth += read_memory_unsigned_integer (ip, 4);
418 ip += 4;
419
d1a8e808 420 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
421 }
422 }
423
424 /* Now examine the push insns to determine where everything lives
425 on the stack. */
426 while (1)
427 {
428 adjust = 0;
429 if (!next_ip)
430 break;
431
432 if (insn_word == 0x0100)
433 {
434 ip = next_ip;
d1a8e808 435 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
436 adjust = 2;
437 }
438
439 if (IS_PUSH (insn_word))
440 {
ddd216ea
CV
441 auto_depth += 2 + adjust;
442 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
c906108c 443 ip = next_ip;
d1a8e808 444 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
445 continue;
446 }
447
448 /* Now check for push multiple insns. */
449 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
450 {
451 int count = ((insn_word >> 4) & 0xf) + 1;
452 int start, i;
453
454 ip = next_ip;
d1a8e808 455 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
c906108c
SS
456 start = insn_word & 0x7;
457
6d305052 458 for (i = start; i < start + count; i++)
c906108c 459 {
c906108c 460 auto_depth += 4;
ddd216ea 461 fsr[i] = after_prolog_fp - auto_depth;
c906108c
SS
462 }
463 }
464 break;
465 }
466
c906108c 467 /* The PC is at a known place */
da50a4b7 468 get_frame_extra_info (fi)->from_pc =
7e78f0ca 469 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
c906108c
SS
470
471 /* Rememeber any others too */
928e48af 472 in_frame[E_PC_REGNUM] = 0;
c5aa993b 473
c906108c
SS
474 if (have_fp)
475 /* We keep the old FP in the SP spot */
884a26c8
MS
476 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
477 BINWORD);
c906108c 478 else
928e48af 479 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
c906108c
SS
480
481 return (ip);
482}
483
928e48af
CV
484static void
485h8300_frame_init_saved_regs (struct frame_info *fi)
c906108c 486{
928e48af
CV
487 CORE_ADDR func_addr, func_end;
488
1b1d3794 489 if (!deprecated_get_frame_saved_regs (fi))
928e48af
CV
490 {
491 frame_saved_regs_zalloc (fi);
492
493 /* Find the beginning of this function, so we can analyze its
494 prologue. */
884a26c8
MS
495 if (find_pc_partial_function (get_frame_pc (fi), NULL,
496 &func_addr, &func_end))
928e48af
CV
497 {
498 struct symtab_and_line sal = find_pc_line (func_addr, 0);
884a26c8
MS
499 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
500 ? sal.end : get_frame_pc (fi);
928e48af 501 /* This will fill in fields in fi. */
1e2330ba 502 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
1b1d3794 503 deprecated_get_frame_saved_regs (fi), fi);
928e48af
CV
504 }
505 /* Else we're out of luck (can't debug completely stripped code).
506 FIXME. */
507 }
508}
509
a5afb99f
AC
510/* Given a GDB frame, determine the address of the calling function's
511 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
512 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
513 will be called for the new frame.
928e48af
CV
514
515 For us, the frame address is its stack pointer value, so we look up
884a26c8
MS
516 the function prologue to determine the caller's sp value, and
517 return it. */
928e48af
CV
518
519static CORE_ADDR
520h8300_frame_chain (struct frame_info *thisframe)
521{
30a4a8e0 522 if (deprecated_pc_in_call_dummy (get_frame_pc (thisframe)))
928e48af 523 { /* initialize the from_pc now */
da50a4b7 524 get_frame_extra_info (thisframe)->from_pc =
1e2330ba
AC
525 deprecated_read_register_dummy (get_frame_pc (thisframe),
526 get_frame_base (thisframe),
135c175f 527 E_PC_REGNUM);
1e2330ba 528 return get_frame_base (thisframe);
c906108c 529 }
1b1d3794 530 return deprecated_get_frame_saved_regs (thisframe)[E_SP_REGNUM];
c906108c
SS
531}
532
533/* Return the saved PC from this frame.
534
535 If the frame has a memory copy of SRP_REGNUM, use that. If not,
536 just use the register SRP_REGNUM itself. */
537
928e48af 538static CORE_ADDR
fba45db2 539h8300_frame_saved_pc (struct frame_info *frame)
c906108c 540{
30a4a8e0 541 if (deprecated_pc_in_call_dummy (get_frame_pc (frame)))
1e2330ba
AC
542 return deprecated_read_register_dummy (get_frame_pc (frame),
543 get_frame_base (frame),
135c175f 544 E_PC_REGNUM);
c906108c 545 else
da50a4b7 546 return get_frame_extra_info (frame)->from_pc;
c906108c
SS
547}
548
928e48af
CV
549static void
550h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
551{
da50a4b7 552 if (!get_frame_extra_info (fi))
928e48af 553 {
a00a19e9 554 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
da50a4b7 555 get_frame_extra_info (fi)->from_pc = 0;
928e48af 556
50abf9e5 557 if (!get_frame_pc (fi))
928e48af 558 {
11c02a10
AC
559 if (get_next_frame (fi))
560 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
928e48af
CV
561 }
562 h8300_frame_init_saved_regs (fi);
563 }
564}
565
63d47a7d 566/* Function: push_dummy_call
c906108c 567 Setup the function arguments for calling a function in the inferior.
928e48af
CV
568 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
569 on the H8/300H.
570
571 There are actually two ABI's here: -mquickcall (the default) and
572 -mno-quickcall. With -mno-quickcall, all arguments are passed on
573 the stack after the return address, word-aligned. With
574 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
575 GCC doesn't indicate in the object file which ABI was used to
576 compile it, GDB only supports the default --- -mquickcall.
577
578 Here are the rules for -mquickcall, in detail:
579
580 Each argument, whether scalar or aggregate, is padded to occupy a
581 whole number of words. Arguments smaller than a word are padded at
582 the most significant end; those larger than a word are padded at
583 the least significant end.
584
585 The initial arguments are passed in r0 -- r2. Earlier arguments go in
586 lower-numbered registers. Multi-word arguments are passed in
587 consecutive registers, with the most significant end in the
588 lower-numbered register.
589
590 If an argument doesn't fit entirely in the remaining registers, it
591 is passed entirely on the stack. Stack arguments begin just after
592 the return address. Once an argument has overflowed onto the stack
593 this way, all subsequent arguments are passed on the stack.
594
595 The above rule has odd consequences. For example, on the h8/300s,
596 if a function takes two longs and an int as arguments:
597 - the first long will be passed in r0/r1,
598 - the second long will be passed entirely on the stack, since it
599 doesn't fit in r2,
600 - and the int will be passed on the stack, even though it could fit
601 in r2.
602
603 A weird exception: if an argument is larger than a word, but not a
604 whole number of words in length (before padding), it is passed on
605 the stack following the rules for stack arguments above, even if
606 there are sufficient registers available to hold it. Stranger
607 still, the argument registers are still `used up' --- even though
608 there's nothing in them.
609
610 So, for example, on the h8/300s, if a function expects a three-byte
611 structure and an int, the structure will go on the stack, and the
612 int will go in r2, not r0.
613
614 If the function returns an aggregate type (struct, union, or class)
615 by value, the caller must allocate space to hold the return value,
616 and pass the callee a pointer to this space as an invisible first
617 argument, in R0.
618
619 For varargs functions, the last fixed argument and all the variable
620 arguments are always passed on the stack. This means that calls to
621 varargs functions don't work properly unless there is a prototype
622 in scope.
623
624 Basically, this ABI is not good, for the following reasons:
625 - You can't call vararg functions properly unless a prototype is in scope.
626 - Structure passing is inconsistent, to no purpose I can see.
627 - It often wastes argument registers, of which there are only three
628 to begin with. */
c906108c 629
928e48af 630static CORE_ADDR
7d9b040b 631h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
63d47a7d
CV
632 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
633 struct value **args, CORE_ADDR sp, int struct_return,
634 CORE_ADDR struct_addr)
c906108c 635{
63d47a7d 636 int stack_alloc = 0, stack_offset = 0;
928e48af 637 int wordsize = BINWORD;
63d47a7d 638 int reg = E_ARG0_REGNUM;
928e48af
CV
639 int argument;
640
641 /* First, make sure the stack is properly aligned. */
5b03f266 642 sp = align_down (sp, wordsize);
928e48af
CV
643
644 /* Now make sure there's space on the stack for the arguments. We
645 may over-allocate a little here, but that won't hurt anything. */
928e48af 646 for (argument = 0; argument < nargs; argument++)
5b03f266 647 stack_alloc += align_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
928e48af
CV
648 wordsize);
649 sp -= stack_alloc;
650
651 /* Now load as many arguments as possible into registers, and push
63d47a7d
CV
652 the rest onto the stack.
653 If we're returning a structure by value, then we must pass a
928e48af
CV
654 pointer to the buffer for the return value as an invisible first
655 argument. */
656 if (struct_return)
63d47a7d 657 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
928e48af
CV
658
659 for (argument = 0; argument < nargs; argument++)
c906108c 660 {
928e48af
CV
661 struct type *type = VALUE_TYPE (args[argument]);
662 int len = TYPE_LENGTH (type);
663 char *contents = (char *) VALUE_CONTENTS (args[argument]);
664
665 /* Pad the argument appropriately. */
5b03f266 666 int padded_len = align_up (len, wordsize);
928e48af
CV
667 char *padded = alloca (padded_len);
668
669 memset (padded, 0, padded_len);
670 memcpy (len < wordsize ? padded + padded_len - len : padded,
671 contents, len);
672
673 /* Could the argument fit in the remaining registers? */
674 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
675 {
676 /* Are we going to pass it on the stack anyway, for no good
677 reason? */
678 if (len > wordsize && len % wordsize)
679 {
680 /* I feel so unclean. */
681 write_memory (sp + stack_offset, padded, padded_len);
682 stack_offset += padded_len;
683
684 /* That's right --- even though we passed the argument
685 on the stack, we consume the registers anyway! Love
686 me, love my dog. */
687 reg += padded_len / wordsize;
688 }
689 else
690 {
691 /* Heavens to Betsy --- it's really going in registers!
692 It would be nice if we could use write_register_bytes
693 here, but on the h8/300s, there are gaps between
694 the registers in the register file. */
695 int offset;
696
697 for (offset = 0; offset < padded_len; offset += wordsize)
698 {
884a26c8
MS
699 ULONGEST word = extract_unsigned_integer (padded + offset,
700 wordsize);
63d47a7d 701 regcache_cooked_write_unsigned (regcache, reg++, word);
928e48af
CV
702 }
703 }
704 }
c906108c 705 else
928e48af
CV
706 {
707 /* It doesn't fit in registers! Onto the stack it goes. */
708 write_memory (sp + stack_offset, padded, padded_len);
709 stack_offset += padded_len;
710
711 /* Once one argument has spilled onto the stack, all
712 subsequent arguments go on the stack. */
713 reg = E_ARGLAST_REGNUM + 1;
714 }
c906108c 715 }
928e48af 716
63d47a7d
CV
717 /* Store return address. */
718 sp -= wordsize;
719 write_memory_unsigned_integer (sp, wordsize, bp_addr);
c906108c 720
63d47a7d
CV
721 /* Update stack pointer. */
722 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
c906108c 723
c906108c
SS
724 return sp;
725}
726
7256e1a5 727/* Function: h8300_pop_frame
c906108c
SS
728 Restore the machine to the state it had before the current frame
729 was created. Usually used either by the "RETURN" command, or by
730 call_function_by_hand after the dummy_frame is finished. */
731
928e48af 732static void
fba45db2 733h8300_pop_frame (void)
c906108c 734{
928e48af 735 unsigned regno;
c906108c
SS
736 struct frame_info *frame = get_current_frame ();
737
30a4a8e0 738 if (deprecated_pc_in_call_dummy (get_frame_pc (frame)))
c906108c 739 {
8adf9e78 740 deprecated_pop_dummy_frame ();
c906108c
SS
741 }
742 else
743 {
928e48af 744 for (regno = 0; regno < 8; regno++)
c906108c 745 {
928e48af 746 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
c906108c 747 actual value we want, not the address of the value we want. */
1b1d3794 748 if (deprecated_get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
928e48af 749 write_register (regno,
884a26c8 750 read_memory_integer
1b1d3794
AC
751 (deprecated_get_frame_saved_regs (frame)[regno], BINWORD));
752 else if (deprecated_get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
1e2330ba 753 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
c906108c
SS
754 }
755
928e48af 756 /* Don't forget to update the PC too! */
da50a4b7 757 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
c906108c
SS
758 }
759 flush_cached_frames ();
760}
761
762/* Function: extract_return_value
763 Figure out where in REGBUF the called function has left its return value.
764 Copy that into VALBUF. Be sure to account for CPU type. */
765
928e48af 766static void
0261a0d0
CV
767h8300_extract_return_value (struct type *type, struct regcache *regcache,
768 void *valbuf)
c906108c 769{
928e48af 770 int len = TYPE_LENGTH (type);
708cc1b6 771 ULONGEST c, addr;
c5aa993b
JM
772
773 switch (len)
774 {
0261a0d0
CV
775 case 1:
776 case 2:
777 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
778 store_unsigned_integer (valbuf, len, c);
779 break;
780 case 4: /* Needs two registers on plain H8/300 */
781 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
782 store_unsigned_integer (valbuf, 2, c);
783 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
784 store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
785 break;
708cc1b6
MS
786 case 8: /* long long is now 8 bytes. */
787 if (TYPE_CODE (type) == TYPE_CODE_INT)
788 {
789 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
790 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
791 store_unsigned_integer (valbuf, len, c);
792 }
793 else
794 {
795 error ("I don't know how this 8 byte value is returned.");
796 }
0261a0d0
CV
797 break;
798 }
799}
800
801static void
802h8300h_extract_return_value (struct type *type, struct regcache *regcache,
803 void *valbuf)
804{
805 int len = TYPE_LENGTH (type);
708cc1b6 806 ULONGEST c, addr;
0261a0d0
CV
807
808 switch (len)
809 {
810 case 1:
811 case 2:
812 case 4:
813 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
814 store_unsigned_integer (valbuf, len, c);
815 break;
708cc1b6
MS
816 case 8: /* long long is now 8 bytes. */
817 if (TYPE_CODE (type) == TYPE_CODE_INT)
818 {
819 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
820 c = read_memory_unsigned_integer ((CORE_ADDR) addr, len);
821 store_unsigned_integer (valbuf, len, c);
822 }
823 else
824 {
825 error ("I don't know how this 8 byte value is returned.");
826 }
0261a0d0 827 break;
c5aa993b 828 }
c906108c
SS
829}
830
0261a0d0 831
c906108c
SS
832/* Function: store_return_value
833 Place the appropriate value in the appropriate registers.
834 Primarily used by the RETURN command. */
835
928e48af 836static void
0261a0d0
CV
837h8300_store_return_value (struct type *type, struct regcache *regcache,
838 const void *valbuf)
c906108c 839{
928e48af 840 int len = TYPE_LENGTH (type);
0261a0d0 841 ULONGEST val;
c906108c 842
c5aa993b
JM
843 switch (len)
844 {
0261a0d0 845 case 1:
708cc1b6 846 case 2: /* short... */
0261a0d0
CV
847 val = extract_unsigned_integer (valbuf, len);
848 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
849 break;
708cc1b6 850 case 4: /* long, float */
0261a0d0
CV
851 val = extract_unsigned_integer (valbuf, len);
852 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
853 (val >> 16) &0xffff);
854 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
855 break;
708cc1b6
MS
856 case 8: /* long long, double and long double are all defined
857 as 4 byte types so far so this shouldn't happen. */
858 error ("I don't know how to return an 8 byte value.");
0261a0d0
CV
859 break;
860 }
861}
862
863static void
864h8300h_store_return_value (struct type *type, struct regcache *regcache,
865 const void *valbuf)
866{
867 int len = TYPE_LENGTH (type);
868 ULONGEST val;
869
870 switch (len)
871 {
872 case 1:
873 case 2:
708cc1b6 874 case 4: /* long, float */
0261a0d0
CV
875 val = extract_unsigned_integer (valbuf, len);
876 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
877 break;
708cc1b6
MS
878 case 8: /* long long, double and long double are all defined
879 as 4 byte types so far so this shouldn't happen. */
880 error ("I don't know how to return an 8 byte value.");
0261a0d0 881 break;
c5aa993b 882 }
c906108c
SS
883}
884
928e48af 885static struct cmd_list_element *setmachinelist;
c906108c 886
928e48af
CV
887static const char *
888h8300_register_name (int regno)
c906108c 889{
084edea5 890 /* The register names change depending on which h8300 processor
928e48af 891 type is selected. */
084edea5 892 static char *register_names[] = {
928e48af 893 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
4bb1dc5e
CV
894 "sp", "","pc","cycles", "tick", "inst",
895 "ccr", /* pseudo register */
928e48af 896 };
084edea5
CV
897 if (regno < 0
898 || regno >= (sizeof (register_names) / sizeof (*register_names)))
899 internal_error (__FILE__, __LINE__,
900 "h8300_register_name: illegal register number %d", regno);
901 else
902 return register_names[regno];
903}
904
905static const char *
906h8300s_register_name (int regno)
907{
908 static char *register_names[] = {
928e48af 909 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
4bb1dc5e 910 "sp", "", "pc", "cycles", "", "tick", "inst",
7be04a68 911 "mach", "macl",
4bb1dc5e 912 "ccr", "exr" /* pseudo registers */
928e48af 913 };
084edea5
CV
914 if (regno < 0
915 || regno >= (sizeof (register_names) / sizeof (*register_names)))
916 internal_error (__FILE__, __LINE__,
917 "h8300s_register_name: illegal register number %d", regno);
918 else
919 return register_names[regno];
920}
921
922static const char *
923h8300sx_register_name (int regno)
924{
925 static char *register_names[] = {
926 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
4bb1dc5e
CV
927 "sp", "", "pc", "cycles", "", "tick", "inst",
928 "mach", "macl", "sbr", "vbr",
929 "ccr", "exr" /* pseudo registers */
084edea5
CV
930 };
931 if (regno < 0
932 || regno >= (sizeof (register_names) / sizeof (*register_names)))
928e48af 933 internal_error (__FILE__, __LINE__,
084edea5 934 "h8300sx_register_name: illegal register number %d", regno);
c906108c 935 else
928e48af 936 return register_names[regno];
c906108c
SS
937}
938
939static void
4904ba5b
AC
940h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
941 struct frame_info *frame, int regno)
c906108c 942{
084edea5
CV
943 LONGEST rval;
944 const char *name = gdbarch_register_name (gdbarch, regno);
c906108c 945
928e48af
CV
946 if (!name || !*name)
947 return;
c906108c 948
7f5f525d 949 rval = get_frame_register_signed (frame, regno);
4904ba5b
AC
950
951 fprintf_filtered (file, "%-14s ", name);
454d0511
DD
952 if (regno == E_PSEUDO_CCR_REGNUM ||
953 (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch)))
c906108c 954 {
084edea5
CV
955 fprintf_filtered (file, "0x%02x ", (unsigned char)rval);
956 print_longest (file, 'u', 1, rval);
c906108c
SS
957 }
958 else
959 {
084edea5
CV
960 fprintf_filtered (file, "0x%s ", phex ((ULONGEST)rval, BINWORD));
961 print_longest (file, 'd', 1, rval);
c906108c 962 }
4bb1dc5e 963 if (regno == E_PSEUDO_CCR_REGNUM)
c906108c
SS
964 {
965 /* CCR register */
966 int C, Z, N, V;
084edea5 967 unsigned char l = rval & 0xff;
4904ba5b
AC
968 fprintf_filtered (file, "\t");
969 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
970 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
971 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
972 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
c906108c
SS
973 N = (l & 0x8) != 0;
974 Z = (l & 0x4) != 0;
975 V = (l & 0x2) != 0;
976 C = (l & 0x1) != 0;
4904ba5b
AC
977 fprintf_filtered (file, "N-%d ", N);
978 fprintf_filtered (file, "Z-%d ", Z);
979 fprintf_filtered (file, "V-%d ", V);
980 fprintf_filtered (file, "C-%d ", C);
c906108c 981 if ((C | Z) == 0)
4904ba5b 982 fprintf_filtered (file, "u> ");
c906108c 983 if ((C | Z) == 1)
4904ba5b 984 fprintf_filtered (file, "u<= ");
c906108c 985 if ((C == 0))
4904ba5b 986 fprintf_filtered (file, "u>= ");
c906108c 987 if (C == 1)
4904ba5b 988 fprintf_filtered (file, "u< ");
c906108c 989 if (Z == 0)
4904ba5b 990 fprintf_filtered (file, "!= ");
c906108c 991 if (Z == 1)
4904ba5b 992 fprintf_filtered (file, "== ");
c906108c 993 if ((N ^ V) == 0)
4904ba5b 994 fprintf_filtered (file, ">= ");
c906108c 995 if ((N ^ V) == 1)
4904ba5b 996 fprintf_filtered (file, "< ");
c906108c 997 if ((Z | (N ^ V)) == 0)
4904ba5b 998 fprintf_filtered (file, "> ");
c906108c 999 if ((Z | (N ^ V)) == 1)
4904ba5b 1000 fprintf_filtered (file, "<= ");
c906108c 1001 }
454d0511 1002 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
fc974602
AV
1003 {
1004 /* EXR register */
084edea5 1005 unsigned char l = rval & 0xff;
4904ba5b
AC
1006 fprintf_filtered (file, "\t");
1007 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
1008 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
1009 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
1010 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
d194345b 1011 }
4904ba5b 1012 fprintf_filtered (file, "\n");
928e48af
CV
1013}
1014
1015static void
4904ba5b
AC
1016h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1017 struct frame_info *frame, int regno, int cpregs)
928e48af
CV
1018{
1019 if (regno < 0)
4bb1dc5e
CV
1020 {
1021 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1022 h8300_print_register (gdbarch, file, frame, regno);
1023 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1024 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
454d0511 1025 if (is_h8300smode (current_gdbarch))
4bb1dc5e
CV
1026 {
1027 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
454d0511 1028 if (is_h8300sxmode (current_gdbarch))
4bb1dc5e
CV
1029 {
1030 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1031 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
4bb1dc5e 1032 }
7be04a68
MS
1033 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1034 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
4bb1dc5e
CV
1035 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1036 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1037 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1038 }
1039 else
1040 {
1041 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1042 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1043 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1044 }
1045 }
928e48af 1046 else
4bb1dc5e
CV
1047 {
1048 if (regno == E_CCR_REGNUM)
1049 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
454d0511 1050 else if (regno == E_PSEUDO_EXR_REGNUM && is_h8300smode (current_gdbarch))
4bb1dc5e
CV
1051 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1052 else
1053 h8300_print_register (gdbarch, file, frame, regno);
1054 }
928e48af
CV
1055}
1056
1057static CORE_ADDR
1058h8300_saved_pc_after_call (struct frame_info *ignore)
1059{
1060 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1061}
1062
928e48af 1063static struct type *
055c394a 1064h8300_register_type (struct gdbarch *gdbarch, int regno)
928e48af 1065{
4bb1dc5e 1066 if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
928e48af 1067 internal_error (__FILE__, __LINE__,
055c394a 1068 "h8300_register_type: illegal register number %d",
928e48af
CV
1069 regno);
1070 else
084edea5
CV
1071 {
1072 switch (regno)
1073 {
1074 case E_PC_REGNUM:
1075 return builtin_type_void_func_ptr;
1076 case E_SP_REGNUM:
1077 case E_FP_REGNUM:
1078 return builtin_type_void_data_ptr;
084edea5 1079 default:
4bb1dc5e
CV
1080 if (regno == E_PSEUDO_CCR_REGNUM)
1081 return builtin_type_uint8;
1082 else if (regno == E_PSEUDO_EXR_REGNUM)
1083 return builtin_type_uint8;
454d0511 1084 else if (is_h8300hmode (current_gdbarch))
4bb1dc5e
CV
1085 return builtin_type_int32;
1086 else
1087 return builtin_type_int16;
084edea5
CV
1088 }
1089 }
928e48af
CV
1090}
1091
4bb1dc5e
CV
1092static void
1093h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1094 int regno, void *buf)
1095{
1096 if (regno == E_PSEUDO_CCR_REGNUM)
1097 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1098 else if (regno == E_PSEUDO_EXR_REGNUM)
1099 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1100 else
1101 regcache_raw_read (regcache, regno, buf);
1102}
1103
1104static void
1105h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1106 int regno, const void *buf)
1107{
1108 if (regno == E_PSEUDO_CCR_REGNUM)
1109 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1110 else if (regno == E_PSEUDO_EXR_REGNUM)
1111 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1112 else
1113 regcache_raw_write (regcache, regno, buf);
1114}
1115
1116static int
1117h8300_dbg_reg_to_regnum (int regno)
1118{
1119 if (regno == E_CCR_REGNUM)
1120 return E_PSEUDO_CCR_REGNUM;
1121 return regno;
1122}
1123
1124static int
1125h8300s_dbg_reg_to_regnum (int regno)
1126{
1127 if (regno == E_CCR_REGNUM)
1128 return E_PSEUDO_CCR_REGNUM;
1129 if (regno == E_EXR_REGNUM)
1130 return E_PSEUDO_EXR_REGNUM;
1131 return regno;
1132}
1133
928e48af 1134static CORE_ADDR
0261a0d0 1135h8300_extract_struct_value_address (struct regcache *regcache)
928e48af 1136{
0261a0d0
CV
1137 ULONGEST addr;
1138 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1139 return addr;
928e48af
CV
1140}
1141
1142const static unsigned char *
1143h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1144{
1145 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1146 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1147
1148 *lenptr = sizeof (breakpoint);
1149 return breakpoint;
1150}
1151
0261a0d0
CV
1152static CORE_ADDR
1153h8300_push_dummy_code (struct gdbarch *gdbarch,
1154 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1155 struct value **args, int nargs,
1156 struct type *value_type,
1157 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1158{
1159 /* Allocate space sufficient for a breakpoint. */
1160 sp = (sp - 2) & ~1;
1161 /* Store the address of that breakpoint */
1162 *bp_addr = sp;
1163 /* h8300 always starts the call at the callee's entry point. */
1164 *real_pc = funaddr;
1165 return sp;
1166}
1167
928e48af
CV
1168static void
1169h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1170 struct frame_info *frame, const char *args)
1171{
1172 fprintf_filtered (file, "\
1173No floating-point info available for this processor.\n");
1174}
1175
1176static struct gdbarch *
1177h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1178{
928e48af
CV
1179 struct gdbarch_tdep *tdep = NULL;
1180 struct gdbarch *gdbarch;
1181
1182 arches = gdbarch_list_lookup_by_info (arches, &info);
1183 if (arches != NULL)
1184 return arches->gdbarch;
1185
1186#if 0
1187 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1188#endif
1189
1190 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1191 return NULL;
1192
084edea5
CV
1193 gdbarch = gdbarch_alloc (&info, 0);
1194
928e48af
CV
1195 switch (info.bfd_arch_info->mach)
1196 {
0a48e7e8 1197 case bfd_mach_h8300:
084edea5 1198 set_gdbarch_num_regs (gdbarch, 13);
4bb1dc5e
CV
1199 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1200 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1201 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1202 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1203 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
084edea5 1204 set_gdbarch_register_name (gdbarch, h8300_register_name);
084edea5
CV
1205 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1206 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
0261a0d0
CV
1207 set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1208 set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
4bb1dc5e 1209 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
0a48e7e8
MS
1210 break;
1211 case bfd_mach_h8300h:
8efca6ba 1212 case bfd_mach_h8300hn:
084edea5 1213 set_gdbarch_num_regs (gdbarch, 13);
4bb1dc5e
CV
1214 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1215 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1216 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1217 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1218 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
084edea5 1219 set_gdbarch_register_name (gdbarch, h8300_register_name);
c98a2b49
SA
1220 if(info.bfd_arch_info->mach != bfd_mach_h8300hn)
1221 {
c98a2b49
SA
1222 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1223 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1224 }
1225 else
1226 {
c98a2b49
SA
1227 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1228 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1229 }
0261a0d0
CV
1230 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1231 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1232 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
0a48e7e8
MS
1233 break;
1234 case bfd_mach_h8300s:
8efca6ba 1235 case bfd_mach_h8300sn:
7be04a68 1236 set_gdbarch_num_regs (gdbarch, 16);
4bb1dc5e
CV
1237 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1238 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1239 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1240 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1241 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
084edea5 1242 set_gdbarch_register_name (gdbarch, h8300s_register_name);
c98a2b49
SA
1243 if(info.bfd_arch_info->mach != bfd_mach_h8300sn)
1244 {
c98a2b49
SA
1245 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1246 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1247 }
1248 else
1249 {
c98a2b49
SA
1250 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1251 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1252 }
0261a0d0
CV
1253 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1254 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1255 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
0a48e7e8
MS
1256 break;
1257 case bfd_mach_h8300sx:
084edea5 1258 case bfd_mach_h8300sxn:
084edea5 1259 set_gdbarch_num_regs (gdbarch, 18);
4bb1dc5e
CV
1260 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1261 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1262 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1263 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1264 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
084edea5 1265 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
c98a2b49
SA
1266 if(info.bfd_arch_info->mach != bfd_mach_h8300sxn)
1267 {
c98a2b49
SA
1268 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270 }
1271 else
1272 {
c98a2b49
SA
1273 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1274 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1275 }
0261a0d0
CV
1276 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1277 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
4bb1dc5e 1278 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
0a48e7e8 1279 break;
928e48af
CV
1280 }
1281
4bb1dc5e
CV
1282 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1283 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1284
a5afb99f
AC
1285 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1286 ready to unwind the PC first (see frame.c:get_prev_frame()). */
0968aa8c 1287 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
a5afb99f 1288
928e48af
CV
1289 /*
1290 * Basic register fields and methods.
1291 */
1292
928e48af 1293 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
0ba6dca9 1294 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
928e48af 1295 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
055c394a 1296 set_gdbarch_register_type (gdbarch, h8300_register_type);
4904ba5b 1297 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
928e48af
CV
1298 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1299
1300 /*
1301 * Frame Info
1302 */
0261a0d0
CV
1303 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1304
884a26c8
MS
1305 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1306 h8300_frame_init_saved_regs);
1307 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1308 h8300_init_extra_frame_info);
618ce49f 1309 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
884a26c8
MS
1310 set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1311 h8300_saved_pc_after_call);
8bedc050 1312 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
63d47a7d 1313 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
928e48af
CV
1314
1315 /*
1316 * Miscelany
1317 */
1318 /* Stack grows up. */
1319 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
19772a2c 1320 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
928e48af 1321
74055713 1322 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address);
b5622e8d 1323 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
928e48af 1324 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
0261a0d0 1325 set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
63d47a7d 1326 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
928e48af
CV
1327
1328 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1329 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
708cc1b6 1330 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
084edea5
CV
1331 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1332 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
928e48af 1333
928e48af
CV
1334 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1335
708cc1b6
MS
1336 /* Char is unsigned. */
1337 set_gdbarch_char_signed (gdbarch, 0);
1338
928e48af 1339 return gdbarch;
c906108c
SS
1340}
1341
a78f21af
AC
1342extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1343
c906108c 1344void
fba45db2 1345_initialize_h8300_tdep (void)
c906108c 1346{
928e48af 1347 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
c906108c 1348}
454d0511
DD
1349
1350static int
1351is_h8300hmode (struct gdbarch *gdbarch)
1352{
1353 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1354 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1355 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1356 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1357 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
1358 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1359}
1360
1361static int
1362is_h8300smode (struct gdbarch *gdbarch)
1363{
1364 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1365 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1366 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
1367 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
1368}
1369
1370static int
1371is_h8300sxmode (struct gdbarch *gdbarch)
1372{
1373 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
1374 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
1375}
1376
1377static int
1378is_h8300_normal_mode (struct gdbarch *gdbarch)
1379{
1380 return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
1381 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
1382 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
1383}
1384
This page took 0.422643 seconds and 4 git commands to generate.