* elf.c (bfd_elf_get_elf_syms): Change type of `esym' to
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
c906108c 1/* Target-machine dependent code for Hitachi H8/300, for GDB.
cda5a58a
AC
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/*
c5aa993b
JM
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
c906108c
SS
26 */
27
28#include "defs.h"
29#include "frame.h"
c906108c
SS
30#include "symtab.h"
31#include "dis-asm.h"
32#include "gdbcmd.h"
33#include "gdbtypes.h"
34#include "gdbcore.h"
35#include "gdb_string.h"
36#include "value.h"
4e052eda 37#include "regcache.h"
c906108c
SS
38
39extern int h8300hmode, h8300smode;
40
fc974602
AV
41#undef NUM_REGS
42#define NUM_REGS (h8300smode?12:11)
c906108c
SS
43
44#define UNSIGNED_SHORT(X) ((X) & 0xffff)
45
46#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
47#define IS_PUSH_FP(x) (x == 0x6df6)
48#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
49#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
50#define IS_SUB2_SP(x) (x==0x1b87)
51#define IS_SUB4_SP(x) (x==0x1b97)
52#define IS_SUBL_SP(x) (x==0x7a37)
53#define IS_MOVK_R5(x) (x==0x7905)
54#define IS_SUB_R5SP(x) (x==0x1957)
55
c906108c
SS
56/* The register names change depending on whether the h8300h processor
57 type is selected. */
58
59static char *original_register_names[] = REGISTER_NAMES;
60
d194345b
KH
61static char *h8300h_register_names[] = {
62 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
63 "sp", "ccr", "pc", "cycles", "exr", "tick", "inst"
64};
c906108c
SS
65
66char **h8300_register_names = original_register_names;
67
c906108c
SS
68/* Local function declarations. */
69
70static CORE_ADDR examine_prologue ();
a14ed312 71static void set_machine_hook (char *filename);
c906108c 72
c5aa993b 73CORE_ADDR
fba45db2 74h8300_skip_prologue (CORE_ADDR start_pc)
c906108c
SS
75{
76 short int w;
77 int adjust = 0;
78
79 /* Skip past all push and stm insns. */
80 while (1)
81 {
82 w = read_memory_unsigned_integer (start_pc, 2);
83 /* First look for push insns. */
84 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
85 {
86 w = read_memory_unsigned_integer (start_pc + 2, 2);
87 adjust = 2;
88 }
89
90 if (IS_PUSH (w))
91 {
92 start_pc += 2 + adjust;
93 w = read_memory_unsigned_integer (start_pc, 2);
94 continue;
95 }
96 adjust = 0;
97 break;
98 }
99
100 /* Skip past a move to FP, either word or long sized */
101 w = read_memory_unsigned_integer (start_pc, 2);
102 if (w == 0x0100)
103 {
104 w = read_memory_unsigned_integer (start_pc + 2, 2);
105 adjust += 2;
106 }
107
108 if (IS_MOVE_FP (w))
109 {
110 start_pc += 2 + adjust;
111 w = read_memory_unsigned_integer (start_pc, 2);
112 }
113
114 /* Check for loading either a word constant into r5;
115 long versions are handled by the SUBL_SP below. */
116 if (IS_MOVK_R5 (w))
117 {
118 start_pc += 2;
119 w = read_memory_unsigned_integer (start_pc, 2);
120 }
121
122 /* Now check for subtracting r5 from sp, word sized only. */
123 if (IS_SUB_R5SP (w))
124 {
125 start_pc += 2 + adjust;
126 w = read_memory_unsigned_integer (start_pc, 2);
127 }
128
129 /* Check for subs #2 and subs #4. */
130 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
131 {
132 start_pc += 2 + adjust;
133 w = read_memory_unsigned_integer (start_pc, 2);
134 }
135
136 /* Check for a 32bit subtract. */
137 if (IS_SUBL_SP (w))
138 start_pc += 6 + adjust;
139
140 return start_pc;
141}
142
143int
fba45db2 144gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
145{
146 if (h8300smode)
147 return print_insn_h8300s (memaddr, info);
148 else if (h8300hmode)
149 return print_insn_h8300h (memaddr, info);
150 else
151 return print_insn_h8300 (memaddr, info);
152}
153
154/* Given a GDB frame, determine the address of the calling function's frame.
155 This will be used to create a new GDB frame struct, and then
156 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
157
158 For us, the frame address is its stack pointer value, so we look up
159 the function prologue to determine the caller's sp value, and return it. */
160
161CORE_ADDR
fba45db2 162h8300_frame_chain (struct frame_info *thisframe)
c906108c 163{
c5aa993b
JM
164 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
165 { /* initialize the from_pc now */
c906108c 166 thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
c5aa993b 167 thisframe->frame,
c906108c
SS
168 PC_REGNUM);
169 return thisframe->frame;
170 }
171 h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
172 return thisframe->fsr->regs[SP_REGNUM];
173}
174
175/* Put here the code to store, into a struct frame_saved_regs,
176 the addresses of the saved registers of frame described by FRAME_INFO.
177 This includes special registers such as pc and fp saved in special
178 ways in the stack frame. sp is even more special:
179 the address we return for it IS the sp for the next frame.
180
181 We cache the result of doing this in the frame_obstack, since it is
182 fairly expensive. */
183
184void
fba45db2
KB
185h8300_frame_find_saved_regs (struct frame_info *fi,
186 struct frame_saved_regs *fsr)
c906108c
SS
187{
188 register struct frame_saved_regs *cache_fsr;
189 CORE_ADDR ip;
190 struct symtab_and_line sal;
191 CORE_ADDR limit;
192
193 if (!fi->fsr)
194 {
195 cache_fsr = (struct frame_saved_regs *)
196 frame_obstack_alloc (sizeof (struct frame_saved_regs));
197 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
198
199 fi->fsr = cache_fsr;
200
c5aa993b
JM
201 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
202 { /* no more to do. */
c906108c
SS
203 if (fsr)
204 *fsr = *fi->fsr;
205 return;
206 }
207 /* Find the start and end of the function prologue. If the PC
c5aa993b
JM
208 is in the function prologue, we only consider the part that
209 has executed already. */
c906108c
SS
210
211 ip = get_pc_function_start (fi->pc);
212 sal = find_pc_line (ip, 0);
213 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
214
215 /* This will fill in fields in *fi as well as in cache_fsr. */
216 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
217 }
218
219 if (fsr)
220 *fsr = *fi->fsr;
221}
222
223/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
224 is not the address of a valid instruction, the address of the next
225 instruction beyond ADDR otherwise. *PWORD1 receives the first word
c5aa993b 226 of the instruction. */
c906108c
SS
227
228CORE_ADDR
fba45db2 229NEXT_PROLOGUE_INSN (CORE_ADDR addr, CORE_ADDR lim, INSN_WORD *pword1)
c906108c
SS
230{
231 char buf[2];
232 if (addr < lim + 8)
233 {
234 read_memory (addr, buf, 2);
235 *pword1 = extract_signed_integer (buf, 2);
236
237 return addr + 2;
238 }
239 return 0;
240}
241
242/* Examine the prologue of a function. `ip' points to the first instruction.
243 `limit' is the limit of the prologue (e.g. the addr of the first
244 linenumber, or perhaps the program counter if we're stepping through).
245 `frame_sp' is the stack pointer value in use in this frame.
246 `fsr' is a pointer to a frame_saved_regs structure into which we put
247 info about the registers saved by this frame.
248 `fi' is a struct frame_info pointer; we fill in various fields in it
249 to reflect the offsets of the arg pointer and the locals pointer. */
250
251static CORE_ADDR
fba45db2
KB
252examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
253 CORE_ADDR after_prolog_fp, struct frame_saved_regs *fsr,
254 struct frame_info *fi)
c906108c
SS
255{
256 register CORE_ADDR next_ip;
257 int r;
258 int have_fp = 0;
259 INSN_WORD insn_word;
260 /* Number of things pushed onto stack, starts at 2/4, 'cause the
261 PC is already there */
262 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
263
264 unsigned int auto_depth = 0; /* Number of bytes of autos */
265
266 char in_frame[11]; /* One for each reg */
267
268 int adjust = 0;
269
270 memset (in_frame, 1, 11);
271 for (r = 0; r < 8; r++)
272 {
273 fsr->regs[r] = 0;
274 }
275 if (after_prolog_fp == 0)
276 {
277 after_prolog_fp = read_register (SP_REGNUM);
278 }
279
280 /* If the PC isn't valid, quit now. */
281 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
282 return 0;
283
284 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
285
286 if (insn_word == 0x0100)
287 {
288 insn_word = read_memory_unsigned_integer (ip + 2, 2);
289 adjust = 2;
290 }
291
292 /* Skip over any fp push instructions */
293 fsr->regs[6] = after_prolog_fp;
294 while (next_ip && IS_PUSH_FP (insn_word))
295 {
296 ip = next_ip + adjust;
297
298 in_frame[insn_word & 0x7] = reg_save_depth;
299 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
300 reg_save_depth += 2 + adjust;
301 }
302
303 /* Is this a move into the fp */
304 if (next_ip && IS_MOV_SP_FP (insn_word))
305 {
306 ip = next_ip;
307 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
308 have_fp = 1;
309 }
310
311 /* Skip over any stack adjustment, happens either with a number of
312 sub#2,sp or a mov #x,r5 sub r5,sp */
313
314 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
315 {
316 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
317 {
318 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
319 ip = next_ip;
320 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
321 }
322 }
323 else
324 {
325 if (next_ip && IS_MOVK_R5 (insn_word))
326 {
327 ip = next_ip;
328 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
329 auto_depth += insn_word;
330
331 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
332 auto_depth += insn_word;
333 }
334 if (next_ip && IS_SUBL_SP (insn_word))
335 {
336 ip = next_ip;
337 auto_depth += read_memory_unsigned_integer (ip, 4);
338 ip += 4;
339
340 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
341 }
342 }
343
344 /* Now examine the push insns to determine where everything lives
345 on the stack. */
346 while (1)
347 {
348 adjust = 0;
349 if (!next_ip)
350 break;
351
352 if (insn_word == 0x0100)
353 {
354 ip = next_ip;
355 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
356 adjust = 2;
357 }
358
359 if (IS_PUSH (insn_word))
360 {
361 ip = next_ip;
362 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
363 fsr->regs[r] = after_prolog_fp + auto_depth;
364 auto_depth += 2 + adjust;
365 continue;
366 }
367
368 /* Now check for push multiple insns. */
369 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
370 {
371 int count = ((insn_word >> 4) & 0xf) + 1;
372 int start, i;
373
374 ip = next_ip;
375 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
376 start = insn_word & 0x7;
377
378 for (i = start; i <= start + count; i++)
379 {
380 fsr->regs[i] = after_prolog_fp + auto_depth;
381 auto_depth += 4;
382 }
383 }
384 break;
385 }
386
387 /* The args are always reffed based from the stack pointer */
388 fi->args_pointer = after_prolog_fp;
389 /* Locals are always reffed based from the fp */
390 fi->locals_pointer = after_prolog_fp;
391 /* The PC is at a known place */
392 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
393
394 /* Rememeber any others too */
395 in_frame[PC_REGNUM] = 0;
c5aa993b 396
c906108c
SS
397 if (have_fp)
398 /* We keep the old FP in the SP spot */
399 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
400 else
401 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
402
403 return (ip);
404}
405
406void
fba45db2 407h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
408{
409 fi->fsr = 0; /* Not yet allocated */
410 fi->args_pointer = 0; /* Unknown */
411 fi->locals_pointer = 0; /* Unknown */
412 fi->from_pc = 0;
c5aa993b
JM
413 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
414 { /* anything special to do? */
c906108c
SS
415 return;
416 }
417}
418
419/* Return the saved PC from this frame.
420
421 If the frame has a memory copy of SRP_REGNUM, use that. If not,
422 just use the register SRP_REGNUM itself. */
423
424CORE_ADDR
fba45db2 425h8300_frame_saved_pc (struct frame_info *frame)
c906108c 426{
c5aa993b 427 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c
SS
428 return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
429 else
430 return frame->from_pc;
431}
432
433CORE_ADDR
7256e1a5 434h8300_frame_locals_address (struct frame_info *fi)
c906108c 435{
c5aa993b 436 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c906108c
SS
437 return (CORE_ADDR) 0; /* Not sure what else to do... */
438 if (!fi->locals_pointer)
439 {
440 struct frame_saved_regs ignore;
441
442 get_frame_saved_regs (fi, &ignore);
443
444 }
445 return fi->locals_pointer;
446}
447
448/* Return the address of the argument block for the frame
449 described by FI. Returns 0 if the address is unknown. */
450
451CORE_ADDR
7256e1a5 452h8300_frame_args_address (struct frame_info *fi)
c906108c 453{
c5aa993b 454 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c906108c
SS
455 return (CORE_ADDR) 0; /* Not sure what else to do... */
456 if (!fi->args_pointer)
457 {
458 struct frame_saved_regs ignore;
459
460 get_frame_saved_regs (fi, &ignore);
461
462 }
463
464 return fi->args_pointer;
465}
466
467/* Function: push_arguments
468 Setup the function arguments for calling a function in the inferior.
469
470 On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
471 which are dedicated for passing function arguments. Up to the first
472 three arguments (depending on size) may go into these registers.
473 The rest go on the stack.
474
475 Arguments that are smaller than WORDSIZE bytes will still take up a
476 whole register or a whole WORDSIZE word on the stack, and will be
477 right-justified in the register or the stack word. This includes
478 chars and small aggregate types. Note that WORDSIZE depends on the
479 cpu type.
480
481 Arguments that are larger than WORDSIZE bytes will be split between
482 two or more registers as available, but will NOT be split between a
483 register and the stack.
484
485 An exceptional case exists for struct arguments (and possibly other
486 aggregates such as arrays) -- if the size is larger than WORDSIZE
487 bytes but not a multiple of WORDSIZE bytes. In this case the
488 argument is never split between the registers and the stack, but
489 instead is copied in its entirety onto the stack, AND also copied
490 into as many registers as there is room for. In other words, space
491 in registers permitting, two copies of the same argument are passed
492 in. As far as I can tell, only the one on the stack is used,
493 although that may be a function of the level of compiler
494 optimization. I suspect this is a compiler bug. Arguments of
495 these odd sizes are left-justified within the word (as opposed to
496 arguments smaller than WORDSIZE bytes, which are right-justified).
c5aa993b 497
c906108c
SS
498 If the function is to return an aggregate type such as a struct,
499 the caller must allocate space into which the callee will copy the
500 return value. In this case, a pointer to the return value location
501 is passed into the callee in register R0, which displaces one of
502 the other arguments passed in via registers R0 to R2. */
503
504CORE_ADDR
fba45db2
KB
505h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
506 unsigned char struct_return, CORE_ADDR struct_addr)
c906108c
SS
507{
508 int stack_align, stack_alloc, stack_offset;
509 int wordsize;
510 int argreg;
511 int argnum;
512 struct type *type;
513 CORE_ADDR regval;
514 char *val;
515 char valbuf[4];
516 int len;
517
518 if (h8300hmode || h8300smode)
519 {
520 stack_align = 3;
c5aa993b 521 wordsize = 4;
c906108c
SS
522 }
523 else
524 {
525 stack_align = 1;
c5aa993b 526 wordsize = 2;
c906108c
SS
527 }
528
529 /* first force sp to a n-byte alignment */
530 sp = sp & ~stack_align;
531
532 /* Now make sure there's space on the stack */
c5aa993b 533 for (argnum = 0, stack_alloc = 0;
c906108c 534 argnum < nargs; argnum++)
c5aa993b 535 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
c906108c 536 & ~stack_align);
c5aa993b 537 sp -= stack_alloc; /* make room on stack for args */
c906108c
SS
538 /* we may over-allocate a little here, but that won't hurt anything */
539
c5aa993b
JM
540 argreg = ARG0_REGNUM;
541 if (struct_return) /* "struct return" pointer takes up one argreg */
c906108c
SS
542 {
543 write_register (argreg++, struct_addr);
544 }
545
546 /* Now load as many as possible of the first arguments into
547 registers, and push the rest onto the stack. There are 3N bytes
548 in three registers available. Loop thru args from first to last. */
549
550 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
551 {
552 type = VALUE_TYPE (args[argnum]);
553 len = TYPE_LENGTH (type);
c5aa993b 554 memset (valbuf, 0, sizeof (valbuf));
c906108c
SS
555 if (len < wordsize)
556 {
557 /* the purpose of this is to right-justify the value within the word */
c5aa993b
JM
558 memcpy (valbuf + (wordsize - len),
559 (char *) VALUE_CONTENTS (args[argnum]), len);
c906108c
SS
560 val = valbuf;
561 }
562 else
563 val = (char *) VALUE_CONTENTS (args[argnum]);
564
c5aa993b
JM
565 if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
566 (len > wordsize && (len & stack_align) != 0))
567 { /* passed on the stack */
568 write_memory (sp + stack_offset, val,
c906108c
SS
569 len < wordsize ? wordsize : len);
570 stack_offset += (len + stack_align) & ~stack_align;
571 }
572 /* NOTE WELL!!!!! This is not an "else if" clause!!!
c5aa993b
JM
573 That's because some *&^%$ things get passed on the stack
574 AND in the registers! */
575 if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
c906108c 576 while (len > 0)
c5aa993b 577 { /* there's room in registers */
c906108c
SS
578 regval = extract_address (val, wordsize);
579 write_register (argreg, regval);
580 len -= wordsize;
581 val += wordsize;
582 argreg++;
583 }
584 }
585 return sp;
586}
587
588/* Function: push_return_address
589 Setup the return address for a dummy frame, as called by
590 call_function_by_hand. Only necessary when you are using an
591 empty CALL_DUMMY, ie. the target will not actually be executing
592 a JSR/BSR instruction. */
593
594CORE_ADDR
fba45db2 595h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c
SS
596{
597 unsigned char buf[4];
598 int wordsize;
599
600 if (h8300hmode || h8300smode)
601 wordsize = 4;
602 else
603 wordsize = 2;
604
605 sp -= wordsize;
606 store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
607 write_memory (sp, buf, wordsize);
608 return sp;
609}
610
7256e1a5 611/* Function: h8300_pop_frame
c906108c
SS
612 Restore the machine to the state it had before the current frame
613 was created. Usually used either by the "RETURN" command, or by
614 call_function_by_hand after the dummy_frame is finished. */
615
c5aa993b 616void
fba45db2 617h8300_pop_frame (void)
c906108c
SS
618{
619 unsigned regnum;
620 struct frame_saved_regs fsr;
621 struct frame_info *frame = get_current_frame ();
622
c5aa993b 623 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 624 {
c5aa993b 625 generic_pop_dummy_frame ();
c906108c
SS
626 }
627 else
628 {
629 get_frame_saved_regs (frame, &fsr);
630
631 for (regnum = 0; regnum < 8; regnum++)
632 {
633 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
634 actual value we want, not the address of the value we want. */
635 if (fsr.regs[regnum] && regnum != SP_REGNUM)
c5aa993b
JM
636 write_register (regnum,
637 read_memory_integer (fsr.regs[regnum], BINWORD));
c906108c
SS
638 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
639 write_register (regnum, frame->frame + 2 * BINWORD);
640 }
641
642 /* Don't forget the update the PC too! */
643 write_pc (frame->from_pc);
644 }
645 flush_cached_frames ();
646}
647
648/* Function: extract_return_value
649 Figure out where in REGBUF the called function has left its return value.
650 Copy that into VALBUF. Be sure to account for CPU type. */
651
652void
fba45db2 653h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c
SS
654{
655 int wordsize, len;
656
657 if (h8300smode || h8300hmode)
658 wordsize = 4;
659 else
660 wordsize = 2;
661
c5aa993b
JM
662 len = TYPE_LENGTH (type);
663
664 switch (len)
665 {
666 case 1: /* (char) */
667 case 2: /* (short), (int) */
668 memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
669 break;
670 case 4: /* (long), (float) */
671 if (h8300smode || h8300hmode)
672 {
673 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
674 }
675 else
676 {
677 memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
678 memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
679 }
680 break;
681 case 8: /* (double) (doesn't seem to happen, which is good,
682 because this almost certainly isn't right. */
683 error ("I don't know how a double is returned.");
684 break;
685 }
c906108c
SS
686}
687
688/* Function: store_return_value
689 Place the appropriate value in the appropriate registers.
690 Primarily used by the RETURN command. */
691
c5aa993b 692void
fba45db2 693h8300_store_return_value (struct type *type, char *valbuf)
c906108c
SS
694{
695 int wordsize, len, regval;
c5aa993b 696
c906108c
SS
697 if (h8300hmode || h8300smode)
698 wordsize = 4;
699 else
700 wordsize = 2;
701
c5aa993b
JM
702 len = TYPE_LENGTH (type);
703 switch (len)
704 {
705 case 1: /* char */
706 case 2: /* short, int */
707 regval = extract_address (valbuf, len);
708 write_register (0, regval);
709 break;
710 case 4: /* long, float */
711 regval = extract_address (valbuf, len);
712 if (h8300smode || h8300hmode)
713 {
714 write_register (0, regval);
715 }
716 else
717 {
718 write_register (0, regval >> 16);
719 write_register (1, regval & 0xffff);
720 }
721 break;
722 case 8: /* presumeably double, but doesn't seem to happen */
723 error ("I don't know how to return a double.");
724 break;
725 }
c906108c
SS
726}
727
c906108c
SS
728struct cmd_list_element *setmemorylist;
729
730static void
fba45db2 731set_register_names (void)
c906108c
SS
732{
733 if (h8300hmode != 0)
734 h8300_register_names = h8300h_register_names;
735 else
736 h8300_register_names = original_register_names;
737}
738
739static void
55d80160 740h8300_command (char *args, int from_tty)
c906108c
SS
741{
742 extern int h8300hmode;
743 h8300hmode = 0;
744 h8300smode = 0;
745 set_register_names ();
746}
747
748static void
55d80160 749h8300h_command (char *args, int from_tty)
c906108c
SS
750{
751 extern int h8300hmode;
752 h8300hmode = 1;
753 h8300smode = 0;
754 set_register_names ();
755}
756
757static void
55d80160 758h8300s_command (char *args, int from_tty)
c906108c
SS
759{
760 extern int h8300smode;
761 extern int h8300hmode;
762 h8300smode = 1;
763 h8300hmode = 1;
764 set_register_names ();
765}
766
c5aa993b 767static void
fba45db2 768set_machine (char *args, int from_tty)
c906108c
SS
769{
770 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
771 printf_unfiltered ("or h8300s");
772 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
773}
774
775/* set_machine_hook is called as the exec file is being opened, but
776 before the symbol file is opened. This allows us to set the
777 h8300hmode flag based on the machine type specified in the exec
778 file. This in turn will cause subsequently defined pointer types
779 to be 16 or 32 bits as appropriate for the machine. */
780
781static void
fba45db2 782set_machine_hook (char *filename)
c906108c
SS
783{
784 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
785 {
786 h8300smode = 1;
787 h8300hmode = 1;
788 }
c5aa993b 789 else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
c906108c
SS
790 {
791 h8300smode = 0;
792 h8300hmode = 1;
793 }
794 else
795 {
796 h8300smode = 0;
797 h8300hmode = 0;
798 }
799 set_register_names ();
800}
801
802void
fba45db2 803_initialize_h8300m (void)
c906108c
SS
804{
805 add_prefix_cmd ("machine", no_class, set_machine,
c5aa993b 806 "set the machine type",
c906108c
SS
807 &setmemorylist, "set machine ", 0,
808 &setlist);
809
810 add_cmd ("h8300", class_support, h8300_command,
811 "Set machine to be H8/300.", &setmemorylist);
812
813 add_cmd ("h8300h", class_support, h8300h_command,
814 "Set machine to be H8/300H.", &setmemorylist);
815
816 add_cmd ("h8300s", class_support, h8300s_command,
817 "Set machine to be H8/300S.", &setmemorylist);
818
819 /* Add a hook to set the machine type when we're loading a file. */
820
c5aa993b 821 specify_exec_file_hook (set_machine_hook);
c906108c
SS
822}
823
c906108c 824void
7256e1a5 825h8300_print_register_hook (int regno)
c906108c 826{
6e591d68 827 if (regno == CCR_REGNUM)
c906108c
SS
828 {
829 /* CCR register */
830 int C, Z, N, V;
6e591d68 831 unsigned char b[REGISTER_SIZE];
c906108c 832 unsigned char l;
cda5a58a 833 frame_register_read (selected_frame, regno, b);
6e591d68 834 l = b[REGISTER_VIRTUAL_SIZE (CCR_REGNUM) - 1];
c906108c 835 printf_unfiltered ("\t");
906709f4
AV
836 printf_unfiltered ("I-%d ", (l & 0x80) != 0);
837 printf_unfiltered ("UI-%d ", (l & 0x40) != 0);
838 printf_unfiltered ("H-%d ", (l & 0x20) != 0);
839 printf_unfiltered ("U-%d ", (l & 0x10) != 0);
c906108c
SS
840 N = (l & 0x8) != 0;
841 Z = (l & 0x4) != 0;
842 V = (l & 0x2) != 0;
843 C = (l & 0x1) != 0;
844 printf_unfiltered ("N-%d ", N);
845 printf_unfiltered ("Z-%d ", Z);
846 printf_unfiltered ("V-%d ", V);
847 printf_unfiltered ("C-%d ", C);
848 if ((C | Z) == 0)
849 printf_unfiltered ("u> ");
850 if ((C | Z) == 1)
851 printf_unfiltered ("u<= ");
852 if ((C == 0))
853 printf_unfiltered ("u>= ");
854 if (C == 1)
855 printf_unfiltered ("u< ");
856 if (Z == 0)
857 printf_unfiltered ("!= ");
858 if (Z == 1)
859 printf_unfiltered ("== ");
860 if ((N ^ V) == 0)
861 printf_unfiltered (">= ");
862 if ((N ^ V) == 1)
863 printf_unfiltered ("< ");
864 if ((Z | (N ^ V)) == 0)
865 printf_unfiltered ("> ");
866 if ((Z | (N ^ V)) == 1)
867 printf_unfiltered ("<= ");
868 }
fc974602
AV
869
870 if (regno == EXR_REGNUM && h8300smode)
871 {
872 /* EXR register */
873 unsigned char b[REGISTER_SIZE];
874 unsigned char l;
40cd92ad 875 frame_register_read (selected_frame, regno, b);
fc974602
AV
876 l = b[REGISTER_VIRTUAL_SIZE (EXR_REGNUM) - 1];
877 printf_unfiltered ("\t");
d194345b 878 printf_unfiltered ("T-%d - - - ", (l & 0x80) != 0);
fc974602
AV
879 printf_unfiltered ("I2-%d ", (l & 4) != 0);
880 printf_unfiltered ("I1-%d ", (l & 2) != 0);
881 printf_unfiltered ("I0-%d", (l & 1) != 0);
d194345b 882 }
c906108c
SS
883}
884
885void
fba45db2 886_initialize_h8300_tdep (void)
c906108c
SS
887{
888 tm_print_insn = gdb_print_insn_h8300;
889}
This page took 0.262598 seconds and 4 git commands to generate.