* findvar.c (read_register): Provide some support for 64 bit regs.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
1f46923f
SC
1/* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
ec25d19b 20/*
1f46923f 21 Contributed by Steve Chamberlain
ec25d19b 22 sac@cygnus.com
1f46923f
SC
23 */
24
400943fb 25#include "defs.h"
1f46923f
SC
26#include "frame.h"
27#include "obstack.h"
28#include "symtab.h"
df14b38b 29#include <dis-asm.h>
256b4f37
SC
30#undef NUM_REGS
31#define NUM_REGS 11
32
1f46923f 33#define UNSIGNED_SHORT(X) ((X) & 0xffff)
400943fb
SC
34
35/* an easy to debug H8 stack frame looks like:
ec25d19b
SC
360x6df6 push r6
370x0d76 mov.w r7,r6
380x6dfn push reg
390x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
400x1957 sub.w r5,sp
400943fb
SC
41
42 */
1f46923f 43
400943fb 44#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
ec25d19b 45#define IS_PUSH_FP(x) (x == 0x6df6)
1f46923f
SC
46#define IS_MOVE_FP(x) (x == 0x0d76)
47#define IS_MOV_SP_FP(x) (x == 0x0d76)
48#define IS_SUB2_SP(x) (x==0x1b87)
49#define IS_MOVK_R5(x) (x==0x7905)
ec25d19b
SC
50#define IS_SUB_R5SP(x) (x==0x1957)
51CORE_ADDR examine_prologue ();
1f46923f 52
ec25d19b
SC
53void frame_find_saved_regs ();
54CORE_ADDR
55h8300_skip_prologue (start_pc)
56 CORE_ADDR start_pc;
0a8f9d31 57
0a8f9d31 58{
ec25d19b 59 short int w;
1f46923f 60
df14b38b 61 w = read_memory_unsigned_integer (start_pc, 2);
400943fb 62 /* Skip past all push insns */
ec25d19b
SC
63 while (IS_PUSH_FP (w))
64 {
65 start_pc += 2;
df14b38b 66 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b 67 }
0a8f9d31 68
1f46923f 69 /* Skip past a move to FP */
ec25d19b
SC
70 if (IS_MOVE_FP (w))
71 {
72 start_pc += 2;
df14b38b 73 w = read_memory_unsigned_integer (start_pc, 2);
1f46923f
SC
74 }
75
ec25d19b 76 /* Skip the stack adjust */
0a8f9d31 77
ec25d19b
SC
78 if (IS_MOVK_R5 (w))
79 {
80 start_pc += 2;
df14b38b 81 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
82 }
83 if (IS_SUB_R5SP (w))
84 {
85 start_pc += 2;
df14b38b 86 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
87 }
88 while (IS_SUB2_SP (w))
89 {
90 start_pc += 2;
df14b38b 91 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
92 }
93
94 return start_pc;
95
96}
1f46923f 97
400943fb 98int
ec25d19b
SC
99print_insn (memaddr, stream)
100 CORE_ADDR memaddr;
101 FILE *stream;
0a8f9d31 102{
df14b38b
SC
103 disassemble_info info;
104 GDB_INIT_DISASSEMBLE_INFO(info, stream);
105 return print_insn_h8300 (memaddr, &info);
0a8f9d31 106}
ec25d19b 107
1f46923f
SC
108/* Given a GDB frame, determine the address of the calling function's frame.
109 This will be used to create a new GDB frame struct, and then
110 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
111
112 For us, the frame address is its stack pointer value, so we look up
113 the function prologue to determine the caller's sp value, and return it. */
114
115FRAME_ADDR
116FRAME_CHAIN (thisframe)
117 FRAME thisframe;
118{
119
120 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
ec25d19b 121 return thisframe->fsr->regs[SP_REGNUM];
1f46923f
SC
122}
123
1f46923f
SC
124/* Put here the code to store, into a struct frame_saved_regs,
125 the addresses of the saved registers of frame described by FRAME_INFO.
126 This includes special registers such as pc and fp saved in special
127 ways in the stack frame. sp is even more special:
128 the address we return for it IS the sp for the next frame.
129
130 We cache the result of doing this in the frame_cache_obstack, since
131 it is fairly expensive. */
132
133void
134frame_find_saved_regs (fi, fsr)
135 struct frame_info *fi;
136 struct frame_saved_regs *fsr;
137{
138 register CORE_ADDR next_addr;
139 register CORE_ADDR *saved_regs;
140 register int regnum;
141 register struct frame_saved_regs *cache_fsr;
142 extern struct obstack frame_cache_obstack;
143 CORE_ADDR ip;
144 struct symtab_and_line sal;
145 CORE_ADDR limit;
146
147 if (!fi->fsr)
148 {
149 cache_fsr = (struct frame_saved_regs *)
ec25d19b
SC
150 obstack_alloc (&frame_cache_obstack,
151 sizeof (struct frame_saved_regs));
1f46923f 152 bzero (cache_fsr, sizeof (struct frame_saved_regs));
ec25d19b 153
1f46923f
SC
154 fi->fsr = cache_fsr;
155
156 /* Find the start and end of the function prologue. If the PC
157 is in the function prologue, we only consider the part that
158 has executed already. */
ec25d19b 159
1f46923f
SC
160 ip = get_pc_function_start (fi->pc);
161 sal = find_pc_line (ip, 0);
ec25d19b 162 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
1f46923f
SC
163
164 /* This will fill in fields in *fi as well as in cache_fsr. */
165 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
166 }
167
168 if (fsr)
169 *fsr = *fi->fsr;
170}
1f46923f
SC
171
172/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
173 is not the address of a valid instruction, the address of the next
174 instruction beyond ADDR otherwise. *PWORD1 receives the first word
175 of the instruction.*/
176
1f46923f 177CORE_ADDR
ec25d19b
SC
178NEXT_PROLOGUE_INSN (addr, lim, pword1)
179 CORE_ADDR addr;
180 CORE_ADDR lim;
181 short *pword1;
1f46923f 182{
ec25d19b
SC
183 if (addr < lim + 8)
184 {
185 read_memory (addr, pword1, sizeof (*pword1));
186 SWAP_TARGET_AND_HOST (pword1, sizeof (short));
1f46923f 187
ec25d19b
SC
188 return addr + 2;
189 }
1f46923f 190 return 0;
1f46923f
SC
191}
192
193/* Examine the prologue of a function. `ip' points to the first instruction.
ec25d19b 194 `limit' is the limit of the prologue (e.g. the addr of the first
1f46923f 195 linenumber, or perhaps the program counter if we're stepping through).
ec25d19b 196 `frame_sp' is the stack pointer value in use in this frame.
1f46923f 197 `fsr' is a pointer to a frame_saved_regs structure into which we put
ec25d19b 198 info about the registers saved by this frame.
1f46923f
SC
199 `fi' is a struct frame_info pointer; we fill in various fields in it
200 to reflect the offsets of the arg pointer and the locals pointer. */
201
1f46923f
SC
202static CORE_ADDR
203examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
204 register CORE_ADDR ip;
205 register CORE_ADDR limit;
206 FRAME_ADDR after_prolog_fp;
207 struct frame_saved_regs *fsr;
208 struct frame_info *fi;
209{
210 register CORE_ADDR next_ip;
211 int r;
212 int i;
213 int have_fp = 0;
ec25d19b 214
1f46923f
SC
215 register int src;
216 register struct pic_prologue_code *pcode;
217 INSN_WORD insn_word;
218 int size, offset;
ddf30c37 219 unsigned int reg_save_depth = 2; /* Number of things pushed onto
1f46923f
SC
220 stack, starts at 2, 'cause the
221 PC is already there */
222
223 unsigned int auto_depth = 0; /* Number of bytes of autos */
1f46923f 224
ddf30c37 225 char in_frame[11]; /* One for each reg */
1f46923f 226
ddf30c37 227 memset (in_frame, 1, 11);
256b4f37 228 for (r = 0; r < 8; r++)
ec25d19b
SC
229 {
230 fsr->regs[r] = 0;
231 }
232 if (after_prolog_fp == 0)
233 {
234 after_prolog_fp = read_register (SP_REGNUM);
235 }
236 if (ip == 0 || ip & ~0xffff)
237 return 0;
1f46923f 238
ec25d19b 239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
1f46923f 240
ec25d19b
SC
241 /* Skip over any fp push instructions */
242 fsr->regs[6] = after_prolog_fp;
243 while (next_ip && IS_PUSH_FP (insn_word))
244 {
245 ip = next_ip;
1f46923f 246
ec25d19b
SC
247 in_frame[insn_word & 0x7] = reg_save_depth;
248 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
249 reg_save_depth += 2;
250 }
1f46923f
SC
251
252 /* Is this a move into the fp */
ec25d19b
SC
253 if (next_ip && IS_MOV_SP_FP (insn_word))
254 {
255 ip = next_ip;
256 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
257 have_fp = 1;
258 }
1f46923f
SC
259
260 /* Skip over any stack adjustment, happens either with a number of
261 sub#2,sp or a mov #x,r5 sub r5,sp */
262
ec25d19b 263 if (next_ip && IS_SUB2_SP (insn_word))
1f46923f 264 {
ec25d19b
SC
265 while (next_ip && IS_SUB2_SP (insn_word))
266 {
267 auto_depth += 2;
268 ip = next_ip;
269 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
270 }
1f46923f 271 }
ec25d19b
SC
272 else
273 {
274 if (next_ip && IS_MOVK_R5 (insn_word))
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
278 auto_depth += insn_word;
279
280 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
281 auto_depth += insn_word;
282
283 }
284 }
285 /* Work out which regs are stored where */
286 while (next_ip && IS_PUSH (insn_word))
1f46923f
SC
287 {
288 ip = next_ip;
ec25d19b
SC
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
290 fsr->regs[r] = after_prolog_fp + auto_depth;
291 auto_depth += 2;
1f46923f 292 }
1f46923f 293
1f46923f 294 /* The args are always reffed based from the stack pointer */
ec25d19b 295 fi->args_pointer = after_prolog_fp;
1f46923f 296 /* Locals are always reffed based from the fp */
ec25d19b 297 fi->locals_pointer = after_prolog_fp;
1f46923f 298 /* The PC is at a known place */
df14b38b 299 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
1f46923f
SC
300
301 /* Rememeber any others too */
1f46923f 302 in_frame[PC_REGNUM] = 0;
ec25d19b
SC
303
304 if (have_fp)
305 /* We keep the old FP in the SP spot */
b1d0b161 306 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
ec25d19b
SC
307 else
308 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
309
1f46923f
SC
310 return (ip);
311}
312
313void
314init_extra_frame_info (fromleaf, fi)
315 int fromleaf;
316 struct frame_info *fi;
317{
318 fi->fsr = 0; /* Not yet allocated */
319 fi->args_pointer = 0; /* Unknown */
320 fi->locals_pointer = 0; /* Unknown */
321 fi->from_pc = 0;
ec25d19b 322
1f46923f 323}
ec25d19b 324
1f46923f
SC
325/* Return the saved PC from this frame.
326
327 If the frame has a memory copy of SRP_REGNUM, use that. If not,
328 just use the register SRP_REGNUM itself. */
329
330CORE_ADDR
331frame_saved_pc (frame)
ec25d19b 332 FRAME frame;
1f46923f
SC
333
334{
335 return frame->from_pc;
336}
337
1f46923f
SC
338CORE_ADDR
339frame_locals_address (fi)
340 struct frame_info *fi;
341{
ec25d19b
SC
342 if (!fi->locals_pointer)
343 {
344 struct frame_saved_regs ignore;
345
346 get_frame_saved_regs (fi, &ignore);
1f46923f 347
ec25d19b 348 }
1f46923f
SC
349 return fi->locals_pointer;
350}
351
352/* Return the address of the argument block for the frame
353 described by FI. Returns 0 if the address is unknown. */
354
355CORE_ADDR
356frame_args_address (fi)
357 struct frame_info *fi;
358{
ec25d19b
SC
359 if (!fi->args_pointer)
360 {
361 struct frame_saved_regs ignore;
362
363 get_frame_saved_regs (fi, &ignore);
364
365 }
1f46923f 366
1f46923f
SC
367 return fi->args_pointer;
368}
369
ec25d19b
SC
370void
371h8300_pop_frame ()
1f46923f
SC
372{
373 unsigned regnum;
374 struct frame_saved_regs fsr;
375 struct frame_info *fi;
376
ec25d19b 377 FRAME frame = get_current_frame ();
1f46923f 378
ec25d19b
SC
379 fi = get_frame_info (frame);
380 get_frame_saved_regs (fi, &fsr);
381
256b4f37 382 for (regnum = 0; regnum < 8; regnum++)
1f46923f 383 {
ec25d19b
SC
384 if (fsr.regs[regnum])
385 {
df14b38b 386 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
ec25d19b
SC
387 }
388
389 flush_cached_frames ();
390 set_current_frame (create_new_frame (read_register (FP_REGNUM),
391 read_pc ()));
392
1f46923f 393 }
1f46923f
SC
394
395}
ec25d19b
SC
396
397void
398print_register_hook (regno)
399{
400 if (regno == 8)
401 {
402 /* CCR register */
403
404 int C, Z, N, V;
405 unsigned char b[2];
406 unsigned char l;
407
408 read_relative_register_raw_bytes (regno, b);
409 l = b[1];
410 printf ("\t");
411 printf ("I-%d - ", (l & 0x80) != 0);
412 printf ("H-%d - ", (l & 0x20) != 0);
413 N = (l & 0x8) != 0;
414 Z = (l & 0x4) != 0;
415 V = (l & 0x2) != 0;
416 C = (l & 0x1) != 0;
417 printf ("N-%d ", N);
418 printf ("Z-%d ", Z);
419 printf ("V-%d ", V);
420 printf ("C-%d ", C);
421 if ((C | Z) == 0)
422 printf ("u> ");
423 if ((C | Z) == 1)
424 printf ("u<= ");
425 if ((C == 0))
426 printf ("u>= ");
427 if (C == 1)
428 printf ("u< ");
429 if (Z == 0)
430 printf ("!= ");
431 if (Z == 1)
432 printf ("== ");
433 if ((N ^ V) == 0)
434 printf (">= ");
435 if ((N ^ V) == 1)
436 printf ("< ");
437 if ((Z | (N ^ V)) == 0)
438 printf ("> ");
439 if ((Z | (N ^ V)) == 1)
440 printf ("<= ");
441 }
442}
This page took 0.096899 seconds and 4 git commands to generate.