source cleanups; fix finding scripts
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
CommitLineData
1f46923f
SC
1/* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
ec25d19b 20/*
1f46923f 21 Contributed by Steve Chamberlain
ec25d19b 22 sac@cygnus.com
1f46923f
SC
23 */
24
400943fb 25#include "defs.h"
1f46923f
SC
26#include "frame.h"
27#include "obstack.h"
28#include "symtab.h"
df14b38b 29#include <dis-asm.h>
256b4f37
SC
30#undef NUM_REGS
31#define NUM_REGS 11
32
1f46923f 33#define UNSIGNED_SHORT(X) ((X) & 0xffff)
400943fb
SC
34
35/* an easy to debug H8 stack frame looks like:
ec25d19b
SC
360x6df6 push r6
370x0d76 mov.w r7,r6
380x6dfn push reg
390x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
400x1957 sub.w r5,sp
400943fb
SC
41
42 */
1f46923f 43
400943fb 44#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
ec25d19b 45#define IS_PUSH_FP(x) (x == 0x6df6)
1f46923f
SC
46#define IS_MOVE_FP(x) (x == 0x0d76)
47#define IS_MOV_SP_FP(x) (x == 0x0d76)
48#define IS_SUB2_SP(x) (x==0x1b87)
49#define IS_MOVK_R5(x) (x==0x7905)
ec25d19b
SC
50#define IS_SUB_R5SP(x) (x==0x1957)
51CORE_ADDR examine_prologue ();
1f46923f 52
ec25d19b
SC
53void frame_find_saved_regs ();
54CORE_ADDR
55h8300_skip_prologue (start_pc)
56 CORE_ADDR start_pc;
0a8f9d31 57{
ec25d19b 58 short int w;
1f46923f 59
df14b38b 60 w = read_memory_unsigned_integer (start_pc, 2);
400943fb 61 /* Skip past all push insns */
ec25d19b
SC
62 while (IS_PUSH_FP (w))
63 {
64 start_pc += 2;
df14b38b 65 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b 66 }
0a8f9d31 67
1f46923f 68 /* Skip past a move to FP */
ec25d19b
SC
69 if (IS_MOVE_FP (w))
70 {
71 start_pc += 2;
df14b38b 72 w = read_memory_unsigned_integer (start_pc, 2);
1f46923f
SC
73 }
74
ec25d19b 75 /* Skip the stack adjust */
0a8f9d31 76
ec25d19b
SC
77 if (IS_MOVK_R5 (w))
78 {
79 start_pc += 2;
df14b38b 80 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
81 }
82 if (IS_SUB_R5SP (w))
83 {
84 start_pc += 2;
df14b38b 85 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
86 }
87 while (IS_SUB2_SP (w))
88 {
89 start_pc += 2;
df14b38b 90 w = read_memory_unsigned_integer (start_pc, 2);
ec25d19b
SC
91 }
92
93 return start_pc;
ec25d19b 94}
1f46923f 95
400943fb 96int
ec25d19b
SC
97print_insn (memaddr, stream)
98 CORE_ADDR memaddr;
99 FILE *stream;
0a8f9d31 100{
df14b38b
SC
101 disassemble_info info;
102 GDB_INIT_DISASSEMBLE_INFO(info, stream);
d0414a11
DE
103 if (HMODE)
104 return print_insn_h8300h (memaddr, &info);
105 else
106 return print_insn_h8300 (memaddr, &info);
0a8f9d31 107}
ec25d19b 108
1f46923f
SC
109/* Given a GDB frame, determine the address of the calling function's frame.
110 This will be used to create a new GDB frame struct, and then
111 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
112
113 For us, the frame address is its stack pointer value, so we look up
114 the function prologue to determine the caller's sp value, and return it. */
115
116FRAME_ADDR
117FRAME_CHAIN (thisframe)
118 FRAME thisframe;
119{
1f46923f 120 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
ec25d19b 121 return thisframe->fsr->regs[SP_REGNUM];
1f46923f
SC
122}
123
1f46923f
SC
124/* Put here the code to store, into a struct frame_saved_regs,
125 the addresses of the saved registers of frame described by FRAME_INFO.
126 This includes special registers such as pc and fp saved in special
127 ways in the stack frame. sp is even more special:
128 the address we return for it IS the sp for the next frame.
129
130 We cache the result of doing this in the frame_cache_obstack, since
131 it is fairly expensive. */
132
133void
134frame_find_saved_regs (fi, fsr)
135 struct frame_info *fi;
136 struct frame_saved_regs *fsr;
137{
138 register CORE_ADDR next_addr;
139 register CORE_ADDR *saved_regs;
140 register int regnum;
141 register struct frame_saved_regs *cache_fsr;
142 extern struct obstack frame_cache_obstack;
143 CORE_ADDR ip;
144 struct symtab_and_line sal;
145 CORE_ADDR limit;
146
147 if (!fi->fsr)
148 {
149 cache_fsr = (struct frame_saved_regs *)
ec25d19b
SC
150 obstack_alloc (&frame_cache_obstack,
151 sizeof (struct frame_saved_regs));
1f46923f 152 bzero (cache_fsr, sizeof (struct frame_saved_regs));
ec25d19b 153
1f46923f
SC
154 fi->fsr = cache_fsr;
155
156 /* Find the start and end of the function prologue. If the PC
157 is in the function prologue, we only consider the part that
158 has executed already. */
ec25d19b 159
1f46923f
SC
160 ip = get_pc_function_start (fi->pc);
161 sal = find_pc_line (ip, 0);
ec25d19b 162 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
1f46923f
SC
163
164 /* This will fill in fields in *fi as well as in cache_fsr. */
165 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
166 }
167
168 if (fsr)
169 *fsr = *fi->fsr;
170}
1f46923f
SC
171
172/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
173 is not the address of a valid instruction, the address of the next
174 instruction beyond ADDR otherwise. *PWORD1 receives the first word
175 of the instruction.*/
176
1f46923f 177CORE_ADDR
ec25d19b
SC
178NEXT_PROLOGUE_INSN (addr, lim, pword1)
179 CORE_ADDR addr;
180 CORE_ADDR lim;
58e49e21 181 INSN_WORD *pword1;
1f46923f 182{
34df79fc 183 char buf[2];
ec25d19b
SC
184 if (addr < lim + 8)
185 {
34df79fc
JK
186 read_memory (addr, buf, 2);
187 *pword1 = extract_signed_integer (buf, 2);
1f46923f 188
ec25d19b
SC
189 return addr + 2;
190 }
1f46923f 191 return 0;
1f46923f
SC
192}
193
194/* Examine the prologue of a function. `ip' points to the first instruction.
ec25d19b 195 `limit' is the limit of the prologue (e.g. the addr of the first
1f46923f 196 linenumber, or perhaps the program counter if we're stepping through).
ec25d19b 197 `frame_sp' is the stack pointer value in use in this frame.
1f46923f 198 `fsr' is a pointer to a frame_saved_regs structure into which we put
ec25d19b 199 info about the registers saved by this frame.
1f46923f
SC
200 `fi' is a struct frame_info pointer; we fill in various fields in it
201 to reflect the offsets of the arg pointer and the locals pointer. */
202
1f46923f
SC
203static CORE_ADDR
204examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
205 register CORE_ADDR ip;
206 register CORE_ADDR limit;
207 FRAME_ADDR after_prolog_fp;
208 struct frame_saved_regs *fsr;
209 struct frame_info *fi;
210{
211 register CORE_ADDR next_ip;
212 int r;
213 int i;
214 int have_fp = 0;
1f46923f
SC
215 register int src;
216 register struct pic_prologue_code *pcode;
217 INSN_WORD insn_word;
218 int size, offset;
d0414a11
DE
219 /* Number of things pushed onto stack, starts at 2/4, 'cause the
220 PC is already there */
221 unsigned int reg_save_depth = HMODE ? 4 : 2;
1f46923f
SC
222
223 unsigned int auto_depth = 0; /* Number of bytes of autos */
1f46923f 224
ddf30c37 225 char in_frame[11]; /* One for each reg */
1f46923f 226
ddf30c37 227 memset (in_frame, 1, 11);
256b4f37 228 for (r = 0; r < 8; r++)
ec25d19b
SC
229 {
230 fsr->regs[r] = 0;
231 }
232 if (after_prolog_fp == 0)
233 {
234 after_prolog_fp = read_register (SP_REGNUM);
235 }
d0414a11 236 if (ip == 0 || ip & (HMODE ? ~0xffff : ~0xffff))
ec25d19b 237 return 0;
1f46923f 238
ec25d19b 239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
1f46923f 240
ec25d19b
SC
241 /* Skip over any fp push instructions */
242 fsr->regs[6] = after_prolog_fp;
243 while (next_ip && IS_PUSH_FP (insn_word))
244 {
245 ip = next_ip;
1f46923f 246
ec25d19b
SC
247 in_frame[insn_word & 0x7] = reg_save_depth;
248 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
249 reg_save_depth += 2;
250 }
1f46923f
SC
251
252 /* Is this a move into the fp */
ec25d19b
SC
253 if (next_ip && IS_MOV_SP_FP (insn_word))
254 {
255 ip = next_ip;
256 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
257 have_fp = 1;
258 }
1f46923f
SC
259
260 /* Skip over any stack adjustment, happens either with a number of
261 sub#2,sp or a mov #x,r5 sub r5,sp */
262
ec25d19b 263 if (next_ip && IS_SUB2_SP (insn_word))
1f46923f 264 {
ec25d19b
SC
265 while (next_ip && IS_SUB2_SP (insn_word))
266 {
267 auto_depth += 2;
268 ip = next_ip;
269 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
270 }
1f46923f 271 }
ec25d19b
SC
272 else
273 {
274 if (next_ip && IS_MOVK_R5 (insn_word))
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
278 auto_depth += insn_word;
279
280 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
281 auto_depth += insn_word;
ec25d19b
SC
282 }
283 }
284 /* Work out which regs are stored where */
285 while (next_ip && IS_PUSH (insn_word))
1f46923f
SC
286 {
287 ip = next_ip;
ec25d19b
SC
288 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
289 fsr->regs[r] = after_prolog_fp + auto_depth;
290 auto_depth += 2;
1f46923f 291 }
1f46923f 292
1f46923f 293 /* The args are always reffed based from the stack pointer */
ec25d19b 294 fi->args_pointer = after_prolog_fp;
1f46923f 295 /* Locals are always reffed based from the fp */
ec25d19b 296 fi->locals_pointer = after_prolog_fp;
1f46923f 297 /* The PC is at a known place */
df14b38b 298 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
1f46923f
SC
299
300 /* Rememeber any others too */
1f46923f 301 in_frame[PC_REGNUM] = 0;
ec25d19b
SC
302
303 if (have_fp)
304 /* We keep the old FP in the SP spot */
b1d0b161 305 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
ec25d19b
SC
306 else
307 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
308
1f46923f
SC
309 return (ip);
310}
311
312void
313init_extra_frame_info (fromleaf, fi)
314 int fromleaf;
315 struct frame_info *fi;
316{
317 fi->fsr = 0; /* Not yet allocated */
318 fi->args_pointer = 0; /* Unknown */
319 fi->locals_pointer = 0; /* Unknown */
320 fi->from_pc = 0;
1f46923f 321}
ec25d19b 322
1f46923f
SC
323/* Return the saved PC from this frame.
324
325 If the frame has a memory copy of SRP_REGNUM, use that. If not,
326 just use the register SRP_REGNUM itself. */
327
328CORE_ADDR
329frame_saved_pc (frame)
ec25d19b 330 FRAME frame;
1f46923f
SC
331{
332 return frame->from_pc;
333}
334
1f46923f
SC
335CORE_ADDR
336frame_locals_address (fi)
337 struct frame_info *fi;
338{
ec25d19b
SC
339 if (!fi->locals_pointer)
340 {
341 struct frame_saved_regs ignore;
342
343 get_frame_saved_regs (fi, &ignore);
1f46923f 344
ec25d19b 345 }
1f46923f
SC
346 return fi->locals_pointer;
347}
348
349/* Return the address of the argument block for the frame
350 described by FI. Returns 0 if the address is unknown. */
351
352CORE_ADDR
353frame_args_address (fi)
354 struct frame_info *fi;
355{
ec25d19b
SC
356 if (!fi->args_pointer)
357 {
358 struct frame_saved_regs ignore;
359
360 get_frame_saved_regs (fi, &ignore);
361
362 }
1f46923f 363
1f46923f
SC
364 return fi->args_pointer;
365}
366
ec25d19b
SC
367void
368h8300_pop_frame ()
1f46923f
SC
369{
370 unsigned regnum;
371 struct frame_saved_regs fsr;
372 struct frame_info *fi;
373
ec25d19b 374 FRAME frame = get_current_frame ();
1f46923f 375
ec25d19b
SC
376 fi = get_frame_info (frame);
377 get_frame_saved_regs (fi, &fsr);
378
256b4f37 379 for (regnum = 0; regnum < 8; regnum++)
1f46923f 380 {
ec25d19b
SC
381 if (fsr.regs[regnum])
382 {
df14b38b 383 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
ec25d19b
SC
384 }
385
386 flush_cached_frames ();
387 set_current_frame (create_new_frame (read_register (FP_REGNUM),
388 read_pc ()));
1f46923f 389 }
1f46923f 390}
ec25d19b
SC
391
392void
393print_register_hook (regno)
394{
395 if (regno == 8)
396 {
397 /* CCR register */
398
399 int C, Z, N, V;
400 unsigned char b[2];
401 unsigned char l;
402
403 read_relative_register_raw_bytes (regno, b);
404 l = b[1];
405 printf ("\t");
406 printf ("I-%d - ", (l & 0x80) != 0);
407 printf ("H-%d - ", (l & 0x20) != 0);
408 N = (l & 0x8) != 0;
409 Z = (l & 0x4) != 0;
410 V = (l & 0x2) != 0;
411 C = (l & 0x1) != 0;
412 printf ("N-%d ", N);
413 printf ("Z-%d ", Z);
414 printf ("V-%d ", V);
415 printf ("C-%d ", C);
416 if ((C | Z) == 0)
417 printf ("u> ");
418 if ((C | Z) == 1)
419 printf ("u<= ");
420 if ((C == 0))
421 printf ("u>= ");
422 if (C == 1)
423 printf ("u< ");
424 if (Z == 0)
425 printf ("!= ");
426 if (Z == 1)
427 printf ("== ");
428 if ((N ^ V) == 0)
429 printf (">= ");
430 if ((N ^ V) == 1)
431 printf ("< ");
432 if ((Z | (N ^ V)) == 0)
433 printf ("> ");
434 if ((Z | (N ^ V)) == 1)
435 printf ("<= ");
436 }
437}
This page took 0.100354 seconds and 4 git commands to generate.