* gas/v850/hilo.s: New testfile.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c 1/* Target-dependent code for the HP PA architecture, for GDB.
87273c71 2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
669caa9c 3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
6c9638b4 22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
66a1aa07
SG
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
2b576293 49#include "gdb_stat.h"
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
3f550b59
FF
58static int extract_5_load PARAMS ((unsigned int));
59
60static unsigned extract_5R_store PARAMS ((unsigned int));
61
62static unsigned extract_5r_store PARAMS ((unsigned int));
63
64static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
66
67static int find_proc_framesize PARAMS ((CORE_ADDR));
68
69static int find_return_regnum PARAMS ((CORE_ADDR));
70
71struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
72
73static int extract_17 PARAMS ((unsigned int));
74
75static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
76
77static int extract_21 PARAMS ((unsigned));
78
79static unsigned deposit_14 PARAMS ((int, unsigned int));
80
81static int extract_14 PARAMS ((unsigned));
82
83static void unwind_command PARAMS ((char *, int));
84
85static int low_sign_extend PARAMS ((unsigned int, unsigned int));
86
87static int sign_extend PARAMS ((unsigned int, unsigned int));
88
669caa9c
SS
89static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
90
91static int hppa_alignof PARAMS ((struct type *));
92
c598654a 93static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 94
c598654a 95static int is_branch PARAMS ((unsigned long));
669caa9c 96
c598654a 97static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 98
c598654a 99static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 100
70e43abe 101static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 102
70e43abe 103static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c 104
5579919f 105static int compare_unwind_entries PARAMS ((const void *, const void *));
669caa9c 106
c5152d42 107static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 108
c5152d42
JL
109static void internalize_unwinds PARAMS ((struct objfile *,
110 struct unwind_table_entry *,
111 asection *, unsigned int,
bfaef242 112 unsigned int, CORE_ADDR));
e43169eb
JL
113static void pa_print_registers PARAMS ((char *, int, int));
114static void pa_print_fp_reg PARAMS ((int));
66a1aa07
SG
115
116\f
117/* Routines to extract various sized constants out of hppa
118 instructions. */
119
120/* This assumes that no garbage lies outside of the lower bits of
121 value. */
122
3f550b59 123static int
66a1aa07
SG
124sign_extend (val, bits)
125 unsigned val, bits;
126{
3f550b59 127 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
66a1aa07
SG
128}
129
130/* For many immediate values the sign bit is the low bit! */
131
3f550b59 132static int
66a1aa07
SG
133low_sign_extend (val, bits)
134 unsigned val, bits;
135{
136 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
137}
3f550b59 138
66a1aa07
SG
139/* extract the immediate field from a ld{bhw}s instruction */
140
3f550b59
FF
141#if 0
142
66a1aa07
SG
143unsigned
144get_field (val, from, to)
145 unsigned val, from, to;
146{
147 val = val >> 31 - to;
148 return val & ((1 << 32 - from) - 1);
149}
150
151unsigned
152set_field (val, from, to, new_val)
153 unsigned *val, from, to;
154{
155 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
156 return *val = *val & mask | (new_val << (31 - from));
157}
158
159/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
160
3f550b59 161int
66a1aa07
SG
162extract_3 (word)
163 unsigned word;
164{
165 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
166}
3f550b59
FF
167
168#endif
169
170static int
66a1aa07
SG
171extract_5_load (word)
172 unsigned word;
173{
174 return low_sign_extend (word >> 16 & MASK_5, 5);
175}
176
3f550b59
FF
177#if 0
178
66a1aa07
SG
179/* extract the immediate field from a st{bhw}s instruction */
180
181int
182extract_5_store (word)
183 unsigned word;
184{
185 return low_sign_extend (word & MASK_5, 5);
186}
187
3f550b59
FF
188#endif /* 0 */
189
68c8d698
SG
190/* extract the immediate field from a break instruction */
191
3f550b59 192static unsigned
68c8d698
SG
193extract_5r_store (word)
194 unsigned word;
195{
196 return (word & MASK_5);
197}
198
199/* extract the immediate field from a {sr}sm instruction */
200
3f550b59 201static unsigned
68c8d698
SG
202extract_5R_store (word)
203 unsigned word;
204{
205 return (word >> 16 & MASK_5);
206}
207
66a1aa07
SG
208/* extract an 11 bit immediate field */
209
3f550b59
FF
210#if 0
211
66a1aa07
SG
212int
213extract_11 (word)
214 unsigned word;
215{
216 return low_sign_extend (word & MASK_11, 11);
217}
218
3f550b59
FF
219#endif
220
66a1aa07
SG
221/* extract a 14 bit immediate field */
222
3f550b59 223static int
66a1aa07
SG
224extract_14 (word)
225 unsigned word;
226{
227 return low_sign_extend (word & MASK_14, 14);
228}
229
230/* deposit a 14 bit constant in a word */
231
3f550b59 232static unsigned
66a1aa07
SG
233deposit_14 (opnd, word)
234 int opnd;
235 unsigned word;
236{
237 unsigned sign = (opnd < 0 ? 1 : 0);
238
239 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
240}
241
242/* extract a 21 bit constant */
243
3f550b59 244static int
66a1aa07
SG
245extract_21 (word)
246 unsigned word;
247{
248 int val;
249
250 word &= MASK_21;
251 word <<= 11;
252 val = GET_FIELD (word, 20, 20);
253 val <<= 11;
254 val |= GET_FIELD (word, 9, 19);
255 val <<= 2;
256 val |= GET_FIELD (word, 5, 6);
257 val <<= 5;
258 val |= GET_FIELD (word, 0, 4);
259 val <<= 2;
260 val |= GET_FIELD (word, 7, 8);
261 return sign_extend (val, 21) << 11;
262}
263
264/* deposit a 21 bit constant in a word. Although 21 bit constants are
265 usually the top 21 bits of a 32 bit constant, we assume that only
266 the low 21 bits of opnd are relevant */
267
3f550b59 268static unsigned
66a1aa07
SG
269deposit_21 (opnd, word)
270 unsigned opnd, word;
271{
272 unsigned val = 0;
273
274 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
275 val <<= 2;
276 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
277 val <<= 2;
278 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
279 val <<= 11;
280 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
281 val <<= 1;
282 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
283 return word | val;
284}
285
286/* extract a 12 bit constant from branch instructions */
287
3f550b59
FF
288#if 0
289
66a1aa07
SG
290int
291extract_12 (word)
292 unsigned word;
293{
294 return sign_extend (GET_FIELD (word, 19, 28) |
295 GET_FIELD (word, 29, 29) << 10 |
296 (word & 0x1) << 11, 12) << 2;
297}
298
7486c68d
SG
299/* Deposit a 17 bit constant in an instruction (like bl). */
300
301unsigned int
302deposit_17 (opnd, word)
303 unsigned opnd, word;
304{
305 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
306 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
307 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
308 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
309
310 return word;
311}
312
3f550b59
FF
313#endif
314
66a1aa07
SG
315/* extract a 17 bit constant from branch instructions, returning the
316 19 bit signed value. */
317
3f550b59 318static int
66a1aa07
SG
319extract_17 (word)
320 unsigned word;
321{
322 return sign_extend (GET_FIELD (word, 19, 28) |
323 GET_FIELD (word, 29, 29) << 10 |
324 GET_FIELD (word, 11, 15) << 11 |
325 (word & 0x1) << 16, 17) << 2;
326}
327\f
c5152d42
JL
328
329/* Compare the start address for two unwind entries returning 1 if
330 the first address is larger than the second, -1 if the second is
331 larger than the first, and zero if they are equal. */
332
333static int
5579919f
FF
334compare_unwind_entries (arg1, arg2)
335 const void *arg1;
336 const void *arg2;
c5152d42 337{
5579919f
FF
338 const struct unwind_table_entry *a = arg1;
339 const struct unwind_table_entry *b = arg2;
340
c5152d42
JL
341 if (a->region_start > b->region_start)
342 return 1;
343 else if (a->region_start < b->region_start)
344 return -1;
345 else
346 return 0;
347}
348
349static void
bfaef242 350internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
351 struct objfile *objfile;
352 struct unwind_table_entry *table;
353 asection *section;
354 unsigned int entries, size;
bfaef242 355 CORE_ADDR text_offset;
c5152d42
JL
356{
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
365 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
366
367 /* Now internalize the information being careful to handle host/target
368 endian issues. */
369 for (i = 0; i < entries; i++)
370 {
371 table[i].region_start = bfd_get_32 (objfile->obfd,
372 (bfd_byte *)buf);
bfaef242 373 table[i].region_start += text_offset;
c5152d42
JL
374 buf += 4;
375 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 376 table[i].region_end += text_offset;
c5152d42
JL
377 buf += 4;
378 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
379 buf += 4;
e43169eb 380 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
c5152d42
JL
381 table[i].Millicode = (tmp >> 30) & 0x1;
382 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
383 table[i].Region_description = (tmp >> 27) & 0x3;
384 table[i].reserved1 = (tmp >> 26) & 0x1;
385 table[i].Entry_SR = (tmp >> 25) & 0x1;
386 table[i].Entry_FR = (tmp >> 21) & 0xf;
387 table[i].Entry_GR = (tmp >> 16) & 0x1f;
388 table[i].Args_stored = (tmp >> 15) & 0x1;
389 table[i].Variable_Frame = (tmp >> 14) & 0x1;
390 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
391 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
392 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
393 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
394 table[i].Ada_Region = (tmp >> 9) & 0x1;
395 table[i].reserved2 = (tmp >> 5) & 0xf;
396 table[i].Save_SP = (tmp >> 4) & 0x1;
397 table[i].Save_RP = (tmp >> 3) & 0x1;
398 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
399 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
400 table[i].Cleanup_defined = tmp & 0x1;
401 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
402 buf += 4;
403 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
404 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
405 table[i].Large_frame = (tmp >> 29) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x3;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
408 }
409 }
410}
411
412/* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
417
9c842e0c 418static void
c5152d42
JL
419read_unwind_info (objfile)
420 struct objfile *objfile;
421{
422 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries, elf_unwind_entries;
425 unsigned stub_entries, total_entries;
bfaef242 426 CORE_ADDR text_offset;
c5152d42
JL
427 struct obj_unwind_info *ui;
428
bfaef242 429 text_offset = ANOFFSET (objfile->section_offsets, 0);
d8afcce9
SG
430 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
431 sizeof (struct obj_unwind_info));
c5152d42
JL
432
433 ui->table = NULL;
434 ui->cache = NULL;
435 ui->last = -1;
436
437 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
438 section in ELF at the moment. */
439 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 440 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
441 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
442
443 /* Get sizes and unwind counts for all sections. */
444 if (unwind_sec)
445 {
446 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
447 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
448 }
449 else
450 {
451 unwind_size = 0;
452 unwind_entries = 0;
453 }
454
455 if (elf_unwind_sec)
456 {
457 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
458 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
459 }
f55179cb
JL
460 else
461 {
462 elf_unwind_size = 0;
463 elf_unwind_entries = 0;
464 }
c5152d42
JL
465
466 if (stub_unwind_sec)
467 {
468 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
469 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
470 }
471 else
472 {
473 stub_unwind_size = 0;
474 stub_entries = 0;
475 }
476
477 /* Compute total number of unwind entries and their total size. */
478 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
479 total_size = total_entries * sizeof (struct unwind_table_entry);
480
481 /* Allocate memory for the unwind table. */
482 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
483 ui->last = total_entries - 1;
484
485 /* Internalize the standard unwind entries. */
486 index = 0;
487 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 488 unwind_entries, unwind_size, text_offset);
c5152d42
JL
489 index += unwind_entries;
490 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 491 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
492 index += elf_unwind_entries;
493
494 /* Now internalize the stub unwind entries. */
495 if (stub_unwind_size > 0)
496 {
497 unsigned int i;
498 char *buf = alloca (stub_unwind_size);
499
500 /* Read in the stub unwind entries. */
501 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
502 0, stub_unwind_size);
503
504 /* Now convert them into regular unwind entries. */
505 for (i = 0; i < stub_entries; i++, index++)
506 {
507 /* Clear out the next unwind entry. */
508 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
509
510 /* Convert offset & size into region_start and region_end.
511 Stuff away the stub type into "reserved" fields. */
512 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
513 (bfd_byte *) buf);
73a25072 514 ui->table[index].region_start += text_offset;
c5152d42
JL
515 buf += 4;
516 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
517 (bfd_byte *) buf);
518 buf += 2;
519 ui->table[index].region_end
520 = ui->table[index].region_start + 4 *
521 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
522 buf += 2;
523 }
524
525 }
526
527 /* Unwind table needs to be kept sorted. */
528 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
529 compare_unwind_entries);
530
531 /* Keep a pointer to the unwind information. */
532 objfile->obj_private = (PTR) ui;
533}
534
66a1aa07
SG
535/* Lookup the unwind (stack backtrace) info for the given PC. We search all
536 of the objfiles seeking the unwind table entry for this PC. Each objfile
537 contains a sorted list of struct unwind_table_entry. Since we do a binary
538 search of the unwind tables, we depend upon them to be sorted. */
539
87273c71 540struct unwind_table_entry *
66a1aa07
SG
541find_unwind_entry(pc)
542 CORE_ADDR pc;
543{
544 int first, middle, last;
545 struct objfile *objfile;
546
547 ALL_OBJFILES (objfile)
548 {
549 struct obj_unwind_info *ui;
550
551 ui = OBJ_UNWIND_INFO (objfile);
552
553 if (!ui)
c5152d42
JL
554 {
555 read_unwind_info (objfile);
556 ui = OBJ_UNWIND_INFO (objfile);
557 }
66a1aa07
SG
558
559 /* First, check the cache */
560
561 if (ui->cache
562 && pc >= ui->cache->region_start
563 && pc <= ui->cache->region_end)
564 return ui->cache;
565
566 /* Not in the cache, do a binary search */
567
568 first = 0;
569 last = ui->last;
570
571 while (first <= last)
572 {
573 middle = (first + last) / 2;
574 if (pc >= ui->table[middle].region_start
575 && pc <= ui->table[middle].region_end)
576 {
577 ui->cache = &ui->table[middle];
578 return &ui->table[middle];
579 }
580
581 if (pc < ui->table[middle].region_start)
582 last = middle - 1;
583 else
584 first = middle + 1;
585 }
586 } /* ALL_OBJFILES() */
587 return NULL;
588}
589
98c0e047
JL
590/* Return the adjustment necessary to make for addresses on the stack
591 as presented by hpread.c.
592
593 This is necessary because of the stack direction on the PA and the
594 bizarre way in which someone (?) decided they wanted to handle
595 frame pointerless code in GDB. */
596int
597hpread_adjust_stack_address (func_addr)
598 CORE_ADDR func_addr;
599{
600 struct unwind_table_entry *u;
601
602 u = find_unwind_entry (func_addr);
603 if (!u)
604 return 0;
605 else
606 return u->Total_frame_size << 3;
607}
98c0e047 608
70e43abe
JL
609/* Called to determine if PC is in an interrupt handler of some
610 kind. */
611
612static int
613pc_in_interrupt_handler (pc)
614 CORE_ADDR pc;
615{
616 struct unwind_table_entry *u;
617 struct minimal_symbol *msym_us;
618
619 u = find_unwind_entry (pc);
620 if (!u)
621 return 0;
622
623 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
624 its frame isn't a pure interrupt frame. Deal with this. */
625 msym_us = lookup_minimal_symbol_by_pc (pc);
626
627 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
628}
629
5ac7f56e
JK
630/* Called when no unwind descriptor was found for PC. Returns 1 if it
631 appears that PC is in a linker stub. */
5ac7f56e
JK
632
633static int
634pc_in_linker_stub (pc)
635 CORE_ADDR pc;
636{
5ac7f56e
JK
637 int found_magic_instruction = 0;
638 int i;
08ecd8f3
JK
639 char buf[4];
640
641 /* If unable to read memory, assume pc is not in a linker stub. */
642 if (target_read_memory (pc, buf, 4) != 0)
643 return 0;
5ac7f56e 644
d08c6f4c
JK
645 /* We are looking for something like
646
647 ; $$dyncall jams RP into this special spot in the frame (RP')
648 ; before calling the "call stub"
649 ldw -18(sp),rp
650
651 ldsid (rp),r1 ; Get space associated with RP into r1
652 mtsp r1,sp ; Move it into space register 0
653 be,n 0(sr0),rp) ; back to your regularly scheduled program
654 */
655
5ac7f56e
JK
656 /* Maximum known linker stub size is 4 instructions. Search forward
657 from the given PC, then backward. */
658 for (i = 0; i < 4; i++)
659 {
6e35b037 660 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
661
662 if (find_unwind_entry (pc + i * 4) != 0)
663 break;
664
665 /* Check for ldsid (rp),r1 which is the magic instruction for a
666 return from a cross-space function call. */
667 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
668 {
669 found_magic_instruction = 1;
670 break;
671 }
672 /* Add code to handle long call/branch and argument relocation stubs
673 here. */
674 }
675
676 if (found_magic_instruction != 0)
677 return 1;
678
679 /* Now look backward. */
680 for (i = 0; i < 4; i++)
681 {
6e35b037 682 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
683
684 if (find_unwind_entry (pc - i * 4) != 0)
685 break;
686
687 /* Check for ldsid (rp),r1 which is the magic instruction for a
688 return from a cross-space function call. */
689 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
690 {
691 found_magic_instruction = 1;
692 break;
693 }
694 /* Add code to handle long call/branch and argument relocation stubs
695 here. */
696 }
697 return found_magic_instruction;
698}
699
66a1aa07
SG
700static int
701find_return_regnum(pc)
702 CORE_ADDR pc;
703{
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 return RP_REGNUM;
710
711 if (u->Millicode)
712 return 31;
713
714 return RP_REGNUM;
715}
716
5ac7f56e 717/* Return size of frame, or -1 if we should use a frame pointer. */
3f550b59 718static int
70e43abe 719find_proc_framesize (pc)
66a1aa07
SG
720 CORE_ADDR pc;
721{
722 struct unwind_table_entry *u;
70e43abe 723 struct minimal_symbol *msym_us;
66a1aa07 724
66a1aa07
SG
725 u = find_unwind_entry (pc);
726
727 if (!u)
5ac7f56e
JK
728 {
729 if (pc_in_linker_stub (pc))
730 /* Linker stubs have a zero size frame. */
731 return 0;
732 else
733 return -1;
734 }
66a1aa07 735
70e43abe
JL
736 msym_us = lookup_minimal_symbol_by_pc (pc);
737
738 /* If Save_SP is set, and we're not in an interrupt or signal caller,
739 then we have a frame pointer. Use it. */
740 if (u->Save_SP && !pc_in_interrupt_handler (pc)
741 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
742 return -1;
743
66a1aa07
SG
744 return u->Total_frame_size << 3;
745}
746
5ac7f56e
JK
747/* Return offset from sp at which rp is saved, or 0 if not saved. */
748static int rp_saved PARAMS ((CORE_ADDR));
749
750static int
751rp_saved (pc)
752 CORE_ADDR pc;
66a1aa07
SG
753{
754 struct unwind_table_entry *u;
755
756 u = find_unwind_entry (pc);
757
758 if (!u)
5ac7f56e
JK
759 {
760 if (pc_in_linker_stub (pc))
761 /* This is the so-called RP'. */
762 return -24;
763 else
764 return 0;
765 }
66a1aa07
SG
766
767 if (u->Save_RP)
5ac7f56e 768 return -20;
c7f3b703
JL
769 else if (u->stub_type != 0)
770 {
771 switch (u->stub_type)
772 {
773 case EXPORT:
c2e00af6 774 case IMPORT:
c7f3b703
JL
775 return -24;
776 case PARAMETER_RELOCATION:
777 return -8;
778 default:
779 return 0;
780 }
781 }
66a1aa07
SG
782 else
783 return 0;
784}
785\f
8fa74880
SG
786int
787frameless_function_invocation (frame)
669caa9c 788 struct frame_info *frame;
8fa74880 789{
b8ec9a79 790 struct unwind_table_entry *u;
8fa74880 791
b8ec9a79 792 u = find_unwind_entry (frame->pc);
8fa74880 793
b8ec9a79 794 if (u == 0)
7f43b9b7 795 return 0;
b8ec9a79 796
c7f3b703 797 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
798}
799
66a1aa07
SG
800CORE_ADDR
801saved_pc_after_call (frame)
669caa9c 802 struct frame_info *frame;
66a1aa07
SG
803{
804 int ret_regnum;
edd86fb0
JL
805 CORE_ADDR pc;
806 struct unwind_table_entry *u;
66a1aa07
SG
807
808 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
809 pc = read_register (ret_regnum) & ~0x3;
810
811 /* If PC is in a linker stub, then we need to dig the address
812 the stub will return to out of the stack. */
813 u = find_unwind_entry (pc);
814 if (u && u->stub_type != 0)
815 return frame_saved_pc (frame);
816 else
817 return pc;
66a1aa07
SG
818}
819\f
820CORE_ADDR
821frame_saved_pc (frame)
669caa9c 822 struct frame_info *frame;
66a1aa07
SG
823{
824 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 825 struct unwind_table_entry *u;
66a1aa07 826
70e43abe
JL
827 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
828 at the base of the frame in an interrupt handler. Registers within
829 are saved in the exact same order as GDB numbers registers. How
830 convienent. */
831 if (pc_in_interrupt_handler (pc))
832 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
833
7486c68d 834#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
70e43abe
JL
835 /* Deal with signal handler caller frames too. */
836 if (frame->signal_handler_caller)
837 {
838 CORE_ADDR rp;
839 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 840 return rp & ~0x3;
70e43abe 841 }
7486c68d 842#endif
70e43abe 843
8fa74880 844 if (frameless_function_invocation (frame))
66a1aa07
SG
845 {
846 int ret_regnum;
847
848 ret_regnum = find_return_regnum (pc);
849
70e43abe
JL
850 /* If the next frame is an interrupt frame or a signal
851 handler caller, then we need to look in the saved
852 register area to get the return pointer (the values
853 in the registers may not correspond to anything useful). */
854 if (frame->next
855 && (frame->next->signal_handler_caller
856 || pc_in_interrupt_handler (frame->next->pc)))
857 {
70e43abe
JL
858 struct frame_saved_regs saved_regs;
859
54b2555b 860 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 861 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
862 {
863 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
864
865 /* Syscalls are really two frames. The syscall stub itself
866 with a return pointer in %rp and the kernel call with
867 a return pointer in %r31. We return the %rp variant
868 if %r31 is the same as frame->pc. */
869 if (pc == frame->pc)
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
871 }
70e43abe 872 else
7f43b9b7 873 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
874 }
875 else
7f43b9b7 876 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 877 }
66a1aa07 878 else
5ac7f56e 879 {
edd86fb0 880 int rp_offset;
5ac7f56e 881
edd86fb0
JL
882restart:
883 rp_offset = rp_saved (pc);
70e43abe
JL
884 /* Similar to code in frameless function case. If the next
885 frame is a signal or interrupt handler, then dig the right
886 information out of the saved register info. */
887 if (rp_offset == 0
888 && frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
70e43abe
JL
892 struct frame_saved_regs saved_regs;
893
669caa9c 894 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
896 {
897 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
898
899 /* Syscalls are really two frames. The syscall stub itself
900 with a return pointer in %rp and the kernel call with
901 a return pointer in %r31. We return the %rp variant
902 if %r31 is the same as frame->pc. */
903 if (pc == frame->pc)
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
905 }
70e43abe 906 else
7f43b9b7 907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
908 }
909 else if (rp_offset == 0)
7f43b9b7 910 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 911 else
7f43b9b7 912 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 913 }
7f43b9b7
JL
914
915 /* If PC is inside a linker stub, then dig out the address the stub
f4eec25c
JL
916 will return to.
917
918 Don't do this for long branch stubs. Why? For some unknown reason
919 _start is marked as a long branch stub in hpux10. */
7f43b9b7 920 u = find_unwind_entry (pc);
f4eec25c
JL
921 if (u && u->stub_type != 0
922 && u->stub_type != LONG_BRANCH)
c38e0b58
JL
923 {
924 unsigned int insn;
925
926 /* If this is a dynamic executable, and we're in a signal handler,
927 then the call chain will eventually point us into the stub for
928 _sigreturn. Unlike most cases, we'll be pointed to the branch
929 to the real sigreturn rather than the code after the real branch!.
930
931 Else, try to dig the address the stub will return to in the normal
932 fashion. */
933 insn = read_memory_integer (pc, 4);
934 if ((insn & 0xfc00e000) == 0xe8000000)
935 return (pc + extract_17 (insn) + 8) & ~0x3;
936 else
937 goto restart;
938 }
7f43b9b7
JL
939
940 return pc;
66a1aa07
SG
941}
942\f
943/* We need to correct the PC and the FP for the outermost frame when we are
944 in a system call. */
945
946void
947init_extra_frame_info (fromleaf, frame)
948 int fromleaf;
949 struct frame_info *frame;
950{
951 int flags;
952 int framesize;
953
192c3eeb 954 if (frame->next && !fromleaf)
66a1aa07
SG
955 return;
956
192c3eeb
JL
957 /* If the next frame represents a frameless function invocation
958 then we have to do some adjustments that are normally done by
959 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
960 if (fromleaf)
961 {
962 /* Find the framesize of *this* frame without peeking at the PC
963 in the current frame structure (it isn't set yet). */
964 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
965
966 /* Now adjust our base frame accordingly. If we have a frame pointer
967 use it, else subtract the size of this frame from the current
968 frame. (we always want frame->frame to point at the lowest address
969 in the frame). */
970 if (framesize == -1)
971 frame->frame = read_register (FP_REGNUM);
972 else
973 frame->frame -= framesize;
974 return;
975 }
976
66a1aa07
SG
977 flags = read_register (FLAGS_REGNUM);
978 if (flags & 2) /* In system call? */
979 frame->pc = read_register (31) & ~0x3;
980
192c3eeb
JL
981 /* The outermost frame is always derived from PC-framesize
982
983 One might think frameless innermost frames should have
984 a frame->frame that is the same as the parent's frame->frame.
985 That is wrong; frame->frame in that case should be the *high*
986 address of the parent's frame. It's complicated as hell to
987 explain, but the parent *always* creates some stack space for
988 the child. So the child actually does have a frame of some
989 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
990 framesize = find_proc_framesize(frame->pc);
991 if (framesize == -1)
992 frame->frame = read_register (FP_REGNUM);
993 else
994 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
995}
996\f
8966221d
JK
997/* Given a GDB frame, determine the address of the calling function's frame.
998 This will be used to create a new GDB frame struct, and then
999 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1000
1001 This may involve searching through prologues for several functions
1002 at boundaries where GCC calls HP C code, or where code which has
1003 a frame pointer calls code without a frame pointer. */
8966221d 1004
669caa9c 1005CORE_ADDR
66a1aa07
SG
1006frame_chain (frame)
1007 struct frame_info *frame;
1008{
8966221d
JK
1009 int my_framesize, caller_framesize;
1010 struct unwind_table_entry *u;
70e43abe 1011 CORE_ADDR frame_base;
b7202faa 1012 struct frame_info *tmp_frame;
70e43abe
JL
1013
1014 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1015 are easy; at *sp we have a full save state strucutre which we can
1016 pull the old stack pointer from. Also see frame_saved_pc for
1017 code to dig a saved PC out of the save state structure. */
1018 if (pc_in_interrupt_handler (frame->pc))
1019 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
7486c68d 1020#ifdef FRAME_BASE_BEFORE_SIGTRAMP
70e43abe
JL
1021 else if (frame->signal_handler_caller)
1022 {
1023 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1024 }
7486c68d 1025#endif
70e43abe
JL
1026 else
1027 frame_base = frame->frame;
66a1aa07 1028
8966221d
JK
1029 /* Get frame sizes for the current frame and the frame of the
1030 caller. */
1031 my_framesize = find_proc_framesize (frame->pc);
1032 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 1033
8966221d
JK
1034 /* If caller does not have a frame pointer, then its frame
1035 can be found at current_frame - caller_framesize. */
1036 if (caller_framesize != -1)
70e43abe 1037 return frame_base - caller_framesize;
8966221d
JK
1038
1039 /* Both caller and callee have frame pointers and are GCC compiled
1040 (SAVE_SP bit in unwind descriptor is on for both functions.
1041 The previous frame pointer is found at the top of the current frame. */
1042 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 1043 return read_memory_integer (frame_base, 4);
8966221d
JK
1044
1045 /* Caller has a frame pointer, but callee does not. This is a little
1046 more difficult as GCC and HP C lay out locals and callee register save
1047 areas very differently.
1048
1049 The previous frame pointer could be in a register, or in one of
1050 several areas on the stack.
1051
1052 Walk from the current frame to the innermost frame examining
2f8c3639 1053 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 1054 stack. If so return whatever value got saved into the stack.
2f8c3639 1055 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
1056 valid, so use it.
1057
2f8c3639 1058 We use information from unwind descriptors to determine if %r3
8966221d
JK
1059 is saved into the stack (Entry_GR field has this information). */
1060
b7202faa
JL
1061 tmp_frame = frame;
1062 while (tmp_frame)
8966221d 1063 {
b7202faa 1064 u = find_unwind_entry (tmp_frame->pc);
8966221d
JK
1065
1066 if (!u)
1067 {
01a03545
JK
1068 /* We could find this information by examining prologues. I don't
1069 think anyone has actually written any tools (not even "strip")
1070 which leave them out of an executable, so maybe this is a moot
1071 point. */
b7202faa 1072 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
8966221d
JK
1073 return 0;
1074 }
1075
1076 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 1077 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe 1078 if (u->Entry_GR >= 1 || u->Save_SP
b7202faa
JL
1079 || tmp_frame->signal_handler_caller
1080 || pc_in_interrupt_handler (tmp_frame->pc))
8966221d
JK
1081 break;
1082 else
b7202faa 1083 tmp_frame = tmp_frame->next;
8966221d
JK
1084 }
1085
b7202faa 1086 if (tmp_frame)
8966221d
JK
1087 {
1088 /* We may have walked down the chain into a function with a frame
1089 pointer. */
70e43abe 1090 if (u->Save_SP
b7202faa
JL
1091 && !tmp_frame->signal_handler_caller
1092 && !pc_in_interrupt_handler (tmp_frame->pc))
1093 return read_memory_integer (tmp_frame->frame, 4);
2f8c3639 1094 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1095 else
c598654a 1096 {
c598654a
JL
1097 struct frame_saved_regs saved_regs;
1098
b7202faa
JL
1099 /* Sick.
1100
1101 For optimization purposes many kernels don't have the
1102 callee saved registers into the save_state structure upon
1103 entry into the kernel for a syscall; the optimization
1104 is usually turned off if the process is being traced so
1105 that the debugger can get full register state for the
1106 process.
1107
1108 This scheme works well except for two cases:
1109
1110 * Attaching to a process when the process is in the
1111 kernel performing a system call (debugger can't get
1112 full register state for the inferior process since
1113 the process wasn't being traced when it entered the
1114 system call).
1115
1116 * Register state is not complete if the system call
1117 causes the process to core dump.
1118
1119
1120 The following heinous code is an attempt to deal with
1121 the lack of register state in a core dump. It will
1122 fail miserably if the function which performs the
1123 system call has a variable sized stack frame. */
1124
1125 get_frame_saved_regs (tmp_frame, &saved_regs);
1126
1127 /* Abominable hack. */
1128 if (current_target.to_has_execution == 0
5812b9a1
JL
1129 && ((saved_regs.regs[FLAGS_REGNUM]
1130 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1131 & 0x2))
1132 || (saved_regs.regs[FLAGS_REGNUM] == 0
1133 && read_register (FLAGS_REGNUM) & 0x2)))
b7202faa
JL
1134 {
1135 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1136 if (!u)
1137 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1138 else
1139 return frame_base - (u->Total_frame_size << 3);
1140 }
1141
c598654a
JL
1142 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1143 }
8966221d
JK
1144 }
1145 else
1146 {
5812b9a1
JL
1147 struct frame_saved_regs saved_regs;
1148
1149 /* Get the innermost frame. */
1150 tmp_frame = frame;
1151 while (tmp_frame->next != NULL)
1152 tmp_frame = tmp_frame->next;
1153
1154 get_frame_saved_regs (tmp_frame, &saved_regs);
1155 /* Abominable hack. See above. */
1156 if (current_target.to_has_execution == 0
1157 && ((saved_regs.regs[FLAGS_REGNUM]
1158 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1159 & 0x2))
1160 || (saved_regs.regs[FLAGS_REGNUM] == 0
1161 && read_register (FLAGS_REGNUM) & 0x2)))
1162 {
1163 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1164 if (!u)
1165 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1166 else
1167 return frame_base - (u->Total_frame_size << 3);
1168 }
1169
2f8c3639 1170 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1171 holds the value of the previous frame pointer). */
2f8c3639 1172 return read_register (FP_REGNUM);
8966221d
JK
1173 }
1174}
66a1aa07 1175
66a1aa07
SG
1176\f
1177/* To see if a frame chain is valid, see if the caller looks like it
1178 was compiled with gcc. */
1179
1180int
1181frame_chain_valid (chain, thisframe)
669caa9c
SS
1182 CORE_ADDR chain;
1183 struct frame_info *thisframe;
66a1aa07 1184{
247145e6
JK
1185 struct minimal_symbol *msym_us;
1186 struct minimal_symbol *msym_start;
70e43abe 1187 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1188 struct frame_info *next;
66a1aa07
SG
1189
1190 if (!chain)
1191 return 0;
1192
b8ec9a79 1193 u = find_unwind_entry (thisframe->pc);
4b01383b 1194
70e43abe
JL
1195 if (u == NULL)
1196 return 1;
1197
247145e6
JK
1198 /* We can't just check that the same of msym_us is "_start", because
1199 someone idiotically decided that they were going to make a Ltext_end
1200 symbol with the same address. This Ltext_end symbol is totally
1201 indistinguishable (as nearly as I can tell) from the symbol for a function
1202 which is (legitimately, since it is in the user's namespace)
1203 named Ltext_end, so we can't just ignore it. */
1204 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
2d336b1b 1205 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
247145e6
JK
1206 if (msym_us
1207 && msym_start
1208 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1209 return 0;
5ac7f56e 1210
c85ff3a3
JL
1211 /* Grrrr. Some new idiot decided that they don't want _start for the
1212 PRO configurations; $START$ calls main directly.... Deal with it. */
1213 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1214 if (msym_us
1215 && msym_start
1216 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1217 return 0;
1218
70e43abe
JL
1219 next = get_next_frame (thisframe);
1220 if (next)
1221 next_u = find_unwind_entry (next->pc);
5ac7f56e 1222
70e43abe
JL
1223 /* If this frame does not save SP, has no stack, isn't a stub,
1224 and doesn't "call" an interrupt routine or signal handler caller,
1225 then its not valid. */
1226 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1227 || (thisframe->next && thisframe->next->signal_handler_caller)
1228 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1229 return 1;
5ac7f56e 1230
b8ec9a79
JK
1231 if (pc_in_linker_stub (thisframe->pc))
1232 return 1;
4b01383b 1233
b8ec9a79 1234 return 0;
66a1aa07
SG
1235}
1236
66a1aa07
SG
1237/*
1238 * These functions deal with saving and restoring register state
1239 * around a function call in the inferior. They keep the stack
1240 * double-word aligned; eventually, on an hp700, the stack will have
1241 * to be aligned to a 64-byte boundary.
1242 */
1243
e43169eb
JL
1244void
1245push_dummy_frame (inf_status)
1246 struct inferior_status *inf_status;
66a1aa07 1247{
e43169eb 1248 CORE_ADDR sp, pc, pcspace;
66a1aa07
SG
1249 register int regnum;
1250 int int_buffer;
1251 double freg_buffer;
1252
e43169eb
JL
1253 /* Oh, what a hack. If we're trying to perform an inferior call
1254 while the inferior is asleep, we have to make sure to clear
1255 the "in system call" bit in the flag register (the call will
1256 start after the syscall returns, so we're no longer in the system
1257 call!) This state is kept in "inf_status", change it there.
1258
1259 We also need a number of horrid hacks to deal with lossage in the
1260 PC queue registers (apparently they're not valid when the in syscall
1261 bit is set). */
1262 pc = target_read_pc (inferior_pid);
1263 int_buffer = read_register (FLAGS_REGNUM);
1264 if (int_buffer & 0x2)
1265 {
244f7460 1266 unsigned int sid;
e43169eb
JL
1267 int_buffer &= ~0x2;
1268 memcpy (inf_status->registers, &int_buffer, 4);
1269 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1270 pc += 4;
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1272 pc -= 4;
244f7460
JL
1273 sid = (pc >> 30) & 0x3;
1274 if (sid == 0)
1275 pcspace = read_register (SR4_REGNUM);
1276 else
1277 pcspace = read_register (SR4_REGNUM + 4 + sid);
e43169eb
JL
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1279 &pcspace, 4);
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1281 &pcspace, 4);
1282 }
1283 else
1284 pcspace = read_register (PCSQ_HEAD_REGNUM);
1285
66a1aa07
SG
1286 /* Space for "arguments"; the RP goes in here. */
1287 sp = read_register (SP_REGNUM) + 48;
1288 int_buffer = read_register (RP_REGNUM) | 0x3;
1289 write_memory (sp - 20, (char *)&int_buffer, 4);
1290
1291 int_buffer = read_register (FP_REGNUM);
1292 write_memory (sp, (char *)&int_buffer, 4);
1293
1294 write_register (FP_REGNUM, sp);
1295
1296 sp += 8;
1297
1298 for (regnum = 1; regnum < 32; regnum++)
1299 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1300 sp = push_word (sp, read_register (regnum));
1301
1302 sp += 4;
1303
1304 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1305 {
1306 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1307 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1308 }
1309 sp = push_word (sp, read_register (IPSW_REGNUM));
1310 sp = push_word (sp, read_register (SAR_REGNUM));
e43169eb
JL
1311 sp = push_word (sp, pc);
1312 sp = push_word (sp, pcspace);
1313 sp = push_word (sp, pc + 4);
1314 sp = push_word (sp, pcspace);
66a1aa07
SG
1315 write_register (SP_REGNUM, sp);
1316}
1317
3f550b59 1318static void
66a1aa07
SG
1319find_dummy_frame_regs (frame, frame_saved_regs)
1320 struct frame_info *frame;
1321 struct frame_saved_regs *frame_saved_regs;
1322{
1323 CORE_ADDR fp = frame->frame;
1324 int i;
1325
3f550b59 1326 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
66a1aa07
SG
1327 frame_saved_regs->regs[FP_REGNUM] = fp;
1328 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1329
b227992a
SG
1330 for (fp += 12, i = 3; i < 32; i++)
1331 {
1332 if (i != FP_REGNUM)
1333 {
1334 frame_saved_regs->regs[i] = fp;
1335 fp += 4;
1336 }
1337 }
66a1aa07
SG
1338
1339 fp += 4;
1340 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1341 frame_saved_regs->regs[i] = fp;
1342
1343 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1344 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1345 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1346 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1347 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1348 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1349}
1350
e43169eb 1351void
66a1aa07
SG
1352hppa_pop_frame ()
1353{
669caa9c 1354 register struct frame_info *frame = get_current_frame ();
54576db3 1355 register CORE_ADDR fp, npc, target_pc;
66a1aa07
SG
1356 register int regnum;
1357 struct frame_saved_regs fsr;
66a1aa07
SG
1358 double freg_buffer;
1359
669caa9c
SS
1360 fp = FRAME_FP (frame);
1361 get_frame_saved_regs (frame, &fsr);
66a1aa07 1362
0a64709e 1363#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1364 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1365 restore_pc_queue (&fsr);
0a64709e 1366#endif
66a1aa07
SG
1367
1368 for (regnum = 31; regnum > 0; regnum--)
1369 if (fsr.regs[regnum])
1370 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1371
1372 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1373 if (fsr.regs[regnum])
1374 {
1375 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1376 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1377 }
1378
1379 if (fsr.regs[IPSW_REGNUM])
1380 write_register (IPSW_REGNUM,
1381 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1382
1383 if (fsr.regs[SAR_REGNUM])
1384 write_register (SAR_REGNUM,
1385 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1386
ed1a07ad 1387 /* If the PC was explicitly saved, then just restore it. */
66a1aa07 1388 if (fsr.regs[PCOQ_TAIL_REGNUM])
54576db3
JL
1389 {
1390 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1391 write_register (PCOQ_TAIL_REGNUM, npc);
1392 }
ed1a07ad
JK
1393 /* Else use the value in %rp to set the new PC. */
1394 else
54576db3
JL
1395 {
1396 npc = read_register (RP_REGNUM);
1397 target_write_pc (npc, 0);
1398 }
ed1a07ad 1399
66a1aa07
SG
1400 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1401
1402 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1403 write_register (SP_REGNUM, fp - 48);
1404 else
1405 write_register (SP_REGNUM, fp);
1406
54576db3
JL
1407 /* The PC we just restored may be inside a return trampoline. If so
1408 we want to restart the inferior and run it through the trampoline.
1409
1410 Do this by setting a momentary breakpoint at the location the
244f7460
JL
1411 trampoline returns to.
1412
1413 Don't skip through the trampoline if we're popping a dummy frame. */
54576db3 1414 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
244f7460 1415 if (target_pc && !fsr.regs[IPSW_REGNUM])
54576db3
JL
1416 {
1417 struct symtab_and_line sal;
1418 struct breakpoint *breakpoint;
1419 struct cleanup *old_chain;
1420
1421 /* Set up our breakpoint. Set it to be silent as the MI code
1422 for "return_command" will print the frame we returned to. */
1423 sal = find_pc_line (target_pc, 0);
1424 sal.pc = target_pc;
1425 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1426 breakpoint->silent = 1;
1427
1428 /* So we can clean things up. */
1429 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1430
1431 /* Start up the inferior. */
251b8ab9 1432 clear_proceed_status ();
54576db3
JL
1433 proceed_to_finish = 1;
1434 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1435
1436 /* Perform our cleanups. */
1437 do_cleanups (old_chain);
1438 }
66a1aa07 1439 flush_cached_frames ();
66a1aa07
SG
1440}
1441
1442/*
1443 * After returning to a dummy on the stack, restore the instruction
1444 * queue space registers. */
1445
1446static int
1447restore_pc_queue (fsr)
1448 struct frame_saved_regs *fsr;
1449{
1450 CORE_ADDR pc = read_pc ();
1451 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
67ac9759 1452 struct target_waitstatus w;
66a1aa07
SG
1453 int insn_count;
1454
1455 /* Advance past break instruction in the call dummy. */
1456 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1457 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1458
1459 /*
1460 * HPUX doesn't let us set the space registers or the space
1461 * registers of the PC queue through ptrace. Boo, hiss.
1462 * Conveniently, the call dummy has this sequence of instructions
1463 * after the break:
1464 * mtsp r21, sr0
1465 * ble,n 0(sr0, r22)
1466 *
1467 * So, load up the registers and single step until we are in the
1468 * right place.
1469 */
1470
1471 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1472 write_register (22, new_pc);
1473
1474 for (insn_count = 0; insn_count < 3; insn_count++)
1475 {
8c5e0021
JK
1476 /* FIXME: What if the inferior gets a signal right now? Want to
1477 merge this into wait_for_inferior (as a special kind of
1478 watchpoint? By setting a breakpoint at the end? Is there
1479 any other choice? Is there *any* way to do this stuff with
1480 ptrace() or some equivalent?). */
66a1aa07 1481 resume (1, 0);
67ac9759 1482 target_wait (inferior_pid, &w);
66a1aa07 1483
67ac9759 1484 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1485 {
67ac9759 1486 stop_signal = w.value.sig;
66a1aa07 1487 terminal_ours_for_output ();
67ac9759
JK
1488 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1489 target_signal_to_name (stop_signal),
1490 target_signal_to_string (stop_signal));
199b2450 1491 gdb_flush (gdb_stdout);
66a1aa07
SG
1492 return 0;
1493 }
1494 }
8c5e0021 1495 target_terminal_ours ();
cad1498f 1496 target_fetch_registers (-1);
66a1aa07
SG
1497 return 1;
1498}
1499
1500CORE_ADDR
1501hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1502 int nargs;
4fd5eed4 1503 value_ptr *args;
66a1aa07
SG
1504 CORE_ADDR sp;
1505 int struct_return;
1506 CORE_ADDR struct_addr;
1507{
1508 /* array of arguments' offsets */
1edc5cd2 1509 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1510 int cum = 0;
1511 int i, alignment;
1512
1513 for (i = 0; i < nargs; i++)
1514 {
66a1aa07
SG
1515 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1516
1517 /* value must go at proper alignment. Assume alignment is a
1518 power of two.*/
1519 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1520 if (cum % alignment)
1521 cum = (cum + alignment) & -alignment;
1522 offset[i] = -cum;
1523 }
558f4183 1524 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1525
1526 for (i = 0; i < nargs; i++)
1527 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1528 TYPE_LENGTH (VALUE_TYPE (args[i])));
1529
1530 if (struct_return)
1531 write_register (28, struct_addr);
1532 return sp + 32;
1533}
1534
1535/*
1536 * Insert the specified number of args and function address
1537 * into a call sequence of the above form stored at DUMMYNAME.
1538 *
1539 * On the hppa we need to call the stack dummy through $$dyncall.
1540 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1541 * real_pc, which is the location where gdb should start up the
1542 * inferior to do the function call.
1543 */
1544
1545CORE_ADDR
1546hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1547 char *dummy;
66a1aa07
SG
1548 CORE_ADDR pc;
1549 CORE_ADDR fun;
1550 int nargs;
4fd5eed4 1551 value_ptr *args;
66a1aa07
SG
1552 struct type *type;
1553 int gcc_p;
1554{
7486c68d 1555 CORE_ADDR dyncall_addr;
66a1aa07 1556 struct minimal_symbol *msymbol;
46f569b4 1557 struct minimal_symbol *trampoline;
6cfec929 1558 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1559 struct unwind_table_entry *u;
66a1aa07 1560
46f569b4 1561 trampoline = NULL;
2d336b1b 1562 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
1563 if (msymbol == NULL)
1564 error ("Can't find an address for $$dyncall trampoline");
1565
1566 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1567
4f915914
JL
1568 /* FUN could be a procedure label, in which case we have to get
1569 its real address and the value of its GOT/DP. */
1570 if (fun & 0x2)
1571 {
1572 /* Get the GOT/DP value for the target function. It's
1573 at *(fun+4). Note the call dummy is *NOT* allowed to
1574 trash %r19 before calling the target function. */
1575 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1576
1577 /* Now get the real address for the function we are calling, it's
1578 at *fun. */
1579 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1580 }
b1bbe38b
JL
1581 else
1582 {
1583
3200aa59 1584#ifndef GDB_TARGET_IS_PA_ELF
b1bbe38b 1585 /* FUN could be either an export stub, or the real address of a
3200aa59
JL
1586 function in a shared library. We must call an import stub
1587 rather than the export stub or real function for lazy binding
1588 to work correctly. */
1589 if (som_solib_get_got_by_pc (fun))
1590 {
1591 struct objfile *objfile;
1592 struct minimal_symbol *funsymbol, *stub_symbol;
1593 CORE_ADDR newfun = 0;
b1bbe38b 1594
3200aa59
JL
1595 funsymbol = lookup_minimal_symbol_by_pc (fun);
1596 if (!funsymbol)
1597 error ("Unable to find minimal symbol for target fucntion.\n");
b1bbe38b 1598
3200aa59
JL
1599 /* Search all the object files for an import symbol with the
1600 right name. */
1601 ALL_OBJFILES (objfile)
1602 {
1603 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2d336b1b 1604 NULL, objfile);
3200aa59
JL
1605 /* Found a symbol with the right name. */
1606 if (stub_symbol)
1607 {
1608 struct unwind_table_entry *u;
1609 /* It must be a shared library trampoline. */
e5718bee 1610 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
3200aa59
JL
1611 continue;
1612
1613 /* It must also be an import stub. */
1614 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1615 if (!u || u->stub_type != IMPORT)
1616 continue;
1617
1618 /* OK. Looks like the correct import stub. */
1619 newfun = SYMBOL_VALUE (stub_symbol);
1620 fun = newfun;
1621 }
1622 }
1623 if (newfun == 0)
1624 write_register (19, som_solib_get_got_by_pc (fun));
1625 }
bd2b724a 1626#endif
b1bbe38b 1627 }
4f915914 1628
19cd0c1f
JL
1629 /* If we are calling an import stub (eg calling into a dynamic library)
1630 then have sr4export call the magic __d_plt_call routine which is linked
1631 in from end.o. (You can't use _sr4export to call the import stub as
1632 the value in sp-24 will get fried and you end up returning to the
1633 wrong location. You can't call the import stub directly as the code
1634 to bind the PLT entry to a function can't return to a stack address.) */
1635 u = find_unwind_entry (fun);
1636 if (u && u->stub_type == IMPORT)
1637 {
1638 CORE_ADDR new_fun;
3200aa59 1639
46f569b4
JL
1640 /* Prefer __gcc_plt_call over the HP supplied routine because
1641 __gcc_plt_call works for any number of arguments. */
1642 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1643 if (trampoline == NULL)
1644 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1645
1646 if (trampoline == NULL)
3200aa59 1647 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
19cd0c1f
JL
1648
1649 /* This is where sr4export will jump to. */
46f569b4 1650 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
19cd0c1f 1651
46f569b4 1652 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
3200aa59
JL
1653 {
1654 /* We have to store the address of the stub in __shlib_funcptr. */
2d336b1b 1655 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
3200aa59
JL
1656 (struct objfile *)NULL);
1657 if (msymbol == NULL)
1658 error ("Can't find an address for __shlib_funcptr");
19cd0c1f 1659
3200aa59 1660 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
46f569b4
JL
1661
1662 /* We want sr4export to call __d_plt_call, so we claim it is
1663 the final target. Clear trampoline. */
1664 fun = new_fun;
1665 trampoline = NULL;
3200aa59 1666 }
19cd0c1f
JL
1667 }
1668
46f569b4
JL
1669 /* Store upper 21 bits of function address into ldil. fun will either be
1670 the final target (most cases) or __d_plt_call when calling into a shared
1671 library and __gcc_plt_call is not available. */
f4f0d174 1672 store_unsigned_integer
7486c68d
SG
1673 (&dummy[FUNC_LDIL_OFFSET],
1674 INSTRUCTION_SIZE,
f4f0d174 1675 deposit_21 (fun >> 11,
7486c68d
SG
1676 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1677 INSTRUCTION_SIZE)));
1678
46f569b4 1679 /* Store lower 11 bits of function address into ldo */
f4f0d174 1680 store_unsigned_integer
7486c68d
SG
1681 (&dummy[FUNC_LDO_OFFSET],
1682 INSTRUCTION_SIZE,
f4f0d174 1683 deposit_14 (fun & MASK_11,
7486c68d
SG
1684 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1685 INSTRUCTION_SIZE)));
1686#ifdef SR4EXPORT_LDIL_OFFSET
1687
1688 {
46f569b4 1689 CORE_ADDR trampoline_addr;
7486c68d 1690
46f569b4 1691 /* We may still need sr4export's address too. */
7486c68d 1692
46f569b4
JL
1693 if (trampoline == NULL)
1694 {
1695 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1696 if (msymbol == NULL)
1697 error ("Can't find an address for _sr4export trampoline");
7486c68d 1698
46f569b4
JL
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1700 }
1701 else
1702 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
7486c68d 1703
7486c68d 1704
46f569b4 1705 /* Store upper 21 bits of trampoline's address into ldil */
7486c68d
SG
1706 store_unsigned_integer
1707 (&dummy[SR4EXPORT_LDIL_OFFSET],
1708 INSTRUCTION_SIZE,
46f569b4 1709 deposit_21 (trampoline_addr >> 11,
7486c68d
SG
1710 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1711 INSTRUCTION_SIZE)));
7486c68d 1712
46f569b4 1713 /* Store lower 11 bits of trampoline's address into ldo */
7486c68d
SG
1714 store_unsigned_integer
1715 (&dummy[SR4EXPORT_LDO_OFFSET],
1716 INSTRUCTION_SIZE,
46f569b4 1717 deposit_14 (trampoline_addr & MASK_11,
7486c68d
SG
1718 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1719 INSTRUCTION_SIZE)));
1720 }
1721#endif
66a1aa07
SG
1722
1723 write_register (22, pc);
1724
6cfec929
JK
1725 /* If we are in a syscall, then we should call the stack dummy
1726 directly. $$dyncall is not needed as the kernel sets up the
1727 space id registers properly based on the value in %r31. In
1728 fact calling $$dyncall will not work because the value in %r22
244f7460
JL
1729 will be clobbered on the syscall exit path.
1730
1731 Similarly if the current PC is in a shared library. Note however,
1732 this scheme won't work if the shared library isn't mapped into
1733 the same space as the stack. */
6cfec929
JK
1734 if (flags & 2)
1735 return pc;
244f7460
JL
1736#ifndef GDB_TARGET_IS_PA_ELF
1737 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1738 return pc;
1739#endif
6cfec929
JK
1740 else
1741 return dyncall_addr;
1742
66a1aa07
SG
1743}
1744
d3862cae
JK
1745/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1746 bits. */
669caa9c 1747
d3862cae 1748CORE_ADDR
e9a3cde8
JL
1749target_read_pc (pid)
1750 int pid;
d3862cae
JK
1751{
1752 int flags = read_register (FLAGS_REGNUM);
1753
15edf525 1754 if (flags & 2) {
d3862cae 1755 return read_register (31) & ~0x3;
15edf525 1756 }
d3862cae
JK
1757 return read_register (PC_REGNUM) & ~0x3;
1758}
1759
6cfec929
JK
1760/* Write out the PC. If currently in a syscall, then also write the new
1761 PC value into %r31. */
669caa9c 1762
6cfec929 1763void
e9a3cde8 1764target_write_pc (v, pid)
6cfec929 1765 CORE_ADDR v;
e9a3cde8 1766 int pid;
6cfec929
JK
1767{
1768 int flags = read_register (FLAGS_REGNUM);
1769
1770 /* If in a syscall, then set %r31. Also make sure to get the
1771 privilege bits set correctly. */
1772 if (flags & 2)
1773 write_register (31, (long) (v | 0x3));
1774
1775 write_register (PC_REGNUM, (long) v);
1776 write_register (NPC_REGNUM, (long) v + 4);
1777}
1778
66a1aa07
SG
1779/* return the alignment of a type in bytes. Structures have the maximum
1780 alignment required by their fields. */
1781
1782static int
940d5967
PB
1783hppa_alignof (type)
1784 struct type *type;
66a1aa07
SG
1785{
1786 int max_align, align, i;
f9384420 1787 CHECK_TYPEDEF (type);
940d5967 1788 switch (TYPE_CODE (type))
66a1aa07
SG
1789 {
1790 case TYPE_CODE_PTR:
1791 case TYPE_CODE_INT:
1792 case TYPE_CODE_FLT:
940d5967 1793 return TYPE_LENGTH (type);
66a1aa07 1794 case TYPE_CODE_ARRAY:
940d5967 1795 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
66a1aa07
SG
1796 case TYPE_CODE_STRUCT:
1797 case TYPE_CODE_UNION:
0d43c8e7 1798 max_align = 1;
940d5967 1799 for (i = 0; i < TYPE_NFIELDS (type); i++)
66a1aa07
SG
1800 {
1801 /* Bit fields have no real alignment. */
940d5967 1802 if (!TYPE_FIELD_BITPOS (type, i))
66a1aa07 1803 {
940d5967 1804 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
66a1aa07
SG
1805 max_align = max (max_align, align);
1806 }
1807 }
1808 return max_align;
1809 default:
1810 return 4;
1811 }
1812}
1813
1814/* Print the register regnum, or all registers if regnum is -1 */
1815
e43169eb 1816void
66a1aa07
SG
1817pa_do_registers_info (regnum, fpregs)
1818 int regnum;
1819 int fpregs;
1820{
1821 char raw_regs [REGISTER_BYTES];
1822 int i;
1823
1824 for (i = 0; i < NUM_REGS; i++)
1825 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1826 if (regnum == -1)
1827 pa_print_registers (raw_regs, regnum, fpregs);
1828 else if (regnum < FP0_REGNUM)
199b2450 1829 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1830 REGISTER_BYTE (regnum)));
1831 else
1832 pa_print_fp_reg (regnum);
1833}
1834
e43169eb 1835static void
66a1aa07
SG
1836pa_print_registers (raw_regs, regnum, fpregs)
1837 char *raw_regs;
1838 int regnum;
1839 int fpregs;
1840{
15edf525
RS
1841 int i,j;
1842 long val;
66a1aa07
SG
1843
1844 for (i = 0; i < 18; i++)
15edf525
RS
1845 {
1846 for (j = 0; j < 4; j++)
1847 {
bc28e68d
JK
1848 val =
1849 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
15edf525
RS
1850 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1851 }
1852 printf_unfiltered ("\n");
1853 }
1854
66a1aa07
SG
1855 if (fpregs)
1856 for (i = 72; i < NUM_REGS; i++)
1857 pa_print_fp_reg (i);
1858}
1859
e43169eb 1860static void
66a1aa07
SG
1861pa_print_fp_reg (i)
1862 int i;
1863{
1864 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1865 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1866
eb1167c6 1867 /* Get 32bits of data. */
66a1aa07 1868 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1869
eb1167c6
JL
1870 /* Put it in the buffer. No conversions are ever necessary. */
1871 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1872
199b2450 1873 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1874 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1875 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1876
199b2450 1877 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1878 1, 0, Val_pretty_default);
1879 printf_filtered ("\n");
eb1167c6
JL
1880
1881 /* If "i" is even, then this register can also be a double-precision
1882 FP register. Dump it out as such. */
1883 if ((i % 2) == 0)
1884 {
1885 /* Get the data in raw format for the 2nd half. */
1886 read_relative_register_raw_bytes (i + 1, raw_buffer);
1887
1888 /* Copy it into the appropriate part of the virtual buffer. */
1889 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1890 REGISTER_RAW_SIZE (i));
1891
1892 /* Dump it as a double. */
1893 fputs_filtered (reg_names[i], gdb_stdout);
1894 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1895 fputs_filtered ("(double precision) ", gdb_stdout);
1896
1897 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1898 1, 0, Val_pretty_default);
1899 printf_filtered ("\n");
1900 }
66a1aa07
SG
1901}
1902
a76c2240
JL
1903/* Return one if PC is in the call path of a trampoline, else return zero.
1904
1905 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1906 just shared library trampolines (import, export). */
481faa25 1907
e43169eb 1908int
481faa25
JL
1909in_solib_call_trampoline (pc, name)
1910 CORE_ADDR pc;
1911 char *name;
1912{
1913 struct minimal_symbol *minsym;
1914 struct unwind_table_entry *u;
a76c2240
JL
1915 static CORE_ADDR dyncall = 0;
1916 static CORE_ADDR sr4export = 0;
1917
1918/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1919 new exec file */
1920
1921 /* First see if PC is in one of the two C-library trampolines. */
1922 if (!dyncall)
1923 {
2d336b1b 1924 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
a76c2240
JL
1925 if (minsym)
1926 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1927 else
1928 dyncall = -1;
1929 }
1930
1931 if (!sr4export)
1932 {
2d336b1b 1933 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
a76c2240
JL
1934 if (minsym)
1935 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1936 else
1937 sr4export = -1;
1938 }
1939
1940 if (pc == dyncall || pc == sr4export)
1941 return 1;
481faa25
JL
1942
1943 /* Get the unwind descriptor corresponding to PC, return zero
1944 if no unwind was found. */
1945 u = find_unwind_entry (pc);
1946 if (!u)
1947 return 0;
1948
1949 /* If this isn't a linker stub, then return now. */
a76c2240 1950 if (u->stub_type == 0)
481faa25
JL
1951 return 0;
1952
a76c2240
JL
1953 /* By definition a long-branch stub is a call stub. */
1954 if (u->stub_type == LONG_BRANCH)
1955 return 1;
1956
481faa25
JL
1957 /* The call and return path execute the same instructions within
1958 an IMPORT stub! So an IMPORT stub is both a call and return
1959 trampoline. */
1960 if (u->stub_type == IMPORT)
1961 return 1;
1962
a76c2240 1963 /* Parameter relocation stubs always have a call path and may have a
481faa25 1964 return path. */
54576db3
JL
1965 if (u->stub_type == PARAMETER_RELOCATION
1966 || u->stub_type == EXPORT)
a76c2240
JL
1967 {
1968 CORE_ADDR addr;
1969
1970 /* Search forward from the current PC until we hit a branch
1971 or the end of the stub. */
1972 for (addr = pc; addr <= u->region_end; addr += 4)
1973 {
1974 unsigned long insn;
1975
1976 insn = read_memory_integer (addr, 4);
1977
1978 /* Does it look like a bl? If so then it's the call path, if
54576db3 1979 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1980 if ((insn & 0xfc00e000) == 0xe8000000)
1981 return 1;
54576db3
JL
1982 else if ((insn & 0xfc00e001) == 0xe800c000
1983 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1984 return 0;
1985 }
1986
1987 /* Should never happen. */
1988 warning ("Unable to find branch in parameter relocation stub.\n");
1989 return 0;
1990 }
1991
1992 /* Unknown stub type. For now, just return zero. */
1993 return 0;
481faa25
JL
1994}
1995
a76c2240
JL
1996/* Return one if PC is in the return path of a trampoline, else return zero.
1997
1998 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1999 just shared library trampolines (import, export). */
481faa25 2000
e43169eb 2001int
481faa25
JL
2002in_solib_return_trampoline (pc, name)
2003 CORE_ADDR pc;
2004 char *name;
2005{
481faa25
JL
2006 struct unwind_table_entry *u;
2007
2008 /* Get the unwind descriptor corresponding to PC, return zero
2009 if no unwind was found. */
2010 u = find_unwind_entry (pc);
2011 if (!u)
2012 return 0;
2013
a76c2240
JL
2014 /* If this isn't a linker stub or it's just a long branch stub, then
2015 return zero. */
2016 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
481faa25
JL
2017 return 0;
2018
2019 /* The call and return path execute the same instructions within
2020 an IMPORT stub! So an IMPORT stub is both a call and return
2021 trampoline. */
2022 if (u->stub_type == IMPORT)
2023 return 1;
2024
a76c2240 2025 /* Parameter relocation stubs always have a call path and may have a
481faa25 2026 return path. */
54576db3
JL
2027 if (u->stub_type == PARAMETER_RELOCATION
2028 || u->stub_type == EXPORT)
a76c2240
JL
2029 {
2030 CORE_ADDR addr;
2031
2032 /* Search forward from the current PC until we hit a branch
2033 or the end of the stub. */
2034 for (addr = pc; addr <= u->region_end; addr += 4)
2035 {
2036 unsigned long insn;
2037
2038 insn = read_memory_integer (addr, 4);
2039
2040 /* Does it look like a bl? If so then it's the call path, if
54576db3 2041 we find a bv or be first, then we're on the return path. */
a76c2240
JL
2042 if ((insn & 0xfc00e000) == 0xe8000000)
2043 return 0;
54576db3
JL
2044 else if ((insn & 0xfc00e001) == 0xe800c000
2045 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
2046 return 1;
2047 }
2048
2049 /* Should never happen. */
2050 warning ("Unable to find branch in parameter relocation stub.\n");
2051 return 0;
2052 }
2053
2054 /* Unknown stub type. For now, just return zero. */
2055 return 0;
2056
481faa25
JL
2057}
2058
de482138
JL
2059/* Figure out if PC is in a trampoline, and if so find out where
2060 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 2061
de482138
JL
2062 Simple code examination probably is not a good idea since the code
2063 sequences in trampolines can also appear in user code.
2064
2065 We use unwinds and information from the minimal symbol table to
2066 determine when we're in a trampoline. This won't work for ELF
2067 (yet) since it doesn't create stub unwind entries. Whether or
2068 not ELF will create stub unwinds or normal unwinds for linker
2069 stubs is still being debated.
2070
2071 This should handle simple calls through dyncall or sr4export,
2072 long calls, argument relocation stubs, and dyncall/sr4export
2073 calling an argument relocation stub. It even handles some stubs
2074 used in dynamic executables. */
66a1aa07
SG
2075
2076CORE_ADDR
2077skip_trampoline_code (pc, name)
2078 CORE_ADDR pc;
2079 char *name;
2080{
de482138
JL
2081 long orig_pc = pc;
2082 long prev_inst, curr_inst, loc;
66a1aa07 2083 static CORE_ADDR dyncall = 0;
de482138 2084 static CORE_ADDR sr4export = 0;
66a1aa07 2085 struct minimal_symbol *msym;
de482138 2086 struct unwind_table_entry *u;
66a1aa07 2087
de482138
JL
2088/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2089 new exec file */
66a1aa07
SG
2090
2091 if (!dyncall)
2092 {
2d336b1b 2093 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
2094 if (msym)
2095 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2096 else
2097 dyncall = -1;
2098 }
2099
de482138
JL
2100 if (!sr4export)
2101 {
2d336b1b 2102 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
de482138
JL
2103 if (msym)
2104 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2105 else
2106 sr4export = -1;
2107 }
2108
2109 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 2110 of the function. So we may have to do something special. */
66a1aa07 2111 if (pc == dyncall)
de482138
JL
2112 {
2113 pc = (CORE_ADDR) read_register (22);
66a1aa07 2114
de482138
JL
2115 /* If bit 30 (counting from the left) is on, then pc is the address of
2116 the PLT entry for this function, not the address of the function
2117 itself. Bit 31 has meaning too, but only for MPE. */
2118 if (pc & 0x2)
2119 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2120 }
2121 else if (pc == sr4export)
2122 pc = (CORE_ADDR) (read_register (22));
66a1aa07 2123
de482138
JL
2124 /* Get the unwind descriptor corresponding to PC, return zero
2125 if no unwind was found. */
2126 u = find_unwind_entry (pc);
2127 if (!u)
2128 return 0;
2129
2130 /* If this isn't a linker stub, then return now. */
2131 if (u->stub_type == 0)
2132 return orig_pc == pc ? 0 : pc & ~0x3;
2133
2134 /* It's a stub. Search for a branch and figure out where it goes.
2135 Note we have to handle multi insn branch sequences like ldil;ble.
2136 Most (all?) other branches can be determined by examining the contents
2137 of certain registers and the stack. */
2138 loc = pc;
2139 curr_inst = 0;
2140 prev_inst = 0;
2141 while (1)
2142 {
2143 /* Make sure we haven't walked outside the range of this stub. */
2144 if (u != find_unwind_entry (loc))
2145 {
2146 warning ("Unable to find branch in linker stub");
2147 return orig_pc == pc ? 0 : pc & ~0x3;
2148 }
2149
2150 prev_inst = curr_inst;
2151 curr_inst = read_memory_integer (loc, 4);
66a1aa07 2152
de482138
JL
2153 /* Does it look like a branch external using %r1? Then it's the
2154 branch from the stub to the actual function. */
2155 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2156 {
2157 /* Yup. See if the previous instruction loaded
2158 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 2159 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
2160 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2161 else
2162 {
2163 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2164 return orig_pc == pc ? 0 : pc & ~0x3;
2165 }
2166 }
2167
f32fc5f9
JL
2168 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2169 import stub to an export stub.
2170
2171 It is impossible to determine the target of the branch via
2172 simple examination of instructions and/or data (consider
2173 that the address in the plabel may be the address of the
2174 bind-on-reference routine in the dynamic loader).
2175
2176 So we have try an alternative approach.
2177
2178 Get the name of the symbol at our current location; it should
2179 be a stub symbol with the same name as the symbol in the
2180 shared library.
2181
2182 Then lookup a minimal symbol with the same name; we should
2183 get the minimal symbol for the target routine in the shared
2184 library as those take precedence of import/export stubs. */
2185 if (curr_inst == 0xe2a00000)
2186 {
2187 struct minimal_symbol *stubsym, *libsym;
2188
2189 stubsym = lookup_minimal_symbol_by_pc (loc);
2190 if (stubsym == NULL)
2191 {
2192 warning ("Unable to find symbol for 0x%x", loc);
2193 return orig_pc == pc ? 0 : pc & ~0x3;
2194 }
2195
2d336b1b 2196 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
f32fc5f9
JL
2197 if (libsym == NULL)
2198 {
2199 warning ("Unable to find library symbol for %s\n",
2200 SYMBOL_NAME (stubsym));
2201 return orig_pc == pc ? 0 : pc & ~0x3;
2202 }
2203
2204 return SYMBOL_VALUE (libsym);
2205 }
2206
88b91d4a
JL
2207 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2208 branch from the stub to the actual function. */
2209 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2210 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
2211 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2212
2213 /* Does it look like bv (rp)? Note this depends on the
2214 current stack pointer being the same as the stack
2215 pointer in the stub itself! This is a branch on from the
2216 stub back to the original caller. */
2217 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2218 {
2219 /* Yup. See if the previous instruction loaded
2220 rp from sp - 8. */
2221 if (prev_inst == 0x4bc23ff1)
2222 return (read_memory_integer
2223 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2224 else
2225 {
2226 warning ("Unable to find restore of %%rp before bv (%%rp).");
2227 return orig_pc == pc ? 0 : pc & ~0x3;
2228 }
2229 }
2230
2231 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2232 the original caller from the stub. Used in dynamic executables. */
2233 else if (curr_inst == 0xe0400002)
2234 {
2235 /* The value we jump to is sitting in sp - 24. But that's
2236 loaded several instructions before the be instruction.
2237 I guess we could check for the previous instruction being
2238 mtsp %r1,%sr0 if we want to do sanity checking. */
2239 return (read_memory_integer
2240 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2241 }
2242
2243 /* Haven't found the branch yet, but we're still in the stub.
2244 Keep looking. */
2245 loc += 4;
2246 }
66a1aa07
SG
2247}
2248
c598654a
JL
2249/* For the given instruction (INST), return any adjustment it makes
2250 to the stack pointer or zero for no adjustment.
2251
2252 This only handles instructions commonly found in prologues. */
2253
2254static int
2255prologue_inst_adjust_sp (inst)
2256 unsigned long inst;
2257{
2258 /* This must persist across calls. */
2259 static int save_high21;
2260
2261 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2262 if ((inst & 0xffffc000) == 0x37de0000)
2263 return extract_14 (inst);
2264
2265 /* stwm X,D(sp) */
2266 if ((inst & 0xffe00000) == 0x6fc00000)
2267 return extract_14 (inst);
2268
2269 /* addil high21,%r1; ldo low11,(%r1),%r30)
2270 save high bits in save_high21 for later use. */
2271 if ((inst & 0xffe00000) == 0x28200000)
2272 {
2273 save_high21 = extract_21 (inst);
2274 return 0;
2275 }
2276
2277 if ((inst & 0xffff0000) == 0x343e0000)
2278 return save_high21 + extract_14 (inst);
2279
2280 /* fstws as used by the HP compilers. */
2281 if ((inst & 0xffffffe0) == 0x2fd01220)
2282 return extract_5_load (inst);
2283
2284 /* No adjustment. */
2285 return 0;
2286}
2287
2288/* Return nonzero if INST is a branch of some kind, else return zero. */
2289
2290static int
2291is_branch (inst)
2292 unsigned long inst;
2293{
2294 switch (inst >> 26)
2295 {
2296 case 0x20:
2297 case 0x21:
2298 case 0x22:
2299 case 0x23:
2300 case 0x28:
2301 case 0x29:
2302 case 0x2a:
2303 case 0x2b:
2304 case 0x30:
2305 case 0x31:
2306 case 0x32:
2307 case 0x33:
2308 case 0x38:
2309 case 0x39:
2310 case 0x3a:
2311 return 1;
2312
2313 default:
2314 return 0;
2315 }
2316}
2317
2318/* Return the register number for a GR which is saved by INST or
edd86fb0 2319 zero it INST does not save a GR. */
c598654a
JL
2320
2321static int
2322inst_saves_gr (inst)
2323 unsigned long inst;
2324{
2325 /* Does it look like a stw? */
2326 if ((inst >> 26) == 0x1a)
2327 return extract_5R_store (inst);
2328
edd86fb0 2329 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
2330 if ((inst >> 26) == 0x1b)
2331 return extract_5R_store (inst);
2332
edd86fb0
JL
2333 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2334 too. */
2335 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2336 return extract_5R_store (inst);
2337
c598654a
JL
2338 return 0;
2339}
2340
2341/* Return the register number for a FR which is saved by INST or
2342 zero it INST does not save a FR.
2343
2344 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
2345 kind of stores the prologue will use).
2346
2347 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
2348
2349static int
2350inst_saves_fr (inst)
2351 unsigned long inst;
2352{
edd86fb0 2353 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
2354 return extract_5r_store (inst);
2355 return 0;
2356}
2357
66a1aa07 2358/* Advance PC across any function entry prologue instructions
c598654a 2359 to reach some "real" code.
66a1aa07 2360
c598654a
JL
2361 Use information in the unwind table to determine what exactly should
2362 be in the prologue. */
66a1aa07
SG
2363
2364CORE_ADDR
de482138 2365skip_prologue (pc)
66a1aa07
SG
2366 CORE_ADDR pc;
2367{
34df79fc 2368 char buf[4];
7e72b115 2369 CORE_ADDR orig_pc = pc;
c598654a 2370 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
7e72b115 2371 unsigned long args_stored, status, i, restart_gr, restart_fr;
c598654a 2372 struct unwind_table_entry *u;
66a1aa07 2373
7e72b115
JL
2374 restart_gr = 0;
2375 restart_fr = 0;
2376
2377restart:
c598654a
JL
2378 u = find_unwind_entry (pc);
2379 if (!u)
fdafbfad 2380 return pc;
c598654a 2381
de482138
JL
2382 /* If we are not at the beginning of a function, then return now. */
2383 if ((pc & ~0x3) != u->region_start)
2384 return pc;
2385
c598654a
JL
2386 /* This is how much of a frame adjustment we need to account for. */
2387 stack_remaining = u->Total_frame_size << 3;
66a1aa07 2388
c598654a
JL
2389 /* Magic register saves we want to know about. */
2390 save_rp = u->Save_RP;
2391 save_sp = u->Save_SP;
2392
edd86fb0
JL
2393 /* An indication that args may be stored into the stack. Unfortunately
2394 the HPUX compilers tend to set this in cases where no args were
2395 stored too!. */
c85ff3a3 2396 args_stored = 1;
edd86fb0 2397
c598654a
JL
2398 /* Turn the Entry_GR field into a bitmask. */
2399 save_gr = 0;
2400 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 2401 {
c598654a
JL
2402 /* Frame pointer gets saved into a special location. */
2403 if (u->Save_SP && i == FP_REGNUM)
2404 continue;
2405
2406 save_gr |= (1 << i);
2407 }
7e72b115 2408 save_gr &= ~restart_gr;
c598654a
JL
2409
2410 /* Turn the Entry_FR field into a bitmask too. */
2411 save_fr = 0;
2412 for (i = 12; i < u->Entry_FR + 12; i++)
2413 save_fr |= (1 << i);
7e72b115 2414 save_fr &= ~restart_fr;
c598654a
JL
2415
2416 /* Loop until we find everything of interest or hit a branch.
2417
2418 For unoptimized GCC code and for any HP CC code this will never ever
2419 examine any user instructions.
2420
2421 For optimzied GCC code we're faced with problems. GCC will schedule
2422 its prologue and make prologue instructions available for delay slot
2423 filling. The end result is user code gets mixed in with the prologue
2424 and a prologue instruction may be in the delay slot of the first branch
2425 or call.
2426
2427 Some unexpected things are expected with debugging optimized code, so
2428 we allow this routine to walk past user instructions in optimized
2429 GCC code. */
edd86fb0
JL
2430 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2431 || args_stored)
c598654a 2432 {
edd86fb0
JL
2433 unsigned int reg_num;
2434 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
e43169eb 2435 unsigned long old_save_rp, old_save_sp, next_inst;
edd86fb0
JL
2436
2437 /* Save copies of all the triggers so we can compare them later
2438 (only for HPC). */
2439 old_save_gr = save_gr;
2440 old_save_fr = save_fr;
2441 old_save_rp = save_rp;
2442 old_save_sp = save_sp;
2443 old_stack_remaining = stack_remaining;
2444
c598654a
JL
2445 status = target_read_memory (pc, buf, 4);
2446 inst = extract_unsigned_integer (buf, 4);
edd86fb0 2447
c598654a
JL
2448 /* Yow! */
2449 if (status != 0)
2450 return pc;
2451
2452 /* Note the interesting effects of this instruction. */
2453 stack_remaining -= prologue_inst_adjust_sp (inst);
2454
2455 /* There is only one instruction used for saving RP into the stack. */
2456 if (inst == 0x6bc23fd9)
2457 save_rp = 0;
2458
2459 /* This is the only way we save SP into the stack. At this time
2460 the HP compilers never bother to save SP into the stack. */
2461 if ((inst & 0xffffc000) == 0x6fc10000)
2462 save_sp = 0;
2463
2464 /* Account for general and floating-point register saves. */
edd86fb0
JL
2465 reg_num = inst_saves_gr (inst);
2466 save_gr &= ~(1 << reg_num);
2467
2468 /* Ugh. Also account for argument stores into the stack.
2469 Unfortunately args_stored only tells us that some arguments
2470 where stored into the stack. Not how many or what kind!
2471
2472 This is a kludge as on the HP compiler sets this bit and it
2473 never does prologue scheduling. So once we see one, skip past
2474 all of them. We have similar code for the fp arg stores below.
2475
2476 FIXME. Can still die if we have a mix of GR and FR argument
2477 stores! */
2478 if (reg_num >= 23 && reg_num <= 26)
2479 {
2480 while (reg_num >= 23 && reg_num <= 26)
2481 {
2482 pc += 4;
2483 status = target_read_memory (pc, buf, 4);
2484 inst = extract_unsigned_integer (buf, 4);
2485 if (status != 0)
2486 return pc;
2487 reg_num = inst_saves_gr (inst);
2488 }
2489 args_stored = 0;
2490 continue;
2491 }
2492
2493 reg_num = inst_saves_fr (inst);
2494 save_fr &= ~(1 << reg_num);
2495
2496 status = target_read_memory (pc + 4, buf, 4);
2497 next_inst = extract_unsigned_integer (buf, 4);
2498
2499 /* Yow! */
2500 if (status != 0)
2501 return pc;
2502
2503 /* We've got to be read to handle the ldo before the fp register
2504 save. */
2505 if ((inst & 0xfc000000) == 0x34000000
2506 && inst_saves_fr (next_inst) >= 4
2507 && inst_saves_fr (next_inst) <= 7)
2508 {
2509 /* So we drop into the code below in a reasonable state. */
2510 reg_num = inst_saves_fr (next_inst);
2511 pc -= 4;
2512 }
2513
2514 /* Ugh. Also account for argument stores into the stack.
2515 This is a kludge as on the HP compiler sets this bit and it
2516 never does prologue scheduling. So once we see one, skip past
2517 all of them. */
2518 if (reg_num >= 4 && reg_num <= 7)
2519 {
2520 while (reg_num >= 4 && reg_num <= 7)
2521 {
2522 pc += 8;
2523 status = target_read_memory (pc, buf, 4);
2524 inst = extract_unsigned_integer (buf, 4);
2525 if (status != 0)
2526 return pc;
2527 if ((inst & 0xfc000000) != 0x34000000)
2528 break;
2529 status = target_read_memory (pc + 4, buf, 4);
2530 next_inst = extract_unsigned_integer (buf, 4);
2531 if (status != 0)
2532 return pc;
2533 reg_num = inst_saves_fr (next_inst);
2534 }
2535 args_stored = 0;
2536 continue;
2537 }
c598654a
JL
2538
2539 /* Quit if we hit any kind of branch. This can happen if a prologue
2540 instruction is in the delay slot of the first call/branch. */
2541 if (is_branch (inst))
2542 break;
2543
edd86fb0
JL
2544 /* What a crock. The HP compilers set args_stored even if no
2545 arguments were stored into the stack (boo hiss). This could
2546 cause this code to then skip a bunch of user insns (up to the
2547 first branch).
2548
2549 To combat this we try to identify when args_stored was bogusly
2550 set and clear it. We only do this when args_stored is nonzero,
2551 all other resources are accounted for, and nothing changed on
2552 this pass. */
2553 if (args_stored
2554 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2555 && old_save_gr == save_gr && old_save_fr == save_fr
2556 && old_save_rp == save_rp && old_save_sp == save_sp
2557 && old_stack_remaining == stack_remaining)
2558 break;
2559
c598654a
JL
2560 /* Bump the PC. */
2561 pc += 4;
66a1aa07 2562 }
66a1aa07 2563
7e72b115
JL
2564 /* We've got a tenative location for the end of the prologue. However
2565 because of limitations in the unwind descriptor mechanism we may
2566 have went too far into user code looking for the save of a register
2567 that does not exist. So, if there registers we expected to be saved
2568 but never were, mask them out and restart.
2569
2570 This should only happen in optimized code, and should be very rare. */
3f550b59 2571 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
7e72b115
JL
2572 {
2573 pc = orig_pc;
2574 restart_gr = save_gr;
2575 restart_fr = save_fr;
2576 goto restart;
2577 }
2578
66a1aa07
SG
2579 return pc;
2580}
2581
c598654a
JL
2582/* Put here the code to store, into a struct frame_saved_regs,
2583 the addresses of the saved registers of frame described by FRAME_INFO.
2584 This includes special registers such as pc and fp saved in special
2585 ways in the stack frame. sp is even more special:
2586 the address we return for it IS the sp for the next frame. */
2587
2588void
2589hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2590 struct frame_info *frame_info;
c598654a
JL
2591 struct frame_saved_regs *frame_saved_regs;
2592{
2593 CORE_ADDR pc;
2594 struct unwind_table_entry *u;
2595 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2596 int status, i, reg;
2597 char buf[4];
2598 int fp_loc = -1;
2599
2600 /* Zero out everything. */
2601 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2602
2603 /* Call dummy frames always look the same, so there's no need to
2604 examine the dummy code to determine locations of saved registers;
2605 instead, let find_dummy_frame_regs fill in the correct offsets
2606 for the saved registers. */
cb5f7128
JL
2607 if ((frame_info->pc >= frame_info->frame
2608 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2609 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2610 + 6 * 4)))
2611 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2612
70e43abe
JL
2613 /* Interrupt handlers are special too. They lay out the register
2614 state in the exact same order as the register numbers in GDB. */
cb5f7128 2615 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2616 {
2617 for (i = 0; i < NUM_REGS; i++)
2618 {
2619 /* SP is a little special. */
2620 if (i == SP_REGNUM)
2621 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2622 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2623 else
cb5f7128 2624 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2625 }
2626 return;
2627 }
2628
7486c68d 2629#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
70e43abe 2630 /* Handle signal handler callers. */
cb5f7128 2631 if (frame_info->signal_handler_caller)
70e43abe 2632 {
cb5f7128 2633 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2634 return;
2635 }
7486c68d 2636#endif
70e43abe 2637
c598654a 2638 /* Get the starting address of the function referred to by the PC
669caa9c 2639 saved in frame. */
cb5f7128 2640 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2641
2642 /* Yow! */
2643 u = find_unwind_entry (pc);
2644 if (!u)
2645 return;
2646
2647 /* This is how much of a frame adjustment we need to account for. */
2648 stack_remaining = u->Total_frame_size << 3;
2649
2650 /* Magic register saves we want to know about. */
2651 save_rp = u->Save_RP;
2652 save_sp = u->Save_SP;
2653
2654 /* Turn the Entry_GR field into a bitmask. */
2655 save_gr = 0;
2656 for (i = 3; i < u->Entry_GR + 3; i++)
2657 {
2658 /* Frame pointer gets saved into a special location. */
2659 if (u->Save_SP && i == FP_REGNUM)
2660 continue;
2661
2662 save_gr |= (1 << i);
2663 }
2664
2665 /* Turn the Entry_FR field into a bitmask too. */
2666 save_fr = 0;
2667 for (i = 12; i < u->Entry_FR + 12; i++)
2668 save_fr |= (1 << i);
2669
70e43abe
JL
2670 /* The frame always represents the value of %sp at entry to the
2671 current function (and is thus equivalent to the "saved" stack
2672 pointer. */
cb5f7128 2673 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2674
c598654a
JL
2675 /* Loop until we find everything of interest or hit a branch.
2676
2677 For unoptimized GCC code and for any HP CC code this will never ever
2678 examine any user instructions.
2679
2680 For optimzied GCC code we're faced with problems. GCC will schedule
2681 its prologue and make prologue instructions available for delay slot
2682 filling. The end result is user code gets mixed in with the prologue
2683 and a prologue instruction may be in the delay slot of the first branch
2684 or call.
2685
2686 Some unexpected things are expected with debugging optimized code, so
2687 we allow this routine to walk past user instructions in optimized
2688 GCC code. */
2689 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2690 {
2691 status = target_read_memory (pc, buf, 4);
2692 inst = extract_unsigned_integer (buf, 4);
2693
2694 /* Yow! */
2695 if (status != 0)
2696 return;
2697
2698 /* Note the interesting effects of this instruction. */
2699 stack_remaining -= prologue_inst_adjust_sp (inst);
2700
2701 /* There is only one instruction used for saving RP into the stack. */
2702 if (inst == 0x6bc23fd9)
2703 {
2704 save_rp = 0;
cb5f7128 2705 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2706 }
2707
70e43abe
JL
2708 /* Just note that we found the save of SP into the stack. The
2709 value for frame_saved_regs was computed above. */
c598654a 2710 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2711 save_sp = 0;
c598654a
JL
2712
2713 /* Account for general and floating-point register saves. */
2714 reg = inst_saves_gr (inst);
2715 if (reg >= 3 && reg <= 18
2716 && (!u->Save_SP || reg != FP_REGNUM))
2717 {
2718 save_gr &= ~(1 << reg);
2719
2720 /* stwm with a positive displacement is a *post modify*. */
2721 if ((inst >> 26) == 0x1b
2722 && extract_14 (inst) >= 0)
cb5f7128 2723 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2724 else
2725 {
2726 /* Handle code with and without frame pointers. */
2727 if (u->Save_SP)
2728 frame_saved_regs->regs[reg]
cb5f7128 2729 = frame_info->frame + extract_14 (inst);
c598654a
JL
2730 else
2731 frame_saved_regs->regs[reg]
cb5f7128 2732 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2733 + extract_14 (inst);
2734 }
2735 }
2736
2737
2738 /* GCC handles callee saved FP regs a little differently.
2739
2740 It emits an instruction to put the value of the start of
2741 the FP store area into %r1. It then uses fstds,ma with
2742 a basereg of %r1 for the stores.
2743
2744 HP CC emits them at the current stack pointer modifying
2745 the stack pointer as it stores each register. */
2746
2747 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2748 if ((inst & 0xffffc000) == 0x34610000
2749 || (inst & 0xffffc000) == 0x37c10000)
2750 fp_loc = extract_14 (inst);
2751
2752 reg = inst_saves_fr (inst);
2753 if (reg >= 12 && reg <= 21)
2754 {
2755 /* Note +4 braindamage below is necessary because the FP status
2756 registers are internally 8 registers rather than the expected
2757 4 registers. */
2758 save_fr &= ~(1 << reg);
2759 if (fp_loc == -1)
2760 {
2761 /* 1st HP CC FP register store. After this instruction
2762 we've set enough state that the GCC and HPCC code are
2763 both handled in the same manner. */
cb5f7128 2764 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2765 fp_loc = 8;
2766 }
2767 else
2768 {
2769 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2770 = frame_info->frame + fp_loc;
c598654a
JL
2771 fp_loc += 8;
2772 }
2773 }
2774
2775 /* Quit if we hit any kind of branch. This can happen if a prologue
2776 instruction is in the delay slot of the first call/branch. */
2777 if (is_branch (inst))
2778 break;
2779
2780 /* Bump the PC. */
2781 pc += 4;
2782 }
2783}
2784
63757ecd
JK
2785#ifdef MAINTENANCE_CMDS
2786
66a1aa07
SG
2787static void
2788unwind_command (exp, from_tty)
2789 char *exp;
2790 int from_tty;
2791{
2792 CORE_ADDR address;
d8afcce9 2793 struct unwind_table_entry *u;
66a1aa07
SG
2794
2795 /* If we have an expression, evaluate it and use it as the address. */
2796
2797 if (exp != 0 && *exp != 0)
2798 address = parse_and_eval_address (exp);
2799 else
2800 return;
2801
d8afcce9 2802 u = find_unwind_entry (address);
66a1aa07 2803
d8afcce9 2804 if (!u)
66a1aa07 2805 {
d8afcce9 2806 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
66a1aa07
SG
2807 return;
2808 }
2809
d8afcce9
SG
2810 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2811
2812 printf_unfiltered ("\tregion_start = ");
2813 print_address (u->region_start, gdb_stdout);
2814
2815 printf_unfiltered ("\n\tregion_end = ");
2816 print_address (u->region_end, gdb_stdout);
2817
2818#ifdef __STDC__
2819#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2820#else
2821#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2822#endif
2823
2824 printf_unfiltered ("\n\tflags =");
2825 pif (Cannot_unwind);
2826 pif (Millicode);
2827 pif (Millicode_save_sr0);
2828 pif (Entry_SR);
2829 pif (Args_stored);
2830 pif (Variable_Frame);
2831 pif (Separate_Package_Body);
2832 pif (Frame_Extension_Millicode);
2833 pif (Stack_Overflow_Check);
2834 pif (Two_Instruction_SP_Increment);
2835 pif (Ada_Region);
2836 pif (Save_SP);
2837 pif (Save_RP);
2838 pif (Save_MRP_in_frame);
2839 pif (extn_ptr_defined);
2840 pif (Cleanup_defined);
2841 pif (MPE_XL_interrupt_marker);
2842 pif (HP_UX_interrupt_marker);
2843 pif (Large_frame);
2844
2845 putchar_unfiltered ('\n');
2846
2847#ifdef __STDC__
2848#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2849#else
2850#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2851#endif
2852
2853 pin (Region_description);
2854 pin (Entry_FR);
2855 pin (Entry_GR);
2856 pin (Total_frame_size);
66a1aa07 2857}
976bb0be 2858#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2859
2860void
2861_initialize_hppa_tdep ()
2862{
18b46e7c
SS
2863 tm_print_insn = print_insn_hppa;
2864
976bb0be 2865#ifdef MAINTENANCE_CMDS
63757ecd
JK
2866 add_cmd ("unwind", class_maintenance, unwind_command,
2867 "Print unwind table entry at given address.",
2868 &maintenanceprintlist);
63757ecd 2869#endif /* MAINTENANCE_CMDS */
976bb0be 2870}
This page took 0.414663 seconds and 4 git commands to generate.