Commit | Line | Data |
---|---|---|
a7aad9aa | 1 | /* Target-dependent code for the HP PA-RISC architecture. |
cda5a58a | 2 | |
42a4f53d | 3 | Copyright (C) 1986-2019 Free Software Foundation, Inc. |
c906108c SS |
4 | |
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 13 | (at your option) any later version. |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b | 20 | You should have received a copy of the GNU General Public License |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
22 | |
23 | #include "defs.h" | |
c906108c SS |
24 | #include "bfd.h" |
25 | #include "inferior.h" | |
4e052eda | 26 | #include "regcache.h" |
e5d66720 | 27 | #include "completer.h" |
59623e27 | 28 | #include "osabi.h" |
343af405 | 29 | #include "arch-utils.h" |
1777feb0 | 30 | /* For argument passing to the inferior. */ |
c906108c | 31 | #include "symtab.h" |
fde2cceb | 32 | #include "dis-asm.h" |
26d08f08 AC |
33 | #include "trad-frame.h" |
34 | #include "frame-unwind.h" | |
35 | #include "frame-base.h" | |
c906108c | 36 | |
c906108c SS |
37 | #include "gdbcore.h" |
38 | #include "gdbcmd.h" | |
e6bb342a | 39 | #include "gdbtypes.h" |
c906108c | 40 | #include "objfiles.h" |
3ff7cf9e | 41 | #include "hppa-tdep.h" |
325fac50 | 42 | #include <algorithm> |
c906108c | 43 | |
491144b5 | 44 | static bool hppa_debug = false; |
369aa520 | 45 | |
60383d10 | 46 | /* Some local constants. */ |
3ff7cf9e JB |
47 | static const int hppa32_num_regs = 128; |
48 | static const int hppa64_num_regs = 96; | |
49 | ||
61a12cfa JK |
50 | /* We use the objfile->obj_private pointer for two things: |
51 | * 1. An unwind table; | |
52 | * | |
53 | * 2. A pointer to any associated shared library object. | |
54 | * | |
55 | * #defines are used to help refer to these objects. | |
56 | */ | |
57 | ||
58 | /* Info about the unwind table associated with an object file. | |
59 | * This is hung off of the "objfile->obj_private" pointer, and | |
60 | * is allocated in the objfile's psymbol obstack. This allows | |
61 | * us to have unique unwind info for each executable and shared | |
62 | * library that we are debugging. | |
63 | */ | |
64 | struct hppa_unwind_info | |
65 | { | |
66 | struct unwind_table_entry *table; /* Pointer to unwind info */ | |
67 | struct unwind_table_entry *cache; /* Pointer to last entry we found */ | |
68 | int last; /* Index of last entry */ | |
69 | }; | |
70 | ||
71 | struct hppa_objfile_private | |
72 | { | |
73 | struct hppa_unwind_info *unwind_info; /* a pointer */ | |
74 | struct so_list *so_info; /* a pointer */ | |
75 | CORE_ADDR dp; | |
76 | ||
77 | int dummy_call_sequence_reg; | |
78 | CORE_ADDR dummy_call_sequence_addr; | |
79 | }; | |
80 | ||
7c46b9fb RC |
81 | /* hppa-specific object data -- unwind and solib info. |
82 | TODO/maybe: think about splitting this into two parts; the unwind data is | |
83 | common to all hppa targets, but is only used in this file; we can register | |
84 | that separately and make this static. The solib data is probably hpux- | |
85 | specific, so we can create a separate extern objfile_data that is registered | |
86 | by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ | |
9a73f0ad TT |
87 | static const struct objfile_key<hppa_objfile_private, |
88 | gdb::noop_deleter<hppa_objfile_private>> | |
89 | hppa_objfile_priv_data; | |
7c46b9fb | 90 | |
405feb71 | 91 | /* Get at various relevant fields of an instruction word. */ |
e2ac8128 JB |
92 | #define MASK_5 0x1f |
93 | #define MASK_11 0x7ff | |
94 | #define MASK_14 0x3fff | |
95 | #define MASK_21 0x1fffff | |
96 | ||
e2ac8128 JB |
97 | /* Sizes (in bytes) of the native unwind entries. */ |
98 | #define UNWIND_ENTRY_SIZE 16 | |
99 | #define STUB_UNWIND_ENTRY_SIZE 8 | |
100 | ||
c906108c | 101 | /* Routines to extract various sized constants out of hppa |
1777feb0 | 102 | instructions. */ |
c906108c SS |
103 | |
104 | /* This assumes that no garbage lies outside of the lower bits of | |
1777feb0 | 105 | value. */ |
c906108c | 106 | |
63807e1d | 107 | static int |
abc485a1 | 108 | hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 109 | { |
66c6502d | 110 | return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val); |
c906108c SS |
111 | } |
112 | ||
1777feb0 | 113 | /* For many immediate values the sign bit is the low bit! */ |
c906108c | 114 | |
63807e1d | 115 | static int |
abc485a1 | 116 | hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
c906108c | 117 | { |
66c6502d | 118 | return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1); |
c906108c SS |
119 | } |
120 | ||
e2ac8128 | 121 | /* Extract the bits at positions between FROM and TO, using HP's numbering |
1777feb0 | 122 | (MSB = 0). */ |
e2ac8128 | 123 | |
abc485a1 RC |
124 | int |
125 | hppa_get_field (unsigned word, int from, int to) | |
e2ac8128 JB |
126 | { |
127 | return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); | |
128 | } | |
129 | ||
1777feb0 | 130 | /* Extract the immediate field from a ld{bhw}s instruction. */ |
c906108c | 131 | |
abc485a1 RC |
132 | int |
133 | hppa_extract_5_load (unsigned word) | |
c906108c | 134 | { |
abc485a1 | 135 | return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
c906108c SS |
136 | } |
137 | ||
1777feb0 | 138 | /* Extract the immediate field from a break instruction. */ |
c906108c | 139 | |
abc485a1 RC |
140 | unsigned |
141 | hppa_extract_5r_store (unsigned word) | |
c906108c SS |
142 | { |
143 | return (word & MASK_5); | |
144 | } | |
145 | ||
1777feb0 | 146 | /* Extract the immediate field from a {sr}sm instruction. */ |
c906108c | 147 | |
abc485a1 RC |
148 | unsigned |
149 | hppa_extract_5R_store (unsigned word) | |
c906108c SS |
150 | { |
151 | return (word >> 16 & MASK_5); | |
152 | } | |
153 | ||
1777feb0 | 154 | /* Extract a 14 bit immediate field. */ |
c906108c | 155 | |
abc485a1 RC |
156 | int |
157 | hppa_extract_14 (unsigned word) | |
c906108c | 158 | { |
abc485a1 | 159 | return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
c906108c SS |
160 | } |
161 | ||
1777feb0 | 162 | /* Extract a 21 bit constant. */ |
c906108c | 163 | |
abc485a1 RC |
164 | int |
165 | hppa_extract_21 (unsigned word) | |
c906108c SS |
166 | { |
167 | int val; | |
168 | ||
169 | word &= MASK_21; | |
170 | word <<= 11; | |
abc485a1 | 171 | val = hppa_get_field (word, 20, 20); |
c906108c | 172 | val <<= 11; |
abc485a1 | 173 | val |= hppa_get_field (word, 9, 19); |
c906108c | 174 | val <<= 2; |
abc485a1 | 175 | val |= hppa_get_field (word, 5, 6); |
c906108c | 176 | val <<= 5; |
abc485a1 | 177 | val |= hppa_get_field (word, 0, 4); |
c906108c | 178 | val <<= 2; |
abc485a1 RC |
179 | val |= hppa_get_field (word, 7, 8); |
180 | return hppa_sign_extend (val, 21) << 11; | |
c906108c SS |
181 | } |
182 | ||
c906108c | 183 | /* extract a 17 bit constant from branch instructions, returning the |
1777feb0 | 184 | 19 bit signed value. */ |
c906108c | 185 | |
abc485a1 RC |
186 | int |
187 | hppa_extract_17 (unsigned word) | |
c906108c | 188 | { |
abc485a1 RC |
189 | return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
190 | hppa_get_field (word, 29, 29) << 10 | | |
191 | hppa_get_field (word, 11, 15) << 11 | | |
c906108c SS |
192 | (word & 0x1) << 16, 17) << 2; |
193 | } | |
3388d7ff RC |
194 | |
195 | CORE_ADDR | |
196 | hppa_symbol_address(const char *sym) | |
197 | { | |
3b7344d5 | 198 | struct bound_minimal_symbol minsym; |
3388d7ff RC |
199 | |
200 | minsym = lookup_minimal_symbol (sym, NULL, NULL); | |
3b7344d5 | 201 | if (minsym.minsym) |
77e371c0 | 202 | return BMSYMBOL_VALUE_ADDRESS (minsym); |
3388d7ff RC |
203 | else |
204 | return (CORE_ADDR)-1; | |
205 | } | |
77d18ded | 206 | |
61a12cfa | 207 | static struct hppa_objfile_private * |
77d18ded RC |
208 | hppa_init_objfile_priv_data (struct objfile *objfile) |
209 | { | |
e39db4db SM |
210 | hppa_objfile_private *priv |
211 | = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private); | |
77d18ded | 212 | |
9a73f0ad | 213 | hppa_objfile_priv_data.set (objfile, priv); |
77d18ded RC |
214 | |
215 | return priv; | |
216 | } | |
c906108c SS |
217 | \f |
218 | ||
219 | /* Compare the start address for two unwind entries returning 1 if | |
220 | the first address is larger than the second, -1 if the second is | |
221 | larger than the first, and zero if they are equal. */ | |
222 | ||
223 | static int | |
fba45db2 | 224 | compare_unwind_entries (const void *arg1, const void *arg2) |
c906108c | 225 | { |
9a3c8263 SM |
226 | const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1; |
227 | const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2; | |
c906108c SS |
228 | |
229 | if (a->region_start > b->region_start) | |
230 | return 1; | |
231 | else if (a->region_start < b->region_start) | |
232 | return -1; | |
233 | else | |
234 | return 0; | |
235 | } | |
236 | ||
53a5351d | 237 | static void |
fdd72f95 | 238 | record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
53a5351d | 239 | { |
fdd72f95 | 240 | if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
53a5351d | 241 | == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
fdd72f95 RC |
242 | { |
243 | bfd_vma value = section->vma - section->filepos; | |
244 | CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; | |
245 | ||
246 | if (value < *low_text_segment_address) | |
247 | *low_text_segment_address = value; | |
248 | } | |
53a5351d JM |
249 | } |
250 | ||
c906108c | 251 | static void |
fba45db2 | 252 | internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
1777feb0 | 253 | asection *section, unsigned int entries, |
241fd515 | 254 | size_t size, CORE_ADDR text_offset) |
c906108c SS |
255 | { |
256 | /* We will read the unwind entries into temporary memory, then | |
257 | fill in the actual unwind table. */ | |
fdd72f95 | 258 | |
c906108c SS |
259 | if (size > 0) |
260 | { | |
5db8bbe5 | 261 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
c906108c SS |
262 | unsigned long tmp; |
263 | unsigned i; | |
224c3ddb | 264 | char *buf = (char *) alloca (size); |
fdd72f95 | 265 | CORE_ADDR low_text_segment_address; |
c906108c | 266 | |
fdd72f95 | 267 | /* For ELF targets, then unwinds are supposed to |
1777feb0 | 268 | be segment relative offsets instead of absolute addresses. |
c2c6d25f JM |
269 | |
270 | Note that when loading a shared library (text_offset != 0) the | |
271 | unwinds are already relative to the text_offset that will be | |
272 | passed in. */ | |
5db8bbe5 | 273 | if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
53a5351d | 274 | { |
fdd72f95 RC |
275 | low_text_segment_address = -1; |
276 | ||
53a5351d | 277 | bfd_map_over_sections (objfile->obfd, |
fdd72f95 RC |
278 | record_text_segment_lowaddr, |
279 | &low_text_segment_address); | |
53a5351d | 280 | |
fdd72f95 | 281 | text_offset = low_text_segment_address; |
53a5351d | 282 | } |
5db8bbe5 | 283 | else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
acf86d54 | 284 | { |
5db8bbe5 | 285 | text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
acf86d54 | 286 | } |
53a5351d | 287 | |
c906108c SS |
288 | bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
289 | ||
290 | /* Now internalize the information being careful to handle host/target | |
c5aa993b | 291 | endian issues. */ |
c906108c SS |
292 | for (i = 0; i < entries; i++) |
293 | { | |
294 | table[i].region_start = bfd_get_32 (objfile->obfd, | |
c5aa993b | 295 | (bfd_byte *) buf); |
c906108c SS |
296 | table[i].region_start += text_offset; |
297 | buf += 4; | |
c5aa993b | 298 | table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
299 | table[i].region_end += text_offset; |
300 | buf += 4; | |
c5aa993b | 301 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
302 | buf += 4; |
303 | table[i].Cannot_unwind = (tmp >> 31) & 0x1; | |
304 | table[i].Millicode = (tmp >> 30) & 0x1; | |
305 | table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; | |
306 | table[i].Region_description = (tmp >> 27) & 0x3; | |
6fcecea0 | 307 | table[i].reserved = (tmp >> 26) & 0x1; |
c906108c SS |
308 | table[i].Entry_SR = (tmp >> 25) & 0x1; |
309 | table[i].Entry_FR = (tmp >> 21) & 0xf; | |
310 | table[i].Entry_GR = (tmp >> 16) & 0x1f; | |
311 | table[i].Args_stored = (tmp >> 15) & 0x1; | |
312 | table[i].Variable_Frame = (tmp >> 14) & 0x1; | |
313 | table[i].Separate_Package_Body = (tmp >> 13) & 0x1; | |
314 | table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; | |
315 | table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; | |
316 | table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; | |
6fcecea0 | 317 | table[i].sr4export = (tmp >> 9) & 0x1; |
c906108c SS |
318 | table[i].cxx_info = (tmp >> 8) & 0x1; |
319 | table[i].cxx_try_catch = (tmp >> 7) & 0x1; | |
320 | table[i].sched_entry_seq = (tmp >> 6) & 0x1; | |
6fcecea0 | 321 | table[i].reserved1 = (tmp >> 5) & 0x1; |
c906108c SS |
322 | table[i].Save_SP = (tmp >> 4) & 0x1; |
323 | table[i].Save_RP = (tmp >> 3) & 0x1; | |
324 | table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; | |
6fcecea0 | 325 | table[i].save_r19 = (tmp >> 1) & 0x1; |
c906108c | 326 | table[i].Cleanup_defined = tmp & 0x1; |
c5aa993b | 327 | tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
c906108c SS |
328 | buf += 4; |
329 | table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; | |
330 | table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; | |
331 | table[i].Large_frame = (tmp >> 29) & 0x1; | |
6fcecea0 RC |
332 | table[i].alloca_frame = (tmp >> 28) & 0x1; |
333 | table[i].reserved2 = (tmp >> 27) & 0x1; | |
c906108c SS |
334 | table[i].Total_frame_size = tmp & 0x7ffffff; |
335 | ||
1777feb0 | 336 | /* Stub unwinds are handled elsewhere. */ |
c906108c SS |
337 | table[i].stub_unwind.stub_type = 0; |
338 | table[i].stub_unwind.padding = 0; | |
339 | } | |
340 | } | |
341 | } | |
342 | ||
343 | /* Read in the backtrace information stored in the `$UNWIND_START$' section of | |
344 | the object file. This info is used mainly by find_unwind_entry() to find | |
345 | out the stack frame size and frame pointer used by procedures. We put | |
346 | everything on the psymbol obstack in the objfile so that it automatically | |
347 | gets freed when the objfile is destroyed. */ | |
348 | ||
349 | static void | |
fba45db2 | 350 | read_unwind_info (struct objfile *objfile) |
c906108c | 351 | { |
d4f3574e | 352 | asection *unwind_sec, *stub_unwind_sec; |
241fd515 | 353 | size_t unwind_size, stub_unwind_size, total_size; |
d4f3574e | 354 | unsigned index, unwind_entries; |
c906108c SS |
355 | unsigned stub_entries, total_entries; |
356 | CORE_ADDR text_offset; | |
7c46b9fb RC |
357 | struct hppa_unwind_info *ui; |
358 | struct hppa_objfile_private *obj_private; | |
c906108c | 359 | |
a99dad3d | 360 | text_offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
7c46b9fb RC |
361 | ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
362 | sizeof (struct hppa_unwind_info)); | |
c906108c SS |
363 | |
364 | ui->table = NULL; | |
365 | ui->cache = NULL; | |
366 | ui->last = -1; | |
367 | ||
d4f3574e SS |
368 | /* For reasons unknown the HP PA64 tools generate multiple unwinder |
369 | sections in a single executable. So we just iterate over every | |
85102364 | 370 | section in the BFD looking for unwinder sections instead of trying |
1777feb0 | 371 | to do a lookup with bfd_get_section_by_name. |
c906108c | 372 | |
d4f3574e SS |
373 | First determine the total size of the unwind tables so that we |
374 | can allocate memory in a nice big hunk. */ | |
375 | total_entries = 0; | |
376 | for (unwind_sec = objfile->obfd->sections; | |
377 | unwind_sec; | |
378 | unwind_sec = unwind_sec->next) | |
c906108c | 379 | { |
d4f3574e SS |
380 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
381 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
382 | { | |
fd361982 | 383 | unwind_size = bfd_section_size (unwind_sec); |
d4f3574e | 384 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
c906108c | 385 | |
d4f3574e SS |
386 | total_entries += unwind_entries; |
387 | } | |
c906108c SS |
388 | } |
389 | ||
d4f3574e | 390 | /* Now compute the size of the stub unwinds. Note the ELF tools do not |
043f5962 | 391 | use stub unwinds at the current time. */ |
d4f3574e SS |
392 | stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
393 | ||
c906108c SS |
394 | if (stub_unwind_sec) |
395 | { | |
fd361982 | 396 | stub_unwind_size = bfd_section_size (stub_unwind_sec); |
c906108c SS |
397 | stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; |
398 | } | |
399 | else | |
400 | { | |
401 | stub_unwind_size = 0; | |
402 | stub_entries = 0; | |
403 | } | |
404 | ||
405 | /* Compute total number of unwind entries and their total size. */ | |
d4f3574e | 406 | total_entries += stub_entries; |
c906108c SS |
407 | total_size = total_entries * sizeof (struct unwind_table_entry); |
408 | ||
409 | /* Allocate memory for the unwind table. */ | |
410 | ui->table = (struct unwind_table_entry *) | |
8b92e4d5 | 411 | obstack_alloc (&objfile->objfile_obstack, total_size); |
c5aa993b | 412 | ui->last = total_entries - 1; |
c906108c | 413 | |
d4f3574e SS |
414 | /* Now read in each unwind section and internalize the standard unwind |
415 | entries. */ | |
c906108c | 416 | index = 0; |
d4f3574e SS |
417 | for (unwind_sec = objfile->obfd->sections; |
418 | unwind_sec; | |
419 | unwind_sec = unwind_sec->next) | |
420 | { | |
421 | if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 | |
422 | || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) | |
423 | { | |
fd361982 | 424 | unwind_size = bfd_section_size (unwind_sec); |
d4f3574e SS |
425 | unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
426 | ||
427 | internalize_unwinds (objfile, &ui->table[index], unwind_sec, | |
428 | unwind_entries, unwind_size, text_offset); | |
429 | index += unwind_entries; | |
430 | } | |
431 | } | |
432 | ||
433 | /* Now read in and internalize the stub unwind entries. */ | |
c906108c SS |
434 | if (stub_unwind_size > 0) |
435 | { | |
436 | unsigned int i; | |
224c3ddb | 437 | char *buf = (char *) alloca (stub_unwind_size); |
c906108c SS |
438 | |
439 | /* Read in the stub unwind entries. */ | |
440 | bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, | |
441 | 0, stub_unwind_size); | |
442 | ||
443 | /* Now convert them into regular unwind entries. */ | |
444 | for (i = 0; i < stub_entries; i++, index++) | |
445 | { | |
446 | /* Clear out the next unwind entry. */ | |
447 | memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); | |
448 | ||
1777feb0 | 449 | /* Convert offset & size into region_start and region_end. |
c906108c SS |
450 | Stuff away the stub type into "reserved" fields. */ |
451 | ui->table[index].region_start = bfd_get_32 (objfile->obfd, | |
452 | (bfd_byte *) buf); | |
453 | ui->table[index].region_start += text_offset; | |
454 | buf += 4; | |
455 | ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, | |
c5aa993b | 456 | (bfd_byte *) buf); |
c906108c SS |
457 | buf += 2; |
458 | ui->table[index].region_end | |
c5aa993b JM |
459 | = ui->table[index].region_start + 4 * |
460 | (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); | |
c906108c SS |
461 | buf += 2; |
462 | } | |
463 | ||
464 | } | |
465 | ||
466 | /* Unwind table needs to be kept sorted. */ | |
467 | qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), | |
468 | compare_unwind_entries); | |
469 | ||
470 | /* Keep a pointer to the unwind information. */ | |
9a73f0ad | 471 | obj_private = hppa_objfile_priv_data.get (objfile); |
7c46b9fb | 472 | if (obj_private == NULL) |
77d18ded RC |
473 | obj_private = hppa_init_objfile_priv_data (objfile); |
474 | ||
c906108c SS |
475 | obj_private->unwind_info = ui; |
476 | } | |
477 | ||
478 | /* Lookup the unwind (stack backtrace) info for the given PC. We search all | |
479 | of the objfiles seeking the unwind table entry for this PC. Each objfile | |
480 | contains a sorted list of struct unwind_table_entry. Since we do a binary | |
481 | search of the unwind tables, we depend upon them to be sorted. */ | |
482 | ||
483 | struct unwind_table_entry * | |
fba45db2 | 484 | find_unwind_entry (CORE_ADDR pc) |
c906108c SS |
485 | { |
486 | int first, middle, last; | |
7c46b9fb | 487 | struct hppa_objfile_private *priv; |
c906108c | 488 | |
369aa520 | 489 | if (hppa_debug) |
5af949e3 UW |
490 | fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
491 | hex_string (pc)); | |
369aa520 | 492 | |
1777feb0 | 493 | /* A function at address 0? Not in HP-UX! */ |
c906108c | 494 | if (pc == (CORE_ADDR) 0) |
369aa520 RC |
495 | { |
496 | if (hppa_debug) | |
497 | fprintf_unfiltered (gdb_stdlog, "NULL }\n"); | |
498 | return NULL; | |
499 | } | |
c906108c | 500 | |
2030c079 | 501 | for (objfile *objfile : current_program_space->objfiles ()) |
aed57c53 TT |
502 | { |
503 | struct hppa_unwind_info *ui; | |
504 | ui = NULL; | |
9a73f0ad | 505 | priv = hppa_objfile_priv_data.get (objfile); |
aed57c53 TT |
506 | if (priv) |
507 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
508 | ||
509 | if (!ui) | |
510 | { | |
511 | read_unwind_info (objfile); | |
9a73f0ad | 512 | priv = hppa_objfile_priv_data.get (objfile); |
aed57c53 TT |
513 | if (priv == NULL) |
514 | error (_("Internal error reading unwind information.")); | |
515 | ui = ((struct hppa_objfile_private *) priv)->unwind_info; | |
516 | } | |
517 | ||
518 | /* First, check the cache. */ | |
519 | ||
520 | if (ui->cache | |
521 | && pc >= ui->cache->region_start | |
522 | && pc <= ui->cache->region_end) | |
523 | { | |
524 | if (hppa_debug) | |
525 | fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", | |
526 | hex_string ((uintptr_t) ui->cache)); | |
527 | return ui->cache; | |
528 | } | |
529 | ||
530 | /* Not in the cache, do a binary search. */ | |
531 | ||
532 | first = 0; | |
533 | last = ui->last; | |
534 | ||
535 | while (first <= last) | |
536 | { | |
537 | middle = (first + last) / 2; | |
538 | if (pc >= ui->table[middle].region_start | |
539 | && pc <= ui->table[middle].region_end) | |
540 | { | |
541 | ui->cache = &ui->table[middle]; | |
542 | if (hppa_debug) | |
543 | fprintf_unfiltered (gdb_stdlog, "%s }\n", | |
544 | hex_string ((uintptr_t) ui->cache)); | |
545 | return &ui->table[middle]; | |
546 | } | |
547 | ||
548 | if (pc < ui->table[middle].region_start) | |
549 | last = middle - 1; | |
550 | else | |
551 | first = middle + 1; | |
552 | } | |
553 | } | |
369aa520 RC |
554 | |
555 | if (hppa_debug) | |
556 | fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); | |
557 | ||
c906108c SS |
558 | return NULL; |
559 | } | |
560 | ||
c9cf6e20 MG |
561 | /* Implement the stack_frame_destroyed_p gdbarch method. |
562 | ||
563 | The epilogue is defined here as the area either on the `bv' instruction | |
1777feb0 | 564 | itself or an instruction which destroys the function's stack frame. |
1fb24930 RC |
565 | |
566 | We do not assume that the epilogue is at the end of a function as we can | |
567 | also have return sequences in the middle of a function. */ | |
c9cf6e20 | 568 | |
1fb24930 | 569 | static int |
c9cf6e20 | 570 | hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
1fb24930 | 571 | { |
e17a4113 | 572 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1fb24930 RC |
573 | unsigned long status; |
574 | unsigned int inst; | |
e362b510 | 575 | gdb_byte buf[4]; |
1fb24930 | 576 | |
8defab1a | 577 | status = target_read_memory (pc, buf, 4); |
1fb24930 RC |
578 | if (status != 0) |
579 | return 0; | |
580 | ||
e17a4113 | 581 | inst = extract_unsigned_integer (buf, 4, byte_order); |
1fb24930 RC |
582 | |
583 | /* The most common way to perform a stack adjustment ldo X(sp),sp | |
584 | We are destroying a stack frame if the offset is negative. */ | |
585 | if ((inst & 0xffffc000) == 0x37de0000 | |
586 | && hppa_extract_14 (inst) < 0) | |
587 | return 1; | |
588 | ||
589 | /* ldw,mb D(sp),X or ldd,mb D(sp),X */ | |
590 | if (((inst & 0x0fc010e0) == 0x0fc010e0 | |
591 | || (inst & 0x0fc010e0) == 0x0fc010e0) | |
592 | && hppa_extract_14 (inst) < 0) | |
593 | return 1; | |
594 | ||
595 | /* bv %r0(%rp) or bv,n %r0(%rp) */ | |
596 | if (inst == 0xe840c000 || inst == 0xe840c002) | |
597 | return 1; | |
598 | ||
599 | return 0; | |
600 | } | |
601 | ||
04180708 | 602 | constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04}; |
598cc9dc | 603 | |
04180708 | 604 | typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint; |
aaab4dba | 605 | |
e23457df AC |
606 | /* Return the name of a register. */ |
607 | ||
4a302917 | 608 | static const char * |
d93859e2 | 609 | hppa32_register_name (struct gdbarch *gdbarch, int i) |
e23457df | 610 | { |
a121b7c1 | 611 | static const char *names[] = { |
e23457df AC |
612 | "flags", "r1", "rp", "r3", |
613 | "r4", "r5", "r6", "r7", | |
614 | "r8", "r9", "r10", "r11", | |
615 | "r12", "r13", "r14", "r15", | |
616 | "r16", "r17", "r18", "r19", | |
617 | "r20", "r21", "r22", "r23", | |
618 | "r24", "r25", "r26", "dp", | |
619 | "ret0", "ret1", "sp", "r31", | |
620 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
621 | "pcsqt", "eiem", "iir", "isr", | |
622 | "ior", "ipsw", "goto", "sr4", | |
623 | "sr0", "sr1", "sr2", "sr3", | |
624 | "sr5", "sr6", "sr7", "cr0", | |
625 | "cr8", "cr9", "ccr", "cr12", | |
626 | "cr13", "cr24", "cr25", "cr26", | |
627 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
628 | "fpsr", "fpe1", "fpe2", "fpe3", | |
629 | "fpe4", "fpe5", "fpe6", "fpe7", | |
630 | "fr4", "fr4R", "fr5", "fr5R", | |
631 | "fr6", "fr6R", "fr7", "fr7R", | |
632 | "fr8", "fr8R", "fr9", "fr9R", | |
633 | "fr10", "fr10R", "fr11", "fr11R", | |
634 | "fr12", "fr12R", "fr13", "fr13R", | |
635 | "fr14", "fr14R", "fr15", "fr15R", | |
636 | "fr16", "fr16R", "fr17", "fr17R", | |
637 | "fr18", "fr18R", "fr19", "fr19R", | |
638 | "fr20", "fr20R", "fr21", "fr21R", | |
639 | "fr22", "fr22R", "fr23", "fr23R", | |
640 | "fr24", "fr24R", "fr25", "fr25R", | |
641 | "fr26", "fr26R", "fr27", "fr27R", | |
642 | "fr28", "fr28R", "fr29", "fr29R", | |
643 | "fr30", "fr30R", "fr31", "fr31R" | |
644 | }; | |
645 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
646 | return NULL; | |
647 | else | |
648 | return names[i]; | |
649 | } | |
650 | ||
4a302917 | 651 | static const char * |
d93859e2 | 652 | hppa64_register_name (struct gdbarch *gdbarch, int i) |
e23457df | 653 | { |
a121b7c1 | 654 | static const char *names[] = { |
e23457df AC |
655 | "flags", "r1", "rp", "r3", |
656 | "r4", "r5", "r6", "r7", | |
657 | "r8", "r9", "r10", "r11", | |
658 | "r12", "r13", "r14", "r15", | |
659 | "r16", "r17", "r18", "r19", | |
660 | "r20", "r21", "r22", "r23", | |
661 | "r24", "r25", "r26", "dp", | |
662 | "ret0", "ret1", "sp", "r31", | |
663 | "sar", "pcoqh", "pcsqh", "pcoqt", | |
664 | "pcsqt", "eiem", "iir", "isr", | |
665 | "ior", "ipsw", "goto", "sr4", | |
666 | "sr0", "sr1", "sr2", "sr3", | |
667 | "sr5", "sr6", "sr7", "cr0", | |
668 | "cr8", "cr9", "ccr", "cr12", | |
669 | "cr13", "cr24", "cr25", "cr26", | |
670 | "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", | |
671 | "fpsr", "fpe1", "fpe2", "fpe3", | |
672 | "fr4", "fr5", "fr6", "fr7", | |
673 | "fr8", "fr9", "fr10", "fr11", | |
674 | "fr12", "fr13", "fr14", "fr15", | |
675 | "fr16", "fr17", "fr18", "fr19", | |
676 | "fr20", "fr21", "fr22", "fr23", | |
677 | "fr24", "fr25", "fr26", "fr27", | |
678 | "fr28", "fr29", "fr30", "fr31" | |
679 | }; | |
680 | if (i < 0 || i >= (sizeof (names) / sizeof (*names))) | |
681 | return NULL; | |
682 | else | |
683 | return names[i]; | |
684 | } | |
685 | ||
85c83e99 | 686 | /* Map dwarf DBX register numbers to GDB register numbers. */ |
1ef7fcb5 | 687 | static int |
d3f73121 | 688 | hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
1ef7fcb5 | 689 | { |
85c83e99 | 690 | /* The general registers and the sar are the same in both sets. */ |
0fde2c53 | 691 | if (reg >= 0 && reg <= 32) |
1ef7fcb5 RC |
692 | return reg; |
693 | ||
694 | /* fr4-fr31 are mapped from 72 in steps of 2. */ | |
85c83e99 | 695 | if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
1ef7fcb5 RC |
696 | return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
697 | ||
1ef7fcb5 RC |
698 | return -1; |
699 | } | |
700 | ||
79508e1e AC |
701 | /* This function pushes a stack frame with arguments as part of the |
702 | inferior function calling mechanism. | |
703 | ||
704 | This is the version of the function for the 32-bit PA machines, in | |
705 | which later arguments appear at lower addresses. (The stack always | |
706 | grows towards higher addresses.) | |
707 | ||
708 | We simply allocate the appropriate amount of stack space and put | |
709 | arguments into their proper slots. */ | |
710 | ||
4a302917 | 711 | static CORE_ADDR |
7d9b040b | 712 | hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
79508e1e AC |
713 | struct regcache *regcache, CORE_ADDR bp_addr, |
714 | int nargs, struct value **args, CORE_ADDR sp, | |
cf84fa6b AH |
715 | function_call_return_method return_method, |
716 | CORE_ADDR struct_addr) | |
79508e1e | 717 | { |
e17a4113 UW |
718 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
719 | ||
79508e1e AC |
720 | /* Stack base address at which any pass-by-reference parameters are |
721 | stored. */ | |
722 | CORE_ADDR struct_end = 0; | |
723 | /* Stack base address at which the first parameter is stored. */ | |
724 | CORE_ADDR param_end = 0; | |
725 | ||
79508e1e AC |
726 | /* Two passes. First pass computes the location of everything, |
727 | second pass writes the bytes out. */ | |
728 | int write_pass; | |
d49771ef RC |
729 | |
730 | /* Global pointer (r19) of the function we are trying to call. */ | |
731 | CORE_ADDR gp; | |
732 | ||
733 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
734 | ||
79508e1e AC |
735 | for (write_pass = 0; write_pass < 2; write_pass++) |
736 | { | |
1797a8f6 | 737 | CORE_ADDR struct_ptr = 0; |
1777feb0 | 738 | /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
2a6228ef RC |
739 | struct_ptr is adjusted for each argument below, so the first |
740 | argument will end up at sp-36. */ | |
741 | CORE_ADDR param_ptr = 32; | |
79508e1e | 742 | int i; |
2a6228ef RC |
743 | int small_struct = 0; |
744 | ||
79508e1e AC |
745 | for (i = 0; i < nargs; i++) |
746 | { | |
747 | struct value *arg = args[i]; | |
4991999e | 748 | struct type *type = check_typedef (value_type (arg)); |
79508e1e AC |
749 | /* The corresponding parameter that is pushed onto the |
750 | stack, and [possibly] passed in a register. */ | |
948f8e3d | 751 | gdb_byte param_val[8]; |
79508e1e AC |
752 | int param_len; |
753 | memset (param_val, 0, sizeof param_val); | |
754 | if (TYPE_LENGTH (type) > 8) | |
755 | { | |
756 | /* Large parameter, pass by reference. Store the value | |
757 | in "struct" area and then pass its address. */ | |
758 | param_len = 4; | |
1797a8f6 | 759 | struct_ptr += align_up (TYPE_LENGTH (type), 8); |
79508e1e | 760 | if (write_pass) |
0fd88904 | 761 | write_memory (struct_end - struct_ptr, value_contents (arg), |
79508e1e | 762 | TYPE_LENGTH (type)); |
e17a4113 UW |
763 | store_unsigned_integer (param_val, 4, byte_order, |
764 | struct_end - struct_ptr); | |
79508e1e AC |
765 | } |
766 | else if (TYPE_CODE (type) == TYPE_CODE_INT | |
767 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
768 | { | |
769 | /* Integer value store, right aligned. "unpack_long" | |
770 | takes care of any sign-extension problems. */ | |
771 | param_len = align_up (TYPE_LENGTH (type), 4); | |
e17a4113 | 772 | store_unsigned_integer (param_val, param_len, byte_order, |
79508e1e | 773 | unpack_long (type, |
0fd88904 | 774 | value_contents (arg))); |
79508e1e | 775 | } |
2a6228ef RC |
776 | else if (TYPE_CODE (type) == TYPE_CODE_FLT) |
777 | { | |
778 | /* Floating point value store, right aligned. */ | |
779 | param_len = align_up (TYPE_LENGTH (type), 4); | |
0fd88904 | 780 | memcpy (param_val, value_contents (arg), param_len); |
2a6228ef | 781 | } |
79508e1e AC |
782 | else |
783 | { | |
79508e1e | 784 | param_len = align_up (TYPE_LENGTH (type), 4); |
2a6228ef RC |
785 | |
786 | /* Small struct value are stored right-aligned. */ | |
79508e1e | 787 | memcpy (param_val + param_len - TYPE_LENGTH (type), |
0fd88904 | 788 | value_contents (arg), TYPE_LENGTH (type)); |
2a6228ef RC |
789 | |
790 | /* Structures of size 5, 6 and 7 bytes are special in that | |
791 | the higher-ordered word is stored in the lower-ordered | |
792 | argument, and even though it is a 8-byte quantity the | |
793 | registers need not be 8-byte aligned. */ | |
1b07b470 | 794 | if (param_len > 4 && param_len < 8) |
2a6228ef | 795 | small_struct = 1; |
79508e1e | 796 | } |
2a6228ef | 797 | |
1797a8f6 | 798 | param_ptr += param_len; |
2a6228ef RC |
799 | if (param_len == 8 && !small_struct) |
800 | param_ptr = align_up (param_ptr, 8); | |
801 | ||
802 | /* First 4 non-FP arguments are passed in gr26-gr23. | |
803 | First 4 32-bit FP arguments are passed in fr4L-fr7L. | |
804 | First 2 64-bit FP arguments are passed in fr5 and fr7. | |
805 | ||
806 | The rest go on the stack, starting at sp-36, towards lower | |
807 | addresses. 8-byte arguments must be aligned to a 8-byte | |
808 | stack boundary. */ | |
79508e1e AC |
809 | if (write_pass) |
810 | { | |
1797a8f6 | 811 | write_memory (param_end - param_ptr, param_val, param_len); |
2a6228ef RC |
812 | |
813 | /* There are some cases when we don't know the type | |
814 | expected by the callee (e.g. for variadic functions), so | |
815 | pass the parameters in both general and fp regs. */ | |
816 | if (param_ptr <= 48) | |
79508e1e | 817 | { |
2a6228ef RC |
818 | int grreg = 26 - (param_ptr - 36) / 4; |
819 | int fpLreg = 72 + (param_ptr - 36) / 4 * 2; | |
820 | int fpreg = 74 + (param_ptr - 32) / 8 * 4; | |
821 | ||
b66f5587 SM |
822 | regcache->cooked_write (grreg, param_val); |
823 | regcache->cooked_write (fpLreg, param_val); | |
2a6228ef | 824 | |
79508e1e | 825 | if (param_len > 4) |
2a6228ef | 826 | { |
b66f5587 | 827 | regcache->cooked_write (grreg + 1, param_val + 4); |
2a6228ef | 828 | |
b66f5587 SM |
829 | regcache->cooked_write (fpreg, param_val); |
830 | regcache->cooked_write (fpreg + 1, param_val + 4); | |
2a6228ef | 831 | } |
79508e1e AC |
832 | } |
833 | } | |
834 | } | |
835 | ||
836 | /* Update the various stack pointers. */ | |
837 | if (!write_pass) | |
838 | { | |
2a6228ef | 839 | struct_end = sp + align_up (struct_ptr, 64); |
79508e1e AC |
840 | /* PARAM_PTR already accounts for all the arguments passed |
841 | by the user. However, the ABI mandates minimum stack | |
842 | space allocations for outgoing arguments. The ABI also | |
843 | mandates minimum stack alignments which we must | |
844 | preserve. */ | |
2a6228ef | 845 | param_end = struct_end + align_up (param_ptr, 64); |
79508e1e AC |
846 | } |
847 | } | |
848 | ||
849 | /* If a structure has to be returned, set up register 28 to hold its | |
1777feb0 | 850 | address. */ |
cf84fa6b | 851 | if (return_method == return_method_struct) |
9c9acae0 | 852 | regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
79508e1e | 853 | |
e38c262f | 854 | gp = tdep->find_global_pointer (gdbarch, function); |
d49771ef RC |
855 | |
856 | if (gp != 0) | |
9c9acae0 | 857 | regcache_cooked_write_unsigned (regcache, 19, gp); |
d49771ef | 858 | |
79508e1e | 859 | /* Set the return address. */ |
77d18ded RC |
860 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
861 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
79508e1e | 862 | |
c4557624 | 863 | /* Update the Stack Pointer. */ |
34f75cc1 | 864 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
c4557624 | 865 | |
2a6228ef | 866 | return param_end; |
79508e1e AC |
867 | } |
868 | ||
38ca4e0c MK |
869 | /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
870 | Runtime Architecture for PA-RISC 2.0", which is distributed as part | |
871 | as of the HP-UX Software Transition Kit (STK). This implementation | |
872 | is based on version 3.3, dated October 6, 1997. */ | |
2f690297 | 873 | |
38ca4e0c | 874 | /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
2f690297 | 875 | |
38ca4e0c MK |
876 | static int |
877 | hppa64_integral_or_pointer_p (const struct type *type) | |
878 | { | |
879 | switch (TYPE_CODE (type)) | |
880 | { | |
881 | case TYPE_CODE_INT: | |
882 | case TYPE_CODE_BOOL: | |
883 | case TYPE_CODE_CHAR: | |
884 | case TYPE_CODE_ENUM: | |
885 | case TYPE_CODE_RANGE: | |
886 | { | |
887 | int len = TYPE_LENGTH (type); | |
888 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
889 | } | |
890 | case TYPE_CODE_PTR: | |
891 | case TYPE_CODE_REF: | |
aa006118 | 892 | case TYPE_CODE_RVALUE_REF: |
38ca4e0c MK |
893 | return (TYPE_LENGTH (type) == 8); |
894 | default: | |
895 | break; | |
896 | } | |
897 | ||
898 | return 0; | |
899 | } | |
900 | ||
901 | /* Check whether TYPE is a "Floating Scalar Type". */ | |
902 | ||
903 | static int | |
904 | hppa64_floating_p (const struct type *type) | |
905 | { | |
906 | switch (TYPE_CODE (type)) | |
907 | { | |
908 | case TYPE_CODE_FLT: | |
909 | { | |
910 | int len = TYPE_LENGTH (type); | |
911 | return (len == 4 || len == 8 || len == 16); | |
912 | } | |
913 | default: | |
914 | break; | |
915 | } | |
916 | ||
917 | return 0; | |
918 | } | |
2f690297 | 919 | |
1218e655 RC |
920 | /* If CODE points to a function entry address, try to look up the corresponding |
921 | function descriptor and return its address instead. If CODE is not a | |
922 | function entry address, then just return it unchanged. */ | |
923 | static CORE_ADDR | |
e17a4113 | 924 | hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
1218e655 | 925 | { |
e17a4113 | 926 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1218e655 RC |
927 | struct obj_section *sec, *opd; |
928 | ||
929 | sec = find_pc_section (code); | |
930 | ||
931 | if (!sec) | |
932 | return code; | |
933 | ||
934 | /* If CODE is in a data section, assume it's already a fptr. */ | |
935 | if (!(sec->the_bfd_section->flags & SEC_CODE)) | |
936 | return code; | |
937 | ||
938 | ALL_OBJFILE_OSECTIONS (sec->objfile, opd) | |
939 | { | |
940 | if (strcmp (opd->the_bfd_section->name, ".opd") == 0) | |
aded6f54 | 941 | break; |
1218e655 RC |
942 | } |
943 | ||
944 | if (opd < sec->objfile->sections_end) | |
945 | { | |
946 | CORE_ADDR addr; | |
947 | ||
aded6f54 PA |
948 | for (addr = obj_section_addr (opd); |
949 | addr < obj_section_endaddr (opd); | |
950 | addr += 2 * 8) | |
951 | { | |
1218e655 | 952 | ULONGEST opdaddr; |
948f8e3d | 953 | gdb_byte tmp[8]; |
1218e655 RC |
954 | |
955 | if (target_read_memory (addr, tmp, sizeof (tmp))) | |
956 | break; | |
e17a4113 | 957 | opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
1218e655 | 958 | |
aded6f54 | 959 | if (opdaddr == code) |
1218e655 RC |
960 | return addr - 16; |
961 | } | |
962 | } | |
963 | ||
964 | return code; | |
965 | } | |
966 | ||
4a302917 | 967 | static CORE_ADDR |
7d9b040b | 968 | hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
2f690297 AC |
969 | struct regcache *regcache, CORE_ADDR bp_addr, |
970 | int nargs, struct value **args, CORE_ADDR sp, | |
cf84fa6b AH |
971 | function_call_return_method return_method, |
972 | CORE_ADDR struct_addr) | |
2f690297 | 973 | { |
38ca4e0c | 974 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 975 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
38ca4e0c MK |
976 | int i, offset = 0; |
977 | CORE_ADDR gp; | |
2f690297 | 978 | |
38ca4e0c MK |
979 | /* "The outgoing parameter area [...] must be aligned at a 16-byte |
980 | boundary." */ | |
981 | sp = align_up (sp, 16); | |
2f690297 | 982 | |
38ca4e0c MK |
983 | for (i = 0; i < nargs; i++) |
984 | { | |
985 | struct value *arg = args[i]; | |
986 | struct type *type = value_type (arg); | |
987 | int len = TYPE_LENGTH (type); | |
0fd88904 | 988 | const bfd_byte *valbuf; |
1218e655 | 989 | bfd_byte fptrbuf[8]; |
38ca4e0c | 990 | int regnum; |
2f690297 | 991 | |
38ca4e0c MK |
992 | /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
993 | offset = align_up (offset, 8); | |
77d18ded | 994 | |
38ca4e0c | 995 | if (hppa64_integral_or_pointer_p (type)) |
2f690297 | 996 | { |
38ca4e0c MK |
997 | /* "Integral scalar parameters smaller than 64 bits are |
998 | padded on the left (i.e., the value is in the | |
999 | least-significant bits of the 64-bit storage unit, and | |
1000 | the high-order bits are undefined)." Therefore we can | |
1001 | safely sign-extend them. */ | |
1002 | if (len < 8) | |
449e1137 | 1003 | { |
df4df182 | 1004 | arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
38ca4e0c MK |
1005 | len = 8; |
1006 | } | |
1007 | } | |
1008 | else if (hppa64_floating_p (type)) | |
1009 | { | |
1010 | if (len > 8) | |
1011 | { | |
1012 | /* "Quad-precision (128-bit) floating-point scalar | |
1013 | parameters are aligned on a 16-byte boundary." */ | |
1014 | offset = align_up (offset, 16); | |
1015 | ||
1016 | /* "Double-extended- and quad-precision floating-point | |
1017 | parameters within the first 64 bytes of the parameter | |
1018 | list are always passed in general registers." */ | |
449e1137 AC |
1019 | } |
1020 | else | |
1021 | { | |
38ca4e0c | 1022 | if (len == 4) |
449e1137 | 1023 | { |
38ca4e0c MK |
1024 | /* "Single-precision (32-bit) floating-point scalar |
1025 | parameters are padded on the left with 32 bits of | |
1026 | garbage (i.e., the floating-point value is in the | |
1027 | least-significant 32 bits of a 64-bit storage | |
1028 | unit)." */ | |
1029 | offset += 4; | |
449e1137 | 1030 | } |
38ca4e0c MK |
1031 | |
1032 | /* "Single- and double-precision floating-point | |
1033 | parameters in this area are passed according to the | |
1034 | available formal parameter information in a function | |
1035 | prototype. [...] If no prototype is in scope, | |
1036 | floating-point parameters must be passed both in the | |
1037 | corresponding general registers and in the | |
1038 | corresponding floating-point registers." */ | |
1039 | regnum = HPPA64_FP4_REGNUM + offset / 8; | |
1040 | ||
1041 | if (regnum < HPPA64_FP4_REGNUM + 8) | |
449e1137 | 1042 | { |
38ca4e0c MK |
1043 | /* "Single-precision floating-point parameters, when |
1044 | passed in floating-point registers, are passed in | |
1045 | the right halves of the floating point registers; | |
1046 | the left halves are unused." */ | |
e4c4a59b SM |
1047 | regcache->cooked_write_part (regnum, offset % 8, len, |
1048 | value_contents (arg)); | |
449e1137 AC |
1049 | } |
1050 | } | |
2f690297 | 1051 | } |
38ca4e0c | 1052 | else |
2f690297 | 1053 | { |
38ca4e0c MK |
1054 | if (len > 8) |
1055 | { | |
1056 | /* "Aggregates larger than 8 bytes are aligned on a | |
1057 | 16-byte boundary, possibly leaving an unused argument | |
1777feb0 | 1058 | slot, which is filled with garbage. If necessary, |
38ca4e0c MK |
1059 | they are padded on the right (with garbage), to a |
1060 | multiple of 8 bytes." */ | |
1061 | offset = align_up (offset, 16); | |
1062 | } | |
1063 | } | |
1064 | ||
1218e655 RC |
1065 | /* If we are passing a function pointer, make sure we pass a function |
1066 | descriptor instead of the function entry address. */ | |
1067 | if (TYPE_CODE (type) == TYPE_CODE_PTR | |
1068 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1069 | { | |
1070 | ULONGEST codeptr, fptr; | |
1071 | ||
1072 | codeptr = unpack_long (type, value_contents (arg)); | |
e17a4113 UW |
1073 | fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
1074 | store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, | |
1075 | fptr); | |
1218e655 RC |
1076 | valbuf = fptrbuf; |
1077 | } | |
1078 | else | |
1079 | { | |
1080 | valbuf = value_contents (arg); | |
1081 | } | |
1082 | ||
38ca4e0c | 1083 | /* Always store the argument in memory. */ |
1218e655 | 1084 | write_memory (sp + offset, valbuf, len); |
38ca4e0c | 1085 | |
38ca4e0c MK |
1086 | regnum = HPPA_ARG0_REGNUM - offset / 8; |
1087 | while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) | |
1088 | { | |
e4c4a59b SM |
1089 | regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8), |
1090 | valbuf); | |
325fac50 PA |
1091 | offset += std::min (len, 8); |
1092 | valbuf += std::min (len, 8); | |
1093 | len -= std::min (len, 8); | |
38ca4e0c | 1094 | regnum--; |
2f690297 | 1095 | } |
38ca4e0c MK |
1096 | |
1097 | offset += len; | |
2f690297 AC |
1098 | } |
1099 | ||
38ca4e0c MK |
1100 | /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
1101 | regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); | |
1102 | ||
1103 | /* Allocate the outgoing parameter area. Make sure the outgoing | |
1104 | parameter area is multiple of 16 bytes in length. */ | |
325fac50 | 1105 | sp += std::max (align_up (offset, 16), (ULONGEST) 64); |
38ca4e0c MK |
1106 | |
1107 | /* Allocate 32-bytes of scratch space. The documentation doesn't | |
1108 | mention this, but it seems to be needed. */ | |
1109 | sp += 32; | |
1110 | ||
1111 | /* Allocate the frame marker area. */ | |
1112 | sp += 16; | |
1113 | ||
1114 | /* If a structure has to be returned, set up GR 28 (%ret0) to hold | |
1115 | its address. */ | |
cf84fa6b | 1116 | if (return_method == return_method_struct) |
38ca4e0c | 1117 | regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
2f690297 | 1118 | |
38ca4e0c | 1119 | /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
e38c262f | 1120 | gp = tdep->find_global_pointer (gdbarch, function); |
77d18ded | 1121 | if (gp != 0) |
38ca4e0c | 1122 | regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
77d18ded | 1123 | |
38ca4e0c | 1124 | /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
77d18ded RC |
1125 | if (!gdbarch_push_dummy_code_p (gdbarch)) |
1126 | regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); | |
2f690297 | 1127 | |
38ca4e0c MK |
1128 | /* Set up GR30 to hold the stack pointer (sp). */ |
1129 | regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); | |
c4557624 | 1130 | |
38ca4e0c | 1131 | return sp; |
2f690297 | 1132 | } |
38ca4e0c | 1133 | \f |
2f690297 | 1134 | |
08a27113 MK |
1135 | /* Handle 32/64-bit struct return conventions. */ |
1136 | ||
1137 | static enum return_value_convention | |
6a3a010b | 1138 | hppa32_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1139 | struct type *type, struct regcache *regcache, |
e127f0db | 1140 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1141 | { |
1142 | if (TYPE_LENGTH (type) <= 2 * 4) | |
1143 | { | |
1144 | /* The value always lives in the right hand end of the register | |
1145 | (or register pair)? */ | |
1146 | int b; | |
1147 | int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; | |
1148 | int part = TYPE_LENGTH (type) % 4; | |
1149 | /* The left hand register contains only part of the value, | |
1150 | transfer that first so that the rest can be xfered as entire | |
1151 | 4-byte registers. */ | |
1152 | if (part > 0) | |
1153 | { | |
1154 | if (readbuf != NULL) | |
73bb0000 | 1155 | regcache->cooked_read_part (reg, 4 - part, part, readbuf); |
08a27113 | 1156 | if (writebuf != NULL) |
e4c4a59b | 1157 | regcache->cooked_write_part (reg, 4 - part, part, writebuf); |
08a27113 MK |
1158 | reg++; |
1159 | } | |
1160 | /* Now transfer the remaining register values. */ | |
1161 | for (b = part; b < TYPE_LENGTH (type); b += 4) | |
1162 | { | |
1163 | if (readbuf != NULL) | |
dca08e1f | 1164 | regcache->cooked_read (reg, readbuf + b); |
08a27113 | 1165 | if (writebuf != NULL) |
b66f5587 | 1166 | regcache->cooked_write (reg, writebuf + b); |
08a27113 MK |
1167 | reg++; |
1168 | } | |
1169 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1170 | } | |
1171 | else | |
1172 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1173 | } | |
1174 | ||
1175 | static enum return_value_convention | |
6a3a010b | 1176 | hppa64_return_value (struct gdbarch *gdbarch, struct value *function, |
08a27113 | 1177 | struct type *type, struct regcache *regcache, |
e127f0db | 1178 | gdb_byte *readbuf, const gdb_byte *writebuf) |
08a27113 MK |
1179 | { |
1180 | int len = TYPE_LENGTH (type); | |
1181 | int regnum, offset; | |
1182 | ||
bad43aa5 | 1183 | if (len > 16) |
08a27113 | 1184 | { |
85102364 | 1185 | /* All return values larger than 128 bits must be aggregate |
08a27113 | 1186 | return values. */ |
9738b034 MK |
1187 | gdb_assert (!hppa64_integral_or_pointer_p (type)); |
1188 | gdb_assert (!hppa64_floating_p (type)); | |
08a27113 MK |
1189 | |
1190 | /* "Aggregate return values larger than 128 bits are returned in | |
1191 | a buffer allocated by the caller. The address of the buffer | |
1192 | must be passed in GR 28." */ | |
1193 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1194 | } | |
1195 | ||
1196 | if (hppa64_integral_or_pointer_p (type)) | |
1197 | { | |
1198 | /* "Integral return values are returned in GR 28. Values | |
1199 | smaller than 64 bits are padded on the left (with garbage)." */ | |
1200 | regnum = HPPA_RET0_REGNUM; | |
1201 | offset = 8 - len; | |
1202 | } | |
1203 | else if (hppa64_floating_p (type)) | |
1204 | { | |
1205 | if (len > 8) | |
1206 | { | |
1207 | /* "Double-extended- and quad-precision floating-point | |
1208 | values are returned in GRs 28 and 29. The sign, | |
1209 | exponent, and most-significant bits of the mantissa are | |
1210 | returned in GR 28; the least-significant bits of the | |
1211 | mantissa are passed in GR 29. For double-extended | |
1212 | precision values, GR 29 is padded on the right with 48 | |
1213 | bits of garbage." */ | |
1214 | regnum = HPPA_RET0_REGNUM; | |
1215 | offset = 0; | |
1216 | } | |
1217 | else | |
1218 | { | |
1219 | /* "Single-precision and double-precision floating-point | |
1220 | return values are returned in FR 4R (single precision) or | |
1221 | FR 4 (double-precision)." */ | |
1222 | regnum = HPPA64_FP4_REGNUM; | |
1223 | offset = 8 - len; | |
1224 | } | |
1225 | } | |
1226 | else | |
1227 | { | |
1228 | /* "Aggregate return values up to 64 bits in size are returned | |
1229 | in GR 28. Aggregates smaller than 64 bits are left aligned | |
1230 | in the register; the pad bits on the right are undefined." | |
1231 | ||
1232 | "Aggregate return values between 65 and 128 bits are returned | |
1233 | in GRs 28 and 29. The first 64 bits are placed in GR 28, and | |
1234 | the remaining bits are placed, left aligned, in GR 29. The | |
1235 | pad bits on the right of GR 29 (if any) are undefined." */ | |
1236 | regnum = HPPA_RET0_REGNUM; | |
1237 | offset = 0; | |
1238 | } | |
1239 | ||
1240 | if (readbuf) | |
1241 | { | |
08a27113 MK |
1242 | while (len > 0) |
1243 | { | |
73bb0000 SM |
1244 | regcache->cooked_read_part (regnum, offset, std::min (len, 8), |
1245 | readbuf); | |
325fac50 PA |
1246 | readbuf += std::min (len, 8); |
1247 | len -= std::min (len, 8); | |
08a27113 MK |
1248 | regnum++; |
1249 | } | |
1250 | } | |
1251 | ||
1252 | if (writebuf) | |
1253 | { | |
08a27113 MK |
1254 | while (len > 0) |
1255 | { | |
e4c4a59b SM |
1256 | regcache->cooked_write_part (regnum, offset, std::min (len, 8), |
1257 | writebuf); | |
325fac50 PA |
1258 | writebuf += std::min (len, 8); |
1259 | len -= std::min (len, 8); | |
08a27113 MK |
1260 | regnum++; |
1261 | } | |
1262 | } | |
1263 | ||
1264 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1265 | } | |
1266 | \f | |
1267 | ||
d49771ef | 1268 | static CORE_ADDR |
a7aad9aa | 1269 | hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
d49771ef RC |
1270 | struct target_ops *targ) |
1271 | { | |
1272 | if (addr & 2) | |
1273 | { | |
0dfff4cb | 1274 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
a7aad9aa | 1275 | CORE_ADDR plabel = addr & ~3; |
0dfff4cb | 1276 | return read_memory_typed_address (plabel, func_ptr_type); |
d49771ef RC |
1277 | } |
1278 | ||
1279 | return addr; | |
1280 | } | |
1281 | ||
1797a8f6 AC |
1282 | static CORE_ADDR |
1283 | hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1284 | { | |
1285 | /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ | |
1286 | and not _bit_)! */ | |
1287 | return align_up (addr, 64); | |
1288 | } | |
1289 | ||
2f690297 AC |
1290 | /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
1291 | ||
1292 | static CORE_ADDR | |
1797a8f6 | 1293 | hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
2f690297 AC |
1294 | { |
1295 | /* Just always 16-byte align. */ | |
1296 | return align_up (addr, 16); | |
1297 | } | |
1298 | ||
cb8c24b6 | 1299 | static CORE_ADDR |
c113ed0c | 1300 | hppa_read_pc (readable_regcache *regcache) |
c906108c | 1301 | { |
cc72850f | 1302 | ULONGEST ipsw; |
61a1198a | 1303 | ULONGEST pc; |
c906108c | 1304 | |
c113ed0c YQ |
1305 | regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw); |
1306 | regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc); | |
fe46cd3a RC |
1307 | |
1308 | /* If the current instruction is nullified, then we are effectively | |
1309 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
1310 | there. This is needed when single stepping; if the nullified |
1311 | instruction is on a different line, we don't want GDB to think | |
1312 | we've stepped onto that line. */ | |
fe46cd3a RC |
1313 | if (ipsw & 0x00200000) |
1314 | pc -= 4; | |
1315 | ||
cc72850f | 1316 | return pc & ~0x3; |
c906108c SS |
1317 | } |
1318 | ||
cc72850f | 1319 | void |
61a1198a | 1320 | hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
c906108c | 1321 | { |
61a1198a UW |
1322 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
1323 | regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); | |
c906108c SS |
1324 | } |
1325 | ||
c906108c | 1326 | /* For the given instruction (INST), return any adjustment it makes |
1777feb0 | 1327 | to the stack pointer or zero for no adjustment. |
c906108c SS |
1328 | |
1329 | This only handles instructions commonly found in prologues. */ | |
1330 | ||
1331 | static int | |
fba45db2 | 1332 | prologue_inst_adjust_sp (unsigned long inst) |
c906108c SS |
1333 | { |
1334 | /* This must persist across calls. */ | |
1335 | static int save_high21; | |
1336 | ||
1337 | /* The most common way to perform a stack adjustment ldo X(sp),sp */ | |
1338 | if ((inst & 0xffffc000) == 0x37de0000) | |
abc485a1 | 1339 | return hppa_extract_14 (inst); |
c906108c SS |
1340 | |
1341 | /* stwm X,D(sp) */ | |
1342 | if ((inst & 0xffe00000) == 0x6fc00000) | |
abc485a1 | 1343 | return hppa_extract_14 (inst); |
c906108c | 1344 | |
104c1213 JM |
1345 | /* std,ma X,D(sp) */ |
1346 | if ((inst & 0xffe00008) == 0x73c00008) | |
66c6502d | 1347 | return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3); |
104c1213 | 1348 | |
e22b26cb | 1349 | /* addil high21,%r30; ldo low11,(%r1),%r30) |
c906108c | 1350 | save high bits in save_high21 for later use. */ |
e22b26cb | 1351 | if ((inst & 0xffe00000) == 0x2bc00000) |
c906108c | 1352 | { |
abc485a1 | 1353 | save_high21 = hppa_extract_21 (inst); |
c906108c SS |
1354 | return 0; |
1355 | } | |
1356 | ||
1357 | if ((inst & 0xffff0000) == 0x343e0000) | |
abc485a1 | 1358 | return save_high21 + hppa_extract_14 (inst); |
c906108c SS |
1359 | |
1360 | /* fstws as used by the HP compilers. */ | |
1361 | if ((inst & 0xffffffe0) == 0x2fd01220) | |
abc485a1 | 1362 | return hppa_extract_5_load (inst); |
c906108c SS |
1363 | |
1364 | /* No adjustment. */ | |
1365 | return 0; | |
1366 | } | |
1367 | ||
1368 | /* Return nonzero if INST is a branch of some kind, else return zero. */ | |
1369 | ||
1370 | static int | |
fba45db2 | 1371 | is_branch (unsigned long inst) |
c906108c SS |
1372 | { |
1373 | switch (inst >> 26) | |
1374 | { | |
1375 | case 0x20: | |
1376 | case 0x21: | |
1377 | case 0x22: | |
1378 | case 0x23: | |
7be570e7 | 1379 | case 0x27: |
c906108c SS |
1380 | case 0x28: |
1381 | case 0x29: | |
1382 | case 0x2a: | |
1383 | case 0x2b: | |
7be570e7 | 1384 | case 0x2f: |
c906108c SS |
1385 | case 0x30: |
1386 | case 0x31: | |
1387 | case 0x32: | |
1388 | case 0x33: | |
1389 | case 0x38: | |
1390 | case 0x39: | |
1391 | case 0x3a: | |
7be570e7 | 1392 | case 0x3b: |
c906108c SS |
1393 | return 1; |
1394 | ||
1395 | default: | |
1396 | return 0; | |
1397 | } | |
1398 | } | |
1399 | ||
1400 | /* Return the register number for a GR which is saved by INST or | |
b35018fd | 1401 | zero if INST does not save a GR. |
c906108c | 1402 | |
b35018fd | 1403 | Referenced from: |
7be570e7 | 1404 | |
b35018fd CG |
1405 | parisc 1.1: |
1406 | https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf | |
c906108c | 1407 | |
b35018fd CG |
1408 | parisc 2.0: |
1409 | https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf | |
c906108c | 1410 | |
b35018fd CG |
1411 | According to Table 6-5 of Chapter 6 (Memory Reference Instructions) |
1412 | on page 106 in parisc 2.0, all instructions for storing values from | |
1413 | the general registers are: | |
c5aa993b | 1414 | |
b35018fd CG |
1415 | Store: stb, sth, stw, std (according to Chapter 7, they |
1416 | are only in both "inst >> 26" and "inst >> 6". | |
1417 | Store Absolute: stwa, stda (according to Chapter 7, they are only | |
1418 | in "inst >> 6". | |
1419 | Store Bytes: stby, stdby (according to Chapter 7, they are | |
1420 | only in "inst >> 6"). | |
1421 | ||
1422 | For (inst >> 26), according to Chapter 7: | |
1423 | ||
1424 | The effective memory reference address is formed by the addition | |
1425 | of an immediate displacement to a base value. | |
1426 | ||
1427 | - stb: 0x18, store a byte from a general register. | |
1428 | ||
1429 | - sth: 0x19, store a halfword from a general register. | |
1430 | ||
1431 | - stw: 0x1a, store a word from a general register. | |
1432 | ||
1433 | - stwm: 0x1b, store a word from a general register and perform base | |
85102364 | 1434 | register modification (2.0 will still treat it as stw). |
b35018fd CG |
1435 | |
1436 | - std: 0x1c, store a doubleword from a general register (2.0 only). | |
1437 | ||
1438 | - stw: 0x1f, store a word from a general register (2.0 only). | |
1439 | ||
1440 | For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7: | |
1441 | ||
1442 | The effective memory reference address is formed by the addition | |
1443 | of an index value to a base value specified in the instruction. | |
1444 | ||
1445 | - stb: 0x08, store a byte from a general register (1.1 calls stbs). | |
1446 | ||
1447 | - sth: 0x09, store a halfword from a general register (1.1 calls | |
1448 | sths). | |
1449 | ||
1450 | - stw: 0x0a, store a word from a general register (1.1 calls stws). | |
1451 | ||
1452 | - std: 0x0b: store a doubleword from a general register (2.0 only) | |
1453 | ||
1454 | Implement fast byte moves (stores) to unaligned word or doubleword | |
1455 | destination. | |
1456 | ||
1457 | - stby: 0x0c, for unaligned word (1.1 calls stbys). | |
1458 | ||
1459 | - stdby: 0x0d for unaligned doubleword (2.0 only). | |
1460 | ||
1461 | Store a word or doubleword using an absolute memory address formed | |
1462 | using short or long displacement or indexed | |
1463 | ||
1464 | - stwa: 0x0e, store a word from a general register to an absolute | |
1465 | address (1.0 calls stwas). | |
1466 | ||
1467 | - stda: 0x0f, store a doubleword from a general register to an | |
1468 | absolute address (2.0 only). */ | |
1469 | ||
1470 | static int | |
1471 | inst_saves_gr (unsigned long inst) | |
1472 | { | |
1473 | switch ((inst >> 26) & 0x0f) | |
1474 | { | |
1475 | case 0x03: | |
1476 | switch ((inst >> 6) & 0x0f) | |
1477 | { | |
1478 | case 0x08: | |
1479 | case 0x09: | |
1480 | case 0x0a: | |
1481 | case 0x0b: | |
1482 | case 0x0c: | |
1483 | case 0x0d: | |
1484 | case 0x0e: | |
1485 | case 0x0f: | |
1486 | return hppa_extract_5R_store (inst); | |
1487 | default: | |
1488 | return 0; | |
1489 | } | |
1490 | case 0x18: | |
1491 | case 0x19: | |
1492 | case 0x1a: | |
1493 | case 0x1b: | |
1494 | case 0x1c: | |
1495 | /* no 0x1d or 0x1e -- according to parisc 2.0 document */ | |
1496 | case 0x1f: | |
1497 | return hppa_extract_5R_store (inst); | |
1498 | default: | |
1499 | return 0; | |
1500 | } | |
c906108c SS |
1501 | } |
1502 | ||
1503 | /* Return the register number for a FR which is saved by INST or | |
1504 | zero it INST does not save a FR. | |
1505 | ||
1506 | Note we only care about full 64bit register stores (that's the only | |
1507 | kind of stores the prologue will use). | |
1508 | ||
1509 | FIXME: What about argument stores with the HP compiler in ANSI mode? */ | |
1510 | ||
1511 | static int | |
fba45db2 | 1512 | inst_saves_fr (unsigned long inst) |
c906108c | 1513 | { |
1777feb0 | 1514 | /* Is this an FSTD? */ |
c906108c | 1515 | if ((inst & 0xfc00dfc0) == 0x2c001200) |
abc485a1 | 1516 | return hppa_extract_5r_store (inst); |
7be570e7 | 1517 | if ((inst & 0xfc000002) == 0x70000002) |
abc485a1 | 1518 | return hppa_extract_5R_store (inst); |
1777feb0 | 1519 | /* Is this an FSTW? */ |
c906108c | 1520 | if ((inst & 0xfc00df80) == 0x24001200) |
abc485a1 | 1521 | return hppa_extract_5r_store (inst); |
7be570e7 | 1522 | if ((inst & 0xfc000002) == 0x7c000000) |
abc485a1 | 1523 | return hppa_extract_5R_store (inst); |
c906108c SS |
1524 | return 0; |
1525 | } | |
1526 | ||
1527 | /* Advance PC across any function entry prologue instructions | |
1777feb0 | 1528 | to reach some "real" code. |
c906108c SS |
1529 | |
1530 | Use information in the unwind table to determine what exactly should | |
1531 | be in the prologue. */ | |
1532 | ||
1533 | ||
a71f8c30 | 1534 | static CORE_ADDR |
be8626e0 MD |
1535 | skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
1536 | int stop_before_branch) | |
c906108c | 1537 | { |
e17a4113 | 1538 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e362b510 | 1539 | gdb_byte buf[4]; |
c906108c SS |
1540 | CORE_ADDR orig_pc = pc; |
1541 | unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; | |
1542 | unsigned long args_stored, status, i, restart_gr, restart_fr; | |
1543 | struct unwind_table_entry *u; | |
a71f8c30 | 1544 | int final_iteration; |
c906108c SS |
1545 | |
1546 | restart_gr = 0; | |
1547 | restart_fr = 0; | |
1548 | ||
1549 | restart: | |
1550 | u = find_unwind_entry (pc); | |
1551 | if (!u) | |
1552 | return pc; | |
1553 | ||
1777feb0 | 1554 | /* If we are not at the beginning of a function, then return now. */ |
c906108c SS |
1555 | if ((pc & ~0x3) != u->region_start) |
1556 | return pc; | |
1557 | ||
1558 | /* This is how much of a frame adjustment we need to account for. */ | |
1559 | stack_remaining = u->Total_frame_size << 3; | |
1560 | ||
1561 | /* Magic register saves we want to know about. */ | |
1562 | save_rp = u->Save_RP; | |
1563 | save_sp = u->Save_SP; | |
1564 | ||
1565 | /* An indication that args may be stored into the stack. Unfortunately | |
1566 | the HPUX compilers tend to set this in cases where no args were | |
1567 | stored too!. */ | |
1568 | args_stored = 1; | |
1569 | ||
1570 | /* Turn the Entry_GR field into a bitmask. */ | |
1571 | save_gr = 0; | |
1572 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1573 | { | |
1574 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1575 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
c906108c SS |
1576 | continue; |
1577 | ||
1578 | save_gr |= (1 << i); | |
1579 | } | |
1580 | save_gr &= ~restart_gr; | |
1581 | ||
1582 | /* Turn the Entry_FR field into a bitmask too. */ | |
1583 | save_fr = 0; | |
1584 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1585 | save_fr |= (1 << i); | |
1586 | save_fr &= ~restart_fr; | |
1587 | ||
a71f8c30 RC |
1588 | final_iteration = 0; |
1589 | ||
c906108c SS |
1590 | /* Loop until we find everything of interest or hit a branch. |
1591 | ||
1592 | For unoptimized GCC code and for any HP CC code this will never ever | |
1593 | examine any user instructions. | |
1594 | ||
85102364 | 1595 | For optimized GCC code we're faced with problems. GCC will schedule |
c906108c SS |
1596 | its prologue and make prologue instructions available for delay slot |
1597 | filling. The end result is user code gets mixed in with the prologue | |
1598 | and a prologue instruction may be in the delay slot of the first branch | |
1599 | or call. | |
1600 | ||
1601 | Some unexpected things are expected with debugging optimized code, so | |
1602 | we allow this routine to walk past user instructions in optimized | |
1603 | GCC code. */ | |
1604 | while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 | |
1605 | || args_stored) | |
1606 | { | |
1607 | unsigned int reg_num; | |
1608 | unsigned long old_stack_remaining, old_save_gr, old_save_fr; | |
1609 | unsigned long old_save_rp, old_save_sp, next_inst; | |
1610 | ||
1611 | /* Save copies of all the triggers so we can compare them later | |
c5aa993b | 1612 | (only for HPC). */ |
c906108c SS |
1613 | old_save_gr = save_gr; |
1614 | old_save_fr = save_fr; | |
1615 | old_save_rp = save_rp; | |
1616 | old_save_sp = save_sp; | |
1617 | old_stack_remaining = stack_remaining; | |
1618 | ||
8defab1a | 1619 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1620 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1621 | |
c906108c SS |
1622 | /* Yow! */ |
1623 | if (status != 0) | |
1624 | return pc; | |
1625 | ||
1626 | /* Note the interesting effects of this instruction. */ | |
1627 | stack_remaining -= prologue_inst_adjust_sp (inst); | |
1628 | ||
7be570e7 JM |
1629 | /* There are limited ways to store the return pointer into the |
1630 | stack. */ | |
c4c79048 | 1631 | if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
c906108c SS |
1632 | save_rp = 0; |
1633 | ||
104c1213 | 1634 | /* These are the only ways we save SP into the stack. At this time |
c5aa993b | 1635 | the HP compilers never bother to save SP into the stack. */ |
104c1213 JM |
1636 | if ((inst & 0xffffc000) == 0x6fc10000 |
1637 | || (inst & 0xffffc00c) == 0x73c10008) | |
c906108c SS |
1638 | save_sp = 0; |
1639 | ||
6426a772 JM |
1640 | /* Are we loading some register with an offset from the argument |
1641 | pointer? */ | |
1642 | if ((inst & 0xffe00000) == 0x37a00000 | |
1643 | || (inst & 0xffffffe0) == 0x081d0240) | |
1644 | { | |
1645 | pc += 4; | |
1646 | continue; | |
1647 | } | |
1648 | ||
c906108c SS |
1649 | /* Account for general and floating-point register saves. */ |
1650 | reg_num = inst_saves_gr (inst); | |
1651 | save_gr &= ~(1 << reg_num); | |
1652 | ||
1653 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1654 | Unfortunately args_stored only tells us that some arguments |
1655 | where stored into the stack. Not how many or what kind! | |
c906108c | 1656 | |
c5aa993b JM |
1657 | This is a kludge as on the HP compiler sets this bit and it |
1658 | never does prologue scheduling. So once we see one, skip past | |
1659 | all of them. We have similar code for the fp arg stores below. | |
c906108c | 1660 | |
c5aa993b JM |
1661 | FIXME. Can still die if we have a mix of GR and FR argument |
1662 | stores! */ | |
be8626e0 | 1663 | if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1664 | && reg_num <= 26) |
c906108c | 1665 | { |
be8626e0 | 1666 | while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
819844ad | 1667 | && reg_num <= 26) |
c906108c SS |
1668 | { |
1669 | pc += 4; | |
8defab1a | 1670 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1671 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1672 | if (status != 0) |
1673 | return pc; | |
1674 | reg_num = inst_saves_gr (inst); | |
1675 | } | |
1676 | args_stored = 0; | |
1677 | continue; | |
1678 | } | |
1679 | ||
1680 | reg_num = inst_saves_fr (inst); | |
1681 | save_fr &= ~(1 << reg_num); | |
1682 | ||
8defab1a | 1683 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1684 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c5aa993b | 1685 | |
c906108c SS |
1686 | /* Yow! */ |
1687 | if (status != 0) | |
1688 | return pc; | |
1689 | ||
1690 | /* We've got to be read to handle the ldo before the fp register | |
c5aa993b | 1691 | save. */ |
c906108c SS |
1692 | if ((inst & 0xfc000000) == 0x34000000 |
1693 | && inst_saves_fr (next_inst) >= 4 | |
819844ad | 1694 | && inst_saves_fr (next_inst) |
be8626e0 | 1695 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1696 | { |
1697 | /* So we drop into the code below in a reasonable state. */ | |
1698 | reg_num = inst_saves_fr (next_inst); | |
1699 | pc -= 4; | |
1700 | } | |
1701 | ||
1702 | /* Ugh. Also account for argument stores into the stack. | |
c5aa993b JM |
1703 | This is a kludge as on the HP compiler sets this bit and it |
1704 | never does prologue scheduling. So once we see one, skip past | |
1705 | all of them. */ | |
819844ad | 1706 | if (reg_num >= 4 |
be8626e0 | 1707 | && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c | 1708 | { |
819844ad UW |
1709 | while (reg_num >= 4 |
1710 | && reg_num | |
be8626e0 | 1711 | <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
c906108c SS |
1712 | { |
1713 | pc += 8; | |
8defab1a | 1714 | status = target_read_memory (pc, buf, 4); |
e17a4113 | 1715 | inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1716 | if (status != 0) |
1717 | return pc; | |
1718 | if ((inst & 0xfc000000) != 0x34000000) | |
1719 | break; | |
8defab1a | 1720 | status = target_read_memory (pc + 4, buf, 4); |
e17a4113 | 1721 | next_inst = extract_unsigned_integer (buf, 4, byte_order); |
c906108c SS |
1722 | if (status != 0) |
1723 | return pc; | |
1724 | reg_num = inst_saves_fr (next_inst); | |
1725 | } | |
1726 | args_stored = 0; | |
1727 | continue; | |
1728 | } | |
1729 | ||
1730 | /* Quit if we hit any kind of branch. This can happen if a prologue | |
c5aa993b | 1731 | instruction is in the delay slot of the first call/branch. */ |
a71f8c30 | 1732 | if (is_branch (inst) && stop_before_branch) |
c906108c SS |
1733 | break; |
1734 | ||
1735 | /* What a crock. The HP compilers set args_stored even if no | |
c5aa993b JM |
1736 | arguments were stored into the stack (boo hiss). This could |
1737 | cause this code to then skip a bunch of user insns (up to the | |
1738 | first branch). | |
1739 | ||
1740 | To combat this we try to identify when args_stored was bogusly | |
1741 | set and clear it. We only do this when args_stored is nonzero, | |
1742 | all other resources are accounted for, and nothing changed on | |
1743 | this pass. */ | |
c906108c | 1744 | if (args_stored |
c5aa993b | 1745 | && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
c906108c SS |
1746 | && old_save_gr == save_gr && old_save_fr == save_fr |
1747 | && old_save_rp == save_rp && old_save_sp == save_sp | |
1748 | && old_stack_remaining == stack_remaining) | |
1749 | break; | |
c5aa993b | 1750 | |
c906108c SS |
1751 | /* Bump the PC. */ |
1752 | pc += 4; | |
a71f8c30 RC |
1753 | |
1754 | /* !stop_before_branch, so also look at the insn in the delay slot | |
1755 | of the branch. */ | |
1756 | if (final_iteration) | |
1757 | break; | |
1758 | if (is_branch (inst)) | |
1759 | final_iteration = 1; | |
c906108c SS |
1760 | } |
1761 | ||
85102364 | 1762 | /* We've got a tentative location for the end of the prologue. However |
c906108c SS |
1763 | because of limitations in the unwind descriptor mechanism we may |
1764 | have went too far into user code looking for the save of a register | |
1765 | that does not exist. So, if there registers we expected to be saved | |
1766 | but never were, mask them out and restart. | |
1767 | ||
1768 | This should only happen in optimized code, and should be very rare. */ | |
c5aa993b | 1769 | if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
c906108c SS |
1770 | { |
1771 | pc = orig_pc; | |
1772 | restart_gr = save_gr; | |
1773 | restart_fr = save_fr; | |
1774 | goto restart; | |
1775 | } | |
1776 | ||
1777 | return pc; | |
1778 | } | |
1779 | ||
1780 | ||
7be570e7 JM |
1781 | /* Return the address of the PC after the last prologue instruction if |
1782 | we can determine it from the debug symbols. Else return zero. */ | |
c906108c SS |
1783 | |
1784 | static CORE_ADDR | |
fba45db2 | 1785 | after_prologue (CORE_ADDR pc) |
c906108c SS |
1786 | { |
1787 | struct symtab_and_line sal; | |
1788 | CORE_ADDR func_addr, func_end; | |
c906108c | 1789 | |
7be570e7 JM |
1790 | /* If we can not find the symbol in the partial symbol table, then |
1791 | there is no hope we can determine the function's start address | |
1792 | with this code. */ | |
c906108c | 1793 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
7be570e7 | 1794 | return 0; |
c906108c | 1795 | |
7be570e7 | 1796 | /* Get the line associated with FUNC_ADDR. */ |
c906108c SS |
1797 | sal = find_pc_line (func_addr, 0); |
1798 | ||
7be570e7 JM |
1799 | /* There are only two cases to consider. First, the end of the source line |
1800 | is within the function bounds. In that case we return the end of the | |
1801 | source line. Second is the end of the source line extends beyond the | |
1802 | bounds of the current function. We need to use the slow code to | |
1777feb0 | 1803 | examine instructions in that case. |
c906108c | 1804 | |
7be570e7 JM |
1805 | Anything else is simply a bug elsewhere. Fixing it here is absolutely |
1806 | the wrong thing to do. In fact, it should be entirely possible for this | |
1807 | function to always return zero since the slow instruction scanning code | |
1808 | is supposed to *always* work. If it does not, then it is a bug. */ | |
1809 | if (sal.end < func_end) | |
1810 | return sal.end; | |
c5aa993b | 1811 | else |
7be570e7 | 1812 | return 0; |
c906108c SS |
1813 | } |
1814 | ||
1815 | /* To skip prologues, I use this predicate. Returns either PC itself | |
1816 | if the code at PC does not look like a function prologue; otherwise | |
1777feb0 | 1817 | returns an address that (if we're lucky) follows the prologue. |
a71f8c30 RC |
1818 | |
1819 | hppa_skip_prologue is called by gdb to place a breakpoint in a function. | |
1777feb0 | 1820 | It doesn't necessarily skips all the insns in the prologue. In fact |
a71f8c30 RC |
1821 | we might not want to skip all the insns because a prologue insn may |
1822 | appear in the delay slot of the first branch, and we don't want to | |
1823 | skip over the branch in that case. */ | |
c906108c | 1824 | |
8d153463 | 1825 | static CORE_ADDR |
6093d2eb | 1826 | hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 1827 | { |
c5aa993b | 1828 | CORE_ADDR post_prologue_pc; |
c906108c | 1829 | |
c5aa993b JM |
1830 | /* See if we can determine the end of the prologue via the symbol table. |
1831 | If so, then return either PC, or the PC after the prologue, whichever | |
1832 | is greater. */ | |
c906108c | 1833 | |
c5aa993b | 1834 | post_prologue_pc = after_prologue (pc); |
c906108c | 1835 | |
7be570e7 JM |
1836 | /* If after_prologue returned a useful address, then use it. Else |
1837 | fall back on the instruction skipping code. | |
1838 | ||
1839 | Some folks have claimed this causes problems because the breakpoint | |
1840 | may be the first instruction of the prologue. If that happens, then | |
1841 | the instruction skipping code has a bug that needs to be fixed. */ | |
c5aa993b | 1842 | if (post_prologue_pc != 0) |
325fac50 | 1843 | return std::max (pc, post_prologue_pc); |
c5aa993b | 1844 | else |
be8626e0 | 1845 | return (skip_prologue_hard_way (gdbarch, pc, 1)); |
c906108c SS |
1846 | } |
1847 | ||
29d375ac | 1848 | /* Return an unwind entry that falls within the frame's code block. */ |
227e86ad | 1849 | |
29d375ac | 1850 | static struct unwind_table_entry * |
227e86ad | 1851 | hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
29d375ac | 1852 | { |
227e86ad | 1853 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
93d42b30 DJ |
1854 | |
1855 | /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the | |
ad1193e7 | 1856 | result of get_frame_address_in_block implies a problem. |
93d42b30 | 1857 | The bits should have been removed earlier, before the return |
c7ce8faa | 1858 | value of gdbarch_unwind_pc. That might be happening already; |
93d42b30 DJ |
1859 | if it isn't, it should be fixed. Then this call can be |
1860 | removed. */ | |
227e86ad | 1861 | pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
29d375ac RC |
1862 | return find_unwind_entry (pc); |
1863 | } | |
1864 | ||
26d08f08 AC |
1865 | struct hppa_frame_cache |
1866 | { | |
1867 | CORE_ADDR base; | |
1868 | struct trad_frame_saved_reg *saved_regs; | |
1869 | }; | |
1870 | ||
1871 | static struct hppa_frame_cache * | |
227e86ad | 1872 | hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
26d08f08 | 1873 | { |
227e86ad | 1874 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 UW |
1875 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
1876 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
26d08f08 AC |
1877 | struct hppa_frame_cache *cache; |
1878 | long saved_gr_mask; | |
1879 | long saved_fr_mask; | |
26d08f08 AC |
1880 | long frame_size; |
1881 | struct unwind_table_entry *u; | |
9f7194c3 | 1882 | CORE_ADDR prologue_end; |
50b2f48a | 1883 | int fp_in_r1 = 0; |
26d08f08 AC |
1884 | int i; |
1885 | ||
369aa520 RC |
1886 | if (hppa_debug) |
1887 | fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", | |
227e86ad | 1888 | frame_relative_level(this_frame)); |
369aa520 | 1889 | |
26d08f08 | 1890 | if ((*this_cache) != NULL) |
369aa520 RC |
1891 | { |
1892 | if (hppa_debug) | |
5af949e3 UW |
1893 | fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
1894 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
9a3c8263 | 1895 | return (struct hppa_frame_cache *) (*this_cache); |
369aa520 | 1896 | } |
26d08f08 AC |
1897 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
1898 | (*this_cache) = cache; | |
227e86ad | 1899 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
26d08f08 AC |
1900 | |
1901 | /* Yow! */ | |
227e86ad | 1902 | u = hppa_find_unwind_entry_in_block (this_frame); |
26d08f08 | 1903 | if (!u) |
369aa520 RC |
1904 | { |
1905 | if (hppa_debug) | |
1906 | fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); | |
9a3c8263 | 1907 | return (struct hppa_frame_cache *) (*this_cache); |
369aa520 | 1908 | } |
26d08f08 AC |
1909 | |
1910 | /* Turn the Entry_GR field into a bitmask. */ | |
1911 | saved_gr_mask = 0; | |
1912 | for (i = 3; i < u->Entry_GR + 3; i++) | |
1913 | { | |
1914 | /* Frame pointer gets saved into a special location. */ | |
eded0a31 | 1915 | if (u->Save_SP && i == HPPA_FP_REGNUM) |
26d08f08 AC |
1916 | continue; |
1917 | ||
1918 | saved_gr_mask |= (1 << i); | |
1919 | } | |
1920 | ||
1921 | /* Turn the Entry_FR field into a bitmask too. */ | |
1922 | saved_fr_mask = 0; | |
1923 | for (i = 12; i < u->Entry_FR + 12; i++) | |
1924 | saved_fr_mask |= (1 << i); | |
1925 | ||
1926 | /* Loop until we find everything of interest or hit a branch. | |
1927 | ||
1928 | For unoptimized GCC code and for any HP CC code this will never ever | |
1929 | examine any user instructions. | |
1930 | ||
1931 | For optimized GCC code we're faced with problems. GCC will schedule | |
1932 | its prologue and make prologue instructions available for delay slot | |
1933 | filling. The end result is user code gets mixed in with the prologue | |
1934 | and a prologue instruction may be in the delay slot of the first branch | |
1935 | or call. | |
1936 | ||
1937 | Some unexpected things are expected with debugging optimized code, so | |
1938 | we allow this routine to walk past user instructions in optimized | |
1939 | GCC code. */ | |
1940 | { | |
1941 | int final_iteration = 0; | |
46acf081 | 1942 | CORE_ADDR pc, start_pc, end_pc; |
26d08f08 AC |
1943 | int looking_for_sp = u->Save_SP; |
1944 | int looking_for_rp = u->Save_RP; | |
1945 | int fp_loc = -1; | |
9f7194c3 | 1946 | |
a71f8c30 | 1947 | /* We have to use skip_prologue_hard_way instead of just |
9f7194c3 RC |
1948 | skip_prologue_using_sal, in case we stepped into a function without |
1949 | symbol information. hppa_skip_prologue also bounds the returned | |
1950 | pc by the passed in pc, so it will not return a pc in the next | |
1777feb0 | 1951 | function. |
a71f8c30 RC |
1952 | |
1953 | We used to call hppa_skip_prologue to find the end of the prologue, | |
1954 | but if some non-prologue instructions get scheduled into the prologue, | |
1955 | and the program is compiled with debug information, the "easy" way | |
1956 | in hppa_skip_prologue will return a prologue end that is too early | |
1957 | for us to notice any potential frame adjustments. */ | |
d5c27f81 | 1958 | |
ef02daa9 DJ |
1959 | /* We used to use get_frame_func to locate the beginning of the |
1960 | function to pass to skip_prologue. However, when objects are | |
1961 | compiled without debug symbols, get_frame_func can return the wrong | |
1777feb0 | 1962 | function (or 0). We can do better than that by using unwind records. |
46acf081 | 1963 | This only works if the Region_description of the unwind record |
1777feb0 | 1964 | indicates that it includes the entry point of the function. |
46acf081 RC |
1965 | HP compilers sometimes generate unwind records for regions that |
1966 | do not include the entry or exit point of a function. GNU tools | |
1967 | do not do this. */ | |
1968 | ||
1969 | if ((u->Region_description & 0x2) == 0) | |
1970 | start_pc = u->region_start; | |
1971 | else | |
227e86ad | 1972 | start_pc = get_frame_func (this_frame); |
d5c27f81 | 1973 | |
be8626e0 | 1974 | prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
227e86ad | 1975 | end_pc = get_frame_pc (this_frame); |
9f7194c3 RC |
1976 | |
1977 | if (prologue_end != 0 && end_pc > prologue_end) | |
1978 | end_pc = prologue_end; | |
1979 | ||
26d08f08 | 1980 | frame_size = 0; |
9f7194c3 | 1981 | |
46acf081 | 1982 | for (pc = start_pc; |
26d08f08 AC |
1983 | ((saved_gr_mask || saved_fr_mask |
1984 | || looking_for_sp || looking_for_rp | |
1985 | || frame_size < (u->Total_frame_size << 3)) | |
9f7194c3 | 1986 | && pc < end_pc); |
26d08f08 AC |
1987 | pc += 4) |
1988 | { | |
1989 | int reg; | |
e362b510 | 1990 | gdb_byte buf4[4]; |
4a302917 RC |
1991 | long inst; |
1992 | ||
227e86ad | 1993 | if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4)) |
4a302917 | 1994 | { |
5af949e3 UW |
1995 | error (_("Cannot read instruction at %s."), |
1996 | paddress (gdbarch, pc)); | |
9a3c8263 | 1997 | return (struct hppa_frame_cache *) (*this_cache); |
4a302917 RC |
1998 | } |
1999 | ||
e17a4113 | 2000 | inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
9f7194c3 | 2001 | |
26d08f08 AC |
2002 | /* Note the interesting effects of this instruction. */ |
2003 | frame_size += prologue_inst_adjust_sp (inst); | |
2004 | ||
2005 | /* There are limited ways to store the return pointer into the | |
2006 | stack. */ | |
2007 | if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2008 | { | |
2009 | looking_for_rp = 0; | |
34f75cc1 | 2010 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; |
26d08f08 | 2011 | } |
dfaf8edb MK |
2012 | else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
2013 | { | |
2014 | looking_for_rp = 0; | |
2015 | cache->saved_regs[HPPA_RP_REGNUM].addr = -24; | |
2016 | } | |
c4c79048 RC |
2017 | else if (inst == 0x0fc212c1 |
2018 | || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
26d08f08 AC |
2019 | { |
2020 | looking_for_rp = 0; | |
34f75cc1 | 2021 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; |
26d08f08 AC |
2022 | } |
2023 | ||
2024 | /* Check to see if we saved SP into the stack. This also | |
2025 | happens to indicate the location of the saved frame | |
2026 | pointer. */ | |
2027 | if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ | |
2028 | || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ | |
2029 | { | |
2030 | looking_for_sp = 0; | |
eded0a31 | 2031 | cache->saved_regs[HPPA_FP_REGNUM].addr = 0; |
26d08f08 | 2032 | } |
50b2f48a RC |
2033 | else if (inst == 0x08030241) /* copy %r3, %r1 */ |
2034 | { | |
2035 | fp_in_r1 = 1; | |
2036 | } | |
26d08f08 AC |
2037 | |
2038 | /* Account for general and floating-point register saves. */ | |
2039 | reg = inst_saves_gr (inst); | |
2040 | if (reg >= 3 && reg <= 18 | |
eded0a31 | 2041 | && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
26d08f08 AC |
2042 | { |
2043 | saved_gr_mask &= ~(1 << reg); | |
abc485a1 | 2044 | if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
26d08f08 AC |
2045 | /* stwm with a positive displacement is a _post_ |
2046 | _modify_. */ | |
2047 | cache->saved_regs[reg].addr = 0; | |
2048 | else if ((inst & 0xfc00000c) == 0x70000008) | |
2049 | /* A std has explicit post_modify forms. */ | |
2050 | cache->saved_regs[reg].addr = 0; | |
2051 | else | |
2052 | { | |
2053 | CORE_ADDR offset; | |
2054 | ||
2055 | if ((inst >> 26) == 0x1c) | |
66c6502d | 2056 | offset = (inst & 0x1 ? -(1 << 13) : 0) |
1777feb0 | 2057 | | (((inst >> 4) & 0x3ff) << 3); |
26d08f08 | 2058 | else if ((inst >> 26) == 0x03) |
abc485a1 | 2059 | offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
26d08f08 | 2060 | else |
abc485a1 | 2061 | offset = hppa_extract_14 (inst); |
26d08f08 AC |
2062 | |
2063 | /* Handle code with and without frame pointers. */ | |
2064 | if (u->Save_SP) | |
2065 | cache->saved_regs[reg].addr = offset; | |
2066 | else | |
1777feb0 MS |
2067 | cache->saved_regs[reg].addr |
2068 | = (u->Total_frame_size << 3) + offset; | |
26d08f08 AC |
2069 | } |
2070 | } | |
2071 | ||
2072 | /* GCC handles callee saved FP regs a little differently. | |
2073 | ||
2074 | It emits an instruction to put the value of the start of | |
2075 | the FP store area into %r1. It then uses fstds,ma with a | |
2076 | basereg of %r1 for the stores. | |
2077 | ||
2078 | HP CC emits them at the current stack pointer modifying the | |
2079 | stack pointer as it stores each register. */ | |
2080 | ||
2081 | /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ | |
2082 | if ((inst & 0xffffc000) == 0x34610000 | |
2083 | || (inst & 0xffffc000) == 0x37c10000) | |
abc485a1 | 2084 | fp_loc = hppa_extract_14 (inst); |
26d08f08 AC |
2085 | |
2086 | reg = inst_saves_fr (inst); | |
2087 | if (reg >= 12 && reg <= 21) | |
2088 | { | |
2089 | /* Note +4 braindamage below is necessary because the FP | |
2090 | status registers are internally 8 registers rather than | |
2091 | the expected 4 registers. */ | |
2092 | saved_fr_mask &= ~(1 << reg); | |
2093 | if (fp_loc == -1) | |
2094 | { | |
2095 | /* 1st HP CC FP register store. After this | |
2096 | instruction we've set enough state that the GCC and | |
2097 | HPCC code are both handled in the same manner. */ | |
34f75cc1 | 2098 | cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0; |
26d08f08 AC |
2099 | fp_loc = 8; |
2100 | } | |
2101 | else | |
2102 | { | |
eded0a31 | 2103 | cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc; |
26d08f08 AC |
2104 | fp_loc += 8; |
2105 | } | |
2106 | } | |
2107 | ||
1777feb0 | 2108 | /* Quit if we hit any kind of branch the previous iteration. */ |
26d08f08 AC |
2109 | if (final_iteration) |
2110 | break; | |
2111 | /* We want to look precisely one instruction beyond the branch | |
2112 | if we have not found everything yet. */ | |
2113 | if (is_branch (inst)) | |
2114 | final_iteration = 1; | |
2115 | } | |
2116 | } | |
2117 | ||
2118 | { | |
2119 | /* The frame base always represents the value of %sp at entry to | |
2120 | the current function (and is thus equivalent to the "saved" | |
2121 | stack pointer. */ | |
227e86ad JB |
2122 | CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
2123 | HPPA_SP_REGNUM); | |
ed70ba00 | 2124 | CORE_ADDR fp; |
9f7194c3 RC |
2125 | |
2126 | if (hppa_debug) | |
5af949e3 UW |
2127 | fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
2128 | "prologue_end=%s) ", | |
2129 | paddress (gdbarch, this_sp), | |
2130 | paddress (gdbarch, get_frame_pc (this_frame)), | |
2131 | paddress (gdbarch, prologue_end)); | |
9f7194c3 | 2132 | |
ed70ba00 RC |
2133 | /* Check to see if a frame pointer is available, and use it for |
2134 | frame unwinding if it is. | |
2135 | ||
2136 | There are some situations where we need to rely on the frame | |
2137 | pointer to do stack unwinding. For example, if a function calls | |
2138 | alloca (), the stack pointer can get adjusted inside the body of | |
2139 | the function. In this case, the ABI requires that the compiler | |
2140 | maintain a frame pointer for the function. | |
2141 | ||
2142 | The unwind record has a flag (alloca_frame) that indicates that | |
2143 | a function has a variable frame; unfortunately, gcc/binutils | |
2144 | does not set this flag. Instead, whenever a frame pointer is used | |
2145 | and saved on the stack, the Save_SP flag is set. We use this to | |
2146 | decide whether to use the frame pointer for unwinding. | |
2147 | ||
ed70ba00 RC |
2148 | TODO: For the HP compiler, maybe we should use the alloca_frame flag |
2149 | instead of Save_SP. */ | |
2150 | ||
227e86ad | 2151 | fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
46acf081 | 2152 | |
6fcecea0 | 2153 | if (u->alloca_frame) |
46acf081 | 2154 | fp -= u->Total_frame_size << 3; |
ed70ba00 | 2155 | |
227e86ad | 2156 | if (get_frame_pc (this_frame) >= prologue_end |
6fcecea0 | 2157 | && (u->Save_SP || u->alloca_frame) && fp != 0) |
ed70ba00 RC |
2158 | { |
2159 | cache->base = fp; | |
2160 | ||
2161 | if (hppa_debug) | |
5af949e3 UW |
2162 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
2163 | paddress (gdbarch, cache->base)); | |
ed70ba00 | 2164 | } |
1658da49 RC |
2165 | else if (u->Save_SP |
2166 | && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM)) | |
9f7194c3 | 2167 | { |
9f7194c3 RC |
2168 | /* Both we're expecting the SP to be saved and the SP has been |
2169 | saved. The entry SP value is saved at this frame's SP | |
2170 | address. */ | |
e17a4113 | 2171 | cache->base = read_memory_integer (this_sp, word_size, byte_order); |
9f7194c3 RC |
2172 | |
2173 | if (hppa_debug) | |
5af949e3 UW |
2174 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
2175 | paddress (gdbarch, cache->base)); | |
9f7194c3 | 2176 | } |
26d08f08 | 2177 | else |
9f7194c3 | 2178 | { |
1658da49 RC |
2179 | /* The prologue has been slowly allocating stack space. Adjust |
2180 | the SP back. */ | |
2181 | cache->base = this_sp - frame_size; | |
9f7194c3 | 2182 | if (hppa_debug) |
5af949e3 UW |
2183 | fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
2184 | paddress (gdbarch, cache->base)); | |
9f7194c3 RC |
2185 | |
2186 | } | |
eded0a31 | 2187 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
26d08f08 AC |
2188 | } |
2189 | ||
412275d5 AC |
2190 | /* The PC is found in the "return register", "Millicode" uses "r31" |
2191 | as the return register while normal code uses "rp". */ | |
26d08f08 | 2192 | if (u->Millicode) |
9f7194c3 | 2193 | { |
5859efe5 | 2194 | if (trad_frame_addr_p (cache->saved_regs, 31)) |
9ed5ba24 RC |
2195 | { |
2196 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; | |
2197 | if (hppa_debug) | |
2198 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); | |
2199 | } | |
9f7194c3 RC |
2200 | else |
2201 | { | |
227e86ad | 2202 | ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
34f75cc1 | 2203 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31); |
9ed5ba24 RC |
2204 | if (hppa_debug) |
2205 | fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); | |
9f7194c3 RC |
2206 | } |
2207 | } | |
26d08f08 | 2208 | else |
9f7194c3 | 2209 | { |
34f75cc1 | 2210 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) |
9ed5ba24 RC |
2211 | { |
2212 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = | |
2213 | cache->saved_regs[HPPA_RP_REGNUM]; | |
2214 | if (hppa_debug) | |
2215 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); | |
2216 | } | |
9f7194c3 RC |
2217 | else |
2218 | { | |
227e86ad JB |
2219 | ULONGEST rp = get_frame_register_unsigned (this_frame, |
2220 | HPPA_RP_REGNUM); | |
34f75cc1 | 2221 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
9ed5ba24 RC |
2222 | if (hppa_debug) |
2223 | fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); | |
9f7194c3 RC |
2224 | } |
2225 | } | |
26d08f08 | 2226 | |
50b2f48a RC |
2227 | /* If Save_SP is set, then we expect the frame pointer to be saved in the |
2228 | frame. However, there is a one-insn window where we haven't saved it | |
2229 | yet, but we've already clobbered it. Detect this case and fix it up. | |
2230 | ||
2231 | The prologue sequence for frame-pointer functions is: | |
2232 | 0: stw %rp, -20(%sp) | |
2233 | 4: copy %r3, %r1 | |
2234 | 8: copy %sp, %r3 | |
2235 | c: stw,ma %r1, XX(%sp) | |
2236 | ||
2237 | So if we are at offset c, the r3 value that we want is not yet saved | |
2238 | on the stack, but it's been overwritten. The prologue analyzer will | |
2239 | set fp_in_r1 when it sees the copy insn so we know to get the value | |
2240 | from r1 instead. */ | |
2241 | if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM) | |
2242 | && fp_in_r1) | |
2243 | { | |
227e86ad | 2244 | ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
50b2f48a RC |
2245 | trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1); |
2246 | } | |
1658da49 | 2247 | |
26d08f08 AC |
2248 | { |
2249 | /* Convert all the offsets into addresses. */ | |
2250 | int reg; | |
65c5db89 | 2251 | for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
26d08f08 AC |
2252 | { |
2253 | if (trad_frame_addr_p (cache->saved_regs, reg)) | |
2254 | cache->saved_regs[reg].addr += cache->base; | |
2255 | } | |
2256 | } | |
2257 | ||
f77a2124 | 2258 | { |
f77a2124 RC |
2259 | struct gdbarch_tdep *tdep; |
2260 | ||
f77a2124 RC |
2261 | tdep = gdbarch_tdep (gdbarch); |
2262 | ||
2263 | if (tdep->unwind_adjust_stub) | |
227e86ad | 2264 | tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
f77a2124 RC |
2265 | } |
2266 | ||
369aa520 | 2267 | if (hppa_debug) |
5af949e3 UW |
2268 | fprintf_unfiltered (gdb_stdlog, "base=%s }", |
2269 | paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); | |
9a3c8263 | 2270 | return (struct hppa_frame_cache *) (*this_cache); |
26d08f08 AC |
2271 | } |
2272 | ||
2273 | static void | |
227e86ad JB |
2274 | hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
2275 | struct frame_id *this_id) | |
26d08f08 | 2276 | { |
d5c27f81 | 2277 | struct hppa_frame_cache *info; |
d5c27f81 RC |
2278 | struct unwind_table_entry *u; |
2279 | ||
227e86ad JB |
2280 | info = hppa_frame_cache (this_frame, this_cache); |
2281 | u = hppa_find_unwind_entry_in_block (this_frame); | |
d5c27f81 RC |
2282 | |
2283 | (*this_id) = frame_id_build (info->base, u->region_start); | |
26d08f08 AC |
2284 | } |
2285 | ||
227e86ad JB |
2286 | static struct value * |
2287 | hppa_frame_prev_register (struct frame_info *this_frame, | |
2288 | void **this_cache, int regnum) | |
26d08f08 | 2289 | { |
227e86ad JB |
2290 | struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
2291 | ||
1777feb0 MS |
2292 | return hppa_frame_prev_register_helper (this_frame, |
2293 | info->saved_regs, regnum); | |
227e86ad JB |
2294 | } |
2295 | ||
2296 | static int | |
2297 | hppa_frame_unwind_sniffer (const struct frame_unwind *self, | |
2298 | struct frame_info *this_frame, void **this_cache) | |
2299 | { | |
2300 | if (hppa_find_unwind_entry_in_block (this_frame)) | |
2301 | return 1; | |
2302 | ||
2303 | return 0; | |
0da28f8a RC |
2304 | } |
2305 | ||
2306 | static const struct frame_unwind hppa_frame_unwind = | |
2307 | { | |
2308 | NORMAL_FRAME, | |
8fbca658 | 2309 | default_frame_unwind_stop_reason, |
0da28f8a | 2310 | hppa_frame_this_id, |
227e86ad JB |
2311 | hppa_frame_prev_register, |
2312 | NULL, | |
2313 | hppa_frame_unwind_sniffer | |
0da28f8a RC |
2314 | }; |
2315 | ||
0da28f8a RC |
2316 | /* This is a generic fallback frame unwinder that kicks in if we fail all |
2317 | the other ones. Normally we would expect the stub and regular unwinder | |
2318 | to work, but in some cases we might hit a function that just doesn't | |
2319 | have any unwind information available. In this case we try to do | |
2320 | unwinding solely based on code reading. This is obviously going to be | |
2321 | slow, so only use this as a last resort. Currently this will only | |
2322 | identify the stack and pc for the frame. */ | |
2323 | ||
2324 | static struct hppa_frame_cache * | |
227e86ad | 2325 | hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
0da28f8a | 2326 | { |
e17a4113 UW |
2327 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2328 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
0da28f8a | 2329 | struct hppa_frame_cache *cache; |
4ba6a975 MK |
2330 | unsigned int frame_size = 0; |
2331 | int found_rp = 0; | |
2332 | CORE_ADDR start_pc; | |
0da28f8a | 2333 | |
d5c27f81 | 2334 | if (hppa_debug) |
4ba6a975 MK |
2335 | fprintf_unfiltered (gdb_stdlog, |
2336 | "{ hppa_fallback_frame_cache (frame=%d) -> ", | |
227e86ad | 2337 | frame_relative_level (this_frame)); |
d5c27f81 | 2338 | |
0da28f8a RC |
2339 | cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
2340 | (*this_cache) = cache; | |
227e86ad | 2341 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
0da28f8a | 2342 | |
227e86ad | 2343 | start_pc = get_frame_func (this_frame); |
4ba6a975 | 2344 | if (start_pc) |
0da28f8a | 2345 | { |
227e86ad | 2346 | CORE_ADDR cur_pc = get_frame_pc (this_frame); |
4ba6a975 | 2347 | CORE_ADDR pc; |
0da28f8a | 2348 | |
4ba6a975 MK |
2349 | for (pc = start_pc; pc < cur_pc; pc += 4) |
2350 | { | |
2351 | unsigned int insn; | |
0da28f8a | 2352 | |
e17a4113 | 2353 | insn = read_memory_unsigned_integer (pc, 4, byte_order); |
4ba6a975 | 2354 | frame_size += prologue_inst_adjust_sp (insn); |
6d1be3f1 | 2355 | |
4ba6a975 MK |
2356 | /* There are limited ways to store the return pointer into the |
2357 | stack. */ | |
2358 | if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ | |
2359 | { | |
2360 | cache->saved_regs[HPPA_RP_REGNUM].addr = -20; | |
2361 | found_rp = 1; | |
2362 | } | |
c4c79048 RC |
2363 | else if (insn == 0x0fc212c1 |
2364 | || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ | |
4ba6a975 MK |
2365 | { |
2366 | cache->saved_regs[HPPA_RP_REGNUM].addr = -16; | |
2367 | found_rp = 1; | |
2368 | } | |
2369 | } | |
412275d5 | 2370 | } |
0da28f8a | 2371 | |
d5c27f81 | 2372 | if (hppa_debug) |
4ba6a975 MK |
2373 | fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
2374 | frame_size, found_rp); | |
d5c27f81 | 2375 | |
227e86ad | 2376 | cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
4ba6a975 | 2377 | cache->base -= frame_size; |
6d1be3f1 | 2378 | trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base); |
0da28f8a RC |
2379 | |
2380 | if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM)) | |
2381 | { | |
2382 | cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base; | |
4ba6a975 MK |
2383 | cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
2384 | cache->saved_regs[HPPA_RP_REGNUM]; | |
0da28f8a | 2385 | } |
412275d5 AC |
2386 | else |
2387 | { | |
4ba6a975 | 2388 | ULONGEST rp; |
227e86ad | 2389 | rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
0da28f8a | 2390 | trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp); |
412275d5 | 2391 | } |
0da28f8a RC |
2392 | |
2393 | return cache; | |
26d08f08 AC |
2394 | } |
2395 | ||
0da28f8a | 2396 | static void |
227e86ad | 2397 | hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
0da28f8a RC |
2398 | struct frame_id *this_id) |
2399 | { | |
2400 | struct hppa_frame_cache *info = | |
227e86ad JB |
2401 | hppa_fallback_frame_cache (this_frame, this_cache); |
2402 | ||
2403 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); | |
0da28f8a RC |
2404 | } |
2405 | ||
227e86ad JB |
2406 | static struct value * |
2407 | hppa_fallback_frame_prev_register (struct frame_info *this_frame, | |
2408 | void **this_cache, int regnum) | |
0da28f8a | 2409 | { |
1777feb0 MS |
2410 | struct hppa_frame_cache *info |
2411 | = hppa_fallback_frame_cache (this_frame, this_cache); | |
227e86ad | 2412 | |
1777feb0 MS |
2413 | return hppa_frame_prev_register_helper (this_frame, |
2414 | info->saved_regs, regnum); | |
0da28f8a RC |
2415 | } |
2416 | ||
2417 | static const struct frame_unwind hppa_fallback_frame_unwind = | |
26d08f08 AC |
2418 | { |
2419 | NORMAL_FRAME, | |
8fbca658 | 2420 | default_frame_unwind_stop_reason, |
0da28f8a | 2421 | hppa_fallback_frame_this_id, |
227e86ad JB |
2422 | hppa_fallback_frame_prev_register, |
2423 | NULL, | |
2424 | default_frame_sniffer | |
26d08f08 AC |
2425 | }; |
2426 | ||
7f07c5b6 RC |
2427 | /* Stub frames, used for all kinds of call stubs. */ |
2428 | struct hppa_stub_unwind_cache | |
2429 | { | |
2430 | CORE_ADDR base; | |
2431 | struct trad_frame_saved_reg *saved_regs; | |
2432 | }; | |
2433 | ||
2434 | static struct hppa_stub_unwind_cache * | |
227e86ad | 2435 | hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
7f07c5b6 RC |
2436 | void **this_cache) |
2437 | { | |
7f07c5b6 RC |
2438 | struct hppa_stub_unwind_cache *info; |
2439 | ||
2440 | if (*this_cache) | |
9a3c8263 | 2441 | return (struct hppa_stub_unwind_cache *) *this_cache; |
7f07c5b6 RC |
2442 | |
2443 | info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); | |
2444 | *this_cache = info; | |
227e86ad | 2445 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
7f07c5b6 | 2446 | |
227e86ad | 2447 | info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
7f07c5b6 | 2448 | |
22b0923d RC |
2449 | /* By default we assume that stubs do not change the rp. */ |
2450 | info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM; | |
2451 | ||
7f07c5b6 RC |
2452 | return info; |
2453 | } | |
2454 | ||
2455 | static void | |
227e86ad | 2456 | hppa_stub_frame_this_id (struct frame_info *this_frame, |
7f07c5b6 RC |
2457 | void **this_prologue_cache, |
2458 | struct frame_id *this_id) | |
2459 | { | |
2460 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2461 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 RC |
2462 | |
2463 | if (info) | |
227e86ad | 2464 | *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
7f07c5b6 RC |
2465 | } |
2466 | ||
227e86ad JB |
2467 | static struct value * |
2468 | hppa_stub_frame_prev_register (struct frame_info *this_frame, | |
2469 | void **this_prologue_cache, int regnum) | |
7f07c5b6 RC |
2470 | { |
2471 | struct hppa_stub_unwind_cache *info | |
227e86ad | 2472 | = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
f1b38a57 | 2473 | |
227e86ad | 2474 | if (info == NULL) |
8a3fe4f8 | 2475 | error (_("Requesting registers from null frame.")); |
7f07c5b6 | 2476 | |
1777feb0 MS |
2477 | return hppa_frame_prev_register_helper (this_frame, |
2478 | info->saved_regs, regnum); | |
227e86ad | 2479 | } |
7f07c5b6 | 2480 | |
227e86ad JB |
2481 | static int |
2482 | hppa_stub_unwind_sniffer (const struct frame_unwind *self, | |
2483 | struct frame_info *this_frame, | |
2484 | void **this_cache) | |
7f07c5b6 | 2485 | { |
227e86ad JB |
2486 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2487 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
84674fe1 | 2488 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7f07c5b6 | 2489 | |
6d1be3f1 | 2490 | if (pc == 0 |
84674fe1 | 2491 | || (tdep->in_solib_call_trampoline != NULL |
3e5d3a5a | 2492 | && tdep->in_solib_call_trampoline (gdbarch, pc)) |
464963c9 | 2493 | || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
227e86ad JB |
2494 | return 1; |
2495 | return 0; | |
7f07c5b6 RC |
2496 | } |
2497 | ||
227e86ad JB |
2498 | static const struct frame_unwind hppa_stub_frame_unwind = { |
2499 | NORMAL_FRAME, | |
8fbca658 | 2500 | default_frame_unwind_stop_reason, |
227e86ad JB |
2501 | hppa_stub_frame_this_id, |
2502 | hppa_stub_frame_prev_register, | |
2503 | NULL, | |
2504 | hppa_stub_unwind_sniffer | |
2505 | }; | |
2506 | ||
cc72850f | 2507 | CORE_ADDR |
26d08f08 AC |
2508 | hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
2509 | { | |
fe46cd3a RC |
2510 | ULONGEST ipsw; |
2511 | CORE_ADDR pc; | |
2512 | ||
cc72850f MK |
2513 | ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
2514 | pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); | |
fe46cd3a RC |
2515 | |
2516 | /* If the current instruction is nullified, then we are effectively | |
2517 | still executing the previous instruction. Pretend we are still | |
cc72850f MK |
2518 | there. This is needed when single stepping; if the nullified |
2519 | instruction is on a different line, we don't want GDB to think | |
2520 | we've stepped onto that line. */ | |
fe46cd3a RC |
2521 | if (ipsw & 0x00200000) |
2522 | pc -= 4; | |
2523 | ||
cc72850f | 2524 | return pc & ~0x3; |
26d08f08 AC |
2525 | } |
2526 | ||
ff644745 JB |
2527 | /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
2528 | Return NULL if no such symbol was found. */ | |
2529 | ||
3b7344d5 | 2530 | struct bound_minimal_symbol |
ff644745 JB |
2531 | hppa_lookup_stub_minimal_symbol (const char *name, |
2532 | enum unwind_stub_types stub_type) | |
2533 | { | |
3b7344d5 | 2534 | struct bound_minimal_symbol result = { NULL, NULL }; |
ff644745 | 2535 | |
2030c079 | 2536 | for (objfile *objfile : current_program_space->objfiles ()) |
ff644745 | 2537 | { |
7932255d | 2538 | for (minimal_symbol *msym : objfile->msymbols ()) |
5325b9bf | 2539 | { |
c9d95fa3 | 2540 | if (strcmp (msym->linkage_name (), name) == 0) |
3b7344d5 | 2541 | { |
5325b9bf TT |
2542 | struct unwind_table_entry *u; |
2543 | ||
2544 | u = find_unwind_entry (MSYMBOL_VALUE (msym)); | |
2545 | if (u != NULL && u->stub_unwind.stub_type == stub_type) | |
2546 | { | |
2547 | result.objfile = objfile; | |
2548 | result.minsym = msym; | |
2549 | return result; | |
2550 | } | |
3b7344d5 | 2551 | } |
5325b9bf | 2552 | } |
ff644745 JB |
2553 | } |
2554 | ||
3b7344d5 | 2555 | return result; |
ff644745 JB |
2556 | } |
2557 | ||
c906108c | 2558 | static void |
c482f52c | 2559 | unwind_command (const char *exp, int from_tty) |
c906108c SS |
2560 | { |
2561 | CORE_ADDR address; | |
2562 | struct unwind_table_entry *u; | |
2563 | ||
2564 | /* If we have an expression, evaluate it and use it as the address. */ | |
2565 | ||
2566 | if (exp != 0 && *exp != 0) | |
2567 | address = parse_and_eval_address (exp); | |
2568 | else | |
2569 | return; | |
2570 | ||
2571 | u = find_unwind_entry (address); | |
2572 | ||
2573 | if (!u) | |
2574 | { | |
2575 | printf_unfiltered ("Can't find unwind table entry for %s\n", exp); | |
2576 | return; | |
2577 | } | |
2578 | ||
3329c4b5 | 2579 | printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); |
c906108c | 2580 | |
5af949e3 | 2581 | printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
c906108c | 2582 | |
5af949e3 | 2583 | printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
c906108c | 2584 | |
c906108c | 2585 | #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
c906108c SS |
2586 | |
2587 | printf_unfiltered ("\n\tflags ="); | |
2588 | pif (Cannot_unwind); | |
2589 | pif (Millicode); | |
2590 | pif (Millicode_save_sr0); | |
2591 | pif (Entry_SR); | |
2592 | pif (Args_stored); | |
2593 | pif (Variable_Frame); | |
2594 | pif (Separate_Package_Body); | |
2595 | pif (Frame_Extension_Millicode); | |
2596 | pif (Stack_Overflow_Check); | |
2597 | pif (Two_Instruction_SP_Increment); | |
6fcecea0 RC |
2598 | pif (sr4export); |
2599 | pif (cxx_info); | |
2600 | pif (cxx_try_catch); | |
2601 | pif (sched_entry_seq); | |
c906108c SS |
2602 | pif (Save_SP); |
2603 | pif (Save_RP); | |
2604 | pif (Save_MRP_in_frame); | |
6fcecea0 | 2605 | pif (save_r19); |
c906108c SS |
2606 | pif (Cleanup_defined); |
2607 | pif (MPE_XL_interrupt_marker); | |
2608 | pif (HP_UX_interrupt_marker); | |
2609 | pif (Large_frame); | |
6fcecea0 | 2610 | pif (alloca_frame); |
c906108c SS |
2611 | |
2612 | putchar_unfiltered ('\n'); | |
2613 | ||
c906108c | 2614 | #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
c906108c SS |
2615 | |
2616 | pin (Region_description); | |
2617 | pin (Entry_FR); | |
2618 | pin (Entry_GR); | |
2619 | pin (Total_frame_size); | |
57dac9e1 RC |
2620 | |
2621 | if (u->stub_unwind.stub_type) | |
2622 | { | |
2623 | printf_unfiltered ("\tstub type = "); | |
2624 | switch (u->stub_unwind.stub_type) | |
2625 | { | |
2626 | case LONG_BRANCH: | |
2627 | printf_unfiltered ("long branch\n"); | |
2628 | break; | |
2629 | case PARAMETER_RELOCATION: | |
2630 | printf_unfiltered ("parameter relocation\n"); | |
2631 | break; | |
2632 | case EXPORT: | |
2633 | printf_unfiltered ("export\n"); | |
2634 | break; | |
2635 | case IMPORT: | |
2636 | printf_unfiltered ("import\n"); | |
2637 | break; | |
2638 | case IMPORT_SHLIB: | |
2639 | printf_unfiltered ("import shlib\n"); | |
2640 | break; | |
2641 | default: | |
2642 | printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); | |
2643 | } | |
2644 | } | |
c906108c | 2645 | } |
c906108c | 2646 | |
38ca4e0c MK |
2647 | /* Return the GDB type object for the "standard" data type of data in |
2648 | register REGNUM. */ | |
d709c020 | 2649 | |
eded0a31 | 2650 | static struct type * |
38ca4e0c | 2651 | hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
d709c020 | 2652 | { |
38ca4e0c | 2653 | if (regnum < HPPA_FP4_REGNUM) |
df4df182 | 2654 | return builtin_type (gdbarch)->builtin_uint32; |
d709c020 | 2655 | else |
27067745 | 2656 | return builtin_type (gdbarch)->builtin_float; |
d709c020 JB |
2657 | } |
2658 | ||
eded0a31 | 2659 | static struct type * |
38ca4e0c | 2660 | hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
3ff7cf9e | 2661 | { |
38ca4e0c | 2662 | if (regnum < HPPA64_FP4_REGNUM) |
df4df182 | 2663 | return builtin_type (gdbarch)->builtin_uint64; |
3ff7cf9e | 2664 | else |
27067745 | 2665 | return builtin_type (gdbarch)->builtin_double; |
3ff7cf9e JB |
2666 | } |
2667 | ||
38ca4e0c MK |
2668 | /* Return non-zero if REGNUM is not a register available to the user |
2669 | through ptrace/ttrace. */ | |
d709c020 | 2670 | |
8d153463 | 2671 | static int |
64a3914f | 2672 | hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
d709c020 JB |
2673 | { |
2674 | return (regnum == 0 | |
34f75cc1 RC |
2675 | || regnum == HPPA_PCSQ_HEAD_REGNUM |
2676 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2677 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); | |
38ca4e0c | 2678 | } |
d709c020 | 2679 | |
d037d088 | 2680 | static int |
64a3914f | 2681 | hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2682 | { |
2683 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2684 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2685 | return 0; | |
2686 | else | |
64a3914f | 2687 | return hppa32_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2688 | } |
2689 | ||
38ca4e0c | 2690 | static int |
64a3914f | 2691 | hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
38ca4e0c MK |
2692 | { |
2693 | return (regnum == 0 | |
2694 | || regnum == HPPA_PCSQ_HEAD_REGNUM | |
2695 | || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) | |
2696 | || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); | |
d709c020 JB |
2697 | } |
2698 | ||
d037d088 | 2699 | static int |
64a3914f | 2700 | hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
d037d088 CD |
2701 | { |
2702 | /* cr26 and cr27 are readable (but not writable) from userspace. */ | |
2703 | if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) | |
2704 | return 0; | |
2705 | else | |
64a3914f | 2706 | return hppa64_cannot_store_register (gdbarch, regnum); |
d037d088 CD |
2707 | } |
2708 | ||
8d153463 | 2709 | static CORE_ADDR |
85ddcc70 | 2710 | hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
d709c020 JB |
2711 | { |
2712 | /* The low two bits of the PC on the PA contain the privilege level. | |
2713 | Some genius implementing a (non-GCC) compiler apparently decided | |
2714 | this means that "addresses" in a text section therefore include a | |
2715 | privilege level, and thus symbol tables should contain these bits. | |
2716 | This seems like a bonehead thing to do--anyway, it seems to work | |
2717 | for our purposes to just ignore those bits. */ | |
2718 | ||
2719 | return (addr &= ~0x3); | |
2720 | } | |
2721 | ||
e127f0db MK |
2722 | /* Get the ARGIth function argument for the current function. */ |
2723 | ||
4a302917 | 2724 | static CORE_ADDR |
143985b7 AF |
2725 | hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
2726 | struct type *type) | |
2727 | { | |
e127f0db | 2728 | return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
143985b7 AF |
2729 | } |
2730 | ||
05d1431c | 2731 | static enum register_status |
849d0ba8 | 2732 | hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
e127f0db | 2733 | int regnum, gdb_byte *buf) |
0f8d9d59 | 2734 | { |
05d1431c PA |
2735 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2736 | ULONGEST tmp; | |
2737 | enum register_status status; | |
0f8d9d59 | 2738 | |
03f50fc8 | 2739 | status = regcache->raw_read (regnum, &tmp); |
05d1431c PA |
2740 | if (status == REG_VALID) |
2741 | { | |
2742 | if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) | |
2743 | tmp &= ~0x3; | |
2744 | store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); | |
2745 | } | |
2746 | return status; | |
0f8d9d59 RC |
2747 | } |
2748 | ||
d49771ef | 2749 | static CORE_ADDR |
e38c262f | 2750 | hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
d49771ef RC |
2751 | { |
2752 | return 0; | |
2753 | } | |
2754 | ||
227e86ad JB |
2755 | struct value * |
2756 | hppa_frame_prev_register_helper (struct frame_info *this_frame, | |
0da28f8a | 2757 | struct trad_frame_saved_reg saved_regs[], |
227e86ad | 2758 | int regnum) |
0da28f8a | 2759 | { |
227e86ad | 2760 | struct gdbarch *arch = get_frame_arch (this_frame); |
e17a4113 | 2761 | enum bfd_endian byte_order = gdbarch_byte_order (arch); |
8f4e467c | 2762 | |
8693c419 MK |
2763 | if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
2764 | { | |
227e86ad JB |
2765 | int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
2766 | CORE_ADDR pc; | |
2767 | struct value *pcoq_val = | |
2768 | trad_frame_get_prev_register (this_frame, saved_regs, | |
2769 | HPPA_PCOQ_HEAD_REGNUM); | |
8693c419 | 2770 | |
e17a4113 UW |
2771 | pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
2772 | size, byte_order); | |
227e86ad | 2773 | return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
8693c419 | 2774 | } |
0da28f8a | 2775 | |
227e86ad | 2776 | return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
0da28f8a | 2777 | } |
8693c419 | 2778 | \f |
0da28f8a | 2779 | |
34f55018 MK |
2780 | /* An instruction to match. */ |
2781 | struct insn_pattern | |
2782 | { | |
2783 | unsigned int data; /* See if it matches this.... */ | |
2784 | unsigned int mask; /* ... with this mask. */ | |
2785 | }; | |
2786 | ||
2787 | /* See bfd/elf32-hppa.c */ | |
2788 | static struct insn_pattern hppa_long_branch_stub[] = { | |
2789 | /* ldil LR'xxx,%r1 */ | |
2790 | { 0x20200000, 0xffe00000 }, | |
2791 | /* be,n RR'xxx(%sr4,%r1) */ | |
2792 | { 0xe0202002, 0xffe02002 }, | |
2793 | { 0, 0 } | |
2794 | }; | |
2795 | ||
2796 | static struct insn_pattern hppa_long_branch_pic_stub[] = { | |
2797 | /* b,l .+8, %r1 */ | |
2798 | { 0xe8200000, 0xffe00000 }, | |
2799 | /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ | |
2800 | { 0x28200000, 0xffe00000 }, | |
2801 | /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ | |
2802 | { 0xe0202002, 0xffe02002 }, | |
2803 | { 0, 0 } | |
2804 | }; | |
2805 | ||
2806 | static struct insn_pattern hppa_import_stub[] = { | |
2807 | /* addil LR'xxx, %dp */ | |
2808 | { 0x2b600000, 0xffe00000 }, | |
2809 | /* ldw RR'xxx(%r1), %r21 */ | |
2810 | { 0x48350000, 0xffffb000 }, | |
2811 | /* bv %r0(%r21) */ | |
2812 | { 0xeaa0c000, 0xffffffff }, | |
2813 | /* ldw RR'xxx+4(%r1), %r19 */ | |
2814 | { 0x48330000, 0xffffb000 }, | |
2815 | { 0, 0 } | |
2816 | }; | |
2817 | ||
2818 | static struct insn_pattern hppa_import_pic_stub[] = { | |
2819 | /* addil LR'xxx,%r19 */ | |
2820 | { 0x2a600000, 0xffe00000 }, | |
2821 | /* ldw RR'xxx(%r1),%r21 */ | |
2822 | { 0x48350000, 0xffffb000 }, | |
2823 | /* bv %r0(%r21) */ | |
2824 | { 0xeaa0c000, 0xffffffff }, | |
2825 | /* ldw RR'xxx+4(%r1),%r19 */ | |
2826 | { 0x48330000, 0xffffb000 }, | |
2827 | { 0, 0 }, | |
2828 | }; | |
2829 | ||
2830 | static struct insn_pattern hppa_plt_stub[] = { | |
2831 | /* b,l 1b, %r20 - 1b is 3 insns before here */ | |
2832 | { 0xea9f1fdd, 0xffffffff }, | |
2833 | /* depi 0,31,2,%r20 */ | |
2834 | { 0xd6801c1e, 0xffffffff }, | |
2835 | { 0, 0 } | |
34f55018 MK |
2836 | }; |
2837 | ||
2838 | /* Maximum number of instructions on the patterns above. */ | |
2839 | #define HPPA_MAX_INSN_PATTERN_LEN 4 | |
2840 | ||
2841 | /* Return non-zero if the instructions at PC match the series | |
2842 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
2843 | 'struct insn_pattern' objects, terminated by an entry whose mask is | |
2844 | zero. | |
2845 | ||
2846 | When the match is successful, fill INSN[i] with what PATTERN[i] | |
2847 | matched. */ | |
2848 | ||
2849 | static int | |
e17a4113 UW |
2850 | hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
2851 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 | 2852 | { |
e17a4113 | 2853 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
34f55018 MK |
2854 | CORE_ADDR npc = pc; |
2855 | int i; | |
2856 | ||
2857 | for (i = 0; pattern[i].mask; i++) | |
2858 | { | |
2859 | gdb_byte buf[HPPA_INSN_SIZE]; | |
2860 | ||
8defab1a | 2861 | target_read_memory (npc, buf, HPPA_INSN_SIZE); |
e17a4113 | 2862 | insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
34f55018 MK |
2863 | if ((insn[i] & pattern[i].mask) == pattern[i].data) |
2864 | npc += 4; | |
2865 | else | |
2866 | return 0; | |
2867 | } | |
2868 | ||
2869 | return 1; | |
2870 | } | |
2871 | ||
85102364 | 2872 | /* This relaxed version of the instruction matcher allows us to match |
34f55018 MK |
2873 | from somewhere inside the pattern, by looking backwards in the |
2874 | instruction scheme. */ | |
2875 | ||
2876 | static int | |
e17a4113 UW |
2877 | hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
2878 | struct insn_pattern *pattern, unsigned int *insn) | |
34f55018 MK |
2879 | { |
2880 | int offset, len = 0; | |
2881 | ||
2882 | while (pattern[len].mask) | |
2883 | len++; | |
2884 | ||
2885 | for (offset = 0; offset < len; offset++) | |
e17a4113 UW |
2886 | if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
2887 | pattern, insn)) | |
34f55018 MK |
2888 | return 1; |
2889 | ||
2890 | return 0; | |
2891 | } | |
2892 | ||
2893 | static int | |
2894 | hppa_in_dyncall (CORE_ADDR pc) | |
2895 | { | |
2896 | struct unwind_table_entry *u; | |
2897 | ||
2898 | u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); | |
2899 | if (!u) | |
2900 | return 0; | |
2901 | ||
2902 | return (pc >= u->region_start && pc <= u->region_end); | |
2903 | } | |
2904 | ||
2905 | int | |
3e5d3a5a | 2906 | hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) |
34f55018 MK |
2907 | { |
2908 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; | |
2909 | struct unwind_table_entry *u; | |
2910 | ||
3e5d3a5a | 2911 | if (in_plt_section (pc) || hppa_in_dyncall (pc)) |
34f55018 MK |
2912 | return 1; |
2913 | ||
2914 | /* The GNU toolchain produces linker stubs without unwind | |
2915 | information. Since the pattern matching for linker stubs can be | |
2916 | quite slow, so bail out if we do have an unwind entry. */ | |
2917 | ||
2918 | u = find_unwind_entry (pc); | |
806e23c0 | 2919 | if (u != NULL) |
34f55018 MK |
2920 | return 0; |
2921 | ||
e17a4113 UW |
2922 | return |
2923 | (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) | |
2924 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) | |
2925 | || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) | |
2926 | || hppa_match_insns_relaxed (gdbarch, pc, | |
2927 | hppa_long_branch_pic_stub, insn)); | |
34f55018 MK |
2928 | } |
2929 | ||
2930 | /* This code skips several kind of "trampolines" used on PA-RISC | |
2931 | systems: $$dyncall, import stubs and PLT stubs. */ | |
2932 | ||
2933 | CORE_ADDR | |
52f729a7 | 2934 | hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
34f55018 | 2935 | { |
0dfff4cb UW |
2936 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2937 | struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; | |
2938 | ||
34f55018 MK |
2939 | unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
2940 | int dp_rel; | |
2941 | ||
2942 | /* $$dyncall handles both PLABELs and direct addresses. */ | |
2943 | if (hppa_in_dyncall (pc)) | |
2944 | { | |
52f729a7 | 2945 | pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
34f55018 MK |
2946 | |
2947 | /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ | |
2948 | if (pc & 0x2) | |
0dfff4cb | 2949 | pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
34f55018 MK |
2950 | |
2951 | return pc; | |
2952 | } | |
2953 | ||
e17a4113 UW |
2954 | dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
2955 | if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) | |
34f55018 MK |
2956 | { |
2957 | /* Extract the target address from the addil/ldw sequence. */ | |
2958 | pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); | |
2959 | ||
2960 | if (dp_rel) | |
52f729a7 | 2961 | pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
34f55018 | 2962 | else |
52f729a7 | 2963 | pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
34f55018 MK |
2964 | |
2965 | /* fallthrough */ | |
2966 | } | |
2967 | ||
3e5d3a5a | 2968 | if (in_plt_section (pc)) |
34f55018 | 2969 | { |
0dfff4cb | 2970 | pc = read_memory_typed_address (pc, func_ptr_type); |
34f55018 MK |
2971 | |
2972 | /* If the PLT slot has not yet been resolved, the target will be | |
2973 | the PLT stub. */ | |
3e5d3a5a | 2974 | if (in_plt_section (pc)) |
34f55018 MK |
2975 | { |
2976 | /* Sanity check: are we pointing to the PLT stub? */ | |
e17a4113 | 2977 | if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
34f55018 | 2978 | { |
5af949e3 UW |
2979 | warning (_("Cannot resolve PLT stub at %s."), |
2980 | paddress (gdbarch, pc)); | |
34f55018 MK |
2981 | return 0; |
2982 | } | |
2983 | ||
2984 | /* This should point to the fixup routine. */ | |
0dfff4cb | 2985 | pc = read_memory_typed_address (pc + 8, func_ptr_type); |
34f55018 MK |
2986 | } |
2987 | } | |
2988 | ||
2989 | return pc; | |
2990 | } | |
2991 | \f | |
2992 | ||
8e8b2dba MC |
2993 | /* Here is a table of C type sizes on hppa with various compiles |
2994 | and options. I measured this on PA 9000/800 with HP-UX 11.11 | |
2995 | and these compilers: | |
2996 | ||
2997 | /usr/ccs/bin/cc HP92453-01 A.11.01.21 | |
2998 | /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP | |
2999 | /opt/aCC/bin/aCC B3910B A.03.45 | |
3000 | gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 | |
3001 | ||
3002 | cc : 1 2 4 4 8 : 4 8 -- : 4 4 | |
3003 | ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3004 | ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3005 | ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
3006 | acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3007 | acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3008 | acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 | |
3009 | gcc : 1 2 4 4 8 : 4 8 16 : 4 4 | |
3010 | ||
3011 | Each line is: | |
3012 | ||
3013 | compiler and options | |
3014 | char, short, int, long, long long | |
3015 | float, double, long double | |
3016 | char *, void (*)() | |
3017 | ||
3018 | So all these compilers use either ILP32 or LP64 model. | |
3019 | TODO: gcc has more options so it needs more investigation. | |
3020 | ||
a2379359 MC |
3021 | For floating point types, see: |
3022 | ||
3023 | http://docs.hp.com/hpux/pdf/B3906-90006.pdf | |
3024 | HP-UX floating-point guide, hpux 11.00 | |
3025 | ||
8e8b2dba MC |
3026 | -- chastain 2003-12-18 */ |
3027 | ||
e6e68f1f JB |
3028 | static struct gdbarch * |
3029 | hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3030 | { | |
3ff7cf9e | 3031 | struct gdbarch_tdep *tdep; |
e6e68f1f JB |
3032 | struct gdbarch *gdbarch; |
3033 | ||
3034 | /* find a candidate among the list of pre-declared architectures. */ | |
3035 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3036 | if (arches != NULL) | |
3037 | return (arches->gdbarch); | |
3038 | ||
3039 | /* If none found, then allocate and initialize one. */ | |
41bf6aca | 3040 | tdep = XCNEW (struct gdbarch_tdep); |
3ff7cf9e JB |
3041 | gdbarch = gdbarch_alloc (&info, tdep); |
3042 | ||
3043 | /* Determine from the bfd_arch_info structure if we are dealing with | |
3044 | a 32 or 64 bits architecture. If the bfd_arch_info is not available, | |
3045 | then default to a 32bit machine. */ | |
3046 | if (info.bfd_arch_info != NULL) | |
3047 | tdep->bytes_per_address = | |
3048 | info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; | |
3049 | else | |
3050 | tdep->bytes_per_address = 4; | |
3051 | ||
d49771ef RC |
3052 | tdep->find_global_pointer = hppa_find_global_pointer; |
3053 | ||
3ff7cf9e JB |
3054 | /* Some parts of the gdbarch vector depend on whether we are running |
3055 | on a 32 bits or 64 bits target. */ | |
3056 | switch (tdep->bytes_per_address) | |
3057 | { | |
3058 | case 4: | |
3059 | set_gdbarch_num_regs (gdbarch, hppa32_num_regs); | |
3060 | set_gdbarch_register_name (gdbarch, hppa32_register_name); | |
eded0a31 | 3061 | set_gdbarch_register_type (gdbarch, hppa32_register_type); |
38ca4e0c MK |
3062 | set_gdbarch_cannot_store_register (gdbarch, |
3063 | hppa32_cannot_store_register); | |
3064 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3065 | hppa32_cannot_fetch_register); |
3ff7cf9e JB |
3066 | break; |
3067 | case 8: | |
3068 | set_gdbarch_num_regs (gdbarch, hppa64_num_regs); | |
3069 | set_gdbarch_register_name (gdbarch, hppa64_register_name); | |
eded0a31 | 3070 | set_gdbarch_register_type (gdbarch, hppa64_register_type); |
1ef7fcb5 | 3071 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
38ca4e0c MK |
3072 | set_gdbarch_cannot_store_register (gdbarch, |
3073 | hppa64_cannot_store_register); | |
3074 | set_gdbarch_cannot_fetch_register (gdbarch, | |
d037d088 | 3075 | hppa64_cannot_fetch_register); |
3ff7cf9e JB |
3076 | break; |
3077 | default: | |
e2e0b3e5 | 3078 | internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
3ff7cf9e JB |
3079 | tdep->bytes_per_address); |
3080 | } | |
3081 | ||
3ff7cf9e | 3082 | set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
3ff7cf9e | 3083 | set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
e6e68f1f | 3084 | |
8e8b2dba MC |
3085 | /* The following gdbarch vector elements are the same in both ILP32 |
3086 | and LP64, but might show differences some day. */ | |
3087 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3088 | set_gdbarch_long_double_bit (gdbarch, 128); | |
8da61cc4 | 3089 | set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
8e8b2dba | 3090 | |
3ff7cf9e JB |
3091 | /* The following gdbarch vector elements do not depend on the address |
3092 | size, or in any other gdbarch element previously set. */ | |
60383d10 | 3093 | set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
c9cf6e20 MG |
3094 | set_gdbarch_stack_frame_destroyed_p (gdbarch, |
3095 | hppa_stack_frame_destroyed_p); | |
a2a84a72 | 3096 | set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
eded0a31 AC |
3097 | set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
3098 | set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); | |
85ddcc70 | 3099 | set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); |
60383d10 | 3100 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
cc72850f MK |
3101 | set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
3102 | set_gdbarch_write_pc (gdbarch, hppa_write_pc); | |
60383d10 | 3103 | |
143985b7 AF |
3104 | /* Helper for function argument information. */ |
3105 | set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); | |
3106 | ||
3a3bc038 AC |
3107 | /* When a hardware watchpoint triggers, we'll move the inferior past |
3108 | it by removing all eventpoints; stepping past the instruction | |
3109 | that caused the trigger; reinserting eventpoints; and checking | |
3110 | whether any watched location changed. */ | |
3111 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
3112 | ||
5979bc46 | 3113 | /* Inferior function call methods. */ |
fca7aa43 | 3114 | switch (tdep->bytes_per_address) |
5979bc46 | 3115 | { |
fca7aa43 AC |
3116 | case 4: |
3117 | set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); | |
3118 | set_gdbarch_frame_align (gdbarch, hppa32_frame_align); | |
d49771ef RC |
3119 | set_gdbarch_convert_from_func_ptr_addr |
3120 | (gdbarch, hppa32_convert_from_func_ptr_addr); | |
fca7aa43 AC |
3121 | break; |
3122 | case 8: | |
782eae8b AC |
3123 | set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
3124 | set_gdbarch_frame_align (gdbarch, hppa64_frame_align); | |
fca7aa43 | 3125 | break; |
782eae8b | 3126 | default: |
e2e0b3e5 | 3127 | internal_error (__FILE__, __LINE__, _("bad switch")); |
fad850b2 AC |
3128 | } |
3129 | ||
3130 | /* Struct return methods. */ | |
fca7aa43 | 3131 | switch (tdep->bytes_per_address) |
fad850b2 | 3132 | { |
fca7aa43 AC |
3133 | case 4: |
3134 | set_gdbarch_return_value (gdbarch, hppa32_return_value); | |
3135 | break; | |
3136 | case 8: | |
782eae8b | 3137 | set_gdbarch_return_value (gdbarch, hppa64_return_value); |
f5f907e2 | 3138 | break; |
fca7aa43 | 3139 | default: |
e2e0b3e5 | 3140 | internal_error (__FILE__, __LINE__, _("bad switch")); |
e963316f | 3141 | } |
7f07c5b6 | 3142 | |
04180708 YQ |
3143 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc); |
3144 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind); | |
7f07c5b6 | 3145 | set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
85f4f2d8 | 3146 | |
5979bc46 | 3147 | /* Frame unwind methods. */ |
782eae8b | 3148 | set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
7f07c5b6 | 3149 | |
50306a9d RC |
3150 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3151 | gdbarch_init_osabi (info, gdbarch); | |
3152 | ||
7f07c5b6 | 3153 | /* Hook in the default unwinders. */ |
227e86ad JB |
3154 | frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
3155 | frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); | |
3156 | frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); | |
5979bc46 | 3157 | |
e6e68f1f JB |
3158 | return gdbarch; |
3159 | } | |
3160 | ||
3161 | static void | |
464963c9 | 3162 | hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
e6e68f1f | 3163 | { |
464963c9 | 3164 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
fdd72f95 RC |
3165 | |
3166 | fprintf_unfiltered (file, "bytes_per_address = %d\n", | |
3167 | tdep->bytes_per_address); | |
3168 | fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no"); | |
e6e68f1f JB |
3169 | } |
3170 | ||
4facf7e8 JB |
3171 | void |
3172 | _initialize_hppa_tdep (void) | |
3173 | { | |
e6e68f1f | 3174 | gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep); |
4facf7e8 JB |
3175 | |
3176 | add_cmd ("unwind", class_maintenance, unwind_command, | |
1a966eab | 3177 | _("Print unwind table entry at given address."), |
4facf7e8 JB |
3178 | &maintenanceprintlist); |
3179 | ||
1777feb0 | 3180 | /* Debug this files internals. */ |
7915a72c AC |
3181 | add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\ |
3182 | Set whether hppa target specific debugging information should be displayed."), | |
3183 | _("\ | |
3184 | Show whether hppa target specific debugging information is displayed."), _("\ | |
4a302917 RC |
3185 | This flag controls whether hppa target specific debugging information is\n\ |
3186 | displayed. This information is particularly useful for debugging frame\n\ | |
7915a72c | 3187 | unwinding problems."), |
2c5b56ce | 3188 | NULL, |
7915a72c | 3189 | NULL, /* FIXME: i18n: hppa debug flag is %s. */ |
2c5b56ce | 3190 | &setdebuglist, &showdebuglist); |
4facf7e8 | 3191 | } |