* nto-tdep.h: Include osabi.h. Prototypes for generic Neutrino
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Sizes (in bytes) of the native unwind entries. */
68#define UNWIND_ENTRY_SIZE 16
69#define STUB_UNWIND_ENTRY_SIZE 8
70
d709c020
JB
71/* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
d709c020 73int hppa_pc_requires_run_before_use (CORE_ADDR pc);
c906108c 74
537987fc
AC
75/* Handle 32/64-bit struct return conventions. */
76
77static enum return_value_convention
78hppa32_return_value (struct gdbarch *gdbarch,
79 struct type *type, struct regcache *regcache,
80 void *readbuf, const void *writebuf)
81{
537987fc
AC
82 if (TYPE_LENGTH (type) <= 2 * 4)
83 {
84 /* The value always lives in the right hand end of the register
85 (or register pair)? */
86 int b;
34f75cc1 87 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
88 int part = TYPE_LENGTH (type) % 4;
89 /* The left hand register contains only part of the value,
90 transfer that first so that the rest can be xfered as entire
91 4-byte registers. */
92 if (part > 0)
93 {
94 if (readbuf != NULL)
95 regcache_cooked_read_part (regcache, reg, 4 - part,
96 part, readbuf);
97 if (writebuf != NULL)
98 regcache_cooked_write_part (regcache, reg, 4 - part,
99 part, writebuf);
100 reg++;
101 }
102 /* Now transfer the remaining register values. */
103 for (b = part; b < TYPE_LENGTH (type); b += 4)
104 {
105 if (readbuf != NULL)
106 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
107 if (writebuf != NULL)
108 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
109 reg++;
110 }
111 return RETURN_VALUE_REGISTER_CONVENTION;
112 }
113 else
114 return RETURN_VALUE_STRUCT_CONVENTION;
115}
116
117static enum return_value_convention
118hppa64_return_value (struct gdbarch *gdbarch,
119 struct type *type, struct regcache *regcache,
120 void *readbuf, const void *writebuf)
121{
122 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
123 are in r28, padded on the left. Aggregates less that 65 bits are
124 in r28, right padded. Aggregates upto 128 bits are in r28 and
125 r29, right padded. */
449e1137
AC
126 if (TYPE_CODE (type) == TYPE_CODE_FLT
127 && TYPE_LENGTH (type) <= 8)
537987fc
AC
128 {
129 /* Floats are right aligned? */
34f75cc1 130 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 131 if (readbuf != NULL)
34f75cc1 132 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
133 TYPE_LENGTH (type), readbuf);
134 if (writebuf != NULL)
34f75cc1 135 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
136 TYPE_LENGTH (type), writebuf);
137 return RETURN_VALUE_REGISTER_CONVENTION;
138 }
139 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
140 {
141 /* Integrals are right aligned. */
34f75cc1 142 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
143 if (readbuf != NULL)
144 regcache_cooked_read_part (regcache, 28, offset,
145 TYPE_LENGTH (type), readbuf);
146 if (writebuf != NULL)
147 regcache_cooked_write_part (regcache, 28, offset,
148 TYPE_LENGTH (type), writebuf);
149 return RETURN_VALUE_REGISTER_CONVENTION;
150 }
151 else if (TYPE_LENGTH (type) <= 2 * 8)
152 {
153 /* Composite values are left aligned. */
154 int b;
155 for (b = 0; b < TYPE_LENGTH (type); b += 8)
156 {
449e1137 157 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 158 if (readbuf != NULL)
449e1137 159 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
160 (char *) readbuf + b);
161 if (writebuf != NULL)
449e1137 162 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
163 (const char *) writebuf + b);
164 }
449e1137 165 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
166 }
167 else
168 return RETURN_VALUE_STRUCT_CONVENTION;
169}
170
c906108c
SS
171/* Routines to extract various sized constants out of hppa
172 instructions. */
173
174/* This assumes that no garbage lies outside of the lower bits of
175 value. */
176
abc485a1
RC
177int
178hppa_sign_extend (unsigned val, unsigned bits)
c906108c 179{
c5aa993b 180 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
181}
182
183/* For many immediate values the sign bit is the low bit! */
184
abc485a1
RC
185int
186hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 187{
c5aa993b 188 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
189}
190
e2ac8128
JB
191/* Extract the bits at positions between FROM and TO, using HP's numbering
192 (MSB = 0). */
193
abc485a1
RC
194int
195hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
196{
197 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
198}
199
c906108c
SS
200/* extract the immediate field from a ld{bhw}s instruction */
201
abc485a1
RC
202int
203hppa_extract_5_load (unsigned word)
c906108c 204{
abc485a1 205 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
206}
207
c906108c
SS
208/* extract the immediate field from a break instruction */
209
abc485a1
RC
210unsigned
211hppa_extract_5r_store (unsigned word)
c906108c
SS
212{
213 return (word & MASK_5);
214}
215
216/* extract the immediate field from a {sr}sm instruction */
217
abc485a1
RC
218unsigned
219hppa_extract_5R_store (unsigned word)
c906108c
SS
220{
221 return (word >> 16 & MASK_5);
222}
223
c906108c
SS
224/* extract a 14 bit immediate field */
225
abc485a1
RC
226int
227hppa_extract_14 (unsigned word)
c906108c 228{
abc485a1 229 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
230}
231
c906108c
SS
232/* extract a 21 bit constant */
233
abc485a1
RC
234int
235hppa_extract_21 (unsigned word)
c906108c
SS
236{
237 int val;
238
239 word &= MASK_21;
240 word <<= 11;
abc485a1 241 val = hppa_get_field (word, 20, 20);
c906108c 242 val <<= 11;
abc485a1 243 val |= hppa_get_field (word, 9, 19);
c906108c 244 val <<= 2;
abc485a1 245 val |= hppa_get_field (word, 5, 6);
c906108c 246 val <<= 5;
abc485a1 247 val |= hppa_get_field (word, 0, 4);
c906108c 248 val <<= 2;
abc485a1
RC
249 val |= hppa_get_field (word, 7, 8);
250 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
251}
252
c906108c
SS
253/* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
abc485a1
RC
256int
257hppa_extract_17 (unsigned word)
c906108c 258{
abc485a1
RC
259 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
260 hppa_get_field (word, 29, 29) << 10 |
261 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
262 (word & 0x1) << 16, 17) << 2;
263}
3388d7ff
RC
264
265CORE_ADDR
266hppa_symbol_address(const char *sym)
267{
268 struct minimal_symbol *minsym;
269
270 minsym = lookup_minimal_symbol (sym, NULL, NULL);
271 if (minsym)
272 return SYMBOL_VALUE_ADDRESS (minsym);
273 else
274 return (CORE_ADDR)-1;
275}
c906108c
SS
276\f
277
278/* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282static int
fba45db2 283compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
284{
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294}
295
53a5351d 296static void
fdd72f95 297record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 298{
fdd72f95 299 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 300 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
301 {
302 bfd_vma value = section->vma - section->filepos;
303 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
304
305 if (value < *low_text_segment_address)
306 *low_text_segment_address = value;
307 }
53a5351d
JM
308}
309
c906108c 310static void
fba45db2
KB
311internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
312 asection *section, unsigned int entries, unsigned int size,
313 CORE_ADDR text_offset)
c906108c
SS
314{
315 /* We will read the unwind entries into temporary memory, then
316 fill in the actual unwind table. */
fdd72f95 317
c906108c
SS
318 if (size > 0)
319 {
320 unsigned long tmp;
321 unsigned i;
322 char *buf = alloca (size);
fdd72f95 323 CORE_ADDR low_text_segment_address;
c906108c 324
fdd72f95 325 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
326 be segment relative offsets instead of absolute addresses.
327
328 Note that when loading a shared library (text_offset != 0) the
329 unwinds are already relative to the text_offset that will be
330 passed in. */
fdd72f95 331 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 332 {
fdd72f95
RC
333 low_text_segment_address = -1;
334
53a5351d 335 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
336 record_text_segment_lowaddr,
337 &low_text_segment_address);
53a5351d 338
fdd72f95 339 text_offset = low_text_segment_address;
53a5351d
JM
340 }
341
c906108c
SS
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
c5aa993b 345 endian issues. */
c906108c
SS
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 349 (bfd_byte *) buf);
c906108c
SS
350 table[i].region_start += text_offset;
351 buf += 4;
c5aa993b 352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
353 table[i].region_end += text_offset;
354 buf += 4;
c5aa993b 355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
c5aa993b 390 /* Stub unwinds are handled elsewhere. */
c906108c
SS
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395}
396
397/* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403static void
fba45db2 404read_unwind_info (struct objfile *objfile)
c906108c 405{
d4f3574e
SS
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
c906108c
SS
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
7c46b9fb
RC
411 struct hppa_unwind_info *ui;
412 struct hppa_objfile_private *obj_private;
c906108c
SS
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
415 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
416 sizeof (struct hppa_unwind_info));
c906108c
SS
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
d4f3574e
SS
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
c906108c 426
d4f3574e
SS
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
c906108c 433 {
d4f3574e
SS
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 439
d4f3574e
SS
440 total_entries += unwind_entries;
441 }
c906108c
SS
442 }
443
d4f3574e
SS
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
c906108c
SS
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
d4f3574e 460 total_entries += stub_entries;
c906108c
SS
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
8b92e4d5 465 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 466 ui->last = total_entries - 1;
c906108c 467
d4f3574e
SS
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
c906108c 470 index = 0;
d4f3574e
SS
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 510 (bfd_byte *) buf);
c906108c
SS
511 buf += 2;
512 ui->table[index].region_end
c5aa993b
JM
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
525 obj_private = (struct hppa_objfile_private *)
526 objfile_data (objfile, hppa_objfile_priv_data);
527 if (obj_private == NULL)
c906108c 528 {
7c46b9fb
RC
529 obj_private = (struct hppa_objfile_private *)
530 obstack_alloc (&objfile->objfile_obstack,
531 sizeof (struct hppa_objfile_private));
532 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 533 obj_private->unwind_info = NULL;
c5aa993b 534 obj_private->so_info = NULL;
53a5351d 535 obj_private->dp = 0;
c906108c 536 }
c906108c
SS
537 obj_private->unwind_info = ui;
538}
539
540/* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545struct unwind_table_entry *
fba45db2 546find_unwind_entry (CORE_ADDR pc)
c906108c
SS
547{
548 int first, middle, last;
549 struct objfile *objfile;
7c46b9fb 550 struct hppa_objfile_private *priv;
c906108c 551
369aa520
RC
552 if (hppa_debug)
553 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
554 paddr_nz (pc));
555
c906108c
SS
556 /* A function at address 0? Not in HP-UX! */
557 if (pc == (CORE_ADDR) 0)
369aa520
RC
558 {
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
561 return NULL;
562 }
c906108c
SS
563
564 ALL_OBJFILES (objfile)
c5aa993b 565 {
7c46b9fb 566 struct hppa_unwind_info *ui;
c5aa993b 567 ui = NULL;
7c46b9fb
RC
568 priv = objfile_data (objfile, hppa_objfile_priv_data);
569 if (priv)
570 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 571
c5aa993b
JM
572 if (!ui)
573 {
574 read_unwind_info (objfile);
7c46b9fb
RC
575 priv = objfile_data (objfile, hppa_objfile_priv_data);
576 if (priv == NULL)
104c1213 577 error ("Internal error reading unwind information.");
7c46b9fb 578 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 579 }
c906108c 580
c5aa993b 581 /* First, check the cache */
c906108c 582
c5aa993b
JM
583 if (ui->cache
584 && pc >= ui->cache->region_start
585 && pc <= ui->cache->region_end)
369aa520
RC
586 {
587 if (hppa_debug)
588 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
589 paddr_nz ((CORE_ADDR) ui->cache));
590 return ui->cache;
591 }
c906108c 592
c5aa993b 593 /* Not in the cache, do a binary search */
c906108c 594
c5aa993b
JM
595 first = 0;
596 last = ui->last;
c906108c 597
c5aa993b
JM
598 while (first <= last)
599 {
600 middle = (first + last) / 2;
601 if (pc >= ui->table[middle].region_start
602 && pc <= ui->table[middle].region_end)
603 {
604 ui->cache = &ui->table[middle];
369aa520
RC
605 if (hppa_debug)
606 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
607 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
608 return &ui->table[middle];
609 }
c906108c 610
c5aa993b
JM
611 if (pc < ui->table[middle].region_start)
612 last = middle - 1;
613 else
614 first = middle + 1;
615 }
616 } /* ALL_OBJFILES() */
369aa520
RC
617
618 if (hppa_debug)
619 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
620
c906108c
SS
621 return NULL;
622}
623
85f4f2d8 624static const unsigned char *
aaab4dba
AC
625hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
626{
56132691 627 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
628 (*len) = sizeof (breakpoint);
629 return breakpoint;
630}
631
e23457df
AC
632/* Return the name of a register. */
633
4a302917 634static const char *
3ff7cf9e 635hppa32_register_name (int i)
e23457df
AC
636{
637 static char *names[] = {
638 "flags", "r1", "rp", "r3",
639 "r4", "r5", "r6", "r7",
640 "r8", "r9", "r10", "r11",
641 "r12", "r13", "r14", "r15",
642 "r16", "r17", "r18", "r19",
643 "r20", "r21", "r22", "r23",
644 "r24", "r25", "r26", "dp",
645 "ret0", "ret1", "sp", "r31",
646 "sar", "pcoqh", "pcsqh", "pcoqt",
647 "pcsqt", "eiem", "iir", "isr",
648 "ior", "ipsw", "goto", "sr4",
649 "sr0", "sr1", "sr2", "sr3",
650 "sr5", "sr6", "sr7", "cr0",
651 "cr8", "cr9", "ccr", "cr12",
652 "cr13", "cr24", "cr25", "cr26",
653 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
654 "fpsr", "fpe1", "fpe2", "fpe3",
655 "fpe4", "fpe5", "fpe6", "fpe7",
656 "fr4", "fr4R", "fr5", "fr5R",
657 "fr6", "fr6R", "fr7", "fr7R",
658 "fr8", "fr8R", "fr9", "fr9R",
659 "fr10", "fr10R", "fr11", "fr11R",
660 "fr12", "fr12R", "fr13", "fr13R",
661 "fr14", "fr14R", "fr15", "fr15R",
662 "fr16", "fr16R", "fr17", "fr17R",
663 "fr18", "fr18R", "fr19", "fr19R",
664 "fr20", "fr20R", "fr21", "fr21R",
665 "fr22", "fr22R", "fr23", "fr23R",
666 "fr24", "fr24R", "fr25", "fr25R",
667 "fr26", "fr26R", "fr27", "fr27R",
668 "fr28", "fr28R", "fr29", "fr29R",
669 "fr30", "fr30R", "fr31", "fr31R"
670 };
671 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
672 return NULL;
673 else
674 return names[i];
675}
676
4a302917 677static const char *
e23457df
AC
678hppa64_register_name (int i)
679{
680 static char *names[] = {
681 "flags", "r1", "rp", "r3",
682 "r4", "r5", "r6", "r7",
683 "r8", "r9", "r10", "r11",
684 "r12", "r13", "r14", "r15",
685 "r16", "r17", "r18", "r19",
686 "r20", "r21", "r22", "r23",
687 "r24", "r25", "r26", "dp",
688 "ret0", "ret1", "sp", "r31",
689 "sar", "pcoqh", "pcsqh", "pcoqt",
690 "pcsqt", "eiem", "iir", "isr",
691 "ior", "ipsw", "goto", "sr4",
692 "sr0", "sr1", "sr2", "sr3",
693 "sr5", "sr6", "sr7", "cr0",
694 "cr8", "cr9", "ccr", "cr12",
695 "cr13", "cr24", "cr25", "cr26",
696 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
697 "fpsr", "fpe1", "fpe2", "fpe3",
698 "fr4", "fr5", "fr6", "fr7",
699 "fr8", "fr9", "fr10", "fr11",
700 "fr12", "fr13", "fr14", "fr15",
701 "fr16", "fr17", "fr18", "fr19",
702 "fr20", "fr21", "fr22", "fr23",
703 "fr24", "fr25", "fr26", "fr27",
704 "fr28", "fr29", "fr30", "fr31"
705 };
706 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
707 return NULL;
708 else
709 return names[i];
710}
711
79508e1e
AC
712/* This function pushes a stack frame with arguments as part of the
713 inferior function calling mechanism.
714
715 This is the version of the function for the 32-bit PA machines, in
716 which later arguments appear at lower addresses. (The stack always
717 grows towards higher addresses.)
718
719 We simply allocate the appropriate amount of stack space and put
720 arguments into their proper slots. */
721
4a302917 722static CORE_ADDR
7d9b040b 723hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
79508e1e
AC
724 struct regcache *regcache, CORE_ADDR bp_addr,
725 int nargs, struct value **args, CORE_ADDR sp,
726 int struct_return, CORE_ADDR struct_addr)
727{
79508e1e
AC
728 /* Stack base address at which any pass-by-reference parameters are
729 stored. */
730 CORE_ADDR struct_end = 0;
731 /* Stack base address at which the first parameter is stored. */
732 CORE_ADDR param_end = 0;
733
734 /* The inner most end of the stack after all the parameters have
735 been pushed. */
736 CORE_ADDR new_sp = 0;
737
738 /* Two passes. First pass computes the location of everything,
739 second pass writes the bytes out. */
740 int write_pass;
d49771ef
RC
741
742 /* Global pointer (r19) of the function we are trying to call. */
743 CORE_ADDR gp;
744
745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
746
79508e1e
AC
747 for (write_pass = 0; write_pass < 2; write_pass++)
748 {
1797a8f6 749 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
750 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
751 struct_ptr is adjusted for each argument below, so the first
752 argument will end up at sp-36. */
753 CORE_ADDR param_ptr = 32;
79508e1e 754 int i;
2a6228ef
RC
755 int small_struct = 0;
756
79508e1e
AC
757 for (i = 0; i < nargs; i++)
758 {
759 struct value *arg = args[i];
4991999e 760 struct type *type = check_typedef (value_type (arg));
79508e1e
AC
761 /* The corresponding parameter that is pushed onto the
762 stack, and [possibly] passed in a register. */
763 char param_val[8];
764 int param_len;
765 memset (param_val, 0, sizeof param_val);
766 if (TYPE_LENGTH (type) > 8)
767 {
768 /* Large parameter, pass by reference. Store the value
769 in "struct" area and then pass its address. */
770 param_len = 4;
1797a8f6 771 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 772 if (write_pass)
1797a8f6 773 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 774 TYPE_LENGTH (type));
1797a8f6 775 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
783 store_unsigned_integer (param_val, param_len,
784 unpack_long (type,
785 VALUE_CONTENTS (arg)));
786 }
2a6228ef
RC
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
791 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
792 }
79508e1e
AC
793 else
794 {
79508e1e 795 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
796
797 /* Small struct value are stored right-aligned. */
79508e1e
AC
798 memcpy (param_val + param_len - TYPE_LENGTH (type),
799 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
1b07b470 805 if (param_len > 4 && param_len < 8)
2a6228ef 806 small_struct = 1;
79508e1e 807 }
2a6228ef 808
1797a8f6 809 param_ptr += param_len;
2a6228ef
RC
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
79508e1e
AC
820 if (write_pass)
821 {
1797a8f6 822 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
79508e1e 828 {
2a6228ef
RC
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
79508e1e 836 if (param_len > 4)
2a6228ef
RC
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
79508e1e
AC
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
2a6228ef 852 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
2a6228ef 858 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
863 address */
864 if (struct_return)
865 write_register (28, struct_addr);
866
d49771ef
RC
867 gp = tdep->find_global_pointer (function);
868
869 if (gp != 0)
870 write_register (19, gp);
871
79508e1e 872 /* Set the return address. */
34f75cc1 873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 874
c4557624 875 /* Update the Stack Pointer. */
34f75cc1 876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 877
2a6228ef 878 return param_end;
79508e1e
AC
879}
880
2f690297
AC
881/* This function pushes a stack frame with arguments as part of the
882 inferior function calling mechanism.
883
884 This is the version for the PA64, in which later arguments appear
885 at higher addresses. (The stack always grows towards higher
886 addresses.)
887
888 We simply allocate the appropriate amount of stack space and put
889 arguments into their proper slots.
890
891 This ABI also requires that the caller provide an argument pointer
892 to the callee, so we do that too. */
893
4a302917 894static CORE_ADDR
7d9b040b 895hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2f690297
AC
896 struct regcache *regcache, CORE_ADDR bp_addr,
897 int nargs, struct value **args, CORE_ADDR sp,
898 int struct_return, CORE_ADDR struct_addr)
899{
449e1137
AC
900 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
901 reverse engineering testsuite failures. */
2f690297 902
449e1137
AC
903 /* Stack base address at which any pass-by-reference parameters are
904 stored. */
905 CORE_ADDR struct_end = 0;
906 /* Stack base address at which the first parameter is stored. */
907 CORE_ADDR param_end = 0;
2f690297 908
449e1137
AC
909 /* The inner most end of the stack after all the parameters have
910 been pushed. */
911 CORE_ADDR new_sp = 0;
2f690297 912
449e1137
AC
913 /* Two passes. First pass computes the location of everything,
914 second pass writes the bytes out. */
915 int write_pass;
916 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 917 {
449e1137
AC
918 CORE_ADDR struct_ptr = 0;
919 CORE_ADDR param_ptr = 0;
920 int i;
921 for (i = 0; i < nargs; i++)
2f690297 922 {
449e1137 923 struct value *arg = args[i];
4991999e 924 struct type *type = check_typedef (value_type (arg));
449e1137
AC
925 if ((TYPE_CODE (type) == TYPE_CODE_INT
926 || TYPE_CODE (type) == TYPE_CODE_ENUM)
927 && TYPE_LENGTH (type) <= 8)
928 {
929 /* Integer value store, right aligned. "unpack_long"
930 takes care of any sign-extension problems. */
931 param_ptr += 8;
932 if (write_pass)
933 {
934 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
935 int reg = 27 - param_ptr / 8;
936 write_memory_unsigned_integer (param_end - param_ptr,
937 val, 8);
938 if (reg >= 19)
939 regcache_cooked_write_unsigned (regcache, reg, val);
940 }
941 }
942 else
943 {
944 /* Small struct value, store left aligned? */
945 int reg;
946 if (TYPE_LENGTH (type) > 8)
947 {
948 param_ptr = align_up (param_ptr, 16);
949 reg = 26 - param_ptr / 8;
950 param_ptr += align_up (TYPE_LENGTH (type), 16);
951 }
952 else
953 {
954 param_ptr = align_up (param_ptr, 8);
955 reg = 26 - param_ptr / 8;
956 param_ptr += align_up (TYPE_LENGTH (type), 8);
957 }
958 if (write_pass)
959 {
960 int byte;
961 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
962 TYPE_LENGTH (type));
963 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
964 {
965 if (reg >= 19)
966 {
967 int len = min (8, TYPE_LENGTH (type) - byte);
968 regcache_cooked_write_part (regcache, reg, 0, len,
969 VALUE_CONTENTS (arg) + byte);
970 }
971 reg--;
972 }
973 }
974 }
2f690297 975 }
449e1137
AC
976 /* Update the various stack pointers. */
977 if (!write_pass)
2f690297 978 {
449e1137
AC
979 struct_end = sp + struct_ptr;
980 /* PARAM_PTR already accounts for all the arguments passed
981 by the user. However, the ABI mandates minimum stack
982 space allocations for outgoing arguments. The ABI also
983 mandates minimum stack alignments which we must
984 preserve. */
d0bd2d18 985 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 986 }
2f690297
AC
987 }
988
2f690297
AC
989 /* If a structure has to be returned, set up register 28 to hold its
990 address */
991 if (struct_return)
992 write_register (28, struct_addr);
993
2f690297 994 /* Set the return address. */
34f75cc1 995 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 996
c4557624 997 /* Update the Stack Pointer. */
34f75cc1 998 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 999
449e1137
AC
1000 /* The stack will have 32 bytes of additional space for a frame marker. */
1001 return param_end + 64;
2f690297
AC
1002}
1003
d49771ef
RC
1004static CORE_ADDR
1005hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1006 CORE_ADDR addr,
1007 struct target_ops *targ)
1008{
1009 if (addr & 2)
1010 {
1011 CORE_ADDR plabel;
1012
1013 plabel = addr & ~3;
1014 target_read_memory(plabel, (char *)&addr, 4);
1015 }
1016
1017 return addr;
1018}
1019
1797a8f6
AC
1020static CORE_ADDR
1021hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1022{
1023 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1024 and not _bit_)! */
1025 return align_up (addr, 64);
1026}
1027
2f690297
AC
1028/* Force all frames to 16-byte alignment. Better safe than sorry. */
1029
1030static CORE_ADDR
1797a8f6 1031hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
1032{
1033 /* Just always 16-byte align. */
1034 return align_up (addr, 16);
1035}
1036
cc72850f
MK
1037CORE_ADDR
1038hppa_read_pc (ptid_t ptid)
c906108c 1039{
cc72850f 1040 ULONGEST ipsw;
fe46cd3a 1041 CORE_ADDR pc;
c906108c 1042
cc72850f
MK
1043 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1044 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
fe46cd3a
RC
1045
1046 /* If the current instruction is nullified, then we are effectively
1047 still executing the previous instruction. Pretend we are still
cc72850f
MK
1048 there. This is needed when single stepping; if the nullified
1049 instruction is on a different line, we don't want GDB to think
1050 we've stepped onto that line. */
fe46cd3a
RC
1051 if (ipsw & 0x00200000)
1052 pc -= 4;
1053
cc72850f 1054 return pc & ~0x3;
c906108c
SS
1055}
1056
cc72850f
MK
1057void
1058hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
c906108c 1059{
cc72850f
MK
1060 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1061 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
c906108c
SS
1062}
1063
1064/* return the alignment of a type in bytes. Structures have the maximum
1065 alignment required by their fields. */
1066
1067static int
fba45db2 1068hppa_alignof (struct type *type)
c906108c
SS
1069{
1070 int max_align, align, i;
1071 CHECK_TYPEDEF (type);
1072 switch (TYPE_CODE (type))
1073 {
1074 case TYPE_CODE_PTR:
1075 case TYPE_CODE_INT:
1076 case TYPE_CODE_FLT:
1077 return TYPE_LENGTH (type);
1078 case TYPE_CODE_ARRAY:
1079 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1080 case TYPE_CODE_STRUCT:
1081 case TYPE_CODE_UNION:
1082 max_align = 1;
1083 for (i = 0; i < TYPE_NFIELDS (type); i++)
1084 {
1085 /* Bit fields have no real alignment. */
1086 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1087 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1088 {
1089 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1090 max_align = max (max_align, align);
1091 }
1092 }
1093 return max_align;
1094 default:
1095 return 4;
1096 }
1097}
1098
c906108c
SS
1099/* For the given instruction (INST), return any adjustment it makes
1100 to the stack pointer or zero for no adjustment.
1101
1102 This only handles instructions commonly found in prologues. */
1103
1104static int
fba45db2 1105prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1106{
1107 /* This must persist across calls. */
1108 static int save_high21;
1109
1110 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1111 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1112 return hppa_extract_14 (inst);
c906108c
SS
1113
1114 /* stwm X,D(sp) */
1115 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1116 return hppa_extract_14 (inst);
c906108c 1117
104c1213
JM
1118 /* std,ma X,D(sp) */
1119 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1120 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1121
c906108c
SS
1122 /* addil high21,%r1; ldo low11,(%r1),%r30)
1123 save high bits in save_high21 for later use. */
1124 if ((inst & 0xffe00000) == 0x28200000)
1125 {
abc485a1 1126 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1127 return 0;
1128 }
1129
1130 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1131 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1132
1133 /* fstws as used by the HP compilers. */
1134 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1135 return hppa_extract_5_load (inst);
c906108c
SS
1136
1137 /* No adjustment. */
1138 return 0;
1139}
1140
1141/* Return nonzero if INST is a branch of some kind, else return zero. */
1142
1143static int
fba45db2 1144is_branch (unsigned long inst)
c906108c
SS
1145{
1146 switch (inst >> 26)
1147 {
1148 case 0x20:
1149 case 0x21:
1150 case 0x22:
1151 case 0x23:
7be570e7 1152 case 0x27:
c906108c
SS
1153 case 0x28:
1154 case 0x29:
1155 case 0x2a:
1156 case 0x2b:
7be570e7 1157 case 0x2f:
c906108c
SS
1158 case 0x30:
1159 case 0x31:
1160 case 0x32:
1161 case 0x33:
1162 case 0x38:
1163 case 0x39:
1164 case 0x3a:
7be570e7 1165 case 0x3b:
c906108c
SS
1166 return 1;
1167
1168 default:
1169 return 0;
1170 }
1171}
1172
1173/* Return the register number for a GR which is saved by INST or
1174 zero it INST does not save a GR. */
1175
1176static int
fba45db2 1177inst_saves_gr (unsigned long inst)
c906108c
SS
1178{
1179 /* Does it look like a stw? */
7be570e7
JM
1180 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1181 || (inst >> 26) == 0x1f
1182 || ((inst >> 26) == 0x1f
1183 && ((inst >> 6) == 0xa)))
abc485a1 1184 return hppa_extract_5R_store (inst);
7be570e7
JM
1185
1186 /* Does it look like a std? */
1187 if ((inst >> 26) == 0x1c
1188 || ((inst >> 26) == 0x03
1189 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1190 return hppa_extract_5R_store (inst);
c906108c
SS
1191
1192 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1193 if ((inst >> 26) == 0x1b)
abc485a1 1194 return hppa_extract_5R_store (inst);
c906108c
SS
1195
1196 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1197 too. */
7be570e7
JM
1198 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1199 || ((inst >> 26) == 0x3
1200 && (((inst >> 6) & 0xf) == 0x8
1201 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1202 return hppa_extract_5R_store (inst);
c5aa993b 1203
c906108c
SS
1204 return 0;
1205}
1206
1207/* Return the register number for a FR which is saved by INST or
1208 zero it INST does not save a FR.
1209
1210 Note we only care about full 64bit register stores (that's the only
1211 kind of stores the prologue will use).
1212
1213 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1214
1215static int
fba45db2 1216inst_saves_fr (unsigned long inst)
c906108c 1217{
7be570e7 1218 /* is this an FSTD ? */
c906108c 1219 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1220 return hppa_extract_5r_store (inst);
7be570e7 1221 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1222 return hppa_extract_5R_store (inst);
7be570e7 1223 /* is this an FSTW ? */
c906108c 1224 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1225 return hppa_extract_5r_store (inst);
7be570e7 1226 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1227 return hppa_extract_5R_store (inst);
c906108c
SS
1228 return 0;
1229}
1230
1231/* Advance PC across any function entry prologue instructions
1232 to reach some "real" code.
1233
1234 Use information in the unwind table to determine what exactly should
1235 be in the prologue. */
1236
1237
a71f8c30
RC
1238static CORE_ADDR
1239skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
c906108c
SS
1240{
1241 char buf[4];
1242 CORE_ADDR orig_pc = pc;
1243 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1244 unsigned long args_stored, status, i, restart_gr, restart_fr;
1245 struct unwind_table_entry *u;
a71f8c30 1246 int final_iteration;
c906108c
SS
1247
1248 restart_gr = 0;
1249 restart_fr = 0;
1250
1251restart:
1252 u = find_unwind_entry (pc);
1253 if (!u)
1254 return pc;
1255
c5aa993b 1256 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1257 if ((pc & ~0x3) != u->region_start)
1258 return pc;
1259
1260 /* This is how much of a frame adjustment we need to account for. */
1261 stack_remaining = u->Total_frame_size << 3;
1262
1263 /* Magic register saves we want to know about. */
1264 save_rp = u->Save_RP;
1265 save_sp = u->Save_SP;
1266
1267 /* An indication that args may be stored into the stack. Unfortunately
1268 the HPUX compilers tend to set this in cases where no args were
1269 stored too!. */
1270 args_stored = 1;
1271
1272 /* Turn the Entry_GR field into a bitmask. */
1273 save_gr = 0;
1274 for (i = 3; i < u->Entry_GR + 3; i++)
1275 {
1276 /* Frame pointer gets saved into a special location. */
eded0a31 1277 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1278 continue;
1279
1280 save_gr |= (1 << i);
1281 }
1282 save_gr &= ~restart_gr;
1283
1284 /* Turn the Entry_FR field into a bitmask too. */
1285 save_fr = 0;
1286 for (i = 12; i < u->Entry_FR + 12; i++)
1287 save_fr |= (1 << i);
1288 save_fr &= ~restart_fr;
1289
a71f8c30
RC
1290 final_iteration = 0;
1291
c906108c
SS
1292 /* Loop until we find everything of interest or hit a branch.
1293
1294 For unoptimized GCC code and for any HP CC code this will never ever
1295 examine any user instructions.
1296
1297 For optimzied GCC code we're faced with problems. GCC will schedule
1298 its prologue and make prologue instructions available for delay slot
1299 filling. The end result is user code gets mixed in with the prologue
1300 and a prologue instruction may be in the delay slot of the first branch
1301 or call.
1302
1303 Some unexpected things are expected with debugging optimized code, so
1304 we allow this routine to walk past user instructions in optimized
1305 GCC code. */
1306 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1307 || args_stored)
1308 {
1309 unsigned int reg_num;
1310 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1311 unsigned long old_save_rp, old_save_sp, next_inst;
1312
1313 /* Save copies of all the triggers so we can compare them later
c5aa993b 1314 (only for HPC). */
c906108c
SS
1315 old_save_gr = save_gr;
1316 old_save_fr = save_fr;
1317 old_save_rp = save_rp;
1318 old_save_sp = save_sp;
1319 old_stack_remaining = stack_remaining;
1320
1f602b35 1321 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c 1322 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1323
c906108c
SS
1324 /* Yow! */
1325 if (status != 0)
1326 return pc;
1327
1328 /* Note the interesting effects of this instruction. */
1329 stack_remaining -= prologue_inst_adjust_sp (inst);
1330
7be570e7
JM
1331 /* There are limited ways to store the return pointer into the
1332 stack. */
1333 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1334 save_rp = 0;
1335
104c1213 1336 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1337 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1338 if ((inst & 0xffffc000) == 0x6fc10000
1339 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1340 save_sp = 0;
1341
6426a772
JM
1342 /* Are we loading some register with an offset from the argument
1343 pointer? */
1344 if ((inst & 0xffe00000) == 0x37a00000
1345 || (inst & 0xffffffe0) == 0x081d0240)
1346 {
1347 pc += 4;
1348 continue;
1349 }
1350
c906108c
SS
1351 /* Account for general and floating-point register saves. */
1352 reg_num = inst_saves_gr (inst);
1353 save_gr &= ~(1 << reg_num);
1354
1355 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1356 Unfortunately args_stored only tells us that some arguments
1357 where stored into the stack. Not how many or what kind!
c906108c 1358
c5aa993b
JM
1359 This is a kludge as on the HP compiler sets this bit and it
1360 never does prologue scheduling. So once we see one, skip past
1361 all of them. We have similar code for the fp arg stores below.
c906108c 1362
c5aa993b
JM
1363 FIXME. Can still die if we have a mix of GR and FR argument
1364 stores! */
6426a772 1365 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1366 {
6426a772 1367 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1368 {
1369 pc += 4;
1f602b35 1370 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1371 inst = extract_unsigned_integer (buf, 4);
1372 if (status != 0)
1373 return pc;
1374 reg_num = inst_saves_gr (inst);
1375 }
1376 args_stored = 0;
1377 continue;
1378 }
1379
1380 reg_num = inst_saves_fr (inst);
1381 save_fr &= ~(1 << reg_num);
1382
1f602b35 1383 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c 1384 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1385
c906108c
SS
1386 /* Yow! */
1387 if (status != 0)
1388 return pc;
1389
1390 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1391 save. */
c906108c
SS
1392 if ((inst & 0xfc000000) == 0x34000000
1393 && inst_saves_fr (next_inst) >= 4
6426a772 1394 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1395 {
1396 /* So we drop into the code below in a reasonable state. */
1397 reg_num = inst_saves_fr (next_inst);
1398 pc -= 4;
1399 }
1400
1401 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1402 This is a kludge as on the HP compiler sets this bit and it
1403 never does prologue scheduling. So once we see one, skip past
1404 all of them. */
6426a772 1405 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1406 {
6426a772 1407 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1408 {
1409 pc += 8;
1f602b35 1410 status = deprecated_read_memory_nobpt (pc, buf, 4);
c906108c
SS
1411 inst = extract_unsigned_integer (buf, 4);
1412 if (status != 0)
1413 return pc;
1414 if ((inst & 0xfc000000) != 0x34000000)
1415 break;
1f602b35 1416 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1417 next_inst = extract_unsigned_integer (buf, 4);
1418 if (status != 0)
1419 return pc;
1420 reg_num = inst_saves_fr (next_inst);
1421 }
1422 args_stored = 0;
1423 continue;
1424 }
1425
1426 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1427 instruction is in the delay slot of the first call/branch. */
a71f8c30 1428 if (is_branch (inst) && stop_before_branch)
c906108c
SS
1429 break;
1430
1431 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1432 arguments were stored into the stack (boo hiss). This could
1433 cause this code to then skip a bunch of user insns (up to the
1434 first branch).
1435
1436 To combat this we try to identify when args_stored was bogusly
1437 set and clear it. We only do this when args_stored is nonzero,
1438 all other resources are accounted for, and nothing changed on
1439 this pass. */
c906108c 1440 if (args_stored
c5aa993b 1441 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1442 && old_save_gr == save_gr && old_save_fr == save_fr
1443 && old_save_rp == save_rp && old_save_sp == save_sp
1444 && old_stack_remaining == stack_remaining)
1445 break;
c5aa993b 1446
c906108c
SS
1447 /* Bump the PC. */
1448 pc += 4;
a71f8c30
RC
1449
1450 /* !stop_before_branch, so also look at the insn in the delay slot
1451 of the branch. */
1452 if (final_iteration)
1453 break;
1454 if (is_branch (inst))
1455 final_iteration = 1;
c906108c
SS
1456 }
1457
1458 /* We've got a tenative location for the end of the prologue. However
1459 because of limitations in the unwind descriptor mechanism we may
1460 have went too far into user code looking for the save of a register
1461 that does not exist. So, if there registers we expected to be saved
1462 but never were, mask them out and restart.
1463
1464 This should only happen in optimized code, and should be very rare. */
c5aa993b 1465 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1466 {
1467 pc = orig_pc;
1468 restart_gr = save_gr;
1469 restart_fr = save_fr;
1470 goto restart;
1471 }
1472
1473 return pc;
1474}
1475
1476
7be570e7
JM
1477/* Return the address of the PC after the last prologue instruction if
1478 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1479
1480static CORE_ADDR
fba45db2 1481after_prologue (CORE_ADDR pc)
c906108c
SS
1482{
1483 struct symtab_and_line sal;
1484 CORE_ADDR func_addr, func_end;
1485 struct symbol *f;
1486
7be570e7
JM
1487 /* If we can not find the symbol in the partial symbol table, then
1488 there is no hope we can determine the function's start address
1489 with this code. */
c906108c 1490 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1491 return 0;
c906108c 1492
7be570e7 1493 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1494 sal = find_pc_line (func_addr, 0);
1495
7be570e7
JM
1496 /* There are only two cases to consider. First, the end of the source line
1497 is within the function bounds. In that case we return the end of the
1498 source line. Second is the end of the source line extends beyond the
1499 bounds of the current function. We need to use the slow code to
1500 examine instructions in that case.
c906108c 1501
7be570e7
JM
1502 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1503 the wrong thing to do. In fact, it should be entirely possible for this
1504 function to always return zero since the slow instruction scanning code
1505 is supposed to *always* work. If it does not, then it is a bug. */
1506 if (sal.end < func_end)
1507 return sal.end;
c5aa993b 1508 else
7be570e7 1509 return 0;
c906108c
SS
1510}
1511
1512/* To skip prologues, I use this predicate. Returns either PC itself
1513 if the code at PC does not look like a function prologue; otherwise
a71f8c30
RC
1514 returns an address that (if we're lucky) follows the prologue.
1515
1516 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1517 It doesn't necessarily skips all the insns in the prologue. In fact
1518 we might not want to skip all the insns because a prologue insn may
1519 appear in the delay slot of the first branch, and we don't want to
1520 skip over the branch in that case. */
c906108c 1521
8d153463 1522static CORE_ADDR
fba45db2 1523hppa_skip_prologue (CORE_ADDR pc)
c906108c 1524{
c5aa993b
JM
1525 unsigned long inst;
1526 int offset;
1527 CORE_ADDR post_prologue_pc;
1528 char buf[4];
c906108c 1529
c5aa993b
JM
1530 /* See if we can determine the end of the prologue via the symbol table.
1531 If so, then return either PC, or the PC after the prologue, whichever
1532 is greater. */
c906108c 1533
c5aa993b 1534 post_prologue_pc = after_prologue (pc);
c906108c 1535
7be570e7
JM
1536 /* If after_prologue returned a useful address, then use it. Else
1537 fall back on the instruction skipping code.
1538
1539 Some folks have claimed this causes problems because the breakpoint
1540 may be the first instruction of the prologue. If that happens, then
1541 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1542 if (post_prologue_pc != 0)
1543 return max (pc, post_prologue_pc);
c5aa993b 1544 else
a71f8c30 1545 return (skip_prologue_hard_way (pc, 1));
c906108c
SS
1546}
1547
26d08f08
AC
1548struct hppa_frame_cache
1549{
1550 CORE_ADDR base;
1551 struct trad_frame_saved_reg *saved_regs;
1552};
1553
1554static struct hppa_frame_cache *
1555hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1556{
1557 struct hppa_frame_cache *cache;
1558 long saved_gr_mask;
1559 long saved_fr_mask;
1560 CORE_ADDR this_sp;
1561 long frame_size;
1562 struct unwind_table_entry *u;
9f7194c3 1563 CORE_ADDR prologue_end;
50b2f48a 1564 int fp_in_r1 = 0;
26d08f08
AC
1565 int i;
1566
369aa520
RC
1567 if (hppa_debug)
1568 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1569 frame_relative_level(next_frame));
1570
26d08f08 1571 if ((*this_cache) != NULL)
369aa520
RC
1572 {
1573 if (hppa_debug)
1574 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1575 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1576 return (*this_cache);
1577 }
26d08f08
AC
1578 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1579 (*this_cache) = cache;
1580 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1581
1582 /* Yow! */
d5c27f81 1583 u = find_unwind_entry (frame_pc_unwind (next_frame));
26d08f08 1584 if (!u)
369aa520
RC
1585 {
1586 if (hppa_debug)
1587 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1588 return (*this_cache);
1589 }
26d08f08
AC
1590
1591 /* Turn the Entry_GR field into a bitmask. */
1592 saved_gr_mask = 0;
1593 for (i = 3; i < u->Entry_GR + 3; i++)
1594 {
1595 /* Frame pointer gets saved into a special location. */
eded0a31 1596 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1597 continue;
1598
1599 saved_gr_mask |= (1 << i);
1600 }
1601
1602 /* Turn the Entry_FR field into a bitmask too. */
1603 saved_fr_mask = 0;
1604 for (i = 12; i < u->Entry_FR + 12; i++)
1605 saved_fr_mask |= (1 << i);
1606
1607 /* Loop until we find everything of interest or hit a branch.
1608
1609 For unoptimized GCC code and for any HP CC code this will never ever
1610 examine any user instructions.
1611
1612 For optimized GCC code we're faced with problems. GCC will schedule
1613 its prologue and make prologue instructions available for delay slot
1614 filling. The end result is user code gets mixed in with the prologue
1615 and a prologue instruction may be in the delay slot of the first branch
1616 or call.
1617
1618 Some unexpected things are expected with debugging optimized code, so
1619 we allow this routine to walk past user instructions in optimized
1620 GCC code. */
1621 {
1622 int final_iteration = 0;
9f7194c3 1623 CORE_ADDR pc, end_pc;
26d08f08
AC
1624 int looking_for_sp = u->Save_SP;
1625 int looking_for_rp = u->Save_RP;
1626 int fp_loc = -1;
9f7194c3 1627
a71f8c30 1628 /* We have to use skip_prologue_hard_way instead of just
9f7194c3
RC
1629 skip_prologue_using_sal, in case we stepped into a function without
1630 symbol information. hppa_skip_prologue also bounds the returned
1631 pc by the passed in pc, so it will not return a pc in the next
a71f8c30
RC
1632 function.
1633
1634 We used to call hppa_skip_prologue to find the end of the prologue,
1635 but if some non-prologue instructions get scheduled into the prologue,
1636 and the program is compiled with debug information, the "easy" way
1637 in hppa_skip_prologue will return a prologue end that is too early
1638 for us to notice any potential frame adjustments. */
d5c27f81
RC
1639
1640 /* We used to use frame_func_unwind () to locate the beginning of the
1641 function to pass to skip_prologue (). However, when objects are
1642 compiled without debug symbols, frame_func_unwind can return the wrong
1643 function (or 0). We can do better than that by using unwind records. */
1644
a71f8c30 1645 prologue_end = skip_prologue_hard_way (u->region_start, 0);
9f7194c3
RC
1646 end_pc = frame_pc_unwind (next_frame);
1647
1648 if (prologue_end != 0 && end_pc > prologue_end)
1649 end_pc = prologue_end;
1650
26d08f08 1651 frame_size = 0;
9f7194c3 1652
d5c27f81 1653 for (pc = u->region_start;
26d08f08
AC
1654 ((saved_gr_mask || saved_fr_mask
1655 || looking_for_sp || looking_for_rp
1656 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1657 && pc < end_pc);
26d08f08
AC
1658 pc += 4)
1659 {
1660 int reg;
1661 char buf4[4];
4a302917
RC
1662 long inst;
1663
1664 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1665 sizeof buf4))
1666 {
1667 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1668 return (*this_cache);
1669 }
1670
1671 inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1672
26d08f08
AC
1673 /* Note the interesting effects of this instruction. */
1674 frame_size += prologue_inst_adjust_sp (inst);
1675
1676 /* There are limited ways to store the return pointer into the
1677 stack. */
1678 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1679 {
1680 looking_for_rp = 0;
34f75cc1 1681 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08 1682 }
dfaf8edb
MK
1683 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1684 {
1685 looking_for_rp = 0;
1686 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1687 }
26d08f08
AC
1688 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1689 {
1690 looking_for_rp = 0;
34f75cc1 1691 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1692 }
1693
1694 /* Check to see if we saved SP into the stack. This also
1695 happens to indicate the location of the saved frame
1696 pointer. */
1697 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1698 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1699 {
1700 looking_for_sp = 0;
eded0a31 1701 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08 1702 }
50b2f48a
RC
1703 else if (inst == 0x08030241) /* copy %r3, %r1 */
1704 {
1705 fp_in_r1 = 1;
1706 }
26d08f08
AC
1707
1708 /* Account for general and floating-point register saves. */
1709 reg = inst_saves_gr (inst);
1710 if (reg >= 3 && reg <= 18
eded0a31 1711 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1712 {
1713 saved_gr_mask &= ~(1 << reg);
abc485a1 1714 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1715 /* stwm with a positive displacement is a _post_
1716 _modify_. */
1717 cache->saved_regs[reg].addr = 0;
1718 else if ((inst & 0xfc00000c) == 0x70000008)
1719 /* A std has explicit post_modify forms. */
1720 cache->saved_regs[reg].addr = 0;
1721 else
1722 {
1723 CORE_ADDR offset;
1724
1725 if ((inst >> 26) == 0x1c)
1726 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1727 else if ((inst >> 26) == 0x03)
abc485a1 1728 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1729 else
abc485a1 1730 offset = hppa_extract_14 (inst);
26d08f08
AC
1731
1732 /* Handle code with and without frame pointers. */
1733 if (u->Save_SP)
1734 cache->saved_regs[reg].addr = offset;
1735 else
1736 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1737 }
1738 }
1739
1740 /* GCC handles callee saved FP regs a little differently.
1741
1742 It emits an instruction to put the value of the start of
1743 the FP store area into %r1. It then uses fstds,ma with a
1744 basereg of %r1 for the stores.
1745
1746 HP CC emits them at the current stack pointer modifying the
1747 stack pointer as it stores each register. */
1748
1749 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1750 if ((inst & 0xffffc000) == 0x34610000
1751 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1752 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1753
1754 reg = inst_saves_fr (inst);
1755 if (reg >= 12 && reg <= 21)
1756 {
1757 /* Note +4 braindamage below is necessary because the FP
1758 status registers are internally 8 registers rather than
1759 the expected 4 registers. */
1760 saved_fr_mask &= ~(1 << reg);
1761 if (fp_loc == -1)
1762 {
1763 /* 1st HP CC FP register store. After this
1764 instruction we've set enough state that the GCC and
1765 HPCC code are both handled in the same manner. */
34f75cc1 1766 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1767 fp_loc = 8;
1768 }
1769 else
1770 {
eded0a31 1771 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1772 fp_loc += 8;
1773 }
1774 }
1775
1776 /* Quit if we hit any kind of branch the previous iteration. */
1777 if (final_iteration)
1778 break;
1779 /* We want to look precisely one instruction beyond the branch
1780 if we have not found everything yet. */
1781 if (is_branch (inst))
1782 final_iteration = 1;
1783 }
1784 }
1785
1786 {
1787 /* The frame base always represents the value of %sp at entry to
1788 the current function (and is thus equivalent to the "saved"
1789 stack pointer. */
eded0a31 1790 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
ed70ba00 1791 CORE_ADDR fp;
9f7194c3
RC
1792
1793 if (hppa_debug)
1794 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1795 "prologue_end=0x%s) ",
1796 paddr_nz (this_sp),
1797 paddr_nz (frame_pc_unwind (next_frame)),
1798 paddr_nz (prologue_end));
1799
ed70ba00
RC
1800 /* Check to see if a frame pointer is available, and use it for
1801 frame unwinding if it is.
1802
1803 There are some situations where we need to rely on the frame
1804 pointer to do stack unwinding. For example, if a function calls
1805 alloca (), the stack pointer can get adjusted inside the body of
1806 the function. In this case, the ABI requires that the compiler
1807 maintain a frame pointer for the function.
1808
1809 The unwind record has a flag (alloca_frame) that indicates that
1810 a function has a variable frame; unfortunately, gcc/binutils
1811 does not set this flag. Instead, whenever a frame pointer is used
1812 and saved on the stack, the Save_SP flag is set. We use this to
1813 decide whether to use the frame pointer for unwinding.
1814
ed70ba00
RC
1815 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1816 instead of Save_SP. */
1817
1818 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1819
1820 if (frame_pc_unwind (next_frame) >= prologue_end
1821 && u->Save_SP && fp != 0)
1822 {
1823 cache->base = fp;
1824
1825 if (hppa_debug)
1826 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1827 paddr_nz (cache->base));
1828 }
1658da49
RC
1829 else if (u->Save_SP
1830 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
9f7194c3 1831 {
9f7194c3
RC
1832 /* Both we're expecting the SP to be saved and the SP has been
1833 saved. The entry SP value is saved at this frame's SP
1834 address. */
1835 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1836
1837 if (hppa_debug)
1838 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1839 paddr_nz (cache->base));
9f7194c3 1840 }
26d08f08 1841 else
9f7194c3 1842 {
1658da49
RC
1843 /* The prologue has been slowly allocating stack space. Adjust
1844 the SP back. */
1845 cache->base = this_sp - frame_size;
9f7194c3 1846 if (hppa_debug)
1658da49 1847 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
9f7194c3
RC
1848 paddr_nz (cache->base));
1849
1850 }
eded0a31 1851 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1852 }
1853
412275d5
AC
1854 /* The PC is found in the "return register", "Millicode" uses "r31"
1855 as the return register while normal code uses "rp". */
26d08f08 1856 if (u->Millicode)
9f7194c3 1857 {
5859efe5 1858 if (trad_frame_addr_p (cache->saved_regs, 31))
34f75cc1 1859 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1860 else
1861 {
1862 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1863 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1864 }
1865 }
26d08f08 1866 else
9f7194c3 1867 {
34f75cc1
RC
1868 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1869 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1870 else
1871 {
34f75cc1
RC
1872 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1873 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1874 }
1875 }
26d08f08 1876
50b2f48a
RC
1877 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1878 frame. However, there is a one-insn window where we haven't saved it
1879 yet, but we've already clobbered it. Detect this case and fix it up.
1880
1881 The prologue sequence for frame-pointer functions is:
1882 0: stw %rp, -20(%sp)
1883 4: copy %r3, %r1
1884 8: copy %sp, %r3
1885 c: stw,ma %r1, XX(%sp)
1886
1887 So if we are at offset c, the r3 value that we want is not yet saved
1888 on the stack, but it's been overwritten. The prologue analyzer will
1889 set fp_in_r1 when it sees the copy insn so we know to get the value
1890 from r1 instead. */
1891 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1892 && fp_in_r1)
1893 {
1894 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1895 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1896 }
1658da49 1897
26d08f08
AC
1898 {
1899 /* Convert all the offsets into addresses. */
1900 int reg;
1901 for (reg = 0; reg < NUM_REGS; reg++)
1902 {
1903 if (trad_frame_addr_p (cache->saved_regs, reg))
1904 cache->saved_regs[reg].addr += cache->base;
1905 }
1906 }
1907
f77a2124
RC
1908 {
1909 struct gdbarch *gdbarch;
1910 struct gdbarch_tdep *tdep;
1911
1912 gdbarch = get_frame_arch (next_frame);
1913 tdep = gdbarch_tdep (gdbarch);
1914
1915 if (tdep->unwind_adjust_stub)
1916 {
1917 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
1918 }
1919 }
1920
369aa520
RC
1921 if (hppa_debug)
1922 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1923 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1924 return (*this_cache);
1925}
1926
1927static void
1928hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1929 struct frame_id *this_id)
1930{
d5c27f81
RC
1931 struct hppa_frame_cache *info;
1932 CORE_ADDR pc = frame_pc_unwind (next_frame);
1933 struct unwind_table_entry *u;
1934
1935 info = hppa_frame_cache (next_frame, this_cache);
1936 u = find_unwind_entry (pc);
1937
1938 (*this_id) = frame_id_build (info->base, u->region_start);
26d08f08
AC
1939}
1940
1941static void
1942hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1943 void **this_cache,
1944 int regnum, int *optimizedp,
1945 enum lval_type *lvalp, CORE_ADDR *addrp,
1946 int *realnump, void *valuep)
26d08f08
AC
1947{
1948 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1949 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1950 optimizedp, lvalp, addrp, realnump, valuep);
1951}
1952
1953static const struct frame_unwind hppa_frame_unwind =
1954{
1955 NORMAL_FRAME,
1956 hppa_frame_this_id,
1957 hppa_frame_prev_register
1958};
1959
1960static const struct frame_unwind *
1961hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1962{
1963 CORE_ADDR pc = frame_pc_unwind (next_frame);
1964
1965 if (find_unwind_entry (pc))
1966 return &hppa_frame_unwind;
1967
1968 return NULL;
1969}
1970
1971/* This is a generic fallback frame unwinder that kicks in if we fail all
1972 the other ones. Normally we would expect the stub and regular unwinder
1973 to work, but in some cases we might hit a function that just doesn't
1974 have any unwind information available. In this case we try to do
1975 unwinding solely based on code reading. This is obviously going to be
1976 slow, so only use this as a last resort. Currently this will only
1977 identify the stack and pc for the frame. */
1978
1979static struct hppa_frame_cache *
1980hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1981{
1982 struct hppa_frame_cache *cache;
6d1be3f1 1983 unsigned int frame_size;
d5c27f81 1984 int found_rp;
0da28f8a
RC
1985 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1986
d5c27f81
RC
1987 if (hppa_debug)
1988 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1989 frame_relative_level(next_frame));
1990
0da28f8a
RC
1991 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1992 (*this_cache) = cache;
1993 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1994
1995 pc = frame_func_unwind (next_frame);
1996 cur_pc = frame_pc_unwind (next_frame);
6d1be3f1 1997 frame_size = 0;
d5c27f81 1998 found_rp = 0;
0da28f8a
RC
1999
2000 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2001
2002 if (start_pc == 0 || end_pc == 0)
412275d5 2003 {
0da28f8a
RC
2004 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2005 "fail.", paddr_nz (pc));
2006 return cache;
2007 }
2008
2009 if (end_pc > cur_pc)
2010 end_pc = cur_pc;
2011
2012 for (pc = start_pc; pc < end_pc; pc += 4)
2013 {
2014 unsigned int insn;
2015
2016 insn = read_memory_unsigned_integer (pc, 4);
2017
6d1be3f1
RC
2018 frame_size += prologue_inst_adjust_sp (insn);
2019
0da28f8a
RC
2020 /* There are limited ways to store the return pointer into the
2021 stack. */
2022 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
d5c27f81
RC
2023 {
2024 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2025 found_rp = 1;
2026 }
0da28f8a 2027 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
d5c27f81
RC
2028 {
2029 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2030 found_rp = 1;
2031 }
412275d5 2032 }
0da28f8a 2033
d5c27f81
RC
2034 if (hppa_debug)
2035 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2036 frame_size, found_rp);
2037
6d1be3f1
RC
2038 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2039 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
0da28f8a
RC
2040
2041 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2042 {
2043 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2044 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2045 }
412275d5
AC
2046 else
2047 {
0da28f8a
RC
2048 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2049 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 2050 }
0da28f8a
RC
2051
2052 return cache;
26d08f08
AC
2053}
2054
0da28f8a
RC
2055static void
2056hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2057 struct frame_id *this_id)
2058{
2059 struct hppa_frame_cache *info =
2060 hppa_fallback_frame_cache (next_frame, this_cache);
2061 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2062}
2063
2064static void
2065hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2066 void **this_cache,
2067 int regnum, int *optimizedp,
2068 enum lval_type *lvalp, CORE_ADDR *addrp,
2069 int *realnump, void *valuep)
2070{
2071 struct hppa_frame_cache *info =
2072 hppa_fallback_frame_cache (next_frame, this_cache);
2073 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2074 optimizedp, lvalp, addrp, realnump, valuep);
2075}
2076
2077static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
2078{
2079 NORMAL_FRAME,
0da28f8a
RC
2080 hppa_fallback_frame_this_id,
2081 hppa_fallback_frame_prev_register
26d08f08
AC
2082};
2083
2084static const struct frame_unwind *
0da28f8a 2085hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 2086{
0da28f8a 2087 return &hppa_fallback_frame_unwind;
26d08f08
AC
2088}
2089
7f07c5b6
RC
2090/* Stub frames, used for all kinds of call stubs. */
2091struct hppa_stub_unwind_cache
2092{
2093 CORE_ADDR base;
2094 struct trad_frame_saved_reg *saved_regs;
2095};
2096
2097static struct hppa_stub_unwind_cache *
2098hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2099 void **this_cache)
2100{
2101 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2102 struct hppa_stub_unwind_cache *info;
22b0923d 2103 struct unwind_table_entry *u;
7f07c5b6
RC
2104
2105 if (*this_cache)
2106 return *this_cache;
2107
f1b38a57
RC
2108 if (frame_pc_unwind (next_frame) == 0)
2109 return NULL;
2110
7f07c5b6
RC
2111 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2112 *this_cache = info;
2113 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2114
7f07c5b6
RC
2115 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2116
090ccbb7 2117 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
22b0923d
RC
2118 {
2119 /* HPUX uses export stubs in function calls; the export stub clobbers
2120 the return value of the caller, and, later restores it from the
2121 stack. */
2122 u = find_unwind_entry (frame_pc_unwind (next_frame));
2123
2124 if (u && u->stub_unwind.stub_type == EXPORT)
2125 {
2126 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2127
2128 return info;
2129 }
2130 }
2131
2132 /* By default we assume that stubs do not change the rp. */
2133 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2134
7f07c5b6
RC
2135 return info;
2136}
2137
2138static void
2139hppa_stub_frame_this_id (struct frame_info *next_frame,
2140 void **this_prologue_cache,
2141 struct frame_id *this_id)
2142{
2143 struct hppa_stub_unwind_cache *info
2144 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2145
2146 if (info)
2147 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2148 else
2149 *this_id = null_frame_id;
7f07c5b6
RC
2150}
2151
2152static void
2153hppa_stub_frame_prev_register (struct frame_info *next_frame,
2154 void **this_prologue_cache,
2155 int regnum, int *optimizedp,
2156 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2157 int *realnump, void *valuep)
7f07c5b6
RC
2158{
2159 struct hppa_stub_unwind_cache *info
2160 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
f1b38a57
RC
2161
2162 if (info)
2163 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2164 optimizedp, lvalp, addrp, realnump,
2165 valuep);
2166 else
2167 error ("Requesting registers from null frame.\n");
7f07c5b6
RC
2168}
2169
2170static const struct frame_unwind hppa_stub_frame_unwind = {
2171 NORMAL_FRAME,
2172 hppa_stub_frame_this_id,
2173 hppa_stub_frame_prev_register
2174};
2175
2176static const struct frame_unwind *
2177hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2178{
2179 CORE_ADDR pc = frame_pc_unwind (next_frame);
84674fe1
AC
2180 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7f07c5b6 2182
6d1be3f1 2183 if (pc == 0
84674fe1
AC
2184 || (tdep->in_solib_call_trampoline != NULL
2185 && tdep->in_solib_call_trampoline (pc, NULL))
7f07c5b6
RC
2186 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2187 return &hppa_stub_frame_unwind;
2188 return NULL;
2189}
2190
26d08f08
AC
2191static struct frame_id
2192hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2193{
2194 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2195 HPPA_SP_REGNUM),
26d08f08
AC
2196 frame_pc_unwind (next_frame));
2197}
2198
cc72850f 2199CORE_ADDR
26d08f08
AC
2200hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2201{
fe46cd3a
RC
2202 ULONGEST ipsw;
2203 CORE_ADDR pc;
2204
cc72850f
MK
2205 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2206 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
fe46cd3a
RC
2207
2208 /* If the current instruction is nullified, then we are effectively
2209 still executing the previous instruction. Pretend we are still
cc72850f
MK
2210 there. This is needed when single stepping; if the nullified
2211 instruction is on a different line, we don't want GDB to think
2212 we've stepped onto that line. */
fe46cd3a
RC
2213 if (ipsw & 0x00200000)
2214 pc -= 4;
2215
cc72850f 2216 return pc & ~0x3;
26d08f08
AC
2217}
2218
9a043c1d
AC
2219/* Instead of this nasty cast, add a method pvoid() that prints out a
2220 host VOID data type (remember %p isn't portable). */
2221
2222static CORE_ADDR
2223hppa_pointer_to_address_hack (void *ptr)
2224{
2225 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2226 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2227}
2228
c906108c 2229static void
fba45db2 2230unwind_command (char *exp, int from_tty)
c906108c
SS
2231{
2232 CORE_ADDR address;
2233 struct unwind_table_entry *u;
2234
2235 /* If we have an expression, evaluate it and use it as the address. */
2236
2237 if (exp != 0 && *exp != 0)
2238 address = parse_and_eval_address (exp);
2239 else
2240 return;
2241
2242 u = find_unwind_entry (address);
2243
2244 if (!u)
2245 {
2246 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2247 return;
2248 }
2249
ce414844 2250 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2251 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2252
2253 printf_unfiltered ("\tregion_start = ");
2254 print_address (u->region_start, gdb_stdout);
d5c27f81 2255 gdb_flush (gdb_stdout);
c906108c
SS
2256
2257 printf_unfiltered ("\n\tregion_end = ");
2258 print_address (u->region_end, gdb_stdout);
d5c27f81 2259 gdb_flush (gdb_stdout);
c906108c 2260
c906108c 2261#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2262
2263 printf_unfiltered ("\n\tflags =");
2264 pif (Cannot_unwind);
2265 pif (Millicode);
2266 pif (Millicode_save_sr0);
2267 pif (Entry_SR);
2268 pif (Args_stored);
2269 pif (Variable_Frame);
2270 pif (Separate_Package_Body);
2271 pif (Frame_Extension_Millicode);
2272 pif (Stack_Overflow_Check);
2273 pif (Two_Instruction_SP_Increment);
2274 pif (Ada_Region);
2275 pif (Save_SP);
2276 pif (Save_RP);
2277 pif (Save_MRP_in_frame);
2278 pif (extn_ptr_defined);
2279 pif (Cleanup_defined);
2280 pif (MPE_XL_interrupt_marker);
2281 pif (HP_UX_interrupt_marker);
2282 pif (Large_frame);
2283
2284 putchar_unfiltered ('\n');
2285
c906108c 2286#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2287
2288 pin (Region_description);
2289 pin (Entry_FR);
2290 pin (Entry_GR);
2291 pin (Total_frame_size);
57dac9e1
RC
2292
2293 if (u->stub_unwind.stub_type)
2294 {
2295 printf_unfiltered ("\tstub type = ");
2296 switch (u->stub_unwind.stub_type)
2297 {
2298 case LONG_BRANCH:
2299 printf_unfiltered ("long branch\n");
2300 break;
2301 case PARAMETER_RELOCATION:
2302 printf_unfiltered ("parameter relocation\n");
2303 break;
2304 case EXPORT:
2305 printf_unfiltered ("export\n");
2306 break;
2307 case IMPORT:
2308 printf_unfiltered ("import\n");
2309 break;
2310 case IMPORT_SHLIB:
2311 printf_unfiltered ("import shlib\n");
2312 break;
2313 default:
2314 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2315 }
2316 }
c906108c 2317}
c906108c 2318
d709c020
JB
2319int
2320hppa_pc_requires_run_before_use (CORE_ADDR pc)
2321{
2322 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2323
2324 An example of this occurs when an a.out is linked against a foo.sl.
2325 The foo.sl defines a global bar(), and the a.out declares a signature
2326 for bar(). However, the a.out doesn't directly call bar(), but passes
2327 its address in another call.
2328
2329 If you have this scenario and attempt to "break bar" before running,
2330 gdb will find a minimal symbol for bar() in the a.out. But that
2331 symbol's address will be negative. What this appears to denote is
2332 an index backwards from the base of the procedure linkage table (PLT)
2333 into the data linkage table (DLT), the end of which is contiguous
2334 with the start of the PLT. This is clearly not a valid address for
2335 us to set a breakpoint on.
2336
2337 Note that one must be careful in how one checks for a negative address.
2338 0xc0000000 is a legitimate address of something in a shared text
2339 segment, for example. Since I don't know what the possible range
2340 is of these "really, truly negative" addresses that come from the
2341 minimal symbols, I'm resorting to the gross hack of checking the
2342 top byte of the address for all 1's. Sigh. */
2343
2344 return (!target_has_stack && (pc & 0xFF000000));
2345}
2346
d709c020
JB
2347/* Return the GDB type object for the "standard" data type of data
2348 in register N. */
2349
eded0a31
AC
2350static struct type *
2351hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2352{
34f75cc1 2353 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2354 return builtin_type_uint32;
d709c020 2355 else
eded0a31 2356 return builtin_type_ieee_single_big;
d709c020
JB
2357}
2358
3ff7cf9e
JB
2359/* Return the GDB type object for the "standard" data type of data
2360 in register N. hppa64 version. */
2361
eded0a31
AC
2362static struct type *
2363hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2364{
34f75cc1 2365 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2366 return builtin_type_uint64;
3ff7cf9e 2367 else
eded0a31 2368 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2369}
2370
d709c020
JB
2371/* Return True if REGNUM is not a register available to the user
2372 through ptrace(). */
2373
8d153463 2374static int
d709c020
JB
2375hppa_cannot_store_register (int regnum)
2376{
2377 return (regnum == 0
34f75cc1
RC
2378 || regnum == HPPA_PCSQ_HEAD_REGNUM
2379 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2380 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2381
2382}
2383
8d153463 2384static CORE_ADDR
d709c020
JB
2385hppa_smash_text_address (CORE_ADDR addr)
2386{
2387 /* The low two bits of the PC on the PA contain the privilege level.
2388 Some genius implementing a (non-GCC) compiler apparently decided
2389 this means that "addresses" in a text section therefore include a
2390 privilege level, and thus symbol tables should contain these bits.
2391 This seems like a bonehead thing to do--anyway, it seems to work
2392 for our purposes to just ignore those bits. */
2393
2394 return (addr &= ~0x3);
2395}
2396
143985b7 2397/* Get the ith function argument for the current function. */
4a302917 2398static CORE_ADDR
143985b7
AF
2399hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2400 struct type *type)
2401{
2402 CORE_ADDR addr;
34f75cc1 2403 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2404 return addr;
2405}
2406
0f8d9d59
RC
2407static void
2408hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2409 int regnum, void *buf)
2410{
2411 ULONGEST tmp;
2412
2413 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2414 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2415 tmp &= ~0x3;
2416 store_unsigned_integer (buf, sizeof(tmp), tmp);
2417}
2418
d49771ef
RC
2419static CORE_ADDR
2420hppa_find_global_pointer (struct value *function)
2421{
2422 return 0;
2423}
2424
0da28f8a
RC
2425void
2426hppa_frame_prev_register_helper (struct frame_info *next_frame,
2427 struct trad_frame_saved_reg saved_regs[],
2428 int regnum, int *optimizedp,
2429 enum lval_type *lvalp, CORE_ADDR *addrp,
2430 int *realnump, void *valuep)
2431{
8693c419
MK
2432 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2433 {
2434 if (valuep)
2435 {
2436 CORE_ADDR pc;
0da28f8a 2437
1f67027d
AC
2438 trad_frame_get_prev_register (next_frame, saved_regs,
2439 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2440 lvalp, addrp, realnump, valuep);
8693c419
MK
2441
2442 pc = extract_unsigned_integer (valuep, 4);
2443 store_unsigned_integer (valuep, 4, pc + 4);
2444 }
2445
2446 /* It's a computed value. */
2447 *optimizedp = 0;
2448 *lvalp = not_lval;
2449 *addrp = 0;
2450 *realnump = -1;
2451 return;
2452 }
0da28f8a 2453
cc72850f
MK
2454 /* Make sure the "flags" register is zero in all unwound frames.
2455 The "flags" registers is a HP-UX specific wart, and only the code
2456 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2457 with it here. This shouldn't affect other systems since those
2458 should provide zero for the "flags" register anyway. */
2459 if (regnum == HPPA_FLAGS_REGNUM)
2460 {
2461 if (valuep)
254ce0a1
RC
2462 store_unsigned_integer (valuep,
2463 register_size (get_frame_arch (next_frame),
2464 regnum),
2465 0);
cc72850f
MK
2466
2467 /* It's a computed value. */
2468 *optimizedp = 0;
2469 *lvalp = not_lval;
2470 *addrp = 0;
2471 *realnump = -1;
2472 return;
2473 }
2474
1f67027d
AC
2475 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2476 optimizedp, lvalp, addrp, realnump, valuep);
0da28f8a 2477}
8693c419 2478\f
0da28f8a 2479
8e8b2dba
MC
2480/* Here is a table of C type sizes on hppa with various compiles
2481 and options. I measured this on PA 9000/800 with HP-UX 11.11
2482 and these compilers:
2483
2484 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2485 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2486 /opt/aCC/bin/aCC B3910B A.03.45
2487 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2488
2489 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2490 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2491 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2492 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2493 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2494 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2495 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2496 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2497
2498 Each line is:
2499
2500 compiler and options
2501 char, short, int, long, long long
2502 float, double, long double
2503 char *, void (*)()
2504
2505 So all these compilers use either ILP32 or LP64 model.
2506 TODO: gcc has more options so it needs more investigation.
2507
a2379359
MC
2508 For floating point types, see:
2509
2510 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2511 HP-UX floating-point guide, hpux 11.00
2512
8e8b2dba
MC
2513 -- chastain 2003-12-18 */
2514
e6e68f1f
JB
2515static struct gdbarch *
2516hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2517{
3ff7cf9e 2518 struct gdbarch_tdep *tdep;
e6e68f1f 2519 struct gdbarch *gdbarch;
59623e27
JB
2520
2521 /* Try to determine the ABI of the object we are loading. */
4be87837 2522 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2523 {
4be87837
DJ
2524 /* If it's a SOM file, assume it's HP/UX SOM. */
2525 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2526 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2527 }
e6e68f1f
JB
2528
2529 /* find a candidate among the list of pre-declared architectures. */
2530 arches = gdbarch_list_lookup_by_info (arches, &info);
2531 if (arches != NULL)
2532 return (arches->gdbarch);
2533
2534 /* If none found, then allocate and initialize one. */
fdd72f95 2535 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2536 gdbarch = gdbarch_alloc (&info, tdep);
2537
2538 /* Determine from the bfd_arch_info structure if we are dealing with
2539 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2540 then default to a 32bit machine. */
2541 if (info.bfd_arch_info != NULL)
2542 tdep->bytes_per_address =
2543 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2544 else
2545 tdep->bytes_per_address = 4;
2546
d49771ef
RC
2547 tdep->find_global_pointer = hppa_find_global_pointer;
2548
3ff7cf9e
JB
2549 /* Some parts of the gdbarch vector depend on whether we are running
2550 on a 32 bits or 64 bits target. */
2551 switch (tdep->bytes_per_address)
2552 {
2553 case 4:
2554 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2555 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2556 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2557 break;
2558 case 8:
2559 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2560 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2561 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2562 break;
2563 default:
2564 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2565 tdep->bytes_per_address);
2566 }
2567
3ff7cf9e 2568 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2569 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2570
8e8b2dba
MC
2571 /* The following gdbarch vector elements are the same in both ILP32
2572 and LP64, but might show differences some day. */
2573 set_gdbarch_long_long_bit (gdbarch, 64);
2574 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2575 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2576
3ff7cf9e
JB
2577 /* The following gdbarch vector elements do not depend on the address
2578 size, or in any other gdbarch element previously set. */
60383d10 2579 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2580 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2581 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2582 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2583 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2584 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2585 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2586 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2587 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
cc72850f
MK
2588 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2589 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
60383d10 2590
143985b7
AF
2591 /* Helper for function argument information. */
2592 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2593
36482093
AC
2594 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2595
3a3bc038
AC
2596 /* When a hardware watchpoint triggers, we'll move the inferior past
2597 it by removing all eventpoints; stepping past the instruction
2598 that caused the trigger; reinserting eventpoints; and checking
2599 whether any watched location changed. */
2600 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2601
5979bc46 2602 /* Inferior function call methods. */
fca7aa43 2603 switch (tdep->bytes_per_address)
5979bc46 2604 {
fca7aa43
AC
2605 case 4:
2606 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2607 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
d49771ef
RC
2608 set_gdbarch_convert_from_func_ptr_addr
2609 (gdbarch, hppa32_convert_from_func_ptr_addr);
fca7aa43
AC
2610 break;
2611 case 8:
782eae8b
AC
2612 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2613 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2614 break;
782eae8b
AC
2615 default:
2616 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2617 }
2618
2619 /* Struct return methods. */
fca7aa43 2620 switch (tdep->bytes_per_address)
fad850b2 2621 {
fca7aa43
AC
2622 case 4:
2623 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2624 break;
2625 case 8:
782eae8b 2626 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2627 break;
fca7aa43
AC
2628 default:
2629 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2630 }
7f07c5b6 2631
85f4f2d8 2632 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2633 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2634
5979bc46 2635 /* Frame unwind methods. */
782eae8b
AC
2636 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2637 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2638
50306a9d
RC
2639 /* Hook in ABI-specific overrides, if they have been registered. */
2640 gdbarch_init_osabi (info, gdbarch);
2641
7f07c5b6
RC
2642 /* Hook in the default unwinders. */
2643 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2644 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2645 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
5979bc46 2646
e6e68f1f
JB
2647 return gdbarch;
2648}
2649
2650static void
2651hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2652{
fdd72f95
RC
2653 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2654
2655 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2656 tdep->bytes_per_address);
2657 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2658}
2659
4facf7e8
JB
2660void
2661_initialize_hppa_tdep (void)
2662{
2663 struct cmd_list_element *c;
4facf7e8 2664
e6e68f1f 2665 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2666
7c46b9fb
RC
2667 hppa_objfile_priv_data = register_objfile_data ();
2668
4facf7e8
JB
2669 add_cmd ("unwind", class_maintenance, unwind_command,
2670 "Print unwind table entry at given address.",
2671 &maintenanceprintlist);
2672
369aa520 2673 /* Debug this files internals. */
4a302917
RC
2674 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2675Set whether hppa target specific debugging information should be displayed.", "\
2676Show whether hppa target specific debugging information is displayed.", "\
2677This flag controls whether hppa target specific debugging information is\n\
2678displayed. This information is particularly useful for debugging frame\n\
2679unwinding problems.", "hppa debug flag is %s.",
2680 NULL, NULL, &setdebuglist, &showdebuglist);
4facf7e8 2681}
This page took 0.700073 seconds and 4 git commands to generate.