* array-rom.c: Support for Array Tech LSI33k based RAID disk
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
49#include <sys/stat.h>
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
669caa9c
SS
58static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60static int hppa_alignof PARAMS ((struct type *));
61
62CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
c598654a 64static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 65
c598654a 66static int is_branch PARAMS ((unsigned long));
669caa9c 67
c598654a 68static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 69
c598654a 70static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 71
70e43abe 72static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 73
70e43abe 74static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c
SS
75
76static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
f81eee9d 77 const struct unwind_table_entry *));
669caa9c 78
c5152d42 79static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 80
c5152d42
JL
81static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
bfaef242 84 unsigned int, CORE_ADDR));
e43169eb
JL
85static void pa_print_registers PARAMS ((char *, int, int));
86static void pa_print_fp_reg PARAMS ((int));
66a1aa07
SG
87
88\f
89/* Routines to extract various sized constants out of hppa
90 instructions. */
91
92/* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95int
96sign_extend (val, bits)
97 unsigned val, bits;
98{
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100}
101
102/* For many immediate values the sign bit is the low bit! */
103
104int
105low_sign_extend (val, bits)
106 unsigned val, bits;
107{
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109}
110/* extract the immediate field from a ld{bhw}s instruction */
111
112unsigned
113get_field (val, from, to)
114 unsigned val, from, to;
115{
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118}
119
120unsigned
121set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123{
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126}
127
128/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130extract_3 (word)
131 unsigned word;
132{
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134}
135
136extract_5_load (word)
137 unsigned word;
138{
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140}
141
142/* extract the immediate field from a st{bhw}s instruction */
143
144int
145extract_5_store (word)
146 unsigned word;
147{
148 return low_sign_extend (word & MASK_5, 5);
149}
150
68c8d698
SG
151/* extract the immediate field from a break instruction */
152
153unsigned
154extract_5r_store (word)
155 unsigned word;
156{
157 return (word & MASK_5);
158}
159
160/* extract the immediate field from a {sr}sm instruction */
161
162unsigned
163extract_5R_store (word)
164 unsigned word;
165{
166 return (word >> 16 & MASK_5);
167}
168
66a1aa07
SG
169/* extract an 11 bit immediate field */
170
171int
172extract_11 (word)
173 unsigned word;
174{
175 return low_sign_extend (word & MASK_11, 11);
176}
177
178/* extract a 14 bit immediate field */
179
180int
181extract_14 (word)
182 unsigned word;
183{
184 return low_sign_extend (word & MASK_14, 14);
185}
186
187/* deposit a 14 bit constant in a word */
188
189unsigned
190deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193{
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197}
198
199/* extract a 21 bit constant */
200
201int
202extract_21 (word)
203 unsigned word;
204{
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219}
220
221/* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225unsigned
226deposit_21 (opnd, word)
227 unsigned opnd, word;
228{
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241}
242
243/* extract a 12 bit constant from branch instructions */
244
245int
246extract_12 (word)
247 unsigned word;
248{
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252}
253
254/* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257int
258extract_17 (word)
259 unsigned word;
260{
261 return sign_extend (GET_FIELD (word, 19, 28) |
262 GET_FIELD (word, 29, 29) << 10 |
263 GET_FIELD (word, 11, 15) << 11 |
264 (word & 0x1) << 16, 17) << 2;
265}
266\f
c5152d42
JL
267
268/* Compare the start address for two unwind entries returning 1 if
269 the first address is larger than the second, -1 if the second is
270 larger than the first, and zero if they are equal. */
271
272static int
273compare_unwind_entries (a, b)
f81eee9d
JL
274 const struct unwind_table_entry *a;
275 const struct unwind_table_entry *b;
c5152d42
JL
276{
277 if (a->region_start > b->region_start)
278 return 1;
279 else if (a->region_start < b->region_start)
280 return -1;
281 else
282 return 0;
283}
284
285static void
bfaef242 286internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
287 struct objfile *objfile;
288 struct unwind_table_entry *table;
289 asection *section;
290 unsigned int entries, size;
bfaef242 291 CORE_ADDR text_offset;
c5152d42
JL
292{
293 /* We will read the unwind entries into temporary memory, then
294 fill in the actual unwind table. */
295 if (size > 0)
296 {
297 unsigned long tmp;
298 unsigned i;
299 char *buf = alloca (size);
300
301 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
302
303 /* Now internalize the information being careful to handle host/target
304 endian issues. */
305 for (i = 0; i < entries; i++)
306 {
307 table[i].region_start = bfd_get_32 (objfile->obfd,
308 (bfd_byte *)buf);
bfaef242 309 table[i].region_start += text_offset;
c5152d42
JL
310 buf += 4;
311 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 312 table[i].region_end += text_offset;
c5152d42
JL
313 buf += 4;
314 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
315 buf += 4;
e43169eb 316 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
c5152d42
JL
317 table[i].Millicode = (tmp >> 30) & 0x1;
318 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
319 table[i].Region_description = (tmp >> 27) & 0x3;
320 table[i].reserved1 = (tmp >> 26) & 0x1;
321 table[i].Entry_SR = (tmp >> 25) & 0x1;
322 table[i].Entry_FR = (tmp >> 21) & 0xf;
323 table[i].Entry_GR = (tmp >> 16) & 0x1f;
324 table[i].Args_stored = (tmp >> 15) & 0x1;
325 table[i].Variable_Frame = (tmp >> 14) & 0x1;
326 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
327 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
328 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
329 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
330 table[i].Ada_Region = (tmp >> 9) & 0x1;
331 table[i].reserved2 = (tmp >> 5) & 0xf;
332 table[i].Save_SP = (tmp >> 4) & 0x1;
333 table[i].Save_RP = (tmp >> 3) & 0x1;
334 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
335 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
336 table[i].Cleanup_defined = tmp & 0x1;
337 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
338 buf += 4;
339 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
340 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
341 table[i].Large_frame = (tmp >> 29) & 0x1;
342 table[i].reserved4 = (tmp >> 27) & 0x3;
343 table[i].Total_frame_size = tmp & 0x7ffffff;
344 }
345 }
346}
347
348/* Read in the backtrace information stored in the `$UNWIND_START$' section of
349 the object file. This info is used mainly by find_unwind_entry() to find
350 out the stack frame size and frame pointer used by procedures. We put
351 everything on the psymbol obstack in the objfile so that it automatically
352 gets freed when the objfile is destroyed. */
353
9c842e0c 354static void
c5152d42
JL
355read_unwind_info (objfile)
356 struct objfile *objfile;
357{
358 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
359 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
360 unsigned index, unwind_entries, elf_unwind_entries;
361 unsigned stub_entries, total_entries;
bfaef242 362 CORE_ADDR text_offset;
c5152d42
JL
363 struct obj_unwind_info *ui;
364
bfaef242 365 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5152d42
JL
366 ui = obstack_alloc (&objfile->psymbol_obstack,
367 sizeof (struct obj_unwind_info));
368
369 ui->table = NULL;
370 ui->cache = NULL;
371 ui->last = -1;
372
373 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
374 section in ELF at the moment. */
375 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 376 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
377 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
378
379 /* Get sizes and unwind counts for all sections. */
380 if (unwind_sec)
381 {
382 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
383 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
384 }
385 else
386 {
387 unwind_size = 0;
388 unwind_entries = 0;
389 }
390
391 if (elf_unwind_sec)
392 {
393 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
394 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
395 }
f55179cb
JL
396 else
397 {
398 elf_unwind_size = 0;
399 elf_unwind_entries = 0;
400 }
c5152d42
JL
401
402 if (stub_unwind_sec)
403 {
404 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
405 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
406 }
407 else
408 {
409 stub_unwind_size = 0;
410 stub_entries = 0;
411 }
412
413 /* Compute total number of unwind entries and their total size. */
414 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
415 total_size = total_entries * sizeof (struct unwind_table_entry);
416
417 /* Allocate memory for the unwind table. */
418 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
419 ui->last = total_entries - 1;
420
421 /* Internalize the standard unwind entries. */
422 index = 0;
423 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 424 unwind_entries, unwind_size, text_offset);
c5152d42
JL
425 index += unwind_entries;
426 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 427 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
428 index += elf_unwind_entries;
429
430 /* Now internalize the stub unwind entries. */
431 if (stub_unwind_size > 0)
432 {
433 unsigned int i;
434 char *buf = alloca (stub_unwind_size);
435
436 /* Read in the stub unwind entries. */
437 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
438 0, stub_unwind_size);
439
440 /* Now convert them into regular unwind entries. */
441 for (i = 0; i < stub_entries; i++, index++)
442 {
443 /* Clear out the next unwind entry. */
444 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
445
446 /* Convert offset & size into region_start and region_end.
447 Stuff away the stub type into "reserved" fields. */
448 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
449 (bfd_byte *) buf);
73a25072 450 ui->table[index].region_start += text_offset;
c5152d42
JL
451 buf += 4;
452 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
453 (bfd_byte *) buf);
454 buf += 2;
455 ui->table[index].region_end
456 = ui->table[index].region_start + 4 *
457 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
458 buf += 2;
459 }
460
461 }
462
463 /* Unwind table needs to be kept sorted. */
464 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
465 compare_unwind_entries);
466
467 /* Keep a pointer to the unwind information. */
468 objfile->obj_private = (PTR) ui;
469}
470
66a1aa07
SG
471/* Lookup the unwind (stack backtrace) info for the given PC. We search all
472 of the objfiles seeking the unwind table entry for this PC. Each objfile
473 contains a sorted list of struct unwind_table_entry. Since we do a binary
474 search of the unwind tables, we depend upon them to be sorted. */
475
476static struct unwind_table_entry *
477find_unwind_entry(pc)
478 CORE_ADDR pc;
479{
480 int first, middle, last;
481 struct objfile *objfile;
482
483 ALL_OBJFILES (objfile)
484 {
485 struct obj_unwind_info *ui;
486
487 ui = OBJ_UNWIND_INFO (objfile);
488
489 if (!ui)
c5152d42
JL
490 {
491 read_unwind_info (objfile);
492 ui = OBJ_UNWIND_INFO (objfile);
493 }
66a1aa07
SG
494
495 /* First, check the cache */
496
497 if (ui->cache
498 && pc >= ui->cache->region_start
499 && pc <= ui->cache->region_end)
500 return ui->cache;
501
502 /* Not in the cache, do a binary search */
503
504 first = 0;
505 last = ui->last;
506
507 while (first <= last)
508 {
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
512 {
513 ui->cache = &ui->table[middle];
514 return &ui->table[middle];
515 }
516
517 if (pc < ui->table[middle].region_start)
518 last = middle - 1;
519 else
520 first = middle + 1;
521 }
522 } /* ALL_OBJFILES() */
523 return NULL;
524}
525
98c0e047
JL
526/* Return the adjustment necessary to make for addresses on the stack
527 as presented by hpread.c.
528
529 This is necessary because of the stack direction on the PA and the
530 bizarre way in which someone (?) decided they wanted to handle
531 frame pointerless code in GDB. */
532int
533hpread_adjust_stack_address (func_addr)
534 CORE_ADDR func_addr;
535{
536 struct unwind_table_entry *u;
537
538 u = find_unwind_entry (func_addr);
539 if (!u)
540 return 0;
541 else
542 return u->Total_frame_size << 3;
543}
98c0e047 544
70e43abe
JL
545/* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548static int
549pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551{
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564}
565
5ac7f56e
JK
566/* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
5ac7f56e
JK
568
569static int
570pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572{
5ac7f56e
JK
573 int found_magic_instruction = 0;
574 int i;
08ecd8f3
JK
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
5ac7f56e 580
d08c6f4c
JK
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
5ac7f56e
JK
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
6e35b037 596 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
6e35b037 618 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634}
635
66a1aa07
SG
636static int
637find_return_regnum(pc)
638 CORE_ADDR pc;
639{
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651}
652
5ac7f56e 653/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07 654int
70e43abe 655find_proc_framesize (pc)
66a1aa07
SG
656 CORE_ADDR pc;
657{
658 struct unwind_table_entry *u;
70e43abe 659 struct minimal_symbol *msym_us;
66a1aa07 660
66a1aa07
SG
661 u = find_unwind_entry (pc);
662
663 if (!u)
5ac7f56e
JK
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
66a1aa07 671
70e43abe
JL
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
678 return -1;
679
66a1aa07
SG
680 return u->Total_frame_size << 3;
681}
682
5ac7f56e
JK
683/* Return offset from sp at which rp is saved, or 0 if not saved. */
684static int rp_saved PARAMS ((CORE_ADDR));
685
686static int
687rp_saved (pc)
688 CORE_ADDR pc;
66a1aa07
SG
689{
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
5ac7f56e
JK
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
66a1aa07
SG
702
703 if (u->Save_RP)
5ac7f56e 704 return -20;
c7f3b703
JL
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
c2e00af6 710 case IMPORT:
c7f3b703
JL
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
66a1aa07
SG
718 else
719 return 0;
720}
721\f
8fa74880
SG
722int
723frameless_function_invocation (frame)
669caa9c 724 struct frame_info *frame;
8fa74880 725{
b8ec9a79 726 struct unwind_table_entry *u;
8fa74880 727
b8ec9a79 728 u = find_unwind_entry (frame->pc);
8fa74880 729
b8ec9a79 730 if (u == 0)
7f43b9b7 731 return 0;
b8ec9a79 732
c7f3b703 733 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
734}
735
66a1aa07
SG
736CORE_ADDR
737saved_pc_after_call (frame)
669caa9c 738 struct frame_info *frame;
66a1aa07
SG
739{
740 int ret_regnum;
edd86fb0
JL
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
66a1aa07
SG
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
66a1aa07
SG
754}
755\f
756CORE_ADDR
757frame_saved_pc (frame)
669caa9c 758 struct frame_info *frame;
66a1aa07
SG
759{
760 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 761 struct unwind_table_entry *u;
66a1aa07 762
70e43abe
JL
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 775 return rp & ~0x3;
70e43abe
JL
776 }
777
8fa74880 778 if (frameless_function_invocation (frame))
66a1aa07
SG
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
70e43abe
JL
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
70e43abe
JL
792 struct frame_saved_regs saved_regs;
793
54b2555b 794 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
70e43abe 806 else
7f43b9b7 807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
808 }
809 else
7f43b9b7 810 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 811 }
66a1aa07 812 else
5ac7f56e 813 {
edd86fb0 814 int rp_offset;
5ac7f56e 815
edd86fb0
JL
816restart:
817 rp_offset = rp_saved (pc);
70e43abe
JL
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
70e43abe
JL
826 struct frame_saved_regs saved_regs;
827
669caa9c 828 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
70e43abe 840 else
7f43b9b7 841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
842 }
843 else if (rp_offset == 0)
7f43b9b7 844 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 845 else
7f43b9b7 846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 847 }
7f43b9b7
JL
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
66a1aa07
SG
856}
857\f
858/* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861void
862init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865{
866 int flags;
867 int framesize;
868
192c3eeb 869 if (frame->next && !fromleaf)
66a1aa07
SG
870 return;
871
192c3eeb
JL
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
66a1aa07
SG
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
192c3eeb
JL
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
910}
911\f
8966221d
JK
912/* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
8966221d 919
669caa9c 920CORE_ADDR
66a1aa07
SG
921frame_chain (frame)
922 struct frame_info *frame;
923{
8966221d
JK
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
70e43abe
JL
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
66a1aa07 940
8966221d
JK
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 945
8966221d
JK
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
70e43abe 949 return frame_base - caller_framesize;
8966221d
JK
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 955 return read_memory_integer (frame_base, 4);
8966221d
JK
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
2f8c3639 965 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 966 stack. If so return whatever value got saved into the stack.
2f8c3639 967 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
968 valid, so use it.
969
2f8c3639 970 We use information from unwind descriptors to determine if %r3
8966221d
JK
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
01a03545
JK
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
8966221d
JK
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 988 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe
JL
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
8966221d
JK
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
70e43abe
JL
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
8966221d 1004 return read_memory_integer (frame->frame, 4);
2f8c3639 1005 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1006 else
c598654a 1007 {
c598654a
JL
1008 struct frame_saved_regs saved_regs;
1009
669caa9c 1010 get_frame_saved_regs (frame, &saved_regs);
c598654a
JL
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
8966221d
JK
1013 }
1014 else
1015 {
2f8c3639 1016 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1017 holds the value of the previous frame pointer). */
2f8c3639 1018 return read_register (FP_REGNUM);
8966221d
JK
1019 }
1020}
66a1aa07 1021
66a1aa07
SG
1022\f
1023/* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026int
1027frame_chain_valid (chain, thisframe)
669caa9c
SS
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
66a1aa07 1030{
247145e6
JK
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
70e43abe 1033 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1034 struct frame_info *next;
66a1aa07
SG
1035
1036 if (!chain)
1037 return 0;
1038
b8ec9a79 1039 u = find_unwind_entry (thisframe->pc);
4b01383b 1040
70e43abe
JL
1041 if (u == NULL)
1042 return 1;
1043
247145e6
JK
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1055 return 0;
5ac7f56e 1056
70e43abe
JL
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
5ac7f56e 1060
70e43abe
JL
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1067 return 1;
5ac7f56e 1068
b8ec9a79
JK
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
4b01383b 1071
b8ec9a79 1072 return 0;
66a1aa07
SG
1073}
1074
66a1aa07
SG
1075/*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
e43169eb
JL
1082void
1083push_dummy_frame (inf_status)
1084 struct inferior_status *inf_status;
66a1aa07 1085{
e43169eb 1086 CORE_ADDR sp, pc, pcspace;
66a1aa07
SG
1087 register int regnum;
1088 int int_buffer;
1089 double freg_buffer;
1090
e43169eb
JL
1091 /* Oh, what a hack. If we're trying to perform an inferior call
1092 while the inferior is asleep, we have to make sure to clear
1093 the "in system call" bit in the flag register (the call will
1094 start after the syscall returns, so we're no longer in the system
1095 call!) This state is kept in "inf_status", change it there.
1096
1097 We also need a number of horrid hacks to deal with lossage in the
1098 PC queue registers (apparently they're not valid when the in syscall
1099 bit is set). */
1100 pc = target_read_pc (inferior_pid);
1101 int_buffer = read_register (FLAGS_REGNUM);
1102 if (int_buffer & 0x2)
1103 {
244f7460 1104 unsigned int sid;
e43169eb
JL
1105 int_buffer &= ~0x2;
1106 memcpy (inf_status->registers, &int_buffer, 4);
1107 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1108 pc += 4;
1109 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1110 pc -= 4;
244f7460
JL
1111 sid = (pc >> 30) & 0x3;
1112 if (sid == 0)
1113 pcspace = read_register (SR4_REGNUM);
1114 else
1115 pcspace = read_register (SR4_REGNUM + 4 + sid);
e43169eb
JL
1116 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1117 &pcspace, 4);
1118 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1119 &pcspace, 4);
1120 }
1121 else
1122 pcspace = read_register (PCSQ_HEAD_REGNUM);
1123
66a1aa07
SG
1124 /* Space for "arguments"; the RP goes in here. */
1125 sp = read_register (SP_REGNUM) + 48;
1126 int_buffer = read_register (RP_REGNUM) | 0x3;
1127 write_memory (sp - 20, (char *)&int_buffer, 4);
1128
1129 int_buffer = read_register (FP_REGNUM);
1130 write_memory (sp, (char *)&int_buffer, 4);
1131
1132 write_register (FP_REGNUM, sp);
1133
1134 sp += 8;
1135
1136 for (regnum = 1; regnum < 32; regnum++)
1137 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1138 sp = push_word (sp, read_register (regnum));
1139
1140 sp += 4;
1141
1142 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1143 {
1144 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1145 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1146 }
1147 sp = push_word (sp, read_register (IPSW_REGNUM));
1148 sp = push_word (sp, read_register (SAR_REGNUM));
e43169eb
JL
1149 sp = push_word (sp, pc);
1150 sp = push_word (sp, pcspace);
1151 sp = push_word (sp, pc + 4);
1152 sp = push_word (sp, pcspace);
66a1aa07
SG
1153 write_register (SP_REGNUM, sp);
1154}
1155
e43169eb 1156void
66a1aa07
SG
1157find_dummy_frame_regs (frame, frame_saved_regs)
1158 struct frame_info *frame;
1159 struct frame_saved_regs *frame_saved_regs;
1160{
1161 CORE_ADDR fp = frame->frame;
1162 int i;
1163
1164 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1165 frame_saved_regs->regs[FP_REGNUM] = fp;
1166 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1167
b227992a
SG
1168 for (fp += 12, i = 3; i < 32; i++)
1169 {
1170 if (i != FP_REGNUM)
1171 {
1172 frame_saved_regs->regs[i] = fp;
1173 fp += 4;
1174 }
1175 }
66a1aa07
SG
1176
1177 fp += 4;
1178 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1179 frame_saved_regs->regs[i] = fp;
1180
1181 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1182 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1183 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1184 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1185 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1186 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1187}
1188
e43169eb 1189void
66a1aa07
SG
1190hppa_pop_frame ()
1191{
669caa9c 1192 register struct frame_info *frame = get_current_frame ();
54576db3 1193 register CORE_ADDR fp, npc, target_pc;
66a1aa07
SG
1194 register int regnum;
1195 struct frame_saved_regs fsr;
66a1aa07
SG
1196 double freg_buffer;
1197
669caa9c
SS
1198 fp = FRAME_FP (frame);
1199 get_frame_saved_regs (frame, &fsr);
66a1aa07 1200
0a64709e 1201#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1202 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1203 restore_pc_queue (&fsr);
0a64709e 1204#endif
66a1aa07
SG
1205
1206 for (regnum = 31; regnum > 0; regnum--)
1207 if (fsr.regs[regnum])
1208 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1209
1210 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1211 if (fsr.regs[regnum])
1212 {
1213 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1214 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1215 }
1216
1217 if (fsr.regs[IPSW_REGNUM])
1218 write_register (IPSW_REGNUM,
1219 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1220
1221 if (fsr.regs[SAR_REGNUM])
1222 write_register (SAR_REGNUM,
1223 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1224
ed1a07ad 1225 /* If the PC was explicitly saved, then just restore it. */
66a1aa07 1226 if (fsr.regs[PCOQ_TAIL_REGNUM])
54576db3
JL
1227 {
1228 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1229 write_register (PCOQ_TAIL_REGNUM, npc);
1230 }
ed1a07ad
JK
1231 /* Else use the value in %rp to set the new PC. */
1232 else
54576db3
JL
1233 {
1234 npc = read_register (RP_REGNUM);
1235 target_write_pc (npc, 0);
1236 }
ed1a07ad 1237
66a1aa07
SG
1238 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1239
1240 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1241 write_register (SP_REGNUM, fp - 48);
1242 else
1243 write_register (SP_REGNUM, fp);
1244
54576db3
JL
1245 /* The PC we just restored may be inside a return trampoline. If so
1246 we want to restart the inferior and run it through the trampoline.
1247
1248 Do this by setting a momentary breakpoint at the location the
244f7460
JL
1249 trampoline returns to.
1250
1251 Don't skip through the trampoline if we're popping a dummy frame. */
54576db3 1252 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
244f7460 1253 if (target_pc && !fsr.regs[IPSW_REGNUM])
54576db3
JL
1254 {
1255 struct symtab_and_line sal;
1256 struct breakpoint *breakpoint;
1257 struct cleanup *old_chain;
1258
1259 /* Set up our breakpoint. Set it to be silent as the MI code
1260 for "return_command" will print the frame we returned to. */
1261 sal = find_pc_line (target_pc, 0);
1262 sal.pc = target_pc;
1263 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1264 breakpoint->silent = 1;
1265
1266 /* So we can clean things up. */
1267 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1268
1269 /* Start up the inferior. */
1270 proceed_to_finish = 1;
1271 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1272
1273 /* Perform our cleanups. */
1274 do_cleanups (old_chain);
1275 }
66a1aa07 1276 flush_cached_frames ();
66a1aa07
SG
1277}
1278
1279/*
1280 * After returning to a dummy on the stack, restore the instruction
1281 * queue space registers. */
1282
1283static int
1284restore_pc_queue (fsr)
1285 struct frame_saved_regs *fsr;
1286{
1287 CORE_ADDR pc = read_pc ();
1288 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
67ac9759 1289 struct target_waitstatus w;
66a1aa07
SG
1290 int insn_count;
1291
1292 /* Advance past break instruction in the call dummy. */
1293 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1294 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1295
1296 /*
1297 * HPUX doesn't let us set the space registers or the space
1298 * registers of the PC queue through ptrace. Boo, hiss.
1299 * Conveniently, the call dummy has this sequence of instructions
1300 * after the break:
1301 * mtsp r21, sr0
1302 * ble,n 0(sr0, r22)
1303 *
1304 * So, load up the registers and single step until we are in the
1305 * right place.
1306 */
1307
1308 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1309 write_register (22, new_pc);
1310
1311 for (insn_count = 0; insn_count < 3; insn_count++)
1312 {
8c5e0021
JK
1313 /* FIXME: What if the inferior gets a signal right now? Want to
1314 merge this into wait_for_inferior (as a special kind of
1315 watchpoint? By setting a breakpoint at the end? Is there
1316 any other choice? Is there *any* way to do this stuff with
1317 ptrace() or some equivalent?). */
66a1aa07 1318 resume (1, 0);
67ac9759 1319 target_wait (inferior_pid, &w);
66a1aa07 1320
67ac9759 1321 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1322 {
67ac9759 1323 stop_signal = w.value.sig;
66a1aa07 1324 terminal_ours_for_output ();
67ac9759
JK
1325 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1326 target_signal_to_name (stop_signal),
1327 target_signal_to_string (stop_signal));
199b2450 1328 gdb_flush (gdb_stdout);
66a1aa07
SG
1329 return 0;
1330 }
1331 }
8c5e0021 1332 target_terminal_ours ();
cad1498f 1333 target_fetch_registers (-1);
66a1aa07
SG
1334 return 1;
1335}
1336
1337CORE_ADDR
1338hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1339 int nargs;
4fd5eed4 1340 value_ptr *args;
66a1aa07
SG
1341 CORE_ADDR sp;
1342 int struct_return;
1343 CORE_ADDR struct_addr;
1344{
1345 /* array of arguments' offsets */
1edc5cd2 1346 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1347 int cum = 0;
1348 int i, alignment;
1349
1350 for (i = 0; i < nargs; i++)
1351 {
1352 /* Coerce chars to int & float to double if necessary */
1353 args[i] = value_arg_coerce (args[i]);
1354
1355 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1356
1357 /* value must go at proper alignment. Assume alignment is a
1358 power of two.*/
1359 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1360 if (cum % alignment)
1361 cum = (cum + alignment) & -alignment;
1362 offset[i] = -cum;
1363 }
558f4183 1364 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1365
1366 for (i = 0; i < nargs; i++)
1367 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1368 TYPE_LENGTH (VALUE_TYPE (args[i])));
1369
1370 if (struct_return)
1371 write_register (28, struct_addr);
1372 return sp + 32;
1373}
1374
1375/*
1376 * Insert the specified number of args and function address
1377 * into a call sequence of the above form stored at DUMMYNAME.
1378 *
1379 * On the hppa we need to call the stack dummy through $$dyncall.
1380 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1381 * real_pc, which is the location where gdb should start up the
1382 * inferior to do the function call.
1383 */
1384
1385CORE_ADDR
1386hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1387 char *dummy;
66a1aa07
SG
1388 CORE_ADDR pc;
1389 CORE_ADDR fun;
1390 int nargs;
4fd5eed4 1391 value_ptr *args;
66a1aa07
SG
1392 struct type *type;
1393 int gcc_p;
1394{
1395 CORE_ADDR dyncall_addr, sr4export_addr;
1396 struct minimal_symbol *msymbol;
6cfec929 1397 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1398 struct unwind_table_entry *u;
66a1aa07
SG
1399
1400 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1401 if (msymbol == NULL)
1402 error ("Can't find an address for $$dyncall trampoline");
1403
1404 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1405
4f915914
JL
1406 /* FUN could be a procedure label, in which case we have to get
1407 its real address and the value of its GOT/DP. */
1408 if (fun & 0x2)
1409 {
1410 /* Get the GOT/DP value for the target function. It's
1411 at *(fun+4). Note the call dummy is *NOT* allowed to
1412 trash %r19 before calling the target function. */
1413 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1414
1415 /* Now get the real address for the function we are calling, it's
1416 at *fun. */
1417 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1418 }
b1bbe38b
JL
1419 else
1420 {
1421
3200aa59 1422#ifndef GDB_TARGET_IS_PA_ELF
b1bbe38b 1423 /* FUN could be either an export stub, or the real address of a
3200aa59
JL
1424 function in a shared library. We must call an import stub
1425 rather than the export stub or real function for lazy binding
1426 to work correctly. */
1427 if (som_solib_get_got_by_pc (fun))
1428 {
1429 struct objfile *objfile;
1430 struct minimal_symbol *funsymbol, *stub_symbol;
1431 CORE_ADDR newfun = 0;
b1bbe38b 1432
3200aa59
JL
1433 funsymbol = lookup_minimal_symbol_by_pc (fun);
1434 if (!funsymbol)
1435 error ("Unable to find minimal symbol for target fucntion.\n");
b1bbe38b 1436
3200aa59
JL
1437 /* Search all the object files for an import symbol with the
1438 right name. */
1439 ALL_OBJFILES (objfile)
1440 {
1441 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1442 objfile);
1443 /* Found a symbol with the right name. */
1444 if (stub_symbol)
1445 {
1446 struct unwind_table_entry *u;
1447 /* It must be a shared library trampoline. */
1448 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1449 continue;
1450
1451 /* It must also be an import stub. */
1452 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1453 if (!u || u->stub_type != IMPORT)
1454 continue;
1455
1456 /* OK. Looks like the correct import stub. */
1457 newfun = SYMBOL_VALUE (stub_symbol);
1458 fun = newfun;
1459 }
1460 }
1461 if (newfun == 0)
1462 write_register (19, som_solib_get_got_by_pc (fun));
1463 }
bd2b724a 1464#endif
b1bbe38b 1465 }
4f915914 1466
19cd0c1f
JL
1467 /* If we are calling an import stub (eg calling into a dynamic library)
1468 then have sr4export call the magic __d_plt_call routine which is linked
1469 in from end.o. (You can't use _sr4export to call the import stub as
1470 the value in sp-24 will get fried and you end up returning to the
1471 wrong location. You can't call the import stub directly as the code
1472 to bind the PLT entry to a function can't return to a stack address.) */
1473 u = find_unwind_entry (fun);
1474 if (u && u->stub_type == IMPORT)
1475 {
1476 CORE_ADDR new_fun;
1477 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1478 if (msymbol == NULL)
3200aa59
JL
1479 msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL);
1480
1481 if (msymbol == NULL)
1482 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
19cd0c1f
JL
1483
1484 /* This is where sr4export will jump to. */
1485 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1486
3200aa59
JL
1487 if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
1488 write_register (22, fun);
1489 else
1490 {
1491 /* We have to store the address of the stub in __shlib_funcptr. */
1492 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1493 (struct objfile *)NULL);
1494 if (msymbol == NULL)
1495 error ("Can't find an address for __shlib_funcptr");
19cd0c1f 1496
3200aa59
JL
1497 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1498 }
19cd0c1f 1499 fun = new_fun;
19cd0c1f
JL
1500 }
1501
1502 /* We still need sr4export's address too. */
66a1aa07
SG
1503 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1504 if (msymbol == NULL)
1505 error ("Can't find an address for _sr4export trampoline");
1506
1507 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1508
f4f0d174
JK
1509 store_unsigned_integer
1510 (&dummy[9*REGISTER_SIZE],
1511 REGISTER_SIZE,
1512 deposit_21 (fun >> 11,
1513 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1514 REGISTER_SIZE)));
1515 store_unsigned_integer
1516 (&dummy[10*REGISTER_SIZE],
1517 REGISTER_SIZE,
1518 deposit_14 (fun & MASK_11,
1519 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1520 REGISTER_SIZE)));
1521 store_unsigned_integer
1522 (&dummy[12*REGISTER_SIZE],
1523 REGISTER_SIZE,
1524 deposit_21 (sr4export_addr >> 11,
1525 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1526 REGISTER_SIZE)));
1527 store_unsigned_integer
1528 (&dummy[13*REGISTER_SIZE],
1529 REGISTER_SIZE,
1530 deposit_14 (sr4export_addr & MASK_11,
1531 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1532 REGISTER_SIZE)));
66a1aa07
SG
1533
1534 write_register (22, pc);
1535
6cfec929
JK
1536 /* If we are in a syscall, then we should call the stack dummy
1537 directly. $$dyncall is not needed as the kernel sets up the
1538 space id registers properly based on the value in %r31. In
1539 fact calling $$dyncall will not work because the value in %r22
244f7460
JL
1540 will be clobbered on the syscall exit path.
1541
1542 Similarly if the current PC is in a shared library. Note however,
1543 this scheme won't work if the shared library isn't mapped into
1544 the same space as the stack. */
6cfec929
JK
1545 if (flags & 2)
1546 return pc;
244f7460
JL
1547#ifndef GDB_TARGET_IS_PA_ELF
1548 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1549 return pc;
1550#endif
6cfec929
JK
1551 else
1552 return dyncall_addr;
1553
66a1aa07
SG
1554}
1555
d3862cae
JK
1556/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1557 bits. */
669caa9c 1558
d3862cae 1559CORE_ADDR
e9a3cde8
JL
1560target_read_pc (pid)
1561 int pid;
d3862cae
JK
1562{
1563 int flags = read_register (FLAGS_REGNUM);
1564
1565 if (flags & 2)
1566 return read_register (31) & ~0x3;
1567 return read_register (PC_REGNUM) & ~0x3;
1568}
1569
6cfec929
JK
1570/* Write out the PC. If currently in a syscall, then also write the new
1571 PC value into %r31. */
669caa9c 1572
6cfec929 1573void
e9a3cde8 1574target_write_pc (v, pid)
6cfec929 1575 CORE_ADDR v;
e9a3cde8 1576 int pid;
6cfec929
JK
1577{
1578 int flags = read_register (FLAGS_REGNUM);
1579
1580 /* If in a syscall, then set %r31. Also make sure to get the
1581 privilege bits set correctly. */
1582 if (flags & 2)
1583 write_register (31, (long) (v | 0x3));
1584
1585 write_register (PC_REGNUM, (long) v);
1586 write_register (NPC_REGNUM, (long) v + 4);
1587}
1588
66a1aa07
SG
1589/* return the alignment of a type in bytes. Structures have the maximum
1590 alignment required by their fields. */
1591
1592static int
1593hppa_alignof (arg)
1594 struct type *arg;
1595{
1596 int max_align, align, i;
1597 switch (TYPE_CODE (arg))
1598 {
1599 case TYPE_CODE_PTR:
1600 case TYPE_CODE_INT:
1601 case TYPE_CODE_FLT:
1602 return TYPE_LENGTH (arg);
1603 case TYPE_CODE_ARRAY:
1604 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1605 case TYPE_CODE_STRUCT:
1606 case TYPE_CODE_UNION:
1607 max_align = 2;
1608 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1609 {
1610 /* Bit fields have no real alignment. */
1611 if (!TYPE_FIELD_BITPOS (arg, i))
1612 {
1613 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1614 max_align = max (max_align, align);
1615 }
1616 }
1617 return max_align;
1618 default:
1619 return 4;
1620 }
1621}
1622
1623/* Print the register regnum, or all registers if regnum is -1 */
1624
e43169eb 1625void
66a1aa07
SG
1626pa_do_registers_info (regnum, fpregs)
1627 int regnum;
1628 int fpregs;
1629{
1630 char raw_regs [REGISTER_BYTES];
1631 int i;
1632
1633 for (i = 0; i < NUM_REGS; i++)
1634 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1635 if (regnum == -1)
1636 pa_print_registers (raw_regs, regnum, fpregs);
1637 else if (regnum < FP0_REGNUM)
199b2450 1638 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1639 REGISTER_BYTE (regnum)));
1640 else
1641 pa_print_fp_reg (regnum);
1642}
1643
e43169eb 1644static void
66a1aa07
SG
1645pa_print_registers (raw_regs, regnum, fpregs)
1646 char *raw_regs;
1647 int regnum;
1648 int fpregs;
1649{
1650 int i;
1651
1652 for (i = 0; i < 18; i++)
199b2450 1653 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1654 reg_names[i],
1655 *(int *)(raw_regs + REGISTER_BYTE (i)),
1656 reg_names[i + 18],
1657 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1658 reg_names[i + 36],
1659 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1660 reg_names[i + 54],
1661 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1662
1663 if (fpregs)
1664 for (i = 72; i < NUM_REGS; i++)
1665 pa_print_fp_reg (i);
1666}
1667
e43169eb 1668static void
66a1aa07
SG
1669pa_print_fp_reg (i)
1670 int i;
1671{
1672 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1673 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1674
eb1167c6 1675 /* Get 32bits of data. */
66a1aa07 1676 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1677
eb1167c6
JL
1678 /* Put it in the buffer. No conversions are ever necessary. */
1679 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1680
199b2450 1681 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1682 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1683 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1684
199b2450 1685 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1686 1, 0, Val_pretty_default);
1687 printf_filtered ("\n");
eb1167c6
JL
1688
1689 /* If "i" is even, then this register can also be a double-precision
1690 FP register. Dump it out as such. */
1691 if ((i % 2) == 0)
1692 {
1693 /* Get the data in raw format for the 2nd half. */
1694 read_relative_register_raw_bytes (i + 1, raw_buffer);
1695
1696 /* Copy it into the appropriate part of the virtual buffer. */
1697 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1698 REGISTER_RAW_SIZE (i));
1699
1700 /* Dump it as a double. */
1701 fputs_filtered (reg_names[i], gdb_stdout);
1702 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1703 fputs_filtered ("(double precision) ", gdb_stdout);
1704
1705 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1706 1, 0, Val_pretty_default);
1707 printf_filtered ("\n");
1708 }
66a1aa07
SG
1709}
1710
a76c2240
JL
1711/* Return one if PC is in the call path of a trampoline, else return zero.
1712
1713 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1714 just shared library trampolines (import, export). */
481faa25 1715
e43169eb 1716int
481faa25
JL
1717in_solib_call_trampoline (pc, name)
1718 CORE_ADDR pc;
1719 char *name;
1720{
1721 struct minimal_symbol *minsym;
1722 struct unwind_table_entry *u;
a76c2240
JL
1723 static CORE_ADDR dyncall = 0;
1724 static CORE_ADDR sr4export = 0;
1725
1726/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1727 new exec file */
1728
1729 /* First see if PC is in one of the two C-library trampolines. */
1730 if (!dyncall)
1731 {
1732 minsym = lookup_minimal_symbol ("$$dyncall", NULL);
1733 if (minsym)
1734 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1735 else
1736 dyncall = -1;
1737 }
1738
1739 if (!sr4export)
1740 {
1741 minsym = lookup_minimal_symbol ("_sr4export", NULL);
1742 if (minsym)
1743 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1744 else
1745 sr4export = -1;
1746 }
1747
1748 if (pc == dyncall || pc == sr4export)
1749 return 1;
481faa25
JL
1750
1751 /* Get the unwind descriptor corresponding to PC, return zero
1752 if no unwind was found. */
1753 u = find_unwind_entry (pc);
1754 if (!u)
1755 return 0;
1756
1757 /* If this isn't a linker stub, then return now. */
a76c2240 1758 if (u->stub_type == 0)
481faa25
JL
1759 return 0;
1760
a76c2240
JL
1761 /* By definition a long-branch stub is a call stub. */
1762 if (u->stub_type == LONG_BRANCH)
1763 return 1;
1764
481faa25
JL
1765 /* The call and return path execute the same instructions within
1766 an IMPORT stub! So an IMPORT stub is both a call and return
1767 trampoline. */
1768 if (u->stub_type == IMPORT)
1769 return 1;
1770
a76c2240 1771 /* Parameter relocation stubs always have a call path and may have a
481faa25 1772 return path. */
54576db3
JL
1773 if (u->stub_type == PARAMETER_RELOCATION
1774 || u->stub_type == EXPORT)
a76c2240
JL
1775 {
1776 CORE_ADDR addr;
1777
1778 /* Search forward from the current PC until we hit a branch
1779 or the end of the stub. */
1780 for (addr = pc; addr <= u->region_end; addr += 4)
1781 {
1782 unsigned long insn;
1783
1784 insn = read_memory_integer (addr, 4);
1785
1786 /* Does it look like a bl? If so then it's the call path, if
54576db3 1787 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1788 if ((insn & 0xfc00e000) == 0xe8000000)
1789 return 1;
54576db3
JL
1790 else if ((insn & 0xfc00e001) == 0xe800c000
1791 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1792 return 0;
1793 }
1794
1795 /* Should never happen. */
1796 warning ("Unable to find branch in parameter relocation stub.\n");
1797 return 0;
1798 }
1799
1800 /* Unknown stub type. For now, just return zero. */
1801 return 0;
481faa25
JL
1802}
1803
a76c2240
JL
1804/* Return one if PC is in the return path of a trampoline, else return zero.
1805
1806 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1807 just shared library trampolines (import, export). */
481faa25 1808
e43169eb 1809int
481faa25
JL
1810in_solib_return_trampoline (pc, name)
1811 CORE_ADDR pc;
1812 char *name;
1813{
481faa25
JL
1814 struct unwind_table_entry *u;
1815
1816 /* Get the unwind descriptor corresponding to PC, return zero
1817 if no unwind was found. */
1818 u = find_unwind_entry (pc);
1819 if (!u)
1820 return 0;
1821
a76c2240
JL
1822 /* If this isn't a linker stub or it's just a long branch stub, then
1823 return zero. */
1824 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
481faa25
JL
1825 return 0;
1826
1827 /* The call and return path execute the same instructions within
1828 an IMPORT stub! So an IMPORT stub is both a call and return
1829 trampoline. */
1830 if (u->stub_type == IMPORT)
1831 return 1;
1832
a76c2240 1833 /* Parameter relocation stubs always have a call path and may have a
481faa25 1834 return path. */
54576db3
JL
1835 if (u->stub_type == PARAMETER_RELOCATION
1836 || u->stub_type == EXPORT)
a76c2240
JL
1837 {
1838 CORE_ADDR addr;
1839
1840 /* Search forward from the current PC until we hit a branch
1841 or the end of the stub. */
1842 for (addr = pc; addr <= u->region_end; addr += 4)
1843 {
1844 unsigned long insn;
1845
1846 insn = read_memory_integer (addr, 4);
1847
1848 /* Does it look like a bl? If so then it's the call path, if
54576db3 1849 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1850 if ((insn & 0xfc00e000) == 0xe8000000)
1851 return 0;
54576db3
JL
1852 else if ((insn & 0xfc00e001) == 0xe800c000
1853 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1854 return 1;
1855 }
1856
1857 /* Should never happen. */
1858 warning ("Unable to find branch in parameter relocation stub.\n");
1859 return 0;
1860 }
1861
1862 /* Unknown stub type. For now, just return zero. */
1863 return 0;
1864
481faa25
JL
1865}
1866
de482138
JL
1867/* Figure out if PC is in a trampoline, and if so find out where
1868 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 1869
de482138
JL
1870 Simple code examination probably is not a good idea since the code
1871 sequences in trampolines can also appear in user code.
1872
1873 We use unwinds and information from the minimal symbol table to
1874 determine when we're in a trampoline. This won't work for ELF
1875 (yet) since it doesn't create stub unwind entries. Whether or
1876 not ELF will create stub unwinds or normal unwinds for linker
1877 stubs is still being debated.
1878
1879 This should handle simple calls through dyncall or sr4export,
1880 long calls, argument relocation stubs, and dyncall/sr4export
1881 calling an argument relocation stub. It even handles some stubs
1882 used in dynamic executables. */
66a1aa07
SG
1883
1884CORE_ADDR
1885skip_trampoline_code (pc, name)
1886 CORE_ADDR pc;
1887 char *name;
1888{
de482138
JL
1889 long orig_pc = pc;
1890 long prev_inst, curr_inst, loc;
66a1aa07 1891 static CORE_ADDR dyncall = 0;
de482138 1892 static CORE_ADDR sr4export = 0;
66a1aa07 1893 struct minimal_symbol *msym;
de482138 1894 struct unwind_table_entry *u;
66a1aa07 1895
de482138
JL
1896/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1897 new exec file */
66a1aa07
SG
1898
1899 if (!dyncall)
1900 {
1901 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1902 if (msym)
1903 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1904 else
1905 dyncall = -1;
1906 }
1907
de482138
JL
1908 if (!sr4export)
1909 {
1910 msym = lookup_minimal_symbol ("_sr4export", NULL);
1911 if (msym)
1912 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1913 else
1914 sr4export = -1;
1915 }
1916
1917 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 1918 of the function. So we may have to do something special. */
66a1aa07 1919 if (pc == dyncall)
de482138
JL
1920 {
1921 pc = (CORE_ADDR) read_register (22);
66a1aa07 1922
de482138
JL
1923 /* If bit 30 (counting from the left) is on, then pc is the address of
1924 the PLT entry for this function, not the address of the function
1925 itself. Bit 31 has meaning too, but only for MPE. */
1926 if (pc & 0x2)
1927 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1928 }
1929 else if (pc == sr4export)
1930 pc = (CORE_ADDR) (read_register (22));
66a1aa07 1931
de482138
JL
1932 /* Get the unwind descriptor corresponding to PC, return zero
1933 if no unwind was found. */
1934 u = find_unwind_entry (pc);
1935 if (!u)
1936 return 0;
1937
1938 /* If this isn't a linker stub, then return now. */
1939 if (u->stub_type == 0)
1940 return orig_pc == pc ? 0 : pc & ~0x3;
1941
1942 /* It's a stub. Search for a branch and figure out where it goes.
1943 Note we have to handle multi insn branch sequences like ldil;ble.
1944 Most (all?) other branches can be determined by examining the contents
1945 of certain registers and the stack. */
1946 loc = pc;
1947 curr_inst = 0;
1948 prev_inst = 0;
1949 while (1)
1950 {
1951 /* Make sure we haven't walked outside the range of this stub. */
1952 if (u != find_unwind_entry (loc))
1953 {
1954 warning ("Unable to find branch in linker stub");
1955 return orig_pc == pc ? 0 : pc & ~0x3;
1956 }
1957
1958 prev_inst = curr_inst;
1959 curr_inst = read_memory_integer (loc, 4);
66a1aa07 1960
de482138
JL
1961 /* Does it look like a branch external using %r1? Then it's the
1962 branch from the stub to the actual function. */
1963 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1964 {
1965 /* Yup. See if the previous instruction loaded
1966 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 1967 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
1968 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1969 else
1970 {
1971 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1972 return orig_pc == pc ? 0 : pc & ~0x3;
1973 }
1974 }
1975
f32fc5f9
JL
1976 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1977 import stub to an export stub.
1978
1979 It is impossible to determine the target of the branch via
1980 simple examination of instructions and/or data (consider
1981 that the address in the plabel may be the address of the
1982 bind-on-reference routine in the dynamic loader).
1983
1984 So we have try an alternative approach.
1985
1986 Get the name of the symbol at our current location; it should
1987 be a stub symbol with the same name as the symbol in the
1988 shared library.
1989
1990 Then lookup a minimal symbol with the same name; we should
1991 get the minimal symbol for the target routine in the shared
1992 library as those take precedence of import/export stubs. */
1993 if (curr_inst == 0xe2a00000)
1994 {
1995 struct minimal_symbol *stubsym, *libsym;
1996
1997 stubsym = lookup_minimal_symbol_by_pc (loc);
1998 if (stubsym == NULL)
1999 {
2000 warning ("Unable to find symbol for 0x%x", loc);
2001 return orig_pc == pc ? 0 : pc & ~0x3;
2002 }
2003
2004 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
2005 if (libsym == NULL)
2006 {
2007 warning ("Unable to find library symbol for %s\n",
2008 SYMBOL_NAME (stubsym));
2009 return orig_pc == pc ? 0 : pc & ~0x3;
2010 }
2011
2012 return SYMBOL_VALUE (libsym);
2013 }
2014
88b91d4a
JL
2015 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2016 branch from the stub to the actual function. */
2017 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2018 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
2019 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2020
2021 /* Does it look like bv (rp)? Note this depends on the
2022 current stack pointer being the same as the stack
2023 pointer in the stub itself! This is a branch on from the
2024 stub back to the original caller. */
2025 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2026 {
2027 /* Yup. See if the previous instruction loaded
2028 rp from sp - 8. */
2029 if (prev_inst == 0x4bc23ff1)
2030 return (read_memory_integer
2031 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2032 else
2033 {
2034 warning ("Unable to find restore of %%rp before bv (%%rp).");
2035 return orig_pc == pc ? 0 : pc & ~0x3;
2036 }
2037 }
2038
2039 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2040 the original caller from the stub. Used in dynamic executables. */
2041 else if (curr_inst == 0xe0400002)
2042 {
2043 /* The value we jump to is sitting in sp - 24. But that's
2044 loaded several instructions before the be instruction.
2045 I guess we could check for the previous instruction being
2046 mtsp %r1,%sr0 if we want to do sanity checking. */
2047 return (read_memory_integer
2048 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2049 }
2050
2051 /* Haven't found the branch yet, but we're still in the stub.
2052 Keep looking. */
2053 loc += 4;
2054 }
66a1aa07
SG
2055}
2056
c598654a
JL
2057/* For the given instruction (INST), return any adjustment it makes
2058 to the stack pointer or zero for no adjustment.
2059
2060 This only handles instructions commonly found in prologues. */
2061
2062static int
2063prologue_inst_adjust_sp (inst)
2064 unsigned long inst;
2065{
2066 /* This must persist across calls. */
2067 static int save_high21;
2068
2069 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2070 if ((inst & 0xffffc000) == 0x37de0000)
2071 return extract_14 (inst);
2072
2073 /* stwm X,D(sp) */
2074 if ((inst & 0xffe00000) == 0x6fc00000)
2075 return extract_14 (inst);
2076
2077 /* addil high21,%r1; ldo low11,(%r1),%r30)
2078 save high bits in save_high21 for later use. */
2079 if ((inst & 0xffe00000) == 0x28200000)
2080 {
2081 save_high21 = extract_21 (inst);
2082 return 0;
2083 }
2084
2085 if ((inst & 0xffff0000) == 0x343e0000)
2086 return save_high21 + extract_14 (inst);
2087
2088 /* fstws as used by the HP compilers. */
2089 if ((inst & 0xffffffe0) == 0x2fd01220)
2090 return extract_5_load (inst);
2091
2092 /* No adjustment. */
2093 return 0;
2094}
2095
2096/* Return nonzero if INST is a branch of some kind, else return zero. */
2097
2098static int
2099is_branch (inst)
2100 unsigned long inst;
2101{
2102 switch (inst >> 26)
2103 {
2104 case 0x20:
2105 case 0x21:
2106 case 0x22:
2107 case 0x23:
2108 case 0x28:
2109 case 0x29:
2110 case 0x2a:
2111 case 0x2b:
2112 case 0x30:
2113 case 0x31:
2114 case 0x32:
2115 case 0x33:
2116 case 0x38:
2117 case 0x39:
2118 case 0x3a:
2119 return 1;
2120
2121 default:
2122 return 0;
2123 }
2124}
2125
2126/* Return the register number for a GR which is saved by INST or
edd86fb0 2127 zero it INST does not save a GR. */
c598654a
JL
2128
2129static int
2130inst_saves_gr (inst)
2131 unsigned long inst;
2132{
2133 /* Does it look like a stw? */
2134 if ((inst >> 26) == 0x1a)
2135 return extract_5R_store (inst);
2136
edd86fb0 2137 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
2138 if ((inst >> 26) == 0x1b)
2139 return extract_5R_store (inst);
2140
edd86fb0
JL
2141 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2142 too. */
2143 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2144 return extract_5R_store (inst);
2145
c598654a
JL
2146 return 0;
2147}
2148
2149/* Return the register number for a FR which is saved by INST or
2150 zero it INST does not save a FR.
2151
2152 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
2153 kind of stores the prologue will use).
2154
2155 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
2156
2157static int
2158inst_saves_fr (inst)
2159 unsigned long inst;
2160{
edd86fb0 2161 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
2162 return extract_5r_store (inst);
2163 return 0;
2164}
2165
66a1aa07 2166/* Advance PC across any function entry prologue instructions
c598654a 2167 to reach some "real" code.
66a1aa07 2168
c598654a
JL
2169 Use information in the unwind table to determine what exactly should
2170 be in the prologue. */
66a1aa07
SG
2171
2172CORE_ADDR
de482138 2173skip_prologue (pc)
66a1aa07
SG
2174 CORE_ADDR pc;
2175{
34df79fc 2176 char buf[4];
c598654a 2177 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
edd86fb0 2178 unsigned long args_stored, status, i;
c598654a 2179 struct unwind_table_entry *u;
66a1aa07 2180
c598654a
JL
2181 u = find_unwind_entry (pc);
2182 if (!u)
fdafbfad 2183 return pc;
c598654a 2184
de482138
JL
2185 /* If we are not at the beginning of a function, then return now. */
2186 if ((pc & ~0x3) != u->region_start)
2187 return pc;
2188
c598654a
JL
2189 /* This is how much of a frame adjustment we need to account for. */
2190 stack_remaining = u->Total_frame_size << 3;
66a1aa07 2191
c598654a
JL
2192 /* Magic register saves we want to know about. */
2193 save_rp = u->Save_RP;
2194 save_sp = u->Save_SP;
2195
edd86fb0
JL
2196 /* An indication that args may be stored into the stack. Unfortunately
2197 the HPUX compilers tend to set this in cases where no args were
2198 stored too!. */
2199 args_stored = u->Args_stored;
2200
c598654a
JL
2201 /* Turn the Entry_GR field into a bitmask. */
2202 save_gr = 0;
2203 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 2204 {
c598654a
JL
2205 /* Frame pointer gets saved into a special location. */
2206 if (u->Save_SP && i == FP_REGNUM)
2207 continue;
2208
2209 save_gr |= (1 << i);
2210 }
2211
2212 /* Turn the Entry_FR field into a bitmask too. */
2213 save_fr = 0;
2214 for (i = 12; i < u->Entry_FR + 12; i++)
2215 save_fr |= (1 << i);
2216
2217 /* Loop until we find everything of interest or hit a branch.
2218
2219 For unoptimized GCC code and for any HP CC code this will never ever
2220 examine any user instructions.
2221
2222 For optimzied GCC code we're faced with problems. GCC will schedule
2223 its prologue and make prologue instructions available for delay slot
2224 filling. The end result is user code gets mixed in with the prologue
2225 and a prologue instruction may be in the delay slot of the first branch
2226 or call.
2227
2228 Some unexpected things are expected with debugging optimized code, so
2229 we allow this routine to walk past user instructions in optimized
2230 GCC code. */
edd86fb0
JL
2231 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2232 || args_stored)
c598654a 2233 {
edd86fb0
JL
2234 unsigned int reg_num;
2235 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
e43169eb 2236 unsigned long old_save_rp, old_save_sp, next_inst;
edd86fb0
JL
2237
2238 /* Save copies of all the triggers so we can compare them later
2239 (only for HPC). */
2240 old_save_gr = save_gr;
2241 old_save_fr = save_fr;
2242 old_save_rp = save_rp;
2243 old_save_sp = save_sp;
2244 old_stack_remaining = stack_remaining;
2245
c598654a
JL
2246 status = target_read_memory (pc, buf, 4);
2247 inst = extract_unsigned_integer (buf, 4);
edd86fb0 2248
c598654a
JL
2249 /* Yow! */
2250 if (status != 0)
2251 return pc;
2252
2253 /* Note the interesting effects of this instruction. */
2254 stack_remaining -= prologue_inst_adjust_sp (inst);
2255
2256 /* There is only one instruction used for saving RP into the stack. */
2257 if (inst == 0x6bc23fd9)
2258 save_rp = 0;
2259
2260 /* This is the only way we save SP into the stack. At this time
2261 the HP compilers never bother to save SP into the stack. */
2262 if ((inst & 0xffffc000) == 0x6fc10000)
2263 save_sp = 0;
2264
2265 /* Account for general and floating-point register saves. */
edd86fb0
JL
2266 reg_num = inst_saves_gr (inst);
2267 save_gr &= ~(1 << reg_num);
2268
2269 /* Ugh. Also account for argument stores into the stack.
2270 Unfortunately args_stored only tells us that some arguments
2271 where stored into the stack. Not how many or what kind!
2272
2273 This is a kludge as on the HP compiler sets this bit and it
2274 never does prologue scheduling. So once we see one, skip past
2275 all of them. We have similar code for the fp arg stores below.
2276
2277 FIXME. Can still die if we have a mix of GR and FR argument
2278 stores! */
2279 if (reg_num >= 23 && reg_num <= 26)
2280 {
2281 while (reg_num >= 23 && reg_num <= 26)
2282 {
2283 pc += 4;
2284 status = target_read_memory (pc, buf, 4);
2285 inst = extract_unsigned_integer (buf, 4);
2286 if (status != 0)
2287 return pc;
2288 reg_num = inst_saves_gr (inst);
2289 }
2290 args_stored = 0;
2291 continue;
2292 }
2293
2294 reg_num = inst_saves_fr (inst);
2295 save_fr &= ~(1 << reg_num);
2296
2297 status = target_read_memory (pc + 4, buf, 4);
2298 next_inst = extract_unsigned_integer (buf, 4);
2299
2300 /* Yow! */
2301 if (status != 0)
2302 return pc;
2303
2304 /* We've got to be read to handle the ldo before the fp register
2305 save. */
2306 if ((inst & 0xfc000000) == 0x34000000
2307 && inst_saves_fr (next_inst) >= 4
2308 && inst_saves_fr (next_inst) <= 7)
2309 {
2310 /* So we drop into the code below in a reasonable state. */
2311 reg_num = inst_saves_fr (next_inst);
2312 pc -= 4;
2313 }
2314
2315 /* Ugh. Also account for argument stores into the stack.
2316 This is a kludge as on the HP compiler sets this bit and it
2317 never does prologue scheduling. So once we see one, skip past
2318 all of them. */
2319 if (reg_num >= 4 && reg_num <= 7)
2320 {
2321 while (reg_num >= 4 && reg_num <= 7)
2322 {
2323 pc += 8;
2324 status = target_read_memory (pc, buf, 4);
2325 inst = extract_unsigned_integer (buf, 4);
2326 if (status != 0)
2327 return pc;
2328 if ((inst & 0xfc000000) != 0x34000000)
2329 break;
2330 status = target_read_memory (pc + 4, buf, 4);
2331 next_inst = extract_unsigned_integer (buf, 4);
2332 if (status != 0)
2333 return pc;
2334 reg_num = inst_saves_fr (next_inst);
2335 }
2336 args_stored = 0;
2337 continue;
2338 }
c598654a
JL
2339
2340 /* Quit if we hit any kind of branch. This can happen if a prologue
2341 instruction is in the delay slot of the first call/branch. */
2342 if (is_branch (inst))
2343 break;
2344
edd86fb0
JL
2345 /* What a crock. The HP compilers set args_stored even if no
2346 arguments were stored into the stack (boo hiss). This could
2347 cause this code to then skip a bunch of user insns (up to the
2348 first branch).
2349
2350 To combat this we try to identify when args_stored was bogusly
2351 set and clear it. We only do this when args_stored is nonzero,
2352 all other resources are accounted for, and nothing changed on
2353 this pass. */
2354 if (args_stored
2355 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2356 && old_save_gr == save_gr && old_save_fr == save_fr
2357 && old_save_rp == save_rp && old_save_sp == save_sp
2358 && old_stack_remaining == stack_remaining)
2359 break;
2360
c598654a
JL
2361 /* Bump the PC. */
2362 pc += 4;
66a1aa07 2363 }
66a1aa07
SG
2364
2365 return pc;
2366}
2367
c598654a
JL
2368/* Put here the code to store, into a struct frame_saved_regs,
2369 the addresses of the saved registers of frame described by FRAME_INFO.
2370 This includes special registers such as pc and fp saved in special
2371 ways in the stack frame. sp is even more special:
2372 the address we return for it IS the sp for the next frame. */
2373
2374void
2375hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2376 struct frame_info *frame_info;
c598654a
JL
2377 struct frame_saved_regs *frame_saved_regs;
2378{
2379 CORE_ADDR pc;
2380 struct unwind_table_entry *u;
2381 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2382 int status, i, reg;
2383 char buf[4];
2384 int fp_loc = -1;
2385
2386 /* Zero out everything. */
2387 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2388
2389 /* Call dummy frames always look the same, so there's no need to
2390 examine the dummy code to determine locations of saved registers;
2391 instead, let find_dummy_frame_regs fill in the correct offsets
2392 for the saved registers. */
cb5f7128
JL
2393 if ((frame_info->pc >= frame_info->frame
2394 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2395 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2396 + 6 * 4)))
2397 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2398
70e43abe
JL
2399 /* Interrupt handlers are special too. They lay out the register
2400 state in the exact same order as the register numbers in GDB. */
cb5f7128 2401 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2402 {
2403 for (i = 0; i < NUM_REGS; i++)
2404 {
2405 /* SP is a little special. */
2406 if (i == SP_REGNUM)
2407 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2408 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2409 else
cb5f7128 2410 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2411 }
2412 return;
2413 }
2414
2415 /* Handle signal handler callers. */
cb5f7128 2416 if (frame_info->signal_handler_caller)
70e43abe 2417 {
cb5f7128 2418 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2419 return;
2420 }
2421
c598654a 2422 /* Get the starting address of the function referred to by the PC
669caa9c 2423 saved in frame. */
cb5f7128 2424 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2425
2426 /* Yow! */
2427 u = find_unwind_entry (pc);
2428 if (!u)
2429 return;
2430
2431 /* This is how much of a frame adjustment we need to account for. */
2432 stack_remaining = u->Total_frame_size << 3;
2433
2434 /* Magic register saves we want to know about. */
2435 save_rp = u->Save_RP;
2436 save_sp = u->Save_SP;
2437
2438 /* Turn the Entry_GR field into a bitmask. */
2439 save_gr = 0;
2440 for (i = 3; i < u->Entry_GR + 3; i++)
2441 {
2442 /* Frame pointer gets saved into a special location. */
2443 if (u->Save_SP && i == FP_REGNUM)
2444 continue;
2445
2446 save_gr |= (1 << i);
2447 }
2448
2449 /* Turn the Entry_FR field into a bitmask too. */
2450 save_fr = 0;
2451 for (i = 12; i < u->Entry_FR + 12; i++)
2452 save_fr |= (1 << i);
2453
70e43abe
JL
2454 /* The frame always represents the value of %sp at entry to the
2455 current function (and is thus equivalent to the "saved" stack
2456 pointer. */
cb5f7128 2457 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2458
c598654a
JL
2459 /* Loop until we find everything of interest or hit a branch.
2460
2461 For unoptimized GCC code and for any HP CC code this will never ever
2462 examine any user instructions.
2463
2464 For optimzied GCC code we're faced with problems. GCC will schedule
2465 its prologue and make prologue instructions available for delay slot
2466 filling. The end result is user code gets mixed in with the prologue
2467 and a prologue instruction may be in the delay slot of the first branch
2468 or call.
2469
2470 Some unexpected things are expected with debugging optimized code, so
2471 we allow this routine to walk past user instructions in optimized
2472 GCC code. */
2473 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2474 {
2475 status = target_read_memory (pc, buf, 4);
2476 inst = extract_unsigned_integer (buf, 4);
2477
2478 /* Yow! */
2479 if (status != 0)
2480 return;
2481
2482 /* Note the interesting effects of this instruction. */
2483 stack_remaining -= prologue_inst_adjust_sp (inst);
2484
2485 /* There is only one instruction used for saving RP into the stack. */
2486 if (inst == 0x6bc23fd9)
2487 {
2488 save_rp = 0;
cb5f7128 2489 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2490 }
2491
70e43abe
JL
2492 /* Just note that we found the save of SP into the stack. The
2493 value for frame_saved_regs was computed above. */
c598654a 2494 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2495 save_sp = 0;
c598654a
JL
2496
2497 /* Account for general and floating-point register saves. */
2498 reg = inst_saves_gr (inst);
2499 if (reg >= 3 && reg <= 18
2500 && (!u->Save_SP || reg != FP_REGNUM))
2501 {
2502 save_gr &= ~(1 << reg);
2503
2504 /* stwm with a positive displacement is a *post modify*. */
2505 if ((inst >> 26) == 0x1b
2506 && extract_14 (inst) >= 0)
cb5f7128 2507 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2508 else
2509 {
2510 /* Handle code with and without frame pointers. */
2511 if (u->Save_SP)
2512 frame_saved_regs->regs[reg]
cb5f7128 2513 = frame_info->frame + extract_14 (inst);
c598654a
JL
2514 else
2515 frame_saved_regs->regs[reg]
cb5f7128 2516 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2517 + extract_14 (inst);
2518 }
2519 }
2520
2521
2522 /* GCC handles callee saved FP regs a little differently.
2523
2524 It emits an instruction to put the value of the start of
2525 the FP store area into %r1. It then uses fstds,ma with
2526 a basereg of %r1 for the stores.
2527
2528 HP CC emits them at the current stack pointer modifying
2529 the stack pointer as it stores each register. */
2530
2531 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2532 if ((inst & 0xffffc000) == 0x34610000
2533 || (inst & 0xffffc000) == 0x37c10000)
2534 fp_loc = extract_14 (inst);
2535
2536 reg = inst_saves_fr (inst);
2537 if (reg >= 12 && reg <= 21)
2538 {
2539 /* Note +4 braindamage below is necessary because the FP status
2540 registers are internally 8 registers rather than the expected
2541 4 registers. */
2542 save_fr &= ~(1 << reg);
2543 if (fp_loc == -1)
2544 {
2545 /* 1st HP CC FP register store. After this instruction
2546 we've set enough state that the GCC and HPCC code are
2547 both handled in the same manner. */
cb5f7128 2548 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2549 fp_loc = 8;
2550 }
2551 else
2552 {
2553 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2554 = frame_info->frame + fp_loc;
c598654a
JL
2555 fp_loc += 8;
2556 }
2557 }
2558
2559 /* Quit if we hit any kind of branch. This can happen if a prologue
2560 instruction is in the delay slot of the first call/branch. */
2561 if (is_branch (inst))
2562 break;
2563
2564 /* Bump the PC. */
2565 pc += 4;
2566 }
2567}
2568
63757ecd
JK
2569#ifdef MAINTENANCE_CMDS
2570
66a1aa07
SG
2571static void
2572unwind_command (exp, from_tty)
2573 char *exp;
2574 int from_tty;
2575{
2576 CORE_ADDR address;
2577 union
2578 {
2579 int *foo;
2580 struct unwind_table_entry *u;
2581 } xxx;
2582
2583 /* If we have an expression, evaluate it and use it as the address. */
2584
2585 if (exp != 0 && *exp != 0)
2586 address = parse_and_eval_address (exp);
2587 else
2588 return;
2589
2590 xxx.u = find_unwind_entry (address);
2591
2592 if (!xxx.u)
2593 {
199b2450 2594 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
2595 return;
2596 }
2597
199b2450 2598 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
2599 xxx.foo[3]);
2600}
976bb0be 2601#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2602
2603void
2604_initialize_hppa_tdep ()
2605{
976bb0be 2606#ifdef MAINTENANCE_CMDS
63757ecd
JK
2607 add_cmd ("unwind", class_maintenance, unwind_command,
2608 "Print unwind table entry at given address.",
2609 &maintenanceprintlist);
63757ecd 2610#endif /* MAINTENANCE_CMDS */
976bb0be 2611}
This page took 0.227482 seconds and 4 git commands to generate.