* targets.c: Add copy_private_symbol_data and link_split_section
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c 1/* Target-dependent code for the HP PA architecture, for GDB.
18b46e7c 2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
669caa9c 3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
49#include <sys/stat.h>
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
669caa9c
SS
58static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60static int hppa_alignof PARAMS ((struct type *));
61
62CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
c598654a 64static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 65
c598654a 66static int is_branch PARAMS ((unsigned long));
669caa9c 67
c598654a 68static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 69
c598654a 70static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 71
70e43abe 72static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 73
70e43abe 74static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c
SS
75
76static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
f81eee9d 77 const struct unwind_table_entry *));
669caa9c 78
c5152d42 79static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 80
c5152d42
JL
81static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
bfaef242 84 unsigned int, CORE_ADDR));
e43169eb
JL
85static void pa_print_registers PARAMS ((char *, int, int));
86static void pa_print_fp_reg PARAMS ((int));
66a1aa07
SG
87
88\f
89/* Routines to extract various sized constants out of hppa
90 instructions. */
91
92/* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95int
96sign_extend (val, bits)
97 unsigned val, bits;
98{
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100}
101
102/* For many immediate values the sign bit is the low bit! */
103
104int
105low_sign_extend (val, bits)
106 unsigned val, bits;
107{
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109}
110/* extract the immediate field from a ld{bhw}s instruction */
111
112unsigned
113get_field (val, from, to)
114 unsigned val, from, to;
115{
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118}
119
120unsigned
121set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123{
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126}
127
128/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130extract_3 (word)
131 unsigned word;
132{
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134}
135
136extract_5_load (word)
137 unsigned word;
138{
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140}
141
142/* extract the immediate field from a st{bhw}s instruction */
143
144int
145extract_5_store (word)
146 unsigned word;
147{
148 return low_sign_extend (word & MASK_5, 5);
149}
150
68c8d698
SG
151/* extract the immediate field from a break instruction */
152
153unsigned
154extract_5r_store (word)
155 unsigned word;
156{
157 return (word & MASK_5);
158}
159
160/* extract the immediate field from a {sr}sm instruction */
161
162unsigned
163extract_5R_store (word)
164 unsigned word;
165{
166 return (word >> 16 & MASK_5);
167}
168
66a1aa07
SG
169/* extract an 11 bit immediate field */
170
171int
172extract_11 (word)
173 unsigned word;
174{
175 return low_sign_extend (word & MASK_11, 11);
176}
177
178/* extract a 14 bit immediate field */
179
180int
181extract_14 (word)
182 unsigned word;
183{
184 return low_sign_extend (word & MASK_14, 14);
185}
186
187/* deposit a 14 bit constant in a word */
188
189unsigned
190deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193{
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197}
198
199/* extract a 21 bit constant */
200
201int
202extract_21 (word)
203 unsigned word;
204{
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219}
220
221/* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225unsigned
226deposit_21 (opnd, word)
227 unsigned opnd, word;
228{
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241}
242
243/* extract a 12 bit constant from branch instructions */
244
245int
246extract_12 (word)
247 unsigned word;
248{
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252}
253
7486c68d
SG
254/* Deposit a 17 bit constant in an instruction (like bl). */
255
256unsigned int
257deposit_17 (opnd, word)
258 unsigned opnd, word;
259{
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266}
267
66a1aa07
SG
268/* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271int
272extract_17 (word)
273 unsigned word;
274{
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279}
280\f
c5152d42
JL
281
282/* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286static int
287compare_unwind_entries (a, b)
f81eee9d
JL
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
c5152d42
JL
290{
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297}
298
299static void
bfaef242 300internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
bfaef242 305 CORE_ADDR text_offset;
c5152d42
JL
306{
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
bfaef242 323 table[i].region_start += text_offset;
c5152d42
JL
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 326 table[i].region_end += text_offset;
c5152d42
JL
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
e43169eb 330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
c5152d42
JL
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360}
361
362/* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
9c842e0c 368static void
c5152d42
JL
369read_unwind_info (objfile)
370 struct objfile *objfile;
371{
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
bfaef242 376 CORE_ADDR text_offset;
c5152d42
JL
377 struct obj_unwind_info *ui;
378
bfaef242 379 text_offset = ANOFFSET (objfile->section_offsets, 0);
d8afcce9
SG
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
c5152d42
JL
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
f55179cb
JL
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
c5152d42
JL
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 438 unwind_entries, unwind_size, text_offset);
c5152d42
JL
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 441 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
73a25072 464 ui->table[index].region_start += text_offset;
c5152d42
JL
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483}
484
66a1aa07
SG
485/* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490static struct unwind_table_entry *
491find_unwind_entry(pc)
492 CORE_ADDR pc;
493{
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
c5152d42
JL
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
66a1aa07
SG
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538}
539
98c0e047
JL
540/* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546int
547hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549{
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557}
98c0e047 558
70e43abe
JL
559/* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562static int
563pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565{
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578}
579
5ac7f56e
JK
580/* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
5ac7f56e
JK
582
583static int
584pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586{
5ac7f56e
JK
587 int found_magic_instruction = 0;
588 int i;
08ecd8f3
JK
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
5ac7f56e 594
d08c6f4c
JK
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
5ac7f56e
JK
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
6e35b037 610 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
6e35b037 632 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648}
649
66a1aa07
SG
650static int
651find_return_regnum(pc)
652 CORE_ADDR pc;
653{
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665}
666
5ac7f56e 667/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07 668int
70e43abe 669find_proc_framesize (pc)
66a1aa07
SG
670 CORE_ADDR pc;
671{
672 struct unwind_table_entry *u;
70e43abe 673 struct minimal_symbol *msym_us;
66a1aa07 674
66a1aa07
SG
675 u = find_unwind_entry (pc);
676
677 if (!u)
5ac7f56e
JK
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
66a1aa07 685
70e43abe
JL
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
692 return -1;
693
66a1aa07
SG
694 return u->Total_frame_size << 3;
695}
696
5ac7f56e
JK
697/* Return offset from sp at which rp is saved, or 0 if not saved. */
698static int rp_saved PARAMS ((CORE_ADDR));
699
700static int
701rp_saved (pc)
702 CORE_ADDR pc;
66a1aa07
SG
703{
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
5ac7f56e
JK
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
66a1aa07
SG
716
717 if (u->Save_RP)
5ac7f56e 718 return -20;
c7f3b703
JL
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
c2e00af6 724 case IMPORT:
c7f3b703
JL
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
66a1aa07
SG
732 else
733 return 0;
734}
735\f
8fa74880
SG
736int
737frameless_function_invocation (frame)
669caa9c 738 struct frame_info *frame;
8fa74880 739{
b8ec9a79 740 struct unwind_table_entry *u;
8fa74880 741
b8ec9a79 742 u = find_unwind_entry (frame->pc);
8fa74880 743
b8ec9a79 744 if (u == 0)
7f43b9b7 745 return 0;
b8ec9a79 746
c7f3b703 747 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
748}
749
66a1aa07
SG
750CORE_ADDR
751saved_pc_after_call (frame)
669caa9c 752 struct frame_info *frame;
66a1aa07
SG
753{
754 int ret_regnum;
edd86fb0
JL
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
66a1aa07
SG
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
66a1aa07
SG
768}
769\f
770CORE_ADDR
771frame_saved_pc (frame)
669caa9c 772 struct frame_info *frame;
66a1aa07
SG
773{
774 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 775 struct unwind_table_entry *u;
66a1aa07 776
70e43abe
JL
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
7486c68d 784#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
70e43abe
JL
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 790 return rp & ~0x3;
70e43abe 791 }
7486c68d 792#endif
70e43abe 793
8fa74880 794 if (frameless_function_invocation (frame))
66a1aa07
SG
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
70e43abe
JL
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
70e43abe
JL
808 struct frame_saved_regs saved_regs;
809
54b2555b 810 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
70e43abe 822 else
7f43b9b7 823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
824 }
825 else
7f43b9b7 826 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 827 }
66a1aa07 828 else
5ac7f56e 829 {
edd86fb0 830 int rp_offset;
5ac7f56e 831
edd86fb0
JL
832restart:
833 rp_offset = rp_saved (pc);
70e43abe
JL
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
70e43abe
JL
842 struct frame_saved_regs saved_regs;
843
669caa9c 844 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
70e43abe 856 else
7f43b9b7 857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
858 }
859 else if (rp_offset == 0)
7f43b9b7 860 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 861 else
7f43b9b7 862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 863 }
7f43b9b7
JL
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to. */
867 u = find_unwind_entry (pc);
868 if (u && u->stub_type != 0)
c38e0b58
JL
869 {
870 unsigned int insn;
871
872 /* If this is a dynamic executable, and we're in a signal handler,
873 then the call chain will eventually point us into the stub for
874 _sigreturn. Unlike most cases, we'll be pointed to the branch
875 to the real sigreturn rather than the code after the real branch!.
876
877 Else, try to dig the address the stub will return to in the normal
878 fashion. */
879 insn = read_memory_integer (pc, 4);
880 if ((insn & 0xfc00e000) == 0xe8000000)
881 return (pc + extract_17 (insn) + 8) & ~0x3;
882 else
883 goto restart;
884 }
7f43b9b7
JL
885
886 return pc;
66a1aa07
SG
887}
888\f
889/* We need to correct the PC and the FP for the outermost frame when we are
890 in a system call. */
891
892void
893init_extra_frame_info (fromleaf, frame)
894 int fromleaf;
895 struct frame_info *frame;
896{
897 int flags;
898 int framesize;
899
192c3eeb 900 if (frame->next && !fromleaf)
66a1aa07
SG
901 return;
902
192c3eeb
JL
903 /* If the next frame represents a frameless function invocation
904 then we have to do some adjustments that are normally done by
905 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
906 if (fromleaf)
907 {
908 /* Find the framesize of *this* frame without peeking at the PC
909 in the current frame structure (it isn't set yet). */
910 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
911
912 /* Now adjust our base frame accordingly. If we have a frame pointer
913 use it, else subtract the size of this frame from the current
914 frame. (we always want frame->frame to point at the lowest address
915 in the frame). */
916 if (framesize == -1)
917 frame->frame = read_register (FP_REGNUM);
918 else
919 frame->frame -= framesize;
920 return;
921 }
922
66a1aa07
SG
923 flags = read_register (FLAGS_REGNUM);
924 if (flags & 2) /* In system call? */
925 frame->pc = read_register (31) & ~0x3;
926
192c3eeb
JL
927 /* The outermost frame is always derived from PC-framesize
928
929 One might think frameless innermost frames should have
930 a frame->frame that is the same as the parent's frame->frame.
931 That is wrong; frame->frame in that case should be the *high*
932 address of the parent's frame. It's complicated as hell to
933 explain, but the parent *always* creates some stack space for
934 the child. So the child actually does have a frame of some
935 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
936 framesize = find_proc_framesize(frame->pc);
937 if (framesize == -1)
938 frame->frame = read_register (FP_REGNUM);
939 else
940 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
941}
942\f
8966221d
JK
943/* Given a GDB frame, determine the address of the calling function's frame.
944 This will be used to create a new GDB frame struct, and then
945 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
946
947 This may involve searching through prologues for several functions
948 at boundaries where GCC calls HP C code, or where code which has
949 a frame pointer calls code without a frame pointer. */
8966221d 950
669caa9c 951CORE_ADDR
66a1aa07
SG
952frame_chain (frame)
953 struct frame_info *frame;
954{
8966221d
JK
955 int my_framesize, caller_framesize;
956 struct unwind_table_entry *u;
70e43abe
JL
957 CORE_ADDR frame_base;
958
959 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
960 are easy; at *sp we have a full save state strucutre which we can
961 pull the old stack pointer from. Also see frame_saved_pc for
962 code to dig a saved PC out of the save state structure. */
963 if (pc_in_interrupt_handler (frame->pc))
964 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
7486c68d 965#ifdef FRAME_BASE_BEFORE_SIGTRAMP
70e43abe
JL
966 else if (frame->signal_handler_caller)
967 {
968 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
969 }
7486c68d 970#endif
70e43abe
JL
971 else
972 frame_base = frame->frame;
66a1aa07 973
8966221d
JK
974 /* Get frame sizes for the current frame and the frame of the
975 caller. */
976 my_framesize = find_proc_framesize (frame->pc);
977 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 978
8966221d
JK
979 /* If caller does not have a frame pointer, then its frame
980 can be found at current_frame - caller_framesize. */
981 if (caller_framesize != -1)
70e43abe 982 return frame_base - caller_framesize;
8966221d
JK
983
984 /* Both caller and callee have frame pointers and are GCC compiled
985 (SAVE_SP bit in unwind descriptor is on for both functions.
986 The previous frame pointer is found at the top of the current frame. */
987 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 988 return read_memory_integer (frame_base, 4);
8966221d
JK
989
990 /* Caller has a frame pointer, but callee does not. This is a little
991 more difficult as GCC and HP C lay out locals and callee register save
992 areas very differently.
993
994 The previous frame pointer could be in a register, or in one of
995 several areas on the stack.
996
997 Walk from the current frame to the innermost frame examining
2f8c3639 998 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 999 stack. If so return whatever value got saved into the stack.
2f8c3639 1000 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
1001 valid, so use it.
1002
2f8c3639 1003 We use information from unwind descriptors to determine if %r3
8966221d
JK
1004 is saved into the stack (Entry_GR field has this information). */
1005
1006 while (frame)
1007 {
1008 u = find_unwind_entry (frame->pc);
1009
1010 if (!u)
1011 {
01a03545
JK
1012 /* We could find this information by examining prologues. I don't
1013 think anyone has actually written any tools (not even "strip")
1014 which leave them out of an executable, so maybe this is a moot
1015 point. */
8966221d
JK
1016 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
1017 return 0;
1018 }
1019
1020 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 1021 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe
JL
1022 if (u->Entry_GR >= 1 || u->Save_SP
1023 || frame->signal_handler_caller
1024 || pc_in_interrupt_handler (frame->pc))
8966221d
JK
1025 break;
1026 else
1027 frame = frame->next;
1028 }
1029
1030 if (frame)
1031 {
1032 /* We may have walked down the chain into a function with a frame
1033 pointer. */
70e43abe
JL
1034 if (u->Save_SP
1035 && !frame->signal_handler_caller
1036 && !pc_in_interrupt_handler (frame->pc))
8966221d 1037 return read_memory_integer (frame->frame, 4);
2f8c3639 1038 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1039 else
c598654a 1040 {
c598654a
JL
1041 struct frame_saved_regs saved_regs;
1042
669caa9c 1043 get_frame_saved_regs (frame, &saved_regs);
c598654a
JL
1044 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1045 }
8966221d
JK
1046 }
1047 else
1048 {
2f8c3639 1049 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1050 holds the value of the previous frame pointer). */
2f8c3639 1051 return read_register (FP_REGNUM);
8966221d
JK
1052 }
1053}
66a1aa07 1054
66a1aa07
SG
1055\f
1056/* To see if a frame chain is valid, see if the caller looks like it
1057 was compiled with gcc. */
1058
1059int
1060frame_chain_valid (chain, thisframe)
669caa9c
SS
1061 CORE_ADDR chain;
1062 struct frame_info *thisframe;
66a1aa07 1063{
247145e6
JK
1064 struct minimal_symbol *msym_us;
1065 struct minimal_symbol *msym_start;
70e43abe 1066 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1067 struct frame_info *next;
66a1aa07
SG
1068
1069 if (!chain)
1070 return 0;
1071
b8ec9a79 1072 u = find_unwind_entry (thisframe->pc);
4b01383b 1073
70e43abe
JL
1074 if (u == NULL)
1075 return 1;
1076
247145e6
JK
1077 /* We can't just check that the same of msym_us is "_start", because
1078 someone idiotically decided that they were going to make a Ltext_end
1079 symbol with the same address. This Ltext_end symbol is totally
1080 indistinguishable (as nearly as I can tell) from the symbol for a function
1081 which is (legitimately, since it is in the user's namespace)
1082 named Ltext_end, so we can't just ignore it. */
1083 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
2d336b1b 1084 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
247145e6
JK
1085 if (msym_us
1086 && msym_start
1087 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1088 return 0;
5ac7f56e 1089
70e43abe
JL
1090 next = get_next_frame (thisframe);
1091 if (next)
1092 next_u = find_unwind_entry (next->pc);
5ac7f56e 1093
70e43abe
JL
1094 /* If this frame does not save SP, has no stack, isn't a stub,
1095 and doesn't "call" an interrupt routine or signal handler caller,
1096 then its not valid. */
1097 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1098 || (thisframe->next && thisframe->next->signal_handler_caller)
1099 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1100 return 1;
5ac7f56e 1101
b8ec9a79
JK
1102 if (pc_in_linker_stub (thisframe->pc))
1103 return 1;
4b01383b 1104
b8ec9a79 1105 return 0;
66a1aa07
SG
1106}
1107
66a1aa07
SG
1108/*
1109 * These functions deal with saving and restoring register state
1110 * around a function call in the inferior. They keep the stack
1111 * double-word aligned; eventually, on an hp700, the stack will have
1112 * to be aligned to a 64-byte boundary.
1113 */
1114
e43169eb
JL
1115void
1116push_dummy_frame (inf_status)
1117 struct inferior_status *inf_status;
66a1aa07 1118{
e43169eb 1119 CORE_ADDR sp, pc, pcspace;
66a1aa07
SG
1120 register int regnum;
1121 int int_buffer;
1122 double freg_buffer;
1123
e43169eb
JL
1124 /* Oh, what a hack. If we're trying to perform an inferior call
1125 while the inferior is asleep, we have to make sure to clear
1126 the "in system call" bit in the flag register (the call will
1127 start after the syscall returns, so we're no longer in the system
1128 call!) This state is kept in "inf_status", change it there.
1129
1130 We also need a number of horrid hacks to deal with lossage in the
1131 PC queue registers (apparently they're not valid when the in syscall
1132 bit is set). */
1133 pc = target_read_pc (inferior_pid);
1134 int_buffer = read_register (FLAGS_REGNUM);
1135 if (int_buffer & 0x2)
1136 {
244f7460 1137 unsigned int sid;
e43169eb
JL
1138 int_buffer &= ~0x2;
1139 memcpy (inf_status->registers, &int_buffer, 4);
1140 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1141 pc += 4;
1142 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1143 pc -= 4;
244f7460
JL
1144 sid = (pc >> 30) & 0x3;
1145 if (sid == 0)
1146 pcspace = read_register (SR4_REGNUM);
1147 else
1148 pcspace = read_register (SR4_REGNUM + 4 + sid);
e43169eb
JL
1149 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1150 &pcspace, 4);
1151 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1152 &pcspace, 4);
1153 }
1154 else
1155 pcspace = read_register (PCSQ_HEAD_REGNUM);
1156
66a1aa07
SG
1157 /* Space for "arguments"; the RP goes in here. */
1158 sp = read_register (SP_REGNUM) + 48;
1159 int_buffer = read_register (RP_REGNUM) | 0x3;
1160 write_memory (sp - 20, (char *)&int_buffer, 4);
1161
1162 int_buffer = read_register (FP_REGNUM);
1163 write_memory (sp, (char *)&int_buffer, 4);
1164
1165 write_register (FP_REGNUM, sp);
1166
1167 sp += 8;
1168
1169 for (regnum = 1; regnum < 32; regnum++)
1170 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1171 sp = push_word (sp, read_register (regnum));
1172
1173 sp += 4;
1174
1175 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1176 {
1177 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1178 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1179 }
1180 sp = push_word (sp, read_register (IPSW_REGNUM));
1181 sp = push_word (sp, read_register (SAR_REGNUM));
e43169eb
JL
1182 sp = push_word (sp, pc);
1183 sp = push_word (sp, pcspace);
1184 sp = push_word (sp, pc + 4);
1185 sp = push_word (sp, pcspace);
66a1aa07
SG
1186 write_register (SP_REGNUM, sp);
1187}
1188
e43169eb 1189void
66a1aa07
SG
1190find_dummy_frame_regs (frame, frame_saved_regs)
1191 struct frame_info *frame;
1192 struct frame_saved_regs *frame_saved_regs;
1193{
1194 CORE_ADDR fp = frame->frame;
1195 int i;
1196
1197 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1198 frame_saved_regs->regs[FP_REGNUM] = fp;
1199 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1200
b227992a
SG
1201 for (fp += 12, i = 3; i < 32; i++)
1202 {
1203 if (i != FP_REGNUM)
1204 {
1205 frame_saved_regs->regs[i] = fp;
1206 fp += 4;
1207 }
1208 }
66a1aa07
SG
1209
1210 fp += 4;
1211 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1212 frame_saved_regs->regs[i] = fp;
1213
1214 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1215 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1216 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1217 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1218 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1219 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1220}
1221
e43169eb 1222void
66a1aa07
SG
1223hppa_pop_frame ()
1224{
669caa9c 1225 register struct frame_info *frame = get_current_frame ();
54576db3 1226 register CORE_ADDR fp, npc, target_pc;
66a1aa07
SG
1227 register int regnum;
1228 struct frame_saved_regs fsr;
66a1aa07
SG
1229 double freg_buffer;
1230
669caa9c
SS
1231 fp = FRAME_FP (frame);
1232 get_frame_saved_regs (frame, &fsr);
66a1aa07 1233
0a64709e 1234#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1235 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1236 restore_pc_queue (&fsr);
0a64709e 1237#endif
66a1aa07
SG
1238
1239 for (regnum = 31; regnum > 0; regnum--)
1240 if (fsr.regs[regnum])
1241 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1242
1243 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1244 if (fsr.regs[regnum])
1245 {
1246 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1247 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1248 }
1249
1250 if (fsr.regs[IPSW_REGNUM])
1251 write_register (IPSW_REGNUM,
1252 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1253
1254 if (fsr.regs[SAR_REGNUM])
1255 write_register (SAR_REGNUM,
1256 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1257
ed1a07ad 1258 /* If the PC was explicitly saved, then just restore it. */
66a1aa07 1259 if (fsr.regs[PCOQ_TAIL_REGNUM])
54576db3
JL
1260 {
1261 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1262 write_register (PCOQ_TAIL_REGNUM, npc);
1263 }
ed1a07ad
JK
1264 /* Else use the value in %rp to set the new PC. */
1265 else
54576db3
JL
1266 {
1267 npc = read_register (RP_REGNUM);
1268 target_write_pc (npc, 0);
1269 }
ed1a07ad 1270
66a1aa07
SG
1271 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1272
1273 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1274 write_register (SP_REGNUM, fp - 48);
1275 else
1276 write_register (SP_REGNUM, fp);
1277
54576db3
JL
1278 /* The PC we just restored may be inside a return trampoline. If so
1279 we want to restart the inferior and run it through the trampoline.
1280
1281 Do this by setting a momentary breakpoint at the location the
244f7460
JL
1282 trampoline returns to.
1283
1284 Don't skip through the trampoline if we're popping a dummy frame. */
54576db3 1285 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
244f7460 1286 if (target_pc && !fsr.regs[IPSW_REGNUM])
54576db3
JL
1287 {
1288 struct symtab_and_line sal;
1289 struct breakpoint *breakpoint;
1290 struct cleanup *old_chain;
1291
1292 /* Set up our breakpoint. Set it to be silent as the MI code
1293 for "return_command" will print the frame we returned to. */
1294 sal = find_pc_line (target_pc, 0);
1295 sal.pc = target_pc;
1296 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1297 breakpoint->silent = 1;
1298
1299 /* So we can clean things up. */
1300 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1301
1302 /* Start up the inferior. */
1303 proceed_to_finish = 1;
1304 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1305
1306 /* Perform our cleanups. */
1307 do_cleanups (old_chain);
1308 }
66a1aa07 1309 flush_cached_frames ();
66a1aa07
SG
1310}
1311
1312/*
1313 * After returning to a dummy on the stack, restore the instruction
1314 * queue space registers. */
1315
1316static int
1317restore_pc_queue (fsr)
1318 struct frame_saved_regs *fsr;
1319{
1320 CORE_ADDR pc = read_pc ();
1321 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
67ac9759 1322 struct target_waitstatus w;
66a1aa07
SG
1323 int insn_count;
1324
1325 /* Advance past break instruction in the call dummy. */
1326 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1327 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1328
1329 /*
1330 * HPUX doesn't let us set the space registers or the space
1331 * registers of the PC queue through ptrace. Boo, hiss.
1332 * Conveniently, the call dummy has this sequence of instructions
1333 * after the break:
1334 * mtsp r21, sr0
1335 * ble,n 0(sr0, r22)
1336 *
1337 * So, load up the registers and single step until we are in the
1338 * right place.
1339 */
1340
1341 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1342 write_register (22, new_pc);
1343
1344 for (insn_count = 0; insn_count < 3; insn_count++)
1345 {
8c5e0021
JK
1346 /* FIXME: What if the inferior gets a signal right now? Want to
1347 merge this into wait_for_inferior (as a special kind of
1348 watchpoint? By setting a breakpoint at the end? Is there
1349 any other choice? Is there *any* way to do this stuff with
1350 ptrace() or some equivalent?). */
66a1aa07 1351 resume (1, 0);
67ac9759 1352 target_wait (inferior_pid, &w);
66a1aa07 1353
67ac9759 1354 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1355 {
67ac9759 1356 stop_signal = w.value.sig;
66a1aa07 1357 terminal_ours_for_output ();
67ac9759
JK
1358 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1359 target_signal_to_name (stop_signal),
1360 target_signal_to_string (stop_signal));
199b2450 1361 gdb_flush (gdb_stdout);
66a1aa07
SG
1362 return 0;
1363 }
1364 }
8c5e0021 1365 target_terminal_ours ();
cad1498f 1366 target_fetch_registers (-1);
66a1aa07
SG
1367 return 1;
1368}
1369
1370CORE_ADDR
1371hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1372 int nargs;
4fd5eed4 1373 value_ptr *args;
66a1aa07
SG
1374 CORE_ADDR sp;
1375 int struct_return;
1376 CORE_ADDR struct_addr;
1377{
1378 /* array of arguments' offsets */
1edc5cd2 1379 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1380 int cum = 0;
1381 int i, alignment;
1382
1383 for (i = 0; i < nargs; i++)
1384 {
66a1aa07
SG
1385 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1386
1387 /* value must go at proper alignment. Assume alignment is a
1388 power of two.*/
1389 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1390 if (cum % alignment)
1391 cum = (cum + alignment) & -alignment;
1392 offset[i] = -cum;
1393 }
558f4183 1394 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1395
1396 for (i = 0; i < nargs; i++)
1397 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1398 TYPE_LENGTH (VALUE_TYPE (args[i])));
1399
1400 if (struct_return)
1401 write_register (28, struct_addr);
1402 return sp + 32;
1403}
1404
1405/*
1406 * Insert the specified number of args and function address
1407 * into a call sequence of the above form stored at DUMMYNAME.
1408 *
1409 * On the hppa we need to call the stack dummy through $$dyncall.
1410 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1411 * real_pc, which is the location where gdb should start up the
1412 * inferior to do the function call.
1413 */
1414
1415CORE_ADDR
1416hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1417 char *dummy;
66a1aa07
SG
1418 CORE_ADDR pc;
1419 CORE_ADDR fun;
1420 int nargs;
4fd5eed4 1421 value_ptr *args;
66a1aa07
SG
1422 struct type *type;
1423 int gcc_p;
1424{
7486c68d 1425 CORE_ADDR dyncall_addr;
66a1aa07 1426 struct minimal_symbol *msymbol;
6cfec929 1427 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1428 struct unwind_table_entry *u;
66a1aa07 1429
2d336b1b 1430 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
1431 if (msymbol == NULL)
1432 error ("Can't find an address for $$dyncall trampoline");
1433
1434 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1435
4f915914
JL
1436 /* FUN could be a procedure label, in which case we have to get
1437 its real address and the value of its GOT/DP. */
1438 if (fun & 0x2)
1439 {
1440 /* Get the GOT/DP value for the target function. It's
1441 at *(fun+4). Note the call dummy is *NOT* allowed to
1442 trash %r19 before calling the target function. */
1443 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1444
1445 /* Now get the real address for the function we are calling, it's
1446 at *fun. */
1447 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1448 }
b1bbe38b
JL
1449 else
1450 {
1451
3200aa59 1452#ifndef GDB_TARGET_IS_PA_ELF
b1bbe38b 1453 /* FUN could be either an export stub, or the real address of a
3200aa59
JL
1454 function in a shared library. We must call an import stub
1455 rather than the export stub or real function for lazy binding
1456 to work correctly. */
1457 if (som_solib_get_got_by_pc (fun))
1458 {
1459 struct objfile *objfile;
1460 struct minimal_symbol *funsymbol, *stub_symbol;
1461 CORE_ADDR newfun = 0;
b1bbe38b 1462
3200aa59
JL
1463 funsymbol = lookup_minimal_symbol_by_pc (fun);
1464 if (!funsymbol)
1465 error ("Unable to find minimal symbol for target fucntion.\n");
b1bbe38b 1466
3200aa59
JL
1467 /* Search all the object files for an import symbol with the
1468 right name. */
1469 ALL_OBJFILES (objfile)
1470 {
1471 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2d336b1b 1472 NULL, objfile);
3200aa59
JL
1473 /* Found a symbol with the right name. */
1474 if (stub_symbol)
1475 {
1476 struct unwind_table_entry *u;
1477 /* It must be a shared library trampoline. */
1478 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1479 continue;
1480
1481 /* It must also be an import stub. */
1482 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1483 if (!u || u->stub_type != IMPORT)
1484 continue;
1485
1486 /* OK. Looks like the correct import stub. */
1487 newfun = SYMBOL_VALUE (stub_symbol);
1488 fun = newfun;
1489 }
1490 }
1491 if (newfun == 0)
1492 write_register (19, som_solib_get_got_by_pc (fun));
1493 }
bd2b724a 1494#endif
b1bbe38b 1495 }
4f915914 1496
19cd0c1f
JL
1497 /* If we are calling an import stub (eg calling into a dynamic library)
1498 then have sr4export call the magic __d_plt_call routine which is linked
1499 in from end.o. (You can't use _sr4export to call the import stub as
1500 the value in sp-24 will get fried and you end up returning to the
1501 wrong location. You can't call the import stub directly as the code
1502 to bind the PLT entry to a function can't return to a stack address.) */
1503 u = find_unwind_entry (fun);
1504 if (u && u->stub_type == IMPORT)
1505 {
1506 CORE_ADDR new_fun;
2d336b1b 1507 msymbol = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
19cd0c1f 1508 if (msymbol == NULL)
2d336b1b 1509 msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
3200aa59
JL
1510
1511 if (msymbol == NULL)
1512 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
19cd0c1f
JL
1513
1514 /* This is where sr4export will jump to. */
1515 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1516
3200aa59
JL
1517 if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
1518 write_register (22, fun);
1519 else
1520 {
1521 /* We have to store the address of the stub in __shlib_funcptr. */
2d336b1b 1522 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
3200aa59
JL
1523 (struct objfile *)NULL);
1524 if (msymbol == NULL)
1525 error ("Can't find an address for __shlib_funcptr");
19cd0c1f 1526
3200aa59
JL
1527 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1528 }
19cd0c1f 1529 fun = new_fun;
19cd0c1f
JL
1530 }
1531
7486c68d 1532/* Store upper 21 bits of function address into ldil */
66a1aa07 1533
f4f0d174 1534 store_unsigned_integer
7486c68d
SG
1535 (&dummy[FUNC_LDIL_OFFSET],
1536 INSTRUCTION_SIZE,
f4f0d174 1537 deposit_21 (fun >> 11,
7486c68d
SG
1538 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1539 INSTRUCTION_SIZE)));
1540
1541/* Store lower 11 bits of function address into ldo */
1542
f4f0d174 1543 store_unsigned_integer
7486c68d
SG
1544 (&dummy[FUNC_LDO_OFFSET],
1545 INSTRUCTION_SIZE,
f4f0d174 1546 deposit_14 (fun & MASK_11,
7486c68d
SG
1547 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1548 INSTRUCTION_SIZE)));
1549#ifdef SR4EXPORT_LDIL_OFFSET
1550
1551 {
1552 CORE_ADDR sr4export_addr;
1553
1554 /* We still need sr4export's address too. */
1555
1556 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1557 if (msymbol == NULL)
1558 error ("Can't find an address for _sr4export trampoline");
1559
1560 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1561
1562/* Store upper 21 bits of sr4export's address into ldil */
1563
1564 store_unsigned_integer
1565 (&dummy[SR4EXPORT_LDIL_OFFSET],
1566 INSTRUCTION_SIZE,
1567 deposit_21 (sr4export_addr >> 11,
1568 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1569 INSTRUCTION_SIZE)));
1570/* Store lower 11 bits of sr4export's address into ldo */
1571
1572 store_unsigned_integer
1573 (&dummy[SR4EXPORT_LDO_OFFSET],
1574 INSTRUCTION_SIZE,
1575 deposit_14 (sr4export_addr & MASK_11,
1576 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1577 INSTRUCTION_SIZE)));
1578 }
1579#endif
66a1aa07
SG
1580
1581 write_register (22, pc);
1582
6cfec929
JK
1583 /* If we are in a syscall, then we should call the stack dummy
1584 directly. $$dyncall is not needed as the kernel sets up the
1585 space id registers properly based on the value in %r31. In
1586 fact calling $$dyncall will not work because the value in %r22
244f7460
JL
1587 will be clobbered on the syscall exit path.
1588
1589 Similarly if the current PC is in a shared library. Note however,
1590 this scheme won't work if the shared library isn't mapped into
1591 the same space as the stack. */
6cfec929
JK
1592 if (flags & 2)
1593 return pc;
244f7460
JL
1594#ifndef GDB_TARGET_IS_PA_ELF
1595 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1596 return pc;
1597#endif
6cfec929
JK
1598 else
1599 return dyncall_addr;
1600
66a1aa07
SG
1601}
1602
d3862cae
JK
1603/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1604 bits. */
669caa9c 1605
d3862cae 1606CORE_ADDR
e9a3cde8
JL
1607target_read_pc (pid)
1608 int pid;
d3862cae
JK
1609{
1610 int flags = read_register (FLAGS_REGNUM);
1611
15edf525 1612 if (flags & 2) {
d3862cae 1613 return read_register (31) & ~0x3;
15edf525 1614 }
d3862cae
JK
1615 return read_register (PC_REGNUM) & ~0x3;
1616}
1617
6cfec929
JK
1618/* Write out the PC. If currently in a syscall, then also write the new
1619 PC value into %r31. */
669caa9c 1620
6cfec929 1621void
e9a3cde8 1622target_write_pc (v, pid)
6cfec929 1623 CORE_ADDR v;
e9a3cde8 1624 int pid;
6cfec929
JK
1625{
1626 int flags = read_register (FLAGS_REGNUM);
1627
1628 /* If in a syscall, then set %r31. Also make sure to get the
1629 privilege bits set correctly. */
1630 if (flags & 2)
1631 write_register (31, (long) (v | 0x3));
1632
1633 write_register (PC_REGNUM, (long) v);
1634 write_register (NPC_REGNUM, (long) v + 4);
1635}
1636
66a1aa07
SG
1637/* return the alignment of a type in bytes. Structures have the maximum
1638 alignment required by their fields. */
1639
1640static int
1641hppa_alignof (arg)
1642 struct type *arg;
1643{
1644 int max_align, align, i;
1645 switch (TYPE_CODE (arg))
1646 {
1647 case TYPE_CODE_PTR:
1648 case TYPE_CODE_INT:
1649 case TYPE_CODE_FLT:
1650 return TYPE_LENGTH (arg);
1651 case TYPE_CODE_ARRAY:
1652 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1653 case TYPE_CODE_STRUCT:
1654 case TYPE_CODE_UNION:
1655 max_align = 2;
1656 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1657 {
1658 /* Bit fields have no real alignment. */
1659 if (!TYPE_FIELD_BITPOS (arg, i))
1660 {
1661 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1662 max_align = max (max_align, align);
1663 }
1664 }
1665 return max_align;
1666 default:
1667 return 4;
1668 }
1669}
1670
1671/* Print the register regnum, or all registers if regnum is -1 */
1672
e43169eb 1673void
66a1aa07
SG
1674pa_do_registers_info (regnum, fpregs)
1675 int regnum;
1676 int fpregs;
1677{
1678 char raw_regs [REGISTER_BYTES];
1679 int i;
1680
1681 for (i = 0; i < NUM_REGS; i++)
1682 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1683 if (regnum == -1)
1684 pa_print_registers (raw_regs, regnum, fpregs);
1685 else if (regnum < FP0_REGNUM)
199b2450 1686 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1687 REGISTER_BYTE (regnum)));
1688 else
1689 pa_print_fp_reg (regnum);
1690}
1691
e43169eb 1692static void
66a1aa07
SG
1693pa_print_registers (raw_regs, regnum, fpregs)
1694 char *raw_regs;
1695 int regnum;
1696 int fpregs;
1697{
15edf525
RS
1698 int i,j;
1699 long val;
66a1aa07
SG
1700
1701 for (i = 0; i < 18; i++)
15edf525
RS
1702 {
1703 for (j = 0; j < 4; j++)
1704 {
bc28e68d
JK
1705 val =
1706 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
15edf525
RS
1707 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1708 }
1709 printf_unfiltered ("\n");
1710 }
1711
66a1aa07
SG
1712 if (fpregs)
1713 for (i = 72; i < NUM_REGS; i++)
1714 pa_print_fp_reg (i);
1715}
1716
e43169eb 1717static void
66a1aa07
SG
1718pa_print_fp_reg (i)
1719 int i;
1720{
1721 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1722 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1723
eb1167c6 1724 /* Get 32bits of data. */
66a1aa07 1725 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1726
eb1167c6
JL
1727 /* Put it in the buffer. No conversions are ever necessary. */
1728 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1729
199b2450 1730 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1731 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1732 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1733
199b2450 1734 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1735 1, 0, Val_pretty_default);
1736 printf_filtered ("\n");
eb1167c6
JL
1737
1738 /* If "i" is even, then this register can also be a double-precision
1739 FP register. Dump it out as such. */
1740 if ((i % 2) == 0)
1741 {
1742 /* Get the data in raw format for the 2nd half. */
1743 read_relative_register_raw_bytes (i + 1, raw_buffer);
1744
1745 /* Copy it into the appropriate part of the virtual buffer. */
1746 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1747 REGISTER_RAW_SIZE (i));
1748
1749 /* Dump it as a double. */
1750 fputs_filtered (reg_names[i], gdb_stdout);
1751 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1752 fputs_filtered ("(double precision) ", gdb_stdout);
1753
1754 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1755 1, 0, Val_pretty_default);
1756 printf_filtered ("\n");
1757 }
66a1aa07
SG
1758}
1759
a76c2240
JL
1760/* Return one if PC is in the call path of a trampoline, else return zero.
1761
1762 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1763 just shared library trampolines (import, export). */
481faa25 1764
e43169eb 1765int
481faa25
JL
1766in_solib_call_trampoline (pc, name)
1767 CORE_ADDR pc;
1768 char *name;
1769{
1770 struct minimal_symbol *minsym;
1771 struct unwind_table_entry *u;
a76c2240
JL
1772 static CORE_ADDR dyncall = 0;
1773 static CORE_ADDR sr4export = 0;
1774
1775/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1776 new exec file */
1777
1778 /* First see if PC is in one of the two C-library trampolines. */
1779 if (!dyncall)
1780 {
2d336b1b 1781 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
a76c2240
JL
1782 if (minsym)
1783 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1784 else
1785 dyncall = -1;
1786 }
1787
1788 if (!sr4export)
1789 {
2d336b1b 1790 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
a76c2240
JL
1791 if (minsym)
1792 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1793 else
1794 sr4export = -1;
1795 }
1796
1797 if (pc == dyncall || pc == sr4export)
1798 return 1;
481faa25
JL
1799
1800 /* Get the unwind descriptor corresponding to PC, return zero
1801 if no unwind was found. */
1802 u = find_unwind_entry (pc);
1803 if (!u)
1804 return 0;
1805
1806 /* If this isn't a linker stub, then return now. */
a76c2240 1807 if (u->stub_type == 0)
481faa25
JL
1808 return 0;
1809
a76c2240
JL
1810 /* By definition a long-branch stub is a call stub. */
1811 if (u->stub_type == LONG_BRANCH)
1812 return 1;
1813
481faa25
JL
1814 /* The call and return path execute the same instructions within
1815 an IMPORT stub! So an IMPORT stub is both a call and return
1816 trampoline. */
1817 if (u->stub_type == IMPORT)
1818 return 1;
1819
a76c2240 1820 /* Parameter relocation stubs always have a call path and may have a
481faa25 1821 return path. */
54576db3
JL
1822 if (u->stub_type == PARAMETER_RELOCATION
1823 || u->stub_type == EXPORT)
a76c2240
JL
1824 {
1825 CORE_ADDR addr;
1826
1827 /* Search forward from the current PC until we hit a branch
1828 or the end of the stub. */
1829 for (addr = pc; addr <= u->region_end; addr += 4)
1830 {
1831 unsigned long insn;
1832
1833 insn = read_memory_integer (addr, 4);
1834
1835 /* Does it look like a bl? If so then it's the call path, if
54576db3 1836 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1837 if ((insn & 0xfc00e000) == 0xe8000000)
1838 return 1;
54576db3
JL
1839 else if ((insn & 0xfc00e001) == 0xe800c000
1840 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1841 return 0;
1842 }
1843
1844 /* Should never happen. */
1845 warning ("Unable to find branch in parameter relocation stub.\n");
1846 return 0;
1847 }
1848
1849 /* Unknown stub type. For now, just return zero. */
1850 return 0;
481faa25
JL
1851}
1852
a76c2240
JL
1853/* Return one if PC is in the return path of a trampoline, else return zero.
1854
1855 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1856 just shared library trampolines (import, export). */
481faa25 1857
e43169eb 1858int
481faa25
JL
1859in_solib_return_trampoline (pc, name)
1860 CORE_ADDR pc;
1861 char *name;
1862{
481faa25
JL
1863 struct unwind_table_entry *u;
1864
1865 /* Get the unwind descriptor corresponding to PC, return zero
1866 if no unwind was found. */
1867 u = find_unwind_entry (pc);
1868 if (!u)
1869 return 0;
1870
a76c2240
JL
1871 /* If this isn't a linker stub or it's just a long branch stub, then
1872 return zero. */
1873 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
481faa25
JL
1874 return 0;
1875
1876 /* The call and return path execute the same instructions within
1877 an IMPORT stub! So an IMPORT stub is both a call and return
1878 trampoline. */
1879 if (u->stub_type == IMPORT)
1880 return 1;
1881
a76c2240 1882 /* Parameter relocation stubs always have a call path and may have a
481faa25 1883 return path. */
54576db3
JL
1884 if (u->stub_type == PARAMETER_RELOCATION
1885 || u->stub_type == EXPORT)
a76c2240
JL
1886 {
1887 CORE_ADDR addr;
1888
1889 /* Search forward from the current PC until we hit a branch
1890 or the end of the stub. */
1891 for (addr = pc; addr <= u->region_end; addr += 4)
1892 {
1893 unsigned long insn;
1894
1895 insn = read_memory_integer (addr, 4);
1896
1897 /* Does it look like a bl? If so then it's the call path, if
54576db3 1898 we find a bv or be first, then we're on the return path. */
a76c2240
JL
1899 if ((insn & 0xfc00e000) == 0xe8000000)
1900 return 0;
54576db3
JL
1901 else if ((insn & 0xfc00e001) == 0xe800c000
1902 || (insn & 0xfc000000) == 0xe0000000)
a76c2240
JL
1903 return 1;
1904 }
1905
1906 /* Should never happen. */
1907 warning ("Unable to find branch in parameter relocation stub.\n");
1908 return 0;
1909 }
1910
1911 /* Unknown stub type. For now, just return zero. */
1912 return 0;
1913
481faa25
JL
1914}
1915
de482138
JL
1916/* Figure out if PC is in a trampoline, and if so find out where
1917 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 1918
de482138
JL
1919 Simple code examination probably is not a good idea since the code
1920 sequences in trampolines can also appear in user code.
1921
1922 We use unwinds and information from the minimal symbol table to
1923 determine when we're in a trampoline. This won't work for ELF
1924 (yet) since it doesn't create stub unwind entries. Whether or
1925 not ELF will create stub unwinds or normal unwinds for linker
1926 stubs is still being debated.
1927
1928 This should handle simple calls through dyncall or sr4export,
1929 long calls, argument relocation stubs, and dyncall/sr4export
1930 calling an argument relocation stub. It even handles some stubs
1931 used in dynamic executables. */
66a1aa07
SG
1932
1933CORE_ADDR
1934skip_trampoline_code (pc, name)
1935 CORE_ADDR pc;
1936 char *name;
1937{
de482138
JL
1938 long orig_pc = pc;
1939 long prev_inst, curr_inst, loc;
66a1aa07 1940 static CORE_ADDR dyncall = 0;
de482138 1941 static CORE_ADDR sr4export = 0;
66a1aa07 1942 struct minimal_symbol *msym;
de482138 1943 struct unwind_table_entry *u;
66a1aa07 1944
de482138
JL
1945/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1946 new exec file */
66a1aa07
SG
1947
1948 if (!dyncall)
1949 {
2d336b1b 1950 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
66a1aa07
SG
1951 if (msym)
1952 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1953 else
1954 dyncall = -1;
1955 }
1956
de482138
JL
1957 if (!sr4export)
1958 {
2d336b1b 1959 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
de482138
JL
1960 if (msym)
1961 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1962 else
1963 sr4export = -1;
1964 }
1965
1966 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 1967 of the function. So we may have to do something special. */
66a1aa07 1968 if (pc == dyncall)
de482138
JL
1969 {
1970 pc = (CORE_ADDR) read_register (22);
66a1aa07 1971
de482138
JL
1972 /* If bit 30 (counting from the left) is on, then pc is the address of
1973 the PLT entry for this function, not the address of the function
1974 itself. Bit 31 has meaning too, but only for MPE. */
1975 if (pc & 0x2)
1976 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1977 }
1978 else if (pc == sr4export)
1979 pc = (CORE_ADDR) (read_register (22));
66a1aa07 1980
de482138
JL
1981 /* Get the unwind descriptor corresponding to PC, return zero
1982 if no unwind was found. */
1983 u = find_unwind_entry (pc);
1984 if (!u)
1985 return 0;
1986
1987 /* If this isn't a linker stub, then return now. */
1988 if (u->stub_type == 0)
1989 return orig_pc == pc ? 0 : pc & ~0x3;
1990
1991 /* It's a stub. Search for a branch and figure out where it goes.
1992 Note we have to handle multi insn branch sequences like ldil;ble.
1993 Most (all?) other branches can be determined by examining the contents
1994 of certain registers and the stack. */
1995 loc = pc;
1996 curr_inst = 0;
1997 prev_inst = 0;
1998 while (1)
1999 {
2000 /* Make sure we haven't walked outside the range of this stub. */
2001 if (u != find_unwind_entry (loc))
2002 {
2003 warning ("Unable to find branch in linker stub");
2004 return orig_pc == pc ? 0 : pc & ~0x3;
2005 }
2006
2007 prev_inst = curr_inst;
2008 curr_inst = read_memory_integer (loc, 4);
66a1aa07 2009
de482138
JL
2010 /* Does it look like a branch external using %r1? Then it's the
2011 branch from the stub to the actual function. */
2012 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2013 {
2014 /* Yup. See if the previous instruction loaded
2015 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 2016 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
2017 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2018 else
2019 {
2020 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2021 return orig_pc == pc ? 0 : pc & ~0x3;
2022 }
2023 }
2024
f32fc5f9
JL
2025 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2026 import stub to an export stub.
2027
2028 It is impossible to determine the target of the branch via
2029 simple examination of instructions and/or data (consider
2030 that the address in the plabel may be the address of the
2031 bind-on-reference routine in the dynamic loader).
2032
2033 So we have try an alternative approach.
2034
2035 Get the name of the symbol at our current location; it should
2036 be a stub symbol with the same name as the symbol in the
2037 shared library.
2038
2039 Then lookup a minimal symbol with the same name; we should
2040 get the minimal symbol for the target routine in the shared
2041 library as those take precedence of import/export stubs. */
2042 if (curr_inst == 0xe2a00000)
2043 {
2044 struct minimal_symbol *stubsym, *libsym;
2045
2046 stubsym = lookup_minimal_symbol_by_pc (loc);
2047 if (stubsym == NULL)
2048 {
2049 warning ("Unable to find symbol for 0x%x", loc);
2050 return orig_pc == pc ? 0 : pc & ~0x3;
2051 }
2052
2d336b1b 2053 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
f32fc5f9
JL
2054 if (libsym == NULL)
2055 {
2056 warning ("Unable to find library symbol for %s\n",
2057 SYMBOL_NAME (stubsym));
2058 return orig_pc == pc ? 0 : pc & ~0x3;
2059 }
2060
2061 return SYMBOL_VALUE (libsym);
2062 }
2063
88b91d4a
JL
2064 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2065 branch from the stub to the actual function. */
2066 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2067 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
2068 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2069
2070 /* Does it look like bv (rp)? Note this depends on the
2071 current stack pointer being the same as the stack
2072 pointer in the stub itself! This is a branch on from the
2073 stub back to the original caller. */
2074 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2075 {
2076 /* Yup. See if the previous instruction loaded
2077 rp from sp - 8. */
2078 if (prev_inst == 0x4bc23ff1)
2079 return (read_memory_integer
2080 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2081 else
2082 {
2083 warning ("Unable to find restore of %%rp before bv (%%rp).");
2084 return orig_pc == pc ? 0 : pc & ~0x3;
2085 }
2086 }
2087
2088 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2089 the original caller from the stub. Used in dynamic executables. */
2090 else if (curr_inst == 0xe0400002)
2091 {
2092 /* The value we jump to is sitting in sp - 24. But that's
2093 loaded several instructions before the be instruction.
2094 I guess we could check for the previous instruction being
2095 mtsp %r1,%sr0 if we want to do sanity checking. */
2096 return (read_memory_integer
2097 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2098 }
2099
2100 /* Haven't found the branch yet, but we're still in the stub.
2101 Keep looking. */
2102 loc += 4;
2103 }
66a1aa07
SG
2104}
2105
c598654a
JL
2106/* For the given instruction (INST), return any adjustment it makes
2107 to the stack pointer or zero for no adjustment.
2108
2109 This only handles instructions commonly found in prologues. */
2110
2111static int
2112prologue_inst_adjust_sp (inst)
2113 unsigned long inst;
2114{
2115 /* This must persist across calls. */
2116 static int save_high21;
2117
2118 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2119 if ((inst & 0xffffc000) == 0x37de0000)
2120 return extract_14 (inst);
2121
2122 /* stwm X,D(sp) */
2123 if ((inst & 0xffe00000) == 0x6fc00000)
2124 return extract_14 (inst);
2125
2126 /* addil high21,%r1; ldo low11,(%r1),%r30)
2127 save high bits in save_high21 for later use. */
2128 if ((inst & 0xffe00000) == 0x28200000)
2129 {
2130 save_high21 = extract_21 (inst);
2131 return 0;
2132 }
2133
2134 if ((inst & 0xffff0000) == 0x343e0000)
2135 return save_high21 + extract_14 (inst);
2136
2137 /* fstws as used by the HP compilers. */
2138 if ((inst & 0xffffffe0) == 0x2fd01220)
2139 return extract_5_load (inst);
2140
2141 /* No adjustment. */
2142 return 0;
2143}
2144
2145/* Return nonzero if INST is a branch of some kind, else return zero. */
2146
2147static int
2148is_branch (inst)
2149 unsigned long inst;
2150{
2151 switch (inst >> 26)
2152 {
2153 case 0x20:
2154 case 0x21:
2155 case 0x22:
2156 case 0x23:
2157 case 0x28:
2158 case 0x29:
2159 case 0x2a:
2160 case 0x2b:
2161 case 0x30:
2162 case 0x31:
2163 case 0x32:
2164 case 0x33:
2165 case 0x38:
2166 case 0x39:
2167 case 0x3a:
2168 return 1;
2169
2170 default:
2171 return 0;
2172 }
2173}
2174
2175/* Return the register number for a GR which is saved by INST or
edd86fb0 2176 zero it INST does not save a GR. */
c598654a
JL
2177
2178static int
2179inst_saves_gr (inst)
2180 unsigned long inst;
2181{
2182 /* Does it look like a stw? */
2183 if ((inst >> 26) == 0x1a)
2184 return extract_5R_store (inst);
2185
edd86fb0 2186 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
2187 if ((inst >> 26) == 0x1b)
2188 return extract_5R_store (inst);
2189
edd86fb0
JL
2190 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2191 too. */
2192 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2193 return extract_5R_store (inst);
2194
c598654a
JL
2195 return 0;
2196}
2197
2198/* Return the register number for a FR which is saved by INST or
2199 zero it INST does not save a FR.
2200
2201 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
2202 kind of stores the prologue will use).
2203
2204 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
2205
2206static int
2207inst_saves_fr (inst)
2208 unsigned long inst;
2209{
edd86fb0 2210 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
2211 return extract_5r_store (inst);
2212 return 0;
2213}
2214
66a1aa07 2215/* Advance PC across any function entry prologue instructions
c598654a 2216 to reach some "real" code.
66a1aa07 2217
c598654a
JL
2218 Use information in the unwind table to determine what exactly should
2219 be in the prologue. */
66a1aa07
SG
2220
2221CORE_ADDR
de482138 2222skip_prologue (pc)
66a1aa07
SG
2223 CORE_ADDR pc;
2224{
34df79fc 2225 char buf[4];
c598654a 2226 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
edd86fb0 2227 unsigned long args_stored, status, i;
c598654a 2228 struct unwind_table_entry *u;
66a1aa07 2229
c598654a
JL
2230 u = find_unwind_entry (pc);
2231 if (!u)
fdafbfad 2232 return pc;
c598654a 2233
de482138
JL
2234 /* If we are not at the beginning of a function, then return now. */
2235 if ((pc & ~0x3) != u->region_start)
2236 return pc;
2237
c598654a
JL
2238 /* This is how much of a frame adjustment we need to account for. */
2239 stack_remaining = u->Total_frame_size << 3;
66a1aa07 2240
c598654a
JL
2241 /* Magic register saves we want to know about. */
2242 save_rp = u->Save_RP;
2243 save_sp = u->Save_SP;
2244
edd86fb0
JL
2245 /* An indication that args may be stored into the stack. Unfortunately
2246 the HPUX compilers tend to set this in cases where no args were
2247 stored too!. */
2248 args_stored = u->Args_stored;
2249
c598654a
JL
2250 /* Turn the Entry_GR field into a bitmask. */
2251 save_gr = 0;
2252 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 2253 {
c598654a
JL
2254 /* Frame pointer gets saved into a special location. */
2255 if (u->Save_SP && i == FP_REGNUM)
2256 continue;
2257
2258 save_gr |= (1 << i);
2259 }
2260
2261 /* Turn the Entry_FR field into a bitmask too. */
2262 save_fr = 0;
2263 for (i = 12; i < u->Entry_FR + 12; i++)
2264 save_fr |= (1 << i);
2265
2266 /* Loop until we find everything of interest or hit a branch.
2267
2268 For unoptimized GCC code and for any HP CC code this will never ever
2269 examine any user instructions.
2270
2271 For optimzied GCC code we're faced with problems. GCC will schedule
2272 its prologue and make prologue instructions available for delay slot
2273 filling. The end result is user code gets mixed in with the prologue
2274 and a prologue instruction may be in the delay slot of the first branch
2275 or call.
2276
2277 Some unexpected things are expected with debugging optimized code, so
2278 we allow this routine to walk past user instructions in optimized
2279 GCC code. */
edd86fb0
JL
2280 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2281 || args_stored)
c598654a 2282 {
edd86fb0
JL
2283 unsigned int reg_num;
2284 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
e43169eb 2285 unsigned long old_save_rp, old_save_sp, next_inst;
edd86fb0
JL
2286
2287 /* Save copies of all the triggers so we can compare them later
2288 (only for HPC). */
2289 old_save_gr = save_gr;
2290 old_save_fr = save_fr;
2291 old_save_rp = save_rp;
2292 old_save_sp = save_sp;
2293 old_stack_remaining = stack_remaining;
2294
c598654a
JL
2295 status = target_read_memory (pc, buf, 4);
2296 inst = extract_unsigned_integer (buf, 4);
edd86fb0 2297
c598654a
JL
2298 /* Yow! */
2299 if (status != 0)
2300 return pc;
2301
2302 /* Note the interesting effects of this instruction. */
2303 stack_remaining -= prologue_inst_adjust_sp (inst);
2304
2305 /* There is only one instruction used for saving RP into the stack. */
2306 if (inst == 0x6bc23fd9)
2307 save_rp = 0;
2308
2309 /* This is the only way we save SP into the stack. At this time
2310 the HP compilers never bother to save SP into the stack. */
2311 if ((inst & 0xffffc000) == 0x6fc10000)
2312 save_sp = 0;
2313
2314 /* Account for general and floating-point register saves. */
edd86fb0
JL
2315 reg_num = inst_saves_gr (inst);
2316 save_gr &= ~(1 << reg_num);
2317
2318 /* Ugh. Also account for argument stores into the stack.
2319 Unfortunately args_stored only tells us that some arguments
2320 where stored into the stack. Not how many or what kind!
2321
2322 This is a kludge as on the HP compiler sets this bit and it
2323 never does prologue scheduling. So once we see one, skip past
2324 all of them. We have similar code for the fp arg stores below.
2325
2326 FIXME. Can still die if we have a mix of GR and FR argument
2327 stores! */
2328 if (reg_num >= 23 && reg_num <= 26)
2329 {
2330 while (reg_num >= 23 && reg_num <= 26)
2331 {
2332 pc += 4;
2333 status = target_read_memory (pc, buf, 4);
2334 inst = extract_unsigned_integer (buf, 4);
2335 if (status != 0)
2336 return pc;
2337 reg_num = inst_saves_gr (inst);
2338 }
2339 args_stored = 0;
2340 continue;
2341 }
2342
2343 reg_num = inst_saves_fr (inst);
2344 save_fr &= ~(1 << reg_num);
2345
2346 status = target_read_memory (pc + 4, buf, 4);
2347 next_inst = extract_unsigned_integer (buf, 4);
2348
2349 /* Yow! */
2350 if (status != 0)
2351 return pc;
2352
2353 /* We've got to be read to handle the ldo before the fp register
2354 save. */
2355 if ((inst & 0xfc000000) == 0x34000000
2356 && inst_saves_fr (next_inst) >= 4
2357 && inst_saves_fr (next_inst) <= 7)
2358 {
2359 /* So we drop into the code below in a reasonable state. */
2360 reg_num = inst_saves_fr (next_inst);
2361 pc -= 4;
2362 }
2363
2364 /* Ugh. Also account for argument stores into the stack.
2365 This is a kludge as on the HP compiler sets this bit and it
2366 never does prologue scheduling. So once we see one, skip past
2367 all of them. */
2368 if (reg_num >= 4 && reg_num <= 7)
2369 {
2370 while (reg_num >= 4 && reg_num <= 7)
2371 {
2372 pc += 8;
2373 status = target_read_memory (pc, buf, 4);
2374 inst = extract_unsigned_integer (buf, 4);
2375 if (status != 0)
2376 return pc;
2377 if ((inst & 0xfc000000) != 0x34000000)
2378 break;
2379 status = target_read_memory (pc + 4, buf, 4);
2380 next_inst = extract_unsigned_integer (buf, 4);
2381 if (status != 0)
2382 return pc;
2383 reg_num = inst_saves_fr (next_inst);
2384 }
2385 args_stored = 0;
2386 continue;
2387 }
c598654a
JL
2388
2389 /* Quit if we hit any kind of branch. This can happen if a prologue
2390 instruction is in the delay slot of the first call/branch. */
2391 if (is_branch (inst))
2392 break;
2393
edd86fb0
JL
2394 /* What a crock. The HP compilers set args_stored even if no
2395 arguments were stored into the stack (boo hiss). This could
2396 cause this code to then skip a bunch of user insns (up to the
2397 first branch).
2398
2399 To combat this we try to identify when args_stored was bogusly
2400 set and clear it. We only do this when args_stored is nonzero,
2401 all other resources are accounted for, and nothing changed on
2402 this pass. */
2403 if (args_stored
2404 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2405 && old_save_gr == save_gr && old_save_fr == save_fr
2406 && old_save_rp == save_rp && old_save_sp == save_sp
2407 && old_stack_remaining == stack_remaining)
2408 break;
2409
c598654a
JL
2410 /* Bump the PC. */
2411 pc += 4;
66a1aa07 2412 }
66a1aa07
SG
2413
2414 return pc;
2415}
2416
c598654a
JL
2417/* Put here the code to store, into a struct frame_saved_regs,
2418 the addresses of the saved registers of frame described by FRAME_INFO.
2419 This includes special registers such as pc and fp saved in special
2420 ways in the stack frame. sp is even more special:
2421 the address we return for it IS the sp for the next frame. */
2422
2423void
2424hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2425 struct frame_info *frame_info;
c598654a
JL
2426 struct frame_saved_regs *frame_saved_regs;
2427{
2428 CORE_ADDR pc;
2429 struct unwind_table_entry *u;
2430 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2431 int status, i, reg;
2432 char buf[4];
2433 int fp_loc = -1;
2434
2435 /* Zero out everything. */
2436 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2437
2438 /* Call dummy frames always look the same, so there's no need to
2439 examine the dummy code to determine locations of saved registers;
2440 instead, let find_dummy_frame_regs fill in the correct offsets
2441 for the saved registers. */
cb5f7128
JL
2442 if ((frame_info->pc >= frame_info->frame
2443 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2444 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2445 + 6 * 4)))
2446 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2447
70e43abe
JL
2448 /* Interrupt handlers are special too. They lay out the register
2449 state in the exact same order as the register numbers in GDB. */
cb5f7128 2450 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2451 {
2452 for (i = 0; i < NUM_REGS; i++)
2453 {
2454 /* SP is a little special. */
2455 if (i == SP_REGNUM)
2456 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2457 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2458 else
cb5f7128 2459 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2460 }
2461 return;
2462 }
2463
7486c68d 2464#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
70e43abe 2465 /* Handle signal handler callers. */
cb5f7128 2466 if (frame_info->signal_handler_caller)
70e43abe 2467 {
cb5f7128 2468 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2469 return;
2470 }
7486c68d 2471#endif
70e43abe 2472
c598654a 2473 /* Get the starting address of the function referred to by the PC
669caa9c 2474 saved in frame. */
cb5f7128 2475 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2476
2477 /* Yow! */
2478 u = find_unwind_entry (pc);
2479 if (!u)
2480 return;
2481
2482 /* This is how much of a frame adjustment we need to account for. */
2483 stack_remaining = u->Total_frame_size << 3;
2484
2485 /* Magic register saves we want to know about. */
2486 save_rp = u->Save_RP;
2487 save_sp = u->Save_SP;
2488
2489 /* Turn the Entry_GR field into a bitmask. */
2490 save_gr = 0;
2491 for (i = 3; i < u->Entry_GR + 3; i++)
2492 {
2493 /* Frame pointer gets saved into a special location. */
2494 if (u->Save_SP && i == FP_REGNUM)
2495 continue;
2496
2497 save_gr |= (1 << i);
2498 }
2499
2500 /* Turn the Entry_FR field into a bitmask too. */
2501 save_fr = 0;
2502 for (i = 12; i < u->Entry_FR + 12; i++)
2503 save_fr |= (1 << i);
2504
70e43abe
JL
2505 /* The frame always represents the value of %sp at entry to the
2506 current function (and is thus equivalent to the "saved" stack
2507 pointer. */
cb5f7128 2508 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2509
c598654a
JL
2510 /* Loop until we find everything of interest or hit a branch.
2511
2512 For unoptimized GCC code and for any HP CC code this will never ever
2513 examine any user instructions.
2514
2515 For optimzied GCC code we're faced with problems. GCC will schedule
2516 its prologue and make prologue instructions available for delay slot
2517 filling. The end result is user code gets mixed in with the prologue
2518 and a prologue instruction may be in the delay slot of the first branch
2519 or call.
2520
2521 Some unexpected things are expected with debugging optimized code, so
2522 we allow this routine to walk past user instructions in optimized
2523 GCC code. */
2524 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2525 {
2526 status = target_read_memory (pc, buf, 4);
2527 inst = extract_unsigned_integer (buf, 4);
2528
2529 /* Yow! */
2530 if (status != 0)
2531 return;
2532
2533 /* Note the interesting effects of this instruction. */
2534 stack_remaining -= prologue_inst_adjust_sp (inst);
2535
2536 /* There is only one instruction used for saving RP into the stack. */
2537 if (inst == 0x6bc23fd9)
2538 {
2539 save_rp = 0;
cb5f7128 2540 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2541 }
2542
70e43abe
JL
2543 /* Just note that we found the save of SP into the stack. The
2544 value for frame_saved_regs was computed above. */
c598654a 2545 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2546 save_sp = 0;
c598654a
JL
2547
2548 /* Account for general and floating-point register saves. */
2549 reg = inst_saves_gr (inst);
2550 if (reg >= 3 && reg <= 18
2551 && (!u->Save_SP || reg != FP_REGNUM))
2552 {
2553 save_gr &= ~(1 << reg);
2554
2555 /* stwm with a positive displacement is a *post modify*. */
2556 if ((inst >> 26) == 0x1b
2557 && extract_14 (inst) >= 0)
cb5f7128 2558 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2559 else
2560 {
2561 /* Handle code with and without frame pointers. */
2562 if (u->Save_SP)
2563 frame_saved_regs->regs[reg]
cb5f7128 2564 = frame_info->frame + extract_14 (inst);
c598654a
JL
2565 else
2566 frame_saved_regs->regs[reg]
cb5f7128 2567 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2568 + extract_14 (inst);
2569 }
2570 }
2571
2572
2573 /* GCC handles callee saved FP regs a little differently.
2574
2575 It emits an instruction to put the value of the start of
2576 the FP store area into %r1. It then uses fstds,ma with
2577 a basereg of %r1 for the stores.
2578
2579 HP CC emits them at the current stack pointer modifying
2580 the stack pointer as it stores each register. */
2581
2582 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2583 if ((inst & 0xffffc000) == 0x34610000
2584 || (inst & 0xffffc000) == 0x37c10000)
2585 fp_loc = extract_14 (inst);
2586
2587 reg = inst_saves_fr (inst);
2588 if (reg >= 12 && reg <= 21)
2589 {
2590 /* Note +4 braindamage below is necessary because the FP status
2591 registers are internally 8 registers rather than the expected
2592 4 registers. */
2593 save_fr &= ~(1 << reg);
2594 if (fp_loc == -1)
2595 {
2596 /* 1st HP CC FP register store. After this instruction
2597 we've set enough state that the GCC and HPCC code are
2598 both handled in the same manner. */
cb5f7128 2599 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2600 fp_loc = 8;
2601 }
2602 else
2603 {
2604 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2605 = frame_info->frame + fp_loc;
c598654a
JL
2606 fp_loc += 8;
2607 }
2608 }
2609
2610 /* Quit if we hit any kind of branch. This can happen if a prologue
2611 instruction is in the delay slot of the first call/branch. */
2612 if (is_branch (inst))
2613 break;
2614
2615 /* Bump the PC. */
2616 pc += 4;
2617 }
2618}
2619
63757ecd
JK
2620#ifdef MAINTENANCE_CMDS
2621
66a1aa07
SG
2622static void
2623unwind_command (exp, from_tty)
2624 char *exp;
2625 int from_tty;
2626{
2627 CORE_ADDR address;
d8afcce9 2628 struct unwind_table_entry *u;
66a1aa07
SG
2629
2630 /* If we have an expression, evaluate it and use it as the address. */
2631
2632 if (exp != 0 && *exp != 0)
2633 address = parse_and_eval_address (exp);
2634 else
2635 return;
2636
d8afcce9 2637 u = find_unwind_entry (address);
66a1aa07 2638
d8afcce9 2639 if (!u)
66a1aa07 2640 {
d8afcce9 2641 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
66a1aa07
SG
2642 return;
2643 }
2644
d8afcce9
SG
2645 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2646
2647 printf_unfiltered ("\tregion_start = ");
2648 print_address (u->region_start, gdb_stdout);
2649
2650 printf_unfiltered ("\n\tregion_end = ");
2651 print_address (u->region_end, gdb_stdout);
2652
2653#ifdef __STDC__
2654#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2655#else
2656#define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2657#endif
2658
2659 printf_unfiltered ("\n\tflags =");
2660 pif (Cannot_unwind);
2661 pif (Millicode);
2662 pif (Millicode_save_sr0);
2663 pif (Entry_SR);
2664 pif (Args_stored);
2665 pif (Variable_Frame);
2666 pif (Separate_Package_Body);
2667 pif (Frame_Extension_Millicode);
2668 pif (Stack_Overflow_Check);
2669 pif (Two_Instruction_SP_Increment);
2670 pif (Ada_Region);
2671 pif (Save_SP);
2672 pif (Save_RP);
2673 pif (Save_MRP_in_frame);
2674 pif (extn_ptr_defined);
2675 pif (Cleanup_defined);
2676 pif (MPE_XL_interrupt_marker);
2677 pif (HP_UX_interrupt_marker);
2678 pif (Large_frame);
2679
2680 putchar_unfiltered ('\n');
2681
2682#ifdef __STDC__
2683#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2684#else
2685#define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2686#endif
2687
2688 pin (Region_description);
2689 pin (Entry_FR);
2690 pin (Entry_GR);
2691 pin (Total_frame_size);
66a1aa07 2692}
976bb0be 2693#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2694
2695void
2696_initialize_hppa_tdep ()
2697{
18b46e7c
SS
2698 tm_print_insn = print_insn_hppa;
2699
976bb0be 2700#ifdef MAINTENANCE_CMDS
63757ecd
JK
2701 add_cmd ("unwind", class_maintenance, unwind_command,
2702 "Print unwind table entry at given address.",
2703 &maintenanceprintlist);
63757ecd 2704#endif /* MAINTENANCE_CMDS */
976bb0be 2705}
This page took 0.249451 seconds and 4 git commands to generate.