Add dummy decl for `dump_literals'.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
49#include <sys/stat.h>
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
669caa9c
SS
58static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60static int hppa_alignof PARAMS ((struct type *));
61
62CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
c598654a 64static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 65
c598654a 66static int is_branch PARAMS ((unsigned long));
669caa9c 67
c598654a 68static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 69
c598654a 70static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 71
70e43abe 72static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 73
70e43abe 74static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c
SS
75
76static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
f81eee9d 77 const struct unwind_table_entry *));
669caa9c 78
c5152d42 79static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 80
c5152d42
JL
81static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
bfaef242 84 unsigned int, CORE_ADDR));
66a1aa07
SG
85
86\f
87/* Routines to extract various sized constants out of hppa
88 instructions. */
89
90/* This assumes that no garbage lies outside of the lower bits of
91 value. */
92
93int
94sign_extend (val, bits)
95 unsigned val, bits;
96{
97 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
98}
99
100/* For many immediate values the sign bit is the low bit! */
101
102int
103low_sign_extend (val, bits)
104 unsigned val, bits;
105{
106 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
107}
108/* extract the immediate field from a ld{bhw}s instruction */
109
110unsigned
111get_field (val, from, to)
112 unsigned val, from, to;
113{
114 val = val >> 31 - to;
115 return val & ((1 << 32 - from) - 1);
116}
117
118unsigned
119set_field (val, from, to, new_val)
120 unsigned *val, from, to;
121{
122 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
123 return *val = *val & mask | (new_val << (31 - from));
124}
125
126/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
127
128extract_3 (word)
129 unsigned word;
130{
131 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
132}
133
134extract_5_load (word)
135 unsigned word;
136{
137 return low_sign_extend (word >> 16 & MASK_5, 5);
138}
139
140/* extract the immediate field from a st{bhw}s instruction */
141
142int
143extract_5_store (word)
144 unsigned word;
145{
146 return low_sign_extend (word & MASK_5, 5);
147}
148
68c8d698
SG
149/* extract the immediate field from a break instruction */
150
151unsigned
152extract_5r_store (word)
153 unsigned word;
154{
155 return (word & MASK_5);
156}
157
158/* extract the immediate field from a {sr}sm instruction */
159
160unsigned
161extract_5R_store (word)
162 unsigned word;
163{
164 return (word >> 16 & MASK_5);
165}
166
66a1aa07
SG
167/* extract an 11 bit immediate field */
168
169int
170extract_11 (word)
171 unsigned word;
172{
173 return low_sign_extend (word & MASK_11, 11);
174}
175
176/* extract a 14 bit immediate field */
177
178int
179extract_14 (word)
180 unsigned word;
181{
182 return low_sign_extend (word & MASK_14, 14);
183}
184
185/* deposit a 14 bit constant in a word */
186
187unsigned
188deposit_14 (opnd, word)
189 int opnd;
190 unsigned word;
191{
192 unsigned sign = (opnd < 0 ? 1 : 0);
193
194 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
195}
196
197/* extract a 21 bit constant */
198
199int
200extract_21 (word)
201 unsigned word;
202{
203 int val;
204
205 word &= MASK_21;
206 word <<= 11;
207 val = GET_FIELD (word, 20, 20);
208 val <<= 11;
209 val |= GET_FIELD (word, 9, 19);
210 val <<= 2;
211 val |= GET_FIELD (word, 5, 6);
212 val <<= 5;
213 val |= GET_FIELD (word, 0, 4);
214 val <<= 2;
215 val |= GET_FIELD (word, 7, 8);
216 return sign_extend (val, 21) << 11;
217}
218
219/* deposit a 21 bit constant in a word. Although 21 bit constants are
220 usually the top 21 bits of a 32 bit constant, we assume that only
221 the low 21 bits of opnd are relevant */
222
223unsigned
224deposit_21 (opnd, word)
225 unsigned opnd, word;
226{
227 unsigned val = 0;
228
229 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
230 val <<= 2;
231 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
234 val <<= 11;
235 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
236 val <<= 1;
237 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
238 return word | val;
239}
240
241/* extract a 12 bit constant from branch instructions */
242
243int
244extract_12 (word)
245 unsigned word;
246{
247 return sign_extend (GET_FIELD (word, 19, 28) |
248 GET_FIELD (word, 29, 29) << 10 |
249 (word & 0x1) << 11, 12) << 2;
250}
251
252/* extract a 17 bit constant from branch instructions, returning the
253 19 bit signed value. */
254
255int
256extract_17 (word)
257 unsigned word;
258{
259 return sign_extend (GET_FIELD (word, 19, 28) |
260 GET_FIELD (word, 29, 29) << 10 |
261 GET_FIELD (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263}
264\f
c5152d42
JL
265
266/* Compare the start address for two unwind entries returning 1 if
267 the first address is larger than the second, -1 if the second is
268 larger than the first, and zero if they are equal. */
269
270static int
271compare_unwind_entries (a, b)
f81eee9d
JL
272 const struct unwind_table_entry *a;
273 const struct unwind_table_entry *b;
c5152d42
JL
274{
275 if (a->region_start > b->region_start)
276 return 1;
277 else if (a->region_start < b->region_start)
278 return -1;
279 else
280 return 0;
281}
282
283static void
bfaef242 284internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
285 struct objfile *objfile;
286 struct unwind_table_entry *table;
287 asection *section;
288 unsigned int entries, size;
bfaef242 289 CORE_ADDR text_offset;
c5152d42
JL
290{
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
bfaef242 307 table[i].region_start += text_offset;
c5152d42
JL
308 buf += 4;
309 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 310 table[i].region_end += text_offset;
c5152d42
JL
311 buf += 4;
312 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
313 buf += 4;
314 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
315 table[i].Millicode = (tmp >> 30) & 0x1;
316 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
317 table[i].Region_description = (tmp >> 27) & 0x3;
318 table[i].reserved1 = (tmp >> 26) & 0x1;
319 table[i].Entry_SR = (tmp >> 25) & 0x1;
320 table[i].Entry_FR = (tmp >> 21) & 0xf;
321 table[i].Entry_GR = (tmp >> 16) & 0x1f;
322 table[i].Args_stored = (tmp >> 15) & 0x1;
323 table[i].Variable_Frame = (tmp >> 14) & 0x1;
324 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
325 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
326 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
327 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
328 table[i].Ada_Region = (tmp >> 9) & 0x1;
329 table[i].reserved2 = (tmp >> 5) & 0xf;
330 table[i].Save_SP = (tmp >> 4) & 0x1;
331 table[i].Save_RP = (tmp >> 3) & 0x1;
332 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
333 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
334 table[i].Cleanup_defined = tmp & 0x1;
335 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
336 buf += 4;
337 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
338 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
339 table[i].Large_frame = (tmp >> 29) & 0x1;
340 table[i].reserved4 = (tmp >> 27) & 0x3;
341 table[i].Total_frame_size = tmp & 0x7ffffff;
342 }
343 }
344}
345
346/* Read in the backtrace information stored in the `$UNWIND_START$' section of
347 the object file. This info is used mainly by find_unwind_entry() to find
348 out the stack frame size and frame pointer used by procedures. We put
349 everything on the psymbol obstack in the objfile so that it automatically
350 gets freed when the objfile is destroyed. */
351
9c842e0c 352static void
c5152d42
JL
353read_unwind_info (objfile)
354 struct objfile *objfile;
355{
356 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
357 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
358 unsigned index, unwind_entries, elf_unwind_entries;
359 unsigned stub_entries, total_entries;
bfaef242 360 CORE_ADDR text_offset;
c5152d42
JL
361 struct obj_unwind_info *ui;
362
bfaef242 363 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5152d42
JL
364 ui = obstack_alloc (&objfile->psymbol_obstack,
365 sizeof (struct obj_unwind_info));
366
367 ui->table = NULL;
368 ui->cache = NULL;
369 ui->last = -1;
370
371 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
372 section in ELF at the moment. */
373 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 374 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
375 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
376
377 /* Get sizes and unwind counts for all sections. */
378 if (unwind_sec)
379 {
380 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
381 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
382 }
383 else
384 {
385 unwind_size = 0;
386 unwind_entries = 0;
387 }
388
389 if (elf_unwind_sec)
390 {
391 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
392 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
393 }
f55179cb
JL
394 else
395 {
396 elf_unwind_size = 0;
397 elf_unwind_entries = 0;
398 }
c5152d42
JL
399
400 if (stub_unwind_sec)
401 {
402 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
403 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
404 }
405 else
406 {
407 stub_unwind_size = 0;
408 stub_entries = 0;
409 }
410
411 /* Compute total number of unwind entries and their total size. */
412 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
413 total_size = total_entries * sizeof (struct unwind_table_entry);
414
415 /* Allocate memory for the unwind table. */
416 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
417 ui->last = total_entries - 1;
418
419 /* Internalize the standard unwind entries. */
420 index = 0;
421 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 422 unwind_entries, unwind_size, text_offset);
c5152d42
JL
423 index += unwind_entries;
424 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 425 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
426 index += elf_unwind_entries;
427
428 /* Now internalize the stub unwind entries. */
429 if (stub_unwind_size > 0)
430 {
431 unsigned int i;
432 char *buf = alloca (stub_unwind_size);
433
434 /* Read in the stub unwind entries. */
435 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
436 0, stub_unwind_size);
437
438 /* Now convert them into regular unwind entries. */
439 for (i = 0; i < stub_entries; i++, index++)
440 {
441 /* Clear out the next unwind entry. */
442 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
443
444 /* Convert offset & size into region_start and region_end.
445 Stuff away the stub type into "reserved" fields. */
446 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
73a25072 448 ui->table[index].region_start += text_offset;
c5152d42
JL
449 buf += 4;
450 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
451 (bfd_byte *) buf);
452 buf += 2;
453 ui->table[index].region_end
454 = ui->table[index].region_start + 4 *
455 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
456 buf += 2;
457 }
458
459 }
460
461 /* Unwind table needs to be kept sorted. */
462 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
463 compare_unwind_entries);
464
465 /* Keep a pointer to the unwind information. */
466 objfile->obj_private = (PTR) ui;
467}
468
66a1aa07
SG
469/* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474static struct unwind_table_entry *
475find_unwind_entry(pc)
476 CORE_ADDR pc;
477{
478 int first, middle, last;
479 struct objfile *objfile;
480
481 ALL_OBJFILES (objfile)
482 {
483 struct obj_unwind_info *ui;
484
485 ui = OBJ_UNWIND_INFO (objfile);
486
487 if (!ui)
c5152d42
JL
488 {
489 read_unwind_info (objfile);
490 ui = OBJ_UNWIND_INFO (objfile);
491 }
66a1aa07
SG
492
493 /* First, check the cache */
494
495 if (ui->cache
496 && pc >= ui->cache->region_start
497 && pc <= ui->cache->region_end)
498 return ui->cache;
499
500 /* Not in the cache, do a binary search */
501
502 first = 0;
503 last = ui->last;
504
505 while (first <= last)
506 {
507 middle = (first + last) / 2;
508 if (pc >= ui->table[middle].region_start
509 && pc <= ui->table[middle].region_end)
510 {
511 ui->cache = &ui->table[middle];
512 return &ui->table[middle];
513 }
514
515 if (pc < ui->table[middle].region_start)
516 last = middle - 1;
517 else
518 first = middle + 1;
519 }
520 } /* ALL_OBJFILES() */
521 return NULL;
522}
523
98c0e047
JL
524/* Return the adjustment necessary to make for addresses on the stack
525 as presented by hpread.c.
526
527 This is necessary because of the stack direction on the PA and the
528 bizarre way in which someone (?) decided they wanted to handle
529 frame pointerless code in GDB. */
530int
531hpread_adjust_stack_address (func_addr)
532 CORE_ADDR func_addr;
533{
534 struct unwind_table_entry *u;
535
536 u = find_unwind_entry (func_addr);
537 if (!u)
538 return 0;
539 else
540 return u->Total_frame_size << 3;
541}
98c0e047 542
70e43abe
JL
543/* Called to determine if PC is in an interrupt handler of some
544 kind. */
545
546static int
547pc_in_interrupt_handler (pc)
548 CORE_ADDR pc;
549{
550 struct unwind_table_entry *u;
551 struct minimal_symbol *msym_us;
552
553 u = find_unwind_entry (pc);
554 if (!u)
555 return 0;
556
557 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
558 its frame isn't a pure interrupt frame. Deal with this. */
559 msym_us = lookup_minimal_symbol_by_pc (pc);
560
561 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
562}
563
5ac7f56e
JK
564/* Called when no unwind descriptor was found for PC. Returns 1 if it
565 appears that PC is in a linker stub. */
5ac7f56e
JK
566
567static int
568pc_in_linker_stub (pc)
569 CORE_ADDR pc;
570{
5ac7f56e
JK
571 int found_magic_instruction = 0;
572 int i;
08ecd8f3
JK
573 char buf[4];
574
575 /* If unable to read memory, assume pc is not in a linker stub. */
576 if (target_read_memory (pc, buf, 4) != 0)
577 return 0;
5ac7f56e 578
d08c6f4c
JK
579 /* We are looking for something like
580
581 ; $$dyncall jams RP into this special spot in the frame (RP')
582 ; before calling the "call stub"
583 ldw -18(sp),rp
584
585 ldsid (rp),r1 ; Get space associated with RP into r1
586 mtsp r1,sp ; Move it into space register 0
587 be,n 0(sr0),rp) ; back to your regularly scheduled program
588 */
589
5ac7f56e
JK
590 /* Maximum known linker stub size is 4 instructions. Search forward
591 from the given PC, then backward. */
592 for (i = 0; i < 4; i++)
593 {
6e35b037 594 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
595
596 if (find_unwind_entry (pc + i * 4) != 0)
597 break;
598
599 /* Check for ldsid (rp),r1 which is the magic instruction for a
600 return from a cross-space function call. */
601 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
602 {
603 found_magic_instruction = 1;
604 break;
605 }
606 /* Add code to handle long call/branch and argument relocation stubs
607 here. */
608 }
609
610 if (found_magic_instruction != 0)
611 return 1;
612
613 /* Now look backward. */
614 for (i = 0; i < 4; i++)
615 {
6e35b037 616 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
617
618 if (find_unwind_entry (pc - i * 4) != 0)
619 break;
620
621 /* Check for ldsid (rp),r1 which is the magic instruction for a
622 return from a cross-space function call. */
623 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
624 {
625 found_magic_instruction = 1;
626 break;
627 }
628 /* Add code to handle long call/branch and argument relocation stubs
629 here. */
630 }
631 return found_magic_instruction;
632}
633
66a1aa07
SG
634static int
635find_return_regnum(pc)
636 CORE_ADDR pc;
637{
638 struct unwind_table_entry *u;
639
640 u = find_unwind_entry (pc);
641
642 if (!u)
643 return RP_REGNUM;
644
645 if (u->Millicode)
646 return 31;
647
648 return RP_REGNUM;
649}
650
5ac7f56e 651/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07 652int
70e43abe 653find_proc_framesize (pc)
66a1aa07
SG
654 CORE_ADDR pc;
655{
656 struct unwind_table_entry *u;
70e43abe 657 struct minimal_symbol *msym_us;
66a1aa07 658
66a1aa07
SG
659 u = find_unwind_entry (pc);
660
661 if (!u)
5ac7f56e
JK
662 {
663 if (pc_in_linker_stub (pc))
664 /* Linker stubs have a zero size frame. */
665 return 0;
666 else
667 return -1;
668 }
66a1aa07 669
70e43abe
JL
670 msym_us = lookup_minimal_symbol_by_pc (pc);
671
672 /* If Save_SP is set, and we're not in an interrupt or signal caller,
673 then we have a frame pointer. Use it. */
674 if (u->Save_SP && !pc_in_interrupt_handler (pc)
675 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
676 return -1;
677
66a1aa07
SG
678 return u->Total_frame_size << 3;
679}
680
5ac7f56e
JK
681/* Return offset from sp at which rp is saved, or 0 if not saved. */
682static int rp_saved PARAMS ((CORE_ADDR));
683
684static int
685rp_saved (pc)
686 CORE_ADDR pc;
66a1aa07
SG
687{
688 struct unwind_table_entry *u;
689
690 u = find_unwind_entry (pc);
691
692 if (!u)
5ac7f56e
JK
693 {
694 if (pc_in_linker_stub (pc))
695 /* This is the so-called RP'. */
696 return -24;
697 else
698 return 0;
699 }
66a1aa07
SG
700
701 if (u->Save_RP)
5ac7f56e 702 return -20;
c7f3b703
JL
703 else if (u->stub_type != 0)
704 {
705 switch (u->stub_type)
706 {
707 case EXPORT:
c2e00af6 708 case IMPORT:
c7f3b703
JL
709 return -24;
710 case PARAMETER_RELOCATION:
711 return -8;
712 default:
713 return 0;
714 }
715 }
66a1aa07
SG
716 else
717 return 0;
718}
719\f
8fa74880
SG
720int
721frameless_function_invocation (frame)
669caa9c 722 struct frame_info *frame;
8fa74880 723{
b8ec9a79 724 struct unwind_table_entry *u;
8fa74880 725
b8ec9a79 726 u = find_unwind_entry (frame->pc);
8fa74880 727
b8ec9a79 728 if (u == 0)
7f43b9b7 729 return 0;
b8ec9a79 730
c7f3b703 731 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
732}
733
66a1aa07
SG
734CORE_ADDR
735saved_pc_after_call (frame)
669caa9c 736 struct frame_info *frame;
66a1aa07
SG
737{
738 int ret_regnum;
edd86fb0
JL
739 CORE_ADDR pc;
740 struct unwind_table_entry *u;
66a1aa07
SG
741
742 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
743 pc = read_register (ret_regnum) & ~0x3;
744
745 /* If PC is in a linker stub, then we need to dig the address
746 the stub will return to out of the stack. */
747 u = find_unwind_entry (pc);
748 if (u && u->stub_type != 0)
749 return frame_saved_pc (frame);
750 else
751 return pc;
66a1aa07
SG
752}
753\f
754CORE_ADDR
755frame_saved_pc (frame)
669caa9c 756 struct frame_info *frame;
66a1aa07
SG
757{
758 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 759 struct unwind_table_entry *u;
66a1aa07 760
70e43abe
JL
761 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
762 at the base of the frame in an interrupt handler. Registers within
763 are saved in the exact same order as GDB numbers registers. How
764 convienent. */
765 if (pc_in_interrupt_handler (pc))
766 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
767
768 /* Deal with signal handler caller frames too. */
769 if (frame->signal_handler_caller)
770 {
771 CORE_ADDR rp;
772 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 773 return rp & ~0x3;
70e43abe
JL
774 }
775
8fa74880 776 if (frameless_function_invocation (frame))
66a1aa07
SG
777 {
778 int ret_regnum;
779
780 ret_regnum = find_return_regnum (pc);
781
70e43abe
JL
782 /* If the next frame is an interrupt frame or a signal
783 handler caller, then we need to look in the saved
784 register area to get the return pointer (the values
785 in the registers may not correspond to anything useful). */
786 if (frame->next
787 && (frame->next->signal_handler_caller
788 || pc_in_interrupt_handler (frame->next->pc)))
789 {
70e43abe
JL
790 struct frame_saved_regs saved_regs;
791
54b2555b 792 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 793 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
794 {
795 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
796
797 /* Syscalls are really two frames. The syscall stub itself
798 with a return pointer in %rp and the kernel call with
799 a return pointer in %r31. We return the %rp variant
800 if %r31 is the same as frame->pc. */
801 if (pc == frame->pc)
802 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
803 }
70e43abe 804 else
7f43b9b7 805 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
806 }
807 else
7f43b9b7 808 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 809 }
66a1aa07 810 else
5ac7f56e 811 {
edd86fb0 812 int rp_offset;
5ac7f56e 813
edd86fb0
JL
814restart:
815 rp_offset = rp_saved (pc);
70e43abe
JL
816 /* Similar to code in frameless function case. If the next
817 frame is a signal or interrupt handler, then dig the right
818 information out of the saved register info. */
819 if (rp_offset == 0
820 && frame->next
821 && (frame->next->signal_handler_caller
822 || pc_in_interrupt_handler (frame->next->pc)))
823 {
70e43abe
JL
824 struct frame_saved_regs saved_regs;
825
669caa9c 826 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 827 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
828 {
829 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
830
831 /* Syscalls are really two frames. The syscall stub itself
832 with a return pointer in %rp and the kernel call with
833 a return pointer in %r31. We return the %rp variant
834 if %r31 is the same as frame->pc. */
835 if (pc == frame->pc)
836 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
837 }
70e43abe 838 else
7f43b9b7 839 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
840 }
841 else if (rp_offset == 0)
7f43b9b7 842 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 843 else
7f43b9b7 844 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 845 }
7f43b9b7
JL
846
847 /* If PC is inside a linker stub, then dig out the address the stub
848 will return to. */
849 u = find_unwind_entry (pc);
850 if (u && u->stub_type != 0)
851 goto restart;
852
853 return pc;
66a1aa07
SG
854}
855\f
856/* We need to correct the PC and the FP for the outermost frame when we are
857 in a system call. */
858
859void
860init_extra_frame_info (fromleaf, frame)
861 int fromleaf;
862 struct frame_info *frame;
863{
864 int flags;
865 int framesize;
866
192c3eeb 867 if (frame->next && !fromleaf)
66a1aa07
SG
868 return;
869
192c3eeb
JL
870 /* If the next frame represents a frameless function invocation
871 then we have to do some adjustments that are normally done by
872 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
873 if (fromleaf)
874 {
875 /* Find the framesize of *this* frame without peeking at the PC
876 in the current frame structure (it isn't set yet). */
877 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
878
879 /* Now adjust our base frame accordingly. If we have a frame pointer
880 use it, else subtract the size of this frame from the current
881 frame. (we always want frame->frame to point at the lowest address
882 in the frame). */
883 if (framesize == -1)
884 frame->frame = read_register (FP_REGNUM);
885 else
886 frame->frame -= framesize;
887 return;
888 }
889
66a1aa07
SG
890 flags = read_register (FLAGS_REGNUM);
891 if (flags & 2) /* In system call? */
892 frame->pc = read_register (31) & ~0x3;
893
192c3eeb
JL
894 /* The outermost frame is always derived from PC-framesize
895
896 One might think frameless innermost frames should have
897 a frame->frame that is the same as the parent's frame->frame.
898 That is wrong; frame->frame in that case should be the *high*
899 address of the parent's frame. It's complicated as hell to
900 explain, but the parent *always* creates some stack space for
901 the child. So the child actually does have a frame of some
902 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
903 framesize = find_proc_framesize(frame->pc);
904 if (framesize == -1)
905 frame->frame = read_register (FP_REGNUM);
906 else
907 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
908}
909\f
8966221d
JK
910/* Given a GDB frame, determine the address of the calling function's frame.
911 This will be used to create a new GDB frame struct, and then
912 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
913
914 This may involve searching through prologues for several functions
915 at boundaries where GCC calls HP C code, or where code which has
916 a frame pointer calls code without a frame pointer. */
8966221d 917
669caa9c 918CORE_ADDR
66a1aa07
SG
919frame_chain (frame)
920 struct frame_info *frame;
921{
8966221d
JK
922 int my_framesize, caller_framesize;
923 struct unwind_table_entry *u;
70e43abe
JL
924 CORE_ADDR frame_base;
925
926 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
927 are easy; at *sp we have a full save state strucutre which we can
928 pull the old stack pointer from. Also see frame_saved_pc for
929 code to dig a saved PC out of the save state structure. */
930 if (pc_in_interrupt_handler (frame->pc))
931 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
932 else if (frame->signal_handler_caller)
933 {
934 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
935 }
936 else
937 frame_base = frame->frame;
66a1aa07 938
8966221d
JK
939 /* Get frame sizes for the current frame and the frame of the
940 caller. */
941 my_framesize = find_proc_framesize (frame->pc);
942 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 943
8966221d
JK
944 /* If caller does not have a frame pointer, then its frame
945 can be found at current_frame - caller_framesize. */
946 if (caller_framesize != -1)
70e43abe 947 return frame_base - caller_framesize;
8966221d
JK
948
949 /* Both caller and callee have frame pointers and are GCC compiled
950 (SAVE_SP bit in unwind descriptor is on for both functions.
951 The previous frame pointer is found at the top of the current frame. */
952 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 953 return read_memory_integer (frame_base, 4);
8966221d
JK
954
955 /* Caller has a frame pointer, but callee does not. This is a little
956 more difficult as GCC and HP C lay out locals and callee register save
957 areas very differently.
958
959 The previous frame pointer could be in a register, or in one of
960 several areas on the stack.
961
962 Walk from the current frame to the innermost frame examining
2f8c3639 963 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 964 stack. If so return whatever value got saved into the stack.
2f8c3639 965 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
966 valid, so use it.
967
2f8c3639 968 We use information from unwind descriptors to determine if %r3
8966221d
JK
969 is saved into the stack (Entry_GR field has this information). */
970
971 while (frame)
972 {
973 u = find_unwind_entry (frame->pc);
974
975 if (!u)
976 {
01a03545
JK
977 /* We could find this information by examining prologues. I don't
978 think anyone has actually written any tools (not even "strip")
979 which leave them out of an executable, so maybe this is a moot
980 point. */
8966221d
JK
981 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
982 return 0;
983 }
984
985 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 986 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe
JL
987 if (u->Entry_GR >= 1 || u->Save_SP
988 || frame->signal_handler_caller
989 || pc_in_interrupt_handler (frame->pc))
8966221d
JK
990 break;
991 else
992 frame = frame->next;
993 }
994
995 if (frame)
996 {
997 /* We may have walked down the chain into a function with a frame
998 pointer. */
70e43abe
JL
999 if (u->Save_SP
1000 && !frame->signal_handler_caller
1001 && !pc_in_interrupt_handler (frame->pc))
8966221d 1002 return read_memory_integer (frame->frame, 4);
2f8c3639 1003 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1004 else
c598654a 1005 {
c598654a
JL
1006 struct frame_saved_regs saved_regs;
1007
669caa9c 1008 get_frame_saved_regs (frame, &saved_regs);
c598654a
JL
1009 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1010 }
8966221d
JK
1011 }
1012 else
1013 {
2f8c3639 1014 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1015 holds the value of the previous frame pointer). */
2f8c3639 1016 return read_register (FP_REGNUM);
8966221d
JK
1017 }
1018}
66a1aa07 1019
66a1aa07
SG
1020\f
1021/* To see if a frame chain is valid, see if the caller looks like it
1022 was compiled with gcc. */
1023
1024int
1025frame_chain_valid (chain, thisframe)
669caa9c
SS
1026 CORE_ADDR chain;
1027 struct frame_info *thisframe;
66a1aa07 1028{
247145e6
JK
1029 struct minimal_symbol *msym_us;
1030 struct minimal_symbol *msym_start;
70e43abe 1031 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1032 struct frame_info *next;
66a1aa07
SG
1033
1034 if (!chain)
1035 return 0;
1036
b8ec9a79 1037 u = find_unwind_entry (thisframe->pc);
4b01383b 1038
70e43abe
JL
1039 if (u == NULL)
1040 return 1;
1041
247145e6
JK
1042 /* We can't just check that the same of msym_us is "_start", because
1043 someone idiotically decided that they were going to make a Ltext_end
1044 symbol with the same address. This Ltext_end symbol is totally
1045 indistinguishable (as nearly as I can tell) from the symbol for a function
1046 which is (legitimately, since it is in the user's namespace)
1047 named Ltext_end, so we can't just ignore it. */
1048 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1049 msym_start = lookup_minimal_symbol ("_start", NULL);
1050 if (msym_us
1051 && msym_start
1052 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1053 return 0;
5ac7f56e 1054
70e43abe
JL
1055 next = get_next_frame (thisframe);
1056 if (next)
1057 next_u = find_unwind_entry (next->pc);
5ac7f56e 1058
70e43abe
JL
1059 /* If this frame does not save SP, has no stack, isn't a stub,
1060 and doesn't "call" an interrupt routine or signal handler caller,
1061 then its not valid. */
1062 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1063 || (thisframe->next && thisframe->next->signal_handler_caller)
1064 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1065 return 1;
5ac7f56e 1066
b8ec9a79
JK
1067 if (pc_in_linker_stub (thisframe->pc))
1068 return 1;
4b01383b 1069
b8ec9a79 1070 return 0;
66a1aa07
SG
1071}
1072
66a1aa07
SG
1073/*
1074 * These functions deal with saving and restoring register state
1075 * around a function call in the inferior. They keep the stack
1076 * double-word aligned; eventually, on an hp700, the stack will have
1077 * to be aligned to a 64-byte boundary.
1078 */
1079
1080int
1081push_dummy_frame ()
1082{
1083 register CORE_ADDR sp;
1084 register int regnum;
1085 int int_buffer;
1086 double freg_buffer;
1087
1088 /* Space for "arguments"; the RP goes in here. */
1089 sp = read_register (SP_REGNUM) + 48;
1090 int_buffer = read_register (RP_REGNUM) | 0x3;
1091 write_memory (sp - 20, (char *)&int_buffer, 4);
1092
1093 int_buffer = read_register (FP_REGNUM);
1094 write_memory (sp, (char *)&int_buffer, 4);
1095
1096 write_register (FP_REGNUM, sp);
1097
1098 sp += 8;
1099
1100 for (regnum = 1; regnum < 32; regnum++)
1101 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1102 sp = push_word (sp, read_register (regnum));
1103
1104 sp += 4;
1105
1106 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1107 {
1108 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1109 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1110 }
1111 sp = push_word (sp, read_register (IPSW_REGNUM));
1112 sp = push_word (sp, read_register (SAR_REGNUM));
1113 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1114 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1115 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1116 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1117 write_register (SP_REGNUM, sp);
1118}
1119
1120find_dummy_frame_regs (frame, frame_saved_regs)
1121 struct frame_info *frame;
1122 struct frame_saved_regs *frame_saved_regs;
1123{
1124 CORE_ADDR fp = frame->frame;
1125 int i;
1126
1127 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1128 frame_saved_regs->regs[FP_REGNUM] = fp;
1129 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1130
b227992a
SG
1131 for (fp += 12, i = 3; i < 32; i++)
1132 {
1133 if (i != FP_REGNUM)
1134 {
1135 frame_saved_regs->regs[i] = fp;
1136 fp += 4;
1137 }
1138 }
66a1aa07
SG
1139
1140 fp += 4;
1141 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1142 frame_saved_regs->regs[i] = fp;
1143
1144 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1145 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1146 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1147 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1148 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1149 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1150}
1151
1152int
1153hppa_pop_frame ()
1154{
669caa9c 1155 register struct frame_info *frame = get_current_frame ();
66a1aa07
SG
1156 register CORE_ADDR fp;
1157 register int regnum;
1158 struct frame_saved_regs fsr;
66a1aa07
SG
1159 double freg_buffer;
1160
669caa9c
SS
1161 fp = FRAME_FP (frame);
1162 get_frame_saved_regs (frame, &fsr);
66a1aa07 1163
0a64709e 1164#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1165 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1166 restore_pc_queue (&fsr);
0a64709e 1167#endif
66a1aa07
SG
1168
1169 for (regnum = 31; regnum > 0; regnum--)
1170 if (fsr.regs[regnum])
1171 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1172
1173 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1174 if (fsr.regs[regnum])
1175 {
1176 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1177 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1178 }
1179
1180 if (fsr.regs[IPSW_REGNUM])
1181 write_register (IPSW_REGNUM,
1182 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1183
1184 if (fsr.regs[SAR_REGNUM])
1185 write_register (SAR_REGNUM,
1186 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1187
ed1a07ad 1188 /* If the PC was explicitly saved, then just restore it. */
66a1aa07
SG
1189 if (fsr.regs[PCOQ_TAIL_REGNUM])
1190 write_register (PCOQ_TAIL_REGNUM,
1191 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1192
ed1a07ad
JK
1193 /* Else use the value in %rp to set the new PC. */
1194 else
e9a3cde8 1195 target_write_pc (read_register (RP_REGNUM), 0);
ed1a07ad 1196
66a1aa07
SG
1197 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1198
1199 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1200 write_register (SP_REGNUM, fp - 48);
1201 else
1202 write_register (SP_REGNUM, fp);
1203
1204 flush_cached_frames ();
66a1aa07
SG
1205}
1206
1207/*
1208 * After returning to a dummy on the stack, restore the instruction
1209 * queue space registers. */
1210
1211static int
1212restore_pc_queue (fsr)
1213 struct frame_saved_regs *fsr;
1214{
1215 CORE_ADDR pc = read_pc ();
1216 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1217 int pid;
67ac9759 1218 struct target_waitstatus w;
66a1aa07
SG
1219 int insn_count;
1220
1221 /* Advance past break instruction in the call dummy. */
1222 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1223 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1224
1225 /*
1226 * HPUX doesn't let us set the space registers or the space
1227 * registers of the PC queue through ptrace. Boo, hiss.
1228 * Conveniently, the call dummy has this sequence of instructions
1229 * after the break:
1230 * mtsp r21, sr0
1231 * ble,n 0(sr0, r22)
1232 *
1233 * So, load up the registers and single step until we are in the
1234 * right place.
1235 */
1236
1237 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1238 write_register (22, new_pc);
1239
1240 for (insn_count = 0; insn_count < 3; insn_count++)
1241 {
8c5e0021
JK
1242 /* FIXME: What if the inferior gets a signal right now? Want to
1243 merge this into wait_for_inferior (as a special kind of
1244 watchpoint? By setting a breakpoint at the end? Is there
1245 any other choice? Is there *any* way to do this stuff with
1246 ptrace() or some equivalent?). */
66a1aa07 1247 resume (1, 0);
67ac9759 1248 target_wait (inferior_pid, &w);
66a1aa07 1249
67ac9759 1250 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1251 {
67ac9759 1252 stop_signal = w.value.sig;
66a1aa07 1253 terminal_ours_for_output ();
67ac9759
JK
1254 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1255 target_signal_to_name (stop_signal),
1256 target_signal_to_string (stop_signal));
199b2450 1257 gdb_flush (gdb_stdout);
66a1aa07
SG
1258 return 0;
1259 }
1260 }
8c5e0021 1261 target_terminal_ours ();
cad1498f 1262 target_fetch_registers (-1);
66a1aa07
SG
1263 return 1;
1264}
1265
1266CORE_ADDR
1267hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1268 int nargs;
4fd5eed4 1269 value_ptr *args;
66a1aa07
SG
1270 CORE_ADDR sp;
1271 int struct_return;
1272 CORE_ADDR struct_addr;
1273{
1274 /* array of arguments' offsets */
1edc5cd2 1275 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1276 int cum = 0;
1277 int i, alignment;
1278
1279 for (i = 0; i < nargs; i++)
1280 {
1281 /* Coerce chars to int & float to double if necessary */
1282 args[i] = value_arg_coerce (args[i]);
1283
1284 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1285
1286 /* value must go at proper alignment. Assume alignment is a
1287 power of two.*/
1288 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1289 if (cum % alignment)
1290 cum = (cum + alignment) & -alignment;
1291 offset[i] = -cum;
1292 }
558f4183 1293 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1294
1295 for (i = 0; i < nargs; i++)
1296 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1297 TYPE_LENGTH (VALUE_TYPE (args[i])));
1298
1299 if (struct_return)
1300 write_register (28, struct_addr);
1301 return sp + 32;
1302}
1303
1304/*
1305 * Insert the specified number of args and function address
1306 * into a call sequence of the above form stored at DUMMYNAME.
1307 *
1308 * On the hppa we need to call the stack dummy through $$dyncall.
1309 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1310 * real_pc, which is the location where gdb should start up the
1311 * inferior to do the function call.
1312 */
1313
1314CORE_ADDR
1315hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1316 char *dummy;
66a1aa07
SG
1317 CORE_ADDR pc;
1318 CORE_ADDR fun;
1319 int nargs;
4fd5eed4 1320 value_ptr *args;
66a1aa07
SG
1321 struct type *type;
1322 int gcc_p;
1323{
1324 CORE_ADDR dyncall_addr, sr4export_addr;
1325 struct minimal_symbol *msymbol;
6cfec929 1326 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1327 struct unwind_table_entry *u;
66a1aa07
SG
1328
1329 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1330 if (msymbol == NULL)
1331 error ("Can't find an address for $$dyncall trampoline");
1332
1333 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1334
4f915914
JL
1335 /* FUN could be a procedure label, in which case we have to get
1336 its real address and the value of its GOT/DP. */
1337 if (fun & 0x2)
1338 {
1339 /* Get the GOT/DP value for the target function. It's
1340 at *(fun+4). Note the call dummy is *NOT* allowed to
1341 trash %r19 before calling the target function. */
1342 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1343
1344 /* Now get the real address for the function we are calling, it's
1345 at *fun. */
1346 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1347 }
1348
19cd0c1f
JL
1349 /* If we are calling an import stub (eg calling into a dynamic library)
1350 then have sr4export call the magic __d_plt_call routine which is linked
1351 in from end.o. (You can't use _sr4export to call the import stub as
1352 the value in sp-24 will get fried and you end up returning to the
1353 wrong location. You can't call the import stub directly as the code
1354 to bind the PLT entry to a function can't return to a stack address.) */
1355 u = find_unwind_entry (fun);
1356 if (u && u->stub_type == IMPORT)
1357 {
1358 CORE_ADDR new_fun;
1359 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1360 if (msymbol == NULL)
1361 error ("Can't find an address for __d_plt_call trampoline");
1362
1363 /* This is where sr4export will jump to. */
1364 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1365
1366 /* We have to store the address of the stub in __shlib_funcptr. */
1367 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1368 (struct objfile *)NULL);
1369 if (msymbol == NULL)
1370 error ("Can't find an address for __shlib_funcptr");
1371
1372 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1373 fun = new_fun;
1374
1375 }
1376
1377 /* We still need sr4export's address too. */
66a1aa07
SG
1378 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1379 if (msymbol == NULL)
1380 error ("Can't find an address for _sr4export trampoline");
1381
1382 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1383
f4f0d174
JK
1384 store_unsigned_integer
1385 (&dummy[9*REGISTER_SIZE],
1386 REGISTER_SIZE,
1387 deposit_21 (fun >> 11,
1388 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1389 REGISTER_SIZE)));
1390 store_unsigned_integer
1391 (&dummy[10*REGISTER_SIZE],
1392 REGISTER_SIZE,
1393 deposit_14 (fun & MASK_11,
1394 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1395 REGISTER_SIZE)));
1396 store_unsigned_integer
1397 (&dummy[12*REGISTER_SIZE],
1398 REGISTER_SIZE,
1399 deposit_21 (sr4export_addr >> 11,
1400 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1401 REGISTER_SIZE)));
1402 store_unsigned_integer
1403 (&dummy[13*REGISTER_SIZE],
1404 REGISTER_SIZE,
1405 deposit_14 (sr4export_addr & MASK_11,
1406 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1407 REGISTER_SIZE)));
66a1aa07
SG
1408
1409 write_register (22, pc);
1410
6cfec929
JK
1411 /* If we are in a syscall, then we should call the stack dummy
1412 directly. $$dyncall is not needed as the kernel sets up the
1413 space id registers properly based on the value in %r31. In
1414 fact calling $$dyncall will not work because the value in %r22
1415 will be clobbered on the syscall exit path. */
1416 if (flags & 2)
1417 return pc;
1418 else
1419 return dyncall_addr;
1420
66a1aa07
SG
1421}
1422
d3862cae
JK
1423/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1424 bits. */
669caa9c 1425
d3862cae 1426CORE_ADDR
e9a3cde8
JL
1427target_read_pc (pid)
1428 int pid;
d3862cae
JK
1429{
1430 int flags = read_register (FLAGS_REGNUM);
1431
1432 if (flags & 2)
1433 return read_register (31) & ~0x3;
1434 return read_register (PC_REGNUM) & ~0x3;
1435}
1436
6cfec929
JK
1437/* Write out the PC. If currently in a syscall, then also write the new
1438 PC value into %r31. */
669caa9c 1439
6cfec929 1440void
e9a3cde8 1441target_write_pc (v, pid)
6cfec929 1442 CORE_ADDR v;
e9a3cde8 1443 int pid;
6cfec929
JK
1444{
1445 int flags = read_register (FLAGS_REGNUM);
1446
1447 /* If in a syscall, then set %r31. Also make sure to get the
1448 privilege bits set correctly. */
1449 if (flags & 2)
1450 write_register (31, (long) (v | 0x3));
1451
1452 write_register (PC_REGNUM, (long) v);
1453 write_register (NPC_REGNUM, (long) v + 4);
1454}
1455
66a1aa07
SG
1456/* return the alignment of a type in bytes. Structures have the maximum
1457 alignment required by their fields. */
1458
1459static int
1460hppa_alignof (arg)
1461 struct type *arg;
1462{
1463 int max_align, align, i;
1464 switch (TYPE_CODE (arg))
1465 {
1466 case TYPE_CODE_PTR:
1467 case TYPE_CODE_INT:
1468 case TYPE_CODE_FLT:
1469 return TYPE_LENGTH (arg);
1470 case TYPE_CODE_ARRAY:
1471 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1472 case TYPE_CODE_STRUCT:
1473 case TYPE_CODE_UNION:
1474 max_align = 2;
1475 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1476 {
1477 /* Bit fields have no real alignment. */
1478 if (!TYPE_FIELD_BITPOS (arg, i))
1479 {
1480 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1481 max_align = max (max_align, align);
1482 }
1483 }
1484 return max_align;
1485 default:
1486 return 4;
1487 }
1488}
1489
1490/* Print the register regnum, or all registers if regnum is -1 */
1491
1492pa_do_registers_info (regnum, fpregs)
1493 int regnum;
1494 int fpregs;
1495{
1496 char raw_regs [REGISTER_BYTES];
1497 int i;
1498
1499 for (i = 0; i < NUM_REGS; i++)
1500 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1501 if (regnum == -1)
1502 pa_print_registers (raw_regs, regnum, fpregs);
1503 else if (regnum < FP0_REGNUM)
199b2450 1504 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1505 REGISTER_BYTE (regnum)));
1506 else
1507 pa_print_fp_reg (regnum);
1508}
1509
1510pa_print_registers (raw_regs, regnum, fpregs)
1511 char *raw_regs;
1512 int regnum;
1513 int fpregs;
1514{
1515 int i;
1516
1517 for (i = 0; i < 18; i++)
199b2450 1518 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1519 reg_names[i],
1520 *(int *)(raw_regs + REGISTER_BYTE (i)),
1521 reg_names[i + 18],
1522 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1523 reg_names[i + 36],
1524 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1525 reg_names[i + 54],
1526 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1527
1528 if (fpregs)
1529 for (i = 72; i < NUM_REGS; i++)
1530 pa_print_fp_reg (i);
1531}
1532
1533pa_print_fp_reg (i)
1534 int i;
1535{
1536 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1537 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1538
eb1167c6 1539 /* Get 32bits of data. */
66a1aa07 1540 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1541
eb1167c6
JL
1542 /* Put it in the buffer. No conversions are ever necessary. */
1543 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1544
199b2450 1545 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1546 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1547 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1548
199b2450 1549 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1550 1, 0, Val_pretty_default);
1551 printf_filtered ("\n");
eb1167c6
JL
1552
1553 /* If "i" is even, then this register can also be a double-precision
1554 FP register. Dump it out as such. */
1555 if ((i % 2) == 0)
1556 {
1557 /* Get the data in raw format for the 2nd half. */
1558 read_relative_register_raw_bytes (i + 1, raw_buffer);
1559
1560 /* Copy it into the appropriate part of the virtual buffer. */
1561 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1562 REGISTER_RAW_SIZE (i));
1563
1564 /* Dump it as a double. */
1565 fputs_filtered (reg_names[i], gdb_stdout);
1566 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1567 fputs_filtered ("(double precision) ", gdb_stdout);
1568
1569 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1570 1, 0, Val_pretty_default);
1571 printf_filtered ("\n");
1572 }
66a1aa07
SG
1573}
1574
a76c2240
JL
1575/* Return one if PC is in the call path of a trampoline, else return zero.
1576
1577 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1578 just shared library trampolines (import, export). */
481faa25
JL
1579
1580in_solib_call_trampoline (pc, name)
1581 CORE_ADDR pc;
1582 char *name;
1583{
1584 struct minimal_symbol *minsym;
1585 struct unwind_table_entry *u;
a76c2240
JL
1586 static CORE_ADDR dyncall = 0;
1587 static CORE_ADDR sr4export = 0;
1588
1589/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1590 new exec file */
1591
1592 /* First see if PC is in one of the two C-library trampolines. */
1593 if (!dyncall)
1594 {
1595 minsym = lookup_minimal_symbol ("$$dyncall", NULL);
1596 if (minsym)
1597 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1598 else
1599 dyncall = -1;
1600 }
1601
1602 if (!sr4export)
1603 {
1604 minsym = lookup_minimal_symbol ("_sr4export", NULL);
1605 if (minsym)
1606 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1607 else
1608 sr4export = -1;
1609 }
1610
1611 if (pc == dyncall || pc == sr4export)
1612 return 1;
481faa25
JL
1613
1614 /* Get the unwind descriptor corresponding to PC, return zero
1615 if no unwind was found. */
1616 u = find_unwind_entry (pc);
1617 if (!u)
1618 return 0;
1619
1620 /* If this isn't a linker stub, then return now. */
a76c2240 1621 if (u->stub_type == 0)
481faa25
JL
1622 return 0;
1623
a76c2240
JL
1624 /* By definition a long-branch stub is a call stub. */
1625 if (u->stub_type == LONG_BRANCH)
1626 return 1;
1627
481faa25
JL
1628 /* The call and return path execute the same instructions within
1629 an IMPORT stub! So an IMPORT stub is both a call and return
1630 trampoline. */
1631 if (u->stub_type == IMPORT)
1632 return 1;
1633
a76c2240
JL
1634 if (u->stub_type == EXPORT)
1635 {
1636 /* The linker may group many EXPORT stubs into one unwind entry. So
1637 lookup the minimal symbol and use that as the beginning of this
1638 particular stub. */
1639 minsym = lookup_minimal_symbol_by_pc (pc);
1640 if (minsym == NULL)
1641 return 0;
1642
1643 /* Export stubs have distinct call and return paths. The first
1644 two instructions are the call path, following four are the
1645 return path. */
1646 return (pc >= SYMBOL_VALUE (minsym) && pc < SYMBOL_VALUE (minsym) + 8);
1647 }
481faa25 1648
a76c2240 1649 /* Parameter relocation stubs always have a call path and may have a
481faa25 1650 return path. */
a76c2240
JL
1651 if (u->stub_type == PARAMETER_RELOCATION)
1652 {
1653 CORE_ADDR addr;
1654
1655 /* Search forward from the current PC until we hit a branch
1656 or the end of the stub. */
1657 for (addr = pc; addr <= u->region_end; addr += 4)
1658 {
1659 unsigned long insn;
1660
1661 insn = read_memory_integer (addr, 4);
1662
1663 /* Does it look like a bl? If so then it's the call path, if
1664 we find a bv first, then we're on the return path. */
1665 if ((insn & 0xfc00e000) == 0xe8000000)
1666 return 1;
1667 else if ((insn & 0xfc00e001) == 0xe800c000)
1668 return 0;
1669 }
1670
1671 /* Should never happen. */
1672 warning ("Unable to find branch in parameter relocation stub.\n");
1673 return 0;
1674 }
1675
1676 /* Unknown stub type. For now, just return zero. */
1677 return 0;
481faa25
JL
1678}
1679
a76c2240
JL
1680/* Return one if PC is in the return path of a trampoline, else return zero.
1681
1682 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1683 just shared library trampolines (import, export). */
481faa25
JL
1684
1685in_solib_return_trampoline (pc, name)
1686 CORE_ADDR pc;
1687 char *name;
1688{
1689 struct minimal_symbol *minsym;
1690 struct unwind_table_entry *u;
1691
1692 /* Get the unwind descriptor corresponding to PC, return zero
1693 if no unwind was found. */
1694 u = find_unwind_entry (pc);
1695 if (!u)
1696 return 0;
1697
a76c2240
JL
1698 /* If this isn't a linker stub or it's just a long branch stub, then
1699 return zero. */
1700 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
481faa25
JL
1701 return 0;
1702
1703 /* The call and return path execute the same instructions within
1704 an IMPORT stub! So an IMPORT stub is both a call and return
1705 trampoline. */
1706 if (u->stub_type == IMPORT)
1707 return 1;
1708
a76c2240
JL
1709 if (u->stub_type == EXPORT)
1710 {
1711 /* The linker may group many EXPORT stubs into one unwind entry. So
1712 lookup the minimal symbol and use that as the beginning of this
1713 particular stub. */
1714 minsym = lookup_minimal_symbol_by_pc (pc);
1715 if (minsym == NULL)
1716 return 0;
1717
1718 /* Export stubs have distinct call and return paths. The first
1719 two instructions are the call path, following four are the
1720 return path. */
1721 return (pc >= SYMBOL_VALUE (minsym) + 8
1722 && pc < SYMBOL_VALUE (minsym) + 20);
1723 }
481faa25 1724
a76c2240 1725 /* Parameter relocation stubs always have a call path and may have a
481faa25 1726 return path. */
a76c2240
JL
1727 if (u->stub_type == PARAMETER_RELOCATION)
1728 {
1729 CORE_ADDR addr;
1730
1731 /* Search forward from the current PC until we hit a branch
1732 or the end of the stub. */
1733 for (addr = pc; addr <= u->region_end; addr += 4)
1734 {
1735 unsigned long insn;
1736
1737 insn = read_memory_integer (addr, 4);
1738
1739 /* Does it look like a bl? If so then it's the call path, if
1740 we find a bv first, then we're on the return path. */
1741 if ((insn & 0xfc00e000) == 0xe8000000)
1742 return 0;
1743 else if ((insn & 0xfc00e001) == 0xe800c000)
1744 return 1;
1745 }
1746
1747 /* Should never happen. */
1748 warning ("Unable to find branch in parameter relocation stub.\n");
1749 return 0;
1750 }
1751
1752 /* Unknown stub type. For now, just return zero. */
1753 return 0;
1754
481faa25
JL
1755}
1756
de482138
JL
1757/* Figure out if PC is in a trampoline, and if so find out where
1758 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 1759
de482138
JL
1760 Simple code examination probably is not a good idea since the code
1761 sequences in trampolines can also appear in user code.
1762
1763 We use unwinds and information from the minimal symbol table to
1764 determine when we're in a trampoline. This won't work for ELF
1765 (yet) since it doesn't create stub unwind entries. Whether or
1766 not ELF will create stub unwinds or normal unwinds for linker
1767 stubs is still being debated.
1768
1769 This should handle simple calls through dyncall or sr4export,
1770 long calls, argument relocation stubs, and dyncall/sr4export
1771 calling an argument relocation stub. It even handles some stubs
1772 used in dynamic executables. */
66a1aa07
SG
1773
1774CORE_ADDR
1775skip_trampoline_code (pc, name)
1776 CORE_ADDR pc;
1777 char *name;
1778{
de482138
JL
1779 long orig_pc = pc;
1780 long prev_inst, curr_inst, loc;
66a1aa07 1781 static CORE_ADDR dyncall = 0;
de482138 1782 static CORE_ADDR sr4export = 0;
66a1aa07 1783 struct minimal_symbol *msym;
de482138 1784 struct unwind_table_entry *u;
66a1aa07 1785
de482138
JL
1786/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1787 new exec file */
66a1aa07
SG
1788
1789 if (!dyncall)
1790 {
1791 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1792 if (msym)
1793 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1794 else
1795 dyncall = -1;
1796 }
1797
de482138
JL
1798 if (!sr4export)
1799 {
1800 msym = lookup_minimal_symbol ("_sr4export", NULL);
1801 if (msym)
1802 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1803 else
1804 sr4export = -1;
1805 }
1806
1807 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 1808 of the function. So we may have to do something special. */
66a1aa07 1809 if (pc == dyncall)
de482138
JL
1810 {
1811 pc = (CORE_ADDR) read_register (22);
66a1aa07 1812
de482138
JL
1813 /* If bit 30 (counting from the left) is on, then pc is the address of
1814 the PLT entry for this function, not the address of the function
1815 itself. Bit 31 has meaning too, but only for MPE. */
1816 if (pc & 0x2)
1817 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1818 }
1819 else if (pc == sr4export)
1820 pc = (CORE_ADDR) (read_register (22));
66a1aa07 1821
de482138
JL
1822 /* Get the unwind descriptor corresponding to PC, return zero
1823 if no unwind was found. */
1824 u = find_unwind_entry (pc);
1825 if (!u)
1826 return 0;
1827
1828 /* If this isn't a linker stub, then return now. */
1829 if (u->stub_type == 0)
1830 return orig_pc == pc ? 0 : pc & ~0x3;
1831
1832 /* It's a stub. Search for a branch and figure out where it goes.
1833 Note we have to handle multi insn branch sequences like ldil;ble.
1834 Most (all?) other branches can be determined by examining the contents
1835 of certain registers and the stack. */
1836 loc = pc;
1837 curr_inst = 0;
1838 prev_inst = 0;
1839 while (1)
1840 {
1841 /* Make sure we haven't walked outside the range of this stub. */
1842 if (u != find_unwind_entry (loc))
1843 {
1844 warning ("Unable to find branch in linker stub");
1845 return orig_pc == pc ? 0 : pc & ~0x3;
1846 }
1847
1848 prev_inst = curr_inst;
1849 curr_inst = read_memory_integer (loc, 4);
66a1aa07 1850
de482138
JL
1851 /* Does it look like a branch external using %r1? Then it's the
1852 branch from the stub to the actual function. */
1853 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1854 {
1855 /* Yup. See if the previous instruction loaded
1856 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 1857 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
1858 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1859 else
1860 {
1861 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1862 return orig_pc == pc ? 0 : pc & ~0x3;
1863 }
1864 }
1865
f32fc5f9
JL
1866 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1867 import stub to an export stub.
1868
1869 It is impossible to determine the target of the branch via
1870 simple examination of instructions and/or data (consider
1871 that the address in the plabel may be the address of the
1872 bind-on-reference routine in the dynamic loader).
1873
1874 So we have try an alternative approach.
1875
1876 Get the name of the symbol at our current location; it should
1877 be a stub symbol with the same name as the symbol in the
1878 shared library.
1879
1880 Then lookup a minimal symbol with the same name; we should
1881 get the minimal symbol for the target routine in the shared
1882 library as those take precedence of import/export stubs. */
1883 if (curr_inst == 0xe2a00000)
1884 {
1885 struct minimal_symbol *stubsym, *libsym;
1886
1887 stubsym = lookup_minimal_symbol_by_pc (loc);
1888 if (stubsym == NULL)
1889 {
1890 warning ("Unable to find symbol for 0x%x", loc);
1891 return orig_pc == pc ? 0 : pc & ~0x3;
1892 }
1893
1894 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
1895 if (libsym == NULL)
1896 {
1897 warning ("Unable to find library symbol for %s\n",
1898 SYMBOL_NAME (stubsym));
1899 return orig_pc == pc ? 0 : pc & ~0x3;
1900 }
1901
1902 return SYMBOL_VALUE (libsym);
1903 }
1904
88b91d4a
JL
1905 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1906 branch from the stub to the actual function. */
1907 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1908 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
1909 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1910
1911 /* Does it look like bv (rp)? Note this depends on the
1912 current stack pointer being the same as the stack
1913 pointer in the stub itself! This is a branch on from the
1914 stub back to the original caller. */
1915 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1916 {
1917 /* Yup. See if the previous instruction loaded
1918 rp from sp - 8. */
1919 if (prev_inst == 0x4bc23ff1)
1920 return (read_memory_integer
1921 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1922 else
1923 {
1924 warning ("Unable to find restore of %%rp before bv (%%rp).");
1925 return orig_pc == pc ? 0 : pc & ~0x3;
1926 }
1927 }
1928
1929 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1930 the original caller from the stub. Used in dynamic executables. */
1931 else if (curr_inst == 0xe0400002)
1932 {
1933 /* The value we jump to is sitting in sp - 24. But that's
1934 loaded several instructions before the be instruction.
1935 I guess we could check for the previous instruction being
1936 mtsp %r1,%sr0 if we want to do sanity checking. */
1937 return (read_memory_integer
1938 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1939 }
1940
1941 /* Haven't found the branch yet, but we're still in the stub.
1942 Keep looking. */
1943 loc += 4;
1944 }
66a1aa07
SG
1945}
1946
c598654a
JL
1947/* For the given instruction (INST), return any adjustment it makes
1948 to the stack pointer or zero for no adjustment.
1949
1950 This only handles instructions commonly found in prologues. */
1951
1952static int
1953prologue_inst_adjust_sp (inst)
1954 unsigned long inst;
1955{
1956 /* This must persist across calls. */
1957 static int save_high21;
1958
1959 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1960 if ((inst & 0xffffc000) == 0x37de0000)
1961 return extract_14 (inst);
1962
1963 /* stwm X,D(sp) */
1964 if ((inst & 0xffe00000) == 0x6fc00000)
1965 return extract_14 (inst);
1966
1967 /* addil high21,%r1; ldo low11,(%r1),%r30)
1968 save high bits in save_high21 for later use. */
1969 if ((inst & 0xffe00000) == 0x28200000)
1970 {
1971 save_high21 = extract_21 (inst);
1972 return 0;
1973 }
1974
1975 if ((inst & 0xffff0000) == 0x343e0000)
1976 return save_high21 + extract_14 (inst);
1977
1978 /* fstws as used by the HP compilers. */
1979 if ((inst & 0xffffffe0) == 0x2fd01220)
1980 return extract_5_load (inst);
1981
1982 /* No adjustment. */
1983 return 0;
1984}
1985
1986/* Return nonzero if INST is a branch of some kind, else return zero. */
1987
1988static int
1989is_branch (inst)
1990 unsigned long inst;
1991{
1992 switch (inst >> 26)
1993 {
1994 case 0x20:
1995 case 0x21:
1996 case 0x22:
1997 case 0x23:
1998 case 0x28:
1999 case 0x29:
2000 case 0x2a:
2001 case 0x2b:
2002 case 0x30:
2003 case 0x31:
2004 case 0x32:
2005 case 0x33:
2006 case 0x38:
2007 case 0x39:
2008 case 0x3a:
2009 return 1;
2010
2011 default:
2012 return 0;
2013 }
2014}
2015
2016/* Return the register number for a GR which is saved by INST or
edd86fb0 2017 zero it INST does not save a GR. */
c598654a
JL
2018
2019static int
2020inst_saves_gr (inst)
2021 unsigned long inst;
2022{
2023 /* Does it look like a stw? */
2024 if ((inst >> 26) == 0x1a)
2025 return extract_5R_store (inst);
2026
edd86fb0 2027 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
2028 if ((inst >> 26) == 0x1b)
2029 return extract_5R_store (inst);
2030
edd86fb0
JL
2031 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2032 too. */
2033 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2034 return extract_5R_store (inst);
2035
c598654a
JL
2036 return 0;
2037}
2038
2039/* Return the register number for a FR which is saved by INST or
2040 zero it INST does not save a FR.
2041
2042 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
2043 kind of stores the prologue will use).
2044
2045 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
2046
2047static int
2048inst_saves_fr (inst)
2049 unsigned long inst;
2050{
edd86fb0 2051 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
2052 return extract_5r_store (inst);
2053 return 0;
2054}
2055
66a1aa07 2056/* Advance PC across any function entry prologue instructions
c598654a 2057 to reach some "real" code.
66a1aa07 2058
c598654a
JL
2059 Use information in the unwind table to determine what exactly should
2060 be in the prologue. */
66a1aa07
SG
2061
2062CORE_ADDR
de482138 2063skip_prologue (pc)
66a1aa07
SG
2064 CORE_ADDR pc;
2065{
34df79fc 2066 char buf[4];
c598654a 2067 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
edd86fb0 2068 unsigned long args_stored, status, i;
c598654a 2069 struct unwind_table_entry *u;
66a1aa07 2070
c598654a
JL
2071 u = find_unwind_entry (pc);
2072 if (!u)
fdafbfad 2073 return pc;
c598654a 2074
de482138
JL
2075 /* If we are not at the beginning of a function, then return now. */
2076 if ((pc & ~0x3) != u->region_start)
2077 return pc;
2078
c598654a
JL
2079 /* This is how much of a frame adjustment we need to account for. */
2080 stack_remaining = u->Total_frame_size << 3;
66a1aa07 2081
c598654a
JL
2082 /* Magic register saves we want to know about. */
2083 save_rp = u->Save_RP;
2084 save_sp = u->Save_SP;
2085
edd86fb0
JL
2086 /* An indication that args may be stored into the stack. Unfortunately
2087 the HPUX compilers tend to set this in cases where no args were
2088 stored too!. */
2089 args_stored = u->Args_stored;
2090
c598654a
JL
2091 /* Turn the Entry_GR field into a bitmask. */
2092 save_gr = 0;
2093 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 2094 {
c598654a
JL
2095 /* Frame pointer gets saved into a special location. */
2096 if (u->Save_SP && i == FP_REGNUM)
2097 continue;
2098
2099 save_gr |= (1 << i);
2100 }
2101
2102 /* Turn the Entry_FR field into a bitmask too. */
2103 save_fr = 0;
2104 for (i = 12; i < u->Entry_FR + 12; i++)
2105 save_fr |= (1 << i);
2106
2107 /* Loop until we find everything of interest or hit a branch.
2108
2109 For unoptimized GCC code and for any HP CC code this will never ever
2110 examine any user instructions.
2111
2112 For optimzied GCC code we're faced with problems. GCC will schedule
2113 its prologue and make prologue instructions available for delay slot
2114 filling. The end result is user code gets mixed in with the prologue
2115 and a prologue instruction may be in the delay slot of the first branch
2116 or call.
2117
2118 Some unexpected things are expected with debugging optimized code, so
2119 we allow this routine to walk past user instructions in optimized
2120 GCC code. */
edd86fb0
JL
2121 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2122 || args_stored)
c598654a 2123 {
edd86fb0
JL
2124 unsigned int reg_num;
2125 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2126 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
2127
2128 /* Save copies of all the triggers so we can compare them later
2129 (only for HPC). */
2130 old_save_gr = save_gr;
2131 old_save_fr = save_fr;
2132 old_save_rp = save_rp;
2133 old_save_sp = save_sp;
2134 old_stack_remaining = stack_remaining;
2135
c598654a
JL
2136 status = target_read_memory (pc, buf, 4);
2137 inst = extract_unsigned_integer (buf, 4);
edd86fb0 2138
c598654a
JL
2139 /* Yow! */
2140 if (status != 0)
2141 return pc;
2142
2143 /* Note the interesting effects of this instruction. */
2144 stack_remaining -= prologue_inst_adjust_sp (inst);
2145
2146 /* There is only one instruction used for saving RP into the stack. */
2147 if (inst == 0x6bc23fd9)
2148 save_rp = 0;
2149
2150 /* This is the only way we save SP into the stack. At this time
2151 the HP compilers never bother to save SP into the stack. */
2152 if ((inst & 0xffffc000) == 0x6fc10000)
2153 save_sp = 0;
2154
2155 /* Account for general and floating-point register saves. */
edd86fb0
JL
2156 reg_num = inst_saves_gr (inst);
2157 save_gr &= ~(1 << reg_num);
2158
2159 /* Ugh. Also account for argument stores into the stack.
2160 Unfortunately args_stored only tells us that some arguments
2161 where stored into the stack. Not how many or what kind!
2162
2163 This is a kludge as on the HP compiler sets this bit and it
2164 never does prologue scheduling. So once we see one, skip past
2165 all of them. We have similar code for the fp arg stores below.
2166
2167 FIXME. Can still die if we have a mix of GR and FR argument
2168 stores! */
2169 if (reg_num >= 23 && reg_num <= 26)
2170 {
2171 while (reg_num >= 23 && reg_num <= 26)
2172 {
2173 pc += 4;
2174 status = target_read_memory (pc, buf, 4);
2175 inst = extract_unsigned_integer (buf, 4);
2176 if (status != 0)
2177 return pc;
2178 reg_num = inst_saves_gr (inst);
2179 }
2180 args_stored = 0;
2181 continue;
2182 }
2183
2184 reg_num = inst_saves_fr (inst);
2185 save_fr &= ~(1 << reg_num);
2186
2187 status = target_read_memory (pc + 4, buf, 4);
2188 next_inst = extract_unsigned_integer (buf, 4);
2189
2190 /* Yow! */
2191 if (status != 0)
2192 return pc;
2193
2194 /* We've got to be read to handle the ldo before the fp register
2195 save. */
2196 if ((inst & 0xfc000000) == 0x34000000
2197 && inst_saves_fr (next_inst) >= 4
2198 && inst_saves_fr (next_inst) <= 7)
2199 {
2200 /* So we drop into the code below in a reasonable state. */
2201 reg_num = inst_saves_fr (next_inst);
2202 pc -= 4;
2203 }
2204
2205 /* Ugh. Also account for argument stores into the stack.
2206 This is a kludge as on the HP compiler sets this bit and it
2207 never does prologue scheduling. So once we see one, skip past
2208 all of them. */
2209 if (reg_num >= 4 && reg_num <= 7)
2210 {
2211 while (reg_num >= 4 && reg_num <= 7)
2212 {
2213 pc += 8;
2214 status = target_read_memory (pc, buf, 4);
2215 inst = extract_unsigned_integer (buf, 4);
2216 if (status != 0)
2217 return pc;
2218 if ((inst & 0xfc000000) != 0x34000000)
2219 break;
2220 status = target_read_memory (pc + 4, buf, 4);
2221 next_inst = extract_unsigned_integer (buf, 4);
2222 if (status != 0)
2223 return pc;
2224 reg_num = inst_saves_fr (next_inst);
2225 }
2226 args_stored = 0;
2227 continue;
2228 }
c598654a
JL
2229
2230 /* Quit if we hit any kind of branch. This can happen if a prologue
2231 instruction is in the delay slot of the first call/branch. */
2232 if (is_branch (inst))
2233 break;
2234
edd86fb0
JL
2235 /* What a crock. The HP compilers set args_stored even if no
2236 arguments were stored into the stack (boo hiss). This could
2237 cause this code to then skip a bunch of user insns (up to the
2238 first branch).
2239
2240 To combat this we try to identify when args_stored was bogusly
2241 set and clear it. We only do this when args_stored is nonzero,
2242 all other resources are accounted for, and nothing changed on
2243 this pass. */
2244 if (args_stored
2245 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2246 && old_save_gr == save_gr && old_save_fr == save_fr
2247 && old_save_rp == save_rp && old_save_sp == save_sp
2248 && old_stack_remaining == stack_remaining)
2249 break;
2250
c598654a
JL
2251 /* Bump the PC. */
2252 pc += 4;
66a1aa07 2253 }
66a1aa07
SG
2254
2255 return pc;
2256}
2257
c598654a
JL
2258/* Put here the code to store, into a struct frame_saved_regs,
2259 the addresses of the saved registers of frame described by FRAME_INFO.
2260 This includes special registers such as pc and fp saved in special
2261 ways in the stack frame. sp is even more special:
2262 the address we return for it IS the sp for the next frame. */
2263
2264void
2265hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2266 struct frame_info *frame_info;
c598654a
JL
2267 struct frame_saved_regs *frame_saved_regs;
2268{
2269 CORE_ADDR pc;
2270 struct unwind_table_entry *u;
2271 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2272 int status, i, reg;
2273 char buf[4];
2274 int fp_loc = -1;
2275
2276 /* Zero out everything. */
2277 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2278
2279 /* Call dummy frames always look the same, so there's no need to
2280 examine the dummy code to determine locations of saved registers;
2281 instead, let find_dummy_frame_regs fill in the correct offsets
2282 for the saved registers. */
cb5f7128
JL
2283 if ((frame_info->pc >= frame_info->frame
2284 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2285 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2286 + 6 * 4)))
2287 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2288
70e43abe
JL
2289 /* Interrupt handlers are special too. They lay out the register
2290 state in the exact same order as the register numbers in GDB. */
cb5f7128 2291 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2292 {
2293 for (i = 0; i < NUM_REGS; i++)
2294 {
2295 /* SP is a little special. */
2296 if (i == SP_REGNUM)
2297 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2298 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2299 else
cb5f7128 2300 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2301 }
2302 return;
2303 }
2304
2305 /* Handle signal handler callers. */
cb5f7128 2306 if (frame_info->signal_handler_caller)
70e43abe 2307 {
cb5f7128 2308 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2309 return;
2310 }
2311
c598654a 2312 /* Get the starting address of the function referred to by the PC
669caa9c 2313 saved in frame. */
cb5f7128 2314 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2315
2316 /* Yow! */
2317 u = find_unwind_entry (pc);
2318 if (!u)
2319 return;
2320
2321 /* This is how much of a frame adjustment we need to account for. */
2322 stack_remaining = u->Total_frame_size << 3;
2323
2324 /* Magic register saves we want to know about. */
2325 save_rp = u->Save_RP;
2326 save_sp = u->Save_SP;
2327
2328 /* Turn the Entry_GR field into a bitmask. */
2329 save_gr = 0;
2330 for (i = 3; i < u->Entry_GR + 3; i++)
2331 {
2332 /* Frame pointer gets saved into a special location. */
2333 if (u->Save_SP && i == FP_REGNUM)
2334 continue;
2335
2336 save_gr |= (1 << i);
2337 }
2338
2339 /* Turn the Entry_FR field into a bitmask too. */
2340 save_fr = 0;
2341 for (i = 12; i < u->Entry_FR + 12; i++)
2342 save_fr |= (1 << i);
2343
70e43abe
JL
2344 /* The frame always represents the value of %sp at entry to the
2345 current function (and is thus equivalent to the "saved" stack
2346 pointer. */
cb5f7128 2347 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2348
c598654a
JL
2349 /* Loop until we find everything of interest or hit a branch.
2350
2351 For unoptimized GCC code and for any HP CC code this will never ever
2352 examine any user instructions.
2353
2354 For optimzied GCC code we're faced with problems. GCC will schedule
2355 its prologue and make prologue instructions available for delay slot
2356 filling. The end result is user code gets mixed in with the prologue
2357 and a prologue instruction may be in the delay slot of the first branch
2358 or call.
2359
2360 Some unexpected things are expected with debugging optimized code, so
2361 we allow this routine to walk past user instructions in optimized
2362 GCC code. */
2363 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2364 {
2365 status = target_read_memory (pc, buf, 4);
2366 inst = extract_unsigned_integer (buf, 4);
2367
2368 /* Yow! */
2369 if (status != 0)
2370 return;
2371
2372 /* Note the interesting effects of this instruction. */
2373 stack_remaining -= prologue_inst_adjust_sp (inst);
2374
2375 /* There is only one instruction used for saving RP into the stack. */
2376 if (inst == 0x6bc23fd9)
2377 {
2378 save_rp = 0;
cb5f7128 2379 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2380 }
2381
70e43abe
JL
2382 /* Just note that we found the save of SP into the stack. The
2383 value for frame_saved_regs was computed above. */
c598654a 2384 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2385 save_sp = 0;
c598654a
JL
2386
2387 /* Account for general and floating-point register saves. */
2388 reg = inst_saves_gr (inst);
2389 if (reg >= 3 && reg <= 18
2390 && (!u->Save_SP || reg != FP_REGNUM))
2391 {
2392 save_gr &= ~(1 << reg);
2393
2394 /* stwm with a positive displacement is a *post modify*. */
2395 if ((inst >> 26) == 0x1b
2396 && extract_14 (inst) >= 0)
cb5f7128 2397 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2398 else
2399 {
2400 /* Handle code with and without frame pointers. */
2401 if (u->Save_SP)
2402 frame_saved_regs->regs[reg]
cb5f7128 2403 = frame_info->frame + extract_14 (inst);
c598654a
JL
2404 else
2405 frame_saved_regs->regs[reg]
cb5f7128 2406 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2407 + extract_14 (inst);
2408 }
2409 }
2410
2411
2412 /* GCC handles callee saved FP regs a little differently.
2413
2414 It emits an instruction to put the value of the start of
2415 the FP store area into %r1. It then uses fstds,ma with
2416 a basereg of %r1 for the stores.
2417
2418 HP CC emits them at the current stack pointer modifying
2419 the stack pointer as it stores each register. */
2420
2421 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2422 if ((inst & 0xffffc000) == 0x34610000
2423 || (inst & 0xffffc000) == 0x37c10000)
2424 fp_loc = extract_14 (inst);
2425
2426 reg = inst_saves_fr (inst);
2427 if (reg >= 12 && reg <= 21)
2428 {
2429 /* Note +4 braindamage below is necessary because the FP status
2430 registers are internally 8 registers rather than the expected
2431 4 registers. */
2432 save_fr &= ~(1 << reg);
2433 if (fp_loc == -1)
2434 {
2435 /* 1st HP CC FP register store. After this instruction
2436 we've set enough state that the GCC and HPCC code are
2437 both handled in the same manner. */
cb5f7128 2438 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2439 fp_loc = 8;
2440 }
2441 else
2442 {
2443 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2444 = frame_info->frame + fp_loc;
c598654a
JL
2445 fp_loc += 8;
2446 }
2447 }
2448
2449 /* Quit if we hit any kind of branch. This can happen if a prologue
2450 instruction is in the delay slot of the first call/branch. */
2451 if (is_branch (inst))
2452 break;
2453
2454 /* Bump the PC. */
2455 pc += 4;
2456 }
2457}
2458
63757ecd
JK
2459#ifdef MAINTENANCE_CMDS
2460
66a1aa07
SG
2461static void
2462unwind_command (exp, from_tty)
2463 char *exp;
2464 int from_tty;
2465{
2466 CORE_ADDR address;
2467 union
2468 {
2469 int *foo;
2470 struct unwind_table_entry *u;
2471 } xxx;
2472
2473 /* If we have an expression, evaluate it and use it as the address. */
2474
2475 if (exp != 0 && *exp != 0)
2476 address = parse_and_eval_address (exp);
2477 else
2478 return;
2479
2480 xxx.u = find_unwind_entry (address);
2481
2482 if (!xxx.u)
2483 {
199b2450 2484 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
2485 return;
2486 }
2487
199b2450 2488 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
2489 xxx.foo[3]);
2490}
976bb0be 2491#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2492
2493void
2494_initialize_hppa_tdep ()
2495{
976bb0be 2496#ifdef MAINTENANCE_CMDS
63757ecd
JK
2497 add_cmd ("unwind", class_maintenance, unwind_command,
2498 "Print unwind table entry at given address.",
2499 &maintenanceprintlist);
63757ecd 2500#endif /* MAINTENANCE_CMDS */
976bb0be 2501}
This page took 0.218764 seconds and 4 git commands to generate.