* tm-h8300.h (REMOTE_BREAKPOINT): Define.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
66a1aa07 37#include <signal.h>
66a1aa07
SG
38
39#ifdef COFF_ENCAPSULATE
40#include "a.out.encap.h"
41#else
66a1aa07
SG
42#endif
43#ifndef N_SET_MAGIC
44#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45#endif
46
47/*#include <sys/user.h> After a.out.h */
48#include <sys/file.h>
49#include <sys/stat.h>
66a1aa07
SG
50#include "wait.h"
51
52#include "gdbcore.h"
53#include "gdbcmd.h"
54#include "target.h"
55#include "symfile.h"
56#include "objfiles.h"
57
669caa9c
SS
58static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60static int hppa_alignof PARAMS ((struct type *));
61
62CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
c598654a 64static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 65
c598654a 66static int is_branch PARAMS ((unsigned long));
669caa9c 67
c598654a 68static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 69
c598654a 70static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 71
70e43abe 72static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 73
70e43abe 74static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c
SS
75
76static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
f81eee9d 77 const struct unwind_table_entry *));
669caa9c 78
c5152d42 79static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 80
c5152d42
JL
81static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
bfaef242 84 unsigned int, CORE_ADDR));
66a1aa07
SG
85
86\f
87/* Routines to extract various sized constants out of hppa
88 instructions. */
89
90/* This assumes that no garbage lies outside of the lower bits of
91 value. */
92
93int
94sign_extend (val, bits)
95 unsigned val, bits;
96{
97 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
98}
99
100/* For many immediate values the sign bit is the low bit! */
101
102int
103low_sign_extend (val, bits)
104 unsigned val, bits;
105{
106 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
107}
108/* extract the immediate field from a ld{bhw}s instruction */
109
110unsigned
111get_field (val, from, to)
112 unsigned val, from, to;
113{
114 val = val >> 31 - to;
115 return val & ((1 << 32 - from) - 1);
116}
117
118unsigned
119set_field (val, from, to, new_val)
120 unsigned *val, from, to;
121{
122 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
123 return *val = *val & mask | (new_val << (31 - from));
124}
125
126/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
127
128extract_3 (word)
129 unsigned word;
130{
131 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
132}
133
134extract_5_load (word)
135 unsigned word;
136{
137 return low_sign_extend (word >> 16 & MASK_5, 5);
138}
139
140/* extract the immediate field from a st{bhw}s instruction */
141
142int
143extract_5_store (word)
144 unsigned word;
145{
146 return low_sign_extend (word & MASK_5, 5);
147}
148
68c8d698
SG
149/* extract the immediate field from a break instruction */
150
151unsigned
152extract_5r_store (word)
153 unsigned word;
154{
155 return (word & MASK_5);
156}
157
158/* extract the immediate field from a {sr}sm instruction */
159
160unsigned
161extract_5R_store (word)
162 unsigned word;
163{
164 return (word >> 16 & MASK_5);
165}
166
66a1aa07
SG
167/* extract an 11 bit immediate field */
168
169int
170extract_11 (word)
171 unsigned word;
172{
173 return low_sign_extend (word & MASK_11, 11);
174}
175
176/* extract a 14 bit immediate field */
177
178int
179extract_14 (word)
180 unsigned word;
181{
182 return low_sign_extend (word & MASK_14, 14);
183}
184
185/* deposit a 14 bit constant in a word */
186
187unsigned
188deposit_14 (opnd, word)
189 int opnd;
190 unsigned word;
191{
192 unsigned sign = (opnd < 0 ? 1 : 0);
193
194 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
195}
196
197/* extract a 21 bit constant */
198
199int
200extract_21 (word)
201 unsigned word;
202{
203 int val;
204
205 word &= MASK_21;
206 word <<= 11;
207 val = GET_FIELD (word, 20, 20);
208 val <<= 11;
209 val |= GET_FIELD (word, 9, 19);
210 val <<= 2;
211 val |= GET_FIELD (word, 5, 6);
212 val <<= 5;
213 val |= GET_FIELD (word, 0, 4);
214 val <<= 2;
215 val |= GET_FIELD (word, 7, 8);
216 return sign_extend (val, 21) << 11;
217}
218
219/* deposit a 21 bit constant in a word. Although 21 bit constants are
220 usually the top 21 bits of a 32 bit constant, we assume that only
221 the low 21 bits of opnd are relevant */
222
223unsigned
224deposit_21 (opnd, word)
225 unsigned opnd, word;
226{
227 unsigned val = 0;
228
229 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
230 val <<= 2;
231 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
234 val <<= 11;
235 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
236 val <<= 1;
237 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
238 return word | val;
239}
240
241/* extract a 12 bit constant from branch instructions */
242
243int
244extract_12 (word)
245 unsigned word;
246{
247 return sign_extend (GET_FIELD (word, 19, 28) |
248 GET_FIELD (word, 29, 29) << 10 |
249 (word & 0x1) << 11, 12) << 2;
250}
251
252/* extract a 17 bit constant from branch instructions, returning the
253 19 bit signed value. */
254
255int
256extract_17 (word)
257 unsigned word;
258{
259 return sign_extend (GET_FIELD (word, 19, 28) |
260 GET_FIELD (word, 29, 29) << 10 |
261 GET_FIELD (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263}
264\f
c5152d42
JL
265
266/* Compare the start address for two unwind entries returning 1 if
267 the first address is larger than the second, -1 if the second is
268 larger than the first, and zero if they are equal. */
269
270static int
271compare_unwind_entries (a, b)
f81eee9d
JL
272 const struct unwind_table_entry *a;
273 const struct unwind_table_entry *b;
c5152d42
JL
274{
275 if (a->region_start > b->region_start)
276 return 1;
277 else if (a->region_start < b->region_start)
278 return -1;
279 else
280 return 0;
281}
282
283static void
bfaef242 284internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
285 struct objfile *objfile;
286 struct unwind_table_entry *table;
287 asection *section;
288 unsigned int entries, size;
bfaef242 289 CORE_ADDR text_offset;
c5152d42
JL
290{
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
bfaef242 307 table[i].region_start += text_offset;
c5152d42
JL
308 buf += 4;
309 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 310 table[i].region_end += text_offset;
c5152d42
JL
311 buf += 4;
312 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
313 buf += 4;
314 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
315 table[i].Millicode = (tmp >> 30) & 0x1;
316 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
317 table[i].Region_description = (tmp >> 27) & 0x3;
318 table[i].reserved1 = (tmp >> 26) & 0x1;
319 table[i].Entry_SR = (tmp >> 25) & 0x1;
320 table[i].Entry_FR = (tmp >> 21) & 0xf;
321 table[i].Entry_GR = (tmp >> 16) & 0x1f;
322 table[i].Args_stored = (tmp >> 15) & 0x1;
323 table[i].Variable_Frame = (tmp >> 14) & 0x1;
324 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
325 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
326 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
327 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
328 table[i].Ada_Region = (tmp >> 9) & 0x1;
329 table[i].reserved2 = (tmp >> 5) & 0xf;
330 table[i].Save_SP = (tmp >> 4) & 0x1;
331 table[i].Save_RP = (tmp >> 3) & 0x1;
332 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
333 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
334 table[i].Cleanup_defined = tmp & 0x1;
335 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
336 buf += 4;
337 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
338 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
339 table[i].Large_frame = (tmp >> 29) & 0x1;
340 table[i].reserved4 = (tmp >> 27) & 0x3;
341 table[i].Total_frame_size = tmp & 0x7ffffff;
342 }
343 }
344}
345
346/* Read in the backtrace information stored in the `$UNWIND_START$' section of
347 the object file. This info is used mainly by find_unwind_entry() to find
348 out the stack frame size and frame pointer used by procedures. We put
349 everything on the psymbol obstack in the objfile so that it automatically
350 gets freed when the objfile is destroyed. */
351
9c842e0c 352static void
c5152d42
JL
353read_unwind_info (objfile)
354 struct objfile *objfile;
355{
356 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
357 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
358 unsigned index, unwind_entries, elf_unwind_entries;
359 unsigned stub_entries, total_entries;
bfaef242 360 CORE_ADDR text_offset;
c5152d42
JL
361 struct obj_unwind_info *ui;
362
bfaef242 363 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5152d42
JL
364 ui = obstack_alloc (&objfile->psymbol_obstack,
365 sizeof (struct obj_unwind_info));
366
367 ui->table = NULL;
368 ui->cache = NULL;
369 ui->last = -1;
370
371 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
372 section in ELF at the moment. */
373 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 374 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
375 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
376
377 /* Get sizes and unwind counts for all sections. */
378 if (unwind_sec)
379 {
380 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
381 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
382 }
383 else
384 {
385 unwind_size = 0;
386 unwind_entries = 0;
387 }
388
389 if (elf_unwind_sec)
390 {
391 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
392 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
393 }
f55179cb
JL
394 else
395 {
396 elf_unwind_size = 0;
397 elf_unwind_entries = 0;
398 }
c5152d42
JL
399
400 if (stub_unwind_sec)
401 {
402 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
403 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
404 }
405 else
406 {
407 stub_unwind_size = 0;
408 stub_entries = 0;
409 }
410
411 /* Compute total number of unwind entries and their total size. */
412 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
413 total_size = total_entries * sizeof (struct unwind_table_entry);
414
415 /* Allocate memory for the unwind table. */
416 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
417 ui->last = total_entries - 1;
418
419 /* Internalize the standard unwind entries. */
420 index = 0;
421 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 422 unwind_entries, unwind_size, text_offset);
c5152d42
JL
423 index += unwind_entries;
424 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 425 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
426 index += elf_unwind_entries;
427
428 /* Now internalize the stub unwind entries. */
429 if (stub_unwind_size > 0)
430 {
431 unsigned int i;
432 char *buf = alloca (stub_unwind_size);
433
434 /* Read in the stub unwind entries. */
435 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
436 0, stub_unwind_size);
437
438 /* Now convert them into regular unwind entries. */
439 for (i = 0; i < stub_entries; i++, index++)
440 {
441 /* Clear out the next unwind entry. */
442 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
443
444 /* Convert offset & size into region_start and region_end.
445 Stuff away the stub type into "reserved" fields. */
446 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
73a25072 448 ui->table[index].region_start += text_offset;
c5152d42
JL
449 buf += 4;
450 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
451 (bfd_byte *) buf);
452 buf += 2;
453 ui->table[index].region_end
454 = ui->table[index].region_start + 4 *
455 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
456 buf += 2;
457 }
458
459 }
460
461 /* Unwind table needs to be kept sorted. */
462 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
463 compare_unwind_entries);
464
465 /* Keep a pointer to the unwind information. */
466 objfile->obj_private = (PTR) ui;
467}
468
66a1aa07
SG
469/* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474static struct unwind_table_entry *
475find_unwind_entry(pc)
476 CORE_ADDR pc;
477{
478 int first, middle, last;
479 struct objfile *objfile;
480
481 ALL_OBJFILES (objfile)
482 {
483 struct obj_unwind_info *ui;
484
485 ui = OBJ_UNWIND_INFO (objfile);
486
487 if (!ui)
c5152d42
JL
488 {
489 read_unwind_info (objfile);
490 ui = OBJ_UNWIND_INFO (objfile);
491 }
66a1aa07
SG
492
493 /* First, check the cache */
494
495 if (ui->cache
496 && pc >= ui->cache->region_start
497 && pc <= ui->cache->region_end)
498 return ui->cache;
499
500 /* Not in the cache, do a binary search */
501
502 first = 0;
503 last = ui->last;
504
505 while (first <= last)
506 {
507 middle = (first + last) / 2;
508 if (pc >= ui->table[middle].region_start
509 && pc <= ui->table[middle].region_end)
510 {
511 ui->cache = &ui->table[middle];
512 return &ui->table[middle];
513 }
514
515 if (pc < ui->table[middle].region_start)
516 last = middle - 1;
517 else
518 first = middle + 1;
519 }
520 } /* ALL_OBJFILES() */
521 return NULL;
522}
523
98c0e047
JL
524/* start-sanitize-hpread */
525/* Return the adjustment necessary to make for addresses on the stack
526 as presented by hpread.c.
527
528 This is necessary because of the stack direction on the PA and the
529 bizarre way in which someone (?) decided they wanted to handle
530 frame pointerless code in GDB. */
531int
532hpread_adjust_stack_address (func_addr)
533 CORE_ADDR func_addr;
534{
535 struct unwind_table_entry *u;
536
537 u = find_unwind_entry (func_addr);
538 if (!u)
539 return 0;
540 else
541 return u->Total_frame_size << 3;
542}
543/* end-sanitize-hpread */
544
70e43abe
JL
545/* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548static int
549pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551{
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564}
565
5ac7f56e
JK
566/* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
5ac7f56e
JK
568
569static int
570pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572{
5ac7f56e
JK
573 int found_magic_instruction = 0;
574 int i;
08ecd8f3
JK
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
5ac7f56e 580
d08c6f4c
JK
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
5ac7f56e
JK
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
6e35b037 596 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
6e35b037 618 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634}
635
66a1aa07
SG
636static int
637find_return_regnum(pc)
638 CORE_ADDR pc;
639{
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651}
652
5ac7f56e 653/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07 654int
70e43abe 655find_proc_framesize (pc)
66a1aa07
SG
656 CORE_ADDR pc;
657{
658 struct unwind_table_entry *u;
70e43abe 659 struct minimal_symbol *msym_us;
66a1aa07 660
66a1aa07
SG
661 u = find_unwind_entry (pc);
662
663 if (!u)
5ac7f56e
JK
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
66a1aa07 671
70e43abe
JL
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
678 return -1;
679
66a1aa07
SG
680 return u->Total_frame_size << 3;
681}
682
5ac7f56e
JK
683/* Return offset from sp at which rp is saved, or 0 if not saved. */
684static int rp_saved PARAMS ((CORE_ADDR));
685
686static int
687rp_saved (pc)
688 CORE_ADDR pc;
66a1aa07
SG
689{
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
5ac7f56e
JK
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
66a1aa07
SG
702
703 if (u->Save_RP)
5ac7f56e 704 return -20;
c7f3b703
JL
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
c2e00af6 710 case IMPORT:
c7f3b703
JL
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
66a1aa07
SG
718 else
719 return 0;
720}
721\f
8fa74880
SG
722int
723frameless_function_invocation (frame)
669caa9c 724 struct frame_info *frame;
8fa74880 725{
b8ec9a79 726 struct unwind_table_entry *u;
8fa74880 727
b8ec9a79 728 u = find_unwind_entry (frame->pc);
8fa74880 729
b8ec9a79 730 if (u == 0)
7f43b9b7 731 return 0;
b8ec9a79 732
c7f3b703 733 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
734}
735
66a1aa07
SG
736CORE_ADDR
737saved_pc_after_call (frame)
669caa9c 738 struct frame_info *frame;
66a1aa07
SG
739{
740 int ret_regnum;
edd86fb0
JL
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
66a1aa07
SG
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
66a1aa07
SG
754}
755\f
756CORE_ADDR
757frame_saved_pc (frame)
669caa9c 758 struct frame_info *frame;
66a1aa07
SG
759{
760 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 761 struct unwind_table_entry *u;
66a1aa07 762
70e43abe
JL
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 775 return rp & ~0x3;
70e43abe
JL
776 }
777
8fa74880 778 if (frameless_function_invocation (frame))
66a1aa07
SG
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
70e43abe
JL
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
70e43abe
JL
792 struct frame_saved_regs saved_regs;
793
54b2555b 794 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
70e43abe 806 else
7f43b9b7 807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
808 }
809 else
7f43b9b7 810 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 811 }
66a1aa07 812 else
5ac7f56e 813 {
edd86fb0 814 int rp_offset;
5ac7f56e 815
edd86fb0
JL
816restart:
817 rp_offset = rp_saved (pc);
70e43abe
JL
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
70e43abe
JL
826 struct frame_saved_regs saved_regs;
827
669caa9c 828 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
70e43abe 840 else
7f43b9b7 841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
842 }
843 else if (rp_offset == 0)
7f43b9b7 844 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 845 else
7f43b9b7 846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 847 }
7f43b9b7
JL
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
66a1aa07
SG
856}
857\f
858/* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861void
862init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865{
866 int flags;
867 int framesize;
868
192c3eeb 869 if (frame->next && !fromleaf)
66a1aa07
SG
870 return;
871
192c3eeb
JL
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
66a1aa07
SG
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
192c3eeb
JL
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
910}
911\f
8966221d
JK
912/* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
8966221d 919
669caa9c 920CORE_ADDR
66a1aa07
SG
921frame_chain (frame)
922 struct frame_info *frame;
923{
8966221d
JK
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
70e43abe
JL
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
66a1aa07 940
8966221d
JK
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 945
8966221d
JK
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
70e43abe 949 return frame_base - caller_framesize;
8966221d
JK
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 955 return read_memory_integer (frame_base, 4);
8966221d
JK
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
2f8c3639 965 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 966 stack. If so return whatever value got saved into the stack.
2f8c3639 967 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
968 valid, so use it.
969
2f8c3639 970 We use information from unwind descriptors to determine if %r3
8966221d
JK
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
01a03545
JK
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
8966221d
JK
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 988 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe
JL
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
8966221d
JK
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
70e43abe
JL
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
8966221d 1004 return read_memory_integer (frame->frame, 4);
2f8c3639 1005 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1006 else
c598654a 1007 {
c598654a
JL
1008 struct frame_saved_regs saved_regs;
1009
669caa9c 1010 get_frame_saved_regs (frame, &saved_regs);
c598654a
JL
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
8966221d
JK
1013 }
1014 else
1015 {
2f8c3639 1016 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1017 holds the value of the previous frame pointer). */
2f8c3639 1018 return read_register (FP_REGNUM);
8966221d
JK
1019 }
1020}
66a1aa07 1021
66a1aa07
SG
1022\f
1023/* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026int
1027frame_chain_valid (chain, thisframe)
669caa9c
SS
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
66a1aa07 1030{
247145e6
JK
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
70e43abe 1033 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1034 struct frame_info *next;
66a1aa07
SG
1035
1036 if (!chain)
1037 return 0;
1038
b8ec9a79 1039 u = find_unwind_entry (thisframe->pc);
4b01383b 1040
70e43abe
JL
1041 if (u == NULL)
1042 return 1;
1043
247145e6
JK
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1055 return 0;
5ac7f56e 1056
70e43abe
JL
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
5ac7f56e 1060
70e43abe
JL
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1067 return 1;
5ac7f56e 1068
b8ec9a79
JK
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
4b01383b 1071
b8ec9a79 1072 return 0;
66a1aa07
SG
1073}
1074
66a1aa07
SG
1075/*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
1082int
1083push_dummy_frame ()
1084{
1085 register CORE_ADDR sp;
1086 register int regnum;
1087 int int_buffer;
1088 double freg_buffer;
1089
1090 /* Space for "arguments"; the RP goes in here. */
1091 sp = read_register (SP_REGNUM) + 48;
1092 int_buffer = read_register (RP_REGNUM) | 0x3;
1093 write_memory (sp - 20, (char *)&int_buffer, 4);
1094
1095 int_buffer = read_register (FP_REGNUM);
1096 write_memory (sp, (char *)&int_buffer, 4);
1097
1098 write_register (FP_REGNUM, sp);
1099
1100 sp += 8;
1101
1102 for (regnum = 1; regnum < 32; regnum++)
1103 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1104 sp = push_word (sp, read_register (regnum));
1105
1106 sp += 4;
1107
1108 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1109 {
1110 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1111 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1112 }
1113 sp = push_word (sp, read_register (IPSW_REGNUM));
1114 sp = push_word (sp, read_register (SAR_REGNUM));
1115 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1116 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1117 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1118 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1119 write_register (SP_REGNUM, sp);
1120}
1121
1122find_dummy_frame_regs (frame, frame_saved_regs)
1123 struct frame_info *frame;
1124 struct frame_saved_regs *frame_saved_regs;
1125{
1126 CORE_ADDR fp = frame->frame;
1127 int i;
1128
1129 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1130 frame_saved_regs->regs[FP_REGNUM] = fp;
1131 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1132
b227992a
SG
1133 for (fp += 12, i = 3; i < 32; i++)
1134 {
1135 if (i != FP_REGNUM)
1136 {
1137 frame_saved_regs->regs[i] = fp;
1138 fp += 4;
1139 }
1140 }
66a1aa07
SG
1141
1142 fp += 4;
1143 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1144 frame_saved_regs->regs[i] = fp;
1145
1146 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1147 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1148 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1149 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1150 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1151 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1152}
1153
1154int
1155hppa_pop_frame ()
1156{
669caa9c 1157 register struct frame_info *frame = get_current_frame ();
66a1aa07
SG
1158 register CORE_ADDR fp;
1159 register int regnum;
1160 struct frame_saved_regs fsr;
66a1aa07
SG
1161 double freg_buffer;
1162
669caa9c
SS
1163 fp = FRAME_FP (frame);
1164 get_frame_saved_regs (frame, &fsr);
66a1aa07 1165
0a64709e 1166#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1167 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1168 restore_pc_queue (&fsr);
0a64709e 1169#endif
66a1aa07
SG
1170
1171 for (regnum = 31; regnum > 0; regnum--)
1172 if (fsr.regs[regnum])
1173 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1174
1175 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1176 if (fsr.regs[regnum])
1177 {
1178 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1179 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1180 }
1181
1182 if (fsr.regs[IPSW_REGNUM])
1183 write_register (IPSW_REGNUM,
1184 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1185
1186 if (fsr.regs[SAR_REGNUM])
1187 write_register (SAR_REGNUM,
1188 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1189
ed1a07ad 1190 /* If the PC was explicitly saved, then just restore it. */
66a1aa07
SG
1191 if (fsr.regs[PCOQ_TAIL_REGNUM])
1192 write_register (PCOQ_TAIL_REGNUM,
1193 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1194
ed1a07ad
JK
1195 /* Else use the value in %rp to set the new PC. */
1196 else
e9a3cde8 1197 target_write_pc (read_register (RP_REGNUM), 0);
ed1a07ad 1198
66a1aa07
SG
1199 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1200
1201 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1202 write_register (SP_REGNUM, fp - 48);
1203 else
1204 write_register (SP_REGNUM, fp);
1205
1206 flush_cached_frames ();
66a1aa07
SG
1207}
1208
1209/*
1210 * After returning to a dummy on the stack, restore the instruction
1211 * queue space registers. */
1212
1213static int
1214restore_pc_queue (fsr)
1215 struct frame_saved_regs *fsr;
1216{
1217 CORE_ADDR pc = read_pc ();
1218 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1219 int pid;
67ac9759 1220 struct target_waitstatus w;
66a1aa07
SG
1221 int insn_count;
1222
1223 /* Advance past break instruction in the call dummy. */
1224 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1225 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1226
1227 /*
1228 * HPUX doesn't let us set the space registers or the space
1229 * registers of the PC queue through ptrace. Boo, hiss.
1230 * Conveniently, the call dummy has this sequence of instructions
1231 * after the break:
1232 * mtsp r21, sr0
1233 * ble,n 0(sr0, r22)
1234 *
1235 * So, load up the registers and single step until we are in the
1236 * right place.
1237 */
1238
1239 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1240 write_register (22, new_pc);
1241
1242 for (insn_count = 0; insn_count < 3; insn_count++)
1243 {
8c5e0021
JK
1244 /* FIXME: What if the inferior gets a signal right now? Want to
1245 merge this into wait_for_inferior (as a special kind of
1246 watchpoint? By setting a breakpoint at the end? Is there
1247 any other choice? Is there *any* way to do this stuff with
1248 ptrace() or some equivalent?). */
66a1aa07 1249 resume (1, 0);
67ac9759 1250 target_wait (inferior_pid, &w);
66a1aa07 1251
67ac9759 1252 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1253 {
67ac9759 1254 stop_signal = w.value.sig;
66a1aa07 1255 terminal_ours_for_output ();
67ac9759
JK
1256 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1257 target_signal_to_name (stop_signal),
1258 target_signal_to_string (stop_signal));
199b2450 1259 gdb_flush (gdb_stdout);
66a1aa07
SG
1260 return 0;
1261 }
1262 }
8c5e0021 1263 target_terminal_ours ();
cad1498f 1264 target_fetch_registers (-1);
66a1aa07
SG
1265 return 1;
1266}
1267
1268CORE_ADDR
1269hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1270 int nargs;
4fd5eed4 1271 value_ptr *args;
66a1aa07
SG
1272 CORE_ADDR sp;
1273 int struct_return;
1274 CORE_ADDR struct_addr;
1275{
1276 /* array of arguments' offsets */
1edc5cd2 1277 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1278 int cum = 0;
1279 int i, alignment;
1280
1281 for (i = 0; i < nargs; i++)
1282 {
1283 /* Coerce chars to int & float to double if necessary */
1284 args[i] = value_arg_coerce (args[i]);
1285
1286 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1287
1288 /* value must go at proper alignment. Assume alignment is a
1289 power of two.*/
1290 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1291 if (cum % alignment)
1292 cum = (cum + alignment) & -alignment;
1293 offset[i] = -cum;
1294 }
558f4183 1295 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1296
1297 for (i = 0; i < nargs; i++)
1298 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1299 TYPE_LENGTH (VALUE_TYPE (args[i])));
1300
1301 if (struct_return)
1302 write_register (28, struct_addr);
1303 return sp + 32;
1304}
1305
1306/*
1307 * Insert the specified number of args and function address
1308 * into a call sequence of the above form stored at DUMMYNAME.
1309 *
1310 * On the hppa we need to call the stack dummy through $$dyncall.
1311 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1312 * real_pc, which is the location where gdb should start up the
1313 * inferior to do the function call.
1314 */
1315
1316CORE_ADDR
1317hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1318 char *dummy;
66a1aa07
SG
1319 CORE_ADDR pc;
1320 CORE_ADDR fun;
1321 int nargs;
4fd5eed4 1322 value_ptr *args;
66a1aa07
SG
1323 struct type *type;
1324 int gcc_p;
1325{
1326 CORE_ADDR dyncall_addr, sr4export_addr;
1327 struct minimal_symbol *msymbol;
6cfec929 1328 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1329 struct unwind_table_entry *u;
66a1aa07
SG
1330
1331 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1332 if (msymbol == NULL)
1333 error ("Can't find an address for $$dyncall trampoline");
1334
1335 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1336
4f915914
JL
1337 /* FUN could be a procedure label, in which case we have to get
1338 its real address and the value of its GOT/DP. */
1339 if (fun & 0x2)
1340 {
1341 /* Get the GOT/DP value for the target function. It's
1342 at *(fun+4). Note the call dummy is *NOT* allowed to
1343 trash %r19 before calling the target function. */
1344 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1345
1346 /* Now get the real address for the function we are calling, it's
1347 at *fun. */
1348 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1349 }
1350
19cd0c1f
JL
1351 /* If we are calling an import stub (eg calling into a dynamic library)
1352 then have sr4export call the magic __d_plt_call routine which is linked
1353 in from end.o. (You can't use _sr4export to call the import stub as
1354 the value in sp-24 will get fried and you end up returning to the
1355 wrong location. You can't call the import stub directly as the code
1356 to bind the PLT entry to a function can't return to a stack address.) */
1357 u = find_unwind_entry (fun);
1358 if (u && u->stub_type == IMPORT)
1359 {
1360 CORE_ADDR new_fun;
1361 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1362 if (msymbol == NULL)
1363 error ("Can't find an address for __d_plt_call trampoline");
1364
1365 /* This is where sr4export will jump to. */
1366 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1367
1368 /* We have to store the address of the stub in __shlib_funcptr. */
1369 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1370 (struct objfile *)NULL);
1371 if (msymbol == NULL)
1372 error ("Can't find an address for __shlib_funcptr");
1373
1374 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1375 fun = new_fun;
1376
1377 }
1378
1379 /* We still need sr4export's address too. */
66a1aa07
SG
1380 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1381 if (msymbol == NULL)
1382 error ("Can't find an address for _sr4export trampoline");
1383
1384 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1385
f4f0d174
JK
1386 store_unsigned_integer
1387 (&dummy[9*REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 deposit_21 (fun >> 11,
1390 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1391 REGISTER_SIZE)));
1392 store_unsigned_integer
1393 (&dummy[10*REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 deposit_14 (fun & MASK_11,
1396 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1397 REGISTER_SIZE)));
1398 store_unsigned_integer
1399 (&dummy[12*REGISTER_SIZE],
1400 REGISTER_SIZE,
1401 deposit_21 (sr4export_addr >> 11,
1402 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1403 REGISTER_SIZE)));
1404 store_unsigned_integer
1405 (&dummy[13*REGISTER_SIZE],
1406 REGISTER_SIZE,
1407 deposit_14 (sr4export_addr & MASK_11,
1408 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1409 REGISTER_SIZE)));
66a1aa07
SG
1410
1411 write_register (22, pc);
1412
6cfec929
JK
1413 /* If we are in a syscall, then we should call the stack dummy
1414 directly. $$dyncall is not needed as the kernel sets up the
1415 space id registers properly based on the value in %r31. In
1416 fact calling $$dyncall will not work because the value in %r22
1417 will be clobbered on the syscall exit path. */
1418 if (flags & 2)
1419 return pc;
1420 else
1421 return dyncall_addr;
1422
66a1aa07
SG
1423}
1424
d3862cae
JK
1425/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1426 bits. */
669caa9c 1427
d3862cae 1428CORE_ADDR
e9a3cde8
JL
1429target_read_pc (pid)
1430 int pid;
d3862cae
JK
1431{
1432 int flags = read_register (FLAGS_REGNUM);
1433
1434 if (flags & 2)
1435 return read_register (31) & ~0x3;
1436 return read_register (PC_REGNUM) & ~0x3;
1437}
1438
6cfec929
JK
1439/* Write out the PC. If currently in a syscall, then also write the new
1440 PC value into %r31. */
669caa9c 1441
6cfec929 1442void
e9a3cde8 1443target_write_pc (v, pid)
6cfec929 1444 CORE_ADDR v;
e9a3cde8 1445 int pid;
6cfec929
JK
1446{
1447 int flags = read_register (FLAGS_REGNUM);
1448
1449 /* If in a syscall, then set %r31. Also make sure to get the
1450 privilege bits set correctly. */
1451 if (flags & 2)
1452 write_register (31, (long) (v | 0x3));
1453
1454 write_register (PC_REGNUM, (long) v);
1455 write_register (NPC_REGNUM, (long) v + 4);
1456}
1457
66a1aa07
SG
1458/* return the alignment of a type in bytes. Structures have the maximum
1459 alignment required by their fields. */
1460
1461static int
1462hppa_alignof (arg)
1463 struct type *arg;
1464{
1465 int max_align, align, i;
1466 switch (TYPE_CODE (arg))
1467 {
1468 case TYPE_CODE_PTR:
1469 case TYPE_CODE_INT:
1470 case TYPE_CODE_FLT:
1471 return TYPE_LENGTH (arg);
1472 case TYPE_CODE_ARRAY:
1473 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1474 case TYPE_CODE_STRUCT:
1475 case TYPE_CODE_UNION:
1476 max_align = 2;
1477 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1478 {
1479 /* Bit fields have no real alignment. */
1480 if (!TYPE_FIELD_BITPOS (arg, i))
1481 {
1482 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1483 max_align = max (max_align, align);
1484 }
1485 }
1486 return max_align;
1487 default:
1488 return 4;
1489 }
1490}
1491
1492/* Print the register regnum, or all registers if regnum is -1 */
1493
1494pa_do_registers_info (regnum, fpregs)
1495 int regnum;
1496 int fpregs;
1497{
1498 char raw_regs [REGISTER_BYTES];
1499 int i;
1500
1501 for (i = 0; i < NUM_REGS; i++)
1502 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1503 if (regnum == -1)
1504 pa_print_registers (raw_regs, regnum, fpregs);
1505 else if (regnum < FP0_REGNUM)
199b2450 1506 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1507 REGISTER_BYTE (regnum)));
1508 else
1509 pa_print_fp_reg (regnum);
1510}
1511
1512pa_print_registers (raw_regs, regnum, fpregs)
1513 char *raw_regs;
1514 int regnum;
1515 int fpregs;
1516{
1517 int i;
1518
1519 for (i = 0; i < 18; i++)
199b2450 1520 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1521 reg_names[i],
1522 *(int *)(raw_regs + REGISTER_BYTE (i)),
1523 reg_names[i + 18],
1524 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1525 reg_names[i + 36],
1526 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1527 reg_names[i + 54],
1528 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1529
1530 if (fpregs)
1531 for (i = 72; i < NUM_REGS; i++)
1532 pa_print_fp_reg (i);
1533}
1534
1535pa_print_fp_reg (i)
1536 int i;
1537{
1538 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1539 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1540
eb1167c6 1541 /* Get 32bits of data. */
66a1aa07 1542 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1543
eb1167c6
JL
1544 /* Put it in the buffer. No conversions are ever necessary. */
1545 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1546
199b2450 1547 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1548 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1549 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1550
199b2450 1551 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1552 1, 0, Val_pretty_default);
1553 printf_filtered ("\n");
eb1167c6
JL
1554
1555 /* If "i" is even, then this register can also be a double-precision
1556 FP register. Dump it out as such. */
1557 if ((i % 2) == 0)
1558 {
1559 /* Get the data in raw format for the 2nd half. */
1560 read_relative_register_raw_bytes (i + 1, raw_buffer);
1561
1562 /* Copy it into the appropriate part of the virtual buffer. */
1563 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1564 REGISTER_RAW_SIZE (i));
1565
1566 /* Dump it as a double. */
1567 fputs_filtered (reg_names[i], gdb_stdout);
1568 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1569 fputs_filtered ("(double precision) ", gdb_stdout);
1570
1571 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1572 1, 0, Val_pretty_default);
1573 printf_filtered ("\n");
1574 }
66a1aa07
SG
1575}
1576
de482138
JL
1577/* Figure out if PC is in a trampoline, and if so find out where
1578 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 1579
de482138
JL
1580 Simple code examination probably is not a good idea since the code
1581 sequences in trampolines can also appear in user code.
1582
1583 We use unwinds and information from the minimal symbol table to
1584 determine when we're in a trampoline. This won't work for ELF
1585 (yet) since it doesn't create stub unwind entries. Whether or
1586 not ELF will create stub unwinds or normal unwinds for linker
1587 stubs is still being debated.
1588
1589 This should handle simple calls through dyncall or sr4export,
1590 long calls, argument relocation stubs, and dyncall/sr4export
1591 calling an argument relocation stub. It even handles some stubs
1592 used in dynamic executables. */
66a1aa07
SG
1593
1594CORE_ADDR
1595skip_trampoline_code (pc, name)
1596 CORE_ADDR pc;
1597 char *name;
1598{
de482138
JL
1599 long orig_pc = pc;
1600 long prev_inst, curr_inst, loc;
66a1aa07 1601 static CORE_ADDR dyncall = 0;
de482138 1602 static CORE_ADDR sr4export = 0;
66a1aa07 1603 struct minimal_symbol *msym;
de482138 1604 struct unwind_table_entry *u;
66a1aa07 1605
de482138
JL
1606/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1607 new exec file */
66a1aa07
SG
1608
1609 if (!dyncall)
1610 {
1611 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1612 if (msym)
1613 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1614 else
1615 dyncall = -1;
1616 }
1617
de482138
JL
1618 if (!sr4export)
1619 {
1620 msym = lookup_minimal_symbol ("_sr4export", NULL);
1621 if (msym)
1622 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1623 else
1624 sr4export = -1;
1625 }
1626
1627 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 1628 of the function. So we may have to do something special. */
66a1aa07 1629 if (pc == dyncall)
de482138
JL
1630 {
1631 pc = (CORE_ADDR) read_register (22);
66a1aa07 1632
de482138
JL
1633 /* If bit 30 (counting from the left) is on, then pc is the address of
1634 the PLT entry for this function, not the address of the function
1635 itself. Bit 31 has meaning too, but only for MPE. */
1636 if (pc & 0x2)
1637 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1638 }
1639 else if (pc == sr4export)
1640 pc = (CORE_ADDR) (read_register (22));
66a1aa07 1641
de482138
JL
1642 /* Get the unwind descriptor corresponding to PC, return zero
1643 if no unwind was found. */
1644 u = find_unwind_entry (pc);
1645 if (!u)
1646 return 0;
1647
1648 /* If this isn't a linker stub, then return now. */
1649 if (u->stub_type == 0)
1650 return orig_pc == pc ? 0 : pc & ~0x3;
1651
1652 /* It's a stub. Search for a branch and figure out where it goes.
1653 Note we have to handle multi insn branch sequences like ldil;ble.
1654 Most (all?) other branches can be determined by examining the contents
1655 of certain registers and the stack. */
1656 loc = pc;
1657 curr_inst = 0;
1658 prev_inst = 0;
1659 while (1)
1660 {
1661 /* Make sure we haven't walked outside the range of this stub. */
1662 if (u != find_unwind_entry (loc))
1663 {
1664 warning ("Unable to find branch in linker stub");
1665 return orig_pc == pc ? 0 : pc & ~0x3;
1666 }
1667
1668 prev_inst = curr_inst;
1669 curr_inst = read_memory_integer (loc, 4);
66a1aa07 1670
de482138
JL
1671 /* Does it look like a branch external using %r1? Then it's the
1672 branch from the stub to the actual function. */
1673 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1674 {
1675 /* Yup. See if the previous instruction loaded
1676 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 1677 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
1678 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1679 else
1680 {
1681 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1682 return orig_pc == pc ? 0 : pc & ~0x3;
1683 }
1684 }
1685
f32fc5f9
JL
1686 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1687 import stub to an export stub.
1688
1689 It is impossible to determine the target of the branch via
1690 simple examination of instructions and/or data (consider
1691 that the address in the plabel may be the address of the
1692 bind-on-reference routine in the dynamic loader).
1693
1694 So we have try an alternative approach.
1695
1696 Get the name of the symbol at our current location; it should
1697 be a stub symbol with the same name as the symbol in the
1698 shared library.
1699
1700 Then lookup a minimal symbol with the same name; we should
1701 get the minimal symbol for the target routine in the shared
1702 library as those take precedence of import/export stubs. */
1703 if (curr_inst == 0xe2a00000)
1704 {
1705 struct minimal_symbol *stubsym, *libsym;
1706
1707 stubsym = lookup_minimal_symbol_by_pc (loc);
1708 if (stubsym == NULL)
1709 {
1710 warning ("Unable to find symbol for 0x%x", loc);
1711 return orig_pc == pc ? 0 : pc & ~0x3;
1712 }
1713
1714 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
1715 if (libsym == NULL)
1716 {
1717 warning ("Unable to find library symbol for %s\n",
1718 SYMBOL_NAME (stubsym));
1719 return orig_pc == pc ? 0 : pc & ~0x3;
1720 }
1721
1722 return SYMBOL_VALUE (libsym);
1723 }
1724
88b91d4a
JL
1725 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1726 branch from the stub to the actual function. */
1727 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1728 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
1729 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1730
1731 /* Does it look like bv (rp)? Note this depends on the
1732 current stack pointer being the same as the stack
1733 pointer in the stub itself! This is a branch on from the
1734 stub back to the original caller. */
1735 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1736 {
1737 /* Yup. See if the previous instruction loaded
1738 rp from sp - 8. */
1739 if (prev_inst == 0x4bc23ff1)
1740 return (read_memory_integer
1741 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1742 else
1743 {
1744 warning ("Unable to find restore of %%rp before bv (%%rp).");
1745 return orig_pc == pc ? 0 : pc & ~0x3;
1746 }
1747 }
1748
1749 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1750 the original caller from the stub. Used in dynamic executables. */
1751 else if (curr_inst == 0xe0400002)
1752 {
1753 /* The value we jump to is sitting in sp - 24. But that's
1754 loaded several instructions before the be instruction.
1755 I guess we could check for the previous instruction being
1756 mtsp %r1,%sr0 if we want to do sanity checking. */
1757 return (read_memory_integer
1758 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1759 }
1760
1761 /* Haven't found the branch yet, but we're still in the stub.
1762 Keep looking. */
1763 loc += 4;
1764 }
66a1aa07
SG
1765}
1766
c598654a
JL
1767/* For the given instruction (INST), return any adjustment it makes
1768 to the stack pointer or zero for no adjustment.
1769
1770 This only handles instructions commonly found in prologues. */
1771
1772static int
1773prologue_inst_adjust_sp (inst)
1774 unsigned long inst;
1775{
1776 /* This must persist across calls. */
1777 static int save_high21;
1778
1779 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1780 if ((inst & 0xffffc000) == 0x37de0000)
1781 return extract_14 (inst);
1782
1783 /* stwm X,D(sp) */
1784 if ((inst & 0xffe00000) == 0x6fc00000)
1785 return extract_14 (inst);
1786
1787 /* addil high21,%r1; ldo low11,(%r1),%r30)
1788 save high bits in save_high21 for later use. */
1789 if ((inst & 0xffe00000) == 0x28200000)
1790 {
1791 save_high21 = extract_21 (inst);
1792 return 0;
1793 }
1794
1795 if ((inst & 0xffff0000) == 0x343e0000)
1796 return save_high21 + extract_14 (inst);
1797
1798 /* fstws as used by the HP compilers. */
1799 if ((inst & 0xffffffe0) == 0x2fd01220)
1800 return extract_5_load (inst);
1801
1802 /* No adjustment. */
1803 return 0;
1804}
1805
1806/* Return nonzero if INST is a branch of some kind, else return zero. */
1807
1808static int
1809is_branch (inst)
1810 unsigned long inst;
1811{
1812 switch (inst >> 26)
1813 {
1814 case 0x20:
1815 case 0x21:
1816 case 0x22:
1817 case 0x23:
1818 case 0x28:
1819 case 0x29:
1820 case 0x2a:
1821 case 0x2b:
1822 case 0x30:
1823 case 0x31:
1824 case 0x32:
1825 case 0x33:
1826 case 0x38:
1827 case 0x39:
1828 case 0x3a:
1829 return 1;
1830
1831 default:
1832 return 0;
1833 }
1834}
1835
1836/* Return the register number for a GR which is saved by INST or
edd86fb0 1837 zero it INST does not save a GR. */
c598654a
JL
1838
1839static int
1840inst_saves_gr (inst)
1841 unsigned long inst;
1842{
1843 /* Does it look like a stw? */
1844 if ((inst >> 26) == 0x1a)
1845 return extract_5R_store (inst);
1846
edd86fb0 1847 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
1848 if ((inst >> 26) == 0x1b)
1849 return extract_5R_store (inst);
1850
edd86fb0
JL
1851 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1852 too. */
1853 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1854 return extract_5R_store (inst);
1855
c598654a
JL
1856 return 0;
1857}
1858
1859/* Return the register number for a FR which is saved by INST or
1860 zero it INST does not save a FR.
1861
1862 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
1863 kind of stores the prologue will use).
1864
1865 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
1866
1867static int
1868inst_saves_fr (inst)
1869 unsigned long inst;
1870{
edd86fb0 1871 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
1872 return extract_5r_store (inst);
1873 return 0;
1874}
1875
66a1aa07 1876/* Advance PC across any function entry prologue instructions
c598654a 1877 to reach some "real" code.
66a1aa07 1878
c598654a
JL
1879 Use information in the unwind table to determine what exactly should
1880 be in the prologue. */
66a1aa07
SG
1881
1882CORE_ADDR
de482138 1883skip_prologue (pc)
66a1aa07
SG
1884 CORE_ADDR pc;
1885{
34df79fc 1886 char buf[4];
c598654a 1887 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
edd86fb0 1888 unsigned long args_stored, status, i;
c598654a 1889 struct unwind_table_entry *u;
66a1aa07 1890
c598654a
JL
1891 u = find_unwind_entry (pc);
1892 if (!u)
fdafbfad 1893 return pc;
c598654a 1894
de482138
JL
1895 /* If we are not at the beginning of a function, then return now. */
1896 if ((pc & ~0x3) != u->region_start)
1897 return pc;
1898
c598654a
JL
1899 /* This is how much of a frame adjustment we need to account for. */
1900 stack_remaining = u->Total_frame_size << 3;
66a1aa07 1901
c598654a
JL
1902 /* Magic register saves we want to know about. */
1903 save_rp = u->Save_RP;
1904 save_sp = u->Save_SP;
1905
edd86fb0
JL
1906 /* An indication that args may be stored into the stack. Unfortunately
1907 the HPUX compilers tend to set this in cases where no args were
1908 stored too!. */
1909 args_stored = u->Args_stored;
1910
c598654a
JL
1911 /* Turn the Entry_GR field into a bitmask. */
1912 save_gr = 0;
1913 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 1914 {
c598654a
JL
1915 /* Frame pointer gets saved into a special location. */
1916 if (u->Save_SP && i == FP_REGNUM)
1917 continue;
1918
1919 save_gr |= (1 << i);
1920 }
1921
1922 /* Turn the Entry_FR field into a bitmask too. */
1923 save_fr = 0;
1924 for (i = 12; i < u->Entry_FR + 12; i++)
1925 save_fr |= (1 << i);
1926
1927 /* Loop until we find everything of interest or hit a branch.
1928
1929 For unoptimized GCC code and for any HP CC code this will never ever
1930 examine any user instructions.
1931
1932 For optimzied GCC code we're faced with problems. GCC will schedule
1933 its prologue and make prologue instructions available for delay slot
1934 filling. The end result is user code gets mixed in with the prologue
1935 and a prologue instruction may be in the delay slot of the first branch
1936 or call.
1937
1938 Some unexpected things are expected with debugging optimized code, so
1939 we allow this routine to walk past user instructions in optimized
1940 GCC code. */
edd86fb0
JL
1941 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1942 || args_stored)
c598654a 1943 {
edd86fb0
JL
1944 unsigned int reg_num;
1945 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1946 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1947
1948 /* Save copies of all the triggers so we can compare them later
1949 (only for HPC). */
1950 old_save_gr = save_gr;
1951 old_save_fr = save_fr;
1952 old_save_rp = save_rp;
1953 old_save_sp = save_sp;
1954 old_stack_remaining = stack_remaining;
1955
c598654a
JL
1956 status = target_read_memory (pc, buf, 4);
1957 inst = extract_unsigned_integer (buf, 4);
edd86fb0 1958
c598654a
JL
1959 /* Yow! */
1960 if (status != 0)
1961 return pc;
1962
1963 /* Note the interesting effects of this instruction. */
1964 stack_remaining -= prologue_inst_adjust_sp (inst);
1965
1966 /* There is only one instruction used for saving RP into the stack. */
1967 if (inst == 0x6bc23fd9)
1968 save_rp = 0;
1969
1970 /* This is the only way we save SP into the stack. At this time
1971 the HP compilers never bother to save SP into the stack. */
1972 if ((inst & 0xffffc000) == 0x6fc10000)
1973 save_sp = 0;
1974
1975 /* Account for general and floating-point register saves. */
edd86fb0
JL
1976 reg_num = inst_saves_gr (inst);
1977 save_gr &= ~(1 << reg_num);
1978
1979 /* Ugh. Also account for argument stores into the stack.
1980 Unfortunately args_stored only tells us that some arguments
1981 where stored into the stack. Not how many or what kind!
1982
1983 This is a kludge as on the HP compiler sets this bit and it
1984 never does prologue scheduling. So once we see one, skip past
1985 all of them. We have similar code for the fp arg stores below.
1986
1987 FIXME. Can still die if we have a mix of GR and FR argument
1988 stores! */
1989 if (reg_num >= 23 && reg_num <= 26)
1990 {
1991 while (reg_num >= 23 && reg_num <= 26)
1992 {
1993 pc += 4;
1994 status = target_read_memory (pc, buf, 4);
1995 inst = extract_unsigned_integer (buf, 4);
1996 if (status != 0)
1997 return pc;
1998 reg_num = inst_saves_gr (inst);
1999 }
2000 args_stored = 0;
2001 continue;
2002 }
2003
2004 reg_num = inst_saves_fr (inst);
2005 save_fr &= ~(1 << reg_num);
2006
2007 status = target_read_memory (pc + 4, buf, 4);
2008 next_inst = extract_unsigned_integer (buf, 4);
2009
2010 /* Yow! */
2011 if (status != 0)
2012 return pc;
2013
2014 /* We've got to be read to handle the ldo before the fp register
2015 save. */
2016 if ((inst & 0xfc000000) == 0x34000000
2017 && inst_saves_fr (next_inst) >= 4
2018 && inst_saves_fr (next_inst) <= 7)
2019 {
2020 /* So we drop into the code below in a reasonable state. */
2021 reg_num = inst_saves_fr (next_inst);
2022 pc -= 4;
2023 }
2024
2025 /* Ugh. Also account for argument stores into the stack.
2026 This is a kludge as on the HP compiler sets this bit and it
2027 never does prologue scheduling. So once we see one, skip past
2028 all of them. */
2029 if (reg_num >= 4 && reg_num <= 7)
2030 {
2031 while (reg_num >= 4 && reg_num <= 7)
2032 {
2033 pc += 8;
2034 status = target_read_memory (pc, buf, 4);
2035 inst = extract_unsigned_integer (buf, 4);
2036 if (status != 0)
2037 return pc;
2038 if ((inst & 0xfc000000) != 0x34000000)
2039 break;
2040 status = target_read_memory (pc + 4, buf, 4);
2041 next_inst = extract_unsigned_integer (buf, 4);
2042 if (status != 0)
2043 return pc;
2044 reg_num = inst_saves_fr (next_inst);
2045 }
2046 args_stored = 0;
2047 continue;
2048 }
c598654a
JL
2049
2050 /* Quit if we hit any kind of branch. This can happen if a prologue
2051 instruction is in the delay slot of the first call/branch. */
2052 if (is_branch (inst))
2053 break;
2054
edd86fb0
JL
2055 /* What a crock. The HP compilers set args_stored even if no
2056 arguments were stored into the stack (boo hiss). This could
2057 cause this code to then skip a bunch of user insns (up to the
2058 first branch).
2059
2060 To combat this we try to identify when args_stored was bogusly
2061 set and clear it. We only do this when args_stored is nonzero,
2062 all other resources are accounted for, and nothing changed on
2063 this pass. */
2064 if (args_stored
2065 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2066 && old_save_gr == save_gr && old_save_fr == save_fr
2067 && old_save_rp == save_rp && old_save_sp == save_sp
2068 && old_stack_remaining == stack_remaining)
2069 break;
2070
c598654a
JL
2071 /* Bump the PC. */
2072 pc += 4;
66a1aa07 2073 }
66a1aa07
SG
2074
2075 return pc;
2076}
2077
c598654a
JL
2078/* Put here the code to store, into a struct frame_saved_regs,
2079 the addresses of the saved registers of frame described by FRAME_INFO.
2080 This includes special registers such as pc and fp saved in special
2081 ways in the stack frame. sp is even more special:
2082 the address we return for it IS the sp for the next frame. */
2083
2084void
2085hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2086 struct frame_info *frame_info;
c598654a
JL
2087 struct frame_saved_regs *frame_saved_regs;
2088{
2089 CORE_ADDR pc;
2090 struct unwind_table_entry *u;
2091 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2092 int status, i, reg;
2093 char buf[4];
2094 int fp_loc = -1;
2095
2096 /* Zero out everything. */
2097 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2098
2099 /* Call dummy frames always look the same, so there's no need to
2100 examine the dummy code to determine locations of saved registers;
2101 instead, let find_dummy_frame_regs fill in the correct offsets
2102 for the saved registers. */
cb5f7128
JL
2103 if ((frame_info->pc >= frame_info->frame
2104 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2105 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2106 + 6 * 4)))
2107 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2108
70e43abe
JL
2109 /* Interrupt handlers are special too. They lay out the register
2110 state in the exact same order as the register numbers in GDB. */
cb5f7128 2111 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2112 {
2113 for (i = 0; i < NUM_REGS; i++)
2114 {
2115 /* SP is a little special. */
2116 if (i == SP_REGNUM)
2117 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2118 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2119 else
cb5f7128 2120 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2121 }
2122 return;
2123 }
2124
2125 /* Handle signal handler callers. */
cb5f7128 2126 if (frame_info->signal_handler_caller)
70e43abe 2127 {
cb5f7128 2128 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2129 return;
2130 }
2131
c598654a 2132 /* Get the starting address of the function referred to by the PC
669caa9c 2133 saved in frame. */
cb5f7128 2134 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2135
2136 /* Yow! */
2137 u = find_unwind_entry (pc);
2138 if (!u)
2139 return;
2140
2141 /* This is how much of a frame adjustment we need to account for. */
2142 stack_remaining = u->Total_frame_size << 3;
2143
2144 /* Magic register saves we want to know about. */
2145 save_rp = u->Save_RP;
2146 save_sp = u->Save_SP;
2147
2148 /* Turn the Entry_GR field into a bitmask. */
2149 save_gr = 0;
2150 for (i = 3; i < u->Entry_GR + 3; i++)
2151 {
2152 /* Frame pointer gets saved into a special location. */
2153 if (u->Save_SP && i == FP_REGNUM)
2154 continue;
2155
2156 save_gr |= (1 << i);
2157 }
2158
2159 /* Turn the Entry_FR field into a bitmask too. */
2160 save_fr = 0;
2161 for (i = 12; i < u->Entry_FR + 12; i++)
2162 save_fr |= (1 << i);
2163
70e43abe
JL
2164 /* The frame always represents the value of %sp at entry to the
2165 current function (and is thus equivalent to the "saved" stack
2166 pointer. */
cb5f7128 2167 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2168
c598654a
JL
2169 /* Loop until we find everything of interest or hit a branch.
2170
2171 For unoptimized GCC code and for any HP CC code this will never ever
2172 examine any user instructions.
2173
2174 For optimzied GCC code we're faced with problems. GCC will schedule
2175 its prologue and make prologue instructions available for delay slot
2176 filling. The end result is user code gets mixed in with the prologue
2177 and a prologue instruction may be in the delay slot of the first branch
2178 or call.
2179
2180 Some unexpected things are expected with debugging optimized code, so
2181 we allow this routine to walk past user instructions in optimized
2182 GCC code. */
2183 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2184 {
2185 status = target_read_memory (pc, buf, 4);
2186 inst = extract_unsigned_integer (buf, 4);
2187
2188 /* Yow! */
2189 if (status != 0)
2190 return;
2191
2192 /* Note the interesting effects of this instruction. */
2193 stack_remaining -= prologue_inst_adjust_sp (inst);
2194
2195 /* There is only one instruction used for saving RP into the stack. */
2196 if (inst == 0x6bc23fd9)
2197 {
2198 save_rp = 0;
cb5f7128 2199 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2200 }
2201
70e43abe
JL
2202 /* Just note that we found the save of SP into the stack. The
2203 value for frame_saved_regs was computed above. */
c598654a 2204 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2205 save_sp = 0;
c598654a
JL
2206
2207 /* Account for general and floating-point register saves. */
2208 reg = inst_saves_gr (inst);
2209 if (reg >= 3 && reg <= 18
2210 && (!u->Save_SP || reg != FP_REGNUM))
2211 {
2212 save_gr &= ~(1 << reg);
2213
2214 /* stwm with a positive displacement is a *post modify*. */
2215 if ((inst >> 26) == 0x1b
2216 && extract_14 (inst) >= 0)
cb5f7128 2217 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2218 else
2219 {
2220 /* Handle code with and without frame pointers. */
2221 if (u->Save_SP)
2222 frame_saved_regs->regs[reg]
cb5f7128 2223 = frame_info->frame + extract_14 (inst);
c598654a
JL
2224 else
2225 frame_saved_regs->regs[reg]
cb5f7128 2226 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2227 + extract_14 (inst);
2228 }
2229 }
2230
2231
2232 /* GCC handles callee saved FP regs a little differently.
2233
2234 It emits an instruction to put the value of the start of
2235 the FP store area into %r1. It then uses fstds,ma with
2236 a basereg of %r1 for the stores.
2237
2238 HP CC emits them at the current stack pointer modifying
2239 the stack pointer as it stores each register. */
2240
2241 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2242 if ((inst & 0xffffc000) == 0x34610000
2243 || (inst & 0xffffc000) == 0x37c10000)
2244 fp_loc = extract_14 (inst);
2245
2246 reg = inst_saves_fr (inst);
2247 if (reg >= 12 && reg <= 21)
2248 {
2249 /* Note +4 braindamage below is necessary because the FP status
2250 registers are internally 8 registers rather than the expected
2251 4 registers. */
2252 save_fr &= ~(1 << reg);
2253 if (fp_loc == -1)
2254 {
2255 /* 1st HP CC FP register store. After this instruction
2256 we've set enough state that the GCC and HPCC code are
2257 both handled in the same manner. */
cb5f7128 2258 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2259 fp_loc = 8;
2260 }
2261 else
2262 {
2263 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2264 = frame_info->frame + fp_loc;
c598654a
JL
2265 fp_loc += 8;
2266 }
2267 }
2268
2269 /* Quit if we hit any kind of branch. This can happen if a prologue
2270 instruction is in the delay slot of the first call/branch. */
2271 if (is_branch (inst))
2272 break;
2273
2274 /* Bump the PC. */
2275 pc += 4;
2276 }
2277}
2278
63757ecd
JK
2279#ifdef MAINTENANCE_CMDS
2280
66a1aa07
SG
2281static void
2282unwind_command (exp, from_tty)
2283 char *exp;
2284 int from_tty;
2285{
2286 CORE_ADDR address;
2287 union
2288 {
2289 int *foo;
2290 struct unwind_table_entry *u;
2291 } xxx;
2292
2293 /* If we have an expression, evaluate it and use it as the address. */
2294
2295 if (exp != 0 && *exp != 0)
2296 address = parse_and_eval_address (exp);
2297 else
2298 return;
2299
2300 xxx.u = find_unwind_entry (address);
2301
2302 if (!xxx.u)
2303 {
199b2450 2304 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
2305 return;
2306 }
2307
199b2450 2308 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
2309 xxx.foo[3]);
2310}
976bb0be 2311#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2312
2313void
2314_initialize_hppa_tdep ()
2315{
976bb0be 2316#ifdef MAINTENANCE_CMDS
63757ecd
JK
2317 add_cmd ("unwind", class_maintenance, unwind_command,
2318 "Print unwind table entry at given address.",
2319 &maintenanceprintlist);
63757ecd 2320#endif /* MAINTENANCE_CMDS */
976bb0be 2321}
This page took 0.217054 seconds and 4 git commands to generate.