* gdb.t15/{return.c,return.exp,Makefile.in}:
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
66a1aa07
SG
1/* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
37#include <sys/dir.h>
38#include <signal.h>
39#include <sys/ioctl.h>
40
41#ifdef COFF_ENCAPSULATE
42#include "a.out.encap.h"
43#else
44#include <a.out.h>
45#endif
46#ifndef N_SET_MAGIC
47#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48#endif
49
50/*#include <sys/user.h> After a.out.h */
51#include <sys/file.h>
52#include <sys/stat.h>
53#include <machine/psl.h>
54#include "wait.h"
55
56#include "gdbcore.h"
57#include "gdbcmd.h"
58#include "target.h"
59#include "symfile.h"
60#include "objfiles.h"
61
62static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63static int hppa_alignof PARAMS ((struct type *arg));
8fa74880 64CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
66a1aa07
SG
65
66\f
67/* Routines to extract various sized constants out of hppa
68 instructions. */
69
70/* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73int
74sign_extend (val, bits)
75 unsigned val, bits;
76{
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
78}
79
80/* For many immediate values the sign bit is the low bit! */
81
82int
83low_sign_extend (val, bits)
84 unsigned val, bits;
85{
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
87}
88/* extract the immediate field from a ld{bhw}s instruction */
89
90unsigned
91get_field (val, from, to)
92 unsigned val, from, to;
93{
94 val = val >> 31 - to;
95 return val & ((1 << 32 - from) - 1);
96}
97
98unsigned
99set_field (val, from, to, new_val)
100 unsigned *val, from, to;
101{
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
104}
105
106/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
107
108extract_3 (word)
109 unsigned word;
110{
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
112}
113
114extract_5_load (word)
115 unsigned word;
116{
117 return low_sign_extend (word >> 16 & MASK_5, 5);
118}
119
120/* extract the immediate field from a st{bhw}s instruction */
121
122int
123extract_5_store (word)
124 unsigned word;
125{
126 return low_sign_extend (word & MASK_5, 5);
127}
128
68c8d698
SG
129/* extract the immediate field from a break instruction */
130
131unsigned
132extract_5r_store (word)
133 unsigned word;
134{
135 return (word & MASK_5);
136}
137
138/* extract the immediate field from a {sr}sm instruction */
139
140unsigned
141extract_5R_store (word)
142 unsigned word;
143{
144 return (word >> 16 & MASK_5);
145}
146
66a1aa07
SG
147/* extract an 11 bit immediate field */
148
149int
150extract_11 (word)
151 unsigned word;
152{
153 return low_sign_extend (word & MASK_11, 11);
154}
155
156/* extract a 14 bit immediate field */
157
158int
159extract_14 (word)
160 unsigned word;
161{
162 return low_sign_extend (word & MASK_14, 14);
163}
164
165/* deposit a 14 bit constant in a word */
166
167unsigned
168deposit_14 (opnd, word)
169 int opnd;
170 unsigned word;
171{
172 unsigned sign = (opnd < 0 ? 1 : 0);
173
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
175}
176
177/* extract a 21 bit constant */
178
179int
180extract_21 (word)
181 unsigned word;
182{
183 int val;
184
185 word &= MASK_21;
186 word <<= 11;
187 val = GET_FIELD (word, 20, 20);
188 val <<= 11;
189 val |= GET_FIELD (word, 9, 19);
190 val <<= 2;
191 val |= GET_FIELD (word, 5, 6);
192 val <<= 5;
193 val |= GET_FIELD (word, 0, 4);
194 val <<= 2;
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
197}
198
199/* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
202
203unsigned
204deposit_21 (opnd, word)
205 unsigned opnd, word;
206{
207 unsigned val = 0;
208
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
210 val <<= 2;
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
214 val <<= 11;
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
216 val <<= 1;
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
218 return word | val;
219}
220
221/* extract a 12 bit constant from branch instructions */
222
223int
224extract_12 (word)
225 unsigned word;
226{
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
230}
231
232/* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
234
235int
236extract_17 (word)
237 unsigned word;
238{
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
243}
244\f
66a1aa07
SG
245/* Lookup the unwind (stack backtrace) info for the given PC. We search all
246 of the objfiles seeking the unwind table entry for this PC. Each objfile
247 contains a sorted list of struct unwind_table_entry. Since we do a binary
248 search of the unwind tables, we depend upon them to be sorted. */
249
250static struct unwind_table_entry *
251find_unwind_entry(pc)
252 CORE_ADDR pc;
253{
254 int first, middle, last;
255 struct objfile *objfile;
256
257 ALL_OBJFILES (objfile)
258 {
259 struct obj_unwind_info *ui;
260
261 ui = OBJ_UNWIND_INFO (objfile);
262
263 if (!ui)
264 continue;
265
266 /* First, check the cache */
267
268 if (ui->cache
269 && pc >= ui->cache->region_start
270 && pc <= ui->cache->region_end)
271 return ui->cache;
272
273 /* Not in the cache, do a binary search */
274
275 first = 0;
276 last = ui->last;
277
278 while (first <= last)
279 {
280 middle = (first + last) / 2;
281 if (pc >= ui->table[middle].region_start
282 && pc <= ui->table[middle].region_end)
283 {
284 ui->cache = &ui->table[middle];
285 return &ui->table[middle];
286 }
287
288 if (pc < ui->table[middle].region_start)
289 last = middle - 1;
290 else
291 first = middle + 1;
292 }
293 } /* ALL_OBJFILES() */
294 return NULL;
295}
296
5ac7f56e
JK
297/* Called when no unwind descriptor was found for PC. Returns 1 if it
298 appears that PC is in a linker stub. */
299static int pc_in_linker_stub PARAMS ((CORE_ADDR));
300
301static int
302pc_in_linker_stub (pc)
303 CORE_ADDR pc;
304{
5ac7f56e
JK
305 int found_magic_instruction = 0;
306 int i;
08ecd8f3
JK
307 char buf[4];
308
309 /* If unable to read memory, assume pc is not in a linker stub. */
310 if (target_read_memory (pc, buf, 4) != 0)
311 return 0;
5ac7f56e 312
d08c6f4c
JK
313 /* We are looking for something like
314
315 ; $$dyncall jams RP into this special spot in the frame (RP')
316 ; before calling the "call stub"
317 ldw -18(sp),rp
318
319 ldsid (rp),r1 ; Get space associated with RP into r1
320 mtsp r1,sp ; Move it into space register 0
321 be,n 0(sr0),rp) ; back to your regularly scheduled program
322 */
323
5ac7f56e
JK
324 /* Maximum known linker stub size is 4 instructions. Search forward
325 from the given PC, then backward. */
326 for (i = 0; i < 4; i++)
327 {
6e35b037 328 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
329
330 if (find_unwind_entry (pc + i * 4) != 0)
331 break;
332
333 /* Check for ldsid (rp),r1 which is the magic instruction for a
334 return from a cross-space function call. */
335 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
336 {
337 found_magic_instruction = 1;
338 break;
339 }
340 /* Add code to handle long call/branch and argument relocation stubs
341 here. */
342 }
343
344 if (found_magic_instruction != 0)
345 return 1;
346
347 /* Now look backward. */
348 for (i = 0; i < 4; i++)
349 {
6e35b037 350 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
351
352 if (find_unwind_entry (pc - i * 4) != 0)
353 break;
354
355 /* Check for ldsid (rp),r1 which is the magic instruction for a
356 return from a cross-space function call. */
357 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
358 {
359 found_magic_instruction = 1;
360 break;
361 }
362 /* Add code to handle long call/branch and argument relocation stubs
363 here. */
364 }
365 return found_magic_instruction;
366}
367
66a1aa07
SG
368static int
369find_return_regnum(pc)
370 CORE_ADDR pc;
371{
372 struct unwind_table_entry *u;
373
374 u = find_unwind_entry (pc);
375
376 if (!u)
377 return RP_REGNUM;
378
379 if (u->Millicode)
380 return 31;
381
382 return RP_REGNUM;
383}
384
5ac7f56e 385/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07
SG
386int
387find_proc_framesize(pc)
388 CORE_ADDR pc;
389{
390 struct unwind_table_entry *u;
391
66a1aa07
SG
392 u = find_unwind_entry (pc);
393
394 if (!u)
5ac7f56e
JK
395 {
396 if (pc_in_linker_stub (pc))
397 /* Linker stubs have a zero size frame. */
398 return 0;
399 else
400 return -1;
401 }
66a1aa07 402
eabbe766
JK
403 if (u->Save_SP)
404 /* If this bit is set, it means there is a frame pointer and we should
405 use it. */
406 return -1;
407
66a1aa07
SG
408 return u->Total_frame_size << 3;
409}
410
5ac7f56e
JK
411/* Return offset from sp at which rp is saved, or 0 if not saved. */
412static int rp_saved PARAMS ((CORE_ADDR));
413
414static int
415rp_saved (pc)
416 CORE_ADDR pc;
66a1aa07
SG
417{
418 struct unwind_table_entry *u;
419
420 u = find_unwind_entry (pc);
421
422 if (!u)
5ac7f56e
JK
423 {
424 if (pc_in_linker_stub (pc))
425 /* This is the so-called RP'. */
426 return -24;
427 else
428 return 0;
429 }
66a1aa07
SG
430
431 if (u->Save_RP)
5ac7f56e 432 return -20;
66a1aa07
SG
433 else
434 return 0;
435}
436\f
8fa74880
SG
437int
438frameless_function_invocation (frame)
439 FRAME frame;
440{
b8ec9a79 441 struct unwind_table_entry *u;
8fa74880 442
b8ec9a79 443 u = find_unwind_entry (frame->pc);
8fa74880 444
b8ec9a79 445 if (u == 0)
8fa74880 446 return frameless_look_for_prologue (frame);
b8ec9a79
JK
447
448 return (u->Total_frame_size == 0);
8fa74880
SG
449}
450
66a1aa07
SG
451CORE_ADDR
452saved_pc_after_call (frame)
453 FRAME frame;
454{
455 int ret_regnum;
456
457 ret_regnum = find_return_regnum (get_frame_pc (frame));
458
459 return read_register (ret_regnum) & ~0x3;
460}
461\f
462CORE_ADDR
463frame_saved_pc (frame)
464 FRAME frame;
465{
466 CORE_ADDR pc = get_frame_pc (frame);
467
8fa74880 468 if (frameless_function_invocation (frame))
66a1aa07
SG
469 {
470 int ret_regnum;
471
472 ret_regnum = find_return_regnum (pc);
473
474 return read_register (ret_regnum) & ~0x3;
475 }
66a1aa07 476 else
5ac7f56e
JK
477 {
478 int rp_offset = rp_saved (pc);
479
480 if (rp_offset == 0)
481 return read_register (RP_REGNUM) & ~0x3;
482 else
28403b8e 483 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 484 }
66a1aa07
SG
485}
486\f
487/* We need to correct the PC and the FP for the outermost frame when we are
488 in a system call. */
489
490void
491init_extra_frame_info (fromleaf, frame)
492 int fromleaf;
493 struct frame_info *frame;
494{
495 int flags;
496 int framesize;
497
498 if (frame->next) /* Only do this for outermost frame */
499 return;
500
501 flags = read_register (FLAGS_REGNUM);
502 if (flags & 2) /* In system call? */
503 frame->pc = read_register (31) & ~0x3;
504
505 /* The outermost frame is always derived from PC-framesize */
506 framesize = find_proc_framesize(frame->pc);
507 if (framesize == -1)
508 frame->frame = read_register (FP_REGNUM);
509 else
510 frame->frame = read_register (SP_REGNUM) - framesize;
511
8fa74880 512 if (!frameless_function_invocation (frame)) /* Frameless? */
66a1aa07
SG
513 return; /* No, quit now */
514
515 /* For frameless functions, we need to look at the caller's frame */
516 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
517 if (framesize != -1)
518 frame->frame -= framesize;
519}
520\f
521FRAME_ADDR
522frame_chain (frame)
523 struct frame_info *frame;
524{
525 int framesize;
526
527 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
528
529 if (framesize != -1)
530 return frame->frame - framesize;
531
532 return read_memory_integer (frame->frame, 4);
533}
534\f
535/* To see if a frame chain is valid, see if the caller looks like it
536 was compiled with gcc. */
537
538int
539frame_chain_valid (chain, thisframe)
540 FRAME_ADDR chain;
541 FRAME thisframe;
542{
247145e6
JK
543 struct minimal_symbol *msym_us;
544 struct minimal_symbol *msym_start;
4432b9f9 545 struct unwind_table_entry *u;
66a1aa07
SG
546
547 if (!chain)
548 return 0;
549
b8ec9a79 550 u = find_unwind_entry (thisframe->pc);
4b01383b 551
247145e6
JK
552 /* We can't just check that the same of msym_us is "_start", because
553 someone idiotically decided that they were going to make a Ltext_end
554 symbol with the same address. This Ltext_end symbol is totally
555 indistinguishable (as nearly as I can tell) from the symbol for a function
556 which is (legitimately, since it is in the user's namespace)
557 named Ltext_end, so we can't just ignore it. */
558 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
559 msym_start = lookup_minimal_symbol ("_start", NULL);
560 if (msym_us
561 && msym_start
562 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 563 return 0;
5ac7f56e 564
b8ec9a79
JK
565 if (u == NULL)
566 return 1;
5ac7f56e 567
b8ec9a79
JK
568 if (u->Save_SP || u->Total_frame_size)
569 return 1;
5ac7f56e 570
b8ec9a79
JK
571 if (pc_in_linker_stub (thisframe->pc))
572 return 1;
4b01383b 573
b8ec9a79 574 return 0;
66a1aa07
SG
575}
576
66a1aa07
SG
577/*
578 * These functions deal with saving and restoring register state
579 * around a function call in the inferior. They keep the stack
580 * double-word aligned; eventually, on an hp700, the stack will have
581 * to be aligned to a 64-byte boundary.
582 */
583
584int
585push_dummy_frame ()
586{
587 register CORE_ADDR sp;
588 register int regnum;
589 int int_buffer;
590 double freg_buffer;
591
592 /* Space for "arguments"; the RP goes in here. */
593 sp = read_register (SP_REGNUM) + 48;
594 int_buffer = read_register (RP_REGNUM) | 0x3;
595 write_memory (sp - 20, (char *)&int_buffer, 4);
596
597 int_buffer = read_register (FP_REGNUM);
598 write_memory (sp, (char *)&int_buffer, 4);
599
600 write_register (FP_REGNUM, sp);
601
602 sp += 8;
603
604 for (regnum = 1; regnum < 32; regnum++)
605 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
606 sp = push_word (sp, read_register (regnum));
607
608 sp += 4;
609
610 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
611 {
612 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
613 sp = push_bytes (sp, (char *)&freg_buffer, 8);
614 }
615 sp = push_word (sp, read_register (IPSW_REGNUM));
616 sp = push_word (sp, read_register (SAR_REGNUM));
617 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
618 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
619 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
620 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
621 write_register (SP_REGNUM, sp);
622}
623
624find_dummy_frame_regs (frame, frame_saved_regs)
625 struct frame_info *frame;
626 struct frame_saved_regs *frame_saved_regs;
627{
628 CORE_ADDR fp = frame->frame;
629 int i;
630
631 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
632 frame_saved_regs->regs[FP_REGNUM] = fp;
633 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 634
b227992a
SG
635 for (fp += 12, i = 3; i < 32; i++)
636 {
637 if (i != FP_REGNUM)
638 {
639 frame_saved_regs->regs[i] = fp;
640 fp += 4;
641 }
642 }
66a1aa07
SG
643
644 fp += 4;
645 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
646 frame_saved_regs->regs[i] = fp;
647
648 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
649 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
650 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
651 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
652 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
653 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
654}
655
656int
657hppa_pop_frame ()
658{
659 register FRAME frame = get_current_frame ();
660 register CORE_ADDR fp;
661 register int regnum;
662 struct frame_saved_regs fsr;
663 struct frame_info *fi;
664 double freg_buffer;
665
666 fi = get_frame_info (frame);
667 fp = fi->frame;
668 get_frame_saved_regs (fi, &fsr);
669
670 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
671 restore_pc_queue (&fsr);
672
673 for (regnum = 31; regnum > 0; regnum--)
674 if (fsr.regs[regnum])
675 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
676
677 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
678 if (fsr.regs[regnum])
679 {
680 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
681 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
682 }
683
684 if (fsr.regs[IPSW_REGNUM])
685 write_register (IPSW_REGNUM,
686 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
687
688 if (fsr.regs[SAR_REGNUM])
689 write_register (SAR_REGNUM,
690 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
691
692 if (fsr.regs[PCOQ_TAIL_REGNUM])
693 write_register (PCOQ_TAIL_REGNUM,
694 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
695
696 write_register (FP_REGNUM, read_memory_integer (fp, 4));
697
698 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
699 write_register (SP_REGNUM, fp - 48);
700 else
701 write_register (SP_REGNUM, fp);
702
703 flush_cached_frames ();
704 set_current_frame (create_new_frame (read_register (FP_REGNUM),
705 read_pc ()));
706}
707
708/*
709 * After returning to a dummy on the stack, restore the instruction
710 * queue space registers. */
711
712static int
713restore_pc_queue (fsr)
714 struct frame_saved_regs *fsr;
715{
716 CORE_ADDR pc = read_pc ();
717 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
718 int pid;
719 WAITTYPE w;
720 int insn_count;
721
722 /* Advance past break instruction in the call dummy. */
723 write_register (PCOQ_HEAD_REGNUM, pc + 4);
724 write_register (PCOQ_TAIL_REGNUM, pc + 8);
725
726 /*
727 * HPUX doesn't let us set the space registers or the space
728 * registers of the PC queue through ptrace. Boo, hiss.
729 * Conveniently, the call dummy has this sequence of instructions
730 * after the break:
731 * mtsp r21, sr0
732 * ble,n 0(sr0, r22)
733 *
734 * So, load up the registers and single step until we are in the
735 * right place.
736 */
737
738 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
739 write_register (22, new_pc);
740
741 for (insn_count = 0; insn_count < 3; insn_count++)
742 {
743 resume (1, 0);
744 target_wait(&w);
745
746 if (!WIFSTOPPED (w))
747 {
748 stop_signal = WTERMSIG (w);
749 terminal_ours_for_output ();
750 printf ("\nProgram terminated with signal %d, %s\n",
751 stop_signal, safe_strsignal (stop_signal));
752 fflush (stdout);
753 return 0;
754 }
755 }
756 fetch_inferior_registers (-1);
757 return 1;
758}
759
760CORE_ADDR
761hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
762 int nargs;
763 value *args;
764 CORE_ADDR sp;
765 int struct_return;
766 CORE_ADDR struct_addr;
767{
768 /* array of arguments' offsets */
1edc5cd2 769 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
770 int cum = 0;
771 int i, alignment;
772
773 for (i = 0; i < nargs; i++)
774 {
775 /* Coerce chars to int & float to double if necessary */
776 args[i] = value_arg_coerce (args[i]);
777
778 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
779
780 /* value must go at proper alignment. Assume alignment is a
781 power of two.*/
782 alignment = hppa_alignof (VALUE_TYPE (args[i]));
783 if (cum % alignment)
784 cum = (cum + alignment) & -alignment;
785 offset[i] = -cum;
786 }
558f4183 787 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
788
789 for (i = 0; i < nargs; i++)
790 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
791 TYPE_LENGTH (VALUE_TYPE (args[i])));
792
793 if (struct_return)
794 write_register (28, struct_addr);
795 return sp + 32;
796}
797
798/*
799 * Insert the specified number of args and function address
800 * into a call sequence of the above form stored at DUMMYNAME.
801 *
802 * On the hppa we need to call the stack dummy through $$dyncall.
803 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
804 * real_pc, which is the location where gdb should start up the
805 * inferior to do the function call.
806 */
807
808CORE_ADDR
809hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
810 REGISTER_TYPE *dummy;
811 CORE_ADDR pc;
812 CORE_ADDR fun;
813 int nargs;
814 value *args;
815 struct type *type;
816 int gcc_p;
817{
818 CORE_ADDR dyncall_addr, sr4export_addr;
819 struct minimal_symbol *msymbol;
6cfec929 820 int flags = read_register (FLAGS_REGNUM);
66a1aa07
SG
821
822 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
823 if (msymbol == NULL)
824 error ("Can't find an address for $$dyncall trampoline");
825
826 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
827
828 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
829 if (msymbol == NULL)
830 error ("Can't find an address for _sr4export trampoline");
831
832 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
833
834 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
835 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
836 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
837 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
838
839 write_register (22, pc);
840
6cfec929
JK
841 /* If we are in a syscall, then we should call the stack dummy
842 directly. $$dyncall is not needed as the kernel sets up the
843 space id registers properly based on the value in %r31. In
844 fact calling $$dyncall will not work because the value in %r22
845 will be clobbered on the syscall exit path. */
846 if (flags & 2)
847 return pc;
848 else
849 return dyncall_addr;
850
66a1aa07
SG
851}
852
d3862cae
JK
853/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
854 bits. */
855CORE_ADDR
856target_read_pc ()
857{
858 int flags = read_register (FLAGS_REGNUM);
859
860 if (flags & 2)
861 return read_register (31) & ~0x3;
862 return read_register (PC_REGNUM) & ~0x3;
863}
864
6cfec929
JK
865/* Write out the PC. If currently in a syscall, then also write the new
866 PC value into %r31. */
867void
868target_write_pc (v)
869 CORE_ADDR v;
870{
871 int flags = read_register (FLAGS_REGNUM);
872
873 /* If in a syscall, then set %r31. Also make sure to get the
874 privilege bits set correctly. */
875 if (flags & 2)
876 write_register (31, (long) (v | 0x3));
877
878 write_register (PC_REGNUM, (long) v);
879 write_register (NPC_REGNUM, (long) v + 4);
880}
881
66a1aa07
SG
882/* return the alignment of a type in bytes. Structures have the maximum
883 alignment required by their fields. */
884
885static int
886hppa_alignof (arg)
887 struct type *arg;
888{
889 int max_align, align, i;
890 switch (TYPE_CODE (arg))
891 {
892 case TYPE_CODE_PTR:
893 case TYPE_CODE_INT:
894 case TYPE_CODE_FLT:
895 return TYPE_LENGTH (arg);
896 case TYPE_CODE_ARRAY:
897 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
898 case TYPE_CODE_STRUCT:
899 case TYPE_CODE_UNION:
900 max_align = 2;
901 for (i = 0; i < TYPE_NFIELDS (arg); i++)
902 {
903 /* Bit fields have no real alignment. */
904 if (!TYPE_FIELD_BITPOS (arg, i))
905 {
906 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
907 max_align = max (max_align, align);
908 }
909 }
910 return max_align;
911 default:
912 return 4;
913 }
914}
915
916/* Print the register regnum, or all registers if regnum is -1 */
917
918pa_do_registers_info (regnum, fpregs)
919 int regnum;
920 int fpregs;
921{
922 char raw_regs [REGISTER_BYTES];
923 int i;
924
925 for (i = 0; i < NUM_REGS; i++)
926 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
927 if (regnum == -1)
928 pa_print_registers (raw_regs, regnum, fpregs);
929 else if (regnum < FP0_REGNUM)
930 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
931 REGISTER_BYTE (regnum)));
932 else
933 pa_print_fp_reg (regnum);
934}
935
936pa_print_registers (raw_regs, regnum, fpregs)
937 char *raw_regs;
938 int regnum;
939 int fpregs;
940{
941 int i;
942
943 for (i = 0; i < 18; i++)
944 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
945 reg_names[i],
946 *(int *)(raw_regs + REGISTER_BYTE (i)),
947 reg_names[i + 18],
948 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
949 reg_names[i + 36],
950 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
951 reg_names[i + 54],
952 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
953
954 if (fpregs)
955 for (i = 72; i < NUM_REGS; i++)
956 pa_print_fp_reg (i);
957}
958
959pa_print_fp_reg (i)
960 int i;
961{
962 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
963 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
964 REGISTER_TYPE val;
965
966 /* Get the data in raw format, then convert also to virtual format. */
967 read_relative_register_raw_bytes (i, raw_buffer);
968 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
969
970 fputs_filtered (reg_names[i], stdout);
971 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
972
973 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
974 1, 0, Val_pretty_default);
975 printf_filtered ("\n");
976}
977
978/* Function calls that pass into a new compilation unit must pass through a
979 small piece of code that does long format (`external' in HPPA parlance)
980 jumps. We figure out where the trampoline is going to end up, and return
981 the PC of the final destination. If we aren't in a trampoline, we just
982 return NULL.
983
984 For computed calls, we just extract the new PC from r22. */
985
986CORE_ADDR
987skip_trampoline_code (pc, name)
988 CORE_ADDR pc;
989 char *name;
990{
991 long inst0, inst1;
992 static CORE_ADDR dyncall = 0;
993 struct minimal_symbol *msym;
994
995/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
996
997 if (!dyncall)
998 {
999 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1000 if (msym)
1001 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1002 else
1003 dyncall = -1;
1004 }
1005
1006 if (pc == dyncall)
1007 return (CORE_ADDR)(read_register (22) & ~0x3);
1008
1009 inst0 = read_memory_integer (pc, 4);
1010 inst1 = read_memory_integer (pc+4, 4);
1011
1012 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1013 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1014 pc = extract_21 (inst0) + extract_17 (inst1);
1015 else
1016 pc = (CORE_ADDR)NULL;
1017
1018 return pc;
1019}
1020
1021/* Advance PC across any function entry prologue instructions
1022 to reach some "real" code. */
1023
1024/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
1025 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
1026
1027CORE_ADDR
1028skip_prologue(pc)
1029 CORE_ADDR pc;
1030{
34df79fc
JK
1031 char buf[4];
1032 unsigned long inst;
66a1aa07
SG
1033 int status;
1034
34df79fc
JK
1035 status = target_read_memory (pc, buf, 4);
1036 inst = extract_unsigned_integer (buf, 4);
66a1aa07
SG
1037 if (status != 0)
1038 return pc;
1039
1040 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1041 {
1042 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
1043 pc += 16;
1044 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1045 pc += 8;
1046 }
1047 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1048 pc += 12;
1049 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1050 pc += 4;
1051
1052 return pc;
1053}
1054
63757ecd
JK
1055#ifdef MAINTENANCE_CMDS
1056
66a1aa07
SG
1057static void
1058unwind_command (exp, from_tty)
1059 char *exp;
1060 int from_tty;
1061{
1062 CORE_ADDR address;
1063 union
1064 {
1065 int *foo;
1066 struct unwind_table_entry *u;
1067 } xxx;
1068
1069 /* If we have an expression, evaluate it and use it as the address. */
1070
1071 if (exp != 0 && *exp != 0)
1072 address = parse_and_eval_address (exp);
1073 else
1074 return;
1075
1076 xxx.u = find_unwind_entry (address);
1077
1078 if (!xxx.u)
1079 {
1080 printf ("Can't find unwind table entry for PC 0x%x\n", address);
1081 return;
1082 }
1083
1084 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1085 xxx.foo[3]);
1086}
63757ecd
JK
1087
1088void
1089_initialize_hppa_tdep ()
1090{
1091 add_cmd ("unwind", class_maintenance, unwind_command,
1092 "Print unwind table entry at given address.",
1093 &maintenanceprintlist);
1094}
1095
1096#endif /* MAINTENANCE_CMDS */
This page took 0.089559 seconds and 4 git commands to generate.