*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
adc11376
AC
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c
SS
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
c906108c
SS
26
27#include "defs.h"
c906108c
SS
28#include "bfd.h"
29#include "inferior.h"
4e052eda 30#include "regcache.h"
e5d66720 31#include "completer.h"
59623e27 32#include "osabi.h"
a7ff40e7 33#include "gdb_assert.h"
343af405 34#include "arch-utils.h"
c906108c
SS
35/* For argument passing to the inferior */
36#include "symtab.h"
fde2cceb 37#include "dis-asm.h"
26d08f08
AC
38#include "trad-frame.h"
39#include "frame-unwind.h"
40#include "frame-base.h"
c906108c 41
c906108c
SS
42#include "gdbcore.h"
43#include "gdbcmd.h"
c906108c 44#include "objfiles.h"
3ff7cf9e 45#include "hppa-tdep.h"
c906108c 46
369aa520
RC
47static int hppa_debug = 0;
48
60383d10 49/* Some local constants. */
3ff7cf9e
JB
50static const int hppa32_num_regs = 128;
51static const int hppa64_num_regs = 96;
52
7c46b9fb
RC
53/* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59const struct objfile_data *hppa_objfile_priv_data = NULL;
60
e2ac8128
JB
61/* Get at various relevent fields of an instruction word. */
62#define MASK_5 0x1f
63#define MASK_11 0x7ff
64#define MASK_14 0x3fff
65#define MASK_21 0x1fffff
66
e2ac8128
JB
67/* Define offsets into the call dummy for the _sr4export address.
68 See comments related to CALL_DUMMY for more info. */
7c46b9fb
RC
69#define SR4EXPORT_LDIL_OFFSET (HPPA_INSTRUCTION_SIZE * 12)
70#define SR4EXPORT_LDO_OFFSET (HPPA_INSTRUCTION_SIZE * 13)
e2ac8128 71
e2ac8128
JB
72/* Sizes (in bytes) of the native unwind entries. */
73#define UNWIND_ENTRY_SIZE 16
74#define STUB_UNWIND_ENTRY_SIZE 8
75
d709c020
JB
76/* FIXME: brobecker 2002-11-07: We will likely be able to make the
77 following functions static, once we hppa is partially multiarched. */
d709c020
JB
78int hppa_pc_requires_run_before_use (CORE_ADDR pc);
79int hppa_instruction_nullified (void);
c906108c 80
537987fc
AC
81/* Handle 32/64-bit struct return conventions. */
82
83static enum return_value_convention
84hppa32_return_value (struct gdbarch *gdbarch,
85 struct type *type, struct regcache *regcache,
86 void *readbuf, const void *writebuf)
87{
537987fc
AC
88 if (TYPE_LENGTH (type) <= 2 * 4)
89 {
90 /* The value always lives in the right hand end of the register
91 (or register pair)? */
92 int b;
34f75cc1 93 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
537987fc
AC
94 int part = TYPE_LENGTH (type) % 4;
95 /* The left hand register contains only part of the value,
96 transfer that first so that the rest can be xfered as entire
97 4-byte registers. */
98 if (part > 0)
99 {
100 if (readbuf != NULL)
101 regcache_cooked_read_part (regcache, reg, 4 - part,
102 part, readbuf);
103 if (writebuf != NULL)
104 regcache_cooked_write_part (regcache, reg, 4 - part,
105 part, writebuf);
106 reg++;
107 }
108 /* Now transfer the remaining register values. */
109 for (b = part; b < TYPE_LENGTH (type); b += 4)
110 {
111 if (readbuf != NULL)
112 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
113 if (writebuf != NULL)
114 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
115 reg++;
116 }
117 return RETURN_VALUE_REGISTER_CONVENTION;
118 }
119 else
120 return RETURN_VALUE_STRUCT_CONVENTION;
121}
122
123static enum return_value_convention
124hppa64_return_value (struct gdbarch *gdbarch,
125 struct type *type, struct regcache *regcache,
126 void *readbuf, const void *writebuf)
127{
128 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
129 are in r28, padded on the left. Aggregates less that 65 bits are
130 in r28, right padded. Aggregates upto 128 bits are in r28 and
131 r29, right padded. */
449e1137
AC
132 if (TYPE_CODE (type) == TYPE_CODE_FLT
133 && TYPE_LENGTH (type) <= 8)
537987fc
AC
134 {
135 /* Floats are right aligned? */
34f75cc1 136 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc 137 if (readbuf != NULL)
34f75cc1 138 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
139 TYPE_LENGTH (type), readbuf);
140 if (writebuf != NULL)
34f75cc1 141 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
537987fc
AC
142 TYPE_LENGTH (type), writebuf);
143 return RETURN_VALUE_REGISTER_CONVENTION;
144 }
145 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
146 {
147 /* Integrals are right aligned. */
34f75cc1 148 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
537987fc
AC
149 if (readbuf != NULL)
150 regcache_cooked_read_part (regcache, 28, offset,
151 TYPE_LENGTH (type), readbuf);
152 if (writebuf != NULL)
153 regcache_cooked_write_part (regcache, 28, offset,
154 TYPE_LENGTH (type), writebuf);
155 return RETURN_VALUE_REGISTER_CONVENTION;
156 }
157 else if (TYPE_LENGTH (type) <= 2 * 8)
158 {
159 /* Composite values are left aligned. */
160 int b;
161 for (b = 0; b < TYPE_LENGTH (type); b += 8)
162 {
449e1137 163 int part = min (8, TYPE_LENGTH (type) - b);
537987fc 164 if (readbuf != NULL)
449e1137 165 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
166 (char *) readbuf + b);
167 if (writebuf != NULL)
449e1137 168 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
537987fc
AC
169 (const char *) writebuf + b);
170 }
449e1137 171 return RETURN_VALUE_REGISTER_CONVENTION;
537987fc
AC
172 }
173 else
174 return RETURN_VALUE_STRUCT_CONVENTION;
175}
176
c906108c
SS
177/* Routines to extract various sized constants out of hppa
178 instructions. */
179
180/* This assumes that no garbage lies outside of the lower bits of
181 value. */
182
abc485a1
RC
183int
184hppa_sign_extend (unsigned val, unsigned bits)
c906108c 185{
c5aa993b 186 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
187}
188
189/* For many immediate values the sign bit is the low bit! */
190
abc485a1
RC
191int
192hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
c906108c 193{
c5aa993b 194 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
195}
196
e2ac8128
JB
197/* Extract the bits at positions between FROM and TO, using HP's numbering
198 (MSB = 0). */
199
abc485a1
RC
200int
201hppa_get_field (unsigned word, int from, int to)
e2ac8128
JB
202{
203 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
204}
205
c906108c
SS
206/* extract the immediate field from a ld{bhw}s instruction */
207
abc485a1
RC
208int
209hppa_extract_5_load (unsigned word)
c906108c 210{
abc485a1 211 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
c906108c
SS
212}
213
c906108c
SS
214/* extract the immediate field from a break instruction */
215
abc485a1
RC
216unsigned
217hppa_extract_5r_store (unsigned word)
c906108c
SS
218{
219 return (word & MASK_5);
220}
221
222/* extract the immediate field from a {sr}sm instruction */
223
abc485a1
RC
224unsigned
225hppa_extract_5R_store (unsigned word)
c906108c
SS
226{
227 return (word >> 16 & MASK_5);
228}
229
c906108c
SS
230/* extract a 14 bit immediate field */
231
abc485a1
RC
232int
233hppa_extract_14 (unsigned word)
c906108c 234{
abc485a1 235 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
c906108c
SS
236}
237
c906108c
SS
238/* extract a 21 bit constant */
239
abc485a1
RC
240int
241hppa_extract_21 (unsigned word)
c906108c
SS
242{
243 int val;
244
245 word &= MASK_21;
246 word <<= 11;
abc485a1 247 val = hppa_get_field (word, 20, 20);
c906108c 248 val <<= 11;
abc485a1 249 val |= hppa_get_field (word, 9, 19);
c906108c 250 val <<= 2;
abc485a1 251 val |= hppa_get_field (word, 5, 6);
c906108c 252 val <<= 5;
abc485a1 253 val |= hppa_get_field (word, 0, 4);
c906108c 254 val <<= 2;
abc485a1
RC
255 val |= hppa_get_field (word, 7, 8);
256 return hppa_sign_extend (val, 21) << 11;
c906108c
SS
257}
258
c906108c
SS
259/* extract a 17 bit constant from branch instructions, returning the
260 19 bit signed value. */
261
abc485a1
RC
262int
263hppa_extract_17 (unsigned word)
c906108c 264{
abc485a1
RC
265 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
266 hppa_get_field (word, 29, 29) << 10 |
267 hppa_get_field (word, 11, 15) << 11 |
c906108c
SS
268 (word & 0x1) << 16, 17) << 2;
269}
270\f
271
272/* Compare the start address for two unwind entries returning 1 if
273 the first address is larger than the second, -1 if the second is
274 larger than the first, and zero if they are equal. */
275
276static int
fba45db2 277compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
278{
279 const struct unwind_table_entry *a = arg1;
280 const struct unwind_table_entry *b = arg2;
281
282 if (a->region_start > b->region_start)
283 return 1;
284 else if (a->region_start < b->region_start)
285 return -1;
286 else
287 return 0;
288}
289
53a5351d 290static void
fdd72f95 291record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
53a5351d 292{
fdd72f95 293 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d 294 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
fdd72f95
RC
295 {
296 bfd_vma value = section->vma - section->filepos;
297 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
298
299 if (value < *low_text_segment_address)
300 *low_text_segment_address = value;
301 }
53a5351d
JM
302}
303
c906108c 304static void
fba45db2
KB
305internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
306 asection *section, unsigned int entries, unsigned int size,
307 CORE_ADDR text_offset)
c906108c
SS
308{
309 /* We will read the unwind entries into temporary memory, then
310 fill in the actual unwind table. */
fdd72f95 311
c906108c
SS
312 if (size > 0)
313 {
314 unsigned long tmp;
315 unsigned i;
316 char *buf = alloca (size);
fdd72f95 317 CORE_ADDR low_text_segment_address;
c906108c 318
fdd72f95 319 /* For ELF targets, then unwinds are supposed to
c2c6d25f
JM
320 be segment relative offsets instead of absolute addresses.
321
322 Note that when loading a shared library (text_offset != 0) the
323 unwinds are already relative to the text_offset that will be
324 passed in. */
fdd72f95 325 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
53a5351d 326 {
fdd72f95
RC
327 low_text_segment_address = -1;
328
53a5351d 329 bfd_map_over_sections (objfile->obfd,
fdd72f95
RC
330 record_text_segment_lowaddr,
331 &low_text_segment_address);
53a5351d 332
fdd72f95 333 text_offset = low_text_segment_address;
53a5351d
JM
334 }
335
c906108c
SS
336 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
337
338 /* Now internalize the information being careful to handle host/target
c5aa993b 339 endian issues. */
c906108c
SS
340 for (i = 0; i < entries; i++)
341 {
342 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 343 (bfd_byte *) buf);
c906108c
SS
344 table[i].region_start += text_offset;
345 buf += 4;
c5aa993b 346 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
347 table[i].region_end += text_offset;
348 buf += 4;
c5aa993b 349 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
350 buf += 4;
351 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
352 table[i].Millicode = (tmp >> 30) & 0x1;
353 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
354 table[i].Region_description = (tmp >> 27) & 0x3;
355 table[i].reserved1 = (tmp >> 26) & 0x1;
356 table[i].Entry_SR = (tmp >> 25) & 0x1;
357 table[i].Entry_FR = (tmp >> 21) & 0xf;
358 table[i].Entry_GR = (tmp >> 16) & 0x1f;
359 table[i].Args_stored = (tmp >> 15) & 0x1;
360 table[i].Variable_Frame = (tmp >> 14) & 0x1;
361 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
362 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
363 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
364 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
365 table[i].Ada_Region = (tmp >> 9) & 0x1;
366 table[i].cxx_info = (tmp >> 8) & 0x1;
367 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
368 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
369 table[i].reserved2 = (tmp >> 5) & 0x1;
370 table[i].Save_SP = (tmp >> 4) & 0x1;
371 table[i].Save_RP = (tmp >> 3) & 0x1;
372 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
373 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
374 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 375 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
376 buf += 4;
377 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
378 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
379 table[i].Large_frame = (tmp >> 29) & 0x1;
380 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
381 table[i].reserved4 = (tmp >> 27) & 0x1;
382 table[i].Total_frame_size = tmp & 0x7ffffff;
383
c5aa993b 384 /* Stub unwinds are handled elsewhere. */
c906108c
SS
385 table[i].stub_unwind.stub_type = 0;
386 table[i].stub_unwind.padding = 0;
387 }
388 }
389}
390
391/* Read in the backtrace information stored in the `$UNWIND_START$' section of
392 the object file. This info is used mainly by find_unwind_entry() to find
393 out the stack frame size and frame pointer used by procedures. We put
394 everything on the psymbol obstack in the objfile so that it automatically
395 gets freed when the objfile is destroyed. */
396
397static void
fba45db2 398read_unwind_info (struct objfile *objfile)
c906108c 399{
d4f3574e
SS
400 asection *unwind_sec, *stub_unwind_sec;
401 unsigned unwind_size, stub_unwind_size, total_size;
402 unsigned index, unwind_entries;
c906108c
SS
403 unsigned stub_entries, total_entries;
404 CORE_ADDR text_offset;
7c46b9fb
RC
405 struct hppa_unwind_info *ui;
406 struct hppa_objfile_private *obj_private;
c906108c
SS
407
408 text_offset = ANOFFSET (objfile->section_offsets, 0);
7c46b9fb
RC
409 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
410 sizeof (struct hppa_unwind_info));
c906108c
SS
411
412 ui->table = NULL;
413 ui->cache = NULL;
414 ui->last = -1;
415
d4f3574e
SS
416 /* For reasons unknown the HP PA64 tools generate multiple unwinder
417 sections in a single executable. So we just iterate over every
418 section in the BFD looking for unwinder sections intead of trying
419 to do a lookup with bfd_get_section_by_name.
c906108c 420
d4f3574e
SS
421 First determine the total size of the unwind tables so that we
422 can allocate memory in a nice big hunk. */
423 total_entries = 0;
424 for (unwind_sec = objfile->obfd->sections;
425 unwind_sec;
426 unwind_sec = unwind_sec->next)
c906108c 427 {
d4f3574e
SS
428 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
429 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
430 {
431 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
432 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 433
d4f3574e
SS
434 total_entries += unwind_entries;
435 }
c906108c
SS
436 }
437
d4f3574e
SS
438 /* Now compute the size of the stub unwinds. Note the ELF tools do not
439 use stub unwinds at the curren time. */
440 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
441
c906108c
SS
442 if (stub_unwind_sec)
443 {
444 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
445 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
446 }
447 else
448 {
449 stub_unwind_size = 0;
450 stub_entries = 0;
451 }
452
453 /* Compute total number of unwind entries and their total size. */
d4f3574e 454 total_entries += stub_entries;
c906108c
SS
455 total_size = total_entries * sizeof (struct unwind_table_entry);
456
457 /* Allocate memory for the unwind table. */
458 ui->table = (struct unwind_table_entry *)
8b92e4d5 459 obstack_alloc (&objfile->objfile_obstack, total_size);
c5aa993b 460 ui->last = total_entries - 1;
c906108c 461
d4f3574e
SS
462 /* Now read in each unwind section and internalize the standard unwind
463 entries. */
c906108c 464 index = 0;
d4f3574e
SS
465 for (unwind_sec = objfile->obfd->sections;
466 unwind_sec;
467 unwind_sec = unwind_sec->next)
468 {
469 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
470 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
471 {
472 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
473 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
474
475 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
476 unwind_entries, unwind_size, text_offset);
477 index += unwind_entries;
478 }
479 }
480
481 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
482 if (stub_unwind_size > 0)
483 {
484 unsigned int i;
485 char *buf = alloca (stub_unwind_size);
486
487 /* Read in the stub unwind entries. */
488 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
489 0, stub_unwind_size);
490
491 /* Now convert them into regular unwind entries. */
492 for (i = 0; i < stub_entries; i++, index++)
493 {
494 /* Clear out the next unwind entry. */
495 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
496
497 /* Convert offset & size into region_start and region_end.
498 Stuff away the stub type into "reserved" fields. */
499 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
500 (bfd_byte *) buf);
501 ui->table[index].region_start += text_offset;
502 buf += 4;
503 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 504 (bfd_byte *) buf);
c906108c
SS
505 buf += 2;
506 ui->table[index].region_end
c5aa993b
JM
507 = ui->table[index].region_start + 4 *
508 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
509 buf += 2;
510 }
511
512 }
513
514 /* Unwind table needs to be kept sorted. */
515 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
516 compare_unwind_entries);
517
518 /* Keep a pointer to the unwind information. */
7c46b9fb
RC
519 obj_private = (struct hppa_objfile_private *)
520 objfile_data (objfile, hppa_objfile_priv_data);
521 if (obj_private == NULL)
c906108c 522 {
7c46b9fb
RC
523 obj_private = (struct hppa_objfile_private *)
524 obstack_alloc (&objfile->objfile_obstack,
525 sizeof (struct hppa_objfile_private));
526 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
c906108c 527 obj_private->unwind_info = NULL;
c5aa993b 528 obj_private->so_info = NULL;
53a5351d 529 obj_private->dp = 0;
c906108c 530 }
c906108c
SS
531 obj_private->unwind_info = ui;
532}
533
534/* Lookup the unwind (stack backtrace) info for the given PC. We search all
535 of the objfiles seeking the unwind table entry for this PC. Each objfile
536 contains a sorted list of struct unwind_table_entry. Since we do a binary
537 search of the unwind tables, we depend upon them to be sorted. */
538
539struct unwind_table_entry *
fba45db2 540find_unwind_entry (CORE_ADDR pc)
c906108c
SS
541{
542 int first, middle, last;
543 struct objfile *objfile;
7c46b9fb 544 struct hppa_objfile_private *priv;
c906108c 545
369aa520
RC
546 if (hppa_debug)
547 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
548 paddr_nz (pc));
549
c906108c
SS
550 /* A function at address 0? Not in HP-UX! */
551 if (pc == (CORE_ADDR) 0)
369aa520
RC
552 {
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
555 return NULL;
556 }
c906108c
SS
557
558 ALL_OBJFILES (objfile)
c5aa993b 559 {
7c46b9fb 560 struct hppa_unwind_info *ui;
c5aa993b 561 ui = NULL;
7c46b9fb
RC
562 priv = objfile_data (objfile, hppa_objfile_priv_data);
563 if (priv)
564 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c906108c 565
c5aa993b
JM
566 if (!ui)
567 {
568 read_unwind_info (objfile);
7c46b9fb
RC
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv == NULL)
104c1213 571 error ("Internal error reading unwind information.");
7c46b9fb 572 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
c5aa993b 573 }
c906108c 574
c5aa993b 575 /* First, check the cache */
c906108c 576
c5aa993b
JM
577 if (ui->cache
578 && pc >= ui->cache->region_start
579 && pc <= ui->cache->region_end)
369aa520
RC
580 {
581 if (hppa_debug)
582 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
583 paddr_nz ((CORE_ADDR) ui->cache));
584 return ui->cache;
585 }
c906108c 586
c5aa993b 587 /* Not in the cache, do a binary search */
c906108c 588
c5aa993b
JM
589 first = 0;
590 last = ui->last;
c906108c 591
c5aa993b
JM
592 while (first <= last)
593 {
594 middle = (first + last) / 2;
595 if (pc >= ui->table[middle].region_start
596 && pc <= ui->table[middle].region_end)
597 {
598 ui->cache = &ui->table[middle];
369aa520
RC
599 if (hppa_debug)
600 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
601 paddr_nz ((CORE_ADDR) ui->cache));
c5aa993b
JM
602 return &ui->table[middle];
603 }
c906108c 604
c5aa993b
JM
605 if (pc < ui->table[middle].region_start)
606 last = middle - 1;
607 else
608 first = middle + 1;
609 }
610 } /* ALL_OBJFILES() */
369aa520
RC
611
612 if (hppa_debug)
613 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
614
c906108c
SS
615 return NULL;
616}
617
85f4f2d8 618static const unsigned char *
aaab4dba
AC
619hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
620{
56132691 621 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
aaab4dba
AC
622 (*len) = sizeof (breakpoint);
623 return breakpoint;
624}
625
e23457df
AC
626/* Return the name of a register. */
627
628const char *
3ff7cf9e 629hppa32_register_name (int i)
e23457df
AC
630{
631 static char *names[] = {
632 "flags", "r1", "rp", "r3",
633 "r4", "r5", "r6", "r7",
634 "r8", "r9", "r10", "r11",
635 "r12", "r13", "r14", "r15",
636 "r16", "r17", "r18", "r19",
637 "r20", "r21", "r22", "r23",
638 "r24", "r25", "r26", "dp",
639 "ret0", "ret1", "sp", "r31",
640 "sar", "pcoqh", "pcsqh", "pcoqt",
641 "pcsqt", "eiem", "iir", "isr",
642 "ior", "ipsw", "goto", "sr4",
643 "sr0", "sr1", "sr2", "sr3",
644 "sr5", "sr6", "sr7", "cr0",
645 "cr8", "cr9", "ccr", "cr12",
646 "cr13", "cr24", "cr25", "cr26",
647 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
648 "fpsr", "fpe1", "fpe2", "fpe3",
649 "fpe4", "fpe5", "fpe6", "fpe7",
650 "fr4", "fr4R", "fr5", "fr5R",
651 "fr6", "fr6R", "fr7", "fr7R",
652 "fr8", "fr8R", "fr9", "fr9R",
653 "fr10", "fr10R", "fr11", "fr11R",
654 "fr12", "fr12R", "fr13", "fr13R",
655 "fr14", "fr14R", "fr15", "fr15R",
656 "fr16", "fr16R", "fr17", "fr17R",
657 "fr18", "fr18R", "fr19", "fr19R",
658 "fr20", "fr20R", "fr21", "fr21R",
659 "fr22", "fr22R", "fr23", "fr23R",
660 "fr24", "fr24R", "fr25", "fr25R",
661 "fr26", "fr26R", "fr27", "fr27R",
662 "fr28", "fr28R", "fr29", "fr29R",
663 "fr30", "fr30R", "fr31", "fr31R"
664 };
665 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
666 return NULL;
667 else
668 return names[i];
669}
670
671const char *
672hppa64_register_name (int i)
673{
674 static char *names[] = {
675 "flags", "r1", "rp", "r3",
676 "r4", "r5", "r6", "r7",
677 "r8", "r9", "r10", "r11",
678 "r12", "r13", "r14", "r15",
679 "r16", "r17", "r18", "r19",
680 "r20", "r21", "r22", "r23",
681 "r24", "r25", "r26", "dp",
682 "ret0", "ret1", "sp", "r31",
683 "sar", "pcoqh", "pcsqh", "pcoqt",
684 "pcsqt", "eiem", "iir", "isr",
685 "ior", "ipsw", "goto", "sr4",
686 "sr0", "sr1", "sr2", "sr3",
687 "sr5", "sr6", "sr7", "cr0",
688 "cr8", "cr9", "ccr", "cr12",
689 "cr13", "cr24", "cr25", "cr26",
690 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
691 "fpsr", "fpe1", "fpe2", "fpe3",
692 "fr4", "fr5", "fr6", "fr7",
693 "fr8", "fr9", "fr10", "fr11",
694 "fr12", "fr13", "fr14", "fr15",
695 "fr16", "fr17", "fr18", "fr19",
696 "fr20", "fr21", "fr22", "fr23",
697 "fr24", "fr25", "fr26", "fr27",
698 "fr28", "fr29", "fr30", "fr31"
699 };
700 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
701 return NULL;
702 else
703 return names[i];
704}
705
79508e1e
AC
706/* This function pushes a stack frame with arguments as part of the
707 inferior function calling mechanism.
708
709 This is the version of the function for the 32-bit PA machines, in
710 which later arguments appear at lower addresses. (The stack always
711 grows towards higher addresses.)
712
713 We simply allocate the appropriate amount of stack space and put
714 arguments into their proper slots. */
715
716CORE_ADDR
717hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
718 struct regcache *regcache, CORE_ADDR bp_addr,
719 int nargs, struct value **args, CORE_ADDR sp,
720 int struct_return, CORE_ADDR struct_addr)
721{
79508e1e
AC
722 /* Stack base address at which any pass-by-reference parameters are
723 stored. */
724 CORE_ADDR struct_end = 0;
725 /* Stack base address at which the first parameter is stored. */
726 CORE_ADDR param_end = 0;
727
728 /* The inner most end of the stack after all the parameters have
729 been pushed. */
730 CORE_ADDR new_sp = 0;
731
732 /* Two passes. First pass computes the location of everything,
733 second pass writes the bytes out. */
734 int write_pass;
735 for (write_pass = 0; write_pass < 2; write_pass++)
736 {
1797a8f6 737 CORE_ADDR struct_ptr = 0;
2a6228ef
RC
738 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
739 struct_ptr is adjusted for each argument below, so the first
740 argument will end up at sp-36. */
741 CORE_ADDR param_ptr = 32;
79508e1e 742 int i;
2a6228ef
RC
743 int small_struct = 0;
744
79508e1e
AC
745 for (i = 0; i < nargs; i++)
746 {
747 struct value *arg = args[i];
748 struct type *type = check_typedef (VALUE_TYPE (arg));
749 /* The corresponding parameter that is pushed onto the
750 stack, and [possibly] passed in a register. */
751 char param_val[8];
752 int param_len;
753 memset (param_val, 0, sizeof param_val);
754 if (TYPE_LENGTH (type) > 8)
755 {
756 /* Large parameter, pass by reference. Store the value
757 in "struct" area and then pass its address. */
758 param_len = 4;
1797a8f6 759 struct_ptr += align_up (TYPE_LENGTH (type), 8);
79508e1e 760 if (write_pass)
1797a8f6 761 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
79508e1e 762 TYPE_LENGTH (type));
1797a8f6 763 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
79508e1e
AC
764 }
765 else if (TYPE_CODE (type) == TYPE_CODE_INT
766 || TYPE_CODE (type) == TYPE_CODE_ENUM)
767 {
768 /* Integer value store, right aligned. "unpack_long"
769 takes care of any sign-extension problems. */
770 param_len = align_up (TYPE_LENGTH (type), 4);
771 store_unsigned_integer (param_val, param_len,
772 unpack_long (type,
773 VALUE_CONTENTS (arg)));
774 }
2a6228ef
RC
775 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
776 {
777 /* Floating point value store, right aligned. */
778 param_len = align_up (TYPE_LENGTH (type), 4);
779 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
780 }
79508e1e
AC
781 else
782 {
79508e1e 783 param_len = align_up (TYPE_LENGTH (type), 4);
2a6228ef
RC
784
785 /* Small struct value are stored right-aligned. */
79508e1e
AC
786 memcpy (param_val + param_len - TYPE_LENGTH (type),
787 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2a6228ef
RC
788
789 /* Structures of size 5, 6 and 7 bytes are special in that
790 the higher-ordered word is stored in the lower-ordered
791 argument, and even though it is a 8-byte quantity the
792 registers need not be 8-byte aligned. */
793 if (param_len > 4)
794 small_struct = 1;
79508e1e 795 }
2a6228ef 796
1797a8f6 797 param_ptr += param_len;
2a6228ef
RC
798 if (param_len == 8 && !small_struct)
799 param_ptr = align_up (param_ptr, 8);
800
801 /* First 4 non-FP arguments are passed in gr26-gr23.
802 First 4 32-bit FP arguments are passed in fr4L-fr7L.
803 First 2 64-bit FP arguments are passed in fr5 and fr7.
804
805 The rest go on the stack, starting at sp-36, towards lower
806 addresses. 8-byte arguments must be aligned to a 8-byte
807 stack boundary. */
79508e1e
AC
808 if (write_pass)
809 {
1797a8f6 810 write_memory (param_end - param_ptr, param_val, param_len);
2a6228ef
RC
811
812 /* There are some cases when we don't know the type
813 expected by the callee (e.g. for variadic functions), so
814 pass the parameters in both general and fp regs. */
815 if (param_ptr <= 48)
79508e1e 816 {
2a6228ef
RC
817 int grreg = 26 - (param_ptr - 36) / 4;
818 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
819 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
820
821 regcache_cooked_write (regcache, grreg, param_val);
822 regcache_cooked_write (regcache, fpLreg, param_val);
823
79508e1e 824 if (param_len > 4)
2a6228ef
RC
825 {
826 regcache_cooked_write (regcache, grreg + 1,
827 param_val + 4);
828
829 regcache_cooked_write (regcache, fpreg, param_val);
830 regcache_cooked_write (regcache, fpreg + 1,
831 param_val + 4);
832 }
79508e1e
AC
833 }
834 }
835 }
836
837 /* Update the various stack pointers. */
838 if (!write_pass)
839 {
2a6228ef 840 struct_end = sp + align_up (struct_ptr, 64);
79508e1e
AC
841 /* PARAM_PTR already accounts for all the arguments passed
842 by the user. However, the ABI mandates minimum stack
843 space allocations for outgoing arguments. The ABI also
844 mandates minimum stack alignments which we must
845 preserve. */
2a6228ef 846 param_end = struct_end + align_up (param_ptr, 64);
79508e1e
AC
847 }
848 }
849
850 /* If a structure has to be returned, set up register 28 to hold its
851 address */
852 if (struct_return)
853 write_register (28, struct_addr);
854
855 /* Set the return address. */
34f75cc1 856 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
79508e1e 857
c4557624 858 /* Update the Stack Pointer. */
34f75cc1 859 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
c4557624 860
2a6228ef 861 return param_end;
79508e1e
AC
862}
863
2f690297
AC
864/* This function pushes a stack frame with arguments as part of the
865 inferior function calling mechanism.
866
867 This is the version for the PA64, in which later arguments appear
868 at higher addresses. (The stack always grows towards higher
869 addresses.)
870
871 We simply allocate the appropriate amount of stack space and put
872 arguments into their proper slots.
873
874 This ABI also requires that the caller provide an argument pointer
875 to the callee, so we do that too. */
876
877CORE_ADDR
878hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
879 struct regcache *regcache, CORE_ADDR bp_addr,
880 int nargs, struct value **args, CORE_ADDR sp,
881 int struct_return, CORE_ADDR struct_addr)
882{
449e1137
AC
883 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
884 reverse engineering testsuite failures. */
2f690297 885
449e1137
AC
886 /* Stack base address at which any pass-by-reference parameters are
887 stored. */
888 CORE_ADDR struct_end = 0;
889 /* Stack base address at which the first parameter is stored. */
890 CORE_ADDR param_end = 0;
2f690297 891
449e1137
AC
892 /* The inner most end of the stack after all the parameters have
893 been pushed. */
894 CORE_ADDR new_sp = 0;
2f690297 895
449e1137
AC
896 /* Two passes. First pass computes the location of everything,
897 second pass writes the bytes out. */
898 int write_pass;
899 for (write_pass = 0; write_pass < 2; write_pass++)
2f690297 900 {
449e1137
AC
901 CORE_ADDR struct_ptr = 0;
902 CORE_ADDR param_ptr = 0;
903 int i;
904 for (i = 0; i < nargs; i++)
2f690297 905 {
449e1137
AC
906 struct value *arg = args[i];
907 struct type *type = check_typedef (VALUE_TYPE (arg));
908 if ((TYPE_CODE (type) == TYPE_CODE_INT
909 || TYPE_CODE (type) == TYPE_CODE_ENUM)
910 && TYPE_LENGTH (type) <= 8)
911 {
912 /* Integer value store, right aligned. "unpack_long"
913 takes care of any sign-extension problems. */
914 param_ptr += 8;
915 if (write_pass)
916 {
917 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
918 int reg = 27 - param_ptr / 8;
919 write_memory_unsigned_integer (param_end - param_ptr,
920 val, 8);
921 if (reg >= 19)
922 regcache_cooked_write_unsigned (regcache, reg, val);
923 }
924 }
925 else
926 {
927 /* Small struct value, store left aligned? */
928 int reg;
929 if (TYPE_LENGTH (type) > 8)
930 {
931 param_ptr = align_up (param_ptr, 16);
932 reg = 26 - param_ptr / 8;
933 param_ptr += align_up (TYPE_LENGTH (type), 16);
934 }
935 else
936 {
937 param_ptr = align_up (param_ptr, 8);
938 reg = 26 - param_ptr / 8;
939 param_ptr += align_up (TYPE_LENGTH (type), 8);
940 }
941 if (write_pass)
942 {
943 int byte;
944 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
945 TYPE_LENGTH (type));
946 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
947 {
948 if (reg >= 19)
949 {
950 int len = min (8, TYPE_LENGTH (type) - byte);
951 regcache_cooked_write_part (regcache, reg, 0, len,
952 VALUE_CONTENTS (arg) + byte);
953 }
954 reg--;
955 }
956 }
957 }
2f690297 958 }
449e1137
AC
959 /* Update the various stack pointers. */
960 if (!write_pass)
2f690297 961 {
449e1137
AC
962 struct_end = sp + struct_ptr;
963 /* PARAM_PTR already accounts for all the arguments passed
964 by the user. However, the ABI mandates minimum stack
965 space allocations for outgoing arguments. The ABI also
966 mandates minimum stack alignments which we must
967 preserve. */
d0bd2d18 968 param_end = struct_end + max (align_up (param_ptr, 16), 64);
2f690297 969 }
2f690297
AC
970 }
971
2f690297
AC
972 /* If a structure has to be returned, set up register 28 to hold its
973 address */
974 if (struct_return)
975 write_register (28, struct_addr);
976
2f690297 977 /* Set the return address. */
34f75cc1 978 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
2f690297 979
c4557624 980 /* Update the Stack Pointer. */
34f75cc1 981 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
c4557624 982
449e1137
AC
983 /* The stack will have 32 bytes of additional space for a frame marker. */
984 return param_end + 64;
2f690297
AC
985}
986
1797a8f6
AC
987static CORE_ADDR
988hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
989{
990 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
991 and not _bit_)! */
992 return align_up (addr, 64);
993}
994
2f690297
AC
995/* Force all frames to 16-byte alignment. Better safe than sorry. */
996
997static CORE_ADDR
1797a8f6 998hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2f690297
AC
999{
1000 /* Just always 16-byte align. */
1001 return align_up (addr, 16);
1002}
1003
1004
c906108c
SS
1005/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1006 bits. */
1007
8d153463 1008static CORE_ADDR
60383d10 1009hppa_target_read_pc (ptid_t ptid)
c906108c 1010{
34f75cc1 1011 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1012
1013 /* The following test does not belong here. It is OS-specific, and belongs
1014 in native code. */
1015 /* Test SS_INSYSCALL */
1016 if (flags & 2)
39f77062 1017 return read_register_pid (31, ptid) & ~0x3;
c906108c 1018
34f75cc1 1019 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
c906108c
SS
1020}
1021
1022/* Write out the PC. If currently in a syscall, then also write the new
1023 PC value into %r31. */
1024
8d153463 1025static void
60383d10 1026hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 1027{
34f75cc1 1028 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
c906108c
SS
1029
1030 /* The following test does not belong here. It is OS-specific, and belongs
1031 in native code. */
1032 /* If in a syscall, then set %r31. Also make sure to get the
1033 privilege bits set correctly. */
1034 /* Test SS_INSYSCALL */
1035 if (flags & 2)
39f77062 1036 write_register_pid (31, v | 0x3, ptid);
c906108c 1037
34f75cc1
RC
1038 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1039 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
c906108c
SS
1040}
1041
1042/* return the alignment of a type in bytes. Structures have the maximum
1043 alignment required by their fields. */
1044
1045static int
fba45db2 1046hppa_alignof (struct type *type)
c906108c
SS
1047{
1048 int max_align, align, i;
1049 CHECK_TYPEDEF (type);
1050 switch (TYPE_CODE (type))
1051 {
1052 case TYPE_CODE_PTR:
1053 case TYPE_CODE_INT:
1054 case TYPE_CODE_FLT:
1055 return TYPE_LENGTH (type);
1056 case TYPE_CODE_ARRAY:
1057 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1058 case TYPE_CODE_STRUCT:
1059 case TYPE_CODE_UNION:
1060 max_align = 1;
1061 for (i = 0; i < TYPE_NFIELDS (type); i++)
1062 {
1063 /* Bit fields have no real alignment. */
1064 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 1065 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
1066 {
1067 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1068 max_align = max (max_align, align);
1069 }
1070 }
1071 return max_align;
1072 default:
1073 return 4;
1074 }
1075}
1076
c906108c
SS
1077/* For the given instruction (INST), return any adjustment it makes
1078 to the stack pointer or zero for no adjustment.
1079
1080 This only handles instructions commonly found in prologues. */
1081
1082static int
fba45db2 1083prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
1084{
1085 /* This must persist across calls. */
1086 static int save_high21;
1087
1088 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1089 if ((inst & 0xffffc000) == 0x37de0000)
abc485a1 1090 return hppa_extract_14 (inst);
c906108c
SS
1091
1092 /* stwm X,D(sp) */
1093 if ((inst & 0xffe00000) == 0x6fc00000)
abc485a1 1094 return hppa_extract_14 (inst);
c906108c 1095
104c1213
JM
1096 /* std,ma X,D(sp) */
1097 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 1098 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 1099
c906108c
SS
1100 /* addil high21,%r1; ldo low11,(%r1),%r30)
1101 save high bits in save_high21 for later use. */
1102 if ((inst & 0xffe00000) == 0x28200000)
1103 {
abc485a1 1104 save_high21 = hppa_extract_21 (inst);
c906108c
SS
1105 return 0;
1106 }
1107
1108 if ((inst & 0xffff0000) == 0x343e0000)
abc485a1 1109 return save_high21 + hppa_extract_14 (inst);
c906108c
SS
1110
1111 /* fstws as used by the HP compilers. */
1112 if ((inst & 0xffffffe0) == 0x2fd01220)
abc485a1 1113 return hppa_extract_5_load (inst);
c906108c
SS
1114
1115 /* No adjustment. */
1116 return 0;
1117}
1118
1119/* Return nonzero if INST is a branch of some kind, else return zero. */
1120
1121static int
fba45db2 1122is_branch (unsigned long inst)
c906108c
SS
1123{
1124 switch (inst >> 26)
1125 {
1126 case 0x20:
1127 case 0x21:
1128 case 0x22:
1129 case 0x23:
7be570e7 1130 case 0x27:
c906108c
SS
1131 case 0x28:
1132 case 0x29:
1133 case 0x2a:
1134 case 0x2b:
7be570e7 1135 case 0x2f:
c906108c
SS
1136 case 0x30:
1137 case 0x31:
1138 case 0x32:
1139 case 0x33:
1140 case 0x38:
1141 case 0x39:
1142 case 0x3a:
7be570e7 1143 case 0x3b:
c906108c
SS
1144 return 1;
1145
1146 default:
1147 return 0;
1148 }
1149}
1150
1151/* Return the register number for a GR which is saved by INST or
1152 zero it INST does not save a GR. */
1153
1154static int
fba45db2 1155inst_saves_gr (unsigned long inst)
c906108c
SS
1156{
1157 /* Does it look like a stw? */
7be570e7
JM
1158 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1159 || (inst >> 26) == 0x1f
1160 || ((inst >> 26) == 0x1f
1161 && ((inst >> 6) == 0xa)))
abc485a1 1162 return hppa_extract_5R_store (inst);
7be570e7
JM
1163
1164 /* Does it look like a std? */
1165 if ((inst >> 26) == 0x1c
1166 || ((inst >> 26) == 0x03
1167 && ((inst >> 6) & 0xf) == 0xb))
abc485a1 1168 return hppa_extract_5R_store (inst);
c906108c
SS
1169
1170 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1171 if ((inst >> 26) == 0x1b)
abc485a1 1172 return hppa_extract_5R_store (inst);
c906108c
SS
1173
1174 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1175 too. */
7be570e7
JM
1176 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1177 || ((inst >> 26) == 0x3
1178 && (((inst >> 6) & 0xf) == 0x8
1179 || (inst >> 6) & 0xf) == 0x9))
abc485a1 1180 return hppa_extract_5R_store (inst);
c5aa993b 1181
c906108c
SS
1182 return 0;
1183}
1184
1185/* Return the register number for a FR which is saved by INST or
1186 zero it INST does not save a FR.
1187
1188 Note we only care about full 64bit register stores (that's the only
1189 kind of stores the prologue will use).
1190
1191 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1192
1193static int
fba45db2 1194inst_saves_fr (unsigned long inst)
c906108c 1195{
7be570e7 1196 /* is this an FSTD ? */
c906108c 1197 if ((inst & 0xfc00dfc0) == 0x2c001200)
abc485a1 1198 return hppa_extract_5r_store (inst);
7be570e7 1199 if ((inst & 0xfc000002) == 0x70000002)
abc485a1 1200 return hppa_extract_5R_store (inst);
7be570e7 1201 /* is this an FSTW ? */
c906108c 1202 if ((inst & 0xfc00df80) == 0x24001200)
abc485a1 1203 return hppa_extract_5r_store (inst);
7be570e7 1204 if ((inst & 0xfc000002) == 0x7c000000)
abc485a1 1205 return hppa_extract_5R_store (inst);
c906108c
SS
1206 return 0;
1207}
1208
1209/* Advance PC across any function entry prologue instructions
1210 to reach some "real" code.
1211
1212 Use information in the unwind table to determine what exactly should
1213 be in the prologue. */
1214
1215
1216CORE_ADDR
fba45db2 1217skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
1218{
1219 char buf[4];
1220 CORE_ADDR orig_pc = pc;
1221 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1222 unsigned long args_stored, status, i, restart_gr, restart_fr;
1223 struct unwind_table_entry *u;
1224
1225 restart_gr = 0;
1226 restart_fr = 0;
1227
1228restart:
1229 u = find_unwind_entry (pc);
1230 if (!u)
1231 return pc;
1232
c5aa993b 1233 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
1234 if ((pc & ~0x3) != u->region_start)
1235 return pc;
1236
1237 /* This is how much of a frame adjustment we need to account for. */
1238 stack_remaining = u->Total_frame_size << 3;
1239
1240 /* Magic register saves we want to know about. */
1241 save_rp = u->Save_RP;
1242 save_sp = u->Save_SP;
1243
1244 /* An indication that args may be stored into the stack. Unfortunately
1245 the HPUX compilers tend to set this in cases where no args were
1246 stored too!. */
1247 args_stored = 1;
1248
1249 /* Turn the Entry_GR field into a bitmask. */
1250 save_gr = 0;
1251 for (i = 3; i < u->Entry_GR + 3; i++)
1252 {
1253 /* Frame pointer gets saved into a special location. */
eded0a31 1254 if (u->Save_SP && i == HPPA_FP_REGNUM)
c906108c
SS
1255 continue;
1256
1257 save_gr |= (1 << i);
1258 }
1259 save_gr &= ~restart_gr;
1260
1261 /* Turn the Entry_FR field into a bitmask too. */
1262 save_fr = 0;
1263 for (i = 12; i < u->Entry_FR + 12; i++)
1264 save_fr |= (1 << i);
1265 save_fr &= ~restart_fr;
1266
1267 /* Loop until we find everything of interest or hit a branch.
1268
1269 For unoptimized GCC code and for any HP CC code this will never ever
1270 examine any user instructions.
1271
1272 For optimzied GCC code we're faced with problems. GCC will schedule
1273 its prologue and make prologue instructions available for delay slot
1274 filling. The end result is user code gets mixed in with the prologue
1275 and a prologue instruction may be in the delay slot of the first branch
1276 or call.
1277
1278 Some unexpected things are expected with debugging optimized code, so
1279 we allow this routine to walk past user instructions in optimized
1280 GCC code. */
1281 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1282 || args_stored)
1283 {
1284 unsigned int reg_num;
1285 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1286 unsigned long old_save_rp, old_save_sp, next_inst;
1287
1288 /* Save copies of all the triggers so we can compare them later
c5aa993b 1289 (only for HPC). */
c906108c
SS
1290 old_save_gr = save_gr;
1291 old_save_fr = save_fr;
1292 old_save_rp = save_rp;
1293 old_save_sp = save_sp;
1294 old_stack_remaining = stack_remaining;
1295
f4ca1d1f 1296 status = read_memory_nobpt (pc, buf, 4);
c906108c 1297 inst = extract_unsigned_integer (buf, 4);
c5aa993b 1298
c906108c
SS
1299 /* Yow! */
1300 if (status != 0)
1301 return pc;
1302
1303 /* Note the interesting effects of this instruction. */
1304 stack_remaining -= prologue_inst_adjust_sp (inst);
1305
7be570e7
JM
1306 /* There are limited ways to store the return pointer into the
1307 stack. */
1308 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
1309 save_rp = 0;
1310
104c1213 1311 /* These are the only ways we save SP into the stack. At this time
c5aa993b 1312 the HP compilers never bother to save SP into the stack. */
104c1213
JM
1313 if ((inst & 0xffffc000) == 0x6fc10000
1314 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
1315 save_sp = 0;
1316
6426a772
JM
1317 /* Are we loading some register with an offset from the argument
1318 pointer? */
1319 if ((inst & 0xffe00000) == 0x37a00000
1320 || (inst & 0xffffffe0) == 0x081d0240)
1321 {
1322 pc += 4;
1323 continue;
1324 }
1325
c906108c
SS
1326 /* Account for general and floating-point register saves. */
1327 reg_num = inst_saves_gr (inst);
1328 save_gr &= ~(1 << reg_num);
1329
1330 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1331 Unfortunately args_stored only tells us that some arguments
1332 where stored into the stack. Not how many or what kind!
c906108c 1333
c5aa993b
JM
1334 This is a kludge as on the HP compiler sets this bit and it
1335 never does prologue scheduling. So once we see one, skip past
1336 all of them. We have similar code for the fp arg stores below.
c906108c 1337
c5aa993b
JM
1338 FIXME. Can still die if we have a mix of GR and FR argument
1339 stores! */
6426a772 1340 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 1341 {
6426a772 1342 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
1343 {
1344 pc += 4;
f4ca1d1f 1345 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1346 inst = extract_unsigned_integer (buf, 4);
1347 if (status != 0)
1348 return pc;
1349 reg_num = inst_saves_gr (inst);
1350 }
1351 args_stored = 0;
1352 continue;
1353 }
1354
1355 reg_num = inst_saves_fr (inst);
1356 save_fr &= ~(1 << reg_num);
1357
f4ca1d1f 1358 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c 1359 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 1360
c906108c
SS
1361 /* Yow! */
1362 if (status != 0)
1363 return pc;
1364
1365 /* We've got to be read to handle the ldo before the fp register
c5aa993b 1366 save. */
c906108c
SS
1367 if ((inst & 0xfc000000) == 0x34000000
1368 && inst_saves_fr (next_inst) >= 4
6426a772 1369 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1370 {
1371 /* So we drop into the code below in a reasonable state. */
1372 reg_num = inst_saves_fr (next_inst);
1373 pc -= 4;
1374 }
1375
1376 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
1377 This is a kludge as on the HP compiler sets this bit and it
1378 never does prologue scheduling. So once we see one, skip past
1379 all of them. */
6426a772 1380 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 1381 {
6426a772 1382 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
1383 {
1384 pc += 8;
f4ca1d1f 1385 status = read_memory_nobpt (pc, buf, 4);
c906108c
SS
1386 inst = extract_unsigned_integer (buf, 4);
1387 if (status != 0)
1388 return pc;
1389 if ((inst & 0xfc000000) != 0x34000000)
1390 break;
f4ca1d1f 1391 status = read_memory_nobpt (pc + 4, buf, 4);
c906108c
SS
1392 next_inst = extract_unsigned_integer (buf, 4);
1393 if (status != 0)
1394 return pc;
1395 reg_num = inst_saves_fr (next_inst);
1396 }
1397 args_stored = 0;
1398 continue;
1399 }
1400
1401 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 1402 instruction is in the delay slot of the first call/branch. */
c906108c
SS
1403 if (is_branch (inst))
1404 break;
1405
1406 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
1407 arguments were stored into the stack (boo hiss). This could
1408 cause this code to then skip a bunch of user insns (up to the
1409 first branch).
1410
1411 To combat this we try to identify when args_stored was bogusly
1412 set and clear it. We only do this when args_stored is nonzero,
1413 all other resources are accounted for, and nothing changed on
1414 this pass. */
c906108c 1415 if (args_stored
c5aa993b 1416 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
1417 && old_save_gr == save_gr && old_save_fr == save_fr
1418 && old_save_rp == save_rp && old_save_sp == save_sp
1419 && old_stack_remaining == stack_remaining)
1420 break;
c5aa993b 1421
c906108c
SS
1422 /* Bump the PC. */
1423 pc += 4;
1424 }
1425
1426 /* We've got a tenative location for the end of the prologue. However
1427 because of limitations in the unwind descriptor mechanism we may
1428 have went too far into user code looking for the save of a register
1429 that does not exist. So, if there registers we expected to be saved
1430 but never were, mask them out and restart.
1431
1432 This should only happen in optimized code, and should be very rare. */
c5aa993b 1433 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
1434 {
1435 pc = orig_pc;
1436 restart_gr = save_gr;
1437 restart_fr = save_fr;
1438 goto restart;
1439 }
1440
1441 return pc;
1442}
1443
1444
7be570e7
JM
1445/* Return the address of the PC after the last prologue instruction if
1446 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
1447
1448static CORE_ADDR
fba45db2 1449after_prologue (CORE_ADDR pc)
c906108c
SS
1450{
1451 struct symtab_and_line sal;
1452 CORE_ADDR func_addr, func_end;
1453 struct symbol *f;
1454
7be570e7
JM
1455 /* If we can not find the symbol in the partial symbol table, then
1456 there is no hope we can determine the function's start address
1457 with this code. */
c906108c 1458 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 1459 return 0;
c906108c 1460
7be570e7 1461 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
1462 sal = find_pc_line (func_addr, 0);
1463
7be570e7
JM
1464 /* There are only two cases to consider. First, the end of the source line
1465 is within the function bounds. In that case we return the end of the
1466 source line. Second is the end of the source line extends beyond the
1467 bounds of the current function. We need to use the slow code to
1468 examine instructions in that case.
c906108c 1469
7be570e7
JM
1470 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1471 the wrong thing to do. In fact, it should be entirely possible for this
1472 function to always return zero since the slow instruction scanning code
1473 is supposed to *always* work. If it does not, then it is a bug. */
1474 if (sal.end < func_end)
1475 return sal.end;
c5aa993b 1476 else
7be570e7 1477 return 0;
c906108c
SS
1478}
1479
1480/* To skip prologues, I use this predicate. Returns either PC itself
1481 if the code at PC does not look like a function prologue; otherwise
1482 returns an address that (if we're lucky) follows the prologue. If
1483 LENIENT, then we must skip everything which is involved in setting
1484 up the frame (it's OK to skip more, just so long as we don't skip
1485 anything which might clobber the registers which are being saved.
1486 Currently we must not skip more on the alpha, but we might the lenient
1487 stuff some day. */
1488
8d153463 1489static CORE_ADDR
fba45db2 1490hppa_skip_prologue (CORE_ADDR pc)
c906108c 1491{
c5aa993b
JM
1492 unsigned long inst;
1493 int offset;
1494 CORE_ADDR post_prologue_pc;
1495 char buf[4];
c906108c 1496
c5aa993b
JM
1497 /* See if we can determine the end of the prologue via the symbol table.
1498 If so, then return either PC, or the PC after the prologue, whichever
1499 is greater. */
c906108c 1500
c5aa993b 1501 post_prologue_pc = after_prologue (pc);
c906108c 1502
7be570e7
JM
1503 /* If after_prologue returned a useful address, then use it. Else
1504 fall back on the instruction skipping code.
1505
1506 Some folks have claimed this causes problems because the breakpoint
1507 may be the first instruction of the prologue. If that happens, then
1508 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
1509 if (post_prologue_pc != 0)
1510 return max (pc, post_prologue_pc);
c5aa993b
JM
1511 else
1512 return (skip_prologue_hard_way (pc));
c906108c
SS
1513}
1514
26d08f08
AC
1515struct hppa_frame_cache
1516{
1517 CORE_ADDR base;
1518 struct trad_frame_saved_reg *saved_regs;
1519};
1520
1521static struct hppa_frame_cache *
1522hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1523{
1524 struct hppa_frame_cache *cache;
1525 long saved_gr_mask;
1526 long saved_fr_mask;
1527 CORE_ADDR this_sp;
1528 long frame_size;
1529 struct unwind_table_entry *u;
9f7194c3 1530 CORE_ADDR prologue_end;
26d08f08
AC
1531 int i;
1532
369aa520
RC
1533 if (hppa_debug)
1534 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1535 frame_relative_level(next_frame));
1536
26d08f08 1537 if ((*this_cache) != NULL)
369aa520
RC
1538 {
1539 if (hppa_debug)
1540 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1541 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1542 return (*this_cache);
1543 }
26d08f08
AC
1544 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1545 (*this_cache) = cache;
1546 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1547
1548 /* Yow! */
1549 u = find_unwind_entry (frame_func_unwind (next_frame));
1550 if (!u)
369aa520
RC
1551 {
1552 if (hppa_debug)
1553 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1554 return (*this_cache);
1555 }
26d08f08
AC
1556
1557 /* Turn the Entry_GR field into a bitmask. */
1558 saved_gr_mask = 0;
1559 for (i = 3; i < u->Entry_GR + 3; i++)
1560 {
1561 /* Frame pointer gets saved into a special location. */
eded0a31 1562 if (u->Save_SP && i == HPPA_FP_REGNUM)
26d08f08
AC
1563 continue;
1564
1565 saved_gr_mask |= (1 << i);
1566 }
1567
1568 /* Turn the Entry_FR field into a bitmask too. */
1569 saved_fr_mask = 0;
1570 for (i = 12; i < u->Entry_FR + 12; i++)
1571 saved_fr_mask |= (1 << i);
1572
1573 /* Loop until we find everything of interest or hit a branch.
1574
1575 For unoptimized GCC code and for any HP CC code this will never ever
1576 examine any user instructions.
1577
1578 For optimized GCC code we're faced with problems. GCC will schedule
1579 its prologue and make prologue instructions available for delay slot
1580 filling. The end result is user code gets mixed in with the prologue
1581 and a prologue instruction may be in the delay slot of the first branch
1582 or call.
1583
1584 Some unexpected things are expected with debugging optimized code, so
1585 we allow this routine to walk past user instructions in optimized
1586 GCC code. */
1587 {
1588 int final_iteration = 0;
9f7194c3 1589 CORE_ADDR pc, end_pc;
26d08f08
AC
1590 int looking_for_sp = u->Save_SP;
1591 int looking_for_rp = u->Save_RP;
1592 int fp_loc = -1;
9f7194c3
RC
1593
1594 /* We have to use hppa_skip_prologue instead of just
1595 skip_prologue_using_sal, in case we stepped into a function without
1596 symbol information. hppa_skip_prologue also bounds the returned
1597 pc by the passed in pc, so it will not return a pc in the next
1598 function. */
1599 prologue_end = hppa_skip_prologue (frame_func_unwind (next_frame));
1600 end_pc = frame_pc_unwind (next_frame);
1601
1602 if (prologue_end != 0 && end_pc > prologue_end)
1603 end_pc = prologue_end;
1604
26d08f08 1605 frame_size = 0;
9f7194c3 1606
26d08f08
AC
1607 for (pc = frame_func_unwind (next_frame);
1608 ((saved_gr_mask || saved_fr_mask
1609 || looking_for_sp || looking_for_rp
1610 || frame_size < (u->Total_frame_size << 3))
9f7194c3 1611 && pc < end_pc);
26d08f08
AC
1612 pc += 4)
1613 {
1614 int reg;
1615 char buf4[4];
f4ca1d1f 1616 long status = read_memory_nobpt (pc, buf4, sizeof buf4);
26d08f08 1617 long inst = extract_unsigned_integer (buf4, sizeof buf4);
9f7194c3 1618
26d08f08
AC
1619 /* Note the interesting effects of this instruction. */
1620 frame_size += prologue_inst_adjust_sp (inst);
1621
1622 /* There are limited ways to store the return pointer into the
1623 stack. */
1624 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1625 {
1626 looking_for_rp = 0;
34f75cc1 1627 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
26d08f08
AC
1628 }
1629 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1630 {
1631 looking_for_rp = 0;
34f75cc1 1632 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
26d08f08
AC
1633 }
1634
1635 /* Check to see if we saved SP into the stack. This also
1636 happens to indicate the location of the saved frame
1637 pointer. */
1638 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1639 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1640 {
1641 looking_for_sp = 0;
eded0a31 1642 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
26d08f08
AC
1643 }
1644
1645 /* Account for general and floating-point register saves. */
1646 reg = inst_saves_gr (inst);
1647 if (reg >= 3 && reg <= 18
eded0a31 1648 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
26d08f08
AC
1649 {
1650 saved_gr_mask &= ~(1 << reg);
abc485a1 1651 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
26d08f08
AC
1652 /* stwm with a positive displacement is a _post_
1653 _modify_. */
1654 cache->saved_regs[reg].addr = 0;
1655 else if ((inst & 0xfc00000c) == 0x70000008)
1656 /* A std has explicit post_modify forms. */
1657 cache->saved_regs[reg].addr = 0;
1658 else
1659 {
1660 CORE_ADDR offset;
1661
1662 if ((inst >> 26) == 0x1c)
1663 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1664 else if ((inst >> 26) == 0x03)
abc485a1 1665 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
26d08f08 1666 else
abc485a1 1667 offset = hppa_extract_14 (inst);
26d08f08
AC
1668
1669 /* Handle code with and without frame pointers. */
1670 if (u->Save_SP)
1671 cache->saved_regs[reg].addr = offset;
1672 else
1673 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1674 }
1675 }
1676
1677 /* GCC handles callee saved FP regs a little differently.
1678
1679 It emits an instruction to put the value of the start of
1680 the FP store area into %r1. It then uses fstds,ma with a
1681 basereg of %r1 for the stores.
1682
1683 HP CC emits them at the current stack pointer modifying the
1684 stack pointer as it stores each register. */
1685
1686 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1687 if ((inst & 0xffffc000) == 0x34610000
1688 || (inst & 0xffffc000) == 0x37c10000)
abc485a1 1689 fp_loc = hppa_extract_14 (inst);
26d08f08
AC
1690
1691 reg = inst_saves_fr (inst);
1692 if (reg >= 12 && reg <= 21)
1693 {
1694 /* Note +4 braindamage below is necessary because the FP
1695 status registers are internally 8 registers rather than
1696 the expected 4 registers. */
1697 saved_fr_mask &= ~(1 << reg);
1698 if (fp_loc == -1)
1699 {
1700 /* 1st HP CC FP register store. After this
1701 instruction we've set enough state that the GCC and
1702 HPCC code are both handled in the same manner. */
34f75cc1 1703 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
26d08f08
AC
1704 fp_loc = 8;
1705 }
1706 else
1707 {
eded0a31 1708 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
26d08f08
AC
1709 fp_loc += 8;
1710 }
1711 }
1712
1713 /* Quit if we hit any kind of branch the previous iteration. */
1714 if (final_iteration)
1715 break;
1716 /* We want to look precisely one instruction beyond the branch
1717 if we have not found everything yet. */
1718 if (is_branch (inst))
1719 final_iteration = 1;
1720 }
1721 }
1722
1723 {
1724 /* The frame base always represents the value of %sp at entry to
1725 the current function (and is thus equivalent to the "saved"
1726 stack pointer. */
eded0a31 1727 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
9f7194c3
RC
1728
1729 if (hppa_debug)
1730 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1731 "prologue_end=0x%s) ",
1732 paddr_nz (this_sp),
1733 paddr_nz (frame_pc_unwind (next_frame)),
1734 paddr_nz (prologue_end));
1735
1736 if (frame_pc_unwind (next_frame) >= prologue_end)
1737 {
1738 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1739 {
1740 /* Both we're expecting the SP to be saved and the SP has been
1741 saved. The entry SP value is saved at this frame's SP
1742 address. */
1743 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1744
1745 if (hppa_debug)
1746 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1747 paddr_nz (cache->base));
1748 }
1749 else
1750 {
1751 /* The prologue has been slowly allocating stack space. Adjust
1752 the SP back. */
1753 cache->base = this_sp - frame_size;
1754 if (hppa_debug)
1755 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1756 paddr_nz (cache->base));
1757
1758 }
1759 }
26d08f08 1760 else
9f7194c3
RC
1761 {
1762 /* This frame has not yet been created. */
1763 cache->base = this_sp;
1764
1765 if (hppa_debug)
1766 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [before prologue] } ",
1767 paddr_nz (cache->base));
1768
1769 }
1770
eded0a31 1771 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
26d08f08
AC
1772 }
1773
412275d5
AC
1774 /* The PC is found in the "return register", "Millicode" uses "r31"
1775 as the return register while normal code uses "rp". */
26d08f08 1776 if (u->Millicode)
9f7194c3 1777 {
34f75cc1
RC
1778 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1779 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
9f7194c3
RC
1780 else
1781 {
1782 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
34f75cc1 1783 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
9f7194c3
RC
1784 }
1785 }
26d08f08 1786 else
9f7194c3 1787 {
34f75cc1
RC
1788 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1789 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
9f7194c3
RC
1790 else
1791 {
34f75cc1
RC
1792 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1793 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
9f7194c3
RC
1794 }
1795 }
26d08f08
AC
1796
1797 {
1798 /* Convert all the offsets into addresses. */
1799 int reg;
1800 for (reg = 0; reg < NUM_REGS; reg++)
1801 {
1802 if (trad_frame_addr_p (cache->saved_regs, reg))
1803 cache->saved_regs[reg].addr += cache->base;
1804 }
1805 }
1806
369aa520
RC
1807 if (hppa_debug)
1808 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1809 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
26d08f08
AC
1810 return (*this_cache);
1811}
1812
1813static void
1814hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1815 struct frame_id *this_id)
1816{
1817 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1818 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1819}
1820
1821static void
1822hppa_frame_prev_register (struct frame_info *next_frame,
0da28f8a
RC
1823 void **this_cache,
1824 int regnum, int *optimizedp,
1825 enum lval_type *lvalp, CORE_ADDR *addrp,
1826 int *realnump, void *valuep)
26d08f08
AC
1827{
1828 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
0da28f8a
RC
1829 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1830 optimizedp, lvalp, addrp, realnump, valuep);
1831}
1832
1833static const struct frame_unwind hppa_frame_unwind =
1834{
1835 NORMAL_FRAME,
1836 hppa_frame_this_id,
1837 hppa_frame_prev_register
1838};
1839
1840static const struct frame_unwind *
1841hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1842{
1843 CORE_ADDR pc = frame_pc_unwind (next_frame);
1844
1845 if (find_unwind_entry (pc))
1846 return &hppa_frame_unwind;
1847
1848 return NULL;
1849}
1850
1851/* This is a generic fallback frame unwinder that kicks in if we fail all
1852 the other ones. Normally we would expect the stub and regular unwinder
1853 to work, but in some cases we might hit a function that just doesn't
1854 have any unwind information available. In this case we try to do
1855 unwinding solely based on code reading. This is obviously going to be
1856 slow, so only use this as a last resort. Currently this will only
1857 identify the stack and pc for the frame. */
1858
1859static struct hppa_frame_cache *
1860hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1861{
1862 struct hppa_frame_cache *cache;
1863 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1864
1865 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1866 (*this_cache) = cache;
1867 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1868
1869 pc = frame_func_unwind (next_frame);
1870 cur_pc = frame_pc_unwind (next_frame);
1871
1872 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1873
1874 if (start_pc == 0 || end_pc == 0)
412275d5 1875 {
0da28f8a
RC
1876 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1877 "fail.", paddr_nz (pc));
1878 return cache;
1879 }
1880
1881 if (end_pc > cur_pc)
1882 end_pc = cur_pc;
1883
1884 for (pc = start_pc; pc < end_pc; pc += 4)
1885 {
1886 unsigned int insn;
1887
1888 insn = read_memory_unsigned_integer (pc, 4);
1889
1890 /* There are limited ways to store the return pointer into the
1891 stack. */
1892 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1893 {
1894 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1895 break;
1896 }
1897 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
412275d5 1898 {
0da28f8a
RC
1899 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1900 break;
412275d5
AC
1901 }
1902 }
0da28f8a
RC
1903
1904 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1905
1906 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1907 {
1908 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
1909 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1910 }
412275d5
AC
1911 else
1912 {
0da28f8a
RC
1913 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1914 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
412275d5 1915 }
0da28f8a
RC
1916
1917 return cache;
26d08f08
AC
1918}
1919
0da28f8a
RC
1920static void
1921hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
1922 struct frame_id *this_id)
1923{
1924 struct hppa_frame_cache *info =
1925 hppa_fallback_frame_cache (next_frame, this_cache);
1926 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1927}
1928
1929static void
1930hppa_fallback_frame_prev_register (struct frame_info *next_frame,
1931 void **this_cache,
1932 int regnum, int *optimizedp,
1933 enum lval_type *lvalp, CORE_ADDR *addrp,
1934 int *realnump, void *valuep)
1935{
1936 struct hppa_frame_cache *info =
1937 hppa_fallback_frame_cache (next_frame, this_cache);
1938 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1939 optimizedp, lvalp, addrp, realnump, valuep);
1940}
1941
1942static const struct frame_unwind hppa_fallback_frame_unwind =
26d08f08
AC
1943{
1944 NORMAL_FRAME,
0da28f8a
RC
1945 hppa_fallback_frame_this_id,
1946 hppa_fallback_frame_prev_register
26d08f08
AC
1947};
1948
1949static const struct frame_unwind *
0da28f8a 1950hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
26d08f08 1951{
0da28f8a 1952 return &hppa_fallback_frame_unwind;
26d08f08
AC
1953}
1954
1955static CORE_ADDR
1956hppa_frame_base_address (struct frame_info *next_frame,
1957 void **this_cache)
1958{
1959 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
1960 this_cache);
1961 return info->base;
1962}
1963
1964static const struct frame_base hppa_frame_base = {
1965 &hppa_frame_unwind,
1966 hppa_frame_base_address,
1967 hppa_frame_base_address,
1968 hppa_frame_base_address
1969};
1970
1971static const struct frame_base *
1972hppa_frame_base_sniffer (struct frame_info *next_frame)
1973{
1974 return &hppa_frame_base;
1975}
1976
7f07c5b6
RC
1977/* Stub frames, used for all kinds of call stubs. */
1978struct hppa_stub_unwind_cache
1979{
1980 CORE_ADDR base;
1981 struct trad_frame_saved_reg *saved_regs;
1982};
1983
1984static struct hppa_stub_unwind_cache *
1985hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
1986 void **this_cache)
1987{
1988 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1989 struct hppa_stub_unwind_cache *info;
22b0923d 1990 struct unwind_table_entry *u;
7f07c5b6
RC
1991
1992 if (*this_cache)
1993 return *this_cache;
1994
1995 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
1996 *this_cache = info;
1997 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1998
7f07c5b6
RC
1999 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2000
22b0923d
RC
2001 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_ELF
2002 || gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2003 {
2004 /* HPUX uses export stubs in function calls; the export stub clobbers
2005 the return value of the caller, and, later restores it from the
2006 stack. */
2007 u = find_unwind_entry (frame_pc_unwind (next_frame));
2008
2009 if (u && u->stub_unwind.stub_type == EXPORT)
2010 {
2011 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2012
2013 return info;
2014 }
2015 }
2016
2017 /* By default we assume that stubs do not change the rp. */
2018 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2019
7f07c5b6
RC
2020 return info;
2021}
2022
2023static void
2024hppa_stub_frame_this_id (struct frame_info *next_frame,
2025 void **this_prologue_cache,
2026 struct frame_id *this_id)
2027{
2028 struct hppa_stub_unwind_cache *info
2029 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2030 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2031}
2032
2033static void
2034hppa_stub_frame_prev_register (struct frame_info *next_frame,
2035 void **this_prologue_cache,
2036 int regnum, int *optimizedp,
2037 enum lval_type *lvalp, CORE_ADDR *addrp,
0da28f8a 2038 int *realnump, void *valuep)
7f07c5b6
RC
2039{
2040 struct hppa_stub_unwind_cache *info
2041 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
0da28f8a
RC
2042 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2043 optimizedp, lvalp, addrp, realnump, valuep);
7f07c5b6
RC
2044}
2045
2046static const struct frame_unwind hppa_stub_frame_unwind = {
2047 NORMAL_FRAME,
2048 hppa_stub_frame_this_id,
2049 hppa_stub_frame_prev_register
2050};
2051
2052static const struct frame_unwind *
2053hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2054{
2055 CORE_ADDR pc = frame_pc_unwind (next_frame);
2056
2057 if (IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2058 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2059 return &hppa_stub_frame_unwind;
2060 return NULL;
2061}
2062
26d08f08
AC
2063static struct frame_id
2064hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2065{
2066 return frame_id_build (frame_unwind_register_unsigned (next_frame,
eded0a31 2067 HPPA_SP_REGNUM),
26d08f08
AC
2068 frame_pc_unwind (next_frame));
2069}
2070
2071static CORE_ADDR
2072hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2073{
34f75cc1 2074 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
26d08f08
AC
2075}
2076
9a043c1d
AC
2077/* Instead of this nasty cast, add a method pvoid() that prints out a
2078 host VOID data type (remember %p isn't portable). */
2079
2080static CORE_ADDR
2081hppa_pointer_to_address_hack (void *ptr)
2082{
2083 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2084 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2085}
2086
c906108c 2087static void
fba45db2 2088unwind_command (char *exp, int from_tty)
c906108c
SS
2089{
2090 CORE_ADDR address;
2091 struct unwind_table_entry *u;
2092
2093 /* If we have an expression, evaluate it and use it as the address. */
2094
2095 if (exp != 0 && *exp != 0)
2096 address = parse_and_eval_address (exp);
2097 else
2098 return;
2099
2100 u = find_unwind_entry (address);
2101
2102 if (!u)
2103 {
2104 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2105 return;
2106 }
2107
ce414844 2108 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 2109 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
2110
2111 printf_unfiltered ("\tregion_start = ");
2112 print_address (u->region_start, gdb_stdout);
2113
2114 printf_unfiltered ("\n\tregion_end = ");
2115 print_address (u->region_end, gdb_stdout);
2116
c906108c 2117#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
2118
2119 printf_unfiltered ("\n\tflags =");
2120 pif (Cannot_unwind);
2121 pif (Millicode);
2122 pif (Millicode_save_sr0);
2123 pif (Entry_SR);
2124 pif (Args_stored);
2125 pif (Variable_Frame);
2126 pif (Separate_Package_Body);
2127 pif (Frame_Extension_Millicode);
2128 pif (Stack_Overflow_Check);
2129 pif (Two_Instruction_SP_Increment);
2130 pif (Ada_Region);
2131 pif (Save_SP);
2132 pif (Save_RP);
2133 pif (Save_MRP_in_frame);
2134 pif (extn_ptr_defined);
2135 pif (Cleanup_defined);
2136 pif (MPE_XL_interrupt_marker);
2137 pif (HP_UX_interrupt_marker);
2138 pif (Large_frame);
2139
2140 putchar_unfiltered ('\n');
2141
c906108c 2142#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
2143
2144 pin (Region_description);
2145 pin (Entry_FR);
2146 pin (Entry_GR);
2147 pin (Total_frame_size);
2148}
c906108c 2149
c2c6d25f 2150void
fba45db2 2151hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
2152{
2153 /* To step over a breakpoint instruction on the PA takes some
2154 fiddling with the instruction address queue.
2155
2156 When we stop at a breakpoint, the IA queue front (the instruction
2157 we're executing now) points at the breakpoint instruction, and
2158 the IA queue back (the next instruction to execute) points to
2159 whatever instruction we would execute after the breakpoint, if it
2160 were an ordinary instruction. This is the case even if the
2161 breakpoint is in the delay slot of a branch instruction.
2162
2163 Clearly, to step past the breakpoint, we need to set the queue
2164 front to the back. But what do we put in the back? What
2165 instruction comes after that one? Because of the branch delay
2166 slot, the next insn is always at the back + 4. */
34f75cc1
RC
2167 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2168 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
c2c6d25f 2169
34f75cc1 2170 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
c2c6d25f
JM
2171 /* We can leave the tail's space the same, since there's no jump. */
2172}
2173
d709c020
JB
2174int
2175hppa_pc_requires_run_before_use (CORE_ADDR pc)
2176{
2177 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2178
2179 An example of this occurs when an a.out is linked against a foo.sl.
2180 The foo.sl defines a global bar(), and the a.out declares a signature
2181 for bar(). However, the a.out doesn't directly call bar(), but passes
2182 its address in another call.
2183
2184 If you have this scenario and attempt to "break bar" before running,
2185 gdb will find a minimal symbol for bar() in the a.out. But that
2186 symbol's address will be negative. What this appears to denote is
2187 an index backwards from the base of the procedure linkage table (PLT)
2188 into the data linkage table (DLT), the end of which is contiguous
2189 with the start of the PLT. This is clearly not a valid address for
2190 us to set a breakpoint on.
2191
2192 Note that one must be careful in how one checks for a negative address.
2193 0xc0000000 is a legitimate address of something in a shared text
2194 segment, for example. Since I don't know what the possible range
2195 is of these "really, truly negative" addresses that come from the
2196 minimal symbols, I'm resorting to the gross hack of checking the
2197 top byte of the address for all 1's. Sigh. */
2198
2199 return (!target_has_stack && (pc & 0xFF000000));
2200}
2201
2202int
2203hppa_instruction_nullified (void)
2204{
2205 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2206 avoid the type cast. I'm leaving it as is for now as I'm doing
2207 semi-mechanical multiarching-related changes. */
34f75cc1
RC
2208 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2209 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
d709c020
JB
2210
2211 return ((ipsw & 0x00200000) && !(flags & 0x2));
2212}
2213
d709c020
JB
2214/* Return the GDB type object for the "standard" data type of data
2215 in register N. */
2216
eded0a31
AC
2217static struct type *
2218hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
d709c020 2219{
34f75cc1 2220 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2221 return builtin_type_uint32;
d709c020 2222 else
eded0a31 2223 return builtin_type_ieee_single_big;
d709c020
JB
2224}
2225
3ff7cf9e
JB
2226/* Return the GDB type object for the "standard" data type of data
2227 in register N. hppa64 version. */
2228
eded0a31
AC
2229static struct type *
2230hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
3ff7cf9e 2231{
34f75cc1 2232 if (reg_nr < HPPA_FP4_REGNUM)
eded0a31 2233 return builtin_type_uint64;
3ff7cf9e 2234 else
eded0a31 2235 return builtin_type_ieee_double_big;
3ff7cf9e
JB
2236}
2237
d709c020
JB
2238/* Return True if REGNUM is not a register available to the user
2239 through ptrace(). */
2240
8d153463 2241static int
d709c020
JB
2242hppa_cannot_store_register (int regnum)
2243{
2244 return (regnum == 0
34f75cc1
RC
2245 || regnum == HPPA_PCSQ_HEAD_REGNUM
2246 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2247 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
d709c020
JB
2248
2249}
2250
8d153463 2251static CORE_ADDR
d709c020
JB
2252hppa_smash_text_address (CORE_ADDR addr)
2253{
2254 /* The low two bits of the PC on the PA contain the privilege level.
2255 Some genius implementing a (non-GCC) compiler apparently decided
2256 this means that "addresses" in a text section therefore include a
2257 privilege level, and thus symbol tables should contain these bits.
2258 This seems like a bonehead thing to do--anyway, it seems to work
2259 for our purposes to just ignore those bits. */
2260
2261 return (addr &= ~0x3);
2262}
2263
143985b7
AF
2264/* Get the ith function argument for the current function. */
2265CORE_ADDR
2266hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2267 struct type *type)
2268{
2269 CORE_ADDR addr;
34f75cc1 2270 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
143985b7
AF
2271 return addr;
2272}
2273
0f8d9d59
RC
2274static void
2275hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2276 int regnum, void *buf)
2277{
2278 ULONGEST tmp;
2279
2280 regcache_raw_read_unsigned (regcache, regnum, &tmp);
34f75cc1 2281 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
0f8d9d59
RC
2282 tmp &= ~0x3;
2283 store_unsigned_integer (buf, sizeof(tmp), tmp);
2284}
2285
0da28f8a
RC
2286void
2287hppa_frame_prev_register_helper (struct frame_info *next_frame,
2288 struct trad_frame_saved_reg saved_regs[],
2289 int regnum, int *optimizedp,
2290 enum lval_type *lvalp, CORE_ADDR *addrp,
2291 int *realnump, void *valuep)
2292{
2293 int pcoqt = (regnum == HPPA_PCOQ_TAIL_REGNUM);
2294 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2295 int regsize = register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM);
2296
2297 if (pcoqt)
2298 regnum = HPPA_PCOQ_HEAD_REGNUM;
2299
2300 trad_frame_prev_register (next_frame, saved_regs, regnum,
2301 optimizedp, lvalp, addrp, realnump, valuep);
2302
2303 if (pcoqt)
2304 store_unsigned_integer (valuep, regsize,
2305 extract_unsigned_integer (valuep, regsize) + 4);
2306}
2307
8e8b2dba
MC
2308/* Here is a table of C type sizes on hppa with various compiles
2309 and options. I measured this on PA 9000/800 with HP-UX 11.11
2310 and these compilers:
2311
2312 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2313 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2314 /opt/aCC/bin/aCC B3910B A.03.45
2315 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2316
2317 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2318 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2319 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2320 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2321 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2322 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2323 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2324 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2325
2326 Each line is:
2327
2328 compiler and options
2329 char, short, int, long, long long
2330 float, double, long double
2331 char *, void (*)()
2332
2333 So all these compilers use either ILP32 or LP64 model.
2334 TODO: gcc has more options so it needs more investigation.
2335
a2379359
MC
2336 For floating point types, see:
2337
2338 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2339 HP-UX floating-point guide, hpux 11.00
2340
8e8b2dba
MC
2341 -- chastain 2003-12-18 */
2342
e6e68f1f
JB
2343static struct gdbarch *
2344hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2345{
3ff7cf9e 2346 struct gdbarch_tdep *tdep;
e6e68f1f 2347 struct gdbarch *gdbarch;
59623e27
JB
2348
2349 /* Try to determine the ABI of the object we are loading. */
4be87837 2350 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 2351 {
4be87837
DJ
2352 /* If it's a SOM file, assume it's HP/UX SOM. */
2353 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2354 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 2355 }
e6e68f1f
JB
2356
2357 /* find a candidate among the list of pre-declared architectures. */
2358 arches = gdbarch_list_lookup_by_info (arches, &info);
2359 if (arches != NULL)
2360 return (arches->gdbarch);
2361
2362 /* If none found, then allocate and initialize one. */
fdd72f95 2363 tdep = XZALLOC (struct gdbarch_tdep);
3ff7cf9e
JB
2364 gdbarch = gdbarch_alloc (&info, tdep);
2365
2366 /* Determine from the bfd_arch_info structure if we are dealing with
2367 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2368 then default to a 32bit machine. */
2369 if (info.bfd_arch_info != NULL)
2370 tdep->bytes_per_address =
2371 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2372 else
2373 tdep->bytes_per_address = 4;
2374
2375 /* Some parts of the gdbarch vector depend on whether we are running
2376 on a 32 bits or 64 bits target. */
2377 switch (tdep->bytes_per_address)
2378 {
2379 case 4:
2380 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2381 set_gdbarch_register_name (gdbarch, hppa32_register_name);
eded0a31 2382 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3ff7cf9e
JB
2383 break;
2384 case 8:
2385 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2386 set_gdbarch_register_name (gdbarch, hppa64_register_name);
eded0a31 2387 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3ff7cf9e
JB
2388 break;
2389 default:
2390 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2391 tdep->bytes_per_address);
2392 }
2393
3ff7cf9e 2394 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3ff7cf9e 2395 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
e6e68f1f 2396
8e8b2dba
MC
2397 /* The following gdbarch vector elements are the same in both ILP32
2398 and LP64, but might show differences some day. */
2399 set_gdbarch_long_long_bit (gdbarch, 64);
2400 set_gdbarch_long_double_bit (gdbarch, 128);
a2379359 2401 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
8e8b2dba 2402
3ff7cf9e
JB
2403 /* The following gdbarch vector elements do not depend on the address
2404 size, or in any other gdbarch element previously set. */
60383d10 2405 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
a2a84a72 2406 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
eded0a31
AC
2407 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2408 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
60383d10 2409 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
50306a9d 2410 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
b6fbdd1d 2411 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
60383d10
JB
2412 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2413 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2414 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2415 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
60383d10 2416
143985b7
AF
2417 /* Helper for function argument information. */
2418 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2419
36482093
AC
2420 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2421
3a3bc038
AC
2422 /* When a hardware watchpoint triggers, we'll move the inferior past
2423 it by removing all eventpoints; stepping past the instruction
2424 that caused the trigger; reinserting eventpoints; and checking
2425 whether any watched location changed. */
2426 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2427
5979bc46 2428 /* Inferior function call methods. */
fca7aa43 2429 switch (tdep->bytes_per_address)
5979bc46 2430 {
fca7aa43
AC
2431 case 4:
2432 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2433 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2434 break;
2435 case 8:
782eae8b
AC
2436 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2437 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
fca7aa43 2438 break;
782eae8b
AC
2439 default:
2440 internal_error (__FILE__, __LINE__, "bad switch");
fad850b2
AC
2441 }
2442
2443 /* Struct return methods. */
fca7aa43 2444 switch (tdep->bytes_per_address)
fad850b2 2445 {
fca7aa43
AC
2446 case 4:
2447 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2448 break;
2449 case 8:
782eae8b 2450 set_gdbarch_return_value (gdbarch, hppa64_return_value);
f5f907e2 2451 break;
fca7aa43
AC
2452 default:
2453 internal_error (__FILE__, __LINE__, "bad switch");
e963316f 2454 }
7f07c5b6 2455
85f4f2d8 2456 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
7f07c5b6 2457 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
85f4f2d8 2458
5979bc46 2459 /* Frame unwind methods. */
782eae8b
AC
2460 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2461 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
7f07c5b6 2462
50306a9d
RC
2463 /* Hook in ABI-specific overrides, if they have been registered. */
2464 gdbarch_init_osabi (info, gdbarch);
2465
7f07c5b6
RC
2466 /* Hook in the default unwinders. */
2467 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
782eae8b 2468 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
0da28f8a 2469 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
782eae8b 2470 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
5979bc46 2471
e6e68f1f
JB
2472 return gdbarch;
2473}
2474
2475static void
2476hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2477{
fdd72f95
RC
2478 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2479
2480 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2481 tdep->bytes_per_address);
2482 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
e6e68f1f
JB
2483}
2484
4facf7e8
JB
2485void
2486_initialize_hppa_tdep (void)
2487{
2488 struct cmd_list_element *c;
2489 void break_at_finish_command (char *arg, int from_tty);
2490 void tbreak_at_finish_command (char *arg, int from_tty);
2491 void break_at_finish_at_depth_command (char *arg, int from_tty);
2492
e6e68f1f 2493 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8 2494
7c46b9fb
RC
2495 hppa_objfile_priv_data = register_objfile_data ();
2496
4facf7e8
JB
2497 add_cmd ("unwind", class_maintenance, unwind_command,
2498 "Print unwind table entry at given address.",
2499 &maintenanceprintlist);
2500
2501 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2502 break_at_finish_command,
2503 concat ("Set breakpoint at procedure exit. \n\
2504Argument may be function name, or \"*\" and an address.\n\
2505If function is specified, break at end of code for that function.\n\
2506If an address is specified, break at the end of the function that contains \n\
2507that exact address.\n",
2508 "With no arg, uses current execution address of selected stack frame.\n\
2509This is useful for breaking on return to a stack frame.\n\
2510\n\
2511Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2512\n\
2513Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2514 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2515 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2516 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2517 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2518
2519 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2520 tbreak_at_finish_command,
2521"Set temporary breakpoint at procedure exit. Either there should\n\
2522be no argument or the argument must be a depth.\n"), NULL);
2523 set_cmd_completer (c, location_completer);
2524
2525 if (xdb_commands)
2526 deprecate_cmd (add_com ("bx", class_breakpoint,
2527 break_at_finish_at_depth_command,
2528"Set breakpoint at procedure exit. Either there should\n\
2529be no argument or the argument must be a depth.\n"), NULL);
369aa520
RC
2530
2531 /* Debug this files internals. */
2532 add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2533 &hppa_debug, "Set hppa debugging.\n\
2534When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist);
4facf7e8
JB
2535}
2536
This page took 0.541396 seconds and 4 git commands to generate.