2005-07-21 Eric Christopher <echristo@apple.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4754a64e 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
931aecf5 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798 265 This function is 64-bit safe. */
63c0089f
MK
266
267static const gdb_byte *
acd5c798 268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
63c0089f
MK
270 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
271
acd5c798
MK
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
772562f8 292 LONGEST sp_offset;
acd5c798
MK
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
63c0089f 338 gdb_byte op;
acd5c798
MK
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
63c0089f
MK
400 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
401 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 gdb_byte buf[4];
403 gdb_byte op;
c906108c 404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798 448 etc. */
63c0089f
MK
449 gdb_byte buf[8];
450 gdb_byte op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
37bdc87e
MK
475/* Maximum instruction length we need to handle. */
476#define I386_MAX_INSN_LEN 6
477
478/* Instruction description. */
479struct i386_insn
480{
481 size_t len;
63c0089f
MK
482 gdb_byte insn[I386_MAX_INSN_LEN];
483 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493 struct i386_insn *insn;
63c0089f 494 gdb_byte op;
37bdc87e
MK
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
613e8135
MK
502 gdb_byte buf[I386_MAX_INSN_LEN - 1];
503 int insn_matched = 1;
37bdc87e
MK
504 size_t i;
505
506 gdb_assert (insn->len > 1);
507 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
508
509 read_memory (pc + 1, buf, insn->len - 1);
510 for (i = 1; i < insn->len; i++)
511 {
512 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 513 insn_matched = 0;
37bdc87e 514 }
613e8135
MK
515
516 if (insn_matched)
517 return insn;
37bdc87e
MK
518 }
519 }
520
521 return NULL;
522}
523
524/* Some special instructions that might be migrated by GCC into the
525 part of the prologue that sets up the new stack frame. Because the
526 stack frame hasn't been setup yet, no registers have been saved
527 yet, and only the scratch registers %eax, %ecx and %edx can be
528 touched. */
529
530struct i386_insn i386_frame_setup_skip_insns[] =
531{
532 /* Check for `movb imm8, r' and `movl imm32, r'.
533
534 ??? Should we handle 16-bit operand-sizes here? */
535
536 /* `movb imm8, %al' and `movb imm8, %ah' */
537 /* `movb imm8, %cl' and `movb imm8, %ch' */
538 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
539 /* `movb imm8, %dl' and `movb imm8, %dh' */
540 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
541 /* `movl imm32, %eax' and `movl imm32, %ecx' */
542 { 5, { 0xb8 }, { 0xfe } },
543 /* `movl imm32, %edx' */
544 { 5, { 0xba }, { 0xff } },
545
546 /* Check for `mov imm32, r32'. Note that there is an alternative
547 encoding for `mov m32, %eax'.
548
549 ??? Should we handle SIB adressing here?
550 ??? Should we handle 16-bit operand-sizes here? */
551
552 /* `movl m32, %eax' */
553 { 5, { 0xa1 }, { 0xff } },
554 /* `movl m32, %eax' and `mov; m32, %ecx' */
555 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
556 /* `movl m32, %edx' */
557 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
558
559 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
560 Because of the symmetry, there are actually two ways to encode
561 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
562 opcode bytes 0x31 and 0x33 for `xorl'. */
563
564 /* `subl %eax, %eax' */
565 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
566 /* `subl %ecx, %ecx' */
567 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
568 /* `subl %edx, %edx' */
569 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
570 /* `xorl %eax, %eax' */
571 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
572 /* `xorl %ecx, %ecx' */
573 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
574 /* `xorl %edx, %edx' */
575 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
576 { 0 }
577};
578
acd5c798
MK
579/* Check whether PC points at a code that sets up a new stack frame.
580 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
581 instruction after the sequence that sets up the frame or LIMIT,
582 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
583
584static CORE_ADDR
37bdc87e 585i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
586 struct i386_frame_cache *cache)
587{
37bdc87e 588 struct i386_insn *insn;
63c0089f 589 gdb_byte op;
26604a34 590 int skip = 0;
acd5c798 591
37bdc87e
MK
592 if (limit <= pc)
593 return limit;
acd5c798
MK
594
595 op = read_memory_unsigned_integer (pc, 1);
596
c906108c 597 if (op == 0x55) /* pushl %ebp */
c5aa993b 598 {
acd5c798
MK
599 /* Take into account that we've executed the `pushl %ebp' that
600 starts this instruction sequence. */
fd13a04a 601 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 602 cache->sp_offset += 4;
37bdc87e 603 pc++;
acd5c798
MK
604
605 /* If that's all, return now. */
37bdc87e
MK
606 if (limit <= pc)
607 return limit;
26604a34 608
b4632131 609 /* Check for some special instructions that might be migrated by
37bdc87e
MK
610 GCC into the prologue and skip them. At this point in the
611 prologue, code should only touch the scratch registers %eax,
612 %ecx and %edx, so while the number of posibilities is sheer,
613 it is limited.
5daa5b4e 614
26604a34
MK
615 Make sure we only skip these instructions if we later see the
616 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 617 while (pc + skip < limit)
26604a34 618 {
37bdc87e
MK
619 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
620 if (insn == NULL)
621 break;
b4632131 622
37bdc87e 623 skip += insn->len;
26604a34
MK
624 }
625
37bdc87e
MK
626 /* If that's all, return now. */
627 if (limit <= pc + skip)
628 return limit;
629
630 op = read_memory_unsigned_integer (pc + skip, 1);
631
26604a34 632 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 633 switch (op)
c906108c
SS
634 {
635 case 0x8b:
37bdc87e
MK
636 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
637 return pc;
c906108c
SS
638 break;
639 case 0x89:
37bdc87e
MK
640 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
641 return pc;
c906108c
SS
642 break;
643 default:
37bdc87e 644 return pc;
c906108c 645 }
acd5c798 646
26604a34
MK
647 /* OK, we actually have a frame. We just don't know how large
648 it is yet. Set its size to zero. We'll adjust it if
649 necessary. We also now commit to skipping the special
650 instructions mentioned before. */
acd5c798 651 cache->locals = 0;
37bdc87e 652 pc += (skip + 2);
acd5c798
MK
653
654 /* If that's all, return now. */
37bdc87e
MK
655 if (limit <= pc)
656 return limit;
acd5c798 657
fc338970
MK
658 /* Check for stack adjustment
659
acd5c798 660 subl $XXX, %esp
fc338970 661
fd35795f 662 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 663 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 664 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
665 if (op == 0x83)
666 {
fd35795f 667 /* `subl' with 8-bit immediate. */
37bdc87e 668 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 669 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 670 return pc;
acd5c798 671
37bdc87e
MK
672 /* `subl' with signed 8-bit immediate (though it wouldn't
673 make sense to be negative). */
674 cache->locals = read_memory_integer (pc + 2, 1);
675 return pc + 3;
c906108c
SS
676 }
677 else if (op == 0x81)
678 {
fd35795f 679 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 680 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 681 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 682 return pc;
acd5c798 683
fd35795f 684 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
685 cache->locals = read_memory_integer (pc + 2, 4);
686 return pc + 6;
c906108c
SS
687 }
688 else
689 {
acd5c798 690 /* Some instruction other than `subl'. */
37bdc87e 691 return pc;
c906108c
SS
692 }
693 }
37bdc87e 694 else if (op == 0xc8) /* enter */
c906108c 695 {
acd5c798
MK
696 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
697 return pc + 4;
c906108c 698 }
21d0e8a4 699
acd5c798 700 return pc;
21d0e8a4
MK
701}
702
acd5c798
MK
703/* Check whether PC points at code that saves registers on the stack.
704 If so, it updates CACHE and returns the address of the first
705 instruction after the register saves or CURRENT_PC, whichever is
706 smaller. Otherwise, return PC. */
6bff26de
MK
707
708static CORE_ADDR
acd5c798
MK
709i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
710 struct i386_frame_cache *cache)
6bff26de 711{
99ab4326 712 CORE_ADDR offset = 0;
63c0089f 713 gdb_byte op;
99ab4326 714 int i;
c0d1d883 715
99ab4326
MK
716 if (cache->locals > 0)
717 offset -= cache->locals;
718 for (i = 0; i < 8 && pc < current_pc; i++)
719 {
720 op = read_memory_unsigned_integer (pc, 1);
721 if (op < 0x50 || op > 0x57)
722 break;
0d17c81d 723
99ab4326
MK
724 offset -= 4;
725 cache->saved_regs[op - 0x50] = offset;
726 cache->sp_offset += 4;
727 pc++;
6bff26de
MK
728 }
729
acd5c798 730 return pc;
22797942
AC
731}
732
acd5c798
MK
733/* Do a full analysis of the prologue at PC and update CACHE
734 accordingly. Bail out early if CURRENT_PC is reached. Return the
735 address where the analysis stopped.
ed84f6c1 736
fc338970
MK
737 We handle these cases:
738
739 The startup sequence can be at the start of the function, or the
740 function can start with a branch to startup code at the end.
741
742 %ebp can be set up with either the 'enter' instruction, or "pushl
743 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
744 once used in the System V compiler).
745
746 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
747 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
748 16-bit unsigned argument for space to allocate, and the 'addl'
749 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
750
751 Next, the registers used by this function are pushed. With the
752 System V compiler they will always be in the order: %edi, %esi,
753 %ebx (and sometimes a harmless bug causes it to also save but not
754 restore %eax); however, the code below is willing to see the pushes
755 in any order, and will handle up to 8 of them.
756
757 If the setup sequence is at the end of the function, then the next
758 instruction will be a branch back to the start. */
c906108c 759
acd5c798
MK
760static CORE_ADDR
761i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
762 struct i386_frame_cache *cache)
c906108c 763{
acd5c798
MK
764 pc = i386_follow_jump (pc);
765 pc = i386_analyze_struct_return (pc, current_pc, cache);
766 pc = i386_skip_probe (pc);
767 pc = i386_analyze_frame_setup (pc, current_pc, cache);
768 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
769}
770
fc338970 771/* Return PC of first real instruction. */
c906108c 772
3a1e71e3 773static CORE_ADDR
acd5c798 774i386_skip_prologue (CORE_ADDR start_pc)
c906108c 775{
63c0089f 776 static gdb_byte pic_pat[6] =
acd5c798
MK
777 {
778 0xe8, 0, 0, 0, 0, /* call 0x0 */
779 0x5b, /* popl %ebx */
c5aa993b 780 };
acd5c798
MK
781 struct i386_frame_cache cache;
782 CORE_ADDR pc;
63c0089f 783 gdb_byte op;
acd5c798 784 int i;
c5aa993b 785
acd5c798
MK
786 cache.locals = -1;
787 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
788 if (cache.locals < 0)
789 return start_pc;
c5aa993b 790
acd5c798 791 /* Found valid frame setup. */
c906108c 792
fc338970
MK
793 /* The native cc on SVR4 in -K PIC mode inserts the following code
794 to get the address of the global offset table (GOT) into register
acd5c798
MK
795 %ebx:
796
fc338970
MK
797 call 0x0
798 popl %ebx
799 movl %ebx,x(%ebp) (optional)
800 addl y,%ebx
801
c906108c
SS
802 This code is with the rest of the prologue (at the end of the
803 function), so we have to skip it to get to the first real
804 instruction at the start of the function. */
c5aa993b 805
c906108c
SS
806 for (i = 0; i < 6; i++)
807 {
acd5c798 808 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 809 if (pic_pat[i] != op)
c906108c
SS
810 break;
811 }
812 if (i == 6)
813 {
acd5c798
MK
814 int delta = 6;
815
816 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 817
c5aa993b 818 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 819 {
acd5c798
MK
820 op = read_memory_unsigned_integer (pc + delta + 1, 1);
821
fc338970 822 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 823 delta += 3;
fc338970 824 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 825 delta += 6;
fc338970 826 else /* Unexpected instruction. */
acd5c798
MK
827 delta = 0;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 830 }
acd5c798 831
c5aa993b 832 /* addl y,%ebx */
acd5c798
MK
833 if (delta > 0 && op == 0x81
834 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 835 {
acd5c798 836 pc += delta + 6;
c906108c
SS
837 }
838 }
c5aa993b 839
e63bbc88
MK
840 /* If the function starts with a branch (to startup code at the end)
841 the last instruction should bring us back to the first
842 instruction of the real code. */
843 if (i386_follow_jump (start_pc) != start_pc)
844 pc = i386_follow_jump (pc);
845
846 return pc;
c906108c
SS
847}
848
acd5c798 849/* This function is 64-bit safe. */
93924b6b 850
acd5c798
MK
851static CORE_ADDR
852i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 853{
63c0089f 854 gdb_byte buf[8];
acd5c798
MK
855
856 frame_unwind_register (next_frame, PC_REGNUM, buf);
857 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 858}
acd5c798 859\f
93924b6b 860
acd5c798 861/* Normal frames. */
c5aa993b 862
acd5c798
MK
863static struct i386_frame_cache *
864i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 865{
acd5c798 866 struct i386_frame_cache *cache;
63c0089f 867 gdb_byte buf[4];
acd5c798
MK
868 int i;
869
870 if (*this_cache)
871 return *this_cache;
872
fd13a04a 873 cache = i386_alloc_frame_cache ();
acd5c798
MK
874 *this_cache = cache;
875
876 /* In principle, for normal frames, %ebp holds the frame pointer,
877 which holds the base address for the current stack frame.
878 However, for functions that don't need it, the frame pointer is
879 optional. For these "frameless" functions the frame pointer is
880 actually the frame pointer of the calling frame. Signal
881 trampolines are just a special case of a "frameless" function.
882 They (usually) share their frame pointer with the frame that was
883 in progress when the signal occurred. */
884
885 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
886 cache->base = extract_unsigned_integer (buf, 4);
887 if (cache->base == 0)
888 return cache;
889
890 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 891 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
892
893 cache->pc = frame_func_unwind (next_frame);
894 if (cache->pc != 0)
895 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
896
897 if (cache->locals < 0)
898 {
899 /* We didn't find a valid frame, which means that CACHE->base
900 currently holds the frame pointer for our calling frame. If
901 we're at the start of a function, or somewhere half-way its
902 prologue, the function's frame probably hasn't been fully
903 setup yet. Try to reconstruct the base address for the stack
904 frame by looking at the stack pointer. For truly "frameless"
905 functions this might work too. */
906
907 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
908 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
909 }
910
911 /* Now that we have the base address for the stack frame we can
912 calculate the value of %esp in the calling frame. */
913 cache->saved_sp = cache->base + 8;
a7769679 914
acd5c798
MK
915 /* Adjust all the saved registers such that they contain addresses
916 instead of offsets. */
917 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
918 if (cache->saved_regs[i] != -1)
919 cache->saved_regs[i] += cache->base;
acd5c798
MK
920
921 return cache;
a7769679
MK
922}
923
3a1e71e3 924static void
acd5c798
MK
925i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
926 struct frame_id *this_id)
c906108c 927{
acd5c798
MK
928 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
929
930 /* This marks the outermost frame. */
931 if (cache->base == 0)
932 return;
933
3e210248 934 /* See the end of i386_push_dummy_call. */
acd5c798
MK
935 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
936}
937
938static void
939i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
940 int regnum, int *optimizedp,
941 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 942 int *realnump, gdb_byte *valuep)
acd5c798
MK
943{
944 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
945
946 gdb_assert (regnum >= 0);
947
948 /* The System V ABI says that:
949
950 "The flags register contains the system flags, such as the
951 direction flag and the carry flag. The direction flag must be
952 set to the forward (that is, zero) direction before entry and
953 upon exit from a function. Other user flags have no specified
954 role in the standard calling sequence and are not preserved."
955
956 To guarantee the "upon exit" part of that statement we fake a
957 saved flags register that has its direction flag cleared.
958
959 Note that GCC doesn't seem to rely on the fact that the direction
960 flag is cleared after a function return; it always explicitly
961 clears the flag before operations where it matters.
962
963 FIXME: kettenis/20030316: I'm not quite sure whether this is the
964 right thing to do. The way we fake the flags register here makes
965 it impossible to change it. */
966
967 if (regnum == I386_EFLAGS_REGNUM)
968 {
969 *optimizedp = 0;
970 *lvalp = not_lval;
971 *addrp = 0;
972 *realnump = -1;
973 if (valuep)
974 {
975 ULONGEST val;
c5aa993b 976
acd5c798 977 /* Clear the direction flag. */
f837910f
MK
978 val = frame_unwind_register_unsigned (next_frame,
979 I386_EFLAGS_REGNUM);
acd5c798
MK
980 val &= ~(1 << 10);
981 store_unsigned_integer (valuep, 4, val);
982 }
983
984 return;
985 }
1211c4e4 986
acd5c798 987 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 988 {
00b25ff3
AC
989 *optimizedp = 0;
990 *lvalp = lval_register;
991 *addrp = 0;
992 *realnump = I386_EAX_REGNUM;
993 if (valuep)
994 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
995 return;
996 }
997
998 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
999 {
1000 *optimizedp = 0;
1001 *lvalp = not_lval;
1002 *addrp = 0;
1003 *realnump = -1;
1004 if (valuep)
c906108c 1005 {
acd5c798
MK
1006 /* Store the value. */
1007 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1008 }
acd5c798 1009 return;
c906108c 1010 }
acd5c798 1011
fd13a04a
AC
1012 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1013 {
1014 *optimizedp = 0;
1015 *lvalp = lval_memory;
1016 *addrp = cache->saved_regs[regnum];
1017 *realnump = -1;
1018 if (valuep)
1019 {
1020 /* Read the value in from memory. */
1021 read_memory (*addrp, valuep,
1022 register_size (current_gdbarch, regnum));
1023 }
1024 return;
1025 }
1026
00b25ff3
AC
1027 *optimizedp = 0;
1028 *lvalp = lval_register;
1029 *addrp = 0;
1030 *realnump = regnum;
1031 if (valuep)
1032 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1033}
1034
1035static const struct frame_unwind i386_frame_unwind =
1036{
1037 NORMAL_FRAME,
1038 i386_frame_this_id,
1039 i386_frame_prev_register
1040};
1041
1042static const struct frame_unwind *
336d1bba 1043i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1044{
1045 return &i386_frame_unwind;
1046}
1047\f
1048
1049/* Signal trampolines. */
1050
1051static struct i386_frame_cache *
1052i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1053{
1054 struct i386_frame_cache *cache;
1055 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1056 CORE_ADDR addr;
63c0089f 1057 gdb_byte buf[4];
acd5c798
MK
1058
1059 if (*this_cache)
1060 return *this_cache;
1061
fd13a04a 1062 cache = i386_alloc_frame_cache ();
acd5c798
MK
1063
1064 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1065 cache->base = extract_unsigned_integer (buf, 4) - 4;
1066
1067 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1068 if (tdep->sc_reg_offset)
1069 {
1070 int i;
1071
1072 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1073
1074 for (i = 0; i < tdep->sc_num_regs; i++)
1075 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1076 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1077 }
1078 else
1079 {
fd13a04a
AC
1080 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1081 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1082 }
acd5c798
MK
1083
1084 *this_cache = cache;
1085 return cache;
1086}
1087
1088static void
1089i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1090 struct frame_id *this_id)
1091{
1092 struct i386_frame_cache *cache =
1093 i386_sigtramp_frame_cache (next_frame, this_cache);
1094
3e210248 1095 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1096 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1097}
1098
1099static void
1100i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1101 void **this_cache,
1102 int regnum, int *optimizedp,
1103 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1104 int *realnump, gdb_byte *valuep)
acd5c798
MK
1105{
1106 /* Make sure we've initialized the cache. */
1107 i386_sigtramp_frame_cache (next_frame, this_cache);
1108
1109 i386_frame_prev_register (next_frame, this_cache, regnum,
1110 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1111}
c0d1d883 1112
acd5c798
MK
1113static const struct frame_unwind i386_sigtramp_frame_unwind =
1114{
1115 SIGTRAMP_FRAME,
1116 i386_sigtramp_frame_this_id,
1117 i386_sigtramp_frame_prev_register
1118};
1119
1120static const struct frame_unwind *
336d1bba 1121i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1122{
911bc6ee 1123 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1124
911bc6ee
MK
1125 /* We shouldn't even bother if we don't have a sigcontext_addr
1126 handler. */
1127 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1128 return NULL;
1129
911bc6ee
MK
1130 if (tdep->sigtramp_p != NULL)
1131 {
1132 if (tdep->sigtramp_p (next_frame))
1133 return &i386_sigtramp_frame_unwind;
1134 }
1135
1136 if (tdep->sigtramp_start != 0)
1137 {
1138 CORE_ADDR pc = frame_pc_unwind (next_frame);
1139
1140 gdb_assert (tdep->sigtramp_end != 0);
1141 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1142 return &i386_sigtramp_frame_unwind;
1143 }
acd5c798
MK
1144
1145 return NULL;
1146}
1147\f
1148
1149static CORE_ADDR
1150i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1151{
1152 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1153
1154 return cache->base;
1155}
1156
1157static const struct frame_base i386_frame_base =
1158{
1159 &i386_frame_unwind,
1160 i386_frame_base_address,
1161 i386_frame_base_address,
1162 i386_frame_base_address
1163};
1164
acd5c798
MK
1165static struct frame_id
1166i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167{
63c0089f 1168 gdb_byte buf[4];
acd5c798
MK
1169 CORE_ADDR fp;
1170
1171 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1172 fp = extract_unsigned_integer (buf, 4);
1173
3e210248 1174 /* See the end of i386_push_dummy_call. */
acd5c798 1175 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1176}
fc338970 1177\f
c906108c 1178
fc338970
MK
1179/* Figure out where the longjmp will land. Slurp the args out of the
1180 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1181 structure from which we extract the address that we will land at.
28bcfd30 1182 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1183 success.
1184
1185 This function is 64-bit safe. */
c906108c 1186
8201327c
MK
1187static int
1188i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1189{
63c0089f 1190 gdb_byte buf[8];
c906108c 1191 CORE_ADDR sp, jb_addr;
8201327c 1192 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1193 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1194
8201327c
MK
1195 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1196 longjmp will land. */
1197 if (jb_pc_offset == -1)
c906108c
SS
1198 return 0;
1199
f837910f
MK
1200 /* Don't use I386_ESP_REGNUM here, since this function is also used
1201 for AMD64. */
1202 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1203 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1204 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1205 return 0;
1206
f837910f 1207 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1208 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1209 return 0;
c906108c 1210
f9d3c2a8 1211 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1212 return 1;
1213}
fc338970 1214\f
c906108c 1215
3a1e71e3 1216static CORE_ADDR
7d9b040b 1217i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1218 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1219 struct value **args, CORE_ADDR sp, int struct_return,
1220 CORE_ADDR struct_addr)
22f8ba57 1221{
63c0089f 1222 gdb_byte buf[4];
acd5c798
MK
1223 int i;
1224
1225 /* Push arguments in reverse order. */
1226 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1227 {
4754a64e 1228 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1229
1230 /* The System V ABI says that:
1231
1232 "An argument's size is increased, if necessary, to make it a
1233 multiple of [32-bit] words. This may require tail padding,
1234 depending on the size of the argument."
1235
1236 This makes sure the stack says word-aligned. */
1237 sp -= (len + 3) & ~3;
46615f07 1238 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1239 }
22f8ba57 1240
acd5c798
MK
1241 /* Push value address. */
1242 if (struct_return)
1243 {
22f8ba57 1244 sp -= 4;
fbd9dcd3 1245 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1246 write_memory (sp, buf, 4);
1247 }
1248
acd5c798
MK
1249 /* Store return address. */
1250 sp -= 4;
6a65450a 1251 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1252 write_memory (sp, buf, 4);
1253
1254 /* Finally, update the stack pointer... */
1255 store_unsigned_integer (buf, 4, sp);
1256 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1257
1258 /* ...and fake a frame pointer. */
1259 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1260
3e210248
AC
1261 /* MarkK wrote: This "+ 8" is all over the place:
1262 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1263 i386_unwind_dummy_id). It's there, since all frame unwinders for
1264 a given target have to agree (within a certain margin) on the
fd35795f 1265 definition of the stack address of a frame. Otherwise
3e210248
AC
1266 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1267 stack address *before* the function call as a frame's CFA. On
1268 the i386, when %ebp is used as a frame pointer, the offset
1269 between the contents %ebp and the CFA as defined by GCC. */
1270 return sp + 8;
22f8ba57
MK
1271}
1272
1a309862
MK
1273/* These registers are used for returning integers (and on some
1274 targets also for returning `struct' and `union' values when their
ef9dff19 1275 size and alignment match an integer type). */
acd5c798
MK
1276#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1277#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1278
c5e656c1
MK
1279/* Read, for architecture GDBARCH, a function return value of TYPE
1280 from REGCACHE, and copy that into VALBUF. */
1a309862 1281
3a1e71e3 1282static void
c5e656c1 1283i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1284 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1285{
c5e656c1 1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1287 int len = TYPE_LENGTH (type);
63c0089f 1288 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1289
1e8d0a7b 1290 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1291 {
5716833c 1292 if (tdep->st0_regnum < 0)
1a309862 1293 {
8a3fe4f8 1294 warning (_("Cannot find floating-point return value."));
1a309862 1295 memset (valbuf, 0, len);
ef9dff19 1296 return;
1a309862
MK
1297 }
1298
c6ba6f0d
MK
1299 /* Floating-point return values can be found in %st(0). Convert
1300 its contents to the desired type. This is probably not
1301 exactly how it would happen on the target itself, but it is
1302 the best we can do. */
acd5c798 1303 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1304 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1305 }
1306 else
c5aa993b 1307 {
f837910f
MK
1308 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1309 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1310
1311 if (len <= low_size)
00f8375e 1312 {
0818c12a 1313 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1314 memcpy (valbuf, buf, len);
1315 }
d4f3574e
SS
1316 else if (len <= (low_size + high_size))
1317 {
0818c12a 1318 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1319 memcpy (valbuf, buf, low_size);
0818c12a 1320 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1321 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1322 }
1323 else
8e65ff28 1324 internal_error (__FILE__, __LINE__,
e2e0b3e5 1325 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1326 }
1327}
1328
c5e656c1
MK
1329/* Write, for architecture GDBARCH, a function return value of TYPE
1330 from VALBUF into REGCACHE. */
ef9dff19 1331
3a1e71e3 1332static void
c5e656c1 1333i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1334 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1335{
c5e656c1 1336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1337 int len = TYPE_LENGTH (type);
1338
5716833c
MK
1339 /* Define I387_ST0_REGNUM such that we use the proper definitions
1340 for the architecture. */
1341#define I387_ST0_REGNUM I386_ST0_REGNUM
1342
1e8d0a7b 1343 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1344 {
3d7f4f49 1345 ULONGEST fstat;
63c0089f 1346 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1347
5716833c 1348 if (tdep->st0_regnum < 0)
ef9dff19 1349 {
8a3fe4f8 1350 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1351 return;
1352 }
1353
635b0cc1
MK
1354 /* Returning floating-point values is a bit tricky. Apart from
1355 storing the return value in %st(0), we have to simulate the
1356 state of the FPU at function return point. */
1357
c6ba6f0d
MK
1358 /* Convert the value found in VALBUF to the extended
1359 floating-point format used by the FPU. This is probably
1360 not exactly how it would happen on the target itself, but
1361 it is the best we can do. */
1362 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1363 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1364
635b0cc1
MK
1365 /* Set the top of the floating-point register stack to 7. The
1366 actual value doesn't really matter, but 7 is what a normal
1367 function return would end up with if the program started out
1368 with a freshly initialized FPU. */
5716833c 1369 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1370 fstat |= (7 << 11);
5716833c 1371 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1372
635b0cc1
MK
1373 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1374 the floating-point register stack to 7, the appropriate value
1375 for the tag word is 0x3fff. */
5716833c 1376 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1377 }
1378 else
1379 {
f837910f
MK
1380 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1381 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1382
1383 if (len <= low_size)
3d7f4f49 1384 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1385 else if (len <= (low_size + high_size))
1386 {
3d7f4f49
MK
1387 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1388 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1389 len - low_size, valbuf + low_size);
ef9dff19
MK
1390 }
1391 else
8e65ff28 1392 internal_error (__FILE__, __LINE__,
e2e0b3e5 1393 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1394 }
5716833c
MK
1395
1396#undef I387_ST0_REGNUM
ef9dff19 1397}
fc338970 1398\f
ef9dff19 1399
8201327c
MK
1400/* This is the variable that is set with "set struct-convention", and
1401 its legitimate values. */
1402static const char default_struct_convention[] = "default";
1403static const char pcc_struct_convention[] = "pcc";
1404static const char reg_struct_convention[] = "reg";
1405static const char *valid_conventions[] =
1406{
1407 default_struct_convention,
1408 pcc_struct_convention,
1409 reg_struct_convention,
1410 NULL
1411};
1412static const char *struct_convention = default_struct_convention;
1413
c5e656c1
MK
1414/* Return non-zero if TYPE, which is assumed to be a structure or
1415 union type, should be returned in registers for architecture
1416 GDBARCH. */
1417
8201327c 1418static int
c5e656c1 1419i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1420{
c5e656c1
MK
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 enum type_code code = TYPE_CODE (type);
1423 int len = TYPE_LENGTH (type);
8201327c 1424
c5e656c1
MK
1425 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1426
1427 if (struct_convention == pcc_struct_convention
1428 || (struct_convention == default_struct_convention
1429 && tdep->struct_return == pcc_struct_return))
1430 return 0;
1431
9edde48e
MK
1432 /* Structures consisting of a single `float', `double' or 'long
1433 double' member are returned in %st(0). */
1434 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1435 {
1436 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1437 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1438 return (len == 4 || len == 8 || len == 12);
1439 }
1440
c5e656c1
MK
1441 return (len == 1 || len == 2 || len == 4 || len == 8);
1442}
1443
1444/* Determine, for architecture GDBARCH, how a return value of TYPE
1445 should be returned. If it is supposed to be returned in registers,
1446 and READBUF is non-zero, read the appropriate value from REGCACHE,
1447 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1448 from WRITEBUF into REGCACHE. */
1449
1450static enum return_value_convention
1451i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1452 struct regcache *regcache, gdb_byte *readbuf,
1453 const gdb_byte *writebuf)
c5e656c1
MK
1454{
1455 enum type_code code = TYPE_CODE (type);
1456
1457 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1458 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1459 {
1460 /* The System V ABI says that:
1461
1462 "A function that returns a structure or union also sets %eax
1463 to the value of the original address of the caller's area
1464 before it returns. Thus when the caller receives control
1465 again, the address of the returned object resides in register
1466 %eax and can be used to access the object."
1467
1468 So the ABI guarantees that we can always find the return
1469 value just after the function has returned. */
1470
1471 if (readbuf)
1472 {
1473 ULONGEST addr;
1474
1475 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1476 read_memory (addr, readbuf, TYPE_LENGTH (type));
1477 }
1478
1479 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1480 }
c5e656c1
MK
1481
1482 /* This special case is for structures consisting of a single
9edde48e
MK
1483 `float', `double' or 'long double' member. These structures are
1484 returned in %st(0). For these structures, we call ourselves
1485 recursively, changing TYPE into the type of the first member of
1486 the structure. Since that should work for all structures that
1487 have only one member, we don't bother to check the member's type
1488 here. */
c5e656c1
MK
1489 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1490 {
1491 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1492 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1493 }
1494
1495 if (readbuf)
1496 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1497 if (writebuf)
1498 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1499
c5e656c1 1500 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1501}
1502\f
1503
21b4b2f2
JB
1504/* Types for the MMX and SSE registers. */
1505static struct type *i386_mmx_type;
1506static struct type *i386_sse_type;
1507
1508/* Construct the type for MMX registers. */
1509static struct type *
1510i386_build_mmx_type (void)
1511{
1512 /* The type we're building is this: */
1513#if 0
1514 union __gdb_builtin_type_vec64i
1515 {
1516 int64_t uint64;
1517 int32_t v2_int32[2];
1518 int16_t v4_int16[4];
1519 int8_t v8_int8[8];
1520 };
1521#endif
1522
1523 if (! i386_mmx_type)
1524 {
1525 struct type *t;
1526
1527 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1528 append_composite_type_field (t, "uint64", builtin_type_int64);
1529 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
1530 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
1531 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
1532
1533 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1534 TYPE_NAME (t) = "builtin_type_vec64i";
1535
1536 i386_mmx_type = t;
1537 }
1538
1539 return i386_mmx_type;
1540}
1541
1542/* Construct the type for SSE registers. */
1543static struct type *
1544i386_build_sse_type (void)
1545{
1546 if (! i386_sse_type)
1547 {
1548 struct type *t;
1549
1550 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1551 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
1552 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
1553 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
1554 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
1555 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
1556 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
1557 append_composite_type_field (t, "uint128", builtin_type_int128);
1558
1559 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1560 TYPE_NAME (t) = "builtin_type_vec128i";
1561
1562 i386_sse_type = t;
1563 }
1564
1565 return i386_sse_type;
1566}
1567
d7a0d72c
MK
1568/* Return the GDB type object for the "standard" data type of data in
1569 register REGNUM. Perhaps %esi and %edi should go here, but
1570 potentially they could be used for things other than address. */
1571
3a1e71e3 1572static struct type *
4e259f09 1573i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1574{
ab533587
MK
1575 if (regnum == I386_EIP_REGNUM)
1576 return builtin_type_void_func_ptr;
1577
1578 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1579 return builtin_type_void_data_ptr;
d7a0d72c 1580
23a34459 1581 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1582 return builtin_type_i387_ext;
d7a0d72c 1583
5716833c 1584 if (i386_sse_regnum_p (gdbarch, regnum))
21b4b2f2 1585 return i386_build_sse_type ();
d7a0d72c 1586
5716833c 1587 if (i386_mmx_regnum_p (gdbarch, regnum))
21b4b2f2 1588 return i386_build_mmx_type ();
28fc6740 1589
d7a0d72c
MK
1590 return builtin_type_int;
1591}
1592
28fc6740 1593/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1594 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1595
1596static int
c86c27af 1597i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1598{
5716833c
MK
1599 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1600 int mmxreg, fpreg;
28fc6740
AC
1601 ULONGEST fstat;
1602 int tos;
c86c27af 1603
5716833c
MK
1604 /* Define I387_ST0_REGNUM such that we use the proper definitions
1605 for REGCACHE's architecture. */
1606#define I387_ST0_REGNUM tdep->st0_regnum
1607
1608 mmxreg = regnum - tdep->mm0_regnum;
1609 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1610 tos = (fstat >> 11) & 0x7;
5716833c
MK
1611 fpreg = (mmxreg + tos) % 8;
1612
1613 return (I387_ST0_REGNUM + fpreg);
c86c27af 1614
5716833c 1615#undef I387_ST0_REGNUM
28fc6740
AC
1616}
1617
1618static void
1619i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1620 int regnum, gdb_byte *buf)
28fc6740 1621{
5716833c 1622 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1623 {
63c0089f 1624 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1625 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1626
28fc6740 1627 /* Extract (always little endian). */
c86c27af 1628 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1629 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1630 }
1631 else
1632 regcache_raw_read (regcache, regnum, buf);
1633}
1634
1635static void
1636i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1637 int regnum, const gdb_byte *buf)
28fc6740 1638{
5716833c 1639 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1640 {
63c0089f 1641 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1642 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1643
28fc6740
AC
1644 /* Read ... */
1645 regcache_raw_read (regcache, fpnum, mmx_buf);
1646 /* ... Modify ... (always little endian). */
f837910f 1647 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1648 /* ... Write. */
1649 regcache_raw_write (regcache, fpnum, mmx_buf);
1650 }
1651 else
1652 regcache_raw_write (regcache, regnum, buf);
1653}
ff2e87ac
AC
1654\f
1655
ff2e87ac
AC
1656/* Return the register number of the register allocated by GCC after
1657 REGNUM, or -1 if there is no such register. */
1658
1659static int
1660i386_next_regnum (int regnum)
1661{
1662 /* GCC allocates the registers in the order:
1663
1664 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1665
1666 Since storing a variable in %esp doesn't make any sense we return
1667 -1 for %ebp and for %esp itself. */
1668 static int next_regnum[] =
1669 {
1670 I386_EDX_REGNUM, /* Slot for %eax. */
1671 I386_EBX_REGNUM, /* Slot for %ecx. */
1672 I386_ECX_REGNUM, /* Slot for %edx. */
1673 I386_ESI_REGNUM, /* Slot for %ebx. */
1674 -1, -1, /* Slots for %esp and %ebp. */
1675 I386_EDI_REGNUM, /* Slot for %esi. */
1676 I386_EBP_REGNUM /* Slot for %edi. */
1677 };
1678
de5b9bb9 1679 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1680 return next_regnum[regnum];
28fc6740 1681
ff2e87ac
AC
1682 return -1;
1683}
1684
1685/* Return nonzero if a value of type TYPE stored in register REGNUM
1686 needs any special handling. */
d7a0d72c 1687
3a1e71e3 1688static int
ff2e87ac 1689i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1690{
de5b9bb9
MK
1691 int len = TYPE_LENGTH (type);
1692
ff2e87ac
AC
1693 /* Values may be spread across multiple registers. Most debugging
1694 formats aren't expressive enough to specify the locations, so
1695 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1696 have a length that is a multiple of the word size, since GCC
1697 doesn't seem to put any other types into registers. */
1698 if (len > 4 && len % 4 == 0)
1699 {
1700 int last_regnum = regnum;
1701
1702 while (len > 4)
1703 {
1704 last_regnum = i386_next_regnum (last_regnum);
1705 len -= 4;
1706 }
1707
1708 if (last_regnum != -1)
1709 return 1;
1710 }
ff2e87ac 1711
23a34459 1712 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1713}
1714
ff2e87ac
AC
1715/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1716 return its contents in TO. */
ac27f131 1717
3a1e71e3 1718static void
ff2e87ac 1719i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1720 struct type *type, gdb_byte *to)
ac27f131 1721{
de5b9bb9 1722 int len = TYPE_LENGTH (type);
de5b9bb9 1723
ff2e87ac
AC
1724 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1725 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1726
ff2e87ac 1727 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1728 {
d532c08f
MK
1729 i387_register_to_value (frame, regnum, type, to);
1730 return;
8d7f6b4a 1731 }
ff2e87ac 1732
fd35795f 1733 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1734
1735 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1736
de5b9bb9
MK
1737 while (len > 0)
1738 {
1739 gdb_assert (regnum != -1);
1740 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1741
42835c2b 1742 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1743 regnum = i386_next_regnum (regnum);
1744 len -= 4;
42835c2b 1745 to += 4;
de5b9bb9 1746 }
ac27f131
MK
1747}
1748
ff2e87ac
AC
1749/* Write the contents FROM of a value of type TYPE into register
1750 REGNUM in frame FRAME. */
ac27f131 1751
3a1e71e3 1752static void
ff2e87ac 1753i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1754 struct type *type, const gdb_byte *from)
ac27f131 1755{
de5b9bb9 1756 int len = TYPE_LENGTH (type);
de5b9bb9 1757
ff2e87ac 1758 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1759 {
d532c08f
MK
1760 i387_value_to_register (frame, regnum, type, from);
1761 return;
1762 }
3d261580 1763
fd35795f 1764 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1765
1766 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1767
de5b9bb9
MK
1768 while (len > 0)
1769 {
1770 gdb_assert (regnum != -1);
1771 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1772
42835c2b 1773 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1774 regnum = i386_next_regnum (regnum);
1775 len -= 4;
42835c2b 1776 from += 4;
de5b9bb9 1777 }
ac27f131 1778}
ff2e87ac 1779\f
7fdafb5a
MK
1780/* Supply register REGNUM from the buffer specified by GREGS and LEN
1781 in the general-purpose register set REGSET to register cache
1782 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1783
20187ed5 1784void
473f17b0
MK
1785i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1786 int regnum, const void *gregs, size_t len)
1787{
9ea75c57 1788 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1789 const gdb_byte *regs = gregs;
473f17b0
MK
1790 int i;
1791
1792 gdb_assert (len == tdep->sizeof_gregset);
1793
1794 for (i = 0; i < tdep->gregset_num_regs; i++)
1795 {
1796 if ((regnum == i || regnum == -1)
1797 && tdep->gregset_reg_offset[i] != -1)
1798 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1799 }
1800}
1801
7fdafb5a
MK
1802/* Collect register REGNUM from the register cache REGCACHE and store
1803 it in the buffer specified by GREGS and LEN as described by the
1804 general-purpose register set REGSET. If REGNUM is -1, do this for
1805 all registers in REGSET. */
1806
1807void
1808i386_collect_gregset (const struct regset *regset,
1809 const struct regcache *regcache,
1810 int regnum, void *gregs, size_t len)
1811{
1812 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1813 gdb_byte *regs = gregs;
7fdafb5a
MK
1814 int i;
1815
1816 gdb_assert (len == tdep->sizeof_gregset);
1817
1818 for (i = 0; i < tdep->gregset_num_regs; i++)
1819 {
1820 if ((regnum == i || regnum == -1)
1821 && tdep->gregset_reg_offset[i] != -1)
1822 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1823 }
1824}
1825
1826/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1827 in the floating-point register set REGSET to register cache
1828 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1829
1830static void
1831i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1832 int regnum, const void *fpregs, size_t len)
1833{
9ea75c57 1834 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1835
66a72d25
MK
1836 if (len == I387_SIZEOF_FXSAVE)
1837 {
1838 i387_supply_fxsave (regcache, regnum, fpregs);
1839 return;
1840 }
1841
473f17b0
MK
1842 gdb_assert (len == tdep->sizeof_fpregset);
1843 i387_supply_fsave (regcache, regnum, fpregs);
1844}
8446b36a 1845
2f305df1
MK
1846/* Collect register REGNUM from the register cache REGCACHE and store
1847 it in the buffer specified by FPREGS and LEN as described by the
1848 floating-point register set REGSET. If REGNUM is -1, do this for
1849 all registers in REGSET. */
7fdafb5a
MK
1850
1851static void
1852i386_collect_fpregset (const struct regset *regset,
1853 const struct regcache *regcache,
1854 int regnum, void *fpregs, size_t len)
1855{
1856 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1857
1858 if (len == I387_SIZEOF_FXSAVE)
1859 {
1860 i387_collect_fxsave (regcache, regnum, fpregs);
1861 return;
1862 }
1863
1864 gdb_assert (len == tdep->sizeof_fpregset);
1865 i387_collect_fsave (regcache, regnum, fpregs);
1866}
1867
8446b36a
MK
1868/* Return the appropriate register set for the core section identified
1869 by SECT_NAME and SECT_SIZE. */
1870
1871const struct regset *
1872i386_regset_from_core_section (struct gdbarch *gdbarch,
1873 const char *sect_name, size_t sect_size)
1874{
1875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1876
1877 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1878 {
1879 if (tdep->gregset == NULL)
7fdafb5a
MK
1880 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1881 i386_collect_gregset);
8446b36a
MK
1882 return tdep->gregset;
1883 }
1884
66a72d25
MK
1885 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1886 || (strcmp (sect_name, ".reg-xfp") == 0
1887 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1888 {
1889 if (tdep->fpregset == NULL)
7fdafb5a
MK
1890 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1891 i386_collect_fpregset);
8446b36a
MK
1892 return tdep->fpregset;
1893 }
1894
1895 return NULL;
1896}
473f17b0 1897\f
fc338970 1898
c906108c 1899#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1900/* SunPRO encodes the static variables. This is not related to C++
1901 mangling, it is done for C too. */
c906108c
SS
1902
1903char *
fba45db2 1904sunpro_static_transform_name (char *name)
c906108c
SS
1905{
1906 char *p;
1907 if (IS_STATIC_TRANSFORM_NAME (name))
1908 {
fc338970
MK
1909 /* For file-local statics there will be a period, a bunch of
1910 junk (the contents of which match a string given in the
c5aa993b
JM
1911 N_OPT), a period and the name. For function-local statics
1912 there will be a bunch of junk (which seems to change the
1913 second character from 'A' to 'B'), a period, the name of the
1914 function, and the name. So just skip everything before the
1915 last period. */
c906108c
SS
1916 p = strrchr (name, '.');
1917 if (p != NULL)
1918 name = p + 1;
1919 }
1920 return name;
1921}
1922#endif /* STATIC_TRANSFORM_NAME */
fc338970 1923\f
c906108c 1924
fc338970 1925/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1926
1927CORE_ADDR
1cce71eb 1928i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1929{
fc338970 1930 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1931 {
c5aa993b 1932 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1933 struct minimal_symbol *indsym =
fc338970 1934 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1935 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1936
c5aa993b 1937 if (symname)
c906108c 1938 {
c5aa993b
JM
1939 if (strncmp (symname, "__imp_", 6) == 0
1940 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1941 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1942 }
1943 }
fc338970 1944 return 0; /* Not a trampoline. */
c906108c 1945}
fc338970
MK
1946\f
1947
377d9ebd 1948/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1949 sigtramp routine. */
8201327c
MK
1950
1951static int
911bc6ee 1952i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1953{
911bc6ee
MK
1954 CORE_ADDR pc = frame_pc_unwind (next_frame);
1955 char *name;
1956
1957 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1958 return (name && strcmp ("_sigtramp", name) == 0);
1959}
1960\f
1961
fc338970
MK
1962/* We have two flavours of disassembly. The machinery on this page
1963 deals with switching between those. */
c906108c
SS
1964
1965static int
a89aa300 1966i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1967{
5e3397bb
MK
1968 gdb_assert (disassembly_flavor == att_flavor
1969 || disassembly_flavor == intel_flavor);
1970
1971 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1972 constified, cast to prevent a compiler warning. */
1973 info->disassembler_options = (char *) disassembly_flavor;
1974 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1975
1976 return print_insn_i386 (pc, info);
7a292a7a 1977}
fc338970 1978\f
3ce1502b 1979
8201327c
MK
1980/* There are a few i386 architecture variants that differ only
1981 slightly from the generic i386 target. For now, we don't give them
1982 their own source file, but include them here. As a consequence,
1983 they'll always be included. */
3ce1502b 1984
8201327c 1985/* System V Release 4 (SVR4). */
3ce1502b 1986
377d9ebd 1987/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1988 sigtramp routine. */
1989
8201327c 1990static int
911bc6ee 1991i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1992{
911bc6ee
MK
1993 CORE_ADDR pc = frame_pc_unwind (next_frame);
1994 char *name;
1995
acd5c798
MK
1996 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1997 currently unknown. */
911bc6ee 1998 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1999 return (name && (strcmp ("_sigreturn", name) == 0
2000 || strcmp ("_sigacthandler", name) == 0
2001 || strcmp ("sigvechandler", name) == 0));
2002}
d2a7c97a 2003
acd5c798
MK
2004/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2005 routine, return the address of the associated sigcontext (ucontext)
2006 structure. */
3ce1502b 2007
3a1e71e3 2008static CORE_ADDR
acd5c798 2009i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2010{
63c0089f 2011 gdb_byte buf[4];
acd5c798 2012 CORE_ADDR sp;
3ce1502b 2013
acd5c798
MK
2014 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2015 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2016
acd5c798 2017 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2018}
2019\f
3ce1502b 2020
8201327c 2021/* Generic ELF. */
d2a7c97a 2022
8201327c
MK
2023void
2024i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2025{
c4fc7f1b
MK
2026 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2027 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2028}
3ce1502b 2029
8201327c 2030/* System V Release 4 (SVR4). */
3ce1502b 2031
8201327c
MK
2032void
2033i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2034{
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2036
8201327c
MK
2037 /* System V Release 4 uses ELF. */
2038 i386_elf_init_abi (info, gdbarch);
3ce1502b 2039
dfe01d39 2040 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2041 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2042
911bc6ee 2043 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2044 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2045 tdep->sc_pc_offset = 36 + 14 * 4;
2046 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2047
8201327c 2048 tdep->jb_pc_offset = 20;
3ce1502b
MK
2049}
2050
8201327c 2051/* DJGPP. */
3ce1502b 2052
3a1e71e3 2053static void
8201327c 2054i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2055{
8201327c 2056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2057
911bc6ee
MK
2058 /* DJGPP doesn't have any special frames for signal handlers. */
2059 tdep->sigtramp_p = NULL;
3ce1502b 2060
8201327c 2061 tdep->jb_pc_offset = 36;
3ce1502b
MK
2062}
2063
8201327c 2064/* NetWare. */
3ce1502b 2065
3a1e71e3 2066static void
8201327c 2067i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2068{
8201327c 2069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2070
8201327c 2071 tdep->jb_pc_offset = 24;
d2a7c97a 2072}
8201327c 2073\f
2acceee2 2074
38c968cf
AC
2075/* i386 register groups. In addition to the normal groups, add "mmx"
2076 and "sse". */
2077
2078static struct reggroup *i386_sse_reggroup;
2079static struct reggroup *i386_mmx_reggroup;
2080
2081static void
2082i386_init_reggroups (void)
2083{
2084 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2085 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2086}
2087
2088static void
2089i386_add_reggroups (struct gdbarch *gdbarch)
2090{
2091 reggroup_add (gdbarch, i386_sse_reggroup);
2092 reggroup_add (gdbarch, i386_mmx_reggroup);
2093 reggroup_add (gdbarch, general_reggroup);
2094 reggroup_add (gdbarch, float_reggroup);
2095 reggroup_add (gdbarch, all_reggroup);
2096 reggroup_add (gdbarch, save_reggroup);
2097 reggroup_add (gdbarch, restore_reggroup);
2098 reggroup_add (gdbarch, vector_reggroup);
2099 reggroup_add (gdbarch, system_reggroup);
2100}
2101
2102int
2103i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2104 struct reggroup *group)
2105{
5716833c
MK
2106 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2107 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2108 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2109 || i386_fpc_regnum_p (regnum));
5716833c 2110 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2111
38c968cf
AC
2112 if (group == i386_mmx_reggroup)
2113 return mmx_regnum_p;
2114 if (group == i386_sse_reggroup)
2115 return sse_regnum_p;
2116 if (group == vector_reggroup)
2117 return (mmx_regnum_p || sse_regnum_p);
2118 if (group == float_reggroup)
2119 return fp_regnum_p;
2120 if (group == general_reggroup)
2121 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2122
38c968cf
AC
2123 return default_register_reggroup_p (gdbarch, regnum, group);
2124}
38c968cf 2125\f
acd5c798 2126
f837910f
MK
2127/* Get the ARGIth function argument for the current function. */
2128
42c466d7 2129static CORE_ADDR
143985b7
AF
2130i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2131 struct type *type)
2132{
f837910f
MK
2133 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2134 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2135}
2136
2137\f
3a1e71e3 2138static struct gdbarch *
a62cc96e
AC
2139i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2140{
cd3c07fc 2141 struct gdbarch_tdep *tdep;
a62cc96e
AC
2142 struct gdbarch *gdbarch;
2143
4be87837
DJ
2144 /* If there is already a candidate, use it. */
2145 arches = gdbarch_list_lookup_by_info (arches, &info);
2146 if (arches != NULL)
2147 return arches->gdbarch;
a62cc96e
AC
2148
2149 /* Allocate space for the new architecture. */
2150 tdep = XMALLOC (struct gdbarch_tdep);
2151 gdbarch = gdbarch_alloc (&info, tdep);
2152
473f17b0
MK
2153 /* General-purpose registers. */
2154 tdep->gregset = NULL;
2155 tdep->gregset_reg_offset = NULL;
2156 tdep->gregset_num_regs = I386_NUM_GREGS;
2157 tdep->sizeof_gregset = 0;
2158
2159 /* Floating-point registers. */
2160 tdep->fpregset = NULL;
2161 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2162
5716833c 2163 /* The default settings include the FPU registers, the MMX registers
fd35795f 2164 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2165 by adjusting the members `st0_regnum', `mm0_regnum' and
2166 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2167 will show up in the output of "info all-registers". Ideally we
2168 should try to autodetect whether they are available, such that we
2169 can prevent "info all-registers" from displaying registers that
2170 aren't available.
2171
2172 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2173 [the SSE registers] always (even when they don't exist) or never
2174 showing them to the user (even when they do exist), I prefer the
2175 former over the latter. */
2176
2177 tdep->st0_regnum = I386_ST0_REGNUM;
2178
2179 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2180 calculating the register number for %mm0 until we know the number
5716833c
MK
2181 of raw registers. */
2182 tdep->mm0_regnum = 0;
2183
2184 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2185 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2186
8201327c
MK
2187 tdep->jb_pc_offset = -1;
2188 tdep->struct_return = pcc_struct_return;
8201327c
MK
2189 tdep->sigtramp_start = 0;
2190 tdep->sigtramp_end = 0;
911bc6ee 2191 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2192 tdep->sigcontext_addr = NULL;
a3386186 2193 tdep->sc_reg_offset = NULL;
8201327c 2194 tdep->sc_pc_offset = -1;
21d0e8a4 2195 tdep->sc_sp_offset = -1;
8201327c 2196
896fb97d
MK
2197 /* The format used for `long double' on almost all i386 targets is
2198 the i387 extended floating-point format. In fact, of all targets
2199 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2200 on having a `long double' that's not `long' at all. */
2201 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2202
66da5fd8 2203 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2204 bits, a `long double' actually takes up 96, probably to enforce
2205 alignment. */
2206 set_gdbarch_long_double_bit (gdbarch, 96);
2207
49ed40de
KB
2208 /* The default ABI includes general-purpose registers,
2209 floating-point registers, and the SSE registers. */
2210 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2211 set_gdbarch_register_name (gdbarch, i386_register_name);
2212 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2213
acd5c798
MK
2214 /* Register numbers of various important registers. */
2215 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2216 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2217 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2218 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2219
c4fc7f1b
MK
2220 /* NOTE: kettenis/20040418: GCC does have two possible register
2221 numbering schemes on the i386: dbx and SVR4. These schemes
2222 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2223 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2224 dbx_register_map[] and svr4_dbx_register_map in
2225 gcc/config/i386.c. GCC also defines a third numbering scheme in
2226 gcc/config/i386.c, which it designates as the "default" register
2227 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2228 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2229 amd64-tdep.c.
2230
2231 Currently, each GCC i386 target always uses the same register
2232 numbering scheme across all its supported debugging formats
2233 i.e. SDB (COFF), stabs and DWARF 2. This is because
2234 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2235 DBX_REGISTER_NUMBER macro which is defined by each target's
2236 respective config header in a manner independent of the requested
2237 output debugging format.
2238
2239 This does not match the arrangement below, which presumes that
2240 the SDB and stabs numbering schemes differ from the DWARF and
2241 DWARF 2 ones. The reason for this arrangement is that it is
2242 likely to get the numbering scheme for the target's
2243 default/native debug format right. For targets where GCC is the
2244 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2245 targets where the native toolchain uses a different numbering
2246 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2247 the defaults below will have to be overridden, like
2248 i386_elf_init_abi() does. */
c4fc7f1b
MK
2249
2250 /* Use the dbx register numbering scheme for stabs and COFF. */
2251 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2252 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2253
2254 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2255 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2256 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2257
2258 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2259 be in use on any of the supported i386 targets. */
2260
61113f8b
MK
2261 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2262
8201327c 2263 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2264
a62cc96e 2265 /* Call dummy code. */
acd5c798 2266 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2267
ff2e87ac
AC
2268 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2269 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2270 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2271
c5e656c1 2272 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2273
93924b6b
MK
2274 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2275
2276 /* Stack grows downward. */
2277 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2278
2279 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2280 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2281
42fdc8df 2282 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2283
28fc6740 2284 /* Wire in the MMX registers. */
0f751ff2 2285 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2286 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2287 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2288
5e3397bb
MK
2289 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2290
acd5c798 2291 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2292
2293 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2294
38c968cf
AC
2295 /* Add the i386 register groups. */
2296 i386_add_reggroups (gdbarch);
2297 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2298
143985b7
AF
2299 /* Helper for function argument information. */
2300 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2301
6405b0a6 2302 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2303 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2304
acd5c798 2305 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2306
3ce1502b 2307 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2308 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2309
336d1bba
AC
2310 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2311 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2312
8446b36a
MK
2313 /* If we have a register mapping, enable the generic core file
2314 support, unless it has already been enabled. */
2315 if (tdep->gregset_reg_offset
2316 && !gdbarch_regset_from_core_section_p (gdbarch))
2317 set_gdbarch_regset_from_core_section (gdbarch,
2318 i386_regset_from_core_section);
2319
5716833c
MK
2320 /* Unless support for MMX has been disabled, make %mm0 the first
2321 pseudo-register. */
2322 if (tdep->mm0_regnum == 0)
2323 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2324
a62cc96e
AC
2325 return gdbarch;
2326}
2327
8201327c
MK
2328static enum gdb_osabi
2329i386_coff_osabi_sniffer (bfd *abfd)
2330{
762c5349
MK
2331 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2332 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2333 return GDB_OSABI_GO32;
2334
2335 return GDB_OSABI_UNKNOWN;
2336}
2337
2338static enum gdb_osabi
2339i386_nlm_osabi_sniffer (bfd *abfd)
2340{
2341 return GDB_OSABI_NETWARE;
2342}
2343\f
2344
28e9e0f0
MK
2345/* Provide a prototype to silence -Wmissing-prototypes. */
2346void _initialize_i386_tdep (void);
2347
c906108c 2348void
fba45db2 2349_initialize_i386_tdep (void)
c906108c 2350{
a62cc96e
AC
2351 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2352
fc338970 2353 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2354 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2355 &disassembly_flavor, _("\
2356Set the disassembly flavor."), _("\
2357Show the disassembly flavor."), _("\
2358The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2359 NULL,
2360 NULL, /* FIXME: i18n: */
2361 &setlist, &showlist);
8201327c
MK
2362
2363 /* Add the variable that controls the convention for returning
2364 structs. */
7ab04401
AC
2365 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2366 &struct_convention, _("\
2367Set the convention for returning small structs."), _("\
2368Show the convention for returning small structs."), _("\
2369Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2370is \"default\"."),
2371 NULL,
2372 NULL, /* FIXME: i18n: */
2373 &setlist, &showlist);
8201327c
MK
2374
2375 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2376 i386_coff_osabi_sniffer);
2377 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2378 i386_nlm_osabi_sniffer);
2379
05816f70 2380 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2381 i386_svr4_init_abi);
05816f70 2382 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2383 i386_go32_init_abi);
05816f70 2384 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2385 i386_nw_init_abi);
38c968cf
AC
2386
2387 /* Initialize the i386 specific register groups. */
2388 i386_init_reggroups ();
c906108c 2389}
This page took 0.583505 seconds and 4 git commands to generate.