Fix a bug in the ARM emulator which would not allow 4 byte alignment for double word...
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
3666a048 3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
4c5e7a93 51#include "expop.h"
d2a7c97a 52
7ad10968 53#include "record.h"
d02ed0bb 54#include "record-full.h"
22916b07
YQ
55#include "target-descriptions.h"
56#include "arch/i386.h"
90884b2b 57
6710bf39
SS
58#include "ax.h"
59#include "ax-gdb.h"
60
55aa24fb
SDJ
61#include "stap-probe.h"
62#include "user-regs.h"
63#include "cli/cli-utils.h"
64#include "expression.h"
65#include "parser-defs.h"
66#include <ctype.h>
325fac50 67#include <algorithm>
7d7571f0 68#include <unordered_set>
c2fd7fae 69#include "producer.h"
55aa24fb 70
c4fc7f1b 71/* Register names. */
c40e1eab 72
27087b7f 73static const char * const i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
27087b7f 88static const char * const i386_zmm_names[] =
01f9f808
MS
89{
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92};
93
27087b7f 94static const char * const i386_zmmh_names[] =
01f9f808
MS
95{
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98};
99
27087b7f 100static const char * const i386_k_names[] =
01f9f808
MS
101{
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104};
105
27087b7f 106static const char * const i386_ymm_names[] =
c131fcee
L
107{
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110};
111
27087b7f 112static const char * const i386_ymmh_names[] =
c131fcee
L
113{
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116};
117
27087b7f 118static const char * const i386_mpx_names[] =
1dbcd68c
WT
119{
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121};
122
27087b7f 123static const char * const i386_pkeys_names[] =
51547df6
MS
124{
125 "pkru"
126};
127
1dbcd68c
WT
128/* Register names for MPX pseudo-registers. */
129
27087b7f 130static const char * const i386_bnd_names[] =
1dbcd68c
WT
131{
132 "bnd0", "bnd1", "bnd2", "bnd3"
133};
134
c4fc7f1b 135/* Register names for MMX pseudo-registers. */
28fc6740 136
27087b7f 137static const char * const i386_mmx_names[] =
28fc6740
AC
138{
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141};
c40e1eab 142
1ba53b71
L
143/* Register names for byte pseudo-registers. */
144
27087b7f 145static const char * const i386_byte_names[] =
1ba53b71
L
146{
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149};
150
151/* Register names for word pseudo-registers. */
152
27087b7f 153static const char * const i386_word_names[] =
1ba53b71
L
154{
155 "ax", "cx", "dx", "bx",
9cad29ac 156 "", "bp", "si", "di"
1ba53b71
L
157};
158
01f9f808
MS
159/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163const int num_lower_zmm_regs = 16;
164
1ba53b71 165/* MMX register? */
c40e1eab 166
28fc6740 167static int
5716833c 168i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 169{
1ba53b71
L
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
172
173 if (mm0_regnum < 0)
174 return 0;
175
1ba53b71
L
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178}
179
180/* Byte register? */
181
182int
183i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184{
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189}
190
191/* Word register? */
192
193int
194i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195{
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200}
201
202/* Dword register? */
203
204int
205i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206{
207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
215}
216
01f9f808
MS
217/* AVX512 register? */
218
219int
220i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221{
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230}
231
232int
233i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234{
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243}
244
245int
246i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247{
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256}
257
9191d390 258static int
c131fcee
L
259i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260{
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269}
270
271/* AVX register? */
272
273int
274i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275{
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284}
285
01f9f808
MS
286static int
287i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288{
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297}
298
299int
300i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301{
302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310}
311
1dbcd68c
WT
312/* BND register? */
313
314int
315i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316{
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325}
326
5716833c 327/* SSE register? */
23a34459 328
c131fcee
L
329int
330i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 331{
5716833c 332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 334
c131fcee 335 if (num_xmm_regs == 0)
5716833c
MK
336 return 0;
337
c131fcee
L
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
340}
341
01f9f808
MS
342/* XMM_512 register? */
343
344int
345i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346{
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355}
356
5716833c
MK
357static int
358i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 359{
5716833c
MK
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
20a6ec49 362 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
363 return 0;
364
20a6ec49 365 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
366}
367
5716833c 368/* FP register? */
23a34459
AC
369
370int
20a6ec49 371i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 372{
20a6ec49
MD
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
376 return 0;
377
20a6ec49
MD
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
380}
381
382int
20a6ec49 383i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 384{
20a6ec49
MD
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
388 return 0;
389
20a6ec49
MD
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
392}
393
1dbcd68c
WT
394/* BNDr (raw) register? */
395
396static int
397i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398{
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406}
407
408/* BND control register? */
409
410static int
411i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412{
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420}
421
51547df6
MS
422/* PKRU register? */
423
424bool
425i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426{
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435}
436
c131fcee
L
437/* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440static const char *
441i386_register_name (struct gdbarch *gdbarch, int regnum)
442{
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
01f9f808
MS
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
c131fcee
L
455 return tdesc_register_name (gdbarch, regnum);
456}
457
30b0e2d8 458/* Return the name of register REGNUM. */
fc633446 459
1ba53b71 460const char *
90884b2b 461i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 462{
1ba53b71 463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
478}
479
c4fc7f1b 480/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
481 number used by GDB. */
482
8201327c 483static int
d3f73121 484i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 485{
20a6ec49
MD
486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
487
c4fc7f1b
MK
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
85540d8c
MK
491 if (reg >= 0 && reg <= 7)
492 {
9872ad24 493 /* General-purpose registers. The debug info calls %ebp
dda83cd7 494 register 4, and %esp register 5. */
9872ad24 495 if (reg == 4)
dda83cd7 496 return 5;
9872ad24 497 else if (reg == 5)
dda83cd7 498 return 4;
9872ad24 499 else return reg;
85540d8c
MK
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
20a6ec49 504 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
c131fcee
L
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
20a6ec49 520 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
521 }
522
523 /* This will hopefully provoke a warning. */
f6efe3f8 524 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
525}
526
0fde2c53 527/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 528 used by GDB. */
85540d8c 529
8201327c 530static int
0fde2c53 531i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 532{
20a6ec49
MD
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
c4fc7f1b
MK
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
acd5c798 542 /* General-purpose registers. */
85540d8c
MK
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
20a6ec49 548 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 549 }
c6f4c129 550 else if (reg >= 21 && reg <= 36)
85540d8c 551 {
c4fc7f1b 552 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 553 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
554 }
555
c6f4c129
JB
556 switch (reg)
557 {
20a6ec49
MD
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
0fde2c53
DE
569 return -1;
570}
571
572/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
8f10c932 575int
0fde2c53
DE
576i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577{
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
f6efe3f8 581 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 582 return regnum;
85540d8c 583}
5716833c 584
fc338970 585\f
917317f4 586
fc338970
MK
587/* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
53904c9e
AC
589static const char att_flavor[] = "att";
590static const char intel_flavor[] = "intel";
40478521 591static const char *const valid_flavors[] =
c5aa993b 592{
c906108c
SS
593 att_flavor,
594 intel_flavor,
595 NULL
596};
53904c9e 597static const char *disassembly_flavor = att_flavor;
acd5c798 598\f
c906108c 599
acd5c798
MK
600/* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
c906108c 605
acd5c798
MK
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
c906108c 608
acd5c798 609 This function is 64-bit safe. */
63c0089f 610
04180708
YQ
611constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 614
237fc4c9
PA
615\f
616/* Displaced instruction handling. */
617
1903f0e6
DE
618/* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624static gdb_byte *
625i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626{
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652}
237fc4c9
PA
653
654static int
1903f0e6 655i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 656{
1777feb0 657 /* jmp far (absolute address in operand). */
237fc4c9
PA
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
1777feb0 663 /* jump near, absolute indirect (/4). */
237fc4c9 664 if ((insn[1] & 0x38) == 0x20)
dda83cd7 665 return 1;
237fc4c9 666
1777feb0 667 /* jump far, absolute indirect (/5). */
237fc4c9 668 if ((insn[1] & 0x38) == 0x28)
dda83cd7 669 return 1;
237fc4c9
PA
670 }
671
672 return 0;
673}
674
c2170eef
MM
675/* Return non-zero if INSN is a jump, zero otherwise. */
676
677static int
678i386_jmp_p (const gdb_byte *insn)
679{
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689}
690
237fc4c9 691static int
1903f0e6 692i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 693{
1777feb0 694 /* call far, absolute. */
237fc4c9
PA
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
1777feb0 700 /* Call near, absolute indirect (/2). */
237fc4c9 701 if ((insn[1] & 0x38) == 0x10)
dda83cd7 702 return 1;
237fc4c9 703
1777feb0 704 /* Call far, absolute indirect (/3). */
237fc4c9 705 if ((insn[1] & 0x38) == 0x18)
dda83cd7 706 return 1;
237fc4c9
PA
707 }
708
709 return 0;
710}
711
712static int
1903f0e6 713i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
714{
715 switch (insn[0])
716 {
1777feb0 717 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 718 case 0xc3: /* ret near */
1777feb0 719 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727}
728
729static int
1903f0e6 730i386_call_p (const gdb_byte *insn)
237fc4c9
PA
731{
732 if (i386_absolute_call_p (insn))
733 return 1;
734
1777feb0 735 /* call near, relative. */
237fc4c9
PA
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740}
741
237fc4c9
PA
742/* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
1903f0e6 744
237fc4c9 745static int
b55078be 746i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 747{
9a7f938f
JK
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760}
761
c2170eef
MM
762/* The gdbarch insn_is_call method. */
763
764static int
765i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766{
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773}
774
775/* The gdbarch insn_is_ret method. */
776
777static int
778i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779{
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786}
787
788/* The gdbarch insn_is_jump method. */
789
790static int
791i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792{
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799}
800
c2508e90 801/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 802
1152d984 803displaced_step_copy_insn_closure_up
b55078be
DE
804i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807{
808 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
cfba9872 811 gdb_byte *buf = closure->buf.data ();
b55078be
DE
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
136821d9 829 displaced_debug_printf ("%s->%s: %s",
dda83cd7 830 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 831 displaced_step_dump_bytes (buf, len).c_str ());
b55078be 832
6d0cf446 833 /* This is a work around for a problem with g++ 4.8. */
1152d984 834 return displaced_step_copy_insn_closure_up (closure.release ());
b55078be
DE
835}
836
237fc4c9
PA
837/* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
1903f0e6 839
237fc4c9
PA
840void
841i386_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 842 struct displaced_step_copy_insn_closure *closure_,
dda83cd7
SM
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
237fc4c9 845{
e17a4113
UW
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
237fc4c9
PA
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
1152d984
SM
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
cfba9872 856 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
237fc4c9 859
136821d9
SM
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
237fc4c9
PA
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
1903f0e6
DE
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
237fc4c9
PA
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
b55078be 892 int insn_len;
237fc4c9
PA
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
dda83cd7
SM
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
237fc4c9 910 if (i386_syscall_p (insn, &insn_len)
dda83cd7 911 && orig_eip != to + (insn - insn_start) + insn_len
b55078be
DE
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
136821d9
SM
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
237fc4c9 918 else
dda83cd7
SM
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
237fc4c9 921
1903f0e6
DE
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
237fc4c9 925
dda83cd7 926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
237fc4c9 927
136821d9
SM
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
dda83cd7 931 }
237fc4c9
PA
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9 952
136821d9
SM
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
237fc4c9
PA
956 }
957}
dde08ee1
PA
958
959static void
960append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961{
962 target_write_memory (*to, buf, len);
963 *to += len;
964}
965
966static void
967i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969{
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
1777feb0 994 push_buf[0] = 0x68; /* pushq $... */
144db827 995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
136821d9
SM
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
f4a1794a 1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
136821d9
SM
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037}
1038
fc338970 1039\f
acd5c798
MK
1040#ifdef I386_REGNO_TO_SYMMETRY
1041#error "The Sequent Symmetry is no longer supported."
1042#endif
c906108c 1043
acd5c798
MK
1044/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
c906108c 1047
acd5c798
MK
1048/* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
a3386186 1050#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1051
1052struct i386_frame_cache
c906108c 1053{
acd5c798
MK
1054 /* Base address. */
1055 CORE_ADDR base;
8fbca658 1056 int base_p;
772562f8 1057 LONGEST sp_offset;
acd5c798
MK
1058 CORE_ADDR pc;
1059
fd13a04a
AC
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1062 CORE_ADDR saved_sp;
e0c62198 1063 int saved_sp_reg;
acd5c798
MK
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068};
1069
1070/* Allocate and initialize a frame cache. */
1071
1072static struct i386_frame_cache *
fd13a04a 1073i386_alloc_frame_cache (void)
acd5c798
MK
1074{
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
8fbca658 1081 cache->base_p = 0;
acd5c798
MK
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
fd13a04a
AC
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
acd5c798 1090 cache->saved_sp = 0;
e0c62198 1091 cache->saved_sp_reg = -1;
acd5c798
MK
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098}
c906108c 1099
acd5c798
MK
1100/* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
c906108c 1102
acd5c798 1103static CORE_ADDR
e17a4113 1104i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1105{
e17a4113 1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1107 gdb_byte op;
acd5c798
MK
1108 long delta = 0;
1109 int data16 = 0;
c906108c 1110
0865b04a 1111 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1112 return pc;
1113
acd5c798 1114 if (op == 0x66)
c906108c 1115 {
c906108c 1116 data16 = 1;
0865b04a
YQ
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1119 }
1120
acd5c798 1121 switch (op)
c906108c
SS
1122 {
1123 case 0xe9:
fc338970 1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1125 if (data16)
1126 {
e17a4113 1127 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1128
fc338970 1129 /* Include the size of the jmp instruction (including the
dda83cd7 1130 0x66 prefix). */
acd5c798 1131 delta += 4;
c906108c
SS
1132 }
1133 else
1134 {
e17a4113 1135 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1136
acd5c798
MK
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
c906108c
SS
1139 }
1140 break;
1141 case 0xeb:
fc338970 1142 /* Relative jump, disp8 (ignore data16). */
e17a4113 1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1144
acd5c798 1145 delta += data16 + 2;
c906108c
SS
1146 break;
1147 }
c906108c 1148
acd5c798
MK
1149 return pc + delta;
1150}
fc338970 1151
acd5c798
MK
1152/* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
c906108c 1157
acd5c798
MK
1158static CORE_ADDR
1159i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
c906108c 1161{
acd5c798
MK
1162 /* Functions that return a structure or union start with:
1163
dda83cd7
SM
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
acd5c798
MK
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
63c0089f
MK
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
c906108c 1176
acd5c798
MK
1177 if (current_pc <= pc)
1178 return pc;
1179
0865b04a 1180 if (target_read_code (pc, &op, 1))
3dcabaa8 1181 return pc;
c906108c 1182
acd5c798
MK
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
c906108c 1185
0865b04a 1186 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1187 return pc;
1188
acd5c798
MK
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
c906108c 1191
acd5c798 1192 if (current_pc == pc)
c906108c 1193 {
acd5c798
MK
1194 cache->sp_offset += 4;
1195 return current_pc;
c906108c
SS
1196 }
1197
acd5c798 1198 if (current_pc == pc + 1)
c906108c 1199 {
acd5c798
MK
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208}
1209
1210static CORE_ADDR
1211i386_skip_probe (CORE_ADDR pc)
1212{
1213 /* A function may start with
fc338970 1214
dda83cd7
SM
1215 pushl constant
1216 call _probe
acd5c798 1217 addl $4, %esp
fc338970 1218
acd5c798
MK
1219 followed by
1220
dda83cd7 1221 pushl %ebp
fc338970 1222
acd5c798 1223 etc. */
63c0089f
MK
1224 gdb_byte buf[8];
1225 gdb_byte op;
fc338970 1226
0865b04a 1227 if (target_read_code (pc, &op, 1))
3dcabaa8 1228 return pc;
acd5c798
MK
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
c906108c 1233
acd5c798
MK
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
c906108c 1236 if (op == 0x68)
acd5c798 1237 delta = 5;
c906108c 1238 else
acd5c798 1239 delta = 2;
c906108c 1240
acd5c798
MK
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1245 pc += delta + sizeof (buf);
c906108c
SS
1246 }
1247
acd5c798
MK
1248 return pc;
1249}
1250
92dd43fa
MK
1251/* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257static CORE_ADDR
1258i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260{
e0c62198
L
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
92dd43fa 1295 };
92dd43fa 1296
0865b04a 1297 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1360 return pc;
1361
e0c62198
L
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
92dd43fa 1364
325fac50 1365 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1366}
1367
37bdc87e 1368/* Maximum instruction length we need to handle. */
237fc4c9 1369#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1370
1371/* Instruction description. */
1372struct i386_insn
1373{
1374 size_t len;
237fc4c9
PA
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1377};
1378
a3fcb948 1379/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1380
a3fcb948
JG
1381static int
1382i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1383{
63c0089f 1384 gdb_byte op;
37bdc87e 1385
0865b04a 1386 if (target_read_code (pc, &op, 1))
a3fcb948 1387 return 0;
37bdc87e 1388
a3fcb948 1389 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1390 {
a3fcb948
JG
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
37bdc87e 1394
a3fcb948
JG
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1397
0865b04a 1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1399 return 0;
613e8135 1400
a3fcb948
JG
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
37bdc87e 1405 }
a3fcb948
JG
1406 return insn_matched;
1407 }
1408 return 0;
1409}
1410
1411/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415static struct i386_insn *
1416i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417{
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
37bdc87e
MK
1424 }
1425
1426 return NULL;
1427}
1428
a3fcb948
JG
1429/* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432static int
1433i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434{
1435 CORE_ADDR current_pc;
1436 int ix, i;
a3fcb948
JG
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
8bbdd3f4 1443 current_pc = pc;
a3fcb948
JG
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
8bbdd3f4
MK
1447 current_pc -= insn_patterns[i].len;
1448
a3fcb948
JG
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
a3fcb948
JG
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463}
1464
37bdc87e
MK
1465/* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
6bd434d6 1471static i386_insn i386_frame_setup_skip_insns[] =
37bdc87e 1472{
1777feb0 1473 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
85102364 1490 ??? Should we handle SIB addressing here?
37bdc87e
MK
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518};
1519
14f9473c
VC
1520/* Check whether PC points to an endbr32 instruction. */
1521static CORE_ADDR
1522i386_skip_endbr (CORE_ADDR pc)
1523{
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537}
e11481da
PM
1538
1539/* Check whether PC points to a no-op instruction. */
1540static CORE_ADDR
1541i386_skip_noop (CORE_ADDR pc)
1542{
1543 gdb_byte op;
1544 int check = 1;
1545
0865b04a 1546 if (target_read_code (pc, &op, 1))
3dcabaa8 1547 return pc;
e11481da
PM
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
0865b04a 1556 if (target_read_code (pc, &op, 1))
3dcabaa8 1557 return pc;
e11481da
PM
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
0865b04a 1573 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1574 return pc;
1575
e11481da
PM
1576 if (op == 0xff)
1577 {
1578 pc += 2;
0865b04a 1579 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1580 return pc;
1581
e11481da
PM
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587}
1588
acd5c798
MK
1589/* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1593
1594static CORE_ADDR
e17a4113
UW
1595i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1597 struct i386_frame_cache *cache)
1598{
e17a4113 1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1600 struct i386_insn *insn;
63c0089f 1601 gdb_byte op;
26604a34 1602 int skip = 0;
acd5c798 1603
37bdc87e
MK
1604 if (limit <= pc)
1605 return limit;
acd5c798 1606
0865b04a 1607 if (target_read_code (pc, &op, 1))
3dcabaa8 1608 return pc;
acd5c798 1609
c906108c 1610 if (op == 0x55) /* pushl %ebp */
c5aa993b 1611 {
acd5c798
MK
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
fd13a04a 1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1615 cache->sp_offset += 4;
37bdc87e 1616 pc++;
acd5c798
MK
1617
1618 /* If that's all, return now. */
37bdc87e
MK
1619 if (limit <= pc)
1620 return limit;
26604a34 1621
b4632131 1622 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
30baf67b 1625 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1626 it is limited.
5daa5b4e 1627
26604a34
MK
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1630 while (pc + skip < limit)
26604a34 1631 {
37bdc87e
MK
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
b4632131 1635
37bdc87e 1636 skip += insn->len;
26604a34
MK
1637 }
1638
37bdc87e
MK
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
0865b04a 1643 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1644 return pc + skip;
37bdc87e 1645
30f8135b
YQ
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
acd5c798 1660 switch (op)
c906108c 1661 {
30f8135b 1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1663 case 0x8b:
0865b04a 1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1665 != 0xec)
37bdc87e 1666 return pc;
30f8135b 1667 pc += (skip + 2);
c906108c
SS
1668 break;
1669 case 0x89:
0865b04a 1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1671 != 0xe5)
37bdc87e 1672 return pc;
30f8135b
YQ
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
c906108c
SS
1680 break;
1681 default:
37bdc87e 1682 return pc;
c906108c 1683 }
acd5c798 1684
26604a34
MK
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
acd5c798
MK
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
37bdc87e
MK
1692 if (limit <= pc)
1693 return limit;
acd5c798 1694
fc338970
MK
1695 /* Check for stack adjustment
1696
acd5c798 1697 subl $XXX, %esp
30f8135b
YQ
1698 or
1699 lea -XXX(%esp),%esp
fc338970 1700
fd35795f 1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1702 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1703 if (target_read_code (pc, &op, 1))
3dcabaa8 1704 return pc;
c906108c
SS
1705 if (op == 0x83)
1706 {
fd35795f 1707 /* `subl' with 8-bit immediate. */
0865b04a 1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1709 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1710 return pc;
acd5c798 1711
37bdc87e
MK
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
0865b04a 1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1715 return pc + 3;
c906108c
SS
1716 }
1717 else if (op == 0x81)
1718 {
fd35795f 1719 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1721 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1722 return pc;
acd5c798 1723
fd35795f 1724 /* It is `subl' with a 32-bit immediate. */
0865b04a 1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1726 return pc + 6;
c906108c 1727 }
30f8135b
YQ
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
0865b04a 1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
0865b04a 1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1735 return pc + 4;
1736 }
c906108c
SS
1737 else
1738 {
30f8135b 1739 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1740 return pc;
c906108c
SS
1741 }
1742 }
37bdc87e 1743 else if (op == 0xc8) /* enter */
c906108c 1744 {
0865b04a 1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1746 return pc + 4;
c906108c 1747 }
21d0e8a4 1748
acd5c798 1749 return pc;
21d0e8a4
MK
1750}
1751
acd5c798
MK
1752/* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
6bff26de
MK
1756
1757static CORE_ADDR
acd5c798
MK
1758i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
6bff26de 1760{
99ab4326 1761 CORE_ADDR offset = 0;
63c0089f 1762 gdb_byte op;
99ab4326 1763 int i;
c0d1d883 1764
99ab4326
MK
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
0865b04a 1769 if (target_read_code (pc, &op, 1))
3dcabaa8 1770 return pc;
99ab4326
MK
1771 if (op < 0x50 || op > 0x57)
1772 break;
0d17c81d 1773
99ab4326
MK
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
6bff26de
MK
1778 }
1779
acd5c798 1780 return pc;
22797942
AC
1781}
1782
acd5c798
MK
1783/* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
ed84f6c1 1786
fc338970
MK
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
c906108c 1809
acd5c798 1810static CORE_ADDR
e17a4113
UW
1811i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1813 struct i386_frame_cache *cache)
c906108c 1814{
14f9473c 1815 pc = i386_skip_endbr (pc);
e11481da 1816 pc = i386_skip_noop (pc);
e17a4113 1817 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
92dd43fa 1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1822 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1823}
1824
fc338970 1825/* Return PC of first real instruction. */
c906108c 1826
3a1e71e3 1827static CORE_ADDR
6093d2eb 1828i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1829{
e17a4113
UW
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
63c0089f 1832 static gdb_byte pic_pat[6] =
acd5c798
MK
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
c5aa993b 1836 };
acd5c798
MK
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
63c0089f 1839 gdb_byte op;
acd5c798 1840 int i;
56bf0743 1841 CORE_ADDR func_addr;
4e879fc2 1842
56bf0743
KB
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 1848
c2fd7fae 1849 /* LLVM backend (Clang/Flang) always emits a line note before the
16e311ab
FW
1850 prologue and another one after. We trust clang and newer Intel
1851 compilers to emit usable line notes. */
56bf0743 1852 if (post_prologue_pc
43f3e411
DE
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
16e311ab
FW
1855 && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
1856 || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
1857 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1858 }
1859
e0f33b1f 1860 cache.locals = -1;
e17a4113 1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1862 if (cache.locals < 0)
1863 return start_pc;
c5aa993b 1864
acd5c798 1865 /* Found valid frame setup. */
c906108c 1866
fc338970
MK
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
acd5c798
MK
1869 %ebx:
1870
dda83cd7 1871 call 0x0
fc338970 1872 popl %ebx
dda83cd7
SM
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
fc338970 1875
c906108c
SS
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
c5aa993b 1879
c906108c
SS
1880 for (i = 0; i < 6; i++)
1881 {
0865b04a 1882 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1883 return pc;
1884
c5aa993b 1885 if (pic_pat[i] != op)
c906108c
SS
1886 break;
1887 }
1888 if (i == 6)
1889 {
acd5c798
MK
1890 int delta = 6;
1891
0865b04a 1892 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1893 return pc;
c906108c 1894
c5aa993b 1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1896 {
0865b04a 1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1898
fc338970 1899 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1900 delta += 3;
fc338970 1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1902 delta += 6;
fc338970 1903 else /* Unexpected instruction. */
acd5c798
MK
1904 delta = 0;
1905
dda83cd7 1906 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1907 return pc;
c906108c 1908 }
acd5c798 1909
c5aa993b 1910 /* addl y,%ebx */
acd5c798 1911 if (delta > 0 && op == 0x81
0865b04a 1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1913 == 0xc3)
c906108c 1914 {
acd5c798 1915 pc += delta + 6;
c906108c
SS
1916 }
1917 }
c5aa993b 1918
e63bbc88
MK
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
e17a4113
UW
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1924
1925 return pc;
c906108c
SS
1926}
1927
4309257c
PM
1928/* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931CORE_ADDR
1932i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933{
e17a4113 1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1935 gdb_byte op;
1936
0865b04a 1937 if (target_read_code (pc, &op, 1))
3dcabaa8 1938 return pc;
4309257c
PM
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
0865b04a 1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1947 struct bound_minimal_symbol s;
e17a4113 1948 CORE_ADDR call_dest;
4309257c 1949
e17a4113 1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1953 if (s.minsym != NULL
c9d95fa3
CB
1954 && s.minsym->linkage_name () != NULL
1955 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961}
1962
acd5c798 1963/* This function is 64-bit safe. */
93924b6b 1964
acd5c798
MK
1965static CORE_ADDR
1966i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1967{
63c0089f 1968 gdb_byte buf[8];
acd5c798 1969
875f8d0e 1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1972}
acd5c798 1973\f
93924b6b 1974
acd5c798 1975/* Normal frames. */
c5aa993b 1976
8fbca658
PA
1977static void
1978i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
a7769679 1980{
e17a4113
UW
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1983 gdb_byte buf[4];
acd5c798
MK
1984 int i;
1985
8fbca658 1986 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
10458914 1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1999 if (cache->base == 0)
620fa63a
PA
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
acd5c798
MK
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2007
acd5c798 2008 if (cache->pc != 0)
e17a4113
UW
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
acd5c798
MK
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
e0c62198 2022 if (cache->saved_sp_reg != -1)
92dd43fa 2023 {
8fbca658
PA
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
92dd43fa
MK
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
7618e12b 2035 else if (cache->pc != 0
0865b04a 2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2037 {
7618e12b
DJ
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
10458914 2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
92dd43fa 2046 }
7618e12b
DJ
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2053 }
2054
8fbca658
PA
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
ca9d61b9
JB
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
8fbca658
PA
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
acd5c798
MK
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
8fbca658 2066 else if (cache->saved_sp == 0)
92dd43fa 2067 cache->saved_sp = cache->base + 8;
a7769679 2068
acd5c798
MK
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
acd5c798 2074
8fbca658
PA
2075 cache->base_p = 1;
2076}
2077
2078static struct i386_frame_cache *
2079i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080{
8fbca658
PA
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
9a3c8263 2084 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
a70b8144 2089 try
8fbca658
PA
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
230d2906 2093 catch (const gdb_exception_error &ex)
7556d4a4
PA
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2096 throw;
7556d4a4 2097 }
8fbca658 2098
acd5c798 2099 return cache;
a7769679
MK
2100}
2101
3a1e71e3 2102static void
10458914 2103i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2104 struct frame_id *this_id)
c906108c 2105{
10458914 2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2107
5ce0145d
PA
2108 if (!cache->base_p)
2109 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2110 else if (cache->base == 0)
2111 {
2112 /* This marks the outermost frame. */
2113 }
2114 else
2115 {
2116 /* See the end of i386_push_dummy_call. */
2117 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 }
acd5c798
MK
2119}
2120
8fbca658
PA
2121static enum unwind_stop_reason
2122i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2123 void **this_cache)
2124{
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 if (!cache->base_p)
2128 return UNWIND_UNAVAILABLE;
2129
2130 /* This marks the outermost frame. */
2131 if (cache->base == 0)
2132 return UNWIND_OUTERMOST;
2133
2134 return UNWIND_NO_REASON;
2135}
2136
10458914
DJ
2137static struct value *
2138i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2139 int regnum)
acd5c798 2140{
10458914 2141 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2142
2143 gdb_assert (regnum >= 0);
2144
2145 /* The System V ABI says that:
2146
2147 "The flags register contains the system flags, such as the
2148 direction flag and the carry flag. The direction flag must be
2149 set to the forward (that is, zero) direction before entry and
2150 upon exit from a function. Other user flags have no specified
2151 role in the standard calling sequence and are not preserved."
2152
2153 To guarantee the "upon exit" part of that statement we fake a
2154 saved flags register that has its direction flag cleared.
2155
2156 Note that GCC doesn't seem to rely on the fact that the direction
2157 flag is cleared after a function return; it always explicitly
2158 clears the flag before operations where it matters.
2159
2160 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2161 right thing to do. The way we fake the flags register here makes
2162 it impossible to change it. */
2163
2164 if (regnum == I386_EFLAGS_REGNUM)
2165 {
10458914 2166 ULONGEST val;
c5aa993b 2167
10458914
DJ
2168 val = get_frame_register_unsigned (this_frame, regnum);
2169 val &= ~(1 << 10);
2170 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2171 }
1211c4e4 2172
acd5c798 2173 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2174 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2175
fcf250e2
UW
2176 if (regnum == I386_ESP_REGNUM
2177 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2178 {
2179 /* If the SP has been saved, but we don't know where, then this
2180 means that SAVED_SP_REG register was found unavailable back
2181 when we built the cache. */
fcf250e2 2182 if (cache->saved_sp == 0)
8fbca658
PA
2183 return frame_unwind_got_register (this_frame, regnum,
2184 cache->saved_sp_reg);
2185 else
2186 return frame_unwind_got_constant (this_frame, regnum,
2187 cache->saved_sp);
2188 }
acd5c798 2189
fd13a04a 2190 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2191 return frame_unwind_got_memory (this_frame, regnum,
2192 cache->saved_regs[regnum]);
fd13a04a 2193
10458914 2194 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2195}
2196
2197static const struct frame_unwind i386_frame_unwind =
2198{
2199 NORMAL_FRAME,
8fbca658 2200 i386_frame_unwind_stop_reason,
acd5c798 2201 i386_frame_this_id,
10458914
DJ
2202 i386_frame_prev_register,
2203 NULL,
2204 default_frame_sniffer
acd5c798 2205};
06da04c6
MS
2206
2207/* Normal frames, but in a function epilogue. */
2208
c9cf6e20
MG
2209/* Implement the stack_frame_destroyed_p gdbarch method.
2210
2211 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2212 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2213 the function's stack frame. */
2214
2215static int
c9cf6e20 2216i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2217{
2218 gdb_byte insn;
43f3e411 2219 struct compunit_symtab *cust;
e0d00bc7 2220
43f3e411
DE
2221 cust = find_pc_compunit_symtab (pc);
2222 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2223 return 0;
06da04c6
MS
2224
2225 if (target_read_memory (pc, &insn, 1))
2226 return 0; /* Can't read memory at pc. */
2227
2228 if (insn != 0xc3) /* 'ret' instruction. */
2229 return 0;
2230
2231 return 1;
2232}
2233
2234static int
2235i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2236 struct frame_info *this_frame,
2237 void **this_prologue_cache)
2238{
2239 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2240 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2241 get_frame_pc (this_frame));
06da04c6
MS
2242 else
2243 return 0;
2244}
2245
2246static struct i386_frame_cache *
2247i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2248{
06da04c6 2249 struct i386_frame_cache *cache;
0d6c2135 2250 CORE_ADDR sp;
06da04c6
MS
2251
2252 if (*this_cache)
9a3c8263 2253 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2254
2255 cache = i386_alloc_frame_cache ();
2256 *this_cache = cache;
2257
a70b8144 2258 try
8fbca658 2259 {
0d6c2135 2260 cache->pc = get_frame_func (this_frame);
06da04c6 2261
0d6c2135
MK
2262 /* At this point the stack looks as if we just entered the
2263 function, with the return address at the top of the
2264 stack. */
2265 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2266 cache->base = sp + cache->sp_offset;
8fbca658 2267 cache->saved_sp = cache->base + 8;
8fbca658 2268 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2269
8fbca658
PA
2270 cache->base_p = 1;
2271 }
230d2906 2272 catch (const gdb_exception_error &ex)
7556d4a4
PA
2273 {
2274 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2275 throw;
7556d4a4 2276 }
06da04c6
MS
2277
2278 return cache;
2279}
2280
8fbca658
PA
2281static enum unwind_stop_reason
2282i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2283 void **this_cache)
2284{
0d6c2135
MK
2285 struct i386_frame_cache *cache =
2286 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2287
2288 if (!cache->base_p)
2289 return UNWIND_UNAVAILABLE;
2290
2291 return UNWIND_NO_REASON;
2292}
2293
06da04c6
MS
2294static void
2295i386_epilogue_frame_this_id (struct frame_info *this_frame,
2296 void **this_cache,
2297 struct frame_id *this_id)
2298{
0d6c2135
MK
2299 struct i386_frame_cache *cache =
2300 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2301
8fbca658 2302 if (!cache->base_p)
5ce0145d
PA
2303 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2304 else
2305 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2306}
2307
0d6c2135
MK
2308static struct value *
2309i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2310 void **this_cache, int regnum)
2311{
2312 /* Make sure we've initialized the cache. */
2313 i386_epilogue_frame_cache (this_frame, this_cache);
2314
2315 return i386_frame_prev_register (this_frame, this_cache, regnum);
2316}
2317
06da04c6
MS
2318static const struct frame_unwind i386_epilogue_frame_unwind =
2319{
2320 NORMAL_FRAME,
8fbca658 2321 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2322 i386_epilogue_frame_this_id,
0d6c2135 2323 i386_epilogue_frame_prev_register,
06da04c6
MS
2324 NULL,
2325 i386_epilogue_frame_sniffer
2326};
acd5c798
MK
2327\f
2328
a3fcb948
JG
2329/* Stack-based trampolines. */
2330
2331/* These trampolines are used on cross x86 targets, when taking the
2332 address of a nested function. When executing these trampolines,
2333 no stack frame is set up, so we are in a similar situation as in
2334 epilogues and i386_epilogue_frame_this_id can be re-used. */
2335
2336/* Static chain passed in register. */
2337
6bd434d6 2338static i386_insn i386_tramp_chain_in_reg_insns[] =
a3fcb948
JG
2339{
2340 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2341 { 5, { 0xb8 }, { 0xfe } },
2342
2343 /* `jmp imm32' */
2344 { 5, { 0xe9 }, { 0xff } },
2345
2346 {0}
2347};
2348
2349/* Static chain passed on stack (when regparm=3). */
2350
6bd434d6 2351static i386_insn i386_tramp_chain_on_stack_insns[] =
a3fcb948
JG
2352{
2353 /* `push imm32' */
2354 { 5, { 0x68 }, { 0xff } },
2355
2356 /* `jmp imm32' */
2357 { 5, { 0xe9 }, { 0xff } },
2358
2359 {0}
2360};
2361
2362/* Return whether PC points inside a stack trampoline. */
2363
2364static int
6df81a63 2365i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2366{
2367 gdb_byte insn;
2c02bd72 2368 const char *name;
a3fcb948
JG
2369
2370 /* A stack trampoline is detected if no name is associated
2371 to the current pc and if it points inside a trampoline
2372 sequence. */
2373
2374 find_pc_partial_function (pc, &name, NULL, NULL);
2375 if (name)
2376 return 0;
2377
2378 if (target_read_memory (pc, &insn, 1))
2379 return 0;
2380
2381 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2382 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2383 return 0;
2384
2385 return 1;
2386}
2387
2388static int
2389i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2390 struct frame_info *this_frame,
2391 void **this_cache)
a3fcb948
JG
2392{
2393 if (frame_relative_level (this_frame) == 0)
6df81a63 2394 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2395 else
2396 return 0;
2397}
2398
2399static const struct frame_unwind i386_stack_tramp_frame_unwind =
2400{
2401 NORMAL_FRAME,
2402 i386_epilogue_frame_unwind_stop_reason,
2403 i386_epilogue_frame_this_id,
0d6c2135 2404 i386_epilogue_frame_prev_register,
a3fcb948
JG
2405 NULL,
2406 i386_stack_tramp_frame_sniffer
2407};
2408\f
6710bf39
SS
2409/* Generate a bytecode expression to get the value of the saved PC. */
2410
2411static void
2412i386_gen_return_address (struct gdbarch *gdbarch,
2413 struct agent_expr *ax, struct axs_value *value,
2414 CORE_ADDR scope)
2415{
2416 /* The following sequence assumes the traditional use of the base
2417 register. */
2418 ax_reg (ax, I386_EBP_REGNUM);
2419 ax_const_l (ax, 4);
2420 ax_simple (ax, aop_add);
2421 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2422 value->kind = axs_lvalue_memory;
2423}
2424\f
a3fcb948 2425
acd5c798
MK
2426/* Signal trampolines. */
2427
2428static struct i386_frame_cache *
10458914 2429i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2430{
e17a4113
UW
2431 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2434 struct i386_frame_cache *cache;
acd5c798 2435 CORE_ADDR addr;
63c0089f 2436 gdb_byte buf[4];
acd5c798
MK
2437
2438 if (*this_cache)
9a3c8263 2439 return (struct i386_frame_cache *) *this_cache;
acd5c798 2440
fd13a04a 2441 cache = i386_alloc_frame_cache ();
acd5c798 2442
a70b8144 2443 try
a3386186 2444 {
8fbca658
PA
2445 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2446 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2447
8fbca658
PA
2448 addr = tdep->sigcontext_addr (this_frame);
2449 if (tdep->sc_reg_offset)
2450 {
2451 int i;
a3386186 2452
8fbca658
PA
2453 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2454
2455 for (i = 0; i < tdep->sc_num_regs; i++)
2456 if (tdep->sc_reg_offset[i] != -1)
2457 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2458 }
2459 else
2460 {
2461 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2462 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2463 }
2464
2465 cache->base_p = 1;
a3386186 2466 }
230d2906 2467 catch (const gdb_exception_error &ex)
7556d4a4
PA
2468 {
2469 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2470 throw;
7556d4a4 2471 }
acd5c798
MK
2472
2473 *this_cache = cache;
2474 return cache;
2475}
2476
8fbca658
PA
2477static enum unwind_stop_reason
2478i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2479 void **this_cache)
2480{
2481 struct i386_frame_cache *cache =
2482 i386_sigtramp_frame_cache (this_frame, this_cache);
2483
2484 if (!cache->base_p)
2485 return UNWIND_UNAVAILABLE;
2486
2487 return UNWIND_NO_REASON;
2488}
2489
acd5c798 2490static void
10458914 2491i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2492 struct frame_id *this_id)
2493{
2494 struct i386_frame_cache *cache =
10458914 2495 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2496
8fbca658 2497 if (!cache->base_p)
5ce0145d
PA
2498 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2499 else
2500 {
2501 /* See the end of i386_push_dummy_call. */
2502 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2503 }
acd5c798
MK
2504}
2505
10458914
DJ
2506static struct value *
2507i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2508 void **this_cache, int regnum)
acd5c798
MK
2509{
2510 /* Make sure we've initialized the cache. */
10458914 2511 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2512
10458914 2513 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2514}
c0d1d883 2515
10458914
DJ
2516static int
2517i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2518 struct frame_info *this_frame,
2519 void **this_prologue_cache)
acd5c798 2520{
10458914 2521 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2522
911bc6ee
MK
2523 /* We shouldn't even bother if we don't have a sigcontext_addr
2524 handler. */
2525 if (tdep->sigcontext_addr == NULL)
10458914 2526 return 0;
1c3545ae 2527
911bc6ee
MK
2528 if (tdep->sigtramp_p != NULL)
2529 {
10458914
DJ
2530 if (tdep->sigtramp_p (this_frame))
2531 return 1;
911bc6ee
MK
2532 }
2533
2534 if (tdep->sigtramp_start != 0)
2535 {
10458914 2536 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2537
2538 gdb_assert (tdep->sigtramp_end != 0);
2539 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2540 return 1;
911bc6ee 2541 }
acd5c798 2542
10458914 2543 return 0;
acd5c798 2544}
10458914
DJ
2545
2546static const struct frame_unwind i386_sigtramp_frame_unwind =
2547{
2548 SIGTRAMP_FRAME,
8fbca658 2549 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2550 i386_sigtramp_frame_this_id,
2551 i386_sigtramp_frame_prev_register,
2552 NULL,
2553 i386_sigtramp_frame_sniffer
2554};
acd5c798
MK
2555\f
2556
2557static CORE_ADDR
10458914 2558i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2559{
10458914 2560 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2561
2562 return cache->base;
2563}
2564
2565static const struct frame_base i386_frame_base =
2566{
2567 &i386_frame_unwind,
2568 i386_frame_base_address,
2569 i386_frame_base_address,
2570 i386_frame_base_address
2571};
2572
acd5c798 2573static struct frame_id
10458914 2574i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2575{
acd5c798
MK
2576 CORE_ADDR fp;
2577
10458914 2578 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2579
3e210248 2580 /* See the end of i386_push_dummy_call. */
10458914 2581 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2582}
e04e5beb
JM
2583
2584/* _Decimal128 function return values need 16-byte alignment on the
2585 stack. */
2586
2587static CORE_ADDR
2588i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2589{
2590 return sp & -(CORE_ADDR)16;
2591}
fc338970 2592\f
c906108c 2593
fc338970
MK
2594/* Figure out where the longjmp will land. Slurp the args out of the
2595 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2596 structure from which we extract the address that we will land at.
28bcfd30 2597 This address is copied into PC. This routine returns non-zero on
436675d3 2598 success. */
c906108c 2599
8201327c 2600static int
60ade65d 2601i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2602{
436675d3 2603 gdb_byte buf[4];
c906108c 2604 CORE_ADDR sp, jb_addr;
20a6ec49 2605 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2607 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2608
8201327c
MK
2609 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2610 longjmp will land. */
2611 if (jb_pc_offset == -1)
c906108c
SS
2612 return 0;
2613
436675d3 2614 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2615 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2616 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2617 return 0;
2618
e17a4113 2619 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2620 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2621 return 0;
c906108c 2622
e17a4113 2623 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2624 return 1;
2625}
fc338970 2626\f
c906108c 2627
7ccc1c74
JM
2628/* Check whether TYPE must be 16-byte-aligned when passed as a
2629 function argument. 16-byte vectors, _Decimal128 and structures or
2630 unions containing such types must be 16-byte-aligned; other
2631 arguments are 4-byte-aligned. */
2632
2633static int
2634i386_16_byte_align_p (struct type *type)
2635{
2636 type = check_typedef (type);
78134374 2637 if ((type->code () == TYPE_CODE_DECFLOAT
bd63c870 2638 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
7ccc1c74
JM
2639 && TYPE_LENGTH (type) == 16)
2640 return 1;
78134374 2641 if (type->code () == TYPE_CODE_ARRAY)
7ccc1c74 2642 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
78134374
SM
2643 if (type->code () == TYPE_CODE_STRUCT
2644 || type->code () == TYPE_CODE_UNION)
7ccc1c74
JM
2645 {
2646 int i;
1f704f76 2647 for (i = 0; i < type->num_fields (); i++)
7ccc1c74 2648 {
b6a6aa07
TV
2649 if (field_is_static (&type->field (i)))
2650 continue;
940da03e 2651 if (i386_16_byte_align_p (type->field (i).type ()))
7ccc1c74
JM
2652 return 1;
2653 }
2654 }
2655 return 0;
2656}
2657
a9b8d892
JK
2658/* Implementation for set_gdbarch_push_dummy_code. */
2659
2660static CORE_ADDR
2661i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2662 struct value **args, int nargs, struct type *value_type,
2663 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2664 struct regcache *regcache)
2665{
2666 /* Use 0xcc breakpoint - 1 byte. */
2667 *bp_addr = sp - 1;
2668 *real_pc = funaddr;
2669
2670 /* Keep the stack aligned. */
2671 return sp - 16;
2672}
2673
627c7fb8
HD
2674/* The "push_dummy_call" gdbarch method, optionally with the thiscall
2675 calling convention. */
2676
2677CORE_ADDR
2678i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2679 struct regcache *regcache, CORE_ADDR bp_addr,
2680 int nargs, struct value **args, CORE_ADDR sp,
2681 function_call_return_method return_method,
2682 CORE_ADDR struct_addr, bool thiscall)
22f8ba57 2683{
e17a4113 2684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2685 gdb_byte buf[4];
acd5c798 2686 int i;
7ccc1c74
JM
2687 int write_pass;
2688 int args_space = 0;
acd5c798 2689
4a612d6f
WT
2690 /* BND registers can be in arbitrary values at the moment of the
2691 inferior call. This can cause boundary violations that are not
2692 due to a real bug or even desired by the user. The best to be done
2693 is set the BND registers to allow access to the whole memory, INIT
2694 state, before pushing the inferior call. */
2695 i387_reset_bnd_regs (gdbarch, regcache);
2696
7ccc1c74
JM
2697 /* Determine the total space required for arguments and struct
2698 return address in a first pass (allowing for 16-byte-aligned
2699 arguments), then push arguments in a second pass. */
2700
2701 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2702 {
7ccc1c74 2703 int args_space_used = 0;
7ccc1c74 2704
cf84fa6b 2705 if (return_method == return_method_struct)
7ccc1c74
JM
2706 {
2707 if (write_pass)
2708 {
2709 /* Push value address. */
e17a4113 2710 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2711 write_memory (sp, buf, 4);
2712 args_space_used += 4;
2713 }
2714 else
2715 args_space += 4;
2716 }
2717
627c7fb8 2718 for (i = thiscall ? 1 : 0; i < nargs; i++)
7ccc1c74
JM
2719 {
2720 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2721
7ccc1c74
JM
2722 if (write_pass)
2723 {
2724 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2725 args_space_used = align_up (args_space_used, 16);
acd5c798 2726
7ccc1c74
JM
2727 write_memory (sp + args_space_used,
2728 value_contents_all (args[i]), len);
2729 /* The System V ABI says that:
acd5c798 2730
7ccc1c74
JM
2731 "An argument's size is increased, if necessary, to make it a
2732 multiple of [32-bit] words. This may require tail padding,
2733 depending on the size of the argument."
22f8ba57 2734
7ccc1c74
JM
2735 This makes sure the stack stays word-aligned. */
2736 args_space_used += align_up (len, 4);
2737 }
2738 else
2739 {
2740 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2741 args_space = align_up (args_space, 16);
7ccc1c74
JM
2742 args_space += align_up (len, 4);
2743 }
2744 }
2745
2746 if (!write_pass)
2747 {
7ccc1c74 2748 sp -= args_space;
284c5a60
MK
2749
2750 /* The original System V ABI only requires word alignment,
2751 but modern incarnations need 16-byte alignment in order
2752 to support SSE. Since wasting a few bytes here isn't
2753 harmful we unconditionally enforce 16-byte alignment. */
2754 sp &= ~0xf;
7ccc1c74 2755 }
22f8ba57
MK
2756 }
2757
acd5c798
MK
2758 /* Store return address. */
2759 sp -= 4;
e17a4113 2760 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2761 write_memory (sp, buf, 4);
2762
2763 /* Finally, update the stack pointer... */
e17a4113 2764 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2765 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2766
2767 /* ...and fake a frame pointer. */
b66f5587 2768 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2769
627c7fb8
HD
2770 /* The 'this' pointer needs to be in ECX. */
2771 if (thiscall)
2772 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2773
3e210248
AC
2774 /* MarkK wrote: This "+ 8" is all over the place:
2775 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2776 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2777 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2778 definition of the stack address of a frame. Otherwise frame id
2779 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2780 stack address *before* the function call as a frame's CFA. On
2781 the i386, when %ebp is used as a frame pointer, the offset
2782 between the contents %ebp and the CFA as defined by GCC. */
2783 return sp + 8;
22f8ba57
MK
2784}
2785
627c7fb8
HD
2786/* Implement the "push_dummy_call" gdbarch method. */
2787
2788static CORE_ADDR
2789i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2790 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2791 struct value **args, CORE_ADDR sp,
2792 function_call_return_method return_method,
2793 CORE_ADDR struct_addr)
2794{
2795 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2796 nargs, args, sp, return_method,
2797 struct_addr, false);
2798}
2799
1a309862
MK
2800/* These registers are used for returning integers (and on some
2801 targets also for returning `struct' and `union' values when their
ef9dff19 2802 size and alignment match an integer type). */
acd5c798
MK
2803#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2804#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2805
c5e656c1
MK
2806/* Read, for architecture GDBARCH, a function return value of TYPE
2807 from REGCACHE, and copy that into VALBUF. */
1a309862 2808
3a1e71e3 2809static void
c5e656c1 2810i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2811 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2812{
c5e656c1 2813 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2814 int len = TYPE_LENGTH (type);
63c0089f 2815 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2816
78134374 2817 if (type->code () == TYPE_CODE_FLT)
c906108c 2818 {
5716833c 2819 if (tdep->st0_regnum < 0)
1a309862 2820 {
8a3fe4f8 2821 warning (_("Cannot find floating-point return value."));
1a309862 2822 memset (valbuf, 0, len);
ef9dff19 2823 return;
1a309862
MK
2824 }
2825
c6ba6f0d
MK
2826 /* Floating-point return values can be found in %st(0). Convert
2827 its contents to the desired type. This is probably not
2828 exactly how it would happen on the target itself, but it is
2829 the best we can do. */
0b883586 2830 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2831 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2832 }
2833 else
c5aa993b 2834 {
875f8d0e
UW
2835 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2836 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2837
2838 if (len <= low_size)
00f8375e 2839 {
0b883586 2840 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2841 memcpy (valbuf, buf, len);
2842 }
d4f3574e
SS
2843 else if (len <= (low_size + high_size))
2844 {
0b883586 2845 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2846 memcpy (valbuf, buf, low_size);
0b883586 2847 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2848 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2849 }
2850 else
8e65ff28 2851 internal_error (__FILE__, __LINE__,
1777feb0
MS
2852 _("Cannot extract return value of %d bytes long."),
2853 len);
c906108c
SS
2854 }
2855}
2856
c5e656c1
MK
2857/* Write, for architecture GDBARCH, a function return value of TYPE
2858 from VALBUF into REGCACHE. */
ef9dff19 2859
3a1e71e3 2860static void
c5e656c1 2861i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2862 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2863{
c5e656c1 2864 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2865 int len = TYPE_LENGTH (type);
2866
78134374 2867 if (type->code () == TYPE_CODE_FLT)
ef9dff19 2868 {
3d7f4f49 2869 ULONGEST fstat;
63c0089f 2870 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2871
5716833c 2872 if (tdep->st0_regnum < 0)
ef9dff19 2873 {
8a3fe4f8 2874 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2875 return;
2876 }
2877
635b0cc1 2878 /* Returning floating-point values is a bit tricky. Apart from
dda83cd7
SM
2879 storing the return value in %st(0), we have to simulate the
2880 state of the FPU at function return point. */
635b0cc1 2881
c6ba6f0d
MK
2882 /* Convert the value found in VALBUF to the extended
2883 floating-point format used by the FPU. This is probably
2884 not exactly how it would happen on the target itself, but
2885 it is the best we can do. */
3b2ca824 2886 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2887 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2888
635b0cc1 2889 /* Set the top of the floating-point register stack to 7. The
dda83cd7
SM
2890 actual value doesn't really matter, but 7 is what a normal
2891 function return would end up with if the program started out
2892 with a freshly initialized FPU. */
20a6ec49 2893 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2894 fstat |= (7 << 11);
20a6ec49 2895 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2896
635b0cc1 2897 /* Mark %st(1) through %st(7) as empty. Since we set the top of
dda83cd7
SM
2898 the floating-point register stack to 7, the appropriate value
2899 for the tag word is 0x3fff. */
20a6ec49 2900 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2901 }
2902 else
2903 {
875f8d0e
UW
2904 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2905 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2906
2907 if (len <= low_size)
4f0420fd 2908 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2909 else if (len <= (low_size + high_size))
2910 {
10eaee5f 2911 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2912 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2913 valbuf + low_size);
ef9dff19
MK
2914 }
2915 else
8e65ff28 2916 internal_error (__FILE__, __LINE__,
e2e0b3e5 2917 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2918 }
2919}
fc338970 2920\f
ef9dff19 2921
8201327c
MK
2922/* This is the variable that is set with "set struct-convention", and
2923 its legitimate values. */
2924static const char default_struct_convention[] = "default";
2925static const char pcc_struct_convention[] = "pcc";
2926static const char reg_struct_convention[] = "reg";
40478521 2927static const char *const valid_conventions[] =
8201327c
MK
2928{
2929 default_struct_convention,
2930 pcc_struct_convention,
2931 reg_struct_convention,
2932 NULL
2933};
2934static const char *struct_convention = default_struct_convention;
2935
0e4377e1
JB
2936/* Return non-zero if TYPE, which is assumed to be a structure,
2937 a union type, or an array type, should be returned in registers
2938 for architecture GDBARCH. */
c5e656c1 2939
8201327c 2940static int
c5e656c1 2941i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2942{
c5e656c1 2943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78134374 2944 enum type_code code = type->code ();
c5e656c1 2945 int len = TYPE_LENGTH (type);
8201327c 2946
0e4377e1 2947 gdb_assert (code == TYPE_CODE_STRUCT
dda83cd7
SM
2948 || code == TYPE_CODE_UNION
2949 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2950
2951 if (struct_convention == pcc_struct_convention
2952 || (struct_convention == default_struct_convention
2953 && tdep->struct_return == pcc_struct_return))
2954 return 0;
2955
9edde48e
MK
2956 /* Structures consisting of a single `float', `double' or 'long
2957 double' member are returned in %st(0). */
1f704f76 2958 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
9edde48e 2959 {
940da03e 2960 type = check_typedef (type->field (0).type ());
78134374 2961 if (type->code () == TYPE_CODE_FLT)
9edde48e
MK
2962 return (len == 4 || len == 8 || len == 12);
2963 }
2964
c5e656c1
MK
2965 return (len == 1 || len == 2 || len == 4 || len == 8);
2966}
2967
2968/* Determine, for architecture GDBARCH, how a return value of TYPE
2969 should be returned. If it is supposed to be returned in registers,
2970 and READBUF is non-zero, read the appropriate value from REGCACHE,
2971 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2972 from WRITEBUF into REGCACHE. */
2973
2974static enum return_value_convention
6a3a010b 2975i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2976 struct type *type, struct regcache *regcache,
2977 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1 2978{
78134374 2979 enum type_code code = type->code ();
c5e656c1 2980
5daa78cc
TJB
2981 if (((code == TYPE_CODE_STRUCT
2982 || code == TYPE_CODE_UNION
2983 || code == TYPE_CODE_ARRAY)
2984 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2985 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2987 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2988 /* 128-bit decimal float uses the struct return convention. */
2989 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2990 {
2991 /* The System V ABI says that:
2992
2993 "A function that returns a structure or union also sets %eax
2994 to the value of the original address of the caller's area
2995 before it returns. Thus when the caller receives control
2996 again, the address of the returned object resides in register
2997 %eax and can be used to access the object."
2998
2999 So the ABI guarantees that we can always find the return
3000 value just after the function has returned. */
3001
0e4377e1 3002 /* Note that the ABI doesn't mention functions returning arrays,
dda83cd7
SM
3003 which is something possible in certain languages such as Ada.
3004 In this case, the value is returned as if it was wrapped in
3005 a record, so the convention applied to records also applies
3006 to arrays. */
0e4377e1 3007
31db7b6c
MK
3008 if (readbuf)
3009 {
3010 ULONGEST addr;
3011
3012 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3013 read_memory (addr, readbuf, TYPE_LENGTH (type));
3014 }
3015
3016 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3017 }
c5e656c1
MK
3018
3019 /* This special case is for structures consisting of a single
9edde48e
MK
3020 `float', `double' or 'long double' member. These structures are
3021 returned in %st(0). For these structures, we call ourselves
3022 recursively, changing TYPE into the type of the first member of
3023 the structure. Since that should work for all structures that
3024 have only one member, we don't bother to check the member's type
3025 here. */
1f704f76 3026 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
c5e656c1 3027 {
940da03e 3028 type = check_typedef (type->field (0).type ());
6a3a010b 3029 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3030 readbuf, writebuf);
c5e656c1
MK
3031 }
3032
3033 if (readbuf)
3034 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3035 if (writebuf)
3036 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3037
c5e656c1 3038 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3039}
3040\f
3041
27067745
UW
3042struct type *
3043i387_ext_type (struct gdbarch *gdbarch)
3044{
3045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3046
3047 if (!tdep->i387_ext_type)
90884b2b
L
3048 {
3049 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3050 gdb_assert (tdep->i387_ext_type != NULL);
3051 }
27067745
UW
3052
3053 return tdep->i387_ext_type;
3054}
3055
1dbcd68c
WT
3056/* Construct type for pseudo BND registers. We can't use
3057 tdesc_find_type since a complement of one value has to be used
3058 to describe the upper bound. */
3059
3060static struct type *
3061i386_bnd_type (struct gdbarch *gdbarch)
3062{
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3064
3065
3066 if (!tdep->i386_bnd_type)
3067 {
870f88f7 3068 struct type *t;
1dbcd68c
WT
3069 const struct builtin_type *bt = builtin_type (gdbarch);
3070
3071 /* The type we're building is described bellow: */
3072#if 0
3073 struct __bound128
3074 {
3075 void *lbound;
3076 void *ubound; /* One complement of raw ubound field. */
3077 };
3078#endif
3079
3080 t = arch_composite_type (gdbarch,
3081 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3082
3083 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3084 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3085
d0e39ea2 3086 t->set_name ("builtin_type_bound128");
1dbcd68c
WT
3087 tdep->i386_bnd_type = t;
3088 }
3089
3090 return tdep->i386_bnd_type;
3091}
3092
01f9f808
MS
3093/* Construct vector type for pseudo ZMM registers. We can't use
3094 tdesc_find_type since ZMM isn't described in target description. */
3095
3096static struct type *
3097i386_zmm_type (struct gdbarch *gdbarch)
3098{
3099 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3100
3101 if (!tdep->i386_zmm_type)
3102 {
3103 const struct builtin_type *bt = builtin_type (gdbarch);
3104
3105 /* The type we're building is this: */
3106#if 0
3107 union __gdb_builtin_type_vec512i
3108 {
1347d111
FW
3109 int128_t v4_int128[4];
3110 int64_t v8_int64[8];
3111 int32_t v16_int32[16];
3112 int16_t v32_int16[32];
3113 int8_t v64_int8[64];
3114 double v8_double[8];
3115 float v16_float[16];
2a67f09d 3116 bfloat16_t v32_bfloat16[32];
01f9f808
MS
3117 };
3118#endif
3119
3120 struct type *t;
3121
3122 t = arch_composite_type (gdbarch,
3123 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
2a67f09d
FW
3124 append_composite_type_field (t, "v32_bfloat16",
3125 init_vector_type (bt->builtin_bfloat16, 32));
01f9f808
MS
3126 append_composite_type_field (t, "v16_float",
3127 init_vector_type (bt->builtin_float, 16));
3128 append_composite_type_field (t, "v8_double",
3129 init_vector_type (bt->builtin_double, 8));
3130 append_composite_type_field (t, "v64_int8",
3131 init_vector_type (bt->builtin_int8, 64));
3132 append_composite_type_field (t, "v32_int16",
3133 init_vector_type (bt->builtin_int16, 32));
3134 append_composite_type_field (t, "v16_int32",
3135 init_vector_type (bt->builtin_int32, 16));
3136 append_composite_type_field (t, "v8_int64",
3137 init_vector_type (bt->builtin_int64, 8));
3138 append_composite_type_field (t, "v4_int128",
3139 init_vector_type (bt->builtin_int128, 4));
3140
2062087b 3141 t->set_is_vector (true);
d0e39ea2 3142 t->set_name ("builtin_type_vec512i");
01f9f808
MS
3143 tdep->i386_zmm_type = t;
3144 }
3145
3146 return tdep->i386_zmm_type;
3147}
3148
c131fcee
L
3149/* Construct vector type for pseudo YMM registers. We can't use
3150 tdesc_find_type since YMM isn't described in target description. */
3151
3152static struct type *
3153i386_ymm_type (struct gdbarch *gdbarch)
3154{
3155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3156
3157 if (!tdep->i386_ymm_type)
3158 {
3159 const struct builtin_type *bt = builtin_type (gdbarch);
3160
3161 /* The type we're building is this: */
3162#if 0
3163 union __gdb_builtin_type_vec256i
3164 {
dda83cd7
SM
3165 int128_t v2_int128[2];
3166 int64_t v4_int64[4];
3167 int32_t v8_int32[8];
3168 int16_t v16_int16[16];
3169 int8_t v32_int8[32];
3170 double v4_double[4];
3171 float v8_float[8];
3172 bfloat16_t v16_bfloat16[16];
c131fcee
L
3173 };
3174#endif
3175
3176 struct type *t;
3177
3178 t = arch_composite_type (gdbarch,
3179 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2a67f09d
FW
3180 append_composite_type_field (t, "v16_bfloat16",
3181 init_vector_type (bt->builtin_bfloat16, 16));
c131fcee
L
3182 append_composite_type_field (t, "v8_float",
3183 init_vector_type (bt->builtin_float, 8));
3184 append_composite_type_field (t, "v4_double",
3185 init_vector_type (bt->builtin_double, 4));
3186 append_composite_type_field (t, "v32_int8",
3187 init_vector_type (bt->builtin_int8, 32));
3188 append_composite_type_field (t, "v16_int16",
3189 init_vector_type (bt->builtin_int16, 16));
3190 append_composite_type_field (t, "v8_int32",
3191 init_vector_type (bt->builtin_int32, 8));
3192 append_composite_type_field (t, "v4_int64",
3193 init_vector_type (bt->builtin_int64, 4));
3194 append_composite_type_field (t, "v2_int128",
3195 init_vector_type (bt->builtin_int128, 2));
3196
2062087b 3197 t->set_is_vector (true);
d0e39ea2 3198 t->set_name ("builtin_type_vec256i");
c131fcee
L
3199 tdep->i386_ymm_type = t;
3200 }
3201
3202 return tdep->i386_ymm_type;
3203}
3204
794ac428 3205/* Construct vector type for MMX registers. */
90884b2b 3206static struct type *
794ac428
UW
3207i386_mmx_type (struct gdbarch *gdbarch)
3208{
3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3210
3211 if (!tdep->i386_mmx_type)
3212 {
df4df182
UW
3213 const struct builtin_type *bt = builtin_type (gdbarch);
3214
794ac428
UW
3215 /* The type we're building is this: */
3216#if 0
3217 union __gdb_builtin_type_vec64i
3218 {
dda83cd7
SM
3219 int64_t uint64;
3220 int32_t v2_int32[2];
3221 int16_t v4_int16[4];
3222 int8_t v8_int8[8];
794ac428
UW
3223 };
3224#endif
3225
3226 struct type *t;
3227
e9bb382b
UW
3228 t = arch_composite_type (gdbarch,
3229 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3230
3231 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3232 append_composite_type_field (t, "v2_int32",
df4df182 3233 init_vector_type (bt->builtin_int32, 2));
794ac428 3234 append_composite_type_field (t, "v4_int16",
df4df182 3235 init_vector_type (bt->builtin_int16, 4));
794ac428 3236 append_composite_type_field (t, "v8_int8",
df4df182 3237 init_vector_type (bt->builtin_int8, 8));
794ac428 3238
2062087b 3239 t->set_is_vector (true);
d0e39ea2 3240 t->set_name ("builtin_type_vec64i");
794ac428
UW
3241 tdep->i386_mmx_type = t;
3242 }
3243
3244 return tdep->i386_mmx_type;
3245}
3246
d7a0d72c 3247/* Return the GDB type object for the "standard" data type of data in
1777feb0 3248 register REGNUM. */
d7a0d72c 3249
fff4548b 3250struct type *
90884b2b 3251i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3252{
1dbcd68c
WT
3253 if (i386_bnd_regnum_p (gdbarch, regnum))
3254 return i386_bnd_type (gdbarch);
1ba53b71
L
3255 if (i386_mmx_regnum_p (gdbarch, regnum))
3256 return i386_mmx_type (gdbarch);
c131fcee
L
3257 else if (i386_ymm_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
01f9f808
MS
3259 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3260 return i386_ymm_type (gdbarch);
3261 else if (i386_zmm_regnum_p (gdbarch, regnum))
3262 return i386_zmm_type (gdbarch);
1ba53b71
L
3263 else
3264 {
3265 const struct builtin_type *bt = builtin_type (gdbarch);
3266 if (i386_byte_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int8;
3268 else if (i386_word_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int16;
3270 else if (i386_dword_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int32;
01f9f808
MS
3272 else if (i386_k_regnum_p (gdbarch, regnum))
3273 return bt->builtin_int64;
1ba53b71
L
3274 }
3275
3276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3277}
3278
28fc6740 3279/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3280 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3281
3282static int
849d0ba8 3283i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3284{
ac7936df 3285 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3286 int mmxreg, fpreg;
28fc6740
AC
3287 ULONGEST fstat;
3288 int tos;
c86c27af 3289
5716833c 3290 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3291 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3292 tos = (fstat >> 11) & 0x7;
5716833c
MK
3293 fpreg = (mmxreg + tos) % 8;
3294
20a6ec49 3295 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3296}
3297
3543a589
TT
3298/* A helper function for us by i386_pseudo_register_read_value and
3299 amd64_pseudo_register_read_value. It does all the work but reads
3300 the data into an already-allocated value. */
3301
3302void
3303i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3304 readable_regcache *regcache,
3543a589
TT
3305 int regnum,
3306 struct value *result_value)
28fc6740 3307{
975c21ab 3308 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3309 enum register_status status;
3543a589 3310 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3311
5716833c 3312 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3313 {
c86c27af
MK
3314 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3315
28fc6740 3316 /* Extract (always little endian). */
03f50fc8 3317 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3318 if (status != REG_VALID)
3543a589
TT
3319 mark_value_bytes_unavailable (result_value, 0,
3320 TYPE_LENGTH (value_type (result_value)));
3321 else
3322 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3323 }
3324 else
1ba53b71
L
3325 {
3326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3327 if (i386_bnd_regnum_p (gdbarch, regnum))
3328 {
3329 regnum -= tdep->bnd0_regnum;
1ba53b71 3330
1dbcd68c 3331 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3332 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3333 raw_buf);
1dbcd68c
WT
3334 if (status != REG_VALID)
3335 mark_value_bytes_unavailable (result_value, 0, 16);
3336 else
3337 {
3338 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3339 LONGEST upper, lower;
3340 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3341
3342 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3343 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3344 upper = ~upper;
3345
3346 memcpy (buf, &lower, size);
3347 memcpy (buf + size, &upper, size);
3348 }
3349 }
01f9f808
MS
3350 else if (i386_k_regnum_p (gdbarch, regnum))
3351 {
3352 regnum -= tdep->k0_regnum;
3353
3354 /* Extract (always little endian). */
03f50fc8 3355 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 0, 8);
3358 else
3359 memcpy (buf, raw_buf, 8);
3360 }
3361 else if (i386_zmm_regnum_p (gdbarch, regnum))
3362 {
3363 regnum -= tdep->zmm0_regnum;
3364
3365 if (regnum < num_lower_zmm_regs)
3366 {
3367 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3368 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3369 raw_buf);
01f9f808
MS
3370 if (status != REG_VALID)
3371 mark_value_bytes_unavailable (result_value, 0, 16);
3372 else
3373 memcpy (buf, raw_buf, 16);
3374
3375 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3376 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3377 raw_buf);
01f9f808
MS
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383 else
3384 {
3385 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3386 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3387 - num_lower_zmm_regs,
3388 raw_buf);
01f9f808
MS
3389 if (status != REG_VALID)
3390 mark_value_bytes_unavailable (result_value, 0, 16);
3391 else
3392 memcpy (buf, raw_buf, 16);
3393
3394 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3395 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3396 - num_lower_zmm_regs,
3397 raw_buf);
01f9f808
MS
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 16, 16);
3400 else
3401 memcpy (buf + 16, raw_buf, 16);
3402 }
3403
3404 /* Read upper 256bits. */
03f50fc8
YQ
3405 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3406 raw_buf);
01f9f808
MS
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 32, 32);
3409 else
3410 memcpy (buf + 32, raw_buf, 32);
3411 }
1dbcd68c 3412 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3413 {
3414 regnum -= tdep->ymm0_regnum;
3415
1777feb0 3416 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3417 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3418 raw_buf);
05d1431c 3419 if (status != REG_VALID)
3543a589
TT
3420 mark_value_bytes_unavailable (result_value, 0, 16);
3421 else
3422 memcpy (buf, raw_buf, 16);
c131fcee 3423 /* Read upper 128bits. */
03f50fc8
YQ
3424 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3425 raw_buf);
05d1431c 3426 if (status != REG_VALID)
3543a589
TT
3427 mark_value_bytes_unavailable (result_value, 16, 32);
3428 else
3429 memcpy (buf + 16, raw_buf, 16);
c131fcee 3430 }
01f9f808
MS
3431 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3432 {
3433 regnum -= tdep->ymm16_regnum;
3434 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3435 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3436 raw_buf);
01f9f808
MS
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0, 16);
3439 else
3440 memcpy (buf, raw_buf, 16);
3441 /* Read upper 128bits. */
03f50fc8
YQ
3442 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3443 raw_buf);
01f9f808
MS
3444 if (status != REG_VALID)
3445 mark_value_bytes_unavailable (result_value, 16, 16);
3446 else
3447 memcpy (buf + 16, raw_buf, 16);
3448 }
c131fcee 3449 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3450 {
3451 int gpnum = regnum - tdep->ax_regnum;
3452
3453 /* Extract (always little endian). */
03f50fc8 3454 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3455 if (status != REG_VALID)
3543a589
TT
3456 mark_value_bytes_unavailable (result_value, 0,
3457 TYPE_LENGTH (value_type (result_value)));
3458 else
3459 memcpy (buf, raw_buf, 2);
1ba53b71
L
3460 }
3461 else if (i386_byte_regnum_p (gdbarch, regnum))
3462 {
1ba53b71
L
3463 int gpnum = regnum - tdep->al_regnum;
3464
3465 /* Extract (always little endian). We read both lower and
3466 upper registers. */
03f50fc8 3467 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3468 if (status != REG_VALID)
3543a589
TT
3469 mark_value_bytes_unavailable (result_value, 0,
3470 TYPE_LENGTH (value_type (result_value)));
3471 else if (gpnum >= 4)
1ba53b71
L
3472 memcpy (buf, raw_buf + 1, 1);
3473 else
3474 memcpy (buf, raw_buf, 1);
3475 }
3476 else
3477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3478 }
3543a589
TT
3479}
3480
3481static struct value *
3482i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3483 readable_regcache *regcache,
3543a589
TT
3484 int regnum)
3485{
3486 struct value *result;
3487
3488 result = allocate_value (register_type (gdbarch, regnum));
3489 VALUE_LVAL (result) = lval_register;
3490 VALUE_REGNUM (result) = regnum;
3491
3492 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3493
3543a589 3494 return result;
28fc6740
AC
3495}
3496
1ba53b71 3497void
28fc6740 3498i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3499 int regnum, const gdb_byte *buf)
28fc6740 3500{
975c21ab 3501 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3502
5716833c 3503 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3504 {
c86c27af
MK
3505 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3506
28fc6740 3507 /* Read ... */
0b883586 3508 regcache->raw_read (fpnum, raw_buf);
28fc6740 3509 /* ... Modify ... (always little endian). */
1ba53b71 3510 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3511 /* ... Write. */
10eaee5f 3512 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3513 }
3514 else
1ba53b71
L
3515 {
3516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3517
1dbcd68c
WT
3518 if (i386_bnd_regnum_p (gdbarch, regnum))
3519 {
3520 ULONGEST upper, lower;
3521 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3522 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3523
3524 /* New values from input value. */
3525 regnum -= tdep->bnd0_regnum;
3526 lower = extract_unsigned_integer (buf, size, byte_order);
3527 upper = extract_unsigned_integer (buf + size, size, byte_order);
3528
3529 /* Fetching register buffer. */
0b883586
SM
3530 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3531 raw_buf);
1dbcd68c
WT
3532
3533 upper = ~upper;
3534
3535 /* Set register bits. */
3536 memcpy (raw_buf, &lower, 8);
3537 memcpy (raw_buf + 8, &upper, 8);
3538
10eaee5f 3539 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3540 }
01f9f808
MS
3541 else if (i386_k_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->k0_regnum;
3544
10eaee5f 3545 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3546 }
3547 else if (i386_zmm_regnum_p (gdbarch, regnum))
3548 {
3549 regnum -= tdep->zmm0_regnum;
3550
3551 if (regnum < num_lower_zmm_regs)
3552 {
3553 /* Write lower 128bits. */
10eaee5f 3554 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3555 /* Write upper 128bits. */
10eaee5f 3556 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3557 }
3558 else
3559 {
3560 /* Write lower 128bits. */
10eaee5f
SM
3561 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3562 - num_lower_zmm_regs, buf);
01f9f808 3563 /* Write upper 128bits. */
10eaee5f
SM
3564 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3565 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3566 }
3567 /* Write upper 256bits. */
10eaee5f 3568 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3569 }
1dbcd68c 3570 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3571 {
3572 regnum -= tdep->ymm0_regnum;
3573
3574 /* ... Write lower 128bits. */
10eaee5f 3575 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3576 /* ... Write upper 128bits. */
10eaee5f 3577 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3578 }
01f9f808
MS
3579 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3580 {
3581 regnum -= tdep->ymm16_regnum;
3582
3583 /* ... Write lower 128bits. */
10eaee5f 3584 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3585 /* ... Write upper 128bits. */
10eaee5f 3586 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3587 }
c131fcee 3588 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3589 {
3590 int gpnum = regnum - tdep->ax_regnum;
3591
3592 /* Read ... */
0b883586 3593 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3594 /* ... Modify ... (always little endian). */
3595 memcpy (raw_buf, buf, 2);
3596 /* ... Write. */
10eaee5f 3597 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3598 }
3599 else if (i386_byte_regnum_p (gdbarch, regnum))
3600 {
1ba53b71
L
3601 int gpnum = regnum - tdep->al_regnum;
3602
3603 /* Read ... We read both lower and upper registers. */
0b883586 3604 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3605 /* ... Modify ... (always little endian). */
3606 if (gpnum >= 4)
3607 memcpy (raw_buf + 1, buf, 1);
3608 else
3609 memcpy (raw_buf, buf, 1);
3610 /* ... Write. */
10eaee5f 3611 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3612 }
3613 else
3614 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3615 }
28fc6740 3616}
62e5fd57
MK
3617
3618/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3619
3620int
3621i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3622 struct agent_expr *ax, int regnum)
3623{
3624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3625
3626 if (i386_mmx_regnum_p (gdbarch, regnum))
3627 {
3628 /* MMX to FPU register mapping depends on current TOS. Let's just
3629 not care and collect everything... */
3630 int i;
3631
3632 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3633 for (i = 0; i < 8; i++)
3634 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3635 return 0;
3636 }
3637 else if (i386_bnd_regnum_p (gdbarch, regnum))
3638 {
3639 regnum -= tdep->bnd0_regnum;
3640 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3641 return 0;
3642 }
3643 else if (i386_k_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->k0_regnum;
3646 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3647 return 0;
3648 }
3649 else if (i386_zmm_regnum_p (gdbarch, regnum))
3650 {
3651 regnum -= tdep->zmm0_regnum;
3652 if (regnum < num_lower_zmm_regs)
3653 {
3654 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3655 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3656 }
3657 else
3658 {
3659 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3662 - num_lower_zmm_regs);
3663 }
3664 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3665 return 0;
3666 }
3667 else if (i386_ymm_regnum_p (gdbarch, regnum))
3668 {
3669 regnum -= tdep->ymm0_regnum;
3670 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3671 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3672 return 0;
3673 }
3674 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3675 {
3676 regnum -= tdep->ymm16_regnum;
3677 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3678 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3679 return 0;
3680 }
3681 else if (i386_word_regnum_p (gdbarch, regnum))
3682 {
3683 int gpnum = regnum - tdep->ax_regnum;
3684
3685 ax_reg_mask (ax, gpnum);
3686 return 0;
3687 }
3688 else if (i386_byte_regnum_p (gdbarch, regnum))
3689 {
3690 int gpnum = regnum - tdep->al_regnum;
3691
3692 ax_reg_mask (ax, gpnum % 4);
3693 return 0;
3694 }
3695 else
3696 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3697 return 1;
3698}
ff2e87ac
AC
3699\f
3700
ff2e87ac
AC
3701/* Return the register number of the register allocated by GCC after
3702 REGNUM, or -1 if there is no such register. */
3703
3704static int
3705i386_next_regnum (int regnum)
3706{
3707 /* GCC allocates the registers in the order:
3708
3709 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3710
3711 Since storing a variable in %esp doesn't make any sense we return
3712 -1 for %ebp and for %esp itself. */
3713 static int next_regnum[] =
3714 {
3715 I386_EDX_REGNUM, /* Slot for %eax. */
3716 I386_EBX_REGNUM, /* Slot for %ecx. */
3717 I386_ECX_REGNUM, /* Slot for %edx. */
3718 I386_ESI_REGNUM, /* Slot for %ebx. */
3719 -1, -1, /* Slots for %esp and %ebp. */
3720 I386_EDI_REGNUM, /* Slot for %esi. */
3721 I386_EBP_REGNUM /* Slot for %edi. */
3722 };
3723
de5b9bb9 3724 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3725 return next_regnum[regnum];
28fc6740 3726
ff2e87ac
AC
3727 return -1;
3728}
3729
3730/* Return nonzero if a value of type TYPE stored in register REGNUM
3731 needs any special handling. */
d7a0d72c 3732
3a1e71e3 3733static int
1777feb0
MS
3734i386_convert_register_p (struct gdbarch *gdbarch,
3735 int regnum, struct type *type)
d7a0d72c 3736{
de5b9bb9
MK
3737 int len = TYPE_LENGTH (type);
3738
ff2e87ac
AC
3739 /* Values may be spread across multiple registers. Most debugging
3740 formats aren't expressive enough to specify the locations, so
3741 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3742 have a length that is a multiple of the word size, since GCC
3743 doesn't seem to put any other types into registers. */
3744 if (len > 4 && len % 4 == 0)
3745 {
3746 int last_regnum = regnum;
3747
3748 while (len > 4)
3749 {
3750 last_regnum = i386_next_regnum (last_regnum);
3751 len -= 4;
3752 }
3753
3754 if (last_regnum != -1)
3755 return 1;
3756 }
ff2e87ac 3757
0abe36f5 3758 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3759}
3760
ff2e87ac
AC
3761/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3762 return its contents in TO. */
ac27f131 3763
8dccd430 3764static int
ff2e87ac 3765i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3766 struct type *type, gdb_byte *to,
3767 int *optimizedp, int *unavailablep)
ac27f131 3768{
20a6ec49 3769 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3770 int len = TYPE_LENGTH (type);
de5b9bb9 3771
20a6ec49 3772 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3773 return i387_register_to_value (frame, regnum, type, to,
3774 optimizedp, unavailablep);
ff2e87ac 3775
fd35795f 3776 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3777
3778 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3779
de5b9bb9
MK
3780 while (len > 0)
3781 {
3782 gdb_assert (regnum != -1);
20a6ec49 3783 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3784
8dccd430 3785 if (!get_frame_register_bytes (frame, regnum, 0,
bdec2917
LM
3786 gdb::make_array_view (to,
3787 register_size (gdbarch,
3788 regnum)),
3789 optimizedp, unavailablep))
8dccd430
PA
3790 return 0;
3791
de5b9bb9
MK
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
42835c2b 3794 to += 4;
de5b9bb9 3795 }
8dccd430
PA
3796
3797 *optimizedp = *unavailablep = 0;
3798 return 1;
ac27f131
MK
3799}
3800
ff2e87ac
AC
3801/* Write the contents FROM of a value of type TYPE into register
3802 REGNUM in frame FRAME. */
ac27f131 3803
3a1e71e3 3804static void
ff2e87ac 3805i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3806 struct type *type, const gdb_byte *from)
ac27f131 3807{
de5b9bb9 3808 int len = TYPE_LENGTH (type);
de5b9bb9 3809
20a6ec49 3810 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3811 {
d532c08f
MK
3812 i387_value_to_register (frame, regnum, type, from);
3813 return;
3814 }
3d261580 3815
fd35795f 3816 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3817
3818 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3819
de5b9bb9
MK
3820 while (len > 0)
3821 {
3822 gdb_assert (regnum != -1);
875f8d0e 3823 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3824
42835c2b 3825 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3826 regnum = i386_next_regnum (regnum);
3827 len -= 4;
42835c2b 3828 from += 4;
de5b9bb9 3829 }
ac27f131 3830}
ff2e87ac 3831\f
7fdafb5a
MK
3832/* Supply register REGNUM from the buffer specified by GREGS and LEN
3833 in the general-purpose register set REGSET to register cache
3834 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3835
20187ed5 3836void
473f17b0
MK
3837i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3838 int regnum, const void *gregs, size_t len)
3839{
ac7936df 3840 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3841 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3842 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3843 int i;
3844
1528345d 3845 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3846
3847 for (i = 0; i < tdep->gregset_num_regs; i++)
3848 {
3849 if ((regnum == i || regnum == -1)
3850 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3851 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3852 }
3853}
3854
7fdafb5a
MK
3855/* Collect register REGNUM from the register cache REGCACHE and store
3856 it in the buffer specified by GREGS and LEN as described by the
3857 general-purpose register set REGSET. If REGNUM is -1, do this for
3858 all registers in REGSET. */
3859
ecc37a5a 3860static void
7fdafb5a
MK
3861i386_collect_gregset (const struct regset *regset,
3862 const struct regcache *regcache,
3863 int regnum, void *gregs, size_t len)
3864{
ac7936df 3865 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3867 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3868 int i;
3869
1528345d 3870 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3871
3872 for (i = 0; i < tdep->gregset_num_regs; i++)
3873 {
3874 if ((regnum == i || regnum == -1)
3875 && tdep->gregset_reg_offset[i] != -1)
34a79281 3876 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3877 }
3878}
3879
3880/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3881 in the floating-point register set REGSET to register cache
3882 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3883
3884static void
3885i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3886 int regnum, const void *fpregs, size_t len)
3887{
ac7936df 3888 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3889 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3890
66a72d25
MK
3891 if (len == I387_SIZEOF_FXSAVE)
3892 {
3893 i387_supply_fxsave (regcache, regnum, fpregs);
3894 return;
3895 }
3896
1528345d 3897 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3898 i387_supply_fsave (regcache, regnum, fpregs);
3899}
8446b36a 3900
2f305df1
MK
3901/* Collect register REGNUM from the register cache REGCACHE and store
3902 it in the buffer specified by FPREGS and LEN as described by the
3903 floating-point register set REGSET. If REGNUM is -1, do this for
3904 all registers in REGSET. */
7fdafb5a
MK
3905
3906static void
3907i386_collect_fpregset (const struct regset *regset,
3908 const struct regcache *regcache,
3909 int regnum, void *fpregs, size_t len)
3910{
ac7936df 3911 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3913
3914 if (len == I387_SIZEOF_FXSAVE)
3915 {
3916 i387_collect_fxsave (regcache, regnum, fpregs);
3917 return;
3918 }
3919
1528345d 3920 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3921 i387_collect_fsave (regcache, regnum, fpregs);
3922}
3923
ecc37a5a
AA
3924/* Register set definitions. */
3925
3926const struct regset i386_gregset =
3927 {
3928 NULL, i386_supply_gregset, i386_collect_gregset
3929 };
3930
8f0435f7 3931const struct regset i386_fpregset =
ecc37a5a
AA
3932 {
3933 NULL, i386_supply_fpregset, i386_collect_fpregset
3934 };
3935
490496c3 3936/* Default iterator over core file register note sections. */
8446b36a 3937
490496c3
AA
3938void
3939i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3940 iterate_over_regset_sections_cb *cb,
3941 void *cb_data,
3942 const struct regcache *regcache)
8446b36a
MK
3943{
3944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3945
a616bb94
AH
3946 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3947 cb_data);
490496c3 3948 if (tdep->sizeof_fpregset)
a616bb94
AH
3949 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3950 NULL, cb_data);
8446b36a 3951}
473f17b0 3952\f
fc338970 3953
fc338970 3954/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3955
3956CORE_ADDR
e17a4113
UW
3957i386_pe_skip_trampoline_code (struct frame_info *frame,
3958 CORE_ADDR pc, char *name)
c906108c 3959{
e17a4113
UW
3960 struct gdbarch *gdbarch = get_frame_arch (frame);
3961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3962
3963 /* jmp *(dest) */
3964 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3965 {
e17a4113
UW
3966 unsigned long indirect =
3967 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3968 struct minimal_symbol *indsym =
7cbd4a93 3969 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3970 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3971
c5aa993b 3972 if (symname)
c906108c 3973 {
61012eef
GB
3974 if (startswith (symname, "__imp_")
3975 || startswith (symname, "_imp_"))
e17a4113
UW
3976 return name ? 1 :
3977 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3978 }
3979 }
fc338970 3980 return 0; /* Not a trampoline. */
c906108c 3981}
fc338970
MK
3982\f
3983
10458914
DJ
3984/* Return whether the THIS_FRAME corresponds to a sigtramp
3985 routine. */
8201327c 3986
4bd207ef 3987int
10458914 3988i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3989{
10458914 3990 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3991 const char *name;
911bc6ee
MK
3992
3993 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3994 return (name && strcmp ("_sigtramp", name) == 0);
3995}
3996\f
3997
fc338970
MK
3998/* We have two flavours of disassembly. The machinery on this page
3999 deals with switching between those. */
c906108c
SS
4000
4001static int
a89aa300 4002i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4003{
5e3397bb
MK
4004 gdb_assert (disassembly_flavor == att_flavor
4005 || disassembly_flavor == intel_flavor);
4006
f995bbe8 4007 info->disassembler_options = disassembly_flavor;
5e3397bb 4008
6394c606 4009 return default_print_insn (pc, info);
7a292a7a 4010}
fc338970 4011\f
3ce1502b 4012
8201327c
MK
4013/* There are a few i386 architecture variants that differ only
4014 slightly from the generic i386 target. For now, we don't give them
4015 their own source file, but include them here. As a consequence,
4016 they'll always be included. */
3ce1502b 4017
8201327c 4018/* System V Release 4 (SVR4). */
3ce1502b 4019
10458914
DJ
4020/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4021 routine. */
911bc6ee 4022
8201327c 4023static int
10458914 4024i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4025{
10458914 4026 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4027 const char *name;
911bc6ee 4028
05b4bd79 4029 /* The origin of these symbols is currently unknown. */
911bc6ee 4030 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4031 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4032 || strcmp ("sigvechandler", name) == 0));
4033}
d2a7c97a 4034
10458914
DJ
4035/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4036 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4037
3a1e71e3 4038static CORE_ADDR
10458914 4039i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4040{
e17a4113
UW
4041 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4043 gdb_byte buf[4];
acd5c798 4044 CORE_ADDR sp;
3ce1502b 4045
10458914 4046 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4047 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4048
e17a4113 4049 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4050}
55aa24fb
SDJ
4051
4052\f
4053
4054/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4055 gdbarch.h. */
4056
4057int
4058i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4059{
4060 return (*s == '$' /* Literal number. */
4061 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4062 || (*s == '(' && s[1] == '%') /* Register indirection. */
4063 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4064}
4065
5acfdbae
SDJ
4066/* Helper function for i386_stap_parse_special_token.
4067
4068 This function parses operands of the form `-8+3+1(%rbp)', which
4069 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4070
af2d9bee 4071 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4072 otherwise. */
4073
4c5e7a93 4074static expr::operation_up
5acfdbae
SDJ
4075i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4076 struct stap_parse_info *p)
4077{
4078 const char *s = p->arg;
4079
4080 if (isdigit (*s) || *s == '-' || *s == '+')
4081 {
af2d9bee 4082 bool got_minus[3];
5acfdbae
SDJ
4083 int i;
4084 long displacements[3];
4085 const char *start;
5acfdbae 4086 int len;
5acfdbae
SDJ
4087 char *endp;
4088
af2d9bee 4089 got_minus[0] = false;
5acfdbae
SDJ
4090 if (*s == '+')
4091 ++s;
4092 else if (*s == '-')
4093 {
4094 ++s;
af2d9bee 4095 got_minus[0] = true;
5acfdbae
SDJ
4096 }
4097
d7b30f67 4098 if (!isdigit ((unsigned char) *s))
4c5e7a93 4099 return {};
d7b30f67 4100
5acfdbae
SDJ
4101 displacements[0] = strtol (s, &endp, 10);
4102 s = endp;
4103
4104 if (*s != '+' && *s != '-')
4105 {
4106 /* We are not dealing with a triplet. */
4c5e7a93 4107 return {};
5acfdbae
SDJ
4108 }
4109
af2d9bee 4110 got_minus[1] = false;
5acfdbae
SDJ
4111 if (*s == '+')
4112 ++s;
4113 else
4114 {
4115 ++s;
af2d9bee 4116 got_minus[1] = true;
5acfdbae
SDJ
4117 }
4118
d7b30f67 4119 if (!isdigit ((unsigned char) *s))
4c5e7a93 4120 return {};
d7b30f67 4121
5acfdbae
SDJ
4122 displacements[1] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
4c5e7a93 4128 return {};
5acfdbae
SDJ
4129 }
4130
af2d9bee 4131 got_minus[2] = false;
5acfdbae
SDJ
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
af2d9bee 4137 got_minus[2] = true;
5acfdbae
SDJ
4138 }
4139
d7b30f67 4140 if (!isdigit ((unsigned char) *s))
4c5e7a93 4141 return {};
d7b30f67 4142
5acfdbae
SDJ
4143 displacements[2] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '(' || s[1] != '%')
4c5e7a93 4147 return {};
5acfdbae
SDJ
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s++ != ')')
4c5e7a93 4156 return {};
5acfdbae 4157
d7b30f67 4158 len = s - start - 1;
4c5e7a93 4159 std::string regname (start, len);
5acfdbae 4160
4c5e7a93 4161 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
5acfdbae 4162 error (_("Invalid register name `%s' on expression `%s'."),
4c5e7a93 4163 regname.c_str (), p->saved_arg);
5acfdbae 4164
4c5e7a93 4165 LONGEST value = 0;
5acfdbae
SDJ
4166 for (i = 0; i < 3; i++)
4167 {
4c5e7a93 4168 LONGEST this_val = displacements[i];
5acfdbae 4169 if (got_minus[i])
4c5e7a93
TT
4170 this_val = -this_val;
4171 value += this_val;
5acfdbae
SDJ
4172 }
4173
4c5e7a93 4174 p->arg = s;
5acfdbae 4175
4c5e7a93 4176 using namespace expr;
5acfdbae 4177
4c5e7a93
TT
4178 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4179 operation_up offset
4180 = make_operation<long_const_operation> (long_type, value);
5acfdbae 4181
4c5e7a93
TT
4182 operation_up reg
4183 = make_operation<register_operation> (std::move (regname));
4184 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4185 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
5acfdbae 4186
4c5e7a93
TT
4187 operation_up sum
4188 = make_operation<add_operation> (std::move (reg), std::move (offset));
4189 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4190 sum = make_operation<unop_cast_operation> (std::move (sum),
4191 arg_ptr_type);
4192 return make_operation<unop_ind_operation> (std::move (sum));
5acfdbae
SDJ
4193 }
4194
4c5e7a93 4195 return {};
5acfdbae
SDJ
4196}
4197
4198/* Helper function for i386_stap_parse_special_token.
4199
4200 This function parses operands of the form `register base +
4201 (register index * size) + offset', as represented in
4202 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4203
af2d9bee 4204 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4205 otherwise. */
4206
4c5e7a93 4207static expr::operation_up
5acfdbae
SDJ
4208i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4209 struct stap_parse_info *p)
4210{
4211 const char *s = p->arg;
4212
4213 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4214 {
af2d9bee 4215 bool offset_minus = false;
5acfdbae 4216 long offset = 0;
af2d9bee 4217 bool size_minus = false;
5acfdbae
SDJ
4218 long size = 0;
4219 const char *start;
5acfdbae 4220 int len_base;
5acfdbae 4221 int len_index;
5acfdbae
SDJ
4222
4223 if (*s == '+')
4224 ++s;
4225 else if (*s == '-')
4226 {
4227 ++s;
af2d9bee 4228 offset_minus = true;
5acfdbae
SDJ
4229 }
4230
4231 if (offset_minus && !isdigit (*s))
4c5e7a93 4232 return {};
5acfdbae
SDJ
4233
4234 if (isdigit (*s))
4235 {
4236 char *endp;
4237
4238 offset = strtol (s, &endp, 10);
4239 s = endp;
4240 }
4241
4242 if (*s != '(' || s[1] != '%')
4c5e7a93 4243 return {};
5acfdbae
SDJ
4244
4245 s += 2;
4246 start = s;
4247
4248 while (isalnum (*s))
4249 ++s;
4250
4251 if (*s != ',' || s[1] != '%')
4c5e7a93 4252 return {};
5acfdbae
SDJ
4253
4254 len_base = s - start;
4c5e7a93 4255 std::string base (start, len_base);
5acfdbae 4256
4c5e7a93 4257 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
5acfdbae 4258 error (_("Invalid register name `%s' on expression `%s'."),
4c5e7a93 4259 base.c_str (), p->saved_arg);
5acfdbae
SDJ
4260
4261 s += 2;
4262 start = s;
4263
4264 while (isalnum (*s))
4265 ++s;
4266
4267 len_index = s - start;
4c5e7a93 4268 std::string index (start, len_index);
5acfdbae 4269
4c5e7a93
TT
4270 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4271 len_index) == -1)
5acfdbae 4272 error (_("Invalid register name `%s' on expression `%s'."),
4c5e7a93 4273 index.c_str (), p->saved_arg);
5acfdbae
SDJ
4274
4275 if (*s != ',' && *s != ')')
4c5e7a93 4276 return {};
5acfdbae
SDJ
4277
4278 if (*s == ',')
4279 {
4280 char *endp;
4281
4282 ++s;
4283 if (*s == '+')
4284 ++s;
4285 else if (*s == '-')
4286 {
4287 ++s;
af2d9bee 4288 size_minus = true;
5acfdbae
SDJ
4289 }
4290
4291 size = strtol (s, &endp, 10);
4292 s = endp;
4293
4294 if (*s != ')')
4c5e7a93 4295 return {};
5acfdbae
SDJ
4296 }
4297
4298 ++s;
4c5e7a93
TT
4299 p->arg = s;
4300
4301 using namespace expr;
4302
4303 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4304 operation_up reg = make_operation<register_operation> (std::move (base));
5acfdbae 4305
4c5e7a93 4306 if (offset != 0)
5acfdbae 4307 {
5acfdbae 4308 if (offset_minus)
4c5e7a93
TT
4309 offset = -offset;
4310 operation_up value
4311 = make_operation<long_const_operation> (long_type, offset);
4312 reg = make_operation<add_operation> (std::move (reg),
4313 std::move (value));
5acfdbae
SDJ
4314 }
4315
4c5e7a93
TT
4316 operation_up ind_reg
4317 = make_operation<register_operation> (std::move (index));
5acfdbae 4318
4c5e7a93 4319 if (size != 0)
5acfdbae 4320 {
5acfdbae 4321 if (size_minus)
4c5e7a93
TT
4322 size = -size;
4323 operation_up value
4324 = make_operation<long_const_operation> (long_type, size);
4325 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4326 std::move (value));
5acfdbae
SDJ
4327 }
4328
4c5e7a93
TT
4329 operation_up sum
4330 = make_operation<add_operation> (std::move (reg),
4331 std::move (ind_reg));
5acfdbae 4332
4c5e7a93
TT
4333 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4334 sum = make_operation<unop_cast_operation> (std::move (sum),
4335 arg_ptr_type);
4336 return make_operation<unop_ind_operation> (std::move (sum));
5acfdbae
SDJ
4337 }
4338
4c5e7a93 4339 return {};
5acfdbae
SDJ
4340}
4341
55aa24fb
SDJ
4342/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4343 gdbarch.h. */
4344
4c5e7a93 4345expr::operation_up
55aa24fb
SDJ
4346i386_stap_parse_special_token (struct gdbarch *gdbarch,
4347 struct stap_parse_info *p)
4348{
55aa24fb
SDJ
4349 /* The special tokens to be parsed here are:
4350
4351 - `register base + (register index * size) + offset', as represented
4352 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4353
4354 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4355 `*(-8 + 3 - 1 + (void *) $eax)'. */
4356
4c5e7a93
TT
4357 expr::operation_up result
4358 = i386_stap_parse_special_token_triplet (gdbarch, p);
55aa24fb 4359
4c5e7a93
TT
4360 if (result == nullptr)
4361 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
55aa24fb 4362
4c5e7a93 4363 return result;
55aa24fb
SDJ
4364}
4365
7d7571f0
SDJ
4366/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4367 gdbarch.h. */
4368
6b78c3f8 4369static std::string
7d7571f0 4370i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4371 const std::string &regname, int regnum)
7d7571f0
SDJ
4372{
4373 static const std::unordered_set<std::string> reg_assoc
4374 = { "ax", "bx", "cx", "dx",
4375 "si", "di", "bp", "sp" };
4376
6b78c3f8
AB
4377 /* If we are dealing with a register whose size is less than the size
4378 specified by the "[-]N@" prefix, and it is one of the registers that
4379 we know has an extended variant available, then use the extended
4380 version of the register instead. */
4381 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4382 && reg_assoc.find (regname) != reg_assoc.end ())
4383 return "e" + regname;
7d7571f0 4384
6b78c3f8
AB
4385 /* Otherwise, just use the requested register. */
4386 return regname;
7d7571f0
SDJ
4387}
4388
8201327c 4389\f
3ce1502b 4390
ac04f72b
TT
4391/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4392 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4393
4394static const char *
4395i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4396{
4397 return "(x86_64|i.86)";
4398}
4399
4400\f
4401
1d509aa6
MM
4402/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4403
4404static bool
4405i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4406{
4407 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4408 I386_EAX_REGNUM, I386_EIP_REGNUM);
4409}
4410
8201327c 4411/* Generic ELF. */
d2a7c97a 4412
8201327c
MK
4413void
4414i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4415{
05c0465e
SDJ
4416 static const char *const stap_integer_prefixes[] = { "$", NULL };
4417 static const char *const stap_register_prefixes[] = { "%", NULL };
4418 static const char *const stap_register_indirection_prefixes[] = { "(",
4419 NULL };
4420 static const char *const stap_register_indirection_suffixes[] = { ")",
4421 NULL };
4422
c4fc7f1b
MK
4423 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4424 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4425
4426 /* Registering SystemTap handlers. */
05c0465e
SDJ
4427 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4428 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4429 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4430 stap_register_indirection_prefixes);
4431 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4432 stap_register_indirection_suffixes);
55aa24fb
SDJ
4433 set_gdbarch_stap_is_single_operand (gdbarch,
4434 i386_stap_is_single_operand);
4435 set_gdbarch_stap_parse_special_token (gdbarch,
4436 i386_stap_parse_special_token);
7d7571f0
SDJ
4437 set_gdbarch_stap_adjust_register (gdbarch,
4438 i386_stap_adjust_register);
1d509aa6
MM
4439
4440 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4441 i386_in_indirect_branch_thunk);
8201327c 4442}
3ce1502b 4443
8201327c 4444/* System V Release 4 (SVR4). */
3ce1502b 4445
8201327c
MK
4446void
4447i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4448{
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4450
8201327c
MK
4451 /* System V Release 4 uses ELF. */
4452 i386_elf_init_abi (info, gdbarch);
3ce1502b 4453
dfe01d39 4454 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4455 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4456
911bc6ee 4457 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4458 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4459 tdep->sc_pc_offset = 36 + 14 * 4;
4460 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4461
8201327c 4462 tdep->jb_pc_offset = 20;
3ce1502b
MK
4463}
4464
8201327c 4465\f
2acceee2 4466
38c968cf
AC
4467/* i386 register groups. In addition to the normal groups, add "mmx"
4468 and "sse". */
4469
4470static struct reggroup *i386_sse_reggroup;
4471static struct reggroup *i386_mmx_reggroup;
4472
4473static void
4474i386_init_reggroups (void)
4475{
4476 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4477 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4478}
4479
4480static void
4481i386_add_reggroups (struct gdbarch *gdbarch)
4482{
4483 reggroup_add (gdbarch, i386_sse_reggroup);
4484 reggroup_add (gdbarch, i386_mmx_reggroup);
4485 reggroup_add (gdbarch, general_reggroup);
4486 reggroup_add (gdbarch, float_reggroup);
4487 reggroup_add (gdbarch, all_reggroup);
4488 reggroup_add (gdbarch, save_reggroup);
4489 reggroup_add (gdbarch, restore_reggroup);
4490 reggroup_add (gdbarch, vector_reggroup);
4491 reggroup_add (gdbarch, system_reggroup);
4492}
4493
4494int
4495i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4496 struct reggroup *group)
4497{
c131fcee
L
4498 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4499 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4500 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4501 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4502 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4503 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4504
1ba53b71
L
4505 /* Don't include pseudo registers, except for MMX, in any register
4506 groups. */
c131fcee 4507 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4508 return 0;
4509
c131fcee 4510 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4511 return 0;
4512
c131fcee 4513 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4514 return 0;
4515
4516 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4517 if (group == i386_mmx_reggroup)
4518 return mmx_regnum_p;
1ba53b71 4519
51547df6 4520 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4521 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4522 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4523 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4524 if (group == i386_sse_reggroup)
01f9f808 4525 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4526
4527 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4528 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4529 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4530
22049425
MS
4531 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4532 == X86_XSTATE_AVX_AVX512_MASK);
4533 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4534 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4535 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4536 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4537
38c968cf 4538 if (group == vector_reggroup)
c131fcee 4539 return (mmx_regnum_p
01f9f808
MS
4540 || (zmm_regnum_p && avx512_p)
4541 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4542 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4543 || mxcsr_regnum_p);
1ba53b71
L
4544
4545 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4546 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4547 if (group == float_reggroup)
4548 return fp_regnum_p;
1ba53b71 4549
c131fcee
L
4550 /* For "info reg all", don't include upper YMM registers nor XMM
4551 registers when AVX is supported. */
4552 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4553 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4554 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4555 if (group == all_reggroup
01f9f808
MS
4556 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4557 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4558 || ymmh_regnum_p
4559 || ymmh_avx512_regnum_p
4560 || zmmh_regnum_p))
c131fcee
L
4561 return 0;
4562
1dbcd68c
WT
4563 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4564 if (group == all_reggroup
df7e5265 4565 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4566 return bnd_regnum_p;
4567
4568 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4569 if (group == all_reggroup
df7e5265 4570 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4571 return 0;
4572
4573 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4574 if (group == all_reggroup
df7e5265 4575 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4576 return mpx_ctrl_regnum_p;
4577
38c968cf 4578 if (group == general_reggroup)
1ba53b71
L
4579 return (!fp_regnum_p
4580 && !mmx_regnum_p
c131fcee
L
4581 && !mxcsr_regnum_p
4582 && !xmm_regnum_p
01f9f808 4583 && !xmm_avx512_regnum_p
c131fcee 4584 && !ymm_regnum_p
1dbcd68c 4585 && !ymmh_regnum_p
01f9f808
MS
4586 && !ymm_avx512_regnum_p
4587 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4588 && !bndr_regnum_p
4589 && !bnd_regnum_p
01f9f808
MS
4590 && !mpx_ctrl_regnum_p
4591 && !zmm_regnum_p
51547df6
MS
4592 && !zmmh_regnum_p
4593 && !pkru_regnum_p);
acd5c798 4594
38c968cf
AC
4595 return default_register_reggroup_p (gdbarch, regnum, group);
4596}
38c968cf 4597\f
acd5c798 4598
f837910f
MK
4599/* Get the ARGIth function argument for the current function. */
4600
42c466d7 4601static CORE_ADDR
143985b7
AF
4602i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4603 struct type *type)
4604{
e17a4113
UW
4605 struct gdbarch *gdbarch = get_frame_arch (frame);
4606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4607 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4608 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4609}
4610
7ad10968
HZ
4611#define PREFIX_REPZ 0x01
4612#define PREFIX_REPNZ 0x02
4613#define PREFIX_LOCK 0x04
4614#define PREFIX_DATA 0x08
4615#define PREFIX_ADDR 0x10
473f17b0 4616
7ad10968
HZ
4617/* operand size */
4618enum
4619{
4620 OT_BYTE = 0,
4621 OT_WORD,
4622 OT_LONG,
cf648174 4623 OT_QUAD,
a3c4230a 4624 OT_DQUAD,
7ad10968 4625};
473f17b0 4626
7ad10968
HZ
4627/* i386 arith/logic operations */
4628enum
4629{
4630 OP_ADDL,
4631 OP_ORL,
4632 OP_ADCL,
4633 OP_SBBL,
4634 OP_ANDL,
4635 OP_SUBL,
4636 OP_XORL,
4637 OP_CMPL,
4638};
5716833c 4639
7ad10968
HZ
4640struct i386_record_s
4641{
cf648174 4642 struct gdbarch *gdbarch;
7ad10968 4643 struct regcache *regcache;
df61f520 4644 CORE_ADDR orig_addr;
7ad10968
HZ
4645 CORE_ADDR addr;
4646 int aflag;
4647 int dflag;
4648 int override;
4649 uint8_t modrm;
4650 uint8_t mod, reg, rm;
4651 int ot;
cf648174
HZ
4652 uint8_t rex_x;
4653 uint8_t rex_b;
4654 int rip_offset;
4655 int popl_esp_hack;
4656 const int *regmap;
7ad10968 4657};
5716833c 4658
99c1624c
PA
4659/* Parse the "modrm" part of the memory address irp->addr points at.
4660 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4661
7ad10968
HZ
4662static int
4663i386_record_modrm (struct i386_record_s *irp)
4664{
cf648174 4665 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4666
4ffa4fc7
PA
4667 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4668 return -1;
4669
7ad10968
HZ
4670 irp->addr++;
4671 irp->mod = (irp->modrm >> 6) & 3;
4672 irp->reg = (irp->modrm >> 3) & 7;
4673 irp->rm = irp->modrm & 7;
5716833c 4674
7ad10968
HZ
4675 return 0;
4676}
d2a7c97a 4677
99c1624c
PA
4678/* Extract the memory address that the current instruction writes to,
4679 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4680
7ad10968 4681static int
cf648174 4682i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4683{
cf648174 4684 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4686 gdb_byte buf[4];
4687 ULONGEST offset64;
21d0e8a4 4688
7ad10968 4689 *addr = 0;
1e87984a 4690 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4691 {
1e87984a 4692 /* 32/64 bits */
7ad10968
HZ
4693 int havesib = 0;
4694 uint8_t scale = 0;
648d0c8b 4695 uint8_t byte;
7ad10968
HZ
4696 uint8_t index = 0;
4697 uint8_t base = irp->rm;
896fb97d 4698
7ad10968
HZ
4699 if (base == 4)
4700 {
4701 havesib = 1;
4ffa4fc7
PA
4702 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4703 return -1;
7ad10968 4704 irp->addr++;
648d0c8b
MS
4705 scale = (byte >> 6) & 3;
4706 index = ((byte >> 3) & 7) | irp->rex_x;
4707 base = (byte & 7);
7ad10968 4708 }
cf648174 4709 base |= irp->rex_b;
21d0e8a4 4710
7ad10968
HZ
4711 switch (irp->mod)
4712 {
4713 case 0:
4714 if ((base & 7) == 5)
4715 {
4716 base = 0xff;
4ffa4fc7
PA
4717 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4718 return -1;
7ad10968 4719 irp->addr += 4;
60a1502a 4720 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4721 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4722 *addr += irp->addr + irp->rip_offset;
7ad10968 4723 }
7ad10968
HZ
4724 break;
4725 case 1:
4ffa4fc7
PA
4726 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4727 return -1;
7ad10968 4728 irp->addr++;
60a1502a 4729 *addr = (int8_t) buf[0];
7ad10968
HZ
4730 break;
4731 case 2:
4ffa4fc7
PA
4732 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4733 return -1;
60a1502a 4734 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4735 irp->addr += 4;
4736 break;
4737 }
356a6b3e 4738
60a1502a 4739 offset64 = 0;
7ad10968 4740 if (base != 0xff)
dda83cd7 4741 {
cf648174
HZ
4742 if (base == 4 && irp->popl_esp_hack)
4743 *addr += irp->popl_esp_hack;
4744 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
dda83cd7 4745 &offset64);
7ad10968 4746 }
cf648174 4747 if (irp->aflag == 2)
dda83cd7 4748 {
60a1502a 4749 *addr += offset64;
dda83cd7 4750 }
cf648174 4751 else
dda83cd7 4752 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4753
7ad10968
HZ
4754 if (havesib && (index != 4 || scale != 0))
4755 {
cf648174 4756 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
dda83cd7 4757 &offset64);
cf648174 4758 if (irp->aflag == 2)
60a1502a 4759 *addr += offset64 << scale;
cf648174 4760 else
60a1502a 4761 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4762 }
e85596e0
L
4763
4764 if (!irp->aflag)
4765 {
4766 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4767 address from 32-bit to 64-bit. */
4768 *addr = (uint32_t) *addr;
4769 }
7ad10968
HZ
4770 }
4771 else
4772 {
4773 /* 16 bits */
4774 switch (irp->mod)
4775 {
4776 case 0:
4777 if (irp->rm == 6)
4778 {
4ffa4fc7
PA
4779 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4780 return -1;
7ad10968 4781 irp->addr += 2;
60a1502a 4782 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4783 irp->rm = 0;
4784 goto no_rm;
4785 }
7ad10968
HZ
4786 break;
4787 case 1:
4ffa4fc7
PA
4788 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4789 return -1;
7ad10968 4790 irp->addr++;
60a1502a 4791 *addr = (int8_t) buf[0];
7ad10968
HZ
4792 break;
4793 case 2:
4ffa4fc7
PA
4794 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4795 return -1;
7ad10968 4796 irp->addr += 2;
60a1502a 4797 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4798 break;
4799 }
c4fc7f1b 4800
7ad10968
HZ
4801 switch (irp->rm)
4802 {
4803 case 0:
cf648174
HZ
4804 regcache_raw_read_unsigned (irp->regcache,
4805 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4806 &offset64);
60a1502a 4807 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4808 regcache_raw_read_unsigned (irp->regcache,
4809 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4810 &offset64);
60a1502a 4811 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4812 break;
4813 case 1:
cf648174
HZ
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4816 &offset64);
60a1502a 4817 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4818 regcache_raw_read_unsigned (irp->regcache,
4819 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4820 &offset64);
60a1502a 4821 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4822 break;
4823 case 2:
cf648174
HZ
4824 regcache_raw_read_unsigned (irp->regcache,
4825 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4826 &offset64);
60a1502a 4827 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4830 &offset64);
60a1502a 4831 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4832 break;
4833 case 3:
cf648174
HZ
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4836 &offset64);
60a1502a 4837 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4840 &offset64);
60a1502a 4841 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4842 break;
4843 case 4:
cf648174
HZ
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4846 &offset64);
60a1502a 4847 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4848 break;
4849 case 5:
cf648174
HZ
4850 regcache_raw_read_unsigned (irp->regcache,
4851 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4852 &offset64);
60a1502a 4853 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4854 break;
4855 case 6:
cf648174
HZ
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4858 &offset64);
60a1502a 4859 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4860 break;
4861 case 7:
cf648174
HZ
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4864 &offset64);
60a1502a 4865 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4866 break;
4867 }
4868 *addr &= 0xffff;
4869 }
c4fc7f1b 4870
01fe1b41 4871 no_rm:
7ad10968
HZ
4872 return 0;
4873}
c4fc7f1b 4874
99c1624c
PA
4875/* Record the address and contents of the memory that will be changed
4876 by the current instruction. Return -1 if something goes wrong, 0
4877 otherwise. */
356a6b3e 4878
7ad10968
HZ
4879static int
4880i386_record_lea_modrm (struct i386_record_s *irp)
4881{
cf648174
HZ
4882 struct gdbarch *gdbarch = irp->gdbarch;
4883 uint64_t addr;
356a6b3e 4884
d7877f7e 4885 if (irp->override >= 0)
7ad10968 4886 {
25ea693b 4887 if (record_full_memory_query)
dda83cd7
SM
4888 {
4889 if (yquery (_("\
bb08c432
HZ
4890Process record ignores the memory change of instruction at address %s\n\
4891because it can't get the value of the segment register.\n\
4892Do you want to stop the program?"),
dda83cd7 4893 paddress (gdbarch, irp->orig_addr)))
651ce16a 4894 return -1;
dda83cd7 4895 }
bb08c432 4896
7ad10968
HZ
4897 return 0;
4898 }
61113f8b 4899
7ad10968
HZ
4900 if (i386_record_lea_modrm_addr (irp, &addr))
4901 return -1;
96297dab 4902
25ea693b 4903 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4904 return -1;
a62cc96e 4905
7ad10968
HZ
4906 return 0;
4907}
b6197528 4908
99c1624c
PA
4909/* Record the effects of a push operation. Return -1 if something
4910 goes wrong, 0 otherwise. */
cf648174
HZ
4911
4912static int
4913i386_record_push (struct i386_record_s *irp, int size)
4914{
648d0c8b 4915 ULONGEST addr;
cf648174 4916
25ea693b
MM
4917 if (record_full_arch_list_add_reg (irp->regcache,
4918 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4919 return -1;
4920 regcache_raw_read_unsigned (irp->regcache,
4921 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4922 &addr);
25ea693b 4923 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4924 return -1;
4925
4926 return 0;
4927}
4928
0289bdd7
MS
4929
4930/* Defines contents to record. */
4931#define I386_SAVE_FPU_REGS 0xfffd
4932#define I386_SAVE_FPU_ENV 0xfffe
4933#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4934
99c1624c
PA
4935/* Record the values of the floating point registers which will be
4936 changed by the current instruction. Returns -1 if something is
4937 wrong, 0 otherwise. */
0289bdd7
MS
4938
4939static int i386_record_floats (struct gdbarch *gdbarch,
dda83cd7
SM
4940 struct i386_record_s *ir,
4941 uint32_t iregnum)
0289bdd7
MS
4942{
4943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4944 int i;
4945
4946 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4947 happen. Currently we store st0-st7 registers, but we need not store all
4948 registers all the time, in future we use ftag register and record only
4949 those who are not marked as an empty. */
4950
4951 if (I386_SAVE_FPU_REGS == iregnum)
4952 {
4953 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
dda83cd7
SM
4954 {
4955 if (record_full_arch_list_add_reg (ir->regcache, i))
4956 return -1;
4957 }
0289bdd7
MS
4958 }
4959 else if (I386_SAVE_FPU_ENV == iregnum)
4960 {
4961 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4962 {
25ea693b 4963 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 4964 return -1;
0289bdd7
MS
4965 }
4966 }
4967 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4968 {
4969 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4970 {
dda83cd7
SM
4971 if (record_full_arch_list_add_reg (ir->regcache, i))
4972 return -1;
0289bdd7
MS
4973 }
4974 }
4975 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
dda83cd7 4976 (iregnum <= I387_FOP_REGNUM (tdep)))
0289bdd7 4977 {
25ea693b 4978 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
dda83cd7 4979 return -1;
0289bdd7
MS
4980 }
4981 else
4982 {
4983 /* Parameter error. */
4984 return -1;
4985 }
4986 if(I386_SAVE_FPU_ENV != iregnum)
4987 {
4988 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4989 {
25ea693b 4990 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 4991 return -1;
0289bdd7
MS
4992 }
4993 }
4994 return 0;
4995}
4996
99c1624c
PA
4997/* Parse the current instruction, and record the values of the
4998 registers and memory that will be changed by the current
4999 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5000
25ea693b
MM
5001#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5002 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5003
a6b808b4 5004int
7ad10968 5005i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5006 CORE_ADDR input_addr)
7ad10968 5007{
60a1502a 5008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5009 int prefixes = 0;
580879fc 5010 int regnum = 0;
425b824a 5011 uint32_t opcode;
f4644a3f 5012 uint8_t opcode8;
648d0c8b 5013 ULONGEST addr;
975c21ab 5014 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5015 struct i386_record_s ir;
0289bdd7 5016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5017 uint8_t rex_w = -1;
5018 uint8_t rex_r = 0;
7ad10968 5019
8408d274 5020 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5021 ir.regcache = regcache;
648d0c8b
MS
5022 ir.addr = input_addr;
5023 ir.orig_addr = input_addr;
7ad10968
HZ
5024 ir.aflag = 1;
5025 ir.dflag = 1;
cf648174
HZ
5026 ir.override = -1;
5027 ir.popl_esp_hack = 0;
a3c4230a 5028 ir.regmap = tdep->record_regmap;
cf648174 5029 ir.gdbarch = gdbarch;
7ad10968
HZ
5030
5031 if (record_debug > 1)
5032 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
dda83cd7 5033 "addr = %s\n",
5af949e3 5034 paddress (gdbarch, ir.addr));
7ad10968
HZ
5035
5036 /* prefixes */
5037 while (1)
5038 {
4ffa4fc7
PA
5039 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5040 return -1;
7ad10968 5041 ir.addr++;
425b824a 5042 switch (opcode8) /* Instruction prefixes */
7ad10968 5043 {
01fe1b41 5044 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5045 prefixes |= PREFIX_REPZ;
5046 break;
01fe1b41 5047 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5048 prefixes |= PREFIX_REPNZ;
5049 break;
01fe1b41 5050 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5051 prefixes |= PREFIX_LOCK;
5052 break;
01fe1b41 5053 case CS_PREFIX_OPCODE:
cf648174 5054 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5055 break;
01fe1b41 5056 case SS_PREFIX_OPCODE:
cf648174 5057 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5058 break;
01fe1b41 5059 case DS_PREFIX_OPCODE:
cf648174 5060 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5061 break;
01fe1b41 5062 case ES_PREFIX_OPCODE:
cf648174 5063 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5064 break;
01fe1b41 5065 case FS_PREFIX_OPCODE:
cf648174 5066 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5067 break;
01fe1b41 5068 case GS_PREFIX_OPCODE:
cf648174 5069 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5070 break;
01fe1b41 5071 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5072 prefixes |= PREFIX_DATA;
5073 break;
01fe1b41 5074 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5075 prefixes |= PREFIX_ADDR;
5076 break;
dda83cd7
SM
5077 case 0x40: /* i386 inc %eax */
5078 case 0x41: /* i386 inc %ecx */
5079 case 0x42: /* i386 inc %edx */
5080 case 0x43: /* i386 inc %ebx */
5081 case 0x44: /* i386 inc %esp */
5082 case 0x45: /* i386 inc %ebp */
5083 case 0x46: /* i386 inc %esi */
5084 case 0x47: /* i386 inc %edi */
5085 case 0x48: /* i386 dec %eax */
5086 case 0x49: /* i386 dec %ecx */
5087 case 0x4a: /* i386 dec %edx */
5088 case 0x4b: /* i386 dec %ebx */
5089 case 0x4c: /* i386 dec %esp */
5090 case 0x4d: /* i386 dec %ebp */
5091 case 0x4e: /* i386 dec %esi */
5092 case 0x4f: /* i386 dec %edi */
5093 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5094 {
5095 /* REX */
5096 rex_w = (opcode8 >> 3) & 1;
5097 rex_r = (opcode8 & 0x4) << 1;
5098 ir.rex_x = (opcode8 & 0x2) << 2;
5099 ir.rex_b = (opcode8 & 0x1) << 3;
5100 }
d691bec7
MS
5101 else /* 32 bit target */
5102 goto out_prefixes;
dda83cd7 5103 break;
7ad10968
HZ
5104 default:
5105 goto out_prefixes;
5106 break;
5107 }
5108 }
01fe1b41 5109 out_prefixes:
cf648174
HZ
5110 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5111 {
5112 ir.dflag = 2;
5113 }
5114 else
5115 {
5116 if (prefixes & PREFIX_DATA)
dda83cd7 5117 ir.dflag ^= 1;
cf648174 5118 }
7ad10968
HZ
5119 if (prefixes & PREFIX_ADDR)
5120 ir.aflag ^= 1;
cf648174
HZ
5121 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5122 ir.aflag = 2;
7ad10968 5123
1777feb0 5124 /* Now check op code. */
425b824a 5125 opcode = (uint32_t) opcode8;
01fe1b41 5126 reswitch:
7ad10968
HZ
5127 switch (opcode)
5128 {
5129 case 0x0f:
4ffa4fc7
PA
5130 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5131 return -1;
7ad10968 5132 ir.addr++;
a3c4230a 5133 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5134 goto reswitch;
5135 break;
93924b6b 5136
a38bba38 5137 case 0x00: /* arith & logic */
7ad10968
HZ
5138 case 0x01:
5139 case 0x02:
5140 case 0x03:
5141 case 0x04:
5142 case 0x05:
5143 case 0x08:
5144 case 0x09:
5145 case 0x0a:
5146 case 0x0b:
5147 case 0x0c:
5148 case 0x0d:
5149 case 0x10:
5150 case 0x11:
5151 case 0x12:
5152 case 0x13:
5153 case 0x14:
5154 case 0x15:
5155 case 0x18:
5156 case 0x19:
5157 case 0x1a:
5158 case 0x1b:
5159 case 0x1c:
5160 case 0x1d:
5161 case 0x20:
5162 case 0x21:
5163 case 0x22:
5164 case 0x23:
5165 case 0x24:
5166 case 0x25:
5167 case 0x28:
5168 case 0x29:
5169 case 0x2a:
5170 case 0x2b:
5171 case 0x2c:
5172 case 0x2d:
5173 case 0x30:
5174 case 0x31:
5175 case 0x32:
5176 case 0x33:
5177 case 0x34:
5178 case 0x35:
5179 case 0x38:
5180 case 0x39:
5181 case 0x3a:
5182 case 0x3b:
5183 case 0x3c:
5184 case 0x3d:
5185 if (((opcode >> 3) & 7) != OP_CMPL)
5186 {
5187 if ((opcode & 1) == 0)
5188 ir.ot = OT_BYTE;
5189 else
5190 ir.ot = ir.dflag + OT_WORD;
93924b6b 5191
7ad10968
HZ
5192 switch ((opcode >> 1) & 3)
5193 {
a38bba38 5194 case 0: /* OP Ev, Gv */
7ad10968
HZ
5195 if (i386_record_modrm (&ir))
5196 return -1;
5197 if (ir.mod != 3)
5198 {
5199 if (i386_record_lea_modrm (&ir))
5200 return -1;
5201 }
5202 else
5203 {
dda83cd7 5204 ir.rm |= ir.rex_b;
cf648174 5205 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5206 ir.rm &= 0x3;
25ea693b 5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5208 }
5209 break;
a38bba38 5210 case 1: /* OP Gv, Ev */
7ad10968
HZ
5211 if (i386_record_modrm (&ir))
5212 return -1;
dda83cd7 5213 ir.reg |= rex_r;
cf648174 5214 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5215 ir.reg &= 0x3;
25ea693b 5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5217 break;
a38bba38 5218 case 2: /* OP A, Iv */
25ea693b 5219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5220 break;
5221 }
5222 }
25ea693b 5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5224 break;
42fdc8df 5225
a38bba38 5226 case 0x80: /* GRP1 */
7ad10968
HZ
5227 case 0x81:
5228 case 0x82:
5229 case 0x83:
5230 if (i386_record_modrm (&ir))
5231 return -1;
8201327c 5232
7ad10968
HZ
5233 if (ir.reg != OP_CMPL)
5234 {
5235 if ((opcode & 1) == 0)
5236 ir.ot = OT_BYTE;
5237 else
5238 ir.ot = ir.dflag + OT_WORD;
28fc6740 5239
7ad10968
HZ
5240 if (ir.mod != 3)
5241 {
dda83cd7
SM
5242 if (opcode == 0x83)
5243 ir.rip_offset = 1;
5244 else
5245 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5246 if (i386_record_lea_modrm (&ir))
5247 return -1;
5248 }
5249 else
25ea693b 5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5251 }
25ea693b 5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5253 break;
5e3397bb 5254
a38bba38 5255 case 0x40: /* inc */
7ad10968
HZ
5256 case 0x41:
5257 case 0x42:
5258 case 0x43:
5259 case 0x44:
5260 case 0x45:
5261 case 0x46:
5262 case 0x47:
a38bba38
MS
5263
5264 case 0x48: /* dec */
7ad10968
HZ
5265 case 0x49:
5266 case 0x4a:
5267 case 0x4b:
5268 case 0x4c:
5269 case 0x4d:
5270 case 0x4e:
5271 case 0x4f:
a38bba38 5272
25ea693b
MM
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5275 break;
acd5c798 5276
a38bba38 5277 case 0xf6: /* GRP3 */
7ad10968
HZ
5278 case 0xf7:
5279 if ((opcode & 1) == 0)
5280 ir.ot = OT_BYTE;
5281 else
5282 ir.ot = ir.dflag + OT_WORD;
5283 if (i386_record_modrm (&ir))
5284 return -1;
acd5c798 5285
cf648174 5286 if (ir.mod != 3 && ir.reg == 0)
dda83cd7 5287 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5288
7ad10968
HZ
5289 switch (ir.reg)
5290 {
a38bba38 5291 case 0: /* test */
25ea693b 5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5293 break;
a38bba38
MS
5294 case 2: /* not */
5295 case 3: /* neg */
7ad10968
HZ
5296 if (ir.mod != 3)
5297 {
5298 if (i386_record_lea_modrm (&ir))
5299 return -1;
5300 }
5301 else
5302 {
dda83cd7 5303 ir.rm |= ir.rex_b;
cf648174 5304 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5305 ir.rm &= 0x3;
25ea693b 5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5307 }
a38bba38 5308 if (ir.reg == 3) /* neg */
25ea693b 5309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5310 break;
a38bba38
MS
5311 case 4: /* mul */
5312 case 5: /* imul */
5313 case 6: /* div */
5314 case 7: /* idiv */
25ea693b 5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5316 if (ir.ot != OT_BYTE)
25ea693b
MM
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5318 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5319 break;
5320 default:
5321 ir.addr -= 2;
5322 opcode = opcode << 8 | ir.modrm;
5323 goto no_support;
5324 break;
5325 }
5326 break;
5327
a38bba38
MS
5328 case 0xfe: /* GRP4 */
5329 case 0xff: /* GRP5 */
7ad10968
HZ
5330 if (i386_record_modrm (&ir))
5331 return -1;
5332 if (ir.reg >= 2 && opcode == 0xfe)
5333 {
5334 ir.addr -= 2;
5335 opcode = opcode << 8 | ir.modrm;
5336 goto no_support;
5337 }
7ad10968
HZ
5338 switch (ir.reg)
5339 {
a38bba38
MS
5340 case 0: /* inc */
5341 case 1: /* dec */
dda83cd7 5342 if ((opcode & 1) == 0)
cf648174 5343 ir.ot = OT_BYTE;
dda83cd7 5344 else
cf648174 5345 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5346 if (ir.mod != 3)
5347 {
5348 if (i386_record_lea_modrm (&ir))
5349 return -1;
5350 }
5351 else
5352 {
cf648174
HZ
5353 ir.rm |= ir.rex_b;
5354 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5355 ir.rm &= 0x3;
25ea693b 5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5357 }
25ea693b 5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5359 break;
a38bba38 5360 case 2: /* call */
dda83cd7
SM
5361 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5362 ir.dflag = 2;
cf648174 5363 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5364 return -1;
25ea693b 5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5366 break;
a38bba38 5367 case 3: /* lcall */
25ea693b 5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5369 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5370 return -1;
25ea693b 5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5372 break;
a38bba38
MS
5373 case 4: /* jmp */
5374 case 5: /* ljmp */
25ea693b 5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5376 break;
a38bba38 5377 case 6: /* push */
dda83cd7
SM
5378 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5379 ir.dflag = 2;
cf648174
HZ
5380 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5381 return -1;
7ad10968
HZ
5382 break;
5383 default:
5384 ir.addr -= 2;
5385 opcode = opcode << 8 | ir.modrm;
5386 goto no_support;
5387 break;
5388 }
5389 break;
5390
a38bba38 5391 case 0x84: /* test */
7ad10968
HZ
5392 case 0x85:
5393 case 0xa8:
5394 case 0xa9:
25ea693b 5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5396 break;
5397
a38bba38 5398 case 0x98: /* CWDE/CBW */
25ea693b 5399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5400 break;
5401
a38bba38 5402 case 0x99: /* CDQ/CWD */
25ea693b
MM
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5405 break;
5406
a38bba38 5407 case 0x0faf: /* imul */
7ad10968
HZ
5408 case 0x69:
5409 case 0x6b:
5410 ir.ot = ir.dflag + OT_WORD;
5411 if (i386_record_modrm (&ir))
5412 return -1;
cf648174 5413 if (opcode == 0x69)
dda83cd7 5414 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5415 else if (opcode == 0x6b)
dda83cd7 5416 ir.rip_offset = 1;
cf648174
HZ
5417 ir.reg |= rex_r;
5418 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5419 ir.reg &= 0x3;
25ea693b
MM
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5422 break;
5423
a38bba38 5424 case 0x0fc0: /* xadd */
7ad10968
HZ
5425 case 0x0fc1:
5426 if ((opcode & 1) == 0)
5427 ir.ot = OT_BYTE;
5428 else
5429 ir.ot = ir.dflag + OT_WORD;
5430 if (i386_record_modrm (&ir))
5431 return -1;
cf648174 5432 ir.reg |= rex_r;
7ad10968
HZ
5433 if (ir.mod == 3)
5434 {
cf648174 5435 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5436 ir.reg &= 0x3;
25ea693b 5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5438 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5439 ir.rm &= 0x3;
25ea693b 5440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5441 }
5442 else
5443 {
5444 if (i386_record_lea_modrm (&ir))
5445 return -1;
cf648174 5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5447 ir.reg &= 0x3;
25ea693b 5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5449 }
25ea693b 5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5451 break;
5452
a38bba38 5453 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5454 case 0x0fb1:
5455 if ((opcode & 1) == 0)
5456 ir.ot = OT_BYTE;
5457 else
5458 ir.ot = ir.dflag + OT_WORD;
5459 if (i386_record_modrm (&ir))
5460 return -1;
5461 if (ir.mod == 3)
5462 {
dda83cd7 5463 ir.reg |= rex_r;
25ea693b 5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5466 ir.reg &= 0x3;
25ea693b 5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5468 }
5469 else
5470 {
25ea693b 5471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5472 if (i386_record_lea_modrm (&ir))
5473 return -1;
5474 }
25ea693b 5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5476 break;
5477
20b477a7 5478 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5479 if (i386_record_modrm (&ir))
5480 return -1;
5481 if (ir.mod == 3)
5482 {
20b477a7
LM
5483 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5484 an extended opcode. rdrand has bits 110 (/6) and rdseed
5485 has bits 111 (/7). */
5486 if (ir.reg == 6 || ir.reg == 7)
5487 {
5488 /* The storage register is described by the 3 R/M bits, but the
5489 REX.B prefix may be used to give access to registers
5490 R8~R15. In this case ir.rex_b + R/M will give us the register
5491 in the range R8~R15.
5492
5493 REX.W may also be used to access 64-bit registers, but we
5494 already record entire registers and not just partial bits
5495 of them. */
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5497 /* These instructions also set conditional bits. */
5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5499 break;
5500 }
5501 else
5502 {
5503 /* We don't handle this particular instruction yet. */
5504 ir.addr -= 2;
5505 opcode = opcode << 8 | ir.modrm;
5506 goto no_support;
5507 }
7ad10968 5508 }
25ea693b
MM
5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5511 if (i386_record_lea_modrm (&ir))
5512 return -1;
25ea693b 5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5514 break;
5515
a38bba38 5516 case 0x50: /* push */
7ad10968
HZ
5517 case 0x51:
5518 case 0x52:
5519 case 0x53:
5520 case 0x54:
5521 case 0x55:
5522 case 0x56:
5523 case 0x57:
5524 case 0x68:
5525 case 0x6a:
cf648174 5526 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5527 ir.dflag = 2;
cf648174
HZ
5528 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5529 return -1;
5530 break;
5531
a38bba38
MS
5532 case 0x06: /* push es */
5533 case 0x0e: /* push cs */
5534 case 0x16: /* push ss */
5535 case 0x1e: /* push ds */
cf648174 5536 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5537 {
cf648174
HZ
5538 ir.addr -= 1;
5539 goto no_support;
5540 }
5541 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5542 return -1;
5543 break;
5544
a38bba38
MS
5545 case 0x0fa0: /* push fs */
5546 case 0x0fa8: /* push gs */
cf648174 5547 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5548 {
cf648174
HZ
5549 ir.addr -= 2;
5550 goto no_support;
5551 }
5552 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5553 return -1;
cf648174
HZ
5554 break;
5555
a38bba38 5556 case 0x60: /* pusha */
cf648174 5557 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5558 {
cf648174
HZ
5559 ir.addr -= 1;
5560 goto no_support;
5561 }
5562 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5563 return -1;
5564 break;
5565
a38bba38 5566 case 0x58: /* pop */
7ad10968
HZ
5567 case 0x59:
5568 case 0x5a:
5569 case 0x5b:
5570 case 0x5c:
5571 case 0x5d:
5572 case 0x5e:
5573 case 0x5f:
25ea693b
MM
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5575 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5576 break;
5577
a38bba38 5578 case 0x61: /* popa */
cf648174 5579 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5580 {
cf648174
HZ
5581 ir.addr -= 1;
5582 goto no_support;
7ad10968 5583 }
425b824a
MS
5584 for (regnum = X86_RECORD_REAX_REGNUM;
5585 regnum <= X86_RECORD_REDI_REGNUM;
5586 regnum++)
25ea693b 5587 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5588 break;
5589
a38bba38 5590 case 0x8f: /* pop */
cf648174
HZ
5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5593 else
dda83cd7 5594 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5595 if (i386_record_modrm (&ir))
5596 return -1;
5597 if (ir.mod == 3)
25ea693b 5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5599 else
5600 {
dda83cd7 5601 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5602 if (i386_record_lea_modrm (&ir))
5603 return -1;
5604 }
25ea693b 5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5606 break;
5607
a38bba38 5608 case 0xc8: /* enter */
25ea693b 5609 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174 5610 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5611 ir.dflag = 2;
cf648174 5612 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5613 return -1;
5614 break;
5615
a38bba38 5616 case 0xc9: /* leave */
25ea693b
MM
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5619 break;
5620
a38bba38 5621 case 0x07: /* pop es */
cf648174 5622 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5623 {
cf648174
HZ
5624 ir.addr -= 1;
5625 goto no_support;
5626 }
25ea693b
MM
5627 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5630 break;
5631
a38bba38 5632 case 0x17: /* pop ss */
cf648174 5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5634 {
cf648174
HZ
5635 ir.addr -= 1;
5636 goto no_support;
5637 }
25ea693b
MM
5638 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5640 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5641 break;
5642
a38bba38 5643 case 0x1f: /* pop ds */
cf648174 5644 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5645 {
cf648174
HZ
5646 ir.addr -= 1;
5647 goto no_support;
5648 }
25ea693b
MM
5649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5652 break;
5653
a38bba38 5654 case 0x0fa1: /* pop fs */
25ea693b
MM
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5658 break;
5659
a38bba38 5660 case 0x0fa9: /* pop gs */
25ea693b
MM
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5664 break;
5665
a38bba38 5666 case 0x88: /* mov */
7ad10968
HZ
5667 case 0x89:
5668 case 0xc6:
5669 case 0xc7:
5670 if ((opcode & 1) == 0)
5671 ir.ot = OT_BYTE;
5672 else
5673 ir.ot = ir.dflag + OT_WORD;
5674
5675 if (i386_record_modrm (&ir))
5676 return -1;
5677
5678 if (ir.mod != 3)
5679 {
dda83cd7 5680 if (opcode == 0xc6 || opcode == 0xc7)
cf648174 5681 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5682 if (i386_record_lea_modrm (&ir))
5683 return -1;
5684 }
5685 else
5686 {
dda83cd7 5687 if (opcode == 0xc6 || opcode == 0xc7)
cf648174
HZ
5688 ir.rm |= ir.rex_b;
5689 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5690 ir.rm &= 0x3;
25ea693b 5691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5692 }
7ad10968 5693 break;
cf648174 5694
a38bba38 5695 case 0x8a: /* mov */
7ad10968
HZ
5696 case 0x8b:
5697 if ((opcode & 1) == 0)
5698 ir.ot = OT_BYTE;
5699 else
5700 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5701 if (i386_record_modrm (&ir))
5702 return -1;
cf648174
HZ
5703 ir.reg |= rex_r;
5704 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5705 ir.reg &= 0x3;
25ea693b 5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5707 break;
7ad10968 5708
a38bba38 5709 case 0x8c: /* mov seg */
cf648174 5710 if (i386_record_modrm (&ir))
7ad10968 5711 return -1;
cf648174
HZ
5712 if (ir.reg > 5)
5713 {
5714 ir.addr -= 2;
5715 opcode = opcode << 8 | ir.modrm;
5716 goto no_support;
5717 }
5718
5719 if (ir.mod == 3)
25ea693b 5720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5721 else
5722 {
5723 ir.ot = OT_WORD;
5724 if (i386_record_lea_modrm (&ir))
5725 return -1;
5726 }
7ad10968
HZ
5727 break;
5728
a38bba38 5729 case 0x8e: /* mov seg */
7ad10968
HZ
5730 if (i386_record_modrm (&ir))
5731 return -1;
7ad10968
HZ
5732 switch (ir.reg)
5733 {
5734 case 0:
425b824a 5735 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5736 break;
5737 case 2:
425b824a 5738 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5739 break;
5740 case 3:
425b824a 5741 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5742 break;
5743 case 4:
425b824a 5744 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5745 break;
5746 case 5:
425b824a 5747 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5748 break;
5749 default:
5750 ir.addr -= 2;
5751 opcode = opcode << 8 | ir.modrm;
5752 goto no_support;
5753 break;
5754 }
25ea693b
MM
5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5757 break;
5758
a38bba38
MS
5759 case 0x0fb6: /* movzbS */
5760 case 0x0fb7: /* movzwS */
5761 case 0x0fbe: /* movsbS */
5762 case 0x0fbf: /* movswS */
7ad10968
HZ
5763 if (i386_record_modrm (&ir))
5764 return -1;
25ea693b 5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5766 break;
5767
a38bba38 5768 case 0x8d: /* lea */
7ad10968
HZ
5769 if (i386_record_modrm (&ir))
5770 return -1;
5771 if (ir.mod == 3)
5772 {
5773 ir.addr -= 2;
5774 opcode = opcode << 8 | ir.modrm;
5775 goto no_support;
5776 }
7ad10968 5777 ir.ot = ir.dflag;
cf648174
HZ
5778 ir.reg |= rex_r;
5779 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5780 ir.reg &= 0x3;
25ea693b 5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5782 break;
5783
a38bba38 5784 case 0xa0: /* mov EAX */
7ad10968 5785 case 0xa1:
a38bba38
MS
5786
5787 case 0xd7: /* xlat */
25ea693b 5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5789 break;
5790
a38bba38 5791 case 0xa2: /* mov EAX */
7ad10968 5792 case 0xa3:
d7877f7e 5793 if (ir.override >= 0)
dda83cd7
SM
5794 {
5795 if (record_full_memory_query)
5796 {
5797 if (yquery (_("\
bb08c432
HZ
5798Process record ignores the memory change of instruction at address %s\n\
5799because it can't get the value of the segment register.\n\
5800Do you want to stop the program?"),
dda83cd7
SM
5801 paddress (gdbarch, ir.orig_addr)))
5802 return -1;
5803 }
cf648174
HZ
5804 }
5805 else
5806 {
dda83cd7 5807 if ((opcode & 1) == 0)
cf648174
HZ
5808 ir.ot = OT_BYTE;
5809 else
5810 ir.ot = ir.dflag + OT_WORD;
5811 if (ir.aflag == 2)
5812 {
dda83cd7 5813 if (record_read_memory (gdbarch, ir.addr, buf, 8))
4ffa4fc7 5814 return -1;
cf648174 5815 ir.addr += 8;
60a1502a 5816 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174 5817 }
dda83cd7 5818 else if (ir.aflag)
cf648174 5819 {
dda83cd7 5820 if (record_read_memory (gdbarch, ir.addr, buf, 4))
4ffa4fc7 5821 return -1;
cf648174 5822 ir.addr += 4;
dda83cd7 5823 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174 5824 }
dda83cd7 5825 else
cf648174 5826 {
dda83cd7 5827 if (record_read_memory (gdbarch, ir.addr, buf, 2))
4ffa4fc7 5828 return -1;
cf648174 5829 ir.addr += 2;
dda83cd7 5830 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5831 }
25ea693b 5832 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174 5833 return -1;
dda83cd7 5834 }
7ad10968
HZ
5835 break;
5836
a38bba38 5837 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5838 case 0xb1:
5839 case 0xb2:
5840 case 0xb3:
5841 case 0xb4:
5842 case 0xb5:
5843 case 0xb6:
5844 case 0xb7:
25ea693b
MM
5845 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5846 ? ((opcode & 0x7) | ir.rex_b)
5847 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5848 break;
5849
a38bba38 5850 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5851 case 0xb9:
5852 case 0xba:
5853 case 0xbb:
5854 case 0xbc:
5855 case 0xbd:
5856 case 0xbe:
5857 case 0xbf:
25ea693b 5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5859 break;
5860
a38bba38 5861 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5862 case 0x92:
5863 case 0x93:
5864 case 0x94:
5865 case 0x95:
5866 case 0x96:
5867 case 0x97:
25ea693b
MM
5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5870 break;
5871
a38bba38 5872 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5873 case 0x87:
5874 if ((opcode & 1) == 0)
5875 ir.ot = OT_BYTE;
5876 else
5877 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5878 if (i386_record_modrm (&ir))
5879 return -1;
7ad10968
HZ
5880 if (ir.mod == 3)
5881 {
86839d38 5882 ir.rm |= ir.rex_b;
cf648174
HZ
5883 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5884 ir.rm &= 0x3;
25ea693b 5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5886 }
5887 else
5888 {
5889 if (i386_record_lea_modrm (&ir))
5890 return -1;
5891 }
cf648174
HZ
5892 ir.reg |= rex_r;
5893 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5894 ir.reg &= 0x3;
25ea693b 5895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5896 break;
5897
a38bba38
MS
5898 case 0xc4: /* les Gv */
5899 case 0xc5: /* lds Gv */
cf648174 5900 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5901 {
cf648174
HZ
5902 ir.addr -= 1;
5903 goto no_support;
5904 }
d3f323f3 5905 /* FALLTHROUGH */
a38bba38
MS
5906 case 0x0fb2: /* lss Gv */
5907 case 0x0fb4: /* lfs Gv */
5908 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5909 if (i386_record_modrm (&ir))
5910 return -1;
5911 if (ir.mod == 3)
5912 {
5913 if (opcode > 0xff)
5914 ir.addr -= 3;
5915 else
5916 ir.addr -= 2;
5917 opcode = opcode << 8 | ir.modrm;
5918 goto no_support;
5919 }
7ad10968
HZ
5920 switch (opcode)
5921 {
a38bba38 5922 case 0xc4: /* les Gv */
425b824a 5923 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5924 break;
a38bba38 5925 case 0xc5: /* lds Gv */
425b824a 5926 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5927 break;
a38bba38 5928 case 0x0fb2: /* lss Gv */
425b824a 5929 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5930 break;
a38bba38 5931 case 0x0fb4: /* lfs Gv */
425b824a 5932 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5933 break;
a38bba38 5934 case 0x0fb5: /* lgs Gv */
425b824a 5935 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5936 break;
5937 }
25ea693b
MM
5938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5941 break;
5942
a38bba38 5943 case 0xc0: /* shifts */
7ad10968
HZ
5944 case 0xc1:
5945 case 0xd0:
5946 case 0xd1:
5947 case 0xd2:
5948 case 0xd3:
5949 if ((opcode & 1) == 0)
5950 ir.ot = OT_BYTE;
5951 else
5952 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5953 if (i386_record_modrm (&ir))
5954 return -1;
7ad10968
HZ
5955 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5956 {
5957 if (i386_record_lea_modrm (&ir))
5958 return -1;
5959 }
5960 else
5961 {
cf648174
HZ
5962 ir.rm |= ir.rex_b;
5963 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5964 ir.rm &= 0x3;
25ea693b 5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5966 }
25ea693b 5967 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5968 break;
5969
5970 case 0x0fa4:
5971 case 0x0fa5:
5972 case 0x0fac:
5973 case 0x0fad:
5974 if (i386_record_modrm (&ir))
5975 return -1;
5976 if (ir.mod == 3)
5977 {
25ea693b 5978 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5979 return -1;
5980 }
5981 else
5982 {
5983 if (i386_record_lea_modrm (&ir))
5984 return -1;
5985 }
5986 break;
5987
a38bba38 5988 case 0xd8: /* Floats. */
7ad10968
HZ
5989 case 0xd9:
5990 case 0xda:
5991 case 0xdb:
5992 case 0xdc:
5993 case 0xdd:
5994 case 0xde:
5995 case 0xdf:
5996 if (i386_record_modrm (&ir))
5997 return -1;
5998 ir.reg |= ((opcode & 7) << 3);
5999 if (ir.mod != 3)
6000 {
1777feb0 6001 /* Memory. */
955db0c0 6002 uint64_t addr64;
7ad10968 6003
955db0c0 6004 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6005 return -1;
6006 switch (ir.reg)
6007 {
7ad10968 6008 case 0x02:
dda83cd7
SM
6009 case 0x12:
6010 case 0x22:
6011 case 0x32:
0289bdd7 6012 /* For fcom, ficom nothing to do. */
dda83cd7 6013 break;
7ad10968 6014 case 0x03:
dda83cd7
SM
6015 case 0x13:
6016 case 0x23:
6017 case 0x33:
0289bdd7 6018 /* For fcomp, ficomp pop FPU stack, store all. */
dda83cd7
SM
6019 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6020 return -1;
6021 break;
6022 case 0x00:
6023 case 0x01:
7ad10968
HZ
6024 case 0x04:
6025 case 0x05:
6026 case 0x06:
6027 case 0x07:
6028 case 0x10:
6029 case 0x11:
7ad10968
HZ
6030 case 0x14:
6031 case 0x15:
6032 case 0x16:
6033 case 0x17:
6034 case 0x20:
6035 case 0x21:
7ad10968
HZ
6036 case 0x24:
6037 case 0x25:
6038 case 0x26:
6039 case 0x27:
6040 case 0x30:
6041 case 0x31:
7ad10968
HZ
6042 case 0x34:
6043 case 0x35:
6044 case 0x36:
6045 case 0x37:
dda83cd7
SM
6046 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6047 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6048 of code, always affects st(0) register. */
6049 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6050 return -1;
7ad10968
HZ
6051 break;
6052 case 0x08:
6053 case 0x0a:
6054 case 0x0b:
6055 case 0x18:
6056 case 0x19:
6057 case 0x1a:
6058 case 0x1b:
dda83cd7 6059 case 0x1d:
7ad10968
HZ
6060 case 0x28:
6061 case 0x29:
6062 case 0x2a:
6063 case 0x2b:
6064 case 0x38:
6065 case 0x39:
6066 case 0x3a:
6067 case 0x3b:
dda83cd7
SM
6068 case 0x3c:
6069 case 0x3d:
7ad10968
HZ
6070 switch (ir.reg & 7)
6071 {
6072 case 0:
0289bdd7
MS
6073 /* Handling fld, fild. */
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 return -1;
7ad10968
HZ
6076 break;
6077 case 1:
6078 switch (ir.reg >> 4)
6079 {
6080 case 0:
25ea693b 6081 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6082 return -1;
6083 break;
6084 case 2:
25ea693b 6085 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6086 return -1;
6087 break;
6088 case 3:
0289bdd7 6089 break;
7ad10968 6090 default:
25ea693b 6091 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6092 return -1;
6093 break;
6094 }
6095 break;
6096 default:
6097 switch (ir.reg >> 4)
6098 {
6099 case 0:
25ea693b 6100 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6101 return -1;
6102 if (3 == (ir.reg & 7))
6103 {
6104 /* For fstp m32fp. */
6105 if (i386_record_floats (gdbarch, &ir,
6106 I386_SAVE_FPU_REGS))
6107 return -1;
6108 }
6109 break;
7ad10968 6110 case 1:
25ea693b 6111 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6112 return -1;
0289bdd7
MS
6113 if ((3 == (ir.reg & 7))
6114 || (5 == (ir.reg & 7))
6115 || (7 == (ir.reg & 7)))
6116 {
6117 /* For fstp insn. */
6118 if (i386_record_floats (gdbarch, &ir,
6119 I386_SAVE_FPU_REGS))
6120 return -1;
6121 }
7ad10968
HZ
6122 break;
6123 case 2:
25ea693b 6124 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6125 return -1;
0289bdd7
MS
6126 if (3 == (ir.reg & 7))
6127 {
6128 /* For fstp m64fp. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_REGS))
6131 return -1;
6132 }
7ad10968
HZ
6133 break;
6134 case 3:
0289bdd7
MS
6135 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6136 {
6137 /* For fistp, fbld, fild, fbstp. */
6138 if (i386_record_floats (gdbarch, &ir,
6139 I386_SAVE_FPU_REGS))
6140 return -1;
6141 }
6142 /* Fall through */
7ad10968 6143 default:
25ea693b 6144 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6145 return -1;
6146 break;
6147 }
6148 break;
6149 }
6150 break;
6151 case 0x0c:
dda83cd7
SM
6152 /* Insn fldenv. */
6153 if (i386_record_floats (gdbarch, &ir,
6154 I386_SAVE_FPU_ENV_REG_STACK))
6155 return -1;
6156 break;
7ad10968 6157 case 0x0d:
dda83cd7
SM
6158 /* Insn fldcw. */
6159 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6160 return -1;
6161 break;
7ad10968 6162 case 0x2c:
dda83cd7
SM
6163 /* Insn frstor. */
6164 if (i386_record_floats (gdbarch, &ir,
6165 I386_SAVE_FPU_ENV_REG_STACK))
6166 return -1;
7ad10968
HZ
6167 break;
6168 case 0x0e:
6169 if (ir.dflag)
6170 {
25ea693b 6171 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6172 return -1;
6173 }
6174 else
6175 {
25ea693b 6176 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6177 return -1;
6178 }
6179 break;
6180 case 0x0f:
6181 case 0x2f:
25ea693b 6182 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6183 return -1;
dda83cd7
SM
6184 /* Insn fstp, fbstp. */
6185 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6186 return -1;
7ad10968
HZ
6187 break;
6188 case 0x1f:
6189 case 0x3e:
25ea693b 6190 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6191 return -1;
6192 break;
6193 case 0x2e:
6194 if (ir.dflag)
6195 {
25ea693b 6196 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6197 return -1;
955db0c0 6198 addr64 += 28;
7ad10968
HZ
6199 }
6200 else
6201 {
25ea693b 6202 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6203 return -1;
955db0c0 6204 addr64 += 14;
7ad10968 6205 }
25ea693b 6206 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6207 return -1;
0289bdd7
MS
6208 /* Insn fsave. */
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_ENV_REG_STACK))
6211 return -1;
7ad10968
HZ
6212 break;
6213 case 0x3f:
25ea693b 6214 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6215 return -1;
0289bdd7
MS
6216 /* Insn fistp. */
6217 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6218 return -1;
7ad10968
HZ
6219 break;
6220 default:
6221 ir.addr -= 2;
6222 opcode = opcode << 8 | ir.modrm;
6223 goto no_support;
6224 break;
6225 }
6226 }
0289bdd7
MS
6227 /* Opcode is an extension of modR/M byte. */
6228 else
dda83cd7 6229 {
0289bdd7
MS
6230 switch (opcode)
6231 {
6232 case 0xd8:
6233 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6234 return -1;
6235 break;
6236 case 0xd9:
6237 if (0x0c == (ir.modrm >> 4))
6238 {
6239 if ((ir.modrm & 0x0f) <= 7)
6240 {
6241 if (i386_record_floats (gdbarch, &ir,
6242 I386_SAVE_FPU_REGS))
6243 return -1;
6244 }
dda83cd7 6245 else
0289bdd7
MS
6246 {
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6249 return -1;
6250 /* If only st(0) is changing, then we have already
6251 recorded. */
6252 if ((ir.modrm & 0x0f) - 0x08)
6253 {
6254 if (i386_record_floats (gdbarch, &ir,
6255 I387_ST0_REGNUM (tdep) +
6256 ((ir.modrm & 0x0f) - 0x08)))
6257 return -1;
6258 }
6259 }
6260 }
dda83cd7
SM
6261 else
6262 {
0289bdd7
MS
6263 switch (ir.modrm)
6264 {
6265 case 0xe0:
6266 case 0xe1:
6267 case 0xf0:
6268 case 0xf5:
6269 case 0xf8:
6270 case 0xfa:
6271 case 0xfc:
6272 case 0xfe:
6273 case 0xff:
6274 if (i386_record_floats (gdbarch, &ir,
6275 I387_ST0_REGNUM (tdep)))
6276 return -1;
6277 break;
6278 case 0xf1:
6279 case 0xf2:
6280 case 0xf3:
6281 case 0xf4:
6282 case 0xf6:
6283 case 0xf7:
6284 case 0xe8:
6285 case 0xe9:
6286 case 0xea:
6287 case 0xeb:
6288 case 0xec:
6289 case 0xed:
6290 case 0xee:
6291 case 0xf9:
6292 case 0xfb:
6293 if (i386_record_floats (gdbarch, &ir,
6294 I386_SAVE_FPU_REGS))
6295 return -1;
6296 break;
6297 case 0xfd:
6298 if (i386_record_floats (gdbarch, &ir,
6299 I387_ST0_REGNUM (tdep)))
6300 return -1;
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep) + 1))
6303 return -1;
6304 break;
6305 }
6306 }
dda83cd7
SM
6307 break;
6308 case 0xda:
6309 if (0xe9 == ir.modrm)
6310 {
0289bdd7
MS
6311 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6312 return -1;
dda83cd7
SM
6313 }
6314 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6315 {
0289bdd7
MS
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep)))
6318 return -1;
6319 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6320 {
6321 if (i386_record_floats (gdbarch, &ir,
6322 I387_ST0_REGNUM (tdep) +
6323 (ir.modrm & 0x0f)))
6324 return -1;
6325 }
6326 else if ((ir.modrm & 0x0f) - 0x08)
6327 {
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep) +
6330 ((ir.modrm & 0x0f) - 0x08)))
6331 return -1;
6332 }
dda83cd7
SM
6333 }
6334 break;
6335 case 0xdb:
6336 if (0xe3 == ir.modrm)
6337 {
0289bdd7
MS
6338 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6339 return -1;
dda83cd7
SM
6340 }
6341 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6342 {
0289bdd7
MS
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep)))
6345 return -1;
6346 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6347 {
6348 if (i386_record_floats (gdbarch, &ir,
6349 I387_ST0_REGNUM (tdep) +
6350 (ir.modrm & 0x0f)))
6351 return -1;
6352 }
6353 else if ((ir.modrm & 0x0f) - 0x08)
6354 {
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) +
6357 ((ir.modrm & 0x0f) - 0x08)))
6358 return -1;
6359 }
dda83cd7
SM
6360 }
6361 break;
6362 case 0xdc:
6363 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6364 || (0x0d == ir.modrm >> 4)
6365 || (0x0f == ir.modrm >> 4))
dda83cd7 6366 {
0289bdd7
MS
6367 if ((ir.modrm & 0x0f) <= 7)
6368 {
6369 if (i386_record_floats (gdbarch, &ir,
6370 I387_ST0_REGNUM (tdep) +
6371 (ir.modrm & 0x0f)))
6372 return -1;
6373 }
6374 else
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 ((ir.modrm & 0x0f) - 0x08)))
6379 return -1;
6380 }
dda83cd7 6381 }
0289bdd7 6382 break;
dda83cd7
SM
6383 case 0xdd:
6384 if (0x0c == ir.modrm >> 4)
6385 {
6386 if (i386_record_floats (gdbarch, &ir,
6387 I387_FTAG_REGNUM (tdep)))
6388 return -1;
6389 }
6390 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
0289bdd7
MS
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
dda83cd7
SM
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
0289bdd7 6402 I386_SAVE_FPU_REGS))
dda83cd7
SM
6403 return -1;
6404 }
6405 }
6406 break;
6407 case 0xde:
6408 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6409 || (0x0e == ir.modrm >> 4)
6410 || (0x0f == ir.modrm >> 4)
6411 || (0xd9 == ir.modrm))
dda83cd7 6412 {
0289bdd7
MS
6413 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6414 return -1;
dda83cd7
SM
6415 }
6416 break;
6417 case 0xdf:
6418 if (0xe0 == ir.modrm)
6419 {
25ea693b
MM
6420 if (record_full_arch_list_add_reg (ir.regcache,
6421 I386_EAX_REGNUM))
0289bdd7 6422 return -1;
dda83cd7
SM
6423 }
6424 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6425 {
0289bdd7
MS
6426 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6427 return -1;
dda83cd7
SM
6428 }
6429 break;
0289bdd7
MS
6430 }
6431 }
7ad10968 6432 break;
7ad10968 6433 /* string ops */
a38bba38 6434 case 0xa4: /* movsS */
7ad10968 6435 case 0xa5:
a38bba38 6436 case 0xaa: /* stosS */
7ad10968 6437 case 0xab:
a38bba38 6438 case 0x6c: /* insS */
7ad10968 6439 case 0x6d:
cf648174 6440 regcache_raw_read_unsigned (ir.regcache,
dda83cd7
SM
6441 ir.regmap[X86_RECORD_RECX_REGNUM],
6442 &addr);
648d0c8b 6443 if (addr)
dda83cd7
SM
6444 {
6445 ULONGEST es, ds;
77d7dc92 6446
dda83cd7 6447 if ((opcode & 1) == 0)
77d7dc92 6448 ir.ot = OT_BYTE;
dda83cd7 6449 else
77d7dc92 6450 ir.ot = ir.dflag + OT_WORD;
dda83cd7
SM
6451 regcache_raw_read_unsigned (ir.regcache,
6452 ir.regmap[X86_RECORD_REDI_REGNUM],
6453 &addr);
6454
6455 regcache_raw_read_unsigned (ir.regcache,
6456 ir.regmap[X86_RECORD_ES_REGNUM],
6457 &es);
6458 regcache_raw_read_unsigned (ir.regcache,
6459 ir.regmap[X86_RECORD_DS_REGNUM],
6460 &ds);
6461 if (ir.aflag && (es != ds))
6462 {
6463 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6464 if (record_full_memory_query)
6465 {
6466 if (yquery (_("\
bb08c432
HZ
6467Process record ignores the memory change of instruction at address %s\n\
6468because it can't get the value of the segment register.\n\
6469Do you want to stop the program?"),
dda83cd7
SM
6470 paddress (gdbarch, ir.orig_addr)))
6471 return -1;
6472 }
6473 }
6474 else
6475 {
6476 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6477 return -1;
6478 }
6479
6480 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6482 if (opcode == 0xa4 || opcode == 0xa5)
6483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6484 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6486 }
cf648174 6487 break;
7ad10968 6488
a38bba38 6489 case 0xa6: /* cmpsS */
cf648174 6490 case 0xa7:
25ea693b
MM
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6493 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6496 break;
6497
a38bba38 6498 case 0xac: /* lodsS */
7ad10968 6499 case 0xad:
25ea693b
MM
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6502 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6505 break;
6506
a38bba38 6507 case 0xae: /* scasS */
7ad10968 6508 case 0xaf:
25ea693b 6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6513 break;
6514
a38bba38 6515 case 0x6e: /* outsS */
cf648174 6516 case 0x6f:
25ea693b 6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6521 break;
6522
a38bba38 6523 case 0xe4: /* port I/O */
7ad10968
HZ
6524 case 0xe5:
6525 case 0xec:
6526 case 0xed:
25ea693b
MM
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6529 break;
6530
6531 case 0xe6:
6532 case 0xe7:
6533 case 0xee:
6534 case 0xef:
6535 break;
6536
6537 /* control */
a38bba38
MS
6538 case 0xc2: /* ret im */
6539 case 0xc3: /* ret */
25ea693b
MM
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6542 break;
6543
a38bba38
MS
6544 case 0xca: /* lret im */
6545 case 0xcb: /* lret */
6546 case 0xcf: /* iret */
25ea693b
MM
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6550 break;
6551
a38bba38 6552 case 0xe8: /* call im */
cf648174 6553 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6554 ir.dflag = 2;
cf648174 6555 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6556 return -1;
7ad10968
HZ
6557 break;
6558
a38bba38 6559 case 0x9a: /* lcall im */
cf648174 6560 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6561 {
6562 ir.addr -= 1;
6563 goto no_support;
6564 }
25ea693b 6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 6566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6567 return -1;
7ad10968
HZ
6568 break;
6569
a38bba38
MS
6570 case 0xe9: /* jmp im */
6571 case 0xea: /* ljmp im */
6572 case 0xeb: /* jmp Jb */
6573 case 0x70: /* jcc Jb */
7ad10968
HZ
6574 case 0x71:
6575 case 0x72:
6576 case 0x73:
6577 case 0x74:
6578 case 0x75:
6579 case 0x76:
6580 case 0x77:
6581 case 0x78:
6582 case 0x79:
6583 case 0x7a:
6584 case 0x7b:
6585 case 0x7c:
6586 case 0x7d:
6587 case 0x7e:
6588 case 0x7f:
a38bba38 6589 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6590 case 0x0f81:
6591 case 0x0f82:
6592 case 0x0f83:
6593 case 0x0f84:
6594 case 0x0f85:
6595 case 0x0f86:
6596 case 0x0f87:
6597 case 0x0f88:
6598 case 0x0f89:
6599 case 0x0f8a:
6600 case 0x0f8b:
6601 case 0x0f8c:
6602 case 0x0f8d:
6603 case 0x0f8e:
6604 case 0x0f8f:
6605 break;
6606
a38bba38 6607 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6608 case 0x0f91:
6609 case 0x0f92:
6610 case 0x0f93:
6611 case 0x0f94:
6612 case 0x0f95:
6613 case 0x0f96:
6614 case 0x0f97:
6615 case 0x0f98:
6616 case 0x0f99:
6617 case 0x0f9a:
6618 case 0x0f9b:
6619 case 0x0f9c:
6620 case 0x0f9d:
6621 case 0x0f9e:
6622 case 0x0f9f:
25ea693b 6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6624 ir.ot = OT_BYTE;
6625 if (i386_record_modrm (&ir))
6626 return -1;
6627 if (ir.mod == 3)
dda83cd7 6628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
25ea693b 6629 : (ir.rm & 0x3));
7ad10968
HZ
6630 else
6631 {
6632 if (i386_record_lea_modrm (&ir))
6633 return -1;
6634 }
6635 break;
6636
a38bba38 6637 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6638 case 0x0f41:
6639 case 0x0f42:
6640 case 0x0f43:
6641 case 0x0f44:
6642 case 0x0f45:
6643 case 0x0f46:
6644 case 0x0f47:
6645 case 0x0f48:
6646 case 0x0f49:
6647 case 0x0f4a:
6648 case 0x0f4b:
6649 case 0x0f4c:
6650 case 0x0f4d:
6651 case 0x0f4e:
6652 case 0x0f4f:
6653 if (i386_record_modrm (&ir))
6654 return -1;
cf648174 6655 ir.reg |= rex_r;
7ad10968
HZ
6656 if (ir.dflag == OT_BYTE)
6657 ir.reg &= 0x3;
25ea693b 6658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6659 break;
6660
6661 /* flags */
a38bba38 6662 case 0x9c: /* pushf */
25ea693b 6663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 6664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6665 ir.dflag = 2;
cf648174 6666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6667 return -1;
7ad10968
HZ
6668 break;
6669
a38bba38 6670 case 0x9d: /* popf */
25ea693b
MM
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6673 break;
6674
a38bba38 6675 case 0x9e: /* sahf */
cf648174 6676 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6677 {
6678 ir.addr -= 1;
6679 goto no_support;
6680 }
d3f323f3 6681 /* FALLTHROUGH */
a38bba38
MS
6682 case 0xf5: /* cmc */
6683 case 0xf8: /* clc */
6684 case 0xf9: /* stc */
6685 case 0xfc: /* cld */
6686 case 0xfd: /* std */
25ea693b 6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6688 break;
6689
a38bba38 6690 case 0x9f: /* lahf */
cf648174 6691 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6692 {
6693 ir.addr -= 1;
6694 goto no_support;
6695 }
25ea693b
MM
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6698 break;
6699
6700 /* bit operations */
a38bba38 6701 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6702 ir.ot = ir.dflag + OT_WORD;
6703 if (i386_record_modrm (&ir))
6704 return -1;
6705 if (ir.reg < 4)
6706 {
cf648174 6707 ir.addr -= 2;
7ad10968
HZ
6708 opcode = opcode << 8 | ir.modrm;
6709 goto no_support;
6710 }
cf648174 6711 if (ir.reg != 4)
7ad10968 6712 {
dda83cd7
SM
6713 if (ir.mod == 3)
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6715 else
6716 {
cf648174 6717 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6718 return -1;
6719 }
6720 }
25ea693b 6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6722 break;
6723
a38bba38 6724 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6726 break;
6727
a38bba38
MS
6728 case 0x0fab: /* bts */
6729 case 0x0fb3: /* btr */
6730 case 0x0fbb: /* btc */
cf648174
HZ
6731 ir.ot = ir.dflag + OT_WORD;
6732 if (i386_record_modrm (&ir))
dda83cd7 6733 return -1;
cf648174 6734 if (ir.mod == 3)
dda83cd7 6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174 6736 else
dda83cd7
SM
6737 {
6738 uint64_t addr64;
6739 if (i386_record_lea_modrm_addr (&ir, &addr64))
6740 return -1;
6741 regcache_raw_read_unsigned (ir.regcache,
6742 ir.regmap[ir.reg | rex_r],
6743 &addr);
6744 switch (ir.dflag)
6745 {
6746 case 0:
6747 addr64 += ((int16_t) addr >> 4) << 4;
6748 break;
6749 case 1:
6750 addr64 += ((int32_t) addr >> 5) << 5;
6751 break;
6752 case 2:
6753 addr64 += ((int64_t) addr >> 6) << 6;
6754 break;
6755 }
6756 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6757 return -1;
6758 if (i386_record_lea_modrm (&ir))
6759 return -1;
6760 }
25ea693b 6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6762 break;
6763
a38bba38
MS
6764 case 0x0fbc: /* bsf */
6765 case 0x0fbd: /* bsr */
25ea693b
MM
6766 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6767 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6768 break;
6769
6770 /* bcd */
a38bba38
MS
6771 case 0x27: /* daa */
6772 case 0x2f: /* das */
6773 case 0x37: /* aaa */
6774 case 0x3f: /* aas */
6775 case 0xd4: /* aam */
6776 case 0xd5: /* aad */
cf648174 6777 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6778 {
6779 ir.addr -= 1;
6780 goto no_support;
6781 }
25ea693b
MM
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6784 break;
6785
6786 /* misc */
a38bba38 6787 case 0x90: /* nop */
7ad10968
HZ
6788 if (prefixes & PREFIX_LOCK)
6789 {
6790 ir.addr -= 1;
6791 goto no_support;
6792 }
6793 break;
6794
a38bba38 6795 case 0x9b: /* fwait */
4ffa4fc7
PA
6796 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6797 return -1;
425b824a 6798 opcode = (uint32_t) opcode8;
0289bdd7
MS
6799 ir.addr++;
6800 goto reswitch;
7ad10968
HZ
6801 break;
6802
7ad10968 6803 /* XXX */
a38bba38 6804 case 0xcc: /* int3 */
a3c4230a 6805 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6806 "int3.\n"));
6807 ir.addr -= 1;
6808 goto no_support;
6809 break;
6810
7ad10968 6811 /* XXX */
a38bba38 6812 case 0xcd: /* int */
7ad10968
HZ
6813 {
6814 int ret;
425b824a 6815 uint8_t interrupt;
4ffa4fc7
PA
6816 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6817 return -1;
7ad10968 6818 ir.addr++;
425b824a 6819 if (interrupt != 0x80
a3c4230a 6820 || tdep->i386_intx80_record == NULL)
7ad10968 6821 {
a3c4230a 6822 printf_unfiltered (_("Process record does not support "
7ad10968 6823 "instruction int 0x%02x.\n"),
425b824a 6824 interrupt);
7ad10968
HZ
6825 ir.addr -= 2;
6826 goto no_support;
6827 }
a3c4230a 6828 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6829 if (ret)
6830 return ret;
6831 }
6832 break;
6833
7ad10968 6834 /* XXX */
a38bba38 6835 case 0xce: /* into */
a3c4230a 6836 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6837 "instruction into.\n"));
6838 ir.addr -= 1;
6839 goto no_support;
6840 break;
6841
a38bba38
MS
6842 case 0xfa: /* cli */
6843 case 0xfb: /* sti */
7ad10968
HZ
6844 break;
6845
a38bba38 6846 case 0x62: /* bound */
a3c4230a 6847 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6848 "instruction bound.\n"));
6849 ir.addr -= 1;
6850 goto no_support;
6851 break;
6852
a38bba38 6853 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6854 case 0x0fc9:
6855 case 0x0fca:
6856 case 0x0fcb:
6857 case 0x0fcc:
6858 case 0x0fcd:
6859 case 0x0fce:
6860 case 0x0fcf:
25ea693b 6861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6862 break;
6863
a38bba38 6864 case 0xd6: /* salc */
cf648174 6865 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6866 {
6867 ir.addr -= 1;
6868 goto no_support;
6869 }
25ea693b
MM
6870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6871 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6872 break;
6873
a38bba38
MS
6874 case 0xe0: /* loopnz */
6875 case 0xe1: /* loopz */
6876 case 0xe2: /* loop */
6877 case 0xe3: /* jecxz */
25ea693b
MM
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6880 break;
6881
a38bba38 6882 case 0x0f30: /* wrmsr */
a3c4230a 6883 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6884 "instruction wrmsr.\n"));
6885 ir.addr -= 2;
6886 goto no_support;
6887 break;
6888
a38bba38 6889 case 0x0f32: /* rdmsr */
a3c4230a 6890 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6891 "instruction rdmsr.\n"));
6892 ir.addr -= 2;
6893 goto no_support;
6894 break;
6895
a38bba38 6896 case 0x0f31: /* rdtsc */
25ea693b
MM
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6899 break;
6900
a38bba38 6901 case 0x0f34: /* sysenter */
7ad10968
HZ
6902 {
6903 int ret;
dda83cd7
SM
6904 if (ir.regmap[X86_RECORD_R8_REGNUM])
6905 {
6906 ir.addr -= 2;
6907 goto no_support;
6908 }
a3c4230a 6909 if (tdep->i386_sysenter_record == NULL)
7ad10968 6910 {
a3c4230a 6911 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6912 "instruction sysenter.\n"));
6913 ir.addr -= 2;
6914 goto no_support;
6915 }
a3c4230a 6916 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6917 if (ret)
6918 return ret;
6919 }
6920 break;
6921
a38bba38 6922 case 0x0f35: /* sysexit */
a3c4230a 6923 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6924 "instruction sysexit.\n"));
6925 ir.addr -= 2;
6926 goto no_support;
6927 break;
6928
a38bba38 6929 case 0x0f05: /* syscall */
cf648174
HZ
6930 {
6931 int ret;
a3c4230a 6932 if (tdep->i386_syscall_record == NULL)
cf648174 6933 {
a3c4230a 6934 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6935 "instruction syscall.\n"));
6936 ir.addr -= 2;
6937 goto no_support;
6938 }
a3c4230a 6939 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6940 if (ret)
6941 return ret;
6942 }
6943 break;
6944
a38bba38 6945 case 0x0f07: /* sysret */
a3c4230a 6946 printf_unfiltered (_("Process record does not support "
dda83cd7 6947 "instruction sysret.\n"));
cf648174
HZ
6948 ir.addr -= 2;
6949 goto no_support;
6950 break;
6951
a38bba38 6952 case 0x0fa2: /* cpuid */
25ea693b
MM
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6957 break;
6958
a38bba38 6959 case 0xf4: /* hlt */
a3c4230a 6960 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6961 "instruction hlt.\n"));
6962 ir.addr -= 1;
6963 goto no_support;
6964 break;
6965
6966 case 0x0f00:
6967 if (i386_record_modrm (&ir))
6968 return -1;
6969 switch (ir.reg)
6970 {
a38bba38
MS
6971 case 0: /* sldt */
6972 case 1: /* str */
7ad10968 6973 if (ir.mod == 3)
dda83cd7 6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6975 else
6976 {
6977 ir.ot = OT_WORD;
6978 if (i386_record_lea_modrm (&ir))
6979 return -1;
6980 }
6981 break;
a38bba38
MS
6982 case 2: /* lldt */
6983 case 3: /* ltr */
7ad10968 6984 break;
a38bba38
MS
6985 case 4: /* verr */
6986 case 5: /* verw */
dda83cd7 6987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6988 break;
6989 default:
6990 ir.addr -= 3;
6991 opcode = opcode << 8 | ir.modrm;
6992 goto no_support;
6993 break;
6994 }
6995 break;
6996
6997 case 0x0f01:
6998 if (i386_record_modrm (&ir))
6999 return -1;
7000 switch (ir.reg)
7001 {
a38bba38 7002 case 0: /* sgdt */
7ad10968 7003 {
955db0c0 7004 uint64_t addr64;
7ad10968
HZ
7005
7006 if (ir.mod == 3)
7007 {
7008 ir.addr -= 3;
7009 opcode = opcode << 8 | ir.modrm;
7010 goto no_support;
7011 }
d7877f7e 7012 if (ir.override >= 0)
7ad10968 7013 {
dda83cd7
SM
7014 if (record_full_memory_query)
7015 {
7016 if (yquery (_("\
bb08c432
HZ
7017Process record ignores the memory change of instruction at address %s\n\
7018because it can't get the value of the segment register.\n\
7019Do you want to stop the program?"),
dda83cd7 7020 paddress (gdbarch, ir.orig_addr)))
651ce16a 7021 return -1;
dda83cd7 7022 }
7ad10968
HZ
7023 }
7024 else
7025 {
955db0c0 7026 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7027 return -1;
25ea693b 7028 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7029 return -1;
955db0c0 7030 addr64 += 2;
dda83cd7
SM
7031 if (ir.regmap[X86_RECORD_R8_REGNUM])
7032 {
7033 if (record_full_arch_list_add_mem (addr64, 8))
cf648174 7034 return -1;
dda83cd7
SM
7035 }
7036 else
7037 {
7038 if (record_full_arch_list_add_mem (addr64, 4))
cf648174 7039 return -1;
dda83cd7 7040 }
7ad10968
HZ
7041 }
7042 }
7043 break;
7044 case 1:
7045 if (ir.mod == 3)
7046 {
7047 switch (ir.rm)
7048 {
a38bba38 7049 case 0: /* monitor */
7ad10968 7050 break;
a38bba38 7051 case 1: /* mwait */
25ea693b 7052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7053 break;
7054 default:
7055 ir.addr -= 3;
7056 opcode = opcode << 8 | ir.modrm;
7057 goto no_support;
7058 break;
7059 }
7060 }
7061 else
7062 {
7063 /* sidt */
d7877f7e 7064 if (ir.override >= 0)
7ad10968 7065 {
dda83cd7
SM
7066 if (record_full_memory_query)
7067 {
7068 if (yquery (_("\
bb08c432
HZ
7069Process record ignores the memory change of instruction at address %s\n\
7070because it can't get the value of the segment register.\n\
7071Do you want to stop the program?"),
dda83cd7
SM
7072 paddress (gdbarch, ir.orig_addr)))
7073 return -1;
7074 }
7ad10968
HZ
7075 }
7076 else
7077 {
955db0c0 7078 uint64_t addr64;
7ad10968 7079
955db0c0 7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7081 return -1;
25ea693b 7082 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7083 return -1;
955db0c0 7084 addr64 += 2;
dda83cd7
SM
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 8))
7088 return -1;
7089 }
7090 else
7091 {
7092 if (record_full_arch_list_add_mem (addr64, 4))
7093 return -1;
7094 }
7ad10968
HZ
7095 }
7096 }
7097 break;
a38bba38 7098 case 2: /* lgdt */
3800e645
MS
7099 if (ir.mod == 3)
7100 {
7101 /* xgetbv */
7102 if (ir.rm == 0)
7103 {
25ea693b
MM
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7106 break;
7107 }
7108 /* xsetbv */
7109 else if (ir.rm == 1)
7110 break;
7111 }
da0e1563 7112 /* Fall through. */
a38bba38 7113 case 3: /* lidt */
7ad10968
HZ
7114 if (ir.mod == 3)
7115 {
7116 ir.addr -= 3;
7117 opcode = opcode << 8 | ir.modrm;
7118 goto no_support;
7119 }
7120 break;
a38bba38 7121 case 4: /* smsw */
7ad10968
HZ
7122 if (ir.mod == 3)
7123 {
25ea693b 7124 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7125 return -1;
7126 }
7127 else
7128 {
7129 ir.ot = OT_WORD;
7130 if (i386_record_lea_modrm (&ir))
7131 return -1;
7132 }
25ea693b 7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7134 break;
a38bba38 7135 case 6: /* lmsw */
25ea693b 7136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7137 break;
a38bba38 7138 case 7: /* invlpg */
cf648174
HZ
7139 if (ir.mod == 3)
7140 {
7141 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7142 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174 7143 else
dda83cd7
SM
7144 {
7145 ir.addr -= 3;
7146 opcode = opcode << 8 | ir.modrm;
7147 goto no_support;
7148 }
cf648174
HZ
7149 }
7150 else
25ea693b 7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7152 break;
7153 default:
7154 ir.addr -= 3;
7155 opcode = opcode << 8 | ir.modrm;
7156 goto no_support;
7ad10968
HZ
7157 break;
7158 }
7159 break;
7160
a38bba38
MS
7161 case 0x0f08: /* invd */
7162 case 0x0f09: /* wbinvd */
7ad10968
HZ
7163 break;
7164
a38bba38 7165 case 0x63: /* arpl */
7ad10968
HZ
7166 if (i386_record_modrm (&ir))
7167 return -1;
cf648174 7168 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
7169 {
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
25ea693b 7171 ? (ir.reg | rex_r) : ir.rm);
dda83cd7 7172 }
7ad10968 7173 else
dda83cd7
SM
7174 {
7175 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7176 if (i386_record_lea_modrm (&ir))
7177 return -1;
7178 }
cf648174 7179 if (!ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7181 break;
7182
a38bba38
MS
7183 case 0x0f02: /* lar */
7184 case 0x0f03: /* lsl */
7ad10968
HZ
7185 if (i386_record_modrm (&ir))
7186 return -1;
25ea693b
MM
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7189 break;
7190
7191 case 0x0f18:
cf648174
HZ
7192 if (i386_record_modrm (&ir))
7193 return -1;
7194 if (ir.mod == 3 && ir.reg == 3)
dda83cd7 7195 {
cf648174
HZ
7196 ir.addr -= 3;
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 }
7ad10968
HZ
7200 break;
7201
7ad10968
HZ
7202 case 0x0f19:
7203 case 0x0f1a:
7204 case 0x0f1b:
7205 case 0x0f1c:
7206 case 0x0f1d:
7207 case 0x0f1e:
7208 case 0x0f1f:
a38bba38 7209 /* nop (multi byte) */
7ad10968
HZ
7210 break;
7211
a38bba38
MS
7212 case 0x0f20: /* mov reg, crN */
7213 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7214 if (i386_record_modrm (&ir))
7215 return -1;
7216 if ((ir.modrm & 0xc0) != 0xc0)
7217 {
cf648174 7218 ir.addr -= 3;
7ad10968
HZ
7219 opcode = opcode << 8 | ir.modrm;
7220 goto no_support;
7221 }
7222 switch (ir.reg)
7223 {
7224 case 0:
7225 case 2:
7226 case 3:
7227 case 4:
7228 case 8:
7229 if (opcode & 2)
25ea693b 7230 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7231 else
dda83cd7 7232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7233 break;
7234 default:
cf648174 7235 ir.addr -= 3;
7ad10968
HZ
7236 opcode = opcode << 8 | ir.modrm;
7237 goto no_support;
7238 break;
7239 }
7240 break;
7241
a38bba38
MS
7242 case 0x0f21: /* mov reg, drN */
7243 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7244 if (i386_record_modrm (&ir))
7245 return -1;
7246 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7247 || ir.reg == 5 || ir.reg >= 8)
7248 {
cf648174 7249 ir.addr -= 3;
7ad10968
HZ
7250 opcode = opcode << 8 | ir.modrm;
7251 goto no_support;
7252 }
7253 if (opcode & 2)
dda83cd7 7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7255 else
25ea693b 7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7257 break;
7258
a38bba38 7259 case 0x0f06: /* clts */
25ea693b 7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7261 break;
7262
a3c4230a
HZ
7263 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7264
7265 case 0x0f0d: /* 3DNow! prefetch */
7266 break;
7267
7268 case 0x0f0e: /* 3DNow! femms */
7269 case 0x0f77: /* emms */
7270 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
dda83cd7 7271 goto no_support;
25ea693b 7272 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7273 break;
7274
7275 case 0x0f0f: /* 3DNow! data */
7276 if (i386_record_modrm (&ir))
7277 return -1;
4ffa4fc7
PA
7278 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7279 return -1;
a3c4230a
HZ
7280 ir.addr++;
7281 switch (opcode8)
dda83cd7
SM
7282 {
7283 case 0x0c: /* 3DNow! pi2fw */
7284 case 0x0d: /* 3DNow! pi2fd */
7285 case 0x1c: /* 3DNow! pf2iw */
7286 case 0x1d: /* 3DNow! pf2id */
7287 case 0x8a: /* 3DNow! pfnacc */
7288 case 0x8e: /* 3DNow! pfpnacc */
7289 case 0x90: /* 3DNow! pfcmpge */
7290 case 0x94: /* 3DNow! pfmin */
7291 case 0x96: /* 3DNow! pfrcp */
7292 case 0x97: /* 3DNow! pfrsqrt */
7293 case 0x9a: /* 3DNow! pfsub */
7294 case 0x9e: /* 3DNow! pfadd */
7295 case 0xa0: /* 3DNow! pfcmpgt */
7296 case 0xa4: /* 3DNow! pfmax */
7297 case 0xa6: /* 3DNow! pfrcpit1 */
7298 case 0xa7: /* 3DNow! pfrsqit1 */
7299 case 0xaa: /* 3DNow! pfsubr */
7300 case 0xae: /* 3DNow! pfacc */
7301 case 0xb0: /* 3DNow! pfcmpeq */
7302 case 0xb4: /* 3DNow! pfmul */
7303 case 0xb6: /* 3DNow! pfrcpit2 */
7304 case 0xb7: /* 3DNow! pmulhrw */
7305 case 0xbb: /* 3DNow! pswapd */
7306 case 0xbf: /* 3DNow! pavgusb */
7307 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7308 goto no_support_3dnow_data;
7309 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7310 break;
7311
7312 default:
a3c4230a 7313no_support_3dnow_data:
dda83cd7
SM
7314 opcode = (opcode << 8) | opcode8;
7315 goto no_support;
7316 break;
7317 }
a3c4230a
HZ
7318 break;
7319
7320 case 0x0faa: /* rsm */
25ea693b
MM
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7330 break;
7331
7332 case 0x0fae:
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 switch(ir.reg)
dda83cd7
SM
7336 {
7337 case 0: /* fxsave */
7338 {
7339 uint64_t tmpu64;
a3c4230a 7340
dda83cd7 7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7342 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7343 return -1;
dda83cd7
SM
7344 if (record_full_arch_list_add_mem (tmpu64, 512))
7345 return -1;
7346 }
7347 break;
a3c4230a 7348
dda83cd7
SM
7349 case 1: /* fxrstor */
7350 {
7351 int i;
a3c4230a 7352
dda83cd7 7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a 7354
dda83cd7
SM
7355 for (i = I387_MM0_REGNUM (tdep);
7356 i386_mmx_regnum_p (gdbarch, i); i++)
7357 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7358
dda83cd7
SM
7359 for (i = I387_XMM0_REGNUM (tdep);
7360 i386_xmm_regnum_p (gdbarch, i); i++)
7361 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7362
dda83cd7
SM
7363 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7364 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7365 I387_MXCSR_REGNUM(tdep));
a3c4230a 7366
dda83cd7
SM
7367 for (i = I387_ST0_REGNUM (tdep);
7368 i386_fp_regnum_p (gdbarch, i); i++)
7369 record_full_arch_list_add_reg (ir.regcache, i);
7370
7371 for (i = I387_FCTRL_REGNUM (tdep);
7372 i386_fpc_regnum_p (gdbarch, i); i++)
7373 record_full_arch_list_add_reg (ir.regcache, i);
7374 }
7375 break;
7376
7377 case 2: /* ldmxcsr */
7378 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7379 goto no_support;
7380 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7381 break;
7382
7383 case 3: /* stmxcsr */
7384 ir.ot = OT_LONG;
7385 if (i386_record_lea_modrm (&ir))
7386 return -1;
7387 break;
7388
7389 case 5: /* lfence */
7390 case 6: /* mfence */
7391 case 7: /* sfence clflush */
7392 break;
7393
7394 default:
7395 opcode = (opcode << 8) | ir.modrm;
7396 goto no_support;
7397 break;
7398 }
a3c4230a
HZ
7399 break;
7400
7401 case 0x0fc3: /* movnti */
7402 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7403 if (i386_record_modrm (&ir))
7404 return -1;
7405 if (ir.mod == 3)
dda83cd7 7406 goto no_support;
a3c4230a
HZ
7407 ir.reg |= rex_r;
7408 if (i386_record_lea_modrm (&ir))
dda83cd7 7409 return -1;
a3c4230a
HZ
7410 break;
7411
7412 /* Add prefix to opcode. */
7413 case 0x0f10:
7414 case 0x0f11:
7415 case 0x0f12:
7416 case 0x0f13:
7417 case 0x0f14:
7418 case 0x0f15:
7419 case 0x0f16:
7420 case 0x0f17:
7421 case 0x0f28:
7422 case 0x0f29:
7423 case 0x0f2a:
7424 case 0x0f2b:
7425 case 0x0f2c:
7426 case 0x0f2d:
7427 case 0x0f2e:
7428 case 0x0f2f:
7429 case 0x0f38:
7430 case 0x0f39:
7431 case 0x0f3a:
7432 case 0x0f50:
7433 case 0x0f51:
7434 case 0x0f52:
7435 case 0x0f53:
7436 case 0x0f54:
7437 case 0x0f55:
7438 case 0x0f56:
7439 case 0x0f57:
7440 case 0x0f58:
7441 case 0x0f59:
7442 case 0x0f5a:
7443 case 0x0f5b:
7444 case 0x0f5c:
7445 case 0x0f5d:
7446 case 0x0f5e:
7447 case 0x0f5f:
7448 case 0x0f60:
7449 case 0x0f61:
7450 case 0x0f62:
7451 case 0x0f63:
7452 case 0x0f64:
7453 case 0x0f65:
7454 case 0x0f66:
7455 case 0x0f67:
7456 case 0x0f68:
7457 case 0x0f69:
7458 case 0x0f6a:
7459 case 0x0f6b:
7460 case 0x0f6c:
7461 case 0x0f6d:
7462 case 0x0f6e:
7463 case 0x0f6f:
7464 case 0x0f70:
7465 case 0x0f71:
7466 case 0x0f72:
7467 case 0x0f73:
7468 case 0x0f74:
7469 case 0x0f75:
7470 case 0x0f76:
7471 case 0x0f7c:
7472 case 0x0f7d:
7473 case 0x0f7e:
7474 case 0x0f7f:
7475 case 0x0fb8:
7476 case 0x0fc2:
7477 case 0x0fc4:
7478 case 0x0fc5:
7479 case 0x0fc6:
7480 case 0x0fd0:
7481 case 0x0fd1:
7482 case 0x0fd2:
7483 case 0x0fd3:
7484 case 0x0fd4:
7485 case 0x0fd5:
7486 case 0x0fd6:
7487 case 0x0fd7:
7488 case 0x0fd8:
7489 case 0x0fd9:
7490 case 0x0fda:
7491 case 0x0fdb:
7492 case 0x0fdc:
7493 case 0x0fdd:
7494 case 0x0fde:
7495 case 0x0fdf:
7496 case 0x0fe0:
7497 case 0x0fe1:
7498 case 0x0fe2:
7499 case 0x0fe3:
7500 case 0x0fe4:
7501 case 0x0fe5:
7502 case 0x0fe6:
7503 case 0x0fe7:
7504 case 0x0fe8:
7505 case 0x0fe9:
7506 case 0x0fea:
7507 case 0x0feb:
7508 case 0x0fec:
7509 case 0x0fed:
7510 case 0x0fee:
7511 case 0x0fef:
7512 case 0x0ff0:
7513 case 0x0ff1:
7514 case 0x0ff2:
7515 case 0x0ff3:
7516 case 0x0ff4:
7517 case 0x0ff5:
7518 case 0x0ff6:
7519 case 0x0ff7:
7520 case 0x0ff8:
7521 case 0x0ff9:
7522 case 0x0ffa:
7523 case 0x0ffb:
7524 case 0x0ffc:
7525 case 0x0ffd:
7526 case 0x0ffe:
f9fda3f5
L
7527 /* Mask out PREFIX_ADDR. */
7528 switch ((prefixes & ~PREFIX_ADDR))
dda83cd7
SM
7529 {
7530 case PREFIX_REPNZ:
7531 opcode |= 0xf20000;
7532 break;
7533 case PREFIX_DATA:
7534 opcode |= 0x660000;
7535 break;
7536 case PREFIX_REPZ:
7537 opcode |= 0xf30000;
7538 break;
7539 }
a3c4230a
HZ
7540reswitch_prefix_add:
7541 switch (opcode)
dda83cd7
SM
7542 {
7543 case 0x0f38:
7544 case 0x660f38:
7545 case 0xf20f38:
7546 case 0x0f3a:
7547 case 0x660f3a:
7548 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4ffa4fc7 7549 return -1;
dda83cd7
SM
7550 ir.addr++;
7551 opcode = (uint32_t) opcode8 | opcode << 8;
7552 goto reswitch_prefix_add;
7553 break;
7554
7555 case 0x0f10: /* movups */
7556 case 0x660f10: /* movupd */
7557 case 0xf30f10: /* movss */
7558 case 0xf20f10: /* movsd */
7559 case 0x0f12: /* movlps */
7560 case 0x660f12: /* movlpd */
7561 case 0xf30f12: /* movsldup */
7562 case 0xf20f12: /* movddup */
7563 case 0x0f14: /* unpcklps */
7564 case 0x660f14: /* unpcklpd */
7565 case 0x0f15: /* unpckhps */
7566 case 0x660f15: /* unpckhpd */
7567 case 0x0f16: /* movhps */
7568 case 0x660f16: /* movhpd */
7569 case 0xf30f16: /* movshdup */
7570 case 0x0f28: /* movaps */
7571 case 0x660f28: /* movapd */
7572 case 0x0f2a: /* cvtpi2ps */
7573 case 0x660f2a: /* cvtpi2pd */
7574 case 0xf30f2a: /* cvtsi2ss */
7575 case 0xf20f2a: /* cvtsi2sd */
7576 case 0x0f2c: /* cvttps2pi */
7577 case 0x660f2c: /* cvttpd2pi */
7578 case 0x0f2d: /* cvtps2pi */
7579 case 0x660f2d: /* cvtpd2pi */
7580 case 0x660f3800: /* pshufb */
7581 case 0x660f3801: /* phaddw */
7582 case 0x660f3802: /* phaddd */
7583 case 0x660f3803: /* phaddsw */
7584 case 0x660f3804: /* pmaddubsw */
7585 case 0x660f3805: /* phsubw */
7586 case 0x660f3806: /* phsubd */
7587 case 0x660f3807: /* phsubsw */
7588 case 0x660f3808: /* psignb */
7589 case 0x660f3809: /* psignw */
7590 case 0x660f380a: /* psignd */
7591 case 0x660f380b: /* pmulhrsw */
7592 case 0x660f3810: /* pblendvb */
7593 case 0x660f3814: /* blendvps */
7594 case 0x660f3815: /* blendvpd */
7595 case 0x660f381c: /* pabsb */
7596 case 0x660f381d: /* pabsw */
7597 case 0x660f381e: /* pabsd */
7598 case 0x660f3820: /* pmovsxbw */
7599 case 0x660f3821: /* pmovsxbd */
7600 case 0x660f3822: /* pmovsxbq */
7601 case 0x660f3823: /* pmovsxwd */
7602 case 0x660f3824: /* pmovsxwq */
7603 case 0x660f3825: /* pmovsxdq */
7604 case 0x660f3828: /* pmuldq */
7605 case 0x660f3829: /* pcmpeqq */
7606 case 0x660f382a: /* movntdqa */
7607 case 0x660f3a08: /* roundps */
7608 case 0x660f3a09: /* roundpd */
7609 case 0x660f3a0a: /* roundss */
7610 case 0x660f3a0b: /* roundsd */
7611 case 0x660f3a0c: /* blendps */
7612 case 0x660f3a0d: /* blendpd */
7613 case 0x660f3a0e: /* pblendw */
7614 case 0x660f3a0f: /* palignr */
7615 case 0x660f3a20: /* pinsrb */
7616 case 0x660f3a21: /* insertps */
7617 case 0x660f3a22: /* pinsrd pinsrq */
7618 case 0x660f3a40: /* dpps */
7619 case 0x660f3a41: /* dppd */
7620 case 0x660f3a42: /* mpsadbw */
7621 case 0x660f3a60: /* pcmpestrm */
7622 case 0x660f3a61: /* pcmpestri */
7623 case 0x660f3a62: /* pcmpistrm */
7624 case 0x660f3a63: /* pcmpistri */
7625 case 0x0f51: /* sqrtps */
7626 case 0x660f51: /* sqrtpd */
7627 case 0xf20f51: /* sqrtsd */
7628 case 0xf30f51: /* sqrtss */
7629 case 0x0f52: /* rsqrtps */
7630 case 0xf30f52: /* rsqrtss */
7631 case 0x0f53: /* rcpps */
7632 case 0xf30f53: /* rcpss */
7633 case 0x0f54: /* andps */
7634 case 0x660f54: /* andpd */
7635 case 0x0f55: /* andnps */
7636 case 0x660f55: /* andnpd */
7637 case 0x0f56: /* orps */
7638 case 0x660f56: /* orpd */
7639 case 0x0f57: /* xorps */
7640 case 0x660f57: /* xorpd */
7641 case 0x0f58: /* addps */
7642 case 0x660f58: /* addpd */
7643 case 0xf20f58: /* addsd */
7644 case 0xf30f58: /* addss */
7645 case 0x0f59: /* mulps */
7646 case 0x660f59: /* mulpd */
7647 case 0xf20f59: /* mulsd */
7648 case 0xf30f59: /* mulss */
7649 case 0x0f5a: /* cvtps2pd */
7650 case 0x660f5a: /* cvtpd2ps */
7651 case 0xf20f5a: /* cvtsd2ss */
7652 case 0xf30f5a: /* cvtss2sd */
7653 case 0x0f5b: /* cvtdq2ps */
7654 case 0x660f5b: /* cvtps2dq */
7655 case 0xf30f5b: /* cvttps2dq */
7656 case 0x0f5c: /* subps */
7657 case 0x660f5c: /* subpd */
7658 case 0xf20f5c: /* subsd */
7659 case 0xf30f5c: /* subss */
7660 case 0x0f5d: /* minps */
7661 case 0x660f5d: /* minpd */
7662 case 0xf20f5d: /* minsd */
7663 case 0xf30f5d: /* minss */
7664 case 0x0f5e: /* divps */
7665 case 0x660f5e: /* divpd */
7666 case 0xf20f5e: /* divsd */
7667 case 0xf30f5e: /* divss */
7668 case 0x0f5f: /* maxps */
7669 case 0x660f5f: /* maxpd */
7670 case 0xf20f5f: /* maxsd */
7671 case 0xf30f5f: /* maxss */
7672 case 0x660f60: /* punpcklbw */
7673 case 0x660f61: /* punpcklwd */
7674 case 0x660f62: /* punpckldq */
7675 case 0x660f63: /* packsswb */
7676 case 0x660f64: /* pcmpgtb */
7677 case 0x660f65: /* pcmpgtw */
7678 case 0x660f66: /* pcmpgtd */
7679 case 0x660f67: /* packuswb */
7680 case 0x660f68: /* punpckhbw */
7681 case 0x660f69: /* punpckhwd */
7682 case 0x660f6a: /* punpckhdq */
7683 case 0x660f6b: /* packssdw */
7684 case 0x660f6c: /* punpcklqdq */
7685 case 0x660f6d: /* punpckhqdq */
7686 case 0x660f6e: /* movd */
7687 case 0x660f6f: /* movdqa */
7688 case 0xf30f6f: /* movdqu */
7689 case 0x660f70: /* pshufd */
7690 case 0xf20f70: /* pshuflw */
7691 case 0xf30f70: /* pshufhw */
7692 case 0x660f74: /* pcmpeqb */
7693 case 0x660f75: /* pcmpeqw */
7694 case 0x660f76: /* pcmpeqd */
7695 case 0x660f7c: /* haddpd */
7696 case 0xf20f7c: /* haddps */
7697 case 0x660f7d: /* hsubpd */
7698 case 0xf20f7d: /* hsubps */
7699 case 0xf30f7e: /* movq */
7700 case 0x0fc2: /* cmpps */
7701 case 0x660fc2: /* cmppd */
7702 case 0xf20fc2: /* cmpsd */
7703 case 0xf30fc2: /* cmpss */
7704 case 0x660fc4: /* pinsrw */
7705 case 0x0fc6: /* shufps */
7706 case 0x660fc6: /* shufpd */
7707 case 0x660fd0: /* addsubpd */
7708 case 0xf20fd0: /* addsubps */
7709 case 0x660fd1: /* psrlw */
7710 case 0x660fd2: /* psrld */
7711 case 0x660fd3: /* psrlq */
7712 case 0x660fd4: /* paddq */
7713 case 0x660fd5: /* pmullw */
7714 case 0xf30fd6: /* movq2dq */
7715 case 0x660fd8: /* psubusb */
7716 case 0x660fd9: /* psubusw */
7717 case 0x660fda: /* pminub */
7718 case 0x660fdb: /* pand */
7719 case 0x660fdc: /* paddusb */
7720 case 0x660fdd: /* paddusw */
7721 case 0x660fde: /* pmaxub */
7722 case 0x660fdf: /* pandn */
7723 case 0x660fe0: /* pavgb */
7724 case 0x660fe1: /* psraw */
7725 case 0x660fe2: /* psrad */
7726 case 0x660fe3: /* pavgw */
7727 case 0x660fe4: /* pmulhuw */
7728 case 0x660fe5: /* pmulhw */
7729 case 0x660fe6: /* cvttpd2dq */
7730 case 0xf20fe6: /* cvtpd2dq */
7731 case 0xf30fe6: /* cvtdq2pd */
7732 case 0x660fe8: /* psubsb */
7733 case 0x660fe9: /* psubsw */
7734 case 0x660fea: /* pminsw */
7735 case 0x660feb: /* por */
7736 case 0x660fec: /* paddsb */
7737 case 0x660fed: /* paddsw */
7738 case 0x660fee: /* pmaxsw */
7739 case 0x660fef: /* pxor */
7740 case 0xf20ff0: /* lddqu */
7741 case 0x660ff1: /* psllw */
7742 case 0x660ff2: /* pslld */
7743 case 0x660ff3: /* psllq */
7744 case 0x660ff4: /* pmuludq */
7745 case 0x660ff5: /* pmaddwd */
7746 case 0x660ff6: /* psadbw */
7747 case 0x660ff8: /* psubb */
7748 case 0x660ff9: /* psubw */
7749 case 0x660ffa: /* psubd */
7750 case 0x660ffb: /* psubq */
7751 case 0x660ffc: /* paddb */
7752 case 0x660ffd: /* paddw */
7753 case 0x660ffe: /* paddd */
7754 if (i386_record_modrm (&ir))
a3c4230a 7755 return -1;
dda83cd7
SM
7756 ir.reg |= rex_r;
7757 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7758 goto no_support;
7759 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7760 I387_XMM0_REGNUM (tdep) + ir.reg);
dda83cd7
SM
7761 if ((opcode & 0xfffffffc) == 0x660f3a60)
7762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7763 break;
7764
7765 case 0x0f11: /* movups */
7766 case 0x660f11: /* movupd */
7767 case 0xf30f11: /* movss */
7768 case 0xf20f11: /* movsd */
7769 case 0x0f13: /* movlps */
7770 case 0x660f13: /* movlpd */
7771 case 0x0f17: /* movhps */
7772 case 0x660f17: /* movhpd */
7773 case 0x0f29: /* movaps */
7774 case 0x660f29: /* movapd */
7775 case 0x660f3a14: /* pextrb */
7776 case 0x660f3a15: /* pextrw */
7777 case 0x660f3a16: /* pextrd pextrq */
7778 case 0x660f3a17: /* extractps */
7779 case 0x660f7f: /* movdqa */
7780 case 0xf30f7f: /* movdqu */
7781 if (i386_record_modrm (&ir))
a3c4230a 7782 return -1;
dda83cd7
SM
7783 if (ir.mod == 3)
7784 {
7785 if (opcode == 0x0f13 || opcode == 0x660f13
7786 || opcode == 0x0f17 || opcode == 0x660f17)
7787 goto no_support;
7788 ir.rm |= ir.rex_b;
7789 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 7790 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
7791 goto no_support;
7792 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7793 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
7794 }
7795 else
7796 {
7797 switch (opcode)
7798 {
7799 case 0x660f3a14:
7800 ir.ot = OT_BYTE;
7801 break;
7802 case 0x660f3a15:
7803 ir.ot = OT_WORD;
7804 break;
7805 case 0x660f3a16:
7806 ir.ot = OT_LONG;
7807 break;
7808 case 0x660f3a17:
7809 ir.ot = OT_QUAD;
7810 break;
7811 default:
7812 ir.ot = OT_DQUAD;
7813 break;
7814 }
7815 if (i386_record_lea_modrm (&ir))
7816 return -1;
7817 }
7818 break;
7819
7820 case 0x0f2b: /* movntps */
7821 case 0x660f2b: /* movntpd */
7822 case 0x0fe7: /* movntq */
7823 case 0x660fe7: /* movntdq */
7824 if (ir.mod == 3)
7825 goto no_support;
7826 if (opcode == 0x0fe7)
7827 ir.ot = OT_QUAD;
7828 else
7829 ir.ot = OT_DQUAD;
7830 if (i386_record_lea_modrm (&ir))
a3c4230a 7831 return -1;
dda83cd7
SM
7832 break;
7833
7834 case 0xf30f2c: /* cvttss2si */
7835 case 0xf20f2c: /* cvttsd2si */
7836 case 0xf30f2d: /* cvtss2si */
7837 case 0xf20f2d: /* cvtsd2si */
7838 case 0xf20f38f0: /* crc32 */
7839 case 0xf20f38f1: /* crc32 */
7840 case 0x0f50: /* movmskps */
7841 case 0x660f50: /* movmskpd */
7842 case 0x0fc5: /* pextrw */
7843 case 0x660fc5: /* pextrw */
7844 case 0x0fd7: /* pmovmskb */
7845 case 0x660fd7: /* pmovmskb */
7846 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7847 break;
7848
7849 case 0x0f3800: /* pshufb */
7850 case 0x0f3801: /* phaddw */
7851 case 0x0f3802: /* phaddd */
7852 case 0x0f3803: /* phaddsw */
7853 case 0x0f3804: /* pmaddubsw */
7854 case 0x0f3805: /* phsubw */
7855 case 0x0f3806: /* phsubd */
7856 case 0x0f3807: /* phsubsw */
7857 case 0x0f3808: /* psignb */
7858 case 0x0f3809: /* psignw */
7859 case 0x0f380a: /* psignd */
7860 case 0x0f380b: /* pmulhrsw */
7861 case 0x0f381c: /* pabsb */
7862 case 0x0f381d: /* pabsw */
7863 case 0x0f381e: /* pabsd */
7864 case 0x0f382b: /* packusdw */
7865 case 0x0f3830: /* pmovzxbw */
7866 case 0x0f3831: /* pmovzxbd */
7867 case 0x0f3832: /* pmovzxbq */
7868 case 0x0f3833: /* pmovzxwd */
7869 case 0x0f3834: /* pmovzxwq */
7870 case 0x0f3835: /* pmovzxdq */
7871 case 0x0f3837: /* pcmpgtq */
7872 case 0x0f3838: /* pminsb */
7873 case 0x0f3839: /* pminsd */
7874 case 0x0f383a: /* pminuw */
7875 case 0x0f383b: /* pminud */
7876 case 0x0f383c: /* pmaxsb */
7877 case 0x0f383d: /* pmaxsd */
7878 case 0x0f383e: /* pmaxuw */
7879 case 0x0f383f: /* pmaxud */
7880 case 0x0f3840: /* pmulld */
7881 case 0x0f3841: /* phminposuw */
7882 case 0x0f3a0f: /* palignr */
7883 case 0x0f60: /* punpcklbw */
7884 case 0x0f61: /* punpcklwd */
7885 case 0x0f62: /* punpckldq */
7886 case 0x0f63: /* packsswb */
7887 case 0x0f64: /* pcmpgtb */
7888 case 0x0f65: /* pcmpgtw */
7889 case 0x0f66: /* pcmpgtd */
7890 case 0x0f67: /* packuswb */
7891 case 0x0f68: /* punpckhbw */
7892 case 0x0f69: /* punpckhwd */
7893 case 0x0f6a: /* punpckhdq */
7894 case 0x0f6b: /* packssdw */
7895 case 0x0f6e: /* movd */
7896 case 0x0f6f: /* movq */
7897 case 0x0f70: /* pshufw */
7898 case 0x0f74: /* pcmpeqb */
7899 case 0x0f75: /* pcmpeqw */
7900 case 0x0f76: /* pcmpeqd */
7901 case 0x0fc4: /* pinsrw */
7902 case 0x0fd1: /* psrlw */
7903 case 0x0fd2: /* psrld */
7904 case 0x0fd3: /* psrlq */
7905 case 0x0fd4: /* paddq */
7906 case 0x0fd5: /* pmullw */
7907 case 0xf20fd6: /* movdq2q */
7908 case 0x0fd8: /* psubusb */
7909 case 0x0fd9: /* psubusw */
7910 case 0x0fda: /* pminub */
7911 case 0x0fdb: /* pand */
7912 case 0x0fdc: /* paddusb */
7913 case 0x0fdd: /* paddusw */
7914 case 0x0fde: /* pmaxub */
7915 case 0x0fdf: /* pandn */
7916 case 0x0fe0: /* pavgb */
7917 case 0x0fe1: /* psraw */
7918 case 0x0fe2: /* psrad */
7919 case 0x0fe3: /* pavgw */
7920 case 0x0fe4: /* pmulhuw */
7921 case 0x0fe5: /* pmulhw */
7922 case 0x0fe8: /* psubsb */
7923 case 0x0fe9: /* psubsw */
7924 case 0x0fea: /* pminsw */
7925 case 0x0feb: /* por */
7926 case 0x0fec: /* paddsb */
7927 case 0x0fed: /* paddsw */
7928 case 0x0fee: /* pmaxsw */
7929 case 0x0fef: /* pxor */
7930 case 0x0ff1: /* psllw */
7931 case 0x0ff2: /* pslld */
7932 case 0x0ff3: /* psllq */
7933 case 0x0ff4: /* pmuludq */
7934 case 0x0ff5: /* pmaddwd */
7935 case 0x0ff6: /* psadbw */
7936 case 0x0ff8: /* psubb */
7937 case 0x0ff9: /* psubw */
7938 case 0x0ffa: /* psubd */
7939 case 0x0ffb: /* psubq */
7940 case 0x0ffc: /* paddb */
7941 case 0x0ffd: /* paddw */
7942 case 0x0ffe: /* paddd */
7943 if (i386_record_modrm (&ir))
7944 return -1;
7945 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7946 goto no_support;
7947 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7948 I387_MM0_REGNUM (tdep) + ir.reg);
dda83cd7 7949 break;
a3c4230a 7950
dda83cd7
SM
7951 case 0x0f71: /* psllw */
7952 case 0x0f72: /* pslld */
7953 case 0x0f73: /* psllq */
7954 if (i386_record_modrm (&ir))
a3c4230a 7955 return -1;
dda83cd7
SM
7956 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7957 goto no_support;
7958 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7959 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7 7960 break;
a3c4230a 7961
dda83cd7
SM
7962 case 0x660f71: /* psllw */
7963 case 0x660f72: /* pslld */
7964 case 0x660f73: /* psllq */
7965 if (i386_record_modrm (&ir))
a3c4230a 7966 return -1;
dda83cd7
SM
7967 ir.rm |= ir.rex_b;
7968 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7969 goto no_support;
7970 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7971 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7 7972 break;
a3c4230a 7973
dda83cd7
SM
7974 case 0x0f7e: /* movd */
7975 case 0x660f7e: /* movd */
7976 if (i386_record_modrm (&ir))
a3c4230a 7977 return -1;
dda83cd7
SM
7978 if (ir.mod == 3)
7979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7980 else
7981 {
7982 if (ir.dflag == 2)
7983 ir.ot = OT_QUAD;
7984 else
7985 ir.ot = OT_LONG;
7986 if (i386_record_lea_modrm (&ir))
7987 return -1;
7988 }
7989 break;
7990
7991 case 0x0f7f: /* movq */
7992 if (i386_record_modrm (&ir))
a3c4230a 7993 return -1;
dda83cd7
SM
7994 if (ir.mod == 3)
7995 {
7996 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7997 goto no_support;
7998 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7999 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8000 }
8001 else
8002 {
8003 ir.ot = OT_QUAD;
8004 if (i386_record_lea_modrm (&ir))
8005 return -1;
8006 }
8007 break;
8008
8009 case 0xf30fb8: /* popcnt */
8010 if (i386_record_modrm (&ir))
a3c4230a 8011 return -1;
dda83cd7
SM
8012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8013 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8014 break;
a3c4230a 8015
dda83cd7
SM
8016 case 0x660fd6: /* movq */
8017 if (i386_record_modrm (&ir))
a3c4230a 8018 return -1;
dda83cd7
SM
8019 if (ir.mod == 3)
8020 {
8021 ir.rm |= ir.rex_b;
8022 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 8023 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8026 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8027 }
8028 else
8029 {
8030 ir.ot = OT_QUAD;
8031 if (i386_record_lea_modrm (&ir))
8032 return -1;
8033 }
8034 break;
8035
8036 case 0x660f3817: /* ptest */
8037 case 0x0f2e: /* ucomiss */
8038 case 0x660f2e: /* ucomisd */
8039 case 0x0f2f: /* comiss */
8040 case 0x660f2f: /* comisd */
8041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8042 break;
8043
8044 case 0x0ff7: /* maskmovq */
8045 regcache_raw_read_unsigned (ir.regcache,
8046 ir.regmap[X86_RECORD_REDI_REGNUM],
8047 &addr);
8048 if (record_full_arch_list_add_mem (addr, 64))
8049 return -1;
8050 break;
8051
8052 case 0x660ff7: /* maskmovdqu */
8053 regcache_raw_read_unsigned (ir.regcache,
8054 ir.regmap[X86_RECORD_REDI_REGNUM],
8055 &addr);
8056 if (record_full_arch_list_add_mem (addr, 128))
8057 return -1;
8058 break;
8059
8060 default:
8061 goto no_support;
8062 break;
8063 }
a3c4230a 8064 break;
7ad10968
HZ
8065
8066 default:
7ad10968
HZ
8067 goto no_support;
8068 break;
8069 }
8070
cf648174 8071 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8073 if (record_full_arch_list_add_end ())
7ad10968
HZ
8074 return -1;
8075
8076 return 0;
8077
01fe1b41 8078 no_support:
a3c4230a 8079 printf_unfiltered (_("Process record does not support instruction 0x%02x "
dda83cd7
SM
8080 "at address %s.\n"),
8081 (unsigned int) (opcode),
8082 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8083 return -1;
8084}
8085
cf648174
HZ
8086static const int i386_record_regmap[] =
8087{
8088 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8089 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8090 0, 0, 0, 0, 0, 0, 0, 0,
8091 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8092 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8093};
8094
7a697b8d 8095/* Check that the given address appears suitable for a fast
405f8e94 8096 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8097 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8098 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8099 middle of the tracepoint jump. On x86, it may be possible to use
8100 4-byte jumps with a 2-byte offset to a trampoline located in the
8101 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8102 of instruction to replace, and 0 if not, plus an explanatory
8103 string. */
8104
8105static int
6b940e6a 8106i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8107 std::string *msg)
7a697b8d
SS
8108{
8109 int len, jumplen;
7a697b8d 8110
405f8e94
SS
8111 /* Ask the target for the minimum instruction length supported. */
8112 jumplen = target_get_min_fast_tracepoint_insn_len ();
8113
8114 if (jumplen < 0)
8115 {
8116 /* If the target does not support the get_min_fast_tracepoint_insn_len
8117 operation, assume that fast tracepoints will always be implemented
8118 using 4-byte relative jumps on both x86 and x86-64. */
8119 jumplen = 5;
8120 }
8121 else if (jumplen == 0)
8122 {
8123 /* If the target does support get_min_fast_tracepoint_insn_len but
8124 returns zero, then the IPA has not loaded yet. In this case,
8125 we optimistically assume that truncated 2-byte relative jumps
8126 will be available on x86, and compensate later if this assumption
8127 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8128 jumps will always be used. */
8129 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8130 }
7a697b8d 8131
7a697b8d 8132 /* Check for fit. */
be85ce7d 8133 len = gdb_insn_length (gdbarch, addr);
405f8e94 8134
7a697b8d
SS
8135 if (len < jumplen)
8136 {
8137 /* Return a bit of target-specific detail to add to the caller's
8138 generic failure message. */
8139 if (msg)
281d762b
TT
8140 *msg = string_printf (_("; instruction is only %d bytes long, "
8141 "need at least %d bytes for the jump"),
8142 len, jumplen);
7a697b8d
SS
8143 return 0;
8144 }
405f8e94
SS
8145 else
8146 {
8147 if (msg)
281d762b 8148 msg->clear ();
405f8e94
SS
8149 return 1;
8150 }
7a697b8d
SS
8151}
8152
00d5215e
UW
8153/* Return a floating-point format for a floating-point variable of
8154 length LEN in bits. If non-NULL, NAME is the name of its type.
8155 If no suitable type is found, return NULL. */
8156
cb8c24b6 8157static const struct floatformat **
00d5215e
UW
8158i386_floatformat_for_type (struct gdbarch *gdbarch,
8159 const char *name, int len)
8160{
8161 if (len == 128 && name)
8162 if (strcmp (name, "__float128") == 0
8163 || strcmp (name, "_Float128") == 0
34d11c68
AB
8164 || strcmp (name, "complex _Float128") == 0
8165 || strcmp (name, "complex(kind=16)") == 0
8d624a9d
FW
8166 || strcmp (name, "complex*32") == 0
8167 || strcmp (name, "COMPLEX*32") == 0
e56798df
AKS
8168 || strcmp (name, "quad complex") == 0
8169 || strcmp (name, "real(kind=16)") == 0
8d624a9d
FW
8170 || strcmp (name, "real*16") == 0
8171 || strcmp (name, "REAL*16") == 0)
00d5215e
UW
8172 return floatformats_ia64_quad;
8173
8174 return default_floatformat_for_type (gdbarch, name, len);
8175}
8176
90884b2b
L
8177static int
8178i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8179 struct tdesc_arch_data *tdesc_data)
8180{
8181 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8182 const struct tdesc_feature *feature_core;
01f9f808
MS
8183
8184 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8185 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8186 int i, num_regs, valid_p;
8187
8188 if (! tdesc_has_registers (tdesc))
8189 return 0;
8190
8191 /* Get core registers. */
8192 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8193 if (feature_core == NULL)
8194 return 0;
90884b2b
L
8195
8196 /* Get SSE registers. */
c131fcee 8197 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8198
c131fcee
L
8199 /* Try AVX registers. */
8200 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8201
1dbcd68c
WT
8202 /* Try MPX registers. */
8203 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8204
01f9f808
MS
8205 /* Try AVX512 registers. */
8206 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8207
1163a4b7
JB
8208 /* Try segment base registers. */
8209 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8210
51547df6
MS
8211 /* Try PKEYS */
8212 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8213
90884b2b
L
8214 valid_p = 1;
8215
c131fcee 8216 /* The XCR0 bits. */
01f9f808
MS
8217 if (feature_avx512)
8218 {
8219 /* AVX512 register description requires AVX register description. */
8220 if (!feature_avx)
8221 return 0;
8222
a1fa17ee 8223 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8224
8225 /* It may have been set by OSABI initialization function. */
8226 if (tdep->k0_regnum < 0)
8227 {
8228 tdep->k_register_names = i386_k_names;
8229 tdep->k0_regnum = I386_K0_REGNUM;
8230 }
8231
8232 for (i = 0; i < I387_NUM_K_REGS; i++)
8233 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8234 tdep->k0_regnum + i,
8235 i386_k_names[i]);
8236
8237 if (tdep->num_zmm_regs == 0)
8238 {
8239 tdep->zmmh_register_names = i386_zmmh_names;
8240 tdep->num_zmm_regs = 8;
8241 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8242 }
8243
8244 for (i = 0; i < tdep->num_zmm_regs; i++)
8245 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8246 tdep->zmm0h_regnum + i,
8247 tdep->zmmh_register_names[i]);
8248
8249 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8250 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8251 tdep->xmm16_regnum + i,
8252 tdep->xmm_avx512_register_names[i]);
8253
8254 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8255 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8256 tdep->ymm16h_regnum + i,
8257 tdep->ymm16h_register_names[i]);
8258 }
c131fcee
L
8259 if (feature_avx)
8260 {
3a13a53b
L
8261 /* AVX register description requires SSE register description. */
8262 if (!feature_sse)
8263 return 0;
8264
01f9f808 8265 if (!feature_avx512)
df7e5265 8266 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8267
8268 /* It may have been set by OSABI initialization function. */
8269 if (tdep->num_ymm_regs == 0)
8270 {
8271 tdep->ymmh_register_names = i386_ymmh_names;
8272 tdep->num_ymm_regs = 8;
8273 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8274 }
8275
8276 for (i = 0; i < tdep->num_ymm_regs; i++)
8277 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8278 tdep->ymm0h_regnum + i,
8279 tdep->ymmh_register_names[i]);
8280 }
3a13a53b 8281 else if (feature_sse)
df7e5265 8282 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8283 else
8284 {
df7e5265 8285 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8286 tdep->num_xmm_regs = 0;
8287 }
c131fcee 8288
90884b2b
L
8289 num_regs = tdep->num_core_regs;
8290 for (i = 0; i < num_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8292 tdep->register_names[i]);
8293
3a13a53b
L
8294 if (feature_sse)
8295 {
8296 /* Need to include %mxcsr, so add one. */
8297 num_regs += tdep->num_xmm_regs + 1;
8298 for (; i < num_regs; i++)
8299 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8300 tdep->register_names[i]);
8301 }
90884b2b 8302
1dbcd68c
WT
8303 if (feature_mpx)
8304 {
df7e5265 8305 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8306
8307 if (tdep->bnd0r_regnum < 0)
8308 {
8309 tdep->mpx_register_names = i386_mpx_names;
8310 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8311 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8312 }
8313
8314 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8315 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8316 I387_BND0R_REGNUM (tdep) + i,
8317 tdep->mpx_register_names[i]);
8318 }
8319
1163a4b7
JB
8320 if (feature_segments)
8321 {
8322 if (tdep->fsbase_regnum < 0)
8323 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8324 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8325 tdep->fsbase_regnum, "fs_base");
8326 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8327 tdep->fsbase_regnum + 1, "gs_base");
8328 }
8329
51547df6
MS
8330 if (feature_pkeys)
8331 {
8332 tdep->xcr0 |= X86_XSTATE_PKRU;
8333 if (tdep->pkru_regnum < 0)
8334 {
8335 tdep->pkeys_register_names = i386_pkeys_names;
8336 tdep->pkru_regnum = I386_PKRU_REGNUM;
8337 tdep->num_pkeys_regs = 1;
8338 }
8339
8340 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8341 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8342 I387_PKRU_REGNUM (tdep) + i,
8343 tdep->pkeys_register_names[i]);
8344 }
8345
90884b2b
L
8346 return valid_p;
8347}
8348
2b4424c3
TT
8349\f
8350
8351/* Implement the type_align gdbarch function. */
8352
8353static ULONGEST
8354i386_type_align (struct gdbarch *gdbarch, struct type *type)
8355{
8356 type = check_typedef (type);
8357
8358 if (gdbarch_ptr_bit (gdbarch) == 32)
8359 {
78134374
SM
8360 if ((type->code () == TYPE_CODE_INT
8361 || type->code () == TYPE_CODE_FLT)
2b4424c3
TT
8362 && TYPE_LENGTH (type) > 4)
8363 return 4;
8364
8365 /* Handle x86's funny long double. */
78134374 8366 if (type->code () == TYPE_CODE_FLT
2b4424c3
TT
8367 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8368 return 4;
8369 }
8370
5561fc30 8371 return 0;
2b4424c3
TT
8372}
8373
7ad10968 8374\f
ad9eb1fd
DE
8375/* Note: This is called for both i386 and amd64. */
8376
7ad10968
HZ
8377static struct gdbarch *
8378i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8379{
8380 struct gdbarch_tdep *tdep;
8381 struct gdbarch *gdbarch;
90884b2b 8382 const struct target_desc *tdesc;
1ba53b71 8383 int mm0_regnum;
c131fcee 8384 int ymm0_regnum;
1dbcd68c
WT
8385 int bnd0_regnum;
8386 int num_bnd_cooked;
7ad10968
HZ
8387
8388 /* If there is already a candidate, use it. */
8389 arches = gdbarch_list_lookup_by_info (arches, &info);
8390 if (arches != NULL)
8391 return arches->gdbarch;
8392
ad9eb1fd 8393 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8394 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8395 gdbarch = gdbarch_alloc (&info, tdep);
8396
8397 /* General-purpose registers. */
7ad10968
HZ
8398 tdep->gregset_reg_offset = NULL;
8399 tdep->gregset_num_regs = I386_NUM_GREGS;
8400 tdep->sizeof_gregset = 0;
8401
8402 /* Floating-point registers. */
7ad10968 8403 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8404 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8405
8406 /* The default settings include the FPU registers, the MMX registers
8407 and the SSE registers. This can be overridden for a specific ABI
8408 by adjusting the members `st0_regnum', `mm0_regnum' and
8409 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8410 will show up in the output of "info all-registers". */
7ad10968
HZ
8411
8412 tdep->st0_regnum = I386_ST0_REGNUM;
8413
7ad10968
HZ
8414 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8415 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8416
8417 tdep->jb_pc_offset = -1;
8418 tdep->struct_return = pcc_struct_return;
8419 tdep->sigtramp_start = 0;
8420 tdep->sigtramp_end = 0;
8421 tdep->sigtramp_p = i386_sigtramp_p;
8422 tdep->sigcontext_addr = NULL;
8423 tdep->sc_reg_offset = NULL;
8424 tdep->sc_pc_offset = -1;
8425 tdep->sc_sp_offset = -1;
8426
c131fcee
L
8427 tdep->xsave_xcr0_offset = -1;
8428
cf648174
HZ
8429 tdep->record_regmap = i386_record_regmap;
8430
2b4424c3 8431 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8432
7ad10968
HZ
8433 /* The format used for `long double' on almost all i386 targets is
8434 the i387 extended floating-point format. In fact, of all targets
8435 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8436 on having a `long double' that's not `long' at all. */
8437 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8438
8439 /* Although the i387 extended floating-point has only 80 significant
8440 bits, a `long double' actually takes up 96, probably to enforce
8441 alignment. */
8442 set_gdbarch_long_double_bit (gdbarch, 96);
8443
2a67f09d
FW
8444 /* Support of bfloat16 format. */
8445 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8446
00d5215e
UW
8447 /* Support for floating-point data type variants. */
8448 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8449
7ad10968
HZ
8450 /* Register numbers of various important registers. */
8451 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8452 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8453 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8454 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8455
8456 /* NOTE: kettenis/20040418: GCC does have two possible register
8457 numbering schemes on the i386: dbx and SVR4. These schemes
8458 differ in how they number %ebp, %esp, %eflags, and the
8459 floating-point registers, and are implemented by the arrays
8460 dbx_register_map[] and svr4_dbx_register_map in
8461 gcc/config/i386.c. GCC also defines a third numbering scheme in
8462 gcc/config/i386.c, which it designates as the "default" register
8463 map used in 64bit mode. This last register numbering scheme is
8464 implemented in dbx64_register_map, and is used for AMD64; see
8465 amd64-tdep.c.
8466
8467 Currently, each GCC i386 target always uses the same register
8468 numbering scheme across all its supported debugging formats
8469 i.e. SDB (COFF), stabs and DWARF 2. This is because
8470 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8471 DBX_REGISTER_NUMBER macro which is defined by each target's
8472 respective config header in a manner independent of the requested
8473 output debugging format.
8474
8475 This does not match the arrangement below, which presumes that
8476 the SDB and stabs numbering schemes differ from the DWARF and
8477 DWARF 2 ones. The reason for this arrangement is that it is
8478 likely to get the numbering scheme for the target's
8479 default/native debug format right. For targets where GCC is the
8480 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8481 targets where the native toolchain uses a different numbering
8482 scheme for a particular debug format (stabs-in-ELF on Solaris)
8483 the defaults below will have to be overridden, like
8484 i386_elf_init_abi() does. */
8485
8486 /* Use the dbx register numbering scheme for stabs and COFF. */
8487 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8488 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8489
8490 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8491 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8492
8493 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8494 be in use on any of the supported i386 targets. */
8495
8496 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8497
8498 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8499
8500 /* Call dummy code. */
a9b8d892
JK
8501 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8502 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8503 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8504 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8505
8506 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8507 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8508 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8509
8510 set_gdbarch_return_value (gdbarch, i386_return_value);
8511
8512 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8513
8514 /* Stack grows downward. */
8515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8516
04180708
YQ
8517 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8518 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8519
7ad10968
HZ
8520 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8521 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8522
8523 set_gdbarch_frame_args_skip (gdbarch, 8);
8524
7ad10968
HZ
8525 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8526
8527 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8528
8529 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8530
8531 /* Add the i386 register groups. */
8532 i386_add_reggroups (gdbarch);
90884b2b 8533 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8534
143985b7
AF
8535 /* Helper for function argument information. */
8536 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8537
06da04c6 8538 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8539 appended to the list first, so that it supercedes the DWARF
8540 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8541 currently fails). */
8542 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8543
8544 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8545 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8546 CFI info will be used if it is available. */
10458914 8547 dwarf2_append_unwinders (gdbarch);
6405b0a6 8548
acd5c798 8549 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8550
1ba53b71 8551 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8552 set_gdbarch_pseudo_register_read_value (gdbarch,
8553 i386_pseudo_register_read_value);
90884b2b 8554 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8555 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8556 i386_ax_pseudo_register_collect);
90884b2b
L
8557
8558 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8559 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8560
c131fcee
L
8561 /* Override the normal target description method to make the AVX
8562 upper halves anonymous. */
8563 set_gdbarch_register_name (gdbarch, i386_register_name);
8564
8565 /* Even though the default ABI only includes general-purpose registers,
8566 floating-point registers and the SSE registers, we have to leave a
01f9f808 8567 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8568 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8569
ac04f72b
TT
8570 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8571
90884b2b
L
8572 /* Get the x86 target description from INFO. */
8573 tdesc = info.target_desc;
8574 if (! tdesc_has_registers (tdesc))
1163a4b7 8575 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8576 tdep->tdesc = tdesc;
8577
8578 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8579 tdep->register_names = i386_register_names;
8580
c131fcee
L
8581 /* No upper YMM registers. */
8582 tdep->ymmh_register_names = NULL;
8583 tdep->ymm0h_regnum = -1;
8584
01f9f808
MS
8585 /* No upper ZMM registers. */
8586 tdep->zmmh_register_names = NULL;
8587 tdep->zmm0h_regnum = -1;
8588
8589 /* No high XMM registers. */
8590 tdep->xmm_avx512_register_names = NULL;
8591 tdep->xmm16_regnum = -1;
8592
8593 /* No upper YMM16-31 registers. */
8594 tdep->ymm16h_register_names = NULL;
8595 tdep->ymm16h_regnum = -1;
8596
1ba53b71
L
8597 tdep->num_byte_regs = 8;
8598 tdep->num_word_regs = 8;
8599 tdep->num_dword_regs = 0;
8600 tdep->num_mmx_regs = 8;
c131fcee 8601 tdep->num_ymm_regs = 0;
1ba53b71 8602
1dbcd68c
WT
8603 /* No MPX registers. */
8604 tdep->bnd0r_regnum = -1;
8605 tdep->bndcfgu_regnum = -1;
8606
01f9f808
MS
8607 /* No AVX512 registers. */
8608 tdep->k0_regnum = -1;
8609 tdep->num_zmm_regs = 0;
8610 tdep->num_ymm_avx512_regs = 0;
8611 tdep->num_xmm_avx512_regs = 0;
8612
51547df6
MS
8613 /* No PKEYS registers */
8614 tdep->pkru_regnum = -1;
8615 tdep->num_pkeys_regs = 0;
8616
1163a4b7
JB
8617 /* No segment base registers. */
8618 tdep->fsbase_regnum = -1;
8619
c1e1314d 8620 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
90884b2b 8621
dde08ee1
PA
8622 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8623
6710bf39
SS
8624 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8625
c2170eef
MM
8626 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8627 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8628 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8629
ad9eb1fd
DE
8630 /* Hook in ABI-specific overrides, if they have been registered.
8631 Note: If INFO specifies a 64 bit arch, this is where we turn
8632 a 32-bit i386 into a 64-bit amd64. */
c1e1314d 8633 info.tdesc_data = tdesc_data.get ();
4be87837 8634 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8635
c1e1314d 8636 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
c131fcee 8637 {
c131fcee
L
8638 xfree (tdep);
8639 gdbarch_free (gdbarch);
8640 return NULL;
8641 }
8642
1dbcd68c
WT
8643 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8644
1ba53b71
L
8645 /* Wire in pseudo registers. Number of pseudo registers may be
8646 changed. */
8647 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8648 + tdep->num_word_regs
8649 + tdep->num_dword_regs
c131fcee 8650 + tdep->num_mmx_regs
1dbcd68c 8651 + tdep->num_ymm_regs
01f9f808
MS
8652 + num_bnd_cooked
8653 + tdep->num_ymm_avx512_regs
8654 + tdep->num_zmm_regs));
1ba53b71 8655
90884b2b
L
8656 /* Target description may be changed. */
8657 tdesc = tdep->tdesc;
8658
c1e1314d 8659 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
90884b2b
L
8660
8661 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8662 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8663
1ba53b71
L
8664 /* Make %al the first pseudo-register. */
8665 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8666 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8667
c131fcee 8668 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8669 if (tdep->num_dword_regs)
8670 {
1c6272a6 8671 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8672 tdep->eax_regnum = ymm0_regnum;
8673 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8674 }
8675 else
8676 tdep->eax_regnum = -1;
8677
c131fcee
L
8678 mm0_regnum = ymm0_regnum;
8679 if (tdep->num_ymm_regs)
8680 {
1c6272a6 8681 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8682 tdep->ymm0_regnum = ymm0_regnum;
8683 mm0_regnum += tdep->num_ymm_regs;
8684 }
8685 else
8686 tdep->ymm0_regnum = -1;
8687
01f9f808
MS
8688 if (tdep->num_ymm_avx512_regs)
8689 {
8690 /* Support YMM16-31 pseudo registers if available. */
8691 tdep->ymm16_regnum = mm0_regnum;
8692 mm0_regnum += tdep->num_ymm_avx512_regs;
8693 }
8694 else
8695 tdep->ymm16_regnum = -1;
8696
8697 if (tdep->num_zmm_regs)
8698 {
8699 /* Support ZMM pseudo-register if it is available. */
8700 tdep->zmm0_regnum = mm0_regnum;
8701 mm0_regnum += tdep->num_zmm_regs;
8702 }
8703 else
8704 tdep->zmm0_regnum = -1;
8705
1dbcd68c 8706 bnd0_regnum = mm0_regnum;
1ba53b71
L
8707 if (tdep->num_mmx_regs != 0)
8708 {
1c6272a6 8709 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8710 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8711 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8712 }
8713 else
8714 tdep->mm0_regnum = -1;
8715
1dbcd68c
WT
8716 if (tdep->bnd0r_regnum > 0)
8717 tdep->bnd0_regnum = bnd0_regnum;
8718 else
8719 tdep-> bnd0_regnum = -1;
8720
06da04c6 8721 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8722 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8723 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8724 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8725
8446b36a
MK
8726 /* If we have a register mapping, enable the generic core file
8727 support, unless it has already been enabled. */
8728 if (tdep->gregset_reg_offset
8f0435f7 8729 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8730 set_gdbarch_iterate_over_regset_sections
8731 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8732
7a697b8d
SS
8733 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8734 i386_fast_tracepoint_valid_at);
8735
a62cc96e
AC
8736 return gdbarch;
8737}
8738
8201327c
MK
8739\f
8740
97de3545
JB
8741/* Return the target description for a specified XSAVE feature mask. */
8742
8743const struct target_desc *
1163a4b7 8744i386_target_description (uint64_t xcr0, bool segments)
97de3545 8745{
22916b07 8746 static target_desc *i386_tdescs \
1163a4b7 8747 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8748 target_desc **tdesc;
8749
8750 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8751 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8752 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8753 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8754 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8755 [segments ? 1 : 0];
22916b07
YQ
8756
8757 if (*tdesc == NULL)
1163a4b7 8758 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8759
8760 return *tdesc;
97de3545
JB
8761}
8762
29c1c244
WT
8763#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8764
8765/* Find the bound directory base address. */
8766
8767static unsigned long
8768i386_mpx_bd_base (void)
8769{
8770 struct regcache *rcache;
8771 struct gdbarch_tdep *tdep;
8772 ULONGEST ret;
8773 enum register_status regstatus;
29c1c244
WT
8774
8775 rcache = get_current_regcache ();
ac7936df 8776 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8777
8778 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8779
8780 if (regstatus != REG_VALID)
8781 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8782
8783 return ret & MPX_BASE_MASK;
8784}
8785
012b3a21 8786int
29c1c244
WT
8787i386_mpx_enabled (void)
8788{
8789 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8790 const struct target_desc *tdesc = tdep->tdesc;
8791
8792 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8793}
8794
8795#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8796#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8797#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8798#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8799
8800/* Find the bound table entry given the pointer location and the base
8801 address of the table. */
8802
8803static CORE_ADDR
8804i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8805{
8806 CORE_ADDR offset1;
8807 CORE_ADDR offset2;
8808 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8809 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8810 CORE_ADDR bd_entry_addr;
8811 CORE_ADDR bt_addr;
8812 CORE_ADDR bd_entry;
8813 struct gdbarch *gdbarch = get_current_arch ();
8814 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8815
8816
8817 if (gdbarch_ptr_bit (gdbarch) == 64)
8818 {
966f0aef 8819 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8820 bd_ptr_r_shift = 20;
8821 bd_ptr_l_shift = 3;
8822 bt_select_r_shift = 3;
8823 bt_select_l_shift = 5;
966f0aef
WT
8824 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8825
8826 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8827 error (_("bound table examination not supported\
8828 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8829 }
8830 else
8831 {
8832 mpx_bd_mask = MPX_BD_MASK_32;
8833 bd_ptr_r_shift = 12;
8834 bd_ptr_l_shift = 2;
8835 bt_select_r_shift = 2;
8836 bt_select_l_shift = 4;
8837 bt_mask = MPX_BT_MASK_32;
8838 }
8839
8840 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8841 bd_entry_addr = bd_base + offset1;
8842 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8843
8844 if ((bd_entry & 0x1) == 0)
8845 error (_("Invalid bounds directory entry at %s."),
8846 paddress (get_current_arch (), bd_entry_addr));
8847
8848 /* Clearing status bit. */
8849 bd_entry--;
8850 bt_addr = bd_entry & ~bt_select_r_shift;
8851 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8852
8853 return bt_addr + offset2;
8854}
8855
8856/* Print routine for the mpx bounds. */
8857
8858static void
8859i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8860{
8861 struct ui_out *uiout = current_uiout;
34f8ac9f 8862 LONGEST size;
29c1c244
WT
8863 struct gdbarch *gdbarch = get_current_arch ();
8864 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8865 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8866
8867 if (bounds_in_map == 1)
8868 {
112e8700
SM
8869 uiout->text ("Null bounds on map:");
8870 uiout->text (" pointer value = ");
8871 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8872 uiout->text (".");
8873 uiout->text ("\n");
29c1c244
WT
8874 }
8875 else
8876 {
112e8700
SM
8877 uiout->text ("{lbound = ");
8878 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8879 uiout->text (", ubound = ");
29c1c244
WT
8880
8881 /* The upper bound is stored in 1's complement. */
112e8700
SM
8882 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8883 uiout->text ("}: pointer value = ");
8884 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8885
8886 if (gdbarch_ptr_bit (gdbarch) == 64)
8887 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8888 else
8889 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8890
8891 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8892 -1 represents in this sense full memory access, and there is no need
8893 one to the size. */
8894
8895 size = (size > -1 ? size + 1 : size);
112e8700 8896 uiout->text (", size = ");
33eca680 8897 uiout->field_string ("size", plongest (size));
29c1c244 8898
112e8700
SM
8899 uiout->text (", metadata = ");
8900 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8901 uiout->text ("\n");
29c1c244
WT
8902 }
8903}
8904
8905/* Implement the command "show mpx bound". */
8906
8907static void
c4a3e68e 8908i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8909{
8910 CORE_ADDR bd_base = 0;
8911 CORE_ADDR addr;
8912 CORE_ADDR bt_entry_addr = 0;
8913 CORE_ADDR bt_entry[4];
8914 int i;
8915 struct gdbarch *gdbarch = get_current_arch ();
8916 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8917
ae71e7b5
MR
8918 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8919 || !i386_mpx_enabled ())
118ca224 8920 {
bc504a31 8921 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8922 "supported on this target.\n"));
8923 return;
8924 }
29c1c244
WT
8925
8926 if (args == NULL)
118ca224
PP
8927 {
8928 printf_unfiltered (_("Address of pointer variable expected.\n"));
8929 return;
8930 }
29c1c244
WT
8931
8932 addr = parse_and_eval_address (args);
8933
8934 bd_base = i386_mpx_bd_base ();
8935 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8936
8937 memset (bt_entry, 0, sizeof (bt_entry));
8938
8939 for (i = 0; i < 4; i++)
8940 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8941 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8942 data_ptr_type);
8943
8944 i386_mpx_print_bounds (bt_entry);
8945}
8946
8947/* Implement the command "set mpx bound". */
8948
8949static void
c4a3e68e 8950i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
8951{
8952 CORE_ADDR bd_base = 0;
8953 CORE_ADDR addr, lower, upper;
8954 CORE_ADDR bt_entry_addr = 0;
8955 CORE_ADDR bt_entry[2];
8956 const char *input = args;
8957 int i;
8958 struct gdbarch *gdbarch = get_current_arch ();
8959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8960 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8961
ae71e7b5
MR
8962 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8963 || !i386_mpx_enabled ())
bc504a31 8964 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8965 on this target."));
8966
8967 if (args == NULL)
8968 error (_("Pointer value expected."));
8969
8970 addr = value_as_address (parse_to_comma_and_eval (&input));
8971
8972 if (input[0] == ',')
8973 ++input;
8974 if (input[0] == '\0')
8975 error (_("wrong number of arguments: missing lower and upper bound."));
8976 lower = value_as_address (parse_to_comma_and_eval (&input));
8977
8978 if (input[0] == ',')
8979 ++input;
8980 if (input[0] == '\0')
8981 error (_("Wrong number of arguments; Missing upper bound."));
8982 upper = value_as_address (parse_to_comma_and_eval (&input));
8983
8984 bd_base = i386_mpx_bd_base ();
8985 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8986 for (i = 0; i < 2; i++)
8987 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8988 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8989 data_ptr_type);
8990 bt_entry[0] = (uint64_t) lower;
8991 bt_entry[1] = ~(uint64_t) upper;
8992
8993 for (i = 0; i < 2; i++)
132874d7
AB
8994 write_memory_unsigned_integer (bt_entry_addr
8995 + i * TYPE_LENGTH (data_ptr_type),
8996 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
8997 bt_entry[i]);
8998}
8999
9000static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9001
6c265988 9002void _initialize_i386_tdep ();
c906108c 9003void
6c265988 9004_initialize_i386_tdep ()
c906108c 9005{
a62cc96e
AC
9006 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9007
fc338970 9008 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9009 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9010 &disassembly_flavor, _("\
9011Set the disassembly flavor."), _("\
9012Show the disassembly flavor."), _("\
9013The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9014 NULL,
9015 NULL, /* FIXME: i18n: */
9016 &setlist, &showlist);
8201327c
MK
9017
9018 /* Add the variable that controls the convention for returning
9019 structs. */
7ab04401
AC
9020 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9021 &struct_convention, _("\
9022Set the convention for returning small structs."), _("\
9023Show the convention for returning small structs."), _("\
9024Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9025is \"default\"."),
9026 NULL,
9027 NULL, /* FIXME: i18n: */
9028 &setlist, &showlist);
8201327c 9029
29c1c244
WT
9030 /* Add "mpx" prefix for the set commands. */
9031
0743fc83 9032 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9033Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9034 &mpx_set_cmdlist, "set mpx ",
9035 0 /* allow-unknown */, &setlist);
29c1c244
WT
9036
9037 /* Add "mpx" prefix for the show commands. */
9038
0743fc83 9039 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9040Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9041 &mpx_show_cmdlist, "show mpx ",
9042 0 /* allow-unknown */, &showlist);
29c1c244
WT
9043
9044 /* Add "bound" command for the show mpx commands list. */
9045
9046 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9047 "Show the memory bounds for a given array/pointer storage\
9048 in the bound table.",
9049 &mpx_show_cmdlist);
9050
9051 /* Add "bound" command for the set mpx commands list. */
9052
9053 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9054 "Set the memory bounds for a given array/pointer storage\
9055 in the bound table.",
9056 &mpx_set_cmdlist);
9057
05816f70 9058 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9059 i386_svr4_init_abi);
38c968cf 9060
209bd28e 9061 /* Initialize the i386-specific register groups. */
38c968cf 9062 i386_init_reggroups ();
90884b2b 9063
c8d5aac9
L
9064 /* Tell remote stub that we support XML target description. */
9065 register_remote_support_xml ("i386");
c906108c 9066}
This page took 2.377584 seconds and 4 git commands to generate.