Rename struct lzma_stream to avoid clash with system header
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
32d0add0 3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
7ad10968
HZ
53#include <stdint.h>
54
90884b2b 55#include "features/i386/i386.c"
c131fcee 56#include "features/i386/i386-avx.c"
1dbcd68c 57#include "features/i386/i386-mpx.c"
01f9f808 58#include "features/i386/i386-avx512.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
01f9f808
MS
88static const char *i386_zmm_names[] =
89{
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92};
93
94static const char *i386_zmmh_names[] =
95{
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98};
99
100static const char *i386_k_names[] =
101{
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104};
105
c131fcee
L
106static const char *i386_ymm_names[] =
107{
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110};
111
112static const char *i386_ymmh_names[] =
113{
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116};
117
1dbcd68c
WT
118static const char *i386_mpx_names[] =
119{
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121};
122
123/* Register names for MPX pseudo-registers. */
124
125static const char *i386_bnd_names[] =
126{
127 "bnd0", "bnd1", "bnd2", "bnd3"
128};
129
c4fc7f1b 130/* Register names for MMX pseudo-registers. */
28fc6740 131
90884b2b 132static const char *i386_mmx_names[] =
28fc6740
AC
133{
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136};
c40e1eab 137
1ba53b71
L
138/* Register names for byte pseudo-registers. */
139
140static const char *i386_byte_names[] =
141{
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144};
145
146/* Register names for word pseudo-registers. */
147
148static const char *i386_word_names[] =
149{
150 "ax", "cx", "dx", "bx",
9cad29ac 151 "", "bp", "si", "di"
1ba53b71
L
152};
153
01f9f808
MS
154/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158const int num_lower_zmm_regs = 16;
159
1ba53b71 160/* MMX register? */
c40e1eab 161
28fc6740 162static int
5716833c 163i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 164{
1ba53b71
L
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
167
168 if (mm0_regnum < 0)
169 return 0;
170
1ba53b71
L
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173}
174
175/* Byte register? */
176
177int
178i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184}
185
186/* Word register? */
187
188int
189i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190{
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195}
196
197/* Dword register? */
198
199int
200i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201{
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
210}
211
01f9f808
MS
212/* AVX512 register? */
213
214int
215i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216{
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225}
226
227int
228i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229{
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238}
239
240int
241i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242{
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251}
252
9191d390 253static int
c131fcee
L
254i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255{
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264}
265
266/* AVX register? */
267
268int
269i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270{
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279}
280
01f9f808
MS
281static int
282i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283{
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292}
293
294int
295i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305}
306
1dbcd68c
WT
307/* BND register? */
308
309int
310i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311{
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320}
321
5716833c 322/* SSE register? */
23a34459 323
c131fcee
L
324int
325i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 326{
5716833c 327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 329
c131fcee 330 if (num_xmm_regs == 0)
5716833c
MK
331 return 0;
332
c131fcee
L
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
335}
336
01f9f808
MS
337/* XMM_512 register? */
338
339int
340i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341{
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350}
351
5716833c
MK
352static int
353i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 354{
5716833c
MK
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
20a6ec49 357 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
358 return 0;
359
20a6ec49 360 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
361}
362
5716833c 363/* FP register? */
23a34459
AC
364
365int
20a6ec49 366i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 367{
20a6ec49
MD
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
371 return 0;
372
20a6ec49
MD
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
375}
376
377int
20a6ec49 378i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 379{
20a6ec49
MD
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
383 return 0;
384
20a6ec49
MD
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
387}
388
1dbcd68c
WT
389/* BNDr (raw) register? */
390
391static int
392i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393{
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401}
402
403/* BND control register? */
404
405static int
406i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407{
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415}
416
c131fcee
L
417/* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420static const char *
421i386_register_name (struct gdbarch *gdbarch, int regnum)
422{
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
01f9f808
MS
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
c131fcee
L
435 return tdesc_register_name (gdbarch, regnum);
436}
437
30b0e2d8 438/* Return the name of register REGNUM. */
fc633446 439
1ba53b71 440const char *
90884b2b 441i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 442{
1ba53b71 443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
458}
459
c4fc7f1b 460/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
461 number used by GDB. */
462
8201327c 463static int
d3f73121 464i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 465{
20a6ec49
MD
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
c4fc7f1b
MK
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
85540d8c
MK
471 if (reg >= 0 && reg <= 7)
472 {
9872ad24
JB
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
85540d8c
MK
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
20a6ec49 484 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
c131fcee
L
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
20a6ec49 500 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
501 }
502
503 /* This will hopefully provoke a warning. */
d3f73121 504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
505}
506
c4fc7f1b
MK
507/* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
85540d8c 509
8201327c 510static int
d3f73121 511i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 512{
20a6ec49
MD
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
c4fc7f1b
MK
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
acd5c798 522 /* General-purpose registers. */
85540d8c
MK
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
20a6ec49 528 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 529 }
c6f4c129 530 else if (reg >= 21 && reg <= 36)
85540d8c 531 {
c4fc7f1b 532 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 533 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
534 }
535
c6f4c129
JB
536 switch (reg)
537 {
20a6ec49
MD
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
85540d8c 549 /* This will hopefully provoke a warning. */
d3f73121 550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 551}
5716833c 552
fc338970 553\f
917317f4 554
fc338970
MK
555/* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
53904c9e
AC
557static const char att_flavor[] = "att";
558static const char intel_flavor[] = "intel";
40478521 559static const char *const valid_flavors[] =
c5aa993b 560{
c906108c
SS
561 att_flavor,
562 intel_flavor,
563 NULL
564};
53904c9e 565static const char *disassembly_flavor = att_flavor;
acd5c798 566\f
c906108c 567
acd5c798
MK
568/* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
c906108c 573
acd5c798
MK
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
c906108c 576
acd5c798 577 This function is 64-bit safe. */
63c0089f
MK
578
579static const gdb_byte *
67d57894 580i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 581{
63c0089f
MK
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
acd5c798
MK
584 *len = sizeof (break_insn);
585 return break_insn;
c906108c 586}
237fc4c9
PA
587\f
588/* Displaced instruction handling. */
589
1903f0e6
DE
590/* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596static gdb_byte *
597i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598{
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624}
237fc4c9
PA
625
626static int
1903f0e6 627i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 628{
1777feb0 629 /* jmp far (absolute address in operand). */
237fc4c9
PA
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
1777feb0 635 /* jump near, absolute indirect (/4). */
237fc4c9
PA
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
1777feb0 639 /* jump far, absolute indirect (/5). */
237fc4c9
PA
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645}
646
c2170eef
MM
647/* Return non-zero if INSN is a jump, zero otherwise. */
648
649static int
650i386_jmp_p (const gdb_byte *insn)
651{
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661}
662
237fc4c9 663static int
1903f0e6 664i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 665{
1777feb0 666 /* call far, absolute. */
237fc4c9
PA
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
1777feb0 672 /* Call near, absolute indirect (/2). */
237fc4c9
PA
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
1777feb0 676 /* Call far, absolute indirect (/3). */
237fc4c9
PA
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682}
683
684static int
1903f0e6 685i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
686{
687 switch (insn[0])
688 {
1777feb0 689 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 690 case 0xc3: /* ret near */
1777feb0 691 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699}
700
701static int
1903f0e6 702i386_call_p (const gdb_byte *insn)
237fc4c9
PA
703{
704 if (i386_absolute_call_p (insn))
705 return 1;
706
1777feb0 707 /* call near, relative. */
237fc4c9
PA
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712}
713
237fc4c9
PA
714/* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
1903f0e6 716
237fc4c9 717static int
b55078be 718i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 719{
9a7f938f
JK
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732}
733
c2170eef
MM
734/* The gdbarch insn_is_call method. */
735
736static int
737i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738{
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745}
746
747/* The gdbarch insn_is_ret method. */
748
749static int
750i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751{
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758}
759
760/* The gdbarch insn_is_jump method. */
761
762static int
763i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771}
772
b55078be
DE
773/* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776struct displaced_step_closure *
777i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780{
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808}
809
237fc4c9
PA
810/* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
1903f0e6 812
237fc4c9
PA
813void
814i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818{
e17a4113
UW
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
237fc4c9
PA
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
237fc4c9
PA
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
5af949e3 835 "displaced: fixup (%s, %s), "
237fc4c9 836 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
237fc4c9
PA
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
1903f0e6
DE
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
237fc4c9
PA
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
b55078be 868 int insn_len;
237fc4c9
PA
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
1903f0e6
DE
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
237fc4c9
PA
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
5af949e3
UW
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
237fc4c9
PA
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
237fc4c9
PA
942 }
943}
dde08ee1
PA
944
945static void
946append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947{
948 target_write_memory (*to, buf, len);
949 *to += len;
950}
951
952static void
953i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955{
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
1777feb0 980 push_buf[0] = 0x68; /* pushq $... */
144db827 981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
f4a1794a 1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
dde08ee1
PA
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029}
1030
fc338970 1031\f
acd5c798
MK
1032#ifdef I386_REGNO_TO_SYMMETRY
1033#error "The Sequent Symmetry is no longer supported."
1034#endif
c906108c 1035
acd5c798
MK
1036/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
c906108c 1039
acd5c798
MK
1040/* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
a3386186 1042#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1043
1044struct i386_frame_cache
c906108c 1045{
acd5c798
MK
1046 /* Base address. */
1047 CORE_ADDR base;
8fbca658 1048 int base_p;
772562f8 1049 LONGEST sp_offset;
acd5c798
MK
1050 CORE_ADDR pc;
1051
fd13a04a
AC
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1054 CORE_ADDR saved_sp;
e0c62198 1055 int saved_sp_reg;
acd5c798
MK
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060};
1061
1062/* Allocate and initialize a frame cache. */
1063
1064static struct i386_frame_cache *
fd13a04a 1065i386_alloc_frame_cache (void)
acd5c798
MK
1066{
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
8fbca658 1073 cache->base_p = 0;
acd5c798
MK
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
fd13a04a
AC
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
acd5c798 1082 cache->saved_sp = 0;
e0c62198 1083 cache->saved_sp_reg = -1;
acd5c798
MK
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090}
c906108c 1091
acd5c798
MK
1092/* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
c906108c 1094
acd5c798 1095static CORE_ADDR
e17a4113 1096i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1097{
e17a4113 1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1099 gdb_byte op;
acd5c798
MK
1100 long delta = 0;
1101 int data16 = 0;
c906108c 1102
0865b04a 1103 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1104 return pc;
1105
acd5c798 1106 if (op == 0x66)
c906108c 1107 {
c906108c 1108 data16 = 1;
0865b04a
YQ
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1111 }
1112
acd5c798 1113 switch (op)
c906108c
SS
1114 {
1115 case 0xe9:
fc338970 1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1117 if (data16)
1118 {
e17a4113 1119 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1120
fc338970
MK
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
acd5c798 1123 delta += 4;
c906108c
SS
1124 }
1125 else
1126 {
e17a4113 1127 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1128
acd5c798
MK
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
c906108c
SS
1131 }
1132 break;
1133 case 0xeb:
fc338970 1134 /* Relative jump, disp8 (ignore data16). */
e17a4113 1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1136
acd5c798 1137 delta += data16 + 2;
c906108c
SS
1138 break;
1139 }
c906108c 1140
acd5c798
MK
1141 return pc + delta;
1142}
fc338970 1143
acd5c798
MK
1144/* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
c906108c 1149
acd5c798
MK
1150static CORE_ADDR
1151i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
c906108c 1153{
acd5c798
MK
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
63c0089f
MK
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
c906108c 1168
acd5c798
MK
1169 if (current_pc <= pc)
1170 return pc;
1171
0865b04a 1172 if (target_read_code (pc, &op, 1))
3dcabaa8 1173 return pc;
c906108c 1174
acd5c798
MK
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
c906108c 1177
0865b04a 1178 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1179 return pc;
1180
acd5c798
MK
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
c906108c 1183
acd5c798 1184 if (current_pc == pc)
c906108c 1185 {
acd5c798
MK
1186 cache->sp_offset += 4;
1187 return current_pc;
c906108c
SS
1188 }
1189
acd5c798 1190 if (current_pc == pc + 1)
c906108c 1191 {
acd5c798
MK
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200}
1201
1202static CORE_ADDR
1203i386_skip_probe (CORE_ADDR pc)
1204{
1205 /* A function may start with
fc338970 1206
acd5c798
MK
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
fc338970 1210
acd5c798
MK
1211 followed by
1212
1213 pushl %ebp
fc338970 1214
acd5c798 1215 etc. */
63c0089f
MK
1216 gdb_byte buf[8];
1217 gdb_byte op;
fc338970 1218
0865b04a 1219 if (target_read_code (pc, &op, 1))
3dcabaa8 1220 return pc;
acd5c798
MK
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
c906108c 1225
acd5c798
MK
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
c906108c 1228 if (op == 0x68)
acd5c798 1229 delta = 5;
c906108c 1230 else
acd5c798 1231 delta = 2;
c906108c 1232
acd5c798
MK
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1237 pc += delta + sizeof (buf);
c906108c
SS
1238 }
1239
acd5c798
MK
1240 return pc;
1241}
1242
92dd43fa
MK
1243/* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249static CORE_ADDR
1250i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252{
e0c62198
L
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
92dd43fa 1287 };
92dd43fa 1288
0865b04a 1289 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1352 return pc;
1353
e0c62198
L
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
92dd43fa 1356
e0c62198 1357 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1358}
1359
37bdc87e 1360/* Maximum instruction length we need to handle. */
237fc4c9 1361#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1362
1363/* Instruction description. */
1364struct i386_insn
1365{
1366 size_t len;
237fc4c9
PA
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1369};
1370
a3fcb948 1371/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1372
a3fcb948
JG
1373static int
1374i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1375{
63c0089f 1376 gdb_byte op;
37bdc87e 1377
0865b04a 1378 if (target_read_code (pc, &op, 1))
a3fcb948 1379 return 0;
37bdc87e 1380
a3fcb948 1381 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1382 {
a3fcb948
JG
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
37bdc87e 1386
a3fcb948
JG
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1389
0865b04a 1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1391 return 0;
613e8135 1392
a3fcb948
JG
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
37bdc87e 1397 }
a3fcb948
JG
1398 return insn_matched;
1399 }
1400 return 0;
1401}
1402
1403/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407static struct i386_insn *
1408i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409{
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
37bdc87e
MK
1416 }
1417
1418 return NULL;
1419}
1420
a3fcb948
JG
1421/* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424static int
1425i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426{
1427 CORE_ADDR current_pc;
1428 int ix, i;
a3fcb948
JG
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
8bbdd3f4 1435 current_pc = pc;
a3fcb948
JG
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
8bbdd3f4
MK
1439 current_pc -= insn_patterns[i].len;
1440
a3fcb948
JG
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
a3fcb948
JG
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455}
1456
37bdc87e
MK
1457/* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463struct i386_insn i386_frame_setup_skip_insns[] =
1464{
1777feb0 1465 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510};
1511
e11481da
PM
1512
1513/* Check whether PC points to a no-op instruction. */
1514static CORE_ADDR
1515i386_skip_noop (CORE_ADDR pc)
1516{
1517 gdb_byte op;
1518 int check = 1;
1519
0865b04a 1520 if (target_read_code (pc, &op, 1))
3dcabaa8 1521 return pc;
e11481da
PM
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
0865b04a 1530 if (target_read_code (pc, &op, 1))
3dcabaa8 1531 return pc;
e11481da
PM
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
0865b04a 1547 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1548 return pc;
1549
e11481da
PM
1550 if (op == 0xff)
1551 {
1552 pc += 2;
0865b04a 1553 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1554 return pc;
1555
e11481da
PM
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561}
1562
acd5c798
MK
1563/* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1567
1568static CORE_ADDR
e17a4113
UW
1569i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1571 struct i386_frame_cache *cache)
1572{
e17a4113 1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1574 struct i386_insn *insn;
63c0089f 1575 gdb_byte op;
26604a34 1576 int skip = 0;
acd5c798 1577
37bdc87e
MK
1578 if (limit <= pc)
1579 return limit;
acd5c798 1580
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8 1582 return pc;
acd5c798 1583
c906108c 1584 if (op == 0x55) /* pushl %ebp */
c5aa993b 1585 {
acd5c798
MK
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
fd13a04a 1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1589 cache->sp_offset += 4;
37bdc87e 1590 pc++;
acd5c798
MK
1591
1592 /* If that's all, return now. */
37bdc87e
MK
1593 if (limit <= pc)
1594 return limit;
26604a34 1595
b4632131 1596 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
5daa5b4e 1601
26604a34
MK
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1604 while (pc + skip < limit)
26604a34 1605 {
37bdc87e
MK
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
b4632131 1609
37bdc87e 1610 skip += insn->len;
26604a34
MK
1611 }
1612
37bdc87e
MK
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
0865b04a 1617 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1618 return pc + skip;
37bdc87e 1619
30f8135b
YQ
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
acd5c798 1634 switch (op)
c906108c 1635 {
30f8135b 1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1637 case 0x8b:
0865b04a 1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1639 != 0xec)
37bdc87e 1640 return pc;
30f8135b 1641 pc += (skip + 2);
c906108c
SS
1642 break;
1643 case 0x89:
0865b04a 1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1645 != 0xe5)
37bdc87e 1646 return pc;
30f8135b
YQ
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
c906108c
SS
1654 break;
1655 default:
37bdc87e 1656 return pc;
c906108c 1657 }
acd5c798 1658
26604a34
MK
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
acd5c798
MK
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
37bdc87e
MK
1666 if (limit <= pc)
1667 return limit;
acd5c798 1668
fc338970
MK
1669 /* Check for stack adjustment
1670
acd5c798 1671 subl $XXX, %esp
30f8135b
YQ
1672 or
1673 lea -XXX(%esp),%esp
fc338970 1674
fd35795f 1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1676 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1677 if (target_read_code (pc, &op, 1))
3dcabaa8 1678 return pc;
c906108c
SS
1679 if (op == 0x83)
1680 {
fd35795f 1681 /* `subl' with 8-bit immediate. */
0865b04a 1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1683 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1684 return pc;
acd5c798 1685
37bdc87e
MK
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
0865b04a 1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1689 return pc + 3;
c906108c
SS
1690 }
1691 else if (op == 0x81)
1692 {
fd35795f 1693 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1695 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1696 return pc;
acd5c798 1697
fd35795f 1698 /* It is `subl' with a 32-bit immediate. */
0865b04a 1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1700 return pc + 6;
c906108c 1701 }
30f8135b
YQ
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
0865b04a 1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
0865b04a 1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1709 return pc + 4;
1710 }
c906108c
SS
1711 else
1712 {
30f8135b 1713 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1714 return pc;
c906108c
SS
1715 }
1716 }
37bdc87e 1717 else if (op == 0xc8) /* enter */
c906108c 1718 {
0865b04a 1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1720 return pc + 4;
c906108c 1721 }
21d0e8a4 1722
acd5c798 1723 return pc;
21d0e8a4
MK
1724}
1725
acd5c798
MK
1726/* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
6bff26de
MK
1730
1731static CORE_ADDR
acd5c798
MK
1732i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
6bff26de 1734{
99ab4326 1735 CORE_ADDR offset = 0;
63c0089f 1736 gdb_byte op;
99ab4326 1737 int i;
c0d1d883 1738
99ab4326
MK
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
0865b04a 1743 if (target_read_code (pc, &op, 1))
3dcabaa8 1744 return pc;
99ab4326
MK
1745 if (op < 0x50 || op > 0x57)
1746 break;
0d17c81d 1747
99ab4326
MK
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
6bff26de
MK
1752 }
1753
acd5c798 1754 return pc;
22797942
AC
1755}
1756
acd5c798
MK
1757/* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
ed84f6c1 1760
fc338970
MK
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
c906108c 1783
acd5c798 1784static CORE_ADDR
e17a4113
UW
1785i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1787 struct i386_frame_cache *cache)
c906108c 1788{
e11481da 1789 pc = i386_skip_noop (pc);
e17a4113 1790 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
92dd43fa 1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1795 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1796}
1797
fc338970 1798/* Return PC of first real instruction. */
c906108c 1799
3a1e71e3 1800static CORE_ADDR
6093d2eb 1801i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1802{
e17a4113
UW
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
63c0089f 1805 static gdb_byte pic_pat[6] =
acd5c798
MK
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
c5aa993b 1809 };
acd5c798
MK
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
63c0089f 1812 gdb_byte op;
acd5c798 1813 int i;
56bf0743 1814 CORE_ADDR func_addr;
4e879fc2 1815
56bf0743
KB
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1820 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
43f3e411
DE
1825 && (cust != NULL
1826 && COMPUNIT_PRODUCER (cust) != NULL
1827 && strncmp (COMPUNIT_PRODUCER (cust), "clang ",
1828 sizeof ("clang ") - 1) == 0))
56bf0743
KB
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
e0f33b1f 1832 cache.locals = -1;
e17a4113 1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1834 if (cache.locals < 0)
1835 return start_pc;
c5aa993b 1836
acd5c798 1837 /* Found valid frame setup. */
c906108c 1838
fc338970
MK
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
acd5c798
MK
1841 %ebx:
1842
fc338970
MK
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
c906108c
SS
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
c5aa993b 1851
c906108c
SS
1852 for (i = 0; i < 6; i++)
1853 {
0865b04a 1854 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1855 return pc;
1856
c5aa993b 1857 if (pic_pat[i] != op)
c906108c
SS
1858 break;
1859 }
1860 if (i == 6)
1861 {
acd5c798
MK
1862 int delta = 6;
1863
0865b04a 1864 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1865 return pc;
c906108c 1866
c5aa993b 1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1868 {
0865b04a 1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1870
fc338970 1871 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1872 delta += 3;
fc338970 1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1874 delta += 6;
fc338970 1875 else /* Unexpected instruction. */
acd5c798
MK
1876 delta = 0;
1877
0865b04a 1878 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1879 return pc;
c906108c 1880 }
acd5c798 1881
c5aa993b 1882 /* addl y,%ebx */
acd5c798 1883 if (delta > 0 && op == 0x81
0865b04a 1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1885 == 0xc3)
c906108c 1886 {
acd5c798 1887 pc += delta + 6;
c906108c
SS
1888 }
1889 }
c5aa993b 1890
e63bbc88
MK
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
e17a4113
UW
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1896
1897 return pc;
c906108c
SS
1898}
1899
4309257c
PM
1900/* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903CORE_ADDR
1904i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905{
e17a4113 1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1907 gdb_byte op;
1908
0865b04a 1909 if (target_read_code (pc, &op, 1))
3dcabaa8 1910 return pc;
4309257c
PM
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
0865b04a 1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1919 struct bound_minimal_symbol s;
e17a4113 1920 CORE_ADDR call_dest;
4309257c 1921
e17a4113 1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1925 if (s.minsym != NULL
efd66ac6
TT
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933}
1934
acd5c798 1935/* This function is 64-bit safe. */
93924b6b 1936
acd5c798
MK
1937static CORE_ADDR
1938i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1939{
63c0089f 1940 gdb_byte buf[8];
acd5c798 1941
875f8d0e 1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1944}
acd5c798 1945\f
93924b6b 1946
acd5c798 1947/* Normal frames. */
c5aa993b 1948
8fbca658
PA
1949static void
1950i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
a7769679 1952{
e17a4113
UW
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1955 gdb_byte buf[4];
acd5c798
MK
1956 int i;
1957
8fbca658 1958 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
10458914 1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1971 if (cache->base == 0)
620fa63a
PA
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
acd5c798
MK
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1979
acd5c798 1980 if (cache->pc != 0)
e17a4113
UW
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
acd5c798
MK
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
e0c62198 1994 if (cache->saved_sp_reg != -1)
92dd43fa 1995 {
8fbca658
PA
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
92dd43fa
MK
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
7618e12b 2007 else if (cache->pc != 0
0865b04a 2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2009 {
7618e12b
DJ
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
10458914 2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
92dd43fa 2018 }
7618e12b
DJ
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2025 }
2026
8fbca658
PA
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
ca9d61b9
JB
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
8fbca658
PA
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
acd5c798
MK
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
8fbca658 2038 else if (cache->saved_sp == 0)
92dd43fa 2039 cache->saved_sp = cache->base + 8;
a7769679 2040
acd5c798
MK
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
acd5c798 2046
8fbca658
PA
2047 cache->base_p = 1;
2048}
2049
2050static struct i386_frame_cache *
2051i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052{
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
2179/* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183static int
2184i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185{
2186 gdb_byte insn;
43f3e411 2187 struct compunit_symtab *cust;
e0d00bc7 2188
43f3e411
DE
2189 cust = find_pc_compunit_symtab (pc);
2190 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2191 return 0;
06da04c6
MS
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200}
2201
2202static int
2203i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206{
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212}
2213
2214static struct i386_frame_cache *
2215i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216{
8fbca658 2217 volatile struct gdb_exception ex;
06da04c6 2218 struct i386_frame_cache *cache;
0d6c2135 2219 CORE_ADDR sp;
06da04c6
MS
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
8fbca658
PA
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
0d6c2135 2229 cache->pc = get_frame_func (this_frame);
06da04c6 2230
0d6c2135
MK
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
8fbca658 2236 cache->saved_sp = cache->base + 8;
8fbca658 2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2238
8fbca658
PA
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
06da04c6
MS
2243
2244 return cache;
2245}
2246
8fbca658
PA
2247static enum unwind_stop_reason
2248i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250{
0d6c2135
MK
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258}
2259
06da04c6
MS
2260static void
2261i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264{
0d6c2135
MK
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2267
8fbca658 2268 if (!cache->base_p)
5ce0145d
PA
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2272}
2273
0d6c2135
MK
2274static struct value *
2275i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277{
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282}
2283
06da04c6
MS
2284static const struct frame_unwind i386_epilogue_frame_unwind =
2285{
2286 NORMAL_FRAME,
8fbca658 2287 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2288 i386_epilogue_frame_this_id,
0d6c2135 2289 i386_epilogue_frame_prev_register,
06da04c6
MS
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292};
acd5c798
MK
2293\f
2294
a3fcb948
JG
2295/* Stack-based trampolines. */
2296
2297/* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302/* Static chain passed in register. */
2303
2304struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305{
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313};
2314
2315/* Static chain passed on stack (when regparm=3). */
2316
2317struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318{
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326};
2327
2328/* Return whether PC points inside a stack trampoline. */
2329
2330static int
6df81a63 2331i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2332{
2333 gdb_byte insn;
2c02bd72 2334 const char *name;
a3fcb948
JG
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352}
2353
2354static int
2355i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2356 struct frame_info *this_frame,
2357 void **this_cache)
a3fcb948
JG
2358{
2359 if (frame_relative_level (this_frame) == 0)
6df81a63 2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2361 else
2362 return 0;
2363}
2364
2365static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366{
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
0d6c2135 2370 i386_epilogue_frame_prev_register,
a3fcb948
JG
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373};
2374\f
6710bf39
SS
2375/* Generate a bytecode expression to get the value of the saved PC. */
2376
2377static void
2378i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381{
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389}
2390\f
a3fcb948 2391
acd5c798
MK
2392/* Signal trampolines. */
2393
2394static struct i386_frame_cache *
10458914 2395i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2396{
e17a4113
UW
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2400 volatile struct gdb_exception ex;
acd5c798 2401 struct i386_frame_cache *cache;
acd5c798 2402 CORE_ADDR addr;
63c0089f 2403 gdb_byte buf[4];
acd5c798
MK
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
fd13a04a 2408 cache = i386_alloc_frame_cache ();
acd5c798 2409
8fbca658 2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2411 {
8fbca658
PA
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2414
8fbca658
PA
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
a3386186 2419
8fbca658
PA
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
a3386186 2433 }
8fbca658
PA
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
acd5c798
MK
2436
2437 *this_cache = cache;
2438 return cache;
2439}
2440
8fbca658
PA
2441static enum unwind_stop_reason
2442i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444{
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452}
2453
acd5c798 2454static void
10458914 2455i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2456 struct frame_id *this_id)
2457{
2458 struct i386_frame_cache *cache =
10458914 2459 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2460
8fbca658 2461 if (!cache->base_p)
5ce0145d
PA
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
acd5c798
MK
2468}
2469
10458914
DJ
2470static struct value *
2471i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
acd5c798
MK
2473{
2474 /* Make sure we've initialized the cache. */
10458914 2475 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2476
10458914 2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2478}
c0d1d883 2479
10458914
DJ
2480static int
2481i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
acd5c798 2484{
10458914 2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2486
911bc6ee
MK
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
10458914 2490 return 0;
1c3545ae 2491
911bc6ee
MK
2492 if (tdep->sigtramp_p != NULL)
2493 {
10458914
DJ
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
911bc6ee
MK
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
10458914 2500 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2504 return 1;
911bc6ee 2505 }
acd5c798 2506
10458914 2507 return 0;
acd5c798 2508}
10458914
DJ
2509
2510static const struct frame_unwind i386_sigtramp_frame_unwind =
2511{
2512 SIGTRAMP_FRAME,
8fbca658 2513 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518};
acd5c798
MK
2519\f
2520
2521static CORE_ADDR
10458914 2522i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2523{
10458914 2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2525
2526 return cache->base;
2527}
2528
2529static const struct frame_base i386_frame_base =
2530{
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535};
2536
acd5c798 2537static struct frame_id
10458914 2538i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2539{
acd5c798
MK
2540 CORE_ADDR fp;
2541
10458914 2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2543
3e210248 2544 /* See the end of i386_push_dummy_call. */
10458914 2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2546}
e04e5beb
JM
2547
2548/* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551static CORE_ADDR
2552i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553{
2554 return sp & -(CORE_ADDR)16;
2555}
fc338970 2556\f
c906108c 2557
fc338970
MK
2558/* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2560 structure from which we extract the address that we will land at.
28bcfd30 2561 This address is copied into PC. This routine returns non-zero on
436675d3 2562 success. */
c906108c 2563
8201327c 2564static int
60ade65d 2565i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2566{
436675d3 2567 gdb_byte buf[4];
c906108c 2568 CORE_ADDR sp, jb_addr;
20a6ec49 2569 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2572
8201327c
MK
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
c906108c
SS
2576 return 0;
2577
436675d3 2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2579 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2580 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2581 return 0;
2582
e17a4113 2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2585 return 0;
c906108c 2586
e17a4113 2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2588 return 1;
2589}
fc338970 2590\f
c906108c 2591
7ccc1c74
JM
2592/* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597static int
2598i386_16_byte_align_p (struct type *type)
2599{
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618}
2619
a9b8d892
JK
2620/* Implementation for set_gdbarch_push_dummy_code. */
2621
2622static CORE_ADDR
2623i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627{
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634}
2635
3a1e71e3 2636static CORE_ADDR
7d9b040b 2637i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
22f8ba57 2641{
e17a4113 2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2643 gdb_byte buf[4];
acd5c798 2644 int i;
7ccc1c74
JM
2645 int write_pass;
2646 int args_space = 0;
acd5c798 2647
7ccc1c74
JM
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2653 {
7ccc1c74 2654 int args_space_used = 0;
7ccc1c74
JM
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
e17a4113 2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2672
7ccc1c74
JM
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
acd5c798 2677
7ccc1c74
JM
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
acd5c798 2681
7ccc1c74
JM
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
22f8ba57 2685
7ccc1c74
JM
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2692 args_space = align_up (args_space, 16);
7ccc1c74
JM
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
7ccc1c74 2699 sp -= args_space;
284c5a60
MK
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
7ccc1c74 2706 }
22f8ba57
MK
2707 }
2708
acd5c798
MK
2709 /* Store return address. */
2710 sp -= 4;
e17a4113 2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
e17a4113 2715 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
3e210248
AC
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2723 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2724 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
22f8ba57
MK
2731}
2732
1a309862
MK
2733/* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
ef9dff19 2735 size and alignment match an integer type). */
acd5c798
MK
2736#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2738
c5e656c1
MK
2739/* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
1a309862 2741
3a1e71e3 2742static void
c5e656c1 2743i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2744 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2745{
c5e656c1 2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2747 int len = TYPE_LENGTH (type);
63c0089f 2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2749
1e8d0a7b 2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2751 {
5716833c 2752 if (tdep->st0_regnum < 0)
1a309862 2753 {
8a3fe4f8 2754 warning (_("Cannot find floating-point return value."));
1a309862 2755 memset (valbuf, 0, len);
ef9dff19 2756 return;
1a309862
MK
2757 }
2758
c6ba6f0d
MK
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
acd5c798 2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2765 }
2766 else
c5aa993b 2767 {
875f8d0e
UW
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2770
2771 if (len <= low_size)
00f8375e 2772 {
0818c12a 2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2774 memcpy (valbuf, buf, len);
2775 }
d4f3574e
SS
2776 else if (len <= (low_size + high_size))
2777 {
0818c12a 2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2779 memcpy (valbuf, buf, low_size);
0818c12a 2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2781 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2782 }
2783 else
8e65ff28 2784 internal_error (__FILE__, __LINE__,
1777feb0
MS
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
c906108c
SS
2787 }
2788}
2789
c5e656c1
MK
2790/* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
ef9dff19 2792
3a1e71e3 2793static void
c5e656c1 2794i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2795 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2796{
c5e656c1 2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2798 int len = TYPE_LENGTH (type);
2799
1e8d0a7b 2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2801 {
3d7f4f49 2802 ULONGEST fstat;
63c0089f 2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2804
5716833c 2805 if (tdep->st0_regnum < 0)
ef9dff19 2806 {
8a3fe4f8 2807 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2808 return;
2809 }
2810
635b0cc1
MK
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
c6ba6f0d
MK
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
27067745 2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2821
635b0cc1
MK
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
20a6ec49 2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2827 fstat |= (7 << 11);
20a6ec49 2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2829
635b0cc1
MK
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
20a6ec49 2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2834 }
2835 else
2836 {
875f8d0e
UW
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2839
2840 if (len <= low_size)
3d7f4f49 2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2842 else if (len <= (low_size + high_size))
2843 {
3d7f4f49
MK
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2846 len - low_size, valbuf + low_size);
ef9dff19
MK
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
e2e0b3e5 2850 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2851 }
2852}
fc338970 2853\f
ef9dff19 2854
8201327c
MK
2855/* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857static const char default_struct_convention[] = "default";
2858static const char pcc_struct_convention[] = "pcc";
2859static const char reg_struct_convention[] = "reg";
40478521 2860static const char *const valid_conventions[] =
8201327c
MK
2861{
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866};
2867static const char *struct_convention = default_struct_convention;
2868
0e4377e1
JB
2869/* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
c5e656c1 2872
8201327c 2873static int
c5e656c1 2874i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2875{
c5e656c1
MK
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
8201327c 2879
0e4377e1
JB
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
9edde48e
MK
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
c5e656c1
MK
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899}
2900
2901/* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907static enum return_value_convention
6a3a010b 2908i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2911{
2912 enum type_code code = TYPE_CODE (type);
2913
5daa78cc
TJB
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
0e4377e1
JB
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
31db7b6c
MK
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
c5e656c1
MK
2951
2952 /* This special case is for structures consisting of a single
9edde48e
MK
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
c5e656c1
MK
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2962 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2963 readbuf, writebuf);
c5e656c1
MK
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2970
c5e656c1 2971 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2972}
2973\f
2974
27067745
UW
2975struct type *
2976i387_ext_type (struct gdbarch *gdbarch)
2977{
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
90884b2b
L
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
27067745
UW
2985
2986 return tdep->i387_ext_type;
2987}
2988
1dbcd68c
WT
2989/* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993static struct type *
2994i386_bnd_type (struct gdbarch *gdbarch)
2995{
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005#if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011#endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024}
3025
01f9f808
MS
3026/* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029static struct type *
3030i386_zmm_type (struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039#if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050#endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077}
3078
c131fcee
L
3079/* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082static struct type *
3083i386_ymm_type (struct gdbarch *gdbarch)
3084{
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092#if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103#endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
0c5acf93 3125 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130}
3131
794ac428 3132/* Construct vector type for MMX registers. */
90884b2b 3133static struct type *
794ac428
UW
3134i386_mmx_type (struct gdbarch *gdbarch)
3135{
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
df4df182
UW
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
794ac428
UW
3142 /* The type we're building is this: */
3143#if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151#endif
3152
3153 struct type *t;
3154
e9bb382b
UW
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3159 append_composite_type_field (t, "v2_int32",
df4df182 3160 init_vector_type (bt->builtin_int32, 2));
794ac428 3161 append_composite_type_field (t, "v4_int16",
df4df182 3162 init_vector_type (bt->builtin_int16, 4));
794ac428 3163 append_composite_type_field (t, "v8_int8",
df4df182 3164 init_vector_type (bt->builtin_int8, 8));
794ac428 3165
876cecd0 3166 TYPE_VECTOR (t) = 1;
794ac428
UW
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172}
3173
d7a0d72c 3174/* Return the GDB type object for the "standard" data type of data in
1777feb0 3175 register REGNUM. */
d7a0d72c 3176
fff4548b 3177struct type *
90884b2b 3178i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3179{
1dbcd68c
WT
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
1ba53b71
L
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
c131fcee
L
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
01f9f808
MS
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
1ba53b71
L
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
01f9f808
MS
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
1ba53b71
L
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3204}
3205
28fc6740 3206/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3207 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3208
3209static int
c86c27af 3210i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3211{
5716833c
MK
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
28fc6740
AC
3214 ULONGEST fstat;
3215 int tos;
c86c27af 3216
5716833c 3217 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3219 tos = (fstat >> 11) & 0x7;
5716833c
MK
3220 fpreg = (mmxreg + tos) % 8;
3221
20a6ec49 3222 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3223}
3224
3543a589
TT
3225/* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229void
3230i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
28fc6740 3234{
1ba53b71 3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3236 enum register_status status;
3543a589 3237 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3238
5716833c 3239 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3240 {
c86c27af
MK
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
28fc6740 3243 /* Extract (always little endian). */
05d1431c
PA
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3543a589
TT
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3250 }
3251 else
1ba53b71
L
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
1ba53b71 3257
1dbcd68c
WT
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
01f9f808
MS
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
1dbcd68c 3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
1777feb0 3351 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3543a589
TT
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
c131fcee 3359 /* Read upper 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
c131fcee 3367 }
01f9f808
MS
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
c131fcee 3388 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
05d1431c
PA
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
1ba53b71
L
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
05d1431c
PA
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
1ba53b71
L
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3543a589
TT
3421}
3422
3423static struct value *
3424i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427{
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3435
3543a589 3436 return result;
28fc6740
AC
3437}
3438
1ba53b71 3439void
28fc6740 3440i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3441 int regnum, const gdb_byte *buf)
28fc6740 3442{
1ba53b71
L
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
5716833c 3445 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3446 {
c86c27af
MK
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
28fc6740 3449 /* Read ... */
1ba53b71 3450 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3451 /* ... Modify ... (always little endian). */
1ba53b71 3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3453 /* ... Write. */
1ba53b71 3454 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3455 }
3456 else
1ba53b71
L
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
1dbcd68c
WT
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
01f9f808
MS
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
1dbcd68c 3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
01f9f808
MS
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
c131fcee 3554 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
28fc6740 3585}
ff2e87ac
AC
3586\f
3587
ff2e87ac
AC
3588/* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591static int
3592i386_next_regnum (int regnum)
3593{
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
de5b9bb9 3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3612 return next_regnum[regnum];
28fc6740 3613
ff2e87ac
AC
3614 return -1;
3615}
3616
3617/* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
d7a0d72c 3619
3a1e71e3 3620static int
1777feb0
MS
3621i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
d7a0d72c 3623{
de5b9bb9
MK
3624 int len = TYPE_LENGTH (type);
3625
ff2e87ac
AC
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
ff2e87ac 3644
0abe36f5 3645 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3646}
3647
ff2e87ac
AC
3648/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
ac27f131 3650
8dccd430 3651static int
ff2e87ac 3652i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
ac27f131 3655{
20a6ec49 3656 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3657 int len = TYPE_LENGTH (type);
de5b9bb9 3658
20a6ec49 3659 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
ff2e87ac 3662
fd35795f 3663 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3666
de5b9bb9
MK
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
20a6ec49 3670 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3671
8dccd430
PA
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
de5b9bb9
MK
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
42835c2b 3679 to += 4;
de5b9bb9 3680 }
8dccd430
PA
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
ac27f131
MK
3684}
3685
ff2e87ac
AC
3686/* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
ac27f131 3688
3a1e71e3 3689static void
ff2e87ac 3690i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3691 struct type *type, const gdb_byte *from)
ac27f131 3692{
de5b9bb9 3693 int len = TYPE_LENGTH (type);
de5b9bb9 3694
20a6ec49 3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3696 {
d532c08f
MK
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3d261580 3700
fd35795f 3701 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3704
de5b9bb9
MK
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
875f8d0e 3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3709
42835c2b 3710 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
42835c2b 3713 from += 4;
de5b9bb9 3714 }
ac27f131 3715}
ff2e87ac 3716\f
7fdafb5a
MK
3717/* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3720
20187ed5 3721void
473f17b0
MK
3722i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724{
09424cff
AA
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3727 const gdb_byte *regs = gregs;
473f17b0
MK
3728 int i;
3729
1528345d 3730 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738}
3739
7fdafb5a
MK
3740/* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
ecc37a5a 3745static void
7fdafb5a
MK
3746i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749{
09424cff
AA
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
1528345d 3755 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
09424cff
AA
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3775
66a72d25
MK
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
1528345d 3782 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784}
8446b36a 3785
2f305df1
MK
3786/* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
7fdafb5a
MK
3790
3791static void
3792i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795{
09424cff
AA
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
1528345d 3805 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807}
3808
ecc37a5a
AA
3809/* Register set definitions. */
3810
3811const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
8f0435f7 3816const struct regset i386_fpregset =
ecc37a5a
AA
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
490496c3 3821/* Default iterator over core file register note sections. */
8446b36a 3822
490496c3
AA
3823void
3824i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
8446b36a
MK
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
490496c3
AA
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3834}
473f17b0 3835\f
fc338970 3836
fc338970 3837/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3838
3839CORE_ADDR
e17a4113
UW
3840i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
c906108c 3842{
e17a4113
UW
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3848 {
e17a4113
UW
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3851 struct minimal_symbol *indsym =
7cbd4a93 3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3854
c5aa993b 3855 if (symname)
c906108c 3856 {
c5aa993b
JM
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3861 }
3862 }
fc338970 3863 return 0; /* Not a trampoline. */
c906108c 3864}
fc338970
MK
3865\f
3866
10458914
DJ
3867/* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
8201327c 3869
4bd207ef 3870int
10458914 3871i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3872{
10458914 3873 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3874 const char *name;
911bc6ee
MK
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878}
3879\f
3880
fc338970
MK
3881/* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
c906108c
SS
3883
3884static int
a89aa300 3885i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3886{
5e3397bb
MK
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3893
3894 return print_insn_i386 (pc, info);
7a292a7a 3895}
fc338970 3896\f
3ce1502b 3897
8201327c
MK
3898/* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3ce1502b 3902
8201327c 3903/* System V Release 4 (SVR4). */
3ce1502b 3904
10458914
DJ
3905/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
911bc6ee 3907
8201327c 3908static int
10458914 3909i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3910{
10458914 3911 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3912 const char *name;
911bc6ee 3913
05b4bd79 3914 /* The origin of these symbols is currently unknown. */
911bc6ee 3915 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3916 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3917 || strcmp ("sigvechandler", name) == 0));
3918}
d2a7c97a 3919
10458914
DJ
3920/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3922
3a1e71e3 3923static CORE_ADDR
10458914 3924i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3925{
e17a4113
UW
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3928 gdb_byte buf[4];
acd5c798 3929 CORE_ADDR sp;
3ce1502b 3930
10458914 3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3932 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3933
e17a4113 3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3935}
55aa24fb
SDJ
3936
3937\f
3938
3939/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942int
3943i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944{
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949}
3950
5acfdbae
SDJ
3951/* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959static int
3960i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962{
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
d7b30f67
SDJ
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
5acfdbae
SDJ
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
d7b30f67
SDJ
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
5acfdbae
SDJ
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
d7b30f67
SDJ
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
5acfdbae
SDJ
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
d7b30f67 4045 len = s - start - 1;
5acfdbae
SDJ
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
410a0ff2
SDJ
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4062 if (got_minus[i])
410a0ff2 4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4064 }
4065
410a0ff2 4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4067 str.ptr = regname;
4068 str.length = len;
410a0ff2
SDJ
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4071
410a0ff2
SDJ
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4076
410a0ff2
SDJ
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4080
410a0ff2
SDJ
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4085
410a0ff2 4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094}
4095
4096/* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105static int
4106i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108{
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
410a0ff2
SDJ
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4211 if (offset_minus)
410a0ff2 4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4213 }
4214
410a0ff2 4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4216 base_token.ptr = base;
4217 base_token.length = len_base;
410a0ff2
SDJ
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4220
4221 if (offset)
410a0ff2 4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4223
410a0ff2 4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4225 index_token.ptr = index;
4226 index_token.length = len_index;
410a0ff2
SDJ
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4229
4230 if (size)
4231 {
410a0ff2
SDJ
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4237 if (size_minus)
410a0ff2
SDJ
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4240 }
4241
410a0ff2 4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4243
410a0ff2
SDJ
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4248
410a0ff2 4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257}
4258
55aa24fb
SDJ
4259/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262int
4263i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265{
55aa24fb
SDJ
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
570dc176
TT
4273 };
4274 int current_state;
55aa24fb
SDJ
4275
4276 current_state = TRIPLET;
4277
4278 /* The special tokens to be parsed here are:
4279
4280 - `register base + (register index * size) + offset', as represented
4281 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4282
4283 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4284 `*(-8 + 3 - 1 + (void *) $eax)'. */
4285
4286 while (current_state != DONE)
4287 {
55aa24fb
SDJ
4288 switch (current_state)
4289 {
4290 case TRIPLET:
5acfdbae
SDJ
4291 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4292 return 1;
4293 break;
4294
55aa24fb 4295 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4296 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4297 return 1;
4298 break;
55aa24fb
SDJ
4299 }
4300
4301 /* Advancing to the next state. */
4302 ++current_state;
4303 }
4304
4305 return 0;
4306}
4307
8201327c 4308\f
3ce1502b 4309
ac04f72b
TT
4310/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4311 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4312
4313static const char *
4314i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4315{
4316 return "(x86_64|i.86)";
4317}
4318
4319\f
4320
8201327c 4321/* Generic ELF. */
d2a7c97a 4322
8201327c
MK
4323void
4324i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4325{
05c0465e
SDJ
4326 static const char *const stap_integer_prefixes[] = { "$", NULL };
4327 static const char *const stap_register_prefixes[] = { "%", NULL };
4328 static const char *const stap_register_indirection_prefixes[] = { "(",
4329 NULL };
4330 static const char *const stap_register_indirection_suffixes[] = { ")",
4331 NULL };
4332
c4fc7f1b
MK
4333 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4334 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4335
4336 /* Registering SystemTap handlers. */
05c0465e
SDJ
4337 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4338 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4339 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4340 stap_register_indirection_prefixes);
4341 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4342 stap_register_indirection_suffixes);
55aa24fb
SDJ
4343 set_gdbarch_stap_is_single_operand (gdbarch,
4344 i386_stap_is_single_operand);
4345 set_gdbarch_stap_parse_special_token (gdbarch,
4346 i386_stap_parse_special_token);
ac04f72b
TT
4347
4348 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4349}
3ce1502b 4350
8201327c 4351/* System V Release 4 (SVR4). */
3ce1502b 4352
8201327c
MK
4353void
4354i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4355{
4356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4357
8201327c
MK
4358 /* System V Release 4 uses ELF. */
4359 i386_elf_init_abi (info, gdbarch);
3ce1502b 4360
dfe01d39 4361 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4362 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4363
911bc6ee 4364 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4365 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4366 tdep->sc_pc_offset = 36 + 14 * 4;
4367 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4368
8201327c 4369 tdep->jb_pc_offset = 20;
3ce1502b
MK
4370}
4371
8201327c 4372/* DJGPP. */
3ce1502b 4373
3a1e71e3 4374static void
8201327c 4375i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4376{
8201327c 4377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4378
911bc6ee
MK
4379 /* DJGPP doesn't have any special frames for signal handlers. */
4380 tdep->sigtramp_p = NULL;
3ce1502b 4381
8201327c 4382 tdep->jb_pc_offset = 36;
15430fc0
EZ
4383
4384 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4385 if (! tdesc_has_registers (info.target_desc))
4386 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4387
4388 /* Native compiler is GCC, which uses the SVR4 register numbering
4389 even in COFF and STABS. See the comment in i386_gdbarch_init,
4390 before the calls to set_gdbarch_stab_reg_to_regnum and
4391 set_gdbarch_sdb_reg_to_regnum. */
4392 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4393 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4394
4395 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4396
4397 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
3ce1502b 4398}
8201327c 4399\f
2acceee2 4400
38c968cf
AC
4401/* i386 register groups. In addition to the normal groups, add "mmx"
4402 and "sse". */
4403
4404static struct reggroup *i386_sse_reggroup;
4405static struct reggroup *i386_mmx_reggroup;
4406
4407static void
4408i386_init_reggroups (void)
4409{
4410 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4411 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4412}
4413
4414static void
4415i386_add_reggroups (struct gdbarch *gdbarch)
4416{
4417 reggroup_add (gdbarch, i386_sse_reggroup);
4418 reggroup_add (gdbarch, i386_mmx_reggroup);
4419 reggroup_add (gdbarch, general_reggroup);
4420 reggroup_add (gdbarch, float_reggroup);
4421 reggroup_add (gdbarch, all_reggroup);
4422 reggroup_add (gdbarch, save_reggroup);
4423 reggroup_add (gdbarch, restore_reggroup);
4424 reggroup_add (gdbarch, vector_reggroup);
4425 reggroup_add (gdbarch, system_reggroup);
4426}
4427
4428int
4429i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4430 struct reggroup *group)
4431{
c131fcee
L
4432 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4433 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4434 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4435 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4436 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4437 avx512_p, avx_p, sse_p;
acd5c798 4438
1ba53b71
L
4439 /* Don't include pseudo registers, except for MMX, in any register
4440 groups. */
c131fcee 4441 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4442 return 0;
4443
c131fcee 4444 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4445 return 0;
4446
c131fcee 4447 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4448 return 0;
4449
4450 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4451 if (group == i386_mmx_reggroup)
4452 return mmx_regnum_p;
1ba53b71 4453
c131fcee 4454 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4455 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4456 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4457 if (group == i386_sse_reggroup)
01f9f808 4458 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4459
4460 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4461 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4462 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4463
df7e5265
GB
4464 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4465 == X86_XSTATE_AVX512_MASK);
4466 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4467 == X86_XSTATE_AVX_MASK) && !avx512_p;
4468 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4469 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4470
38c968cf 4471 if (group == vector_reggroup)
c131fcee 4472 return (mmx_regnum_p
01f9f808
MS
4473 || (zmm_regnum_p && avx512_p)
4474 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4475 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4476 || mxcsr_regnum_p);
1ba53b71
L
4477
4478 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4479 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4480 if (group == float_reggroup)
4481 return fp_regnum_p;
1ba53b71 4482
c131fcee
L
4483 /* For "info reg all", don't include upper YMM registers nor XMM
4484 registers when AVX is supported. */
4485 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4486 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4487 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4488 if (group == all_reggroup
01f9f808
MS
4489 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4490 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4491 || ymmh_regnum_p
4492 || ymmh_avx512_regnum_p
4493 || zmmh_regnum_p))
c131fcee
L
4494 return 0;
4495
1dbcd68c
WT
4496 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4497 if (group == all_reggroup
df7e5265 4498 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4499 return bnd_regnum_p;
4500
4501 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4502 if (group == all_reggroup
df7e5265 4503 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4504 return 0;
4505
4506 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4507 if (group == all_reggroup
df7e5265 4508 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4509 return mpx_ctrl_regnum_p;
4510
38c968cf 4511 if (group == general_reggroup)
1ba53b71
L
4512 return (!fp_regnum_p
4513 && !mmx_regnum_p
c131fcee
L
4514 && !mxcsr_regnum_p
4515 && !xmm_regnum_p
01f9f808 4516 && !xmm_avx512_regnum_p
c131fcee 4517 && !ymm_regnum_p
1dbcd68c 4518 && !ymmh_regnum_p
01f9f808
MS
4519 && !ymm_avx512_regnum_p
4520 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4521 && !bndr_regnum_p
4522 && !bnd_regnum_p
01f9f808
MS
4523 && !mpx_ctrl_regnum_p
4524 && !zmm_regnum_p
4525 && !zmmh_regnum_p);
acd5c798 4526
38c968cf
AC
4527 return default_register_reggroup_p (gdbarch, regnum, group);
4528}
38c968cf 4529\f
acd5c798 4530
f837910f
MK
4531/* Get the ARGIth function argument for the current function. */
4532
42c466d7 4533static CORE_ADDR
143985b7
AF
4534i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4535 struct type *type)
4536{
e17a4113
UW
4537 struct gdbarch *gdbarch = get_frame_arch (frame);
4538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4539 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4540 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4541}
4542
7ad10968
HZ
4543#define PREFIX_REPZ 0x01
4544#define PREFIX_REPNZ 0x02
4545#define PREFIX_LOCK 0x04
4546#define PREFIX_DATA 0x08
4547#define PREFIX_ADDR 0x10
473f17b0 4548
7ad10968
HZ
4549/* operand size */
4550enum
4551{
4552 OT_BYTE = 0,
4553 OT_WORD,
4554 OT_LONG,
cf648174 4555 OT_QUAD,
a3c4230a 4556 OT_DQUAD,
7ad10968 4557};
473f17b0 4558
7ad10968
HZ
4559/* i386 arith/logic operations */
4560enum
4561{
4562 OP_ADDL,
4563 OP_ORL,
4564 OP_ADCL,
4565 OP_SBBL,
4566 OP_ANDL,
4567 OP_SUBL,
4568 OP_XORL,
4569 OP_CMPL,
4570};
5716833c 4571
7ad10968
HZ
4572struct i386_record_s
4573{
cf648174 4574 struct gdbarch *gdbarch;
7ad10968 4575 struct regcache *regcache;
df61f520 4576 CORE_ADDR orig_addr;
7ad10968
HZ
4577 CORE_ADDR addr;
4578 int aflag;
4579 int dflag;
4580 int override;
4581 uint8_t modrm;
4582 uint8_t mod, reg, rm;
4583 int ot;
cf648174
HZ
4584 uint8_t rex_x;
4585 uint8_t rex_b;
4586 int rip_offset;
4587 int popl_esp_hack;
4588 const int *regmap;
7ad10968 4589};
5716833c 4590
99c1624c
PA
4591/* Parse the "modrm" part of the memory address irp->addr points at.
4592 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4593
7ad10968
HZ
4594static int
4595i386_record_modrm (struct i386_record_s *irp)
4596{
cf648174 4597 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4598
4ffa4fc7
PA
4599 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4600 return -1;
4601
7ad10968
HZ
4602 irp->addr++;
4603 irp->mod = (irp->modrm >> 6) & 3;
4604 irp->reg = (irp->modrm >> 3) & 7;
4605 irp->rm = irp->modrm & 7;
5716833c 4606
7ad10968
HZ
4607 return 0;
4608}
d2a7c97a 4609
99c1624c
PA
4610/* Extract the memory address that the current instruction writes to,
4611 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4612
7ad10968 4613static int
cf648174 4614i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4615{
cf648174 4616 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4618 gdb_byte buf[4];
4619 ULONGEST offset64;
21d0e8a4 4620
7ad10968 4621 *addr = 0;
1e87984a 4622 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4623 {
1e87984a 4624 /* 32/64 bits */
7ad10968
HZ
4625 int havesib = 0;
4626 uint8_t scale = 0;
648d0c8b 4627 uint8_t byte;
7ad10968
HZ
4628 uint8_t index = 0;
4629 uint8_t base = irp->rm;
896fb97d 4630
7ad10968
HZ
4631 if (base == 4)
4632 {
4633 havesib = 1;
4ffa4fc7
PA
4634 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4635 return -1;
7ad10968 4636 irp->addr++;
648d0c8b
MS
4637 scale = (byte >> 6) & 3;
4638 index = ((byte >> 3) & 7) | irp->rex_x;
4639 base = (byte & 7);
7ad10968 4640 }
cf648174 4641 base |= irp->rex_b;
21d0e8a4 4642
7ad10968
HZ
4643 switch (irp->mod)
4644 {
4645 case 0:
4646 if ((base & 7) == 5)
4647 {
4648 base = 0xff;
4ffa4fc7
PA
4649 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4650 return -1;
7ad10968 4651 irp->addr += 4;
60a1502a 4652 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4653 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4654 *addr += irp->addr + irp->rip_offset;
7ad10968 4655 }
7ad10968
HZ
4656 break;
4657 case 1:
4ffa4fc7
PA
4658 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4659 return -1;
7ad10968 4660 irp->addr++;
60a1502a 4661 *addr = (int8_t) buf[0];
7ad10968
HZ
4662 break;
4663 case 2:
4ffa4fc7
PA
4664 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4665 return -1;
60a1502a 4666 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4667 irp->addr += 4;
4668 break;
4669 }
356a6b3e 4670
60a1502a 4671 offset64 = 0;
7ad10968 4672 if (base != 0xff)
cf648174
HZ
4673 {
4674 if (base == 4 && irp->popl_esp_hack)
4675 *addr += irp->popl_esp_hack;
4676 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4677 &offset64);
7ad10968 4678 }
cf648174
HZ
4679 if (irp->aflag == 2)
4680 {
60a1502a 4681 *addr += offset64;
cf648174
HZ
4682 }
4683 else
60a1502a 4684 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4685
7ad10968
HZ
4686 if (havesib && (index != 4 || scale != 0))
4687 {
cf648174 4688 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4689 &offset64);
cf648174 4690 if (irp->aflag == 2)
60a1502a 4691 *addr += offset64 << scale;
cf648174 4692 else
60a1502a 4693 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4694 }
e85596e0
L
4695
4696 if (!irp->aflag)
4697 {
4698 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4699 address from 32-bit to 64-bit. */
4700 *addr = (uint32_t) *addr;
4701 }
7ad10968
HZ
4702 }
4703 else
4704 {
4705 /* 16 bits */
4706 switch (irp->mod)
4707 {
4708 case 0:
4709 if (irp->rm == 6)
4710 {
4ffa4fc7
PA
4711 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4712 return -1;
7ad10968 4713 irp->addr += 2;
60a1502a 4714 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4715 irp->rm = 0;
4716 goto no_rm;
4717 }
7ad10968
HZ
4718 break;
4719 case 1:
4ffa4fc7
PA
4720 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4721 return -1;
7ad10968 4722 irp->addr++;
60a1502a 4723 *addr = (int8_t) buf[0];
7ad10968
HZ
4724 break;
4725 case 2:
4ffa4fc7
PA
4726 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4727 return -1;
7ad10968 4728 irp->addr += 2;
60a1502a 4729 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4730 break;
4731 }
c4fc7f1b 4732
7ad10968
HZ
4733 switch (irp->rm)
4734 {
4735 case 0:
cf648174
HZ
4736 regcache_raw_read_unsigned (irp->regcache,
4737 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4738 &offset64);
4739 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4740 regcache_raw_read_unsigned (irp->regcache,
4741 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4742 &offset64);
4743 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4744 break;
4745 case 1:
cf648174
HZ
4746 regcache_raw_read_unsigned (irp->regcache,
4747 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4748 &offset64);
4749 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4750 regcache_raw_read_unsigned (irp->regcache,
4751 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4752 &offset64);
4753 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4754 break;
4755 case 2:
cf648174
HZ
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4760 regcache_raw_read_unsigned (irp->regcache,
4761 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4762 &offset64);
4763 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4764 break;
4765 case 3:
cf648174
HZ
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4770 regcache_raw_read_unsigned (irp->regcache,
4771 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4772 &offset64);
4773 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4774 break;
4775 case 4:
cf648174
HZ
4776 regcache_raw_read_unsigned (irp->regcache,
4777 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4778 &offset64);
4779 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4780 break;
4781 case 5:
cf648174
HZ
4782 regcache_raw_read_unsigned (irp->regcache,
4783 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4784 &offset64);
4785 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4786 break;
4787 case 6:
cf648174
HZ
4788 regcache_raw_read_unsigned (irp->regcache,
4789 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4790 &offset64);
4791 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4792 break;
4793 case 7:
cf648174
HZ
4794 regcache_raw_read_unsigned (irp->regcache,
4795 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4796 &offset64);
4797 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4798 break;
4799 }
4800 *addr &= 0xffff;
4801 }
c4fc7f1b 4802
01fe1b41 4803 no_rm:
7ad10968
HZ
4804 return 0;
4805}
c4fc7f1b 4806
99c1624c
PA
4807/* Record the address and contents of the memory that will be changed
4808 by the current instruction. Return -1 if something goes wrong, 0
4809 otherwise. */
356a6b3e 4810
7ad10968
HZ
4811static int
4812i386_record_lea_modrm (struct i386_record_s *irp)
4813{
cf648174
HZ
4814 struct gdbarch *gdbarch = irp->gdbarch;
4815 uint64_t addr;
356a6b3e 4816
d7877f7e 4817 if (irp->override >= 0)
7ad10968 4818 {
25ea693b 4819 if (record_full_memory_query)
bb08c432
HZ
4820 {
4821 int q;
4822
4823 target_terminal_ours ();
4824 q = yquery (_("\
4825Process record ignores the memory change of instruction at address %s\n\
4826because it can't get the value of the segment register.\n\
4827Do you want to stop the program?"),
4828 paddress (gdbarch, irp->orig_addr));
4829 target_terminal_inferior ();
4830 if (q)
4831 return -1;
4832 }
4833
7ad10968
HZ
4834 return 0;
4835 }
61113f8b 4836
7ad10968
HZ
4837 if (i386_record_lea_modrm_addr (irp, &addr))
4838 return -1;
96297dab 4839
25ea693b 4840 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4841 return -1;
a62cc96e 4842
7ad10968
HZ
4843 return 0;
4844}
b6197528 4845
99c1624c
PA
4846/* Record the effects of a push operation. Return -1 if something
4847 goes wrong, 0 otherwise. */
cf648174
HZ
4848
4849static int
4850i386_record_push (struct i386_record_s *irp, int size)
4851{
648d0c8b 4852 ULONGEST addr;
cf648174 4853
25ea693b
MM
4854 if (record_full_arch_list_add_reg (irp->regcache,
4855 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4856 return -1;
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4859 &addr);
25ea693b 4860 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4861 return -1;
4862
4863 return 0;
4864}
4865
0289bdd7
MS
4866
4867/* Defines contents to record. */
4868#define I386_SAVE_FPU_REGS 0xfffd
4869#define I386_SAVE_FPU_ENV 0xfffe
4870#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4871
99c1624c
PA
4872/* Record the values of the floating point registers which will be
4873 changed by the current instruction. Returns -1 if something is
4874 wrong, 0 otherwise. */
0289bdd7
MS
4875
4876static int i386_record_floats (struct gdbarch *gdbarch,
4877 struct i386_record_s *ir,
4878 uint32_t iregnum)
4879{
4880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4881 int i;
4882
4883 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4884 happen. Currently we store st0-st7 registers, but we need not store all
4885 registers all the time, in future we use ftag register and record only
4886 those who are not marked as an empty. */
4887
4888 if (I386_SAVE_FPU_REGS == iregnum)
4889 {
4890 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4891 {
25ea693b 4892 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4893 return -1;
4894 }
4895 }
4896 else if (I386_SAVE_FPU_ENV == iregnum)
4897 {
4898 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4899 {
25ea693b 4900 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4901 return -1;
4902 }
4903 }
4904 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4905 {
4906 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4907 {
25ea693b 4908 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4909 return -1;
4910 }
4911 }
4912 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4913 (iregnum <= I387_FOP_REGNUM (tdep)))
4914 {
25ea693b 4915 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4916 return -1;
4917 }
4918 else
4919 {
4920 /* Parameter error. */
4921 return -1;
4922 }
4923 if(I386_SAVE_FPU_ENV != iregnum)
4924 {
4925 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4926 {
25ea693b 4927 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4928 return -1;
4929 }
4930 }
4931 return 0;
4932}
4933
99c1624c
PA
4934/* Parse the current instruction, and record the values of the
4935 registers and memory that will be changed by the current
4936 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4937
25ea693b
MM
4938#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4939 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4940
a6b808b4 4941int
7ad10968 4942i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4943 CORE_ADDR input_addr)
7ad10968 4944{
60a1502a 4945 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4946 int prefixes = 0;
580879fc 4947 int regnum = 0;
425b824a 4948 uint32_t opcode;
f4644a3f 4949 uint8_t opcode8;
648d0c8b 4950 ULONGEST addr;
60a1502a 4951 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4952 struct i386_record_s ir;
0289bdd7 4953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4954 uint8_t rex_w = -1;
4955 uint8_t rex_r = 0;
7ad10968 4956
8408d274 4957 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4958 ir.regcache = regcache;
648d0c8b
MS
4959 ir.addr = input_addr;
4960 ir.orig_addr = input_addr;
7ad10968
HZ
4961 ir.aflag = 1;
4962 ir.dflag = 1;
cf648174
HZ
4963 ir.override = -1;
4964 ir.popl_esp_hack = 0;
a3c4230a 4965 ir.regmap = tdep->record_regmap;
cf648174 4966 ir.gdbarch = gdbarch;
7ad10968
HZ
4967
4968 if (record_debug > 1)
4969 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4970 "addr = %s\n",
4971 paddress (gdbarch, ir.addr));
7ad10968
HZ
4972
4973 /* prefixes */
4974 while (1)
4975 {
4ffa4fc7
PA
4976 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4977 return -1;
7ad10968 4978 ir.addr++;
425b824a 4979 switch (opcode8) /* Instruction prefixes */
7ad10968 4980 {
01fe1b41 4981 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4982 prefixes |= PREFIX_REPZ;
4983 break;
01fe1b41 4984 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4985 prefixes |= PREFIX_REPNZ;
4986 break;
01fe1b41 4987 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4988 prefixes |= PREFIX_LOCK;
4989 break;
01fe1b41 4990 case CS_PREFIX_OPCODE:
cf648174 4991 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4992 break;
01fe1b41 4993 case SS_PREFIX_OPCODE:
cf648174 4994 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4995 break;
01fe1b41 4996 case DS_PREFIX_OPCODE:
cf648174 4997 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4998 break;
01fe1b41 4999 case ES_PREFIX_OPCODE:
cf648174 5000 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5001 break;
01fe1b41 5002 case FS_PREFIX_OPCODE:
cf648174 5003 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5004 break;
01fe1b41 5005 case GS_PREFIX_OPCODE:
cf648174 5006 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5007 break;
01fe1b41 5008 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5009 prefixes |= PREFIX_DATA;
5010 break;
01fe1b41 5011 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5012 prefixes |= PREFIX_ADDR;
5013 break;
d691bec7
MS
5014 case 0x40: /* i386 inc %eax */
5015 case 0x41: /* i386 inc %ecx */
5016 case 0x42: /* i386 inc %edx */
5017 case 0x43: /* i386 inc %ebx */
5018 case 0x44: /* i386 inc %esp */
5019 case 0x45: /* i386 inc %ebp */
5020 case 0x46: /* i386 inc %esi */
5021 case 0x47: /* i386 inc %edi */
5022 case 0x48: /* i386 dec %eax */
5023 case 0x49: /* i386 dec %ecx */
5024 case 0x4a: /* i386 dec %edx */
5025 case 0x4b: /* i386 dec %ebx */
5026 case 0x4c: /* i386 dec %esp */
5027 case 0x4d: /* i386 dec %ebp */
5028 case 0x4e: /* i386 dec %esi */
5029 case 0x4f: /* i386 dec %edi */
5030 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5031 {
5032 /* REX */
425b824a
MS
5033 rex_w = (opcode8 >> 3) & 1;
5034 rex_r = (opcode8 & 0x4) << 1;
5035 ir.rex_x = (opcode8 & 0x2) << 2;
5036 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5037 }
d691bec7
MS
5038 else /* 32 bit target */
5039 goto out_prefixes;
cf648174 5040 break;
7ad10968
HZ
5041 default:
5042 goto out_prefixes;
5043 break;
5044 }
5045 }
01fe1b41 5046 out_prefixes:
cf648174
HZ
5047 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5048 {
5049 ir.dflag = 2;
5050 }
5051 else
5052 {
5053 if (prefixes & PREFIX_DATA)
5054 ir.dflag ^= 1;
5055 }
7ad10968
HZ
5056 if (prefixes & PREFIX_ADDR)
5057 ir.aflag ^= 1;
cf648174
HZ
5058 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5059 ir.aflag = 2;
7ad10968 5060
1777feb0 5061 /* Now check op code. */
425b824a 5062 opcode = (uint32_t) opcode8;
01fe1b41 5063 reswitch:
7ad10968
HZ
5064 switch (opcode)
5065 {
5066 case 0x0f:
4ffa4fc7
PA
5067 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5068 return -1;
7ad10968 5069 ir.addr++;
a3c4230a 5070 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5071 goto reswitch;
5072 break;
93924b6b 5073
a38bba38 5074 case 0x00: /* arith & logic */
7ad10968
HZ
5075 case 0x01:
5076 case 0x02:
5077 case 0x03:
5078 case 0x04:
5079 case 0x05:
5080 case 0x08:
5081 case 0x09:
5082 case 0x0a:
5083 case 0x0b:
5084 case 0x0c:
5085 case 0x0d:
5086 case 0x10:
5087 case 0x11:
5088 case 0x12:
5089 case 0x13:
5090 case 0x14:
5091 case 0x15:
5092 case 0x18:
5093 case 0x19:
5094 case 0x1a:
5095 case 0x1b:
5096 case 0x1c:
5097 case 0x1d:
5098 case 0x20:
5099 case 0x21:
5100 case 0x22:
5101 case 0x23:
5102 case 0x24:
5103 case 0x25:
5104 case 0x28:
5105 case 0x29:
5106 case 0x2a:
5107 case 0x2b:
5108 case 0x2c:
5109 case 0x2d:
5110 case 0x30:
5111 case 0x31:
5112 case 0x32:
5113 case 0x33:
5114 case 0x34:
5115 case 0x35:
5116 case 0x38:
5117 case 0x39:
5118 case 0x3a:
5119 case 0x3b:
5120 case 0x3c:
5121 case 0x3d:
5122 if (((opcode >> 3) & 7) != OP_CMPL)
5123 {
5124 if ((opcode & 1) == 0)
5125 ir.ot = OT_BYTE;
5126 else
5127 ir.ot = ir.dflag + OT_WORD;
93924b6b 5128
7ad10968
HZ
5129 switch ((opcode >> 1) & 3)
5130 {
a38bba38 5131 case 0: /* OP Ev, Gv */
7ad10968
HZ
5132 if (i386_record_modrm (&ir))
5133 return -1;
5134 if (ir.mod != 3)
5135 {
5136 if (i386_record_lea_modrm (&ir))
5137 return -1;
5138 }
5139 else
5140 {
cf648174
HZ
5141 ir.rm |= ir.rex_b;
5142 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5143 ir.rm &= 0x3;
25ea693b 5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5145 }
5146 break;
a38bba38 5147 case 1: /* OP Gv, Ev */
7ad10968
HZ
5148 if (i386_record_modrm (&ir))
5149 return -1;
cf648174
HZ
5150 ir.reg |= rex_r;
5151 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5152 ir.reg &= 0x3;
25ea693b 5153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5154 break;
a38bba38 5155 case 2: /* OP A, Iv */
25ea693b 5156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5157 break;
5158 }
5159 }
25ea693b 5160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5161 break;
42fdc8df 5162
a38bba38 5163 case 0x80: /* GRP1 */
7ad10968
HZ
5164 case 0x81:
5165 case 0x82:
5166 case 0x83:
5167 if (i386_record_modrm (&ir))
5168 return -1;
8201327c 5169
7ad10968
HZ
5170 if (ir.reg != OP_CMPL)
5171 {
5172 if ((opcode & 1) == 0)
5173 ir.ot = OT_BYTE;
5174 else
5175 ir.ot = ir.dflag + OT_WORD;
28fc6740 5176
7ad10968
HZ
5177 if (ir.mod != 3)
5178 {
cf648174
HZ
5179 if (opcode == 0x83)
5180 ir.rip_offset = 1;
5181 else
5182 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5183 if (i386_record_lea_modrm (&ir))
5184 return -1;
5185 }
5186 else
25ea693b 5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5188 }
25ea693b 5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5190 break;
5e3397bb 5191
a38bba38 5192 case 0x40: /* inc */
7ad10968
HZ
5193 case 0x41:
5194 case 0x42:
5195 case 0x43:
5196 case 0x44:
5197 case 0x45:
5198 case 0x46:
5199 case 0x47:
a38bba38
MS
5200
5201 case 0x48: /* dec */
7ad10968
HZ
5202 case 0x49:
5203 case 0x4a:
5204 case 0x4b:
5205 case 0x4c:
5206 case 0x4d:
5207 case 0x4e:
5208 case 0x4f:
a38bba38 5209
25ea693b
MM
5210 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5212 break;
acd5c798 5213
a38bba38 5214 case 0xf6: /* GRP3 */
7ad10968
HZ
5215 case 0xf7:
5216 if ((opcode & 1) == 0)
5217 ir.ot = OT_BYTE;
5218 else
5219 ir.ot = ir.dflag + OT_WORD;
5220 if (i386_record_modrm (&ir))
5221 return -1;
acd5c798 5222
cf648174
HZ
5223 if (ir.mod != 3 && ir.reg == 0)
5224 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5225
7ad10968
HZ
5226 switch (ir.reg)
5227 {
a38bba38 5228 case 0: /* test */
25ea693b 5229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5230 break;
a38bba38
MS
5231 case 2: /* not */
5232 case 3: /* neg */
7ad10968
HZ
5233 if (ir.mod != 3)
5234 {
5235 if (i386_record_lea_modrm (&ir))
5236 return -1;
5237 }
5238 else
5239 {
cf648174
HZ
5240 ir.rm |= ir.rex_b;
5241 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5242 ir.rm &= 0x3;
25ea693b 5243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5244 }
a38bba38 5245 if (ir.reg == 3) /* neg */
25ea693b 5246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5247 break;
a38bba38
MS
5248 case 4: /* mul */
5249 case 5: /* imul */
5250 case 6: /* div */
5251 case 7: /* idiv */
25ea693b 5252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5253 if (ir.ot != OT_BYTE)
25ea693b
MM
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5256 break;
5257 default:
5258 ir.addr -= 2;
5259 opcode = opcode << 8 | ir.modrm;
5260 goto no_support;
5261 break;
5262 }
5263 break;
5264
a38bba38
MS
5265 case 0xfe: /* GRP4 */
5266 case 0xff: /* GRP5 */
7ad10968
HZ
5267 if (i386_record_modrm (&ir))
5268 return -1;
5269 if (ir.reg >= 2 && opcode == 0xfe)
5270 {
5271 ir.addr -= 2;
5272 opcode = opcode << 8 | ir.modrm;
5273 goto no_support;
5274 }
7ad10968
HZ
5275 switch (ir.reg)
5276 {
a38bba38
MS
5277 case 0: /* inc */
5278 case 1: /* dec */
cf648174
HZ
5279 if ((opcode & 1) == 0)
5280 ir.ot = OT_BYTE;
5281 else
5282 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5283 if (ir.mod != 3)
5284 {
5285 if (i386_record_lea_modrm (&ir))
5286 return -1;
5287 }
5288 else
5289 {
cf648174
HZ
5290 ir.rm |= ir.rex_b;
5291 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5292 ir.rm &= 0x3;
25ea693b 5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5294 }
25ea693b 5295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5296 break;
a38bba38 5297 case 2: /* call */
cf648174
HZ
5298 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5299 ir.dflag = 2;
5300 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5301 return -1;
25ea693b 5302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5303 break;
a38bba38 5304 case 3: /* lcall */
25ea693b 5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5306 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5307 return -1;
25ea693b 5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5309 break;
a38bba38
MS
5310 case 4: /* jmp */
5311 case 5: /* ljmp */
25ea693b 5312 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5313 break;
a38bba38 5314 case 6: /* push */
cf648174
HZ
5315 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5316 ir.dflag = 2;
5317 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5318 return -1;
7ad10968
HZ
5319 break;
5320 default:
5321 ir.addr -= 2;
5322 opcode = opcode << 8 | ir.modrm;
5323 goto no_support;
5324 break;
5325 }
5326 break;
5327
a38bba38 5328 case 0x84: /* test */
7ad10968
HZ
5329 case 0x85:
5330 case 0xa8:
5331 case 0xa9:
25ea693b 5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5333 break;
5334
a38bba38 5335 case 0x98: /* CWDE/CBW */
25ea693b 5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5337 break;
5338
a38bba38 5339 case 0x99: /* CDQ/CWD */
25ea693b
MM
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5342 break;
5343
a38bba38 5344 case 0x0faf: /* imul */
7ad10968
HZ
5345 case 0x69:
5346 case 0x6b:
5347 ir.ot = ir.dflag + OT_WORD;
5348 if (i386_record_modrm (&ir))
5349 return -1;
cf648174
HZ
5350 if (opcode == 0x69)
5351 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5352 else if (opcode == 0x6b)
5353 ir.rip_offset = 1;
5354 ir.reg |= rex_r;
5355 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5356 ir.reg &= 0x3;
25ea693b
MM
5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5359 break;
5360
a38bba38 5361 case 0x0fc0: /* xadd */
7ad10968
HZ
5362 case 0x0fc1:
5363 if ((opcode & 1) == 0)
5364 ir.ot = OT_BYTE;
5365 else
5366 ir.ot = ir.dflag + OT_WORD;
5367 if (i386_record_modrm (&ir))
5368 return -1;
cf648174 5369 ir.reg |= rex_r;
7ad10968
HZ
5370 if (ir.mod == 3)
5371 {
cf648174 5372 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5373 ir.reg &= 0x3;
25ea693b 5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5375 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5376 ir.rm &= 0x3;
25ea693b 5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5378 }
5379 else
5380 {
5381 if (i386_record_lea_modrm (&ir))
5382 return -1;
cf648174 5383 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5384 ir.reg &= 0x3;
25ea693b 5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5386 }
25ea693b 5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5388 break;
5389
a38bba38 5390 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5391 case 0x0fb1:
5392 if ((opcode & 1) == 0)
5393 ir.ot = OT_BYTE;
5394 else
5395 ir.ot = ir.dflag + OT_WORD;
5396 if (i386_record_modrm (&ir))
5397 return -1;
5398 if (ir.mod == 3)
5399 {
cf648174 5400 ir.reg |= rex_r;
25ea693b 5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5402 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5403 ir.reg &= 0x3;
25ea693b 5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5405 }
5406 else
5407 {
25ea693b 5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5409 if (i386_record_lea_modrm (&ir))
5410 return -1;
5411 }
25ea693b 5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5413 break;
5414
a38bba38 5415 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5416 if (i386_record_modrm (&ir))
5417 return -1;
5418 if (ir.mod == 3)
5419 {
5420 ir.addr -= 2;
5421 opcode = opcode << 8 | ir.modrm;
5422 goto no_support;
5423 }
25ea693b
MM
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5426 if (i386_record_lea_modrm (&ir))
5427 return -1;
25ea693b 5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5429 break;
5430
a38bba38 5431 case 0x50: /* push */
7ad10968
HZ
5432 case 0x51:
5433 case 0x52:
5434 case 0x53:
5435 case 0x54:
5436 case 0x55:
5437 case 0x56:
5438 case 0x57:
5439 case 0x68:
5440 case 0x6a:
cf648174
HZ
5441 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5442 ir.dflag = 2;
5443 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5444 return -1;
5445 break;
5446
a38bba38
MS
5447 case 0x06: /* push es */
5448 case 0x0e: /* push cs */
5449 case 0x16: /* push ss */
5450 case 0x1e: /* push ds */
cf648174
HZ
5451 if (ir.regmap[X86_RECORD_R8_REGNUM])
5452 {
5453 ir.addr -= 1;
5454 goto no_support;
5455 }
5456 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5457 return -1;
5458 break;
5459
a38bba38
MS
5460 case 0x0fa0: /* push fs */
5461 case 0x0fa8: /* push gs */
cf648174
HZ
5462 if (ir.regmap[X86_RECORD_R8_REGNUM])
5463 {
5464 ir.addr -= 2;
5465 goto no_support;
5466 }
5467 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5468 return -1;
cf648174
HZ
5469 break;
5470
a38bba38 5471 case 0x60: /* pusha */
cf648174
HZ
5472 if (ir.regmap[X86_RECORD_R8_REGNUM])
5473 {
5474 ir.addr -= 1;
5475 goto no_support;
5476 }
5477 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5478 return -1;
5479 break;
5480
a38bba38 5481 case 0x58: /* pop */
7ad10968
HZ
5482 case 0x59:
5483 case 0x5a:
5484 case 0x5b:
5485 case 0x5c:
5486 case 0x5d:
5487 case 0x5e:
5488 case 0x5f:
25ea693b
MM
5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5491 break;
5492
a38bba38 5493 case 0x61: /* popa */
cf648174
HZ
5494 if (ir.regmap[X86_RECORD_R8_REGNUM])
5495 {
5496 ir.addr -= 1;
5497 goto no_support;
7ad10968 5498 }
425b824a
MS
5499 for (regnum = X86_RECORD_REAX_REGNUM;
5500 regnum <= X86_RECORD_REDI_REGNUM;
5501 regnum++)
25ea693b 5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5503 break;
5504
a38bba38 5505 case 0x8f: /* pop */
cf648174
HZ
5506 if (ir.regmap[X86_RECORD_R8_REGNUM])
5507 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5508 else
5509 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5510 if (i386_record_modrm (&ir))
5511 return -1;
5512 if (ir.mod == 3)
25ea693b 5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5514 else
5515 {
cf648174 5516 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5517 if (i386_record_lea_modrm (&ir))
5518 return -1;
5519 }
25ea693b 5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5521 break;
5522
a38bba38 5523 case 0xc8: /* enter */
25ea693b 5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5525 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5526 ir.dflag = 2;
5527 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5528 return -1;
5529 break;
5530
a38bba38 5531 case 0xc9: /* leave */
25ea693b
MM
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5534 break;
5535
a38bba38 5536 case 0x07: /* pop es */
cf648174
HZ
5537 if (ir.regmap[X86_RECORD_R8_REGNUM])
5538 {
5539 ir.addr -= 1;
5540 goto no_support;
5541 }
25ea693b
MM
5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5545 break;
5546
a38bba38 5547 case 0x17: /* pop ss */
cf648174
HZ
5548 if (ir.regmap[X86_RECORD_R8_REGNUM])
5549 {
5550 ir.addr -= 1;
5551 goto no_support;
5552 }
25ea693b
MM
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5556 break;
5557
a38bba38 5558 case 0x1f: /* pop ds */
cf648174
HZ
5559 if (ir.regmap[X86_RECORD_R8_REGNUM])
5560 {
5561 ir.addr -= 1;
5562 goto no_support;
5563 }
25ea693b
MM
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5567 break;
5568
a38bba38 5569 case 0x0fa1: /* pop fs */
25ea693b
MM
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5573 break;
5574
a38bba38 5575 case 0x0fa9: /* pop gs */
25ea693b
MM
5576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5578 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5579 break;
5580
a38bba38 5581 case 0x88: /* mov */
7ad10968
HZ
5582 case 0x89:
5583 case 0xc6:
5584 case 0xc7:
5585 if ((opcode & 1) == 0)
5586 ir.ot = OT_BYTE;
5587 else
5588 ir.ot = ir.dflag + OT_WORD;
5589
5590 if (i386_record_modrm (&ir))
5591 return -1;
5592
5593 if (ir.mod != 3)
5594 {
cf648174
HZ
5595 if (opcode == 0xc6 || opcode == 0xc7)
5596 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5597 if (i386_record_lea_modrm (&ir))
5598 return -1;
5599 }
5600 else
5601 {
cf648174
HZ
5602 if (opcode == 0xc6 || opcode == 0xc7)
5603 ir.rm |= ir.rex_b;
5604 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5605 ir.rm &= 0x3;
25ea693b 5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5607 }
7ad10968 5608 break;
cf648174 5609
a38bba38 5610 case 0x8a: /* mov */
7ad10968
HZ
5611 case 0x8b:
5612 if ((opcode & 1) == 0)
5613 ir.ot = OT_BYTE;
5614 else
5615 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5616 if (i386_record_modrm (&ir))
5617 return -1;
cf648174
HZ
5618 ir.reg |= rex_r;
5619 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5620 ir.reg &= 0x3;
25ea693b 5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5622 break;
7ad10968 5623
a38bba38 5624 case 0x8c: /* mov seg */
cf648174 5625 if (i386_record_modrm (&ir))
7ad10968 5626 return -1;
cf648174
HZ
5627 if (ir.reg > 5)
5628 {
5629 ir.addr -= 2;
5630 opcode = opcode << 8 | ir.modrm;
5631 goto no_support;
5632 }
5633
5634 if (ir.mod == 3)
25ea693b 5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5636 else
5637 {
5638 ir.ot = OT_WORD;
5639 if (i386_record_lea_modrm (&ir))
5640 return -1;
5641 }
7ad10968
HZ
5642 break;
5643
a38bba38 5644 case 0x8e: /* mov seg */
7ad10968
HZ
5645 if (i386_record_modrm (&ir))
5646 return -1;
7ad10968
HZ
5647 switch (ir.reg)
5648 {
5649 case 0:
425b824a 5650 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5651 break;
5652 case 2:
425b824a 5653 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5654 break;
5655 case 3:
425b824a 5656 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5657 break;
5658 case 4:
425b824a 5659 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5660 break;
5661 case 5:
425b824a 5662 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5663 break;
5664 default:
5665 ir.addr -= 2;
5666 opcode = opcode << 8 | ir.modrm;
5667 goto no_support;
5668 break;
5669 }
25ea693b
MM
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5672 break;
5673
a38bba38
MS
5674 case 0x0fb6: /* movzbS */
5675 case 0x0fb7: /* movzwS */
5676 case 0x0fbe: /* movsbS */
5677 case 0x0fbf: /* movswS */
7ad10968
HZ
5678 if (i386_record_modrm (&ir))
5679 return -1;
25ea693b 5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5681 break;
5682
a38bba38 5683 case 0x8d: /* lea */
7ad10968
HZ
5684 if (i386_record_modrm (&ir))
5685 return -1;
5686 if (ir.mod == 3)
5687 {
5688 ir.addr -= 2;
5689 opcode = opcode << 8 | ir.modrm;
5690 goto no_support;
5691 }
7ad10968 5692 ir.ot = ir.dflag;
cf648174
HZ
5693 ir.reg |= rex_r;
5694 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5695 ir.reg &= 0x3;
25ea693b 5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5697 break;
5698
a38bba38 5699 case 0xa0: /* mov EAX */
7ad10968 5700 case 0xa1:
a38bba38
MS
5701
5702 case 0xd7: /* xlat */
25ea693b 5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5704 break;
5705
a38bba38 5706 case 0xa2: /* mov EAX */
7ad10968 5707 case 0xa3:
d7877f7e 5708 if (ir.override >= 0)
cf648174 5709 {
25ea693b 5710 if (record_full_memory_query)
bb08c432
HZ
5711 {
5712 int q;
5713
5714 target_terminal_ours ();
5715 q = yquery (_("\
5716Process record ignores the memory change of instruction at address %s\n\
5717because it can't get the value of the segment register.\n\
5718Do you want to stop the program?"),
5719 paddress (gdbarch, ir.orig_addr));
5720 target_terminal_inferior ();
5721 if (q)
5722 return -1;
5723 }
cf648174
HZ
5724 }
5725 else
5726 {
5727 if ((opcode & 1) == 0)
5728 ir.ot = OT_BYTE;
5729 else
5730 ir.ot = ir.dflag + OT_WORD;
5731 if (ir.aflag == 2)
5732 {
4ffa4fc7
PA
5733 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5734 return -1;
cf648174 5735 ir.addr += 8;
60a1502a 5736 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5737 }
5738 else if (ir.aflag)
5739 {
4ffa4fc7
PA
5740 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5741 return -1;
cf648174 5742 ir.addr += 4;
60a1502a 5743 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5744 }
5745 else
5746 {
4ffa4fc7
PA
5747 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5748 return -1;
cf648174 5749 ir.addr += 2;
60a1502a 5750 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5751 }
25ea693b 5752 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5753 return -1;
5754 }
7ad10968
HZ
5755 break;
5756
a38bba38 5757 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5758 case 0xb1:
5759 case 0xb2:
5760 case 0xb3:
5761 case 0xb4:
5762 case 0xb5:
5763 case 0xb6:
5764 case 0xb7:
25ea693b
MM
5765 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5766 ? ((opcode & 0x7) | ir.rex_b)
5767 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5768 break;
5769
a38bba38 5770 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5771 case 0xb9:
5772 case 0xba:
5773 case 0xbb:
5774 case 0xbc:
5775 case 0xbd:
5776 case 0xbe:
5777 case 0xbf:
25ea693b 5778 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5779 break;
5780
a38bba38 5781 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5782 case 0x92:
5783 case 0x93:
5784 case 0x94:
5785 case 0x95:
5786 case 0x96:
5787 case 0x97:
25ea693b
MM
5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5790 break;
5791
a38bba38 5792 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5793 case 0x87:
5794 if ((opcode & 1) == 0)
5795 ir.ot = OT_BYTE;
5796 else
5797 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5798 if (i386_record_modrm (&ir))
5799 return -1;
7ad10968
HZ
5800 if (ir.mod == 3)
5801 {
86839d38 5802 ir.rm |= ir.rex_b;
cf648174
HZ
5803 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5804 ir.rm &= 0x3;
25ea693b 5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5806 }
5807 else
5808 {
5809 if (i386_record_lea_modrm (&ir))
5810 return -1;
5811 }
cf648174
HZ
5812 ir.reg |= rex_r;
5813 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5814 ir.reg &= 0x3;
25ea693b 5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5816 break;
5817
a38bba38
MS
5818 case 0xc4: /* les Gv */
5819 case 0xc5: /* lds Gv */
cf648174
HZ
5820 if (ir.regmap[X86_RECORD_R8_REGNUM])
5821 {
5822 ir.addr -= 1;
5823 goto no_support;
5824 }
d3f323f3 5825 /* FALLTHROUGH */
a38bba38
MS
5826 case 0x0fb2: /* lss Gv */
5827 case 0x0fb4: /* lfs Gv */
5828 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5829 if (i386_record_modrm (&ir))
5830 return -1;
5831 if (ir.mod == 3)
5832 {
5833 if (opcode > 0xff)
5834 ir.addr -= 3;
5835 else
5836 ir.addr -= 2;
5837 opcode = opcode << 8 | ir.modrm;
5838 goto no_support;
5839 }
7ad10968
HZ
5840 switch (opcode)
5841 {
a38bba38 5842 case 0xc4: /* les Gv */
425b824a 5843 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5844 break;
a38bba38 5845 case 0xc5: /* lds Gv */
425b824a 5846 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5847 break;
a38bba38 5848 case 0x0fb2: /* lss Gv */
425b824a 5849 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5850 break;
a38bba38 5851 case 0x0fb4: /* lfs Gv */
425b824a 5852 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5853 break;
a38bba38 5854 case 0x0fb5: /* lgs Gv */
425b824a 5855 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5856 break;
5857 }
25ea693b
MM
5858 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5859 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5861 break;
5862
a38bba38 5863 case 0xc0: /* shifts */
7ad10968
HZ
5864 case 0xc1:
5865 case 0xd0:
5866 case 0xd1:
5867 case 0xd2:
5868 case 0xd3:
5869 if ((opcode & 1) == 0)
5870 ir.ot = OT_BYTE;
5871 else
5872 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5873 if (i386_record_modrm (&ir))
5874 return -1;
7ad10968
HZ
5875 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5876 {
5877 if (i386_record_lea_modrm (&ir))
5878 return -1;
5879 }
5880 else
5881 {
cf648174
HZ
5882 ir.rm |= ir.rex_b;
5883 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5884 ir.rm &= 0x3;
25ea693b 5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5886 }
25ea693b 5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5888 break;
5889
5890 case 0x0fa4:
5891 case 0x0fa5:
5892 case 0x0fac:
5893 case 0x0fad:
5894 if (i386_record_modrm (&ir))
5895 return -1;
5896 if (ir.mod == 3)
5897 {
25ea693b 5898 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5899 return -1;
5900 }
5901 else
5902 {
5903 if (i386_record_lea_modrm (&ir))
5904 return -1;
5905 }
5906 break;
5907
a38bba38 5908 case 0xd8: /* Floats. */
7ad10968
HZ
5909 case 0xd9:
5910 case 0xda:
5911 case 0xdb:
5912 case 0xdc:
5913 case 0xdd:
5914 case 0xde:
5915 case 0xdf:
5916 if (i386_record_modrm (&ir))
5917 return -1;
5918 ir.reg |= ((opcode & 7) << 3);
5919 if (ir.mod != 3)
5920 {
1777feb0 5921 /* Memory. */
955db0c0 5922 uint64_t addr64;
7ad10968 5923
955db0c0 5924 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5925 return -1;
5926 switch (ir.reg)
5927 {
7ad10968 5928 case 0x02:
0289bdd7
MS
5929 case 0x12:
5930 case 0x22:
5931 case 0x32:
5932 /* For fcom, ficom nothing to do. */
5933 break;
7ad10968 5934 case 0x03:
0289bdd7
MS
5935 case 0x13:
5936 case 0x23:
5937 case 0x33:
5938 /* For fcomp, ficomp pop FPU stack, store all. */
5939 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5940 return -1;
5941 break;
5942 case 0x00:
5943 case 0x01:
7ad10968
HZ
5944 case 0x04:
5945 case 0x05:
5946 case 0x06:
5947 case 0x07:
5948 case 0x10:
5949 case 0x11:
7ad10968
HZ
5950 case 0x14:
5951 case 0x15:
5952 case 0x16:
5953 case 0x17:
5954 case 0x20:
5955 case 0x21:
7ad10968
HZ
5956 case 0x24:
5957 case 0x25:
5958 case 0x26:
5959 case 0x27:
5960 case 0x30:
5961 case 0x31:
7ad10968
HZ
5962 case 0x34:
5963 case 0x35:
5964 case 0x36:
5965 case 0x37:
0289bdd7
MS
5966 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5967 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5968 of code, always affects st(0) register. */
5969 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5970 return -1;
7ad10968
HZ
5971 break;
5972 case 0x08:
5973 case 0x0a:
5974 case 0x0b:
5975 case 0x18:
5976 case 0x19:
5977 case 0x1a:
5978 case 0x1b:
0289bdd7 5979 case 0x1d:
7ad10968
HZ
5980 case 0x28:
5981 case 0x29:
5982 case 0x2a:
5983 case 0x2b:
5984 case 0x38:
5985 case 0x39:
5986 case 0x3a:
5987 case 0x3b:
0289bdd7
MS
5988 case 0x3c:
5989 case 0x3d:
7ad10968
HZ
5990 switch (ir.reg & 7)
5991 {
5992 case 0:
0289bdd7
MS
5993 /* Handling fld, fild. */
5994 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5995 return -1;
7ad10968
HZ
5996 break;
5997 case 1:
5998 switch (ir.reg >> 4)
5999 {
6000 case 0:
25ea693b 6001 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6002 return -1;
6003 break;
6004 case 2:
25ea693b 6005 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6006 return -1;
6007 break;
6008 case 3:
0289bdd7 6009 break;
7ad10968 6010 default:
25ea693b 6011 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6012 return -1;
6013 break;
6014 }
6015 break;
6016 default:
6017 switch (ir.reg >> 4)
6018 {
6019 case 0:
25ea693b 6020 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6021 return -1;
6022 if (3 == (ir.reg & 7))
6023 {
6024 /* For fstp m32fp. */
6025 if (i386_record_floats (gdbarch, &ir,
6026 I386_SAVE_FPU_REGS))
6027 return -1;
6028 }
6029 break;
7ad10968 6030 case 1:
25ea693b 6031 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6032 return -1;
0289bdd7
MS
6033 if ((3 == (ir.reg & 7))
6034 || (5 == (ir.reg & 7))
6035 || (7 == (ir.reg & 7)))
6036 {
6037 /* For fstp insn. */
6038 if (i386_record_floats (gdbarch, &ir,
6039 I386_SAVE_FPU_REGS))
6040 return -1;
6041 }
7ad10968
HZ
6042 break;
6043 case 2:
25ea693b 6044 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6045 return -1;
0289bdd7
MS
6046 if (3 == (ir.reg & 7))
6047 {
6048 /* For fstp m64fp. */
6049 if (i386_record_floats (gdbarch, &ir,
6050 I386_SAVE_FPU_REGS))
6051 return -1;
6052 }
7ad10968
HZ
6053 break;
6054 case 3:
0289bdd7
MS
6055 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6056 {
6057 /* For fistp, fbld, fild, fbstp. */
6058 if (i386_record_floats (gdbarch, &ir,
6059 I386_SAVE_FPU_REGS))
6060 return -1;
6061 }
6062 /* Fall through */
7ad10968 6063 default:
25ea693b 6064 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6065 return -1;
6066 break;
6067 }
6068 break;
6069 }
6070 break;
6071 case 0x0c:
0289bdd7
MS
6072 /* Insn fldenv. */
6073 if (i386_record_floats (gdbarch, &ir,
6074 I386_SAVE_FPU_ENV_REG_STACK))
6075 return -1;
6076 break;
7ad10968 6077 case 0x0d:
0289bdd7
MS
6078 /* Insn fldcw. */
6079 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6080 return -1;
6081 break;
7ad10968 6082 case 0x2c:
0289bdd7
MS
6083 /* Insn frstor. */
6084 if (i386_record_floats (gdbarch, &ir,
6085 I386_SAVE_FPU_ENV_REG_STACK))
6086 return -1;
7ad10968
HZ
6087 break;
6088 case 0x0e:
6089 if (ir.dflag)
6090 {
25ea693b 6091 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6092 return -1;
6093 }
6094 else
6095 {
25ea693b 6096 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6097 return -1;
6098 }
6099 break;
6100 case 0x0f:
6101 case 0x2f:
25ea693b 6102 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6103 return -1;
0289bdd7
MS
6104 /* Insn fstp, fbstp. */
6105 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6106 return -1;
7ad10968
HZ
6107 break;
6108 case 0x1f:
6109 case 0x3e:
25ea693b 6110 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6111 return -1;
6112 break;
6113 case 0x2e:
6114 if (ir.dflag)
6115 {
25ea693b 6116 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6117 return -1;
955db0c0 6118 addr64 += 28;
7ad10968
HZ
6119 }
6120 else
6121 {
25ea693b 6122 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6123 return -1;
955db0c0 6124 addr64 += 14;
7ad10968 6125 }
25ea693b 6126 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6127 return -1;
0289bdd7
MS
6128 /* Insn fsave. */
6129 if (i386_record_floats (gdbarch, &ir,
6130 I386_SAVE_FPU_ENV_REG_STACK))
6131 return -1;
7ad10968
HZ
6132 break;
6133 case 0x3f:
25ea693b 6134 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6135 return -1;
0289bdd7
MS
6136 /* Insn fistp. */
6137 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6138 return -1;
7ad10968
HZ
6139 break;
6140 default:
6141 ir.addr -= 2;
6142 opcode = opcode << 8 | ir.modrm;
6143 goto no_support;
6144 break;
6145 }
6146 }
0289bdd7
MS
6147 /* Opcode is an extension of modR/M byte. */
6148 else
6149 {
6150 switch (opcode)
6151 {
6152 case 0xd8:
6153 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6154 return -1;
6155 break;
6156 case 0xd9:
6157 if (0x0c == (ir.modrm >> 4))
6158 {
6159 if ((ir.modrm & 0x0f) <= 7)
6160 {
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_REGS))
6163 return -1;
6164 }
6165 else
6166 {
6167 if (i386_record_floats (gdbarch, &ir,
6168 I387_ST0_REGNUM (tdep)))
6169 return -1;
6170 /* If only st(0) is changing, then we have already
6171 recorded. */
6172 if ((ir.modrm & 0x0f) - 0x08)
6173 {
6174 if (i386_record_floats (gdbarch, &ir,
6175 I387_ST0_REGNUM (tdep) +
6176 ((ir.modrm & 0x0f) - 0x08)))
6177 return -1;
6178 }
6179 }
6180 }
6181 else
6182 {
6183 switch (ir.modrm)
6184 {
6185 case 0xe0:
6186 case 0xe1:
6187 case 0xf0:
6188 case 0xf5:
6189 case 0xf8:
6190 case 0xfa:
6191 case 0xfc:
6192 case 0xfe:
6193 case 0xff:
6194 if (i386_record_floats (gdbarch, &ir,
6195 I387_ST0_REGNUM (tdep)))
6196 return -1;
6197 break;
6198 case 0xf1:
6199 case 0xf2:
6200 case 0xf3:
6201 case 0xf4:
6202 case 0xf6:
6203 case 0xf7:
6204 case 0xe8:
6205 case 0xe9:
6206 case 0xea:
6207 case 0xeb:
6208 case 0xec:
6209 case 0xed:
6210 case 0xee:
6211 case 0xf9:
6212 case 0xfb:
6213 if (i386_record_floats (gdbarch, &ir,
6214 I386_SAVE_FPU_REGS))
6215 return -1;
6216 break;
6217 case 0xfd:
6218 if (i386_record_floats (gdbarch, &ir,
6219 I387_ST0_REGNUM (tdep)))
6220 return -1;
6221 if (i386_record_floats (gdbarch, &ir,
6222 I387_ST0_REGNUM (tdep) + 1))
6223 return -1;
6224 break;
6225 }
6226 }
6227 break;
6228 case 0xda:
6229 if (0xe9 == ir.modrm)
6230 {
6231 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6232 return -1;
6233 }
6234 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6235 {
6236 if (i386_record_floats (gdbarch, &ir,
6237 I387_ST0_REGNUM (tdep)))
6238 return -1;
6239 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6240 {
6241 if (i386_record_floats (gdbarch, &ir,
6242 I387_ST0_REGNUM (tdep) +
6243 (ir.modrm & 0x0f)))
6244 return -1;
6245 }
6246 else if ((ir.modrm & 0x0f) - 0x08)
6247 {
6248 if (i386_record_floats (gdbarch, &ir,
6249 I387_ST0_REGNUM (tdep) +
6250 ((ir.modrm & 0x0f) - 0x08)))
6251 return -1;
6252 }
6253 }
6254 break;
6255 case 0xdb:
6256 if (0xe3 == ir.modrm)
6257 {
6258 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6259 return -1;
6260 }
6261 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep) +
6270 (ir.modrm & 0x0f)))
6271 return -1;
6272 }
6273 else if ((ir.modrm & 0x0f) - 0x08)
6274 {
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6278 return -1;
6279 }
6280 }
6281 break;
6282 case 0xdc:
6283 if ((0x0c == ir.modrm >> 4)
6284 || (0x0d == ir.modrm >> 4)
6285 || (0x0f == ir.modrm >> 4))
6286 {
6287 if ((ir.modrm & 0x0f) <= 7)
6288 {
6289 if (i386_record_floats (gdbarch, &ir,
6290 I387_ST0_REGNUM (tdep) +
6291 (ir.modrm & 0x0f)))
6292 return -1;
6293 }
6294 else
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I387_ST0_REGNUM (tdep) +
6298 ((ir.modrm & 0x0f) - 0x08)))
6299 return -1;
6300 }
6301 }
6302 break;
6303 case 0xdd:
6304 if (0x0c == ir.modrm >> 4)
6305 {
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_FTAG_REGNUM (tdep)))
6308 return -1;
6309 }
6310 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6311 {
6312 if ((ir.modrm & 0x0f) <= 7)
6313 {
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_ST0_REGNUM (tdep) +
6316 (ir.modrm & 0x0f)))
6317 return -1;
6318 }
6319 else
6320 {
6321 if (i386_record_floats (gdbarch, &ir,
6322 I386_SAVE_FPU_REGS))
6323 return -1;
6324 }
6325 }
6326 break;
6327 case 0xde:
6328 if ((0x0c == ir.modrm >> 4)
6329 || (0x0e == ir.modrm >> 4)
6330 || (0x0f == ir.modrm >> 4)
6331 || (0xd9 == ir.modrm))
6332 {
6333 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6334 return -1;
6335 }
6336 break;
6337 case 0xdf:
6338 if (0xe0 == ir.modrm)
6339 {
25ea693b
MM
6340 if (record_full_arch_list_add_reg (ir.regcache,
6341 I386_EAX_REGNUM))
0289bdd7
MS
6342 return -1;
6343 }
6344 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6347 return -1;
6348 }
6349 break;
6350 }
6351 }
7ad10968 6352 break;
7ad10968 6353 /* string ops */
a38bba38 6354 case 0xa4: /* movsS */
7ad10968 6355 case 0xa5:
a38bba38 6356 case 0xaa: /* stosS */
7ad10968 6357 case 0xab:
a38bba38 6358 case 0x6c: /* insS */
7ad10968 6359 case 0x6d:
cf648174 6360 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6361 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6362 &addr);
6363 if (addr)
cf648174 6364 {
77d7dc92
HZ
6365 ULONGEST es, ds;
6366
6367 if ((opcode & 1) == 0)
6368 ir.ot = OT_BYTE;
6369 else
6370 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6371 regcache_raw_read_unsigned (ir.regcache,
6372 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6373 &addr);
77d7dc92 6374
d7877f7e
HZ
6375 regcache_raw_read_unsigned (ir.regcache,
6376 ir.regmap[X86_RECORD_ES_REGNUM],
6377 &es);
6378 regcache_raw_read_unsigned (ir.regcache,
6379 ir.regmap[X86_RECORD_DS_REGNUM],
6380 &ds);
6381 if (ir.aflag && (es != ds))
77d7dc92
HZ
6382 {
6383 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6384 if (record_full_memory_query)
bb08c432
HZ
6385 {
6386 int q;
6387
6388 target_terminal_ours ();
6389 q = yquery (_("\
6390Process record ignores the memory change of instruction at address %s\n\
6391because it can't get the value of the segment register.\n\
6392Do you want to stop the program?"),
6393 paddress (gdbarch, ir.orig_addr));
6394 target_terminal_inferior ();
6395 if (q)
6396 return -1;
6397 }
df61f520
HZ
6398 }
6399 else
6400 {
25ea693b 6401 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6402 return -1;
77d7dc92
HZ
6403 }
6404
6405 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6407 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6411 }
cf648174 6412 break;
7ad10968 6413
a38bba38 6414 case 0xa6: /* cmpsS */
cf648174 6415 case 0xa7:
25ea693b
MM
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6418 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6421 break;
6422
a38bba38 6423 case 0xac: /* lodsS */
7ad10968 6424 case 0xad:
25ea693b
MM
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6427 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6430 break;
6431
a38bba38 6432 case 0xae: /* scasS */
7ad10968 6433 case 0xaf:
25ea693b 6434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6435 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6438 break;
6439
a38bba38 6440 case 0x6e: /* outsS */
cf648174 6441 case 0x6f:
25ea693b 6442 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6443 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6446 break;
6447
a38bba38 6448 case 0xe4: /* port I/O */
7ad10968
HZ
6449 case 0xe5:
6450 case 0xec:
6451 case 0xed:
25ea693b
MM
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6454 break;
6455
6456 case 0xe6:
6457 case 0xe7:
6458 case 0xee:
6459 case 0xef:
6460 break;
6461
6462 /* control */
a38bba38
MS
6463 case 0xc2: /* ret im */
6464 case 0xc3: /* ret */
25ea693b
MM
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6467 break;
6468
a38bba38
MS
6469 case 0xca: /* lret im */
6470 case 0xcb: /* lret */
6471 case 0xcf: /* iret */
25ea693b
MM
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6475 break;
6476
a38bba38 6477 case 0xe8: /* call im */
cf648174
HZ
6478 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6479 ir.dflag = 2;
6480 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6481 return -1;
7ad10968
HZ
6482 break;
6483
a38bba38 6484 case 0x9a: /* lcall im */
cf648174
HZ
6485 if (ir.regmap[X86_RECORD_R8_REGNUM])
6486 {
6487 ir.addr -= 1;
6488 goto no_support;
6489 }
25ea693b 6490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6491 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6492 return -1;
7ad10968
HZ
6493 break;
6494
a38bba38
MS
6495 case 0xe9: /* jmp im */
6496 case 0xea: /* ljmp im */
6497 case 0xeb: /* jmp Jb */
6498 case 0x70: /* jcc Jb */
7ad10968
HZ
6499 case 0x71:
6500 case 0x72:
6501 case 0x73:
6502 case 0x74:
6503 case 0x75:
6504 case 0x76:
6505 case 0x77:
6506 case 0x78:
6507 case 0x79:
6508 case 0x7a:
6509 case 0x7b:
6510 case 0x7c:
6511 case 0x7d:
6512 case 0x7e:
6513 case 0x7f:
a38bba38 6514 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6515 case 0x0f81:
6516 case 0x0f82:
6517 case 0x0f83:
6518 case 0x0f84:
6519 case 0x0f85:
6520 case 0x0f86:
6521 case 0x0f87:
6522 case 0x0f88:
6523 case 0x0f89:
6524 case 0x0f8a:
6525 case 0x0f8b:
6526 case 0x0f8c:
6527 case 0x0f8d:
6528 case 0x0f8e:
6529 case 0x0f8f:
6530 break;
6531
a38bba38 6532 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6533 case 0x0f91:
6534 case 0x0f92:
6535 case 0x0f93:
6536 case 0x0f94:
6537 case 0x0f95:
6538 case 0x0f96:
6539 case 0x0f97:
6540 case 0x0f98:
6541 case 0x0f99:
6542 case 0x0f9a:
6543 case 0x0f9b:
6544 case 0x0f9c:
6545 case 0x0f9d:
6546 case 0x0f9e:
6547 case 0x0f9f:
25ea693b 6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6549 ir.ot = OT_BYTE;
6550 if (i386_record_modrm (&ir))
6551 return -1;
6552 if (ir.mod == 3)
25ea693b
MM
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6554 : (ir.rm & 0x3));
7ad10968
HZ
6555 else
6556 {
6557 if (i386_record_lea_modrm (&ir))
6558 return -1;
6559 }
6560 break;
6561
a38bba38 6562 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6563 case 0x0f41:
6564 case 0x0f42:
6565 case 0x0f43:
6566 case 0x0f44:
6567 case 0x0f45:
6568 case 0x0f46:
6569 case 0x0f47:
6570 case 0x0f48:
6571 case 0x0f49:
6572 case 0x0f4a:
6573 case 0x0f4b:
6574 case 0x0f4c:
6575 case 0x0f4d:
6576 case 0x0f4e:
6577 case 0x0f4f:
6578 if (i386_record_modrm (&ir))
6579 return -1;
cf648174 6580 ir.reg |= rex_r;
7ad10968
HZ
6581 if (ir.dflag == OT_BYTE)
6582 ir.reg &= 0x3;
25ea693b 6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6584 break;
6585
6586 /* flags */
a38bba38 6587 case 0x9c: /* pushf */
25ea693b 6588 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6589 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6590 ir.dflag = 2;
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
7ad10968
HZ
6593 break;
6594
a38bba38 6595 case 0x9d: /* popf */
25ea693b
MM
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6598 break;
6599
a38bba38 6600 case 0x9e: /* sahf */
cf648174
HZ
6601 if (ir.regmap[X86_RECORD_R8_REGNUM])
6602 {
6603 ir.addr -= 1;
6604 goto no_support;
6605 }
d3f323f3 6606 /* FALLTHROUGH */
a38bba38
MS
6607 case 0xf5: /* cmc */
6608 case 0xf8: /* clc */
6609 case 0xf9: /* stc */
6610 case 0xfc: /* cld */
6611 case 0xfd: /* std */
25ea693b 6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6613 break;
6614
a38bba38 6615 case 0x9f: /* lahf */
cf648174
HZ
6616 if (ir.regmap[X86_RECORD_R8_REGNUM])
6617 {
6618 ir.addr -= 1;
6619 goto no_support;
6620 }
25ea693b
MM
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6623 break;
6624
6625 /* bit operations */
a38bba38 6626 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6627 ir.ot = ir.dflag + OT_WORD;
6628 if (i386_record_modrm (&ir))
6629 return -1;
6630 if (ir.reg < 4)
6631 {
cf648174 6632 ir.addr -= 2;
7ad10968
HZ
6633 opcode = opcode << 8 | ir.modrm;
6634 goto no_support;
6635 }
cf648174 6636 if (ir.reg != 4)
7ad10968 6637 {
cf648174 6638 if (ir.mod == 3)
25ea693b 6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6640 else
6641 {
cf648174 6642 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6643 return -1;
6644 }
6645 }
25ea693b 6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6647 break;
6648
a38bba38 6649 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6651 break;
6652
a38bba38
MS
6653 case 0x0fab: /* bts */
6654 case 0x0fb3: /* btr */
6655 case 0x0fbb: /* btc */
cf648174
HZ
6656 ir.ot = ir.dflag + OT_WORD;
6657 if (i386_record_modrm (&ir))
6658 return -1;
6659 if (ir.mod == 3)
25ea693b 6660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6661 else
6662 {
955db0c0
MS
6663 uint64_t addr64;
6664 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6665 return -1;
6666 regcache_raw_read_unsigned (ir.regcache,
6667 ir.regmap[ir.reg | rex_r],
648d0c8b 6668 &addr);
cf648174
HZ
6669 switch (ir.dflag)
6670 {
6671 case 0:
648d0c8b 6672 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6673 break;
6674 case 1:
648d0c8b 6675 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6676 break;
6677 case 2:
648d0c8b 6678 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6679 break;
6680 }
25ea693b 6681 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6682 return -1;
6683 if (i386_record_lea_modrm (&ir))
6684 return -1;
6685 }
25ea693b 6686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6687 break;
6688
a38bba38
MS
6689 case 0x0fbc: /* bsf */
6690 case 0x0fbd: /* bsr */
25ea693b
MM
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6693 break;
6694
6695 /* bcd */
a38bba38
MS
6696 case 0x27: /* daa */
6697 case 0x2f: /* das */
6698 case 0x37: /* aaa */
6699 case 0x3f: /* aas */
6700 case 0xd4: /* aam */
6701 case 0xd5: /* aad */
cf648174
HZ
6702 if (ir.regmap[X86_RECORD_R8_REGNUM])
6703 {
6704 ir.addr -= 1;
6705 goto no_support;
6706 }
25ea693b
MM
6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6708 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6709 break;
6710
6711 /* misc */
a38bba38 6712 case 0x90: /* nop */
7ad10968
HZ
6713 if (prefixes & PREFIX_LOCK)
6714 {
6715 ir.addr -= 1;
6716 goto no_support;
6717 }
6718 break;
6719
a38bba38 6720 case 0x9b: /* fwait */
4ffa4fc7
PA
6721 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6722 return -1;
425b824a 6723 opcode = (uint32_t) opcode8;
0289bdd7
MS
6724 ir.addr++;
6725 goto reswitch;
7ad10968
HZ
6726 break;
6727
7ad10968 6728 /* XXX */
a38bba38 6729 case 0xcc: /* int3 */
a3c4230a 6730 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6731 "int3.\n"));
6732 ir.addr -= 1;
6733 goto no_support;
6734 break;
6735
7ad10968 6736 /* XXX */
a38bba38 6737 case 0xcd: /* int */
7ad10968
HZ
6738 {
6739 int ret;
425b824a 6740 uint8_t interrupt;
4ffa4fc7
PA
6741 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6742 return -1;
7ad10968 6743 ir.addr++;
425b824a 6744 if (interrupt != 0x80
a3c4230a 6745 || tdep->i386_intx80_record == NULL)
7ad10968 6746 {
a3c4230a 6747 printf_unfiltered (_("Process record does not support "
7ad10968 6748 "instruction int 0x%02x.\n"),
425b824a 6749 interrupt);
7ad10968
HZ
6750 ir.addr -= 2;
6751 goto no_support;
6752 }
a3c4230a 6753 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6754 if (ret)
6755 return ret;
6756 }
6757 break;
6758
7ad10968 6759 /* XXX */
a38bba38 6760 case 0xce: /* into */
a3c4230a 6761 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6762 "instruction into.\n"));
6763 ir.addr -= 1;
6764 goto no_support;
6765 break;
6766
a38bba38
MS
6767 case 0xfa: /* cli */
6768 case 0xfb: /* sti */
7ad10968
HZ
6769 break;
6770
a38bba38 6771 case 0x62: /* bound */
a3c4230a 6772 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6773 "instruction bound.\n"));
6774 ir.addr -= 1;
6775 goto no_support;
6776 break;
6777
a38bba38 6778 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6779 case 0x0fc9:
6780 case 0x0fca:
6781 case 0x0fcb:
6782 case 0x0fcc:
6783 case 0x0fcd:
6784 case 0x0fce:
6785 case 0x0fcf:
25ea693b 6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6787 break;
6788
a38bba38 6789 case 0xd6: /* salc */
cf648174
HZ
6790 if (ir.regmap[X86_RECORD_R8_REGNUM])
6791 {
6792 ir.addr -= 1;
6793 goto no_support;
6794 }
25ea693b
MM
6795 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6797 break;
6798
a38bba38
MS
6799 case 0xe0: /* loopnz */
6800 case 0xe1: /* loopz */
6801 case 0xe2: /* loop */
6802 case 0xe3: /* jecxz */
25ea693b
MM
6803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6805 break;
6806
a38bba38 6807 case 0x0f30: /* wrmsr */
a3c4230a 6808 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6809 "instruction wrmsr.\n"));
6810 ir.addr -= 2;
6811 goto no_support;
6812 break;
6813
a38bba38 6814 case 0x0f32: /* rdmsr */
a3c4230a 6815 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6816 "instruction rdmsr.\n"));
6817 ir.addr -= 2;
6818 goto no_support;
6819 break;
6820
a38bba38 6821 case 0x0f31: /* rdtsc */
25ea693b
MM
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6824 break;
6825
a38bba38 6826 case 0x0f34: /* sysenter */
7ad10968
HZ
6827 {
6828 int ret;
cf648174
HZ
6829 if (ir.regmap[X86_RECORD_R8_REGNUM])
6830 {
6831 ir.addr -= 2;
6832 goto no_support;
6833 }
a3c4230a 6834 if (tdep->i386_sysenter_record == NULL)
7ad10968 6835 {
a3c4230a 6836 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6837 "instruction sysenter.\n"));
6838 ir.addr -= 2;
6839 goto no_support;
6840 }
a3c4230a 6841 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6842 if (ret)
6843 return ret;
6844 }
6845 break;
6846
a38bba38 6847 case 0x0f35: /* sysexit */
a3c4230a 6848 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6849 "instruction sysexit.\n"));
6850 ir.addr -= 2;
6851 goto no_support;
6852 break;
6853
a38bba38 6854 case 0x0f05: /* syscall */
cf648174
HZ
6855 {
6856 int ret;
a3c4230a 6857 if (tdep->i386_syscall_record == NULL)
cf648174 6858 {
a3c4230a 6859 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6860 "instruction syscall.\n"));
6861 ir.addr -= 2;
6862 goto no_support;
6863 }
a3c4230a 6864 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6865 if (ret)
6866 return ret;
6867 }
6868 break;
6869
a38bba38 6870 case 0x0f07: /* sysret */
a3c4230a 6871 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6872 "instruction sysret.\n"));
6873 ir.addr -= 2;
6874 goto no_support;
6875 break;
6876
a38bba38 6877 case 0x0fa2: /* cpuid */
25ea693b
MM
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6882 break;
6883
a38bba38 6884 case 0xf4: /* hlt */
a3c4230a 6885 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6886 "instruction hlt.\n"));
6887 ir.addr -= 1;
6888 goto no_support;
6889 break;
6890
6891 case 0x0f00:
6892 if (i386_record_modrm (&ir))
6893 return -1;
6894 switch (ir.reg)
6895 {
a38bba38
MS
6896 case 0: /* sldt */
6897 case 1: /* str */
7ad10968 6898 if (ir.mod == 3)
25ea693b 6899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6900 else
6901 {
6902 ir.ot = OT_WORD;
6903 if (i386_record_lea_modrm (&ir))
6904 return -1;
6905 }
6906 break;
a38bba38
MS
6907 case 2: /* lldt */
6908 case 3: /* ltr */
7ad10968 6909 break;
a38bba38
MS
6910 case 4: /* verr */
6911 case 5: /* verw */
25ea693b 6912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6913 break;
6914 default:
6915 ir.addr -= 3;
6916 opcode = opcode << 8 | ir.modrm;
6917 goto no_support;
6918 break;
6919 }
6920 break;
6921
6922 case 0x0f01:
6923 if (i386_record_modrm (&ir))
6924 return -1;
6925 switch (ir.reg)
6926 {
a38bba38 6927 case 0: /* sgdt */
7ad10968 6928 {
955db0c0 6929 uint64_t addr64;
7ad10968
HZ
6930
6931 if (ir.mod == 3)
6932 {
6933 ir.addr -= 3;
6934 opcode = opcode << 8 | ir.modrm;
6935 goto no_support;
6936 }
d7877f7e 6937 if (ir.override >= 0)
7ad10968 6938 {
25ea693b 6939 if (record_full_memory_query)
bb08c432
HZ
6940 {
6941 int q;
6942
6943 target_terminal_ours ();
6944 q = yquery (_("\
6945Process record ignores the memory change of instruction at address %s\n\
6946because it can't get the value of the segment register.\n\
6947Do you want to stop the program?"),
6948 paddress (gdbarch, ir.orig_addr));
6949 target_terminal_inferior ();
6950 if (q)
6951 return -1;
6952 }
7ad10968
HZ
6953 }
6954 else
6955 {
955db0c0 6956 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6957 return -1;
25ea693b 6958 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6959 return -1;
955db0c0 6960 addr64 += 2;
cf648174
HZ
6961 if (ir.regmap[X86_RECORD_R8_REGNUM])
6962 {
25ea693b 6963 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6964 return -1;
6965 }
6966 else
6967 {
25ea693b 6968 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6969 return -1;
6970 }
7ad10968
HZ
6971 }
6972 }
6973 break;
6974 case 1:
6975 if (ir.mod == 3)
6976 {
6977 switch (ir.rm)
6978 {
a38bba38 6979 case 0: /* monitor */
7ad10968 6980 break;
a38bba38 6981 case 1: /* mwait */
25ea693b 6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6983 break;
6984 default:
6985 ir.addr -= 3;
6986 opcode = opcode << 8 | ir.modrm;
6987 goto no_support;
6988 break;
6989 }
6990 }
6991 else
6992 {
6993 /* sidt */
d7877f7e 6994 if (ir.override >= 0)
7ad10968 6995 {
25ea693b 6996 if (record_full_memory_query)
bb08c432
HZ
6997 {
6998 int q;
6999
7000 target_terminal_ours ();
7001 q = yquery (_("\
7002Process record ignores the memory change of instruction at address %s\n\
7003because it can't get the value of the segment register.\n\
7004Do you want to stop the program?"),
7005 paddress (gdbarch, ir.orig_addr));
7006 target_terminal_inferior ();
7007 if (q)
7008 return -1;
7009 }
7ad10968
HZ
7010 }
7011 else
7012 {
955db0c0 7013 uint64_t addr64;
7ad10968 7014
955db0c0 7015 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7016 return -1;
25ea693b 7017 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7018 return -1;
955db0c0 7019 addr64 += 2;
cf648174
HZ
7020 if (ir.regmap[X86_RECORD_R8_REGNUM])
7021 {
25ea693b 7022 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7023 return -1;
7024 }
7025 else
7026 {
25ea693b 7027 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7028 return -1;
7029 }
7ad10968
HZ
7030 }
7031 }
7032 break;
a38bba38 7033 case 2: /* lgdt */
3800e645
MS
7034 if (ir.mod == 3)
7035 {
7036 /* xgetbv */
7037 if (ir.rm == 0)
7038 {
25ea693b
MM
7039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7041 break;
7042 }
7043 /* xsetbv */
7044 else if (ir.rm == 1)
7045 break;
7046 }
a38bba38 7047 case 3: /* lidt */
7ad10968
HZ
7048 if (ir.mod == 3)
7049 {
7050 ir.addr -= 3;
7051 opcode = opcode << 8 | ir.modrm;
7052 goto no_support;
7053 }
7054 break;
a38bba38 7055 case 4: /* smsw */
7ad10968
HZ
7056 if (ir.mod == 3)
7057 {
25ea693b 7058 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7059 return -1;
7060 }
7061 else
7062 {
7063 ir.ot = OT_WORD;
7064 if (i386_record_lea_modrm (&ir))
7065 return -1;
7066 }
25ea693b 7067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7068 break;
a38bba38 7069 case 6: /* lmsw */
25ea693b 7070 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7071 break;
a38bba38 7072 case 7: /* invlpg */
cf648174
HZ
7073 if (ir.mod == 3)
7074 {
7075 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7077 else
7078 {
7079 ir.addr -= 3;
7080 opcode = opcode << 8 | ir.modrm;
7081 goto no_support;
7082 }
7083 }
7084 else
25ea693b 7085 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7086 break;
7087 default:
7088 ir.addr -= 3;
7089 opcode = opcode << 8 | ir.modrm;
7090 goto no_support;
7ad10968
HZ
7091 break;
7092 }
7093 break;
7094
a38bba38
MS
7095 case 0x0f08: /* invd */
7096 case 0x0f09: /* wbinvd */
7ad10968
HZ
7097 break;
7098
a38bba38 7099 case 0x63: /* arpl */
7ad10968
HZ
7100 if (i386_record_modrm (&ir))
7101 return -1;
cf648174
HZ
7102 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7103 {
25ea693b
MM
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7105 ? (ir.reg | rex_r) : ir.rm);
cf648174 7106 }
7ad10968 7107 else
cf648174
HZ
7108 {
7109 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7110 if (i386_record_lea_modrm (&ir))
7111 return -1;
7112 }
7113 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7115 break;
7116
a38bba38
MS
7117 case 0x0f02: /* lar */
7118 case 0x0f03: /* lsl */
7ad10968
HZ
7119 if (i386_record_modrm (&ir))
7120 return -1;
25ea693b
MM
7121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7123 break;
7124
7125 case 0x0f18:
cf648174
HZ
7126 if (i386_record_modrm (&ir))
7127 return -1;
7128 if (ir.mod == 3 && ir.reg == 3)
7129 {
7130 ir.addr -= 3;
7131 opcode = opcode << 8 | ir.modrm;
7132 goto no_support;
7133 }
7ad10968
HZ
7134 break;
7135
7ad10968
HZ
7136 case 0x0f19:
7137 case 0x0f1a:
7138 case 0x0f1b:
7139 case 0x0f1c:
7140 case 0x0f1d:
7141 case 0x0f1e:
7142 case 0x0f1f:
a38bba38 7143 /* nop (multi byte) */
7ad10968
HZ
7144 break;
7145
a38bba38
MS
7146 case 0x0f20: /* mov reg, crN */
7147 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7148 if (i386_record_modrm (&ir))
7149 return -1;
7150 if ((ir.modrm & 0xc0) != 0xc0)
7151 {
cf648174 7152 ir.addr -= 3;
7ad10968
HZ
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 }
7156 switch (ir.reg)
7157 {
7158 case 0:
7159 case 2:
7160 case 3:
7161 case 4:
7162 case 8:
7163 if (opcode & 2)
25ea693b 7164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7165 else
25ea693b 7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7167 break;
7168 default:
cf648174 7169 ir.addr -= 3;
7ad10968
HZ
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 break;
7173 }
7174 break;
7175
a38bba38
MS
7176 case 0x0f21: /* mov reg, drN */
7177 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7178 if (i386_record_modrm (&ir))
7179 return -1;
7180 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7181 || ir.reg == 5 || ir.reg >= 8)
7182 {
cf648174 7183 ir.addr -= 3;
7ad10968
HZ
7184 opcode = opcode << 8 | ir.modrm;
7185 goto no_support;
7186 }
7187 if (opcode & 2)
25ea693b 7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7189 else
25ea693b 7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7191 break;
7192
a38bba38 7193 case 0x0f06: /* clts */
25ea693b 7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7195 break;
7196
a3c4230a
HZ
7197 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7198
7199 case 0x0f0d: /* 3DNow! prefetch */
7200 break;
7201
7202 case 0x0f0e: /* 3DNow! femms */
7203 case 0x0f77: /* emms */
7204 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7205 goto no_support;
25ea693b 7206 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7207 break;
7208
7209 case 0x0f0f: /* 3DNow! data */
7210 if (i386_record_modrm (&ir))
7211 return -1;
4ffa4fc7
PA
7212 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7213 return -1;
a3c4230a
HZ
7214 ir.addr++;
7215 switch (opcode8)
7216 {
7217 case 0x0c: /* 3DNow! pi2fw */
7218 case 0x0d: /* 3DNow! pi2fd */
7219 case 0x1c: /* 3DNow! pf2iw */
7220 case 0x1d: /* 3DNow! pf2id */
7221 case 0x8a: /* 3DNow! pfnacc */
7222 case 0x8e: /* 3DNow! pfpnacc */
7223 case 0x90: /* 3DNow! pfcmpge */
7224 case 0x94: /* 3DNow! pfmin */
7225 case 0x96: /* 3DNow! pfrcp */
7226 case 0x97: /* 3DNow! pfrsqrt */
7227 case 0x9a: /* 3DNow! pfsub */
7228 case 0x9e: /* 3DNow! pfadd */
7229 case 0xa0: /* 3DNow! pfcmpgt */
7230 case 0xa4: /* 3DNow! pfmax */
7231 case 0xa6: /* 3DNow! pfrcpit1 */
7232 case 0xa7: /* 3DNow! pfrsqit1 */
7233 case 0xaa: /* 3DNow! pfsubr */
7234 case 0xae: /* 3DNow! pfacc */
7235 case 0xb0: /* 3DNow! pfcmpeq */
7236 case 0xb4: /* 3DNow! pfmul */
7237 case 0xb6: /* 3DNow! pfrcpit2 */
7238 case 0xb7: /* 3DNow! pmulhrw */
7239 case 0xbb: /* 3DNow! pswapd */
7240 case 0xbf: /* 3DNow! pavgusb */
7241 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7242 goto no_support_3dnow_data;
25ea693b 7243 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7244 break;
7245
7246 default:
7247no_support_3dnow_data:
7248 opcode = (opcode << 8) | opcode8;
7249 goto no_support;
7250 break;
7251 }
7252 break;
7253
7254 case 0x0faa: /* rsm */
25ea693b
MM
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7264 break;
7265
7266 case 0x0fae:
7267 if (i386_record_modrm (&ir))
7268 return -1;
7269 switch(ir.reg)
7270 {
7271 case 0: /* fxsave */
7272 {
7273 uint64_t tmpu64;
7274
25ea693b 7275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7276 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7277 return -1;
25ea693b 7278 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7279 return -1;
7280 }
7281 break;
7282
7283 case 1: /* fxrstor */
7284 {
7285 int i;
7286
25ea693b 7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7288
7289 for (i = I387_MM0_REGNUM (tdep);
7290 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7291 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7292
7293 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7294 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7295 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7296
7297 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7298 record_full_arch_list_add_reg (ir.regcache,
7299 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7300
7301 for (i = I387_ST0_REGNUM (tdep);
7302 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7303 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7304
7305 for (i = I387_FCTRL_REGNUM (tdep);
7306 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7307 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7308 }
7309 break;
7310
7311 case 2: /* ldmxcsr */
7312 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7313 goto no_support;
25ea693b 7314 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7315 break;
7316
7317 case 3: /* stmxcsr */
7318 ir.ot = OT_LONG;
7319 if (i386_record_lea_modrm (&ir))
7320 return -1;
7321 break;
7322
7323 case 5: /* lfence */
7324 case 6: /* mfence */
7325 case 7: /* sfence clflush */
7326 break;
7327
7328 default:
7329 opcode = (opcode << 8) | ir.modrm;
7330 goto no_support;
7331 break;
7332 }
7333 break;
7334
7335 case 0x0fc3: /* movnti */
7336 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7337 if (i386_record_modrm (&ir))
7338 return -1;
7339 if (ir.mod == 3)
7340 goto no_support;
7341 ir.reg |= rex_r;
7342 if (i386_record_lea_modrm (&ir))
7343 return -1;
7344 break;
7345
7346 /* Add prefix to opcode. */
7347 case 0x0f10:
7348 case 0x0f11:
7349 case 0x0f12:
7350 case 0x0f13:
7351 case 0x0f14:
7352 case 0x0f15:
7353 case 0x0f16:
7354 case 0x0f17:
7355 case 0x0f28:
7356 case 0x0f29:
7357 case 0x0f2a:
7358 case 0x0f2b:
7359 case 0x0f2c:
7360 case 0x0f2d:
7361 case 0x0f2e:
7362 case 0x0f2f:
7363 case 0x0f38:
7364 case 0x0f39:
7365 case 0x0f3a:
7366 case 0x0f50:
7367 case 0x0f51:
7368 case 0x0f52:
7369 case 0x0f53:
7370 case 0x0f54:
7371 case 0x0f55:
7372 case 0x0f56:
7373 case 0x0f57:
7374 case 0x0f58:
7375 case 0x0f59:
7376 case 0x0f5a:
7377 case 0x0f5b:
7378 case 0x0f5c:
7379 case 0x0f5d:
7380 case 0x0f5e:
7381 case 0x0f5f:
7382 case 0x0f60:
7383 case 0x0f61:
7384 case 0x0f62:
7385 case 0x0f63:
7386 case 0x0f64:
7387 case 0x0f65:
7388 case 0x0f66:
7389 case 0x0f67:
7390 case 0x0f68:
7391 case 0x0f69:
7392 case 0x0f6a:
7393 case 0x0f6b:
7394 case 0x0f6c:
7395 case 0x0f6d:
7396 case 0x0f6e:
7397 case 0x0f6f:
7398 case 0x0f70:
7399 case 0x0f71:
7400 case 0x0f72:
7401 case 0x0f73:
7402 case 0x0f74:
7403 case 0x0f75:
7404 case 0x0f76:
7405 case 0x0f7c:
7406 case 0x0f7d:
7407 case 0x0f7e:
7408 case 0x0f7f:
7409 case 0x0fb8:
7410 case 0x0fc2:
7411 case 0x0fc4:
7412 case 0x0fc5:
7413 case 0x0fc6:
7414 case 0x0fd0:
7415 case 0x0fd1:
7416 case 0x0fd2:
7417 case 0x0fd3:
7418 case 0x0fd4:
7419 case 0x0fd5:
7420 case 0x0fd6:
7421 case 0x0fd7:
7422 case 0x0fd8:
7423 case 0x0fd9:
7424 case 0x0fda:
7425 case 0x0fdb:
7426 case 0x0fdc:
7427 case 0x0fdd:
7428 case 0x0fde:
7429 case 0x0fdf:
7430 case 0x0fe0:
7431 case 0x0fe1:
7432 case 0x0fe2:
7433 case 0x0fe3:
7434 case 0x0fe4:
7435 case 0x0fe5:
7436 case 0x0fe6:
7437 case 0x0fe7:
7438 case 0x0fe8:
7439 case 0x0fe9:
7440 case 0x0fea:
7441 case 0x0feb:
7442 case 0x0fec:
7443 case 0x0fed:
7444 case 0x0fee:
7445 case 0x0fef:
7446 case 0x0ff0:
7447 case 0x0ff1:
7448 case 0x0ff2:
7449 case 0x0ff3:
7450 case 0x0ff4:
7451 case 0x0ff5:
7452 case 0x0ff6:
7453 case 0x0ff7:
7454 case 0x0ff8:
7455 case 0x0ff9:
7456 case 0x0ffa:
7457 case 0x0ffb:
7458 case 0x0ffc:
7459 case 0x0ffd:
7460 case 0x0ffe:
f9fda3f5
L
7461 /* Mask out PREFIX_ADDR. */
7462 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7463 {
7464 case PREFIX_REPNZ:
7465 opcode |= 0xf20000;
7466 break;
7467 case PREFIX_DATA:
7468 opcode |= 0x660000;
7469 break;
7470 case PREFIX_REPZ:
7471 opcode |= 0xf30000;
7472 break;
7473 }
7474reswitch_prefix_add:
7475 switch (opcode)
7476 {
7477 case 0x0f38:
7478 case 0x660f38:
7479 case 0xf20f38:
7480 case 0x0f3a:
7481 case 0x660f3a:
4ffa4fc7
PA
7482 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7483 return -1;
a3c4230a
HZ
7484 ir.addr++;
7485 opcode = (uint32_t) opcode8 | opcode << 8;
7486 goto reswitch_prefix_add;
7487 break;
7488
7489 case 0x0f10: /* movups */
7490 case 0x660f10: /* movupd */
7491 case 0xf30f10: /* movss */
7492 case 0xf20f10: /* movsd */
7493 case 0x0f12: /* movlps */
7494 case 0x660f12: /* movlpd */
7495 case 0xf30f12: /* movsldup */
7496 case 0xf20f12: /* movddup */
7497 case 0x0f14: /* unpcklps */
7498 case 0x660f14: /* unpcklpd */
7499 case 0x0f15: /* unpckhps */
7500 case 0x660f15: /* unpckhpd */
7501 case 0x0f16: /* movhps */
7502 case 0x660f16: /* movhpd */
7503 case 0xf30f16: /* movshdup */
7504 case 0x0f28: /* movaps */
7505 case 0x660f28: /* movapd */
7506 case 0x0f2a: /* cvtpi2ps */
7507 case 0x660f2a: /* cvtpi2pd */
7508 case 0xf30f2a: /* cvtsi2ss */
7509 case 0xf20f2a: /* cvtsi2sd */
7510 case 0x0f2c: /* cvttps2pi */
7511 case 0x660f2c: /* cvttpd2pi */
7512 case 0x0f2d: /* cvtps2pi */
7513 case 0x660f2d: /* cvtpd2pi */
7514 case 0x660f3800: /* pshufb */
7515 case 0x660f3801: /* phaddw */
7516 case 0x660f3802: /* phaddd */
7517 case 0x660f3803: /* phaddsw */
7518 case 0x660f3804: /* pmaddubsw */
7519 case 0x660f3805: /* phsubw */
7520 case 0x660f3806: /* phsubd */
4f7d61a8 7521 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7522 case 0x660f3808: /* psignb */
7523 case 0x660f3809: /* psignw */
7524 case 0x660f380a: /* psignd */
7525 case 0x660f380b: /* pmulhrsw */
7526 case 0x660f3810: /* pblendvb */
7527 case 0x660f3814: /* blendvps */
7528 case 0x660f3815: /* blendvpd */
7529 case 0x660f381c: /* pabsb */
7530 case 0x660f381d: /* pabsw */
7531 case 0x660f381e: /* pabsd */
7532 case 0x660f3820: /* pmovsxbw */
7533 case 0x660f3821: /* pmovsxbd */
7534 case 0x660f3822: /* pmovsxbq */
7535 case 0x660f3823: /* pmovsxwd */
7536 case 0x660f3824: /* pmovsxwq */
7537 case 0x660f3825: /* pmovsxdq */
7538 case 0x660f3828: /* pmuldq */
7539 case 0x660f3829: /* pcmpeqq */
7540 case 0x660f382a: /* movntdqa */
7541 case 0x660f3a08: /* roundps */
7542 case 0x660f3a09: /* roundpd */
7543 case 0x660f3a0a: /* roundss */
7544 case 0x660f3a0b: /* roundsd */
7545 case 0x660f3a0c: /* blendps */
7546 case 0x660f3a0d: /* blendpd */
7547 case 0x660f3a0e: /* pblendw */
7548 case 0x660f3a0f: /* palignr */
7549 case 0x660f3a20: /* pinsrb */
7550 case 0x660f3a21: /* insertps */
7551 case 0x660f3a22: /* pinsrd pinsrq */
7552 case 0x660f3a40: /* dpps */
7553 case 0x660f3a41: /* dppd */
7554 case 0x660f3a42: /* mpsadbw */
7555 case 0x660f3a60: /* pcmpestrm */
7556 case 0x660f3a61: /* pcmpestri */
7557 case 0x660f3a62: /* pcmpistrm */
7558 case 0x660f3a63: /* pcmpistri */
7559 case 0x0f51: /* sqrtps */
7560 case 0x660f51: /* sqrtpd */
7561 case 0xf20f51: /* sqrtsd */
7562 case 0xf30f51: /* sqrtss */
7563 case 0x0f52: /* rsqrtps */
7564 case 0xf30f52: /* rsqrtss */
7565 case 0x0f53: /* rcpps */
7566 case 0xf30f53: /* rcpss */
7567 case 0x0f54: /* andps */
7568 case 0x660f54: /* andpd */
7569 case 0x0f55: /* andnps */
7570 case 0x660f55: /* andnpd */
7571 case 0x0f56: /* orps */
7572 case 0x660f56: /* orpd */
7573 case 0x0f57: /* xorps */
7574 case 0x660f57: /* xorpd */
7575 case 0x0f58: /* addps */
7576 case 0x660f58: /* addpd */
7577 case 0xf20f58: /* addsd */
7578 case 0xf30f58: /* addss */
7579 case 0x0f59: /* mulps */
7580 case 0x660f59: /* mulpd */
7581 case 0xf20f59: /* mulsd */
7582 case 0xf30f59: /* mulss */
7583 case 0x0f5a: /* cvtps2pd */
7584 case 0x660f5a: /* cvtpd2ps */
7585 case 0xf20f5a: /* cvtsd2ss */
7586 case 0xf30f5a: /* cvtss2sd */
7587 case 0x0f5b: /* cvtdq2ps */
7588 case 0x660f5b: /* cvtps2dq */
7589 case 0xf30f5b: /* cvttps2dq */
7590 case 0x0f5c: /* subps */
7591 case 0x660f5c: /* subpd */
7592 case 0xf20f5c: /* subsd */
7593 case 0xf30f5c: /* subss */
7594 case 0x0f5d: /* minps */
7595 case 0x660f5d: /* minpd */
7596 case 0xf20f5d: /* minsd */
7597 case 0xf30f5d: /* minss */
7598 case 0x0f5e: /* divps */
7599 case 0x660f5e: /* divpd */
7600 case 0xf20f5e: /* divsd */
7601 case 0xf30f5e: /* divss */
7602 case 0x0f5f: /* maxps */
7603 case 0x660f5f: /* maxpd */
7604 case 0xf20f5f: /* maxsd */
7605 case 0xf30f5f: /* maxss */
7606 case 0x660f60: /* punpcklbw */
7607 case 0x660f61: /* punpcklwd */
7608 case 0x660f62: /* punpckldq */
7609 case 0x660f63: /* packsswb */
7610 case 0x660f64: /* pcmpgtb */
7611 case 0x660f65: /* pcmpgtw */
56d2815c 7612 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7613 case 0x660f67: /* packuswb */
7614 case 0x660f68: /* punpckhbw */
7615 case 0x660f69: /* punpckhwd */
7616 case 0x660f6a: /* punpckhdq */
7617 case 0x660f6b: /* packssdw */
7618 case 0x660f6c: /* punpcklqdq */
7619 case 0x660f6d: /* punpckhqdq */
7620 case 0x660f6e: /* movd */
7621 case 0x660f6f: /* movdqa */
7622 case 0xf30f6f: /* movdqu */
7623 case 0x660f70: /* pshufd */
7624 case 0xf20f70: /* pshuflw */
7625 case 0xf30f70: /* pshufhw */
7626 case 0x660f74: /* pcmpeqb */
7627 case 0x660f75: /* pcmpeqw */
56d2815c 7628 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7629 case 0x660f7c: /* haddpd */
7630 case 0xf20f7c: /* haddps */
7631 case 0x660f7d: /* hsubpd */
7632 case 0xf20f7d: /* hsubps */
7633 case 0xf30f7e: /* movq */
7634 case 0x0fc2: /* cmpps */
7635 case 0x660fc2: /* cmppd */
7636 case 0xf20fc2: /* cmpsd */
7637 case 0xf30fc2: /* cmpss */
7638 case 0x660fc4: /* pinsrw */
7639 case 0x0fc6: /* shufps */
7640 case 0x660fc6: /* shufpd */
7641 case 0x660fd0: /* addsubpd */
7642 case 0xf20fd0: /* addsubps */
7643 case 0x660fd1: /* psrlw */
7644 case 0x660fd2: /* psrld */
7645 case 0x660fd3: /* psrlq */
7646 case 0x660fd4: /* paddq */
7647 case 0x660fd5: /* pmullw */
7648 case 0xf30fd6: /* movq2dq */
7649 case 0x660fd8: /* psubusb */
7650 case 0x660fd9: /* psubusw */
7651 case 0x660fda: /* pminub */
7652 case 0x660fdb: /* pand */
7653 case 0x660fdc: /* paddusb */
7654 case 0x660fdd: /* paddusw */
7655 case 0x660fde: /* pmaxub */
7656 case 0x660fdf: /* pandn */
7657 case 0x660fe0: /* pavgb */
7658 case 0x660fe1: /* psraw */
7659 case 0x660fe2: /* psrad */
7660 case 0x660fe3: /* pavgw */
7661 case 0x660fe4: /* pmulhuw */
7662 case 0x660fe5: /* pmulhw */
7663 case 0x660fe6: /* cvttpd2dq */
7664 case 0xf20fe6: /* cvtpd2dq */
7665 case 0xf30fe6: /* cvtdq2pd */
7666 case 0x660fe8: /* psubsb */
7667 case 0x660fe9: /* psubsw */
7668 case 0x660fea: /* pminsw */
7669 case 0x660feb: /* por */
7670 case 0x660fec: /* paddsb */
7671 case 0x660fed: /* paddsw */
7672 case 0x660fee: /* pmaxsw */
7673 case 0x660fef: /* pxor */
4f7d61a8 7674 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7675 case 0x660ff1: /* psllw */
7676 case 0x660ff2: /* pslld */
7677 case 0x660ff3: /* psllq */
7678 case 0x660ff4: /* pmuludq */
7679 case 0x660ff5: /* pmaddwd */
7680 case 0x660ff6: /* psadbw */
7681 case 0x660ff8: /* psubb */
7682 case 0x660ff9: /* psubw */
56d2815c 7683 case 0x660ffa: /* psubd */
a3c4230a
HZ
7684 case 0x660ffb: /* psubq */
7685 case 0x660ffc: /* paddb */
7686 case 0x660ffd: /* paddw */
56d2815c 7687 case 0x660ffe: /* paddd */
a3c4230a
HZ
7688 if (i386_record_modrm (&ir))
7689 return -1;
7690 ir.reg |= rex_r;
c131fcee 7691 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7692 goto no_support;
25ea693b
MM
7693 record_full_arch_list_add_reg (ir.regcache,
7694 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7695 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7697 break;
7698
7699 case 0x0f11: /* movups */
7700 case 0x660f11: /* movupd */
7701 case 0xf30f11: /* movss */
7702 case 0xf20f11: /* movsd */
7703 case 0x0f13: /* movlps */
7704 case 0x660f13: /* movlpd */
7705 case 0x0f17: /* movhps */
7706 case 0x660f17: /* movhpd */
7707 case 0x0f29: /* movaps */
7708 case 0x660f29: /* movapd */
7709 case 0x660f3a14: /* pextrb */
7710 case 0x660f3a15: /* pextrw */
7711 case 0x660f3a16: /* pextrd pextrq */
7712 case 0x660f3a17: /* extractps */
7713 case 0x660f7f: /* movdqa */
7714 case 0xf30f7f: /* movdqu */
7715 if (i386_record_modrm (&ir))
7716 return -1;
7717 if (ir.mod == 3)
7718 {
7719 if (opcode == 0x0f13 || opcode == 0x660f13
7720 || opcode == 0x0f17 || opcode == 0x660f17)
7721 goto no_support;
7722 ir.rm |= ir.rex_b;
1777feb0
MS
7723 if (!i386_xmm_regnum_p (gdbarch,
7724 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7725 goto no_support;
25ea693b
MM
7726 record_full_arch_list_add_reg (ir.regcache,
7727 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7728 }
7729 else
7730 {
7731 switch (opcode)
7732 {
7733 case 0x660f3a14:
7734 ir.ot = OT_BYTE;
7735 break;
7736 case 0x660f3a15:
7737 ir.ot = OT_WORD;
7738 break;
7739 case 0x660f3a16:
7740 ir.ot = OT_LONG;
7741 break;
7742 case 0x660f3a17:
7743 ir.ot = OT_QUAD;
7744 break;
7745 default:
7746 ir.ot = OT_DQUAD;
7747 break;
7748 }
7749 if (i386_record_lea_modrm (&ir))
7750 return -1;
7751 }
7752 break;
7753
7754 case 0x0f2b: /* movntps */
7755 case 0x660f2b: /* movntpd */
7756 case 0x0fe7: /* movntq */
7757 case 0x660fe7: /* movntdq */
7758 if (ir.mod == 3)
7759 goto no_support;
7760 if (opcode == 0x0fe7)
7761 ir.ot = OT_QUAD;
7762 else
7763 ir.ot = OT_DQUAD;
7764 if (i386_record_lea_modrm (&ir))
7765 return -1;
7766 break;
7767
7768 case 0xf30f2c: /* cvttss2si */
7769 case 0xf20f2c: /* cvttsd2si */
7770 case 0xf30f2d: /* cvtss2si */
7771 case 0xf20f2d: /* cvtsd2si */
7772 case 0xf20f38f0: /* crc32 */
7773 case 0xf20f38f1: /* crc32 */
7774 case 0x0f50: /* movmskps */
7775 case 0x660f50: /* movmskpd */
7776 case 0x0fc5: /* pextrw */
7777 case 0x660fc5: /* pextrw */
7778 case 0x0fd7: /* pmovmskb */
7779 case 0x660fd7: /* pmovmskb */
25ea693b 7780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7781 break;
7782
7783 case 0x0f3800: /* pshufb */
7784 case 0x0f3801: /* phaddw */
7785 case 0x0f3802: /* phaddd */
7786 case 0x0f3803: /* phaddsw */
7787 case 0x0f3804: /* pmaddubsw */
7788 case 0x0f3805: /* phsubw */
7789 case 0x0f3806: /* phsubd */
4f7d61a8 7790 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7791 case 0x0f3808: /* psignb */
7792 case 0x0f3809: /* psignw */
7793 case 0x0f380a: /* psignd */
7794 case 0x0f380b: /* pmulhrsw */
7795 case 0x0f381c: /* pabsb */
7796 case 0x0f381d: /* pabsw */
7797 case 0x0f381e: /* pabsd */
7798 case 0x0f382b: /* packusdw */
7799 case 0x0f3830: /* pmovzxbw */
7800 case 0x0f3831: /* pmovzxbd */
7801 case 0x0f3832: /* pmovzxbq */
7802 case 0x0f3833: /* pmovzxwd */
7803 case 0x0f3834: /* pmovzxwq */
7804 case 0x0f3835: /* pmovzxdq */
7805 case 0x0f3837: /* pcmpgtq */
7806 case 0x0f3838: /* pminsb */
7807 case 0x0f3839: /* pminsd */
7808 case 0x0f383a: /* pminuw */
7809 case 0x0f383b: /* pminud */
7810 case 0x0f383c: /* pmaxsb */
7811 case 0x0f383d: /* pmaxsd */
7812 case 0x0f383e: /* pmaxuw */
7813 case 0x0f383f: /* pmaxud */
7814 case 0x0f3840: /* pmulld */
7815 case 0x0f3841: /* phminposuw */
7816 case 0x0f3a0f: /* palignr */
7817 case 0x0f60: /* punpcklbw */
7818 case 0x0f61: /* punpcklwd */
7819 case 0x0f62: /* punpckldq */
7820 case 0x0f63: /* packsswb */
7821 case 0x0f64: /* pcmpgtb */
7822 case 0x0f65: /* pcmpgtw */
56d2815c 7823 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7824 case 0x0f67: /* packuswb */
7825 case 0x0f68: /* punpckhbw */
7826 case 0x0f69: /* punpckhwd */
7827 case 0x0f6a: /* punpckhdq */
7828 case 0x0f6b: /* packssdw */
7829 case 0x0f6e: /* movd */
7830 case 0x0f6f: /* movq */
7831 case 0x0f70: /* pshufw */
7832 case 0x0f74: /* pcmpeqb */
7833 case 0x0f75: /* pcmpeqw */
56d2815c 7834 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7835 case 0x0fc4: /* pinsrw */
7836 case 0x0fd1: /* psrlw */
7837 case 0x0fd2: /* psrld */
7838 case 0x0fd3: /* psrlq */
7839 case 0x0fd4: /* paddq */
7840 case 0x0fd5: /* pmullw */
7841 case 0xf20fd6: /* movdq2q */
7842 case 0x0fd8: /* psubusb */
7843 case 0x0fd9: /* psubusw */
7844 case 0x0fda: /* pminub */
7845 case 0x0fdb: /* pand */
7846 case 0x0fdc: /* paddusb */
7847 case 0x0fdd: /* paddusw */
7848 case 0x0fde: /* pmaxub */
7849 case 0x0fdf: /* pandn */
7850 case 0x0fe0: /* pavgb */
7851 case 0x0fe1: /* psraw */
7852 case 0x0fe2: /* psrad */
7853 case 0x0fe3: /* pavgw */
7854 case 0x0fe4: /* pmulhuw */
7855 case 0x0fe5: /* pmulhw */
7856 case 0x0fe8: /* psubsb */
7857 case 0x0fe9: /* psubsw */
7858 case 0x0fea: /* pminsw */
7859 case 0x0feb: /* por */
7860 case 0x0fec: /* paddsb */
7861 case 0x0fed: /* paddsw */
7862 case 0x0fee: /* pmaxsw */
7863 case 0x0fef: /* pxor */
7864 case 0x0ff1: /* psllw */
7865 case 0x0ff2: /* pslld */
7866 case 0x0ff3: /* psllq */
7867 case 0x0ff4: /* pmuludq */
7868 case 0x0ff5: /* pmaddwd */
7869 case 0x0ff6: /* psadbw */
7870 case 0x0ff8: /* psubb */
7871 case 0x0ff9: /* psubw */
56d2815c 7872 case 0x0ffa: /* psubd */
a3c4230a
HZ
7873 case 0x0ffb: /* psubq */
7874 case 0x0ffc: /* paddb */
7875 case 0x0ffd: /* paddw */
56d2815c 7876 case 0x0ffe: /* paddd */
a3c4230a
HZ
7877 if (i386_record_modrm (&ir))
7878 return -1;
7879 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7880 goto no_support;
25ea693b
MM
7881 record_full_arch_list_add_reg (ir.regcache,
7882 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7883 break;
7884
7885 case 0x0f71: /* psllw */
7886 case 0x0f72: /* pslld */
7887 case 0x0f73: /* psllq */
7888 if (i386_record_modrm (&ir))
7889 return -1;
7890 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7891 goto no_support;
25ea693b
MM
7892 record_full_arch_list_add_reg (ir.regcache,
7893 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7894 break;
7895
7896 case 0x660f71: /* psllw */
7897 case 0x660f72: /* pslld */
7898 case 0x660f73: /* psllq */
7899 if (i386_record_modrm (&ir))
7900 return -1;
7901 ir.rm |= ir.rex_b;
c131fcee 7902 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7903 goto no_support;
25ea693b
MM
7904 record_full_arch_list_add_reg (ir.regcache,
7905 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7906 break;
7907
7908 case 0x0f7e: /* movd */
7909 case 0x660f7e: /* movd */
7910 if (i386_record_modrm (&ir))
7911 return -1;
7912 if (ir.mod == 3)
25ea693b 7913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7914 else
7915 {
7916 if (ir.dflag == 2)
7917 ir.ot = OT_QUAD;
7918 else
7919 ir.ot = OT_LONG;
7920 if (i386_record_lea_modrm (&ir))
7921 return -1;
7922 }
7923 break;
7924
7925 case 0x0f7f: /* movq */
7926 if (i386_record_modrm (&ir))
7927 return -1;
7928 if (ir.mod == 3)
7929 {
7930 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7931 goto no_support;
25ea693b
MM
7932 record_full_arch_list_add_reg (ir.regcache,
7933 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7934 }
7935 else
7936 {
7937 ir.ot = OT_QUAD;
7938 if (i386_record_lea_modrm (&ir))
7939 return -1;
7940 }
7941 break;
7942
7943 case 0xf30fb8: /* popcnt */
7944 if (i386_record_modrm (&ir))
7945 return -1;
25ea693b
MM
7946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7948 break;
7949
7950 case 0x660fd6: /* movq */
7951 if (i386_record_modrm (&ir))
7952 return -1;
7953 if (ir.mod == 3)
7954 {
7955 ir.rm |= ir.rex_b;
1777feb0
MS
7956 if (!i386_xmm_regnum_p (gdbarch,
7957 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7958 goto no_support;
25ea693b
MM
7959 record_full_arch_list_add_reg (ir.regcache,
7960 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7961 }
7962 else
7963 {
7964 ir.ot = OT_QUAD;
7965 if (i386_record_lea_modrm (&ir))
7966 return -1;
7967 }
7968 break;
7969
7970 case 0x660f3817: /* ptest */
7971 case 0x0f2e: /* ucomiss */
7972 case 0x660f2e: /* ucomisd */
7973 case 0x0f2f: /* comiss */
7974 case 0x660f2f: /* comisd */
25ea693b 7975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7976 break;
7977
7978 case 0x0ff7: /* maskmovq */
7979 regcache_raw_read_unsigned (ir.regcache,
7980 ir.regmap[X86_RECORD_REDI_REGNUM],
7981 &addr);
25ea693b 7982 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7983 return -1;
7984 break;
7985
7986 case 0x660ff7: /* maskmovdqu */
7987 regcache_raw_read_unsigned (ir.regcache,
7988 ir.regmap[X86_RECORD_REDI_REGNUM],
7989 &addr);
25ea693b 7990 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7991 return -1;
7992 break;
7993
7994 default:
7995 goto no_support;
7996 break;
7997 }
7998 break;
7ad10968
HZ
7999
8000 default:
7ad10968
HZ
8001 goto no_support;
8002 break;
8003 }
8004
cf648174 8005 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8007 if (record_full_arch_list_add_end ())
7ad10968
HZ
8008 return -1;
8009
8010 return 0;
8011
01fe1b41 8012 no_support:
a3c4230a
HZ
8013 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8014 "at address %s.\n"),
8015 (unsigned int) (opcode),
8016 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8017 return -1;
8018}
8019
cf648174
HZ
8020static const int i386_record_regmap[] =
8021{
8022 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8023 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8024 0, 0, 0, 0, 0, 0, 0, 0,
8025 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8026 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8027};
8028
7a697b8d 8029/* Check that the given address appears suitable for a fast
405f8e94 8030 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8031 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8032 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8033 middle of the tracepoint jump. On x86, it may be possible to use
8034 4-byte jumps with a 2-byte offset to a trampoline located in the
8035 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8036 of instruction to replace, and 0 if not, plus an explanatory
8037 string. */
8038
8039static int
8040i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8041 CORE_ADDR addr, int *isize, char **msg)
8042{
8043 int len, jumplen;
8044 static struct ui_file *gdb_null = NULL;
8045
405f8e94
SS
8046 /* Ask the target for the minimum instruction length supported. */
8047 jumplen = target_get_min_fast_tracepoint_insn_len ();
8048
8049 if (jumplen < 0)
8050 {
8051 /* If the target does not support the get_min_fast_tracepoint_insn_len
8052 operation, assume that fast tracepoints will always be implemented
8053 using 4-byte relative jumps on both x86 and x86-64. */
8054 jumplen = 5;
8055 }
8056 else if (jumplen == 0)
8057 {
8058 /* If the target does support get_min_fast_tracepoint_insn_len but
8059 returns zero, then the IPA has not loaded yet. In this case,
8060 we optimistically assume that truncated 2-byte relative jumps
8061 will be available on x86, and compensate later if this assumption
8062 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8063 jumps will always be used. */
8064 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8065 }
7a697b8d
SS
8066
8067 /* Dummy file descriptor for the disassembler. */
8068 if (!gdb_null)
8069 gdb_null = ui_file_new ();
8070
8071 /* Check for fit. */
8072 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8073 if (isize)
8074 *isize = len;
8075
7a697b8d
SS
8076 if (len < jumplen)
8077 {
8078 /* Return a bit of target-specific detail to add to the caller's
8079 generic failure message. */
8080 if (msg)
1777feb0
MS
8081 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8082 "need at least %d bytes for the jump"),
7a697b8d
SS
8083 len, jumplen);
8084 return 0;
8085 }
405f8e94
SS
8086 else
8087 {
8088 if (msg)
8089 *msg = NULL;
8090 return 1;
8091 }
7a697b8d
SS
8092}
8093
90884b2b
L
8094static int
8095i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8096 struct tdesc_arch_data *tdesc_data)
8097{
8098 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8099 const struct tdesc_feature *feature_core;
01f9f808
MS
8100
8101 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8102 *feature_avx512;
90884b2b
L
8103 int i, num_regs, valid_p;
8104
8105 if (! tdesc_has_registers (tdesc))
8106 return 0;
8107
8108 /* Get core registers. */
8109 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8110 if (feature_core == NULL)
8111 return 0;
90884b2b
L
8112
8113 /* Get SSE registers. */
c131fcee 8114 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8115
c131fcee
L
8116 /* Try AVX registers. */
8117 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8118
1dbcd68c
WT
8119 /* Try MPX registers. */
8120 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8121
01f9f808
MS
8122 /* Try AVX512 registers. */
8123 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8124
90884b2b
L
8125 valid_p = 1;
8126
c131fcee 8127 /* The XCR0 bits. */
01f9f808
MS
8128 if (feature_avx512)
8129 {
8130 /* AVX512 register description requires AVX register description. */
8131 if (!feature_avx)
8132 return 0;
8133
df7e5265 8134 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8135
8136 /* It may have been set by OSABI initialization function. */
8137 if (tdep->k0_regnum < 0)
8138 {
8139 tdep->k_register_names = i386_k_names;
8140 tdep->k0_regnum = I386_K0_REGNUM;
8141 }
8142
8143 for (i = 0; i < I387_NUM_K_REGS; i++)
8144 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8145 tdep->k0_regnum + i,
8146 i386_k_names[i]);
8147
8148 if (tdep->num_zmm_regs == 0)
8149 {
8150 tdep->zmmh_register_names = i386_zmmh_names;
8151 tdep->num_zmm_regs = 8;
8152 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8153 }
8154
8155 for (i = 0; i < tdep->num_zmm_regs; i++)
8156 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8157 tdep->zmm0h_regnum + i,
8158 tdep->zmmh_register_names[i]);
8159
8160 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8161 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8162 tdep->xmm16_regnum + i,
8163 tdep->xmm_avx512_register_names[i]);
8164
8165 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8166 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8167 tdep->ymm16h_regnum + i,
8168 tdep->ymm16h_register_names[i]);
8169 }
c131fcee
L
8170 if (feature_avx)
8171 {
3a13a53b
L
8172 /* AVX register description requires SSE register description. */
8173 if (!feature_sse)
8174 return 0;
8175
01f9f808 8176 if (!feature_avx512)
df7e5265 8177 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8178
8179 /* It may have been set by OSABI initialization function. */
8180 if (tdep->num_ymm_regs == 0)
8181 {
8182 tdep->ymmh_register_names = i386_ymmh_names;
8183 tdep->num_ymm_regs = 8;
8184 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8185 }
8186
8187 for (i = 0; i < tdep->num_ymm_regs; i++)
8188 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8189 tdep->ymm0h_regnum + i,
8190 tdep->ymmh_register_names[i]);
8191 }
3a13a53b 8192 else if (feature_sse)
df7e5265 8193 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8194 else
8195 {
df7e5265 8196 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8197 tdep->num_xmm_regs = 0;
8198 }
c131fcee 8199
90884b2b
L
8200 num_regs = tdep->num_core_regs;
8201 for (i = 0; i < num_regs; i++)
8202 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8203 tdep->register_names[i]);
8204
3a13a53b
L
8205 if (feature_sse)
8206 {
8207 /* Need to include %mxcsr, so add one. */
8208 num_regs += tdep->num_xmm_regs + 1;
8209 for (; i < num_regs; i++)
8210 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8211 tdep->register_names[i]);
8212 }
90884b2b 8213
1dbcd68c
WT
8214 if (feature_mpx)
8215 {
df7e5265 8216 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8217
8218 if (tdep->bnd0r_regnum < 0)
8219 {
8220 tdep->mpx_register_names = i386_mpx_names;
8221 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8222 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8223 }
8224
8225 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8226 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8227 I387_BND0R_REGNUM (tdep) + i,
8228 tdep->mpx_register_names[i]);
8229 }
8230
90884b2b
L
8231 return valid_p;
8232}
8233
7ad10968
HZ
8234\f
8235static struct gdbarch *
8236i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8237{
8238 struct gdbarch_tdep *tdep;
8239 struct gdbarch *gdbarch;
90884b2b
L
8240 struct tdesc_arch_data *tdesc_data;
8241 const struct target_desc *tdesc;
1ba53b71 8242 int mm0_regnum;
c131fcee 8243 int ymm0_regnum;
1dbcd68c
WT
8244 int bnd0_regnum;
8245 int num_bnd_cooked;
01f9f808
MS
8246 int k0_regnum;
8247 int zmm0_regnum;
7ad10968
HZ
8248
8249 /* If there is already a candidate, use it. */
8250 arches = gdbarch_list_lookup_by_info (arches, &info);
8251 if (arches != NULL)
8252 return arches->gdbarch;
8253
8254 /* Allocate space for the new architecture. */
fc270c35 8255 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8256 gdbarch = gdbarch_alloc (&info, tdep);
8257
8258 /* General-purpose registers. */
7ad10968
HZ
8259 tdep->gregset_reg_offset = NULL;
8260 tdep->gregset_num_regs = I386_NUM_GREGS;
8261 tdep->sizeof_gregset = 0;
8262
8263 /* Floating-point registers. */
7ad10968 8264 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8265 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8266
8267 /* The default settings include the FPU registers, the MMX registers
8268 and the SSE registers. This can be overridden for a specific ABI
8269 by adjusting the members `st0_regnum', `mm0_regnum' and
8270 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8271 will show up in the output of "info all-registers". */
7ad10968
HZ
8272
8273 tdep->st0_regnum = I386_ST0_REGNUM;
8274
7ad10968
HZ
8275 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8276 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8277
8278 tdep->jb_pc_offset = -1;
8279 tdep->struct_return = pcc_struct_return;
8280 tdep->sigtramp_start = 0;
8281 tdep->sigtramp_end = 0;
8282 tdep->sigtramp_p = i386_sigtramp_p;
8283 tdep->sigcontext_addr = NULL;
8284 tdep->sc_reg_offset = NULL;
8285 tdep->sc_pc_offset = -1;
8286 tdep->sc_sp_offset = -1;
8287
c131fcee
L
8288 tdep->xsave_xcr0_offset = -1;
8289
cf648174
HZ
8290 tdep->record_regmap = i386_record_regmap;
8291
205c306f
DM
8292 set_gdbarch_long_long_align_bit (gdbarch, 32);
8293
7ad10968
HZ
8294 /* The format used for `long double' on almost all i386 targets is
8295 the i387 extended floating-point format. In fact, of all targets
8296 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8297 on having a `long double' that's not `long' at all. */
8298 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8299
8300 /* Although the i387 extended floating-point has only 80 significant
8301 bits, a `long double' actually takes up 96, probably to enforce
8302 alignment. */
8303 set_gdbarch_long_double_bit (gdbarch, 96);
8304
7ad10968
HZ
8305 /* Register numbers of various important registers. */
8306 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8307 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8308 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8309 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8310
8311 /* NOTE: kettenis/20040418: GCC does have two possible register
8312 numbering schemes on the i386: dbx and SVR4. These schemes
8313 differ in how they number %ebp, %esp, %eflags, and the
8314 floating-point registers, and are implemented by the arrays
8315 dbx_register_map[] and svr4_dbx_register_map in
8316 gcc/config/i386.c. GCC also defines a third numbering scheme in
8317 gcc/config/i386.c, which it designates as the "default" register
8318 map used in 64bit mode. This last register numbering scheme is
8319 implemented in dbx64_register_map, and is used for AMD64; see
8320 amd64-tdep.c.
8321
8322 Currently, each GCC i386 target always uses the same register
8323 numbering scheme across all its supported debugging formats
8324 i.e. SDB (COFF), stabs and DWARF 2. This is because
8325 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8326 DBX_REGISTER_NUMBER macro which is defined by each target's
8327 respective config header in a manner independent of the requested
8328 output debugging format.
8329
8330 This does not match the arrangement below, which presumes that
8331 the SDB and stabs numbering schemes differ from the DWARF and
8332 DWARF 2 ones. The reason for this arrangement is that it is
8333 likely to get the numbering scheme for the target's
8334 default/native debug format right. For targets where GCC is the
8335 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8336 targets where the native toolchain uses a different numbering
8337 scheme for a particular debug format (stabs-in-ELF on Solaris)
8338 the defaults below will have to be overridden, like
8339 i386_elf_init_abi() does. */
8340
8341 /* Use the dbx register numbering scheme for stabs and COFF. */
8342 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8343 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8344
8345 /* Use the SVR4 register numbering scheme for DWARF 2. */
8346 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8347
8348 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8349 be in use on any of the supported i386 targets. */
8350
8351 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8352
8353 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8354
8355 /* Call dummy code. */
a9b8d892
JK
8356 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8357 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8358 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8359 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8360
8361 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8362 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8363 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8364
8365 set_gdbarch_return_value (gdbarch, i386_return_value);
8366
8367 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8368
8369 /* Stack grows downward. */
8370 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8371
8372 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8373 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8374 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8375
8376 set_gdbarch_frame_args_skip (gdbarch, 8);
8377
7ad10968
HZ
8378 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8379
8380 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8381
8382 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8383
8384 /* Add the i386 register groups. */
8385 i386_add_reggroups (gdbarch);
90884b2b 8386 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8387
143985b7
AF
8388 /* Helper for function argument information. */
8389 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8390
06da04c6 8391 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8392 appended to the list first, so that it supercedes the DWARF
8393 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8394 currently fails). */
8395 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8396
8397 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8398 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8399 CFI info will be used if it is available. */
10458914 8400 dwarf2_append_unwinders (gdbarch);
6405b0a6 8401
acd5c798 8402 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8403
1ba53b71 8404 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8405 set_gdbarch_pseudo_register_read_value (gdbarch,
8406 i386_pseudo_register_read_value);
90884b2b
L
8407 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8408
8409 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8410 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8411
c131fcee
L
8412 /* Override the normal target description method to make the AVX
8413 upper halves anonymous. */
8414 set_gdbarch_register_name (gdbarch, i386_register_name);
8415
8416 /* Even though the default ABI only includes general-purpose registers,
8417 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8418 gap for the upper AVX, MPX and AVX512 registers. */
8419 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b 8420
ac04f72b
TT
8421 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8422
90884b2b
L
8423 /* Get the x86 target description from INFO. */
8424 tdesc = info.target_desc;
8425 if (! tdesc_has_registers (tdesc))
8426 tdesc = tdesc_i386;
8427 tdep->tdesc = tdesc;
8428
8429 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8430 tdep->register_names = i386_register_names;
8431
c131fcee
L
8432 /* No upper YMM registers. */
8433 tdep->ymmh_register_names = NULL;
8434 tdep->ymm0h_regnum = -1;
8435
01f9f808
MS
8436 /* No upper ZMM registers. */
8437 tdep->zmmh_register_names = NULL;
8438 tdep->zmm0h_regnum = -1;
8439
8440 /* No high XMM registers. */
8441 tdep->xmm_avx512_register_names = NULL;
8442 tdep->xmm16_regnum = -1;
8443
8444 /* No upper YMM16-31 registers. */
8445 tdep->ymm16h_register_names = NULL;
8446 tdep->ymm16h_regnum = -1;
8447
1ba53b71
L
8448 tdep->num_byte_regs = 8;
8449 tdep->num_word_regs = 8;
8450 tdep->num_dword_regs = 0;
8451 tdep->num_mmx_regs = 8;
c131fcee 8452 tdep->num_ymm_regs = 0;
1ba53b71 8453
1dbcd68c
WT
8454 /* No MPX registers. */
8455 tdep->bnd0r_regnum = -1;
8456 tdep->bndcfgu_regnum = -1;
8457
01f9f808
MS
8458 /* No AVX512 registers. */
8459 tdep->k0_regnum = -1;
8460 tdep->num_zmm_regs = 0;
8461 tdep->num_ymm_avx512_regs = 0;
8462 tdep->num_xmm_avx512_regs = 0;
8463
90884b2b
L
8464 tdesc_data = tdesc_data_alloc ();
8465
dde08ee1
PA
8466 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8467
6710bf39
SS
8468 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8469
c2170eef
MM
8470 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8471 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8472 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8473
3ce1502b 8474 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8475 info.tdep_info = (void *) tdesc_data;
4be87837 8476 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8477
c131fcee
L
8478 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8479 {
8480 tdesc_data_cleanup (tdesc_data);
8481 xfree (tdep);
8482 gdbarch_free (gdbarch);
8483 return NULL;
8484 }
8485
1dbcd68c
WT
8486 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8487
1ba53b71
L
8488 /* Wire in pseudo registers. Number of pseudo registers may be
8489 changed. */
8490 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8491 + tdep->num_word_regs
8492 + tdep->num_dword_regs
c131fcee 8493 + tdep->num_mmx_regs
1dbcd68c 8494 + tdep->num_ymm_regs
01f9f808
MS
8495 + num_bnd_cooked
8496 + tdep->num_ymm_avx512_regs
8497 + tdep->num_zmm_regs));
1ba53b71 8498
90884b2b
L
8499 /* Target description may be changed. */
8500 tdesc = tdep->tdesc;
8501
90884b2b
L
8502 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8503
8504 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8505 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8506
1ba53b71
L
8507 /* Make %al the first pseudo-register. */
8508 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8509 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8510
c131fcee 8511 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8512 if (tdep->num_dword_regs)
8513 {
1c6272a6 8514 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8515 tdep->eax_regnum = ymm0_regnum;
8516 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8517 }
8518 else
8519 tdep->eax_regnum = -1;
8520
c131fcee
L
8521 mm0_regnum = ymm0_regnum;
8522 if (tdep->num_ymm_regs)
8523 {
1c6272a6 8524 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8525 tdep->ymm0_regnum = ymm0_regnum;
8526 mm0_regnum += tdep->num_ymm_regs;
8527 }
8528 else
8529 tdep->ymm0_regnum = -1;
8530
01f9f808
MS
8531 if (tdep->num_ymm_avx512_regs)
8532 {
8533 /* Support YMM16-31 pseudo registers if available. */
8534 tdep->ymm16_regnum = mm0_regnum;
8535 mm0_regnum += tdep->num_ymm_avx512_regs;
8536 }
8537 else
8538 tdep->ymm16_regnum = -1;
8539
8540 if (tdep->num_zmm_regs)
8541 {
8542 /* Support ZMM pseudo-register if it is available. */
8543 tdep->zmm0_regnum = mm0_regnum;
8544 mm0_regnum += tdep->num_zmm_regs;
8545 }
8546 else
8547 tdep->zmm0_regnum = -1;
8548
1dbcd68c 8549 bnd0_regnum = mm0_regnum;
1ba53b71
L
8550 if (tdep->num_mmx_regs != 0)
8551 {
1c6272a6 8552 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8553 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8554 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8555 }
8556 else
8557 tdep->mm0_regnum = -1;
8558
1dbcd68c
WT
8559 if (tdep->bnd0r_regnum > 0)
8560 tdep->bnd0_regnum = bnd0_regnum;
8561 else
8562 tdep-> bnd0_regnum = -1;
8563
06da04c6 8564 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8565 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8566 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8567 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8568
8446b36a
MK
8569 /* If we have a register mapping, enable the generic core file
8570 support, unless it has already been enabled. */
8571 if (tdep->gregset_reg_offset
8f0435f7 8572 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8573 set_gdbarch_iterate_over_regset_sections
8574 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8575
7a697b8d
SS
8576 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8577 i386_fast_tracepoint_valid_at);
8578
a62cc96e
AC
8579 return gdbarch;
8580}
8581
8201327c
MK
8582static enum gdb_osabi
8583i386_coff_osabi_sniffer (bfd *abfd)
8584{
762c5349
MK
8585 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8586 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8587 return GDB_OSABI_GO32;
8588
8589 return GDB_OSABI_UNKNOWN;
8590}
8201327c
MK
8591\f
8592
28e9e0f0
MK
8593/* Provide a prototype to silence -Wmissing-prototypes. */
8594void _initialize_i386_tdep (void);
8595
c906108c 8596void
fba45db2 8597_initialize_i386_tdep (void)
c906108c 8598{
a62cc96e
AC
8599 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8600
fc338970 8601 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8602 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8603 &disassembly_flavor, _("\
8604Set the disassembly flavor."), _("\
8605Show the disassembly flavor."), _("\
8606The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8607 NULL,
8608 NULL, /* FIXME: i18n: */
8609 &setlist, &showlist);
8201327c
MK
8610
8611 /* Add the variable that controls the convention for returning
8612 structs. */
7ab04401
AC
8613 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8614 &struct_convention, _("\
8615Set the convention for returning small structs."), _("\
8616Show the convention for returning small structs."), _("\
8617Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8618is \"default\"."),
8619 NULL,
8620 NULL, /* FIXME: i18n: */
8621 &setlist, &showlist);
8201327c
MK
8622
8623 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8624 i386_coff_osabi_sniffer);
8201327c 8625
05816f70 8626 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8627 i386_svr4_init_abi);
05816f70 8628 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8629 i386_go32_init_abi);
38c968cf 8630
209bd28e 8631 /* Initialize the i386-specific register groups. */
38c968cf 8632 i386_init_reggroups ();
90884b2b
L
8633
8634 /* Initialize the standard target descriptions. */
8635 initialize_tdesc_i386 ();
3a13a53b 8636 initialize_tdesc_i386_mmx ();
c131fcee 8637 initialize_tdesc_i386_avx ();
1dbcd68c 8638 initialize_tdesc_i386_mpx ();
01f9f808 8639 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8640
8641 /* Tell remote stub that we support XML target description. */
8642 register_remote_support_xml ("i386");
c906108c 8643}
This page took 1.73273 seconds and 4 git commands to generate.