2003-11-23 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798
MK
28#include "doublest.h"
29#include "floatformat.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
acd5c798 46
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
d2a7c97a 52
fc633446
MK
53/* Names of the registers. The first 10 registers match the register
54 numbering scheme used by GCC for stabs and DWARF. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
28fc6740
AC
73/* MMX registers. */
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
85540d8c
MK
168/* Convert stabs register number REG to the appropriate register
169 number used by GDB. */
170
8201327c 171static int
85540d8c
MK
172i386_stab_reg_to_regnum (int reg)
173{
174 /* This implements what GCC calls the "default" register map. */
175 if (reg >= 0 && reg <= 7)
176 {
acd5c798 177 /* General-purpose registers. */
85540d8c
MK
178 return reg;
179 }
180 else if (reg >= 12 && reg <= 19)
181 {
182 /* Floating-point registers. */
5716833c 183 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
184 }
185 else if (reg >= 21 && reg <= 28)
186 {
187 /* SSE registers. */
5716833c 188 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
189 }
190 else if (reg >= 29 && reg <= 36)
191 {
192 /* MMX registers. */
5716833c 193 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
194 }
195
196 /* This will hopefully provoke a warning. */
197 return NUM_REGS + NUM_PSEUDO_REGS;
198}
199
8201327c 200/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
201 number used by GDB. */
202
8201327c 203static int
85540d8c
MK
204i386_dwarf_reg_to_regnum (int reg)
205{
206 /* The DWARF register numbering includes %eip and %eflags, and
207 numbers the floating point registers differently. */
208 if (reg >= 0 && reg <= 9)
209 {
acd5c798 210 /* General-purpose registers. */
85540d8c
MK
211 return reg;
212 }
213 else if (reg >= 11 && reg <= 18)
214 {
215 /* Floating-point registers. */
5716833c 216 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
217 }
218 else if (reg >= 21)
219 {
220 /* The SSE and MMX registers have identical numbers as in stabs. */
221 return i386_stab_reg_to_regnum (reg);
222 }
223
224 /* This will hopefully provoke a warning. */
225 return NUM_REGS + NUM_PSEUDO_REGS;
226}
5716833c
MK
227
228#undef I387_ST0_REGNUM
229#undef I387_MM0_REGNUM
230#undef I387_NUM_XMM_REGS
fc338970 231\f
917317f4 232
fc338970
MK
233/* This is the variable that is set with "set disassembly-flavor", and
234 its legitimate values. */
53904c9e
AC
235static const char att_flavor[] = "att";
236static const char intel_flavor[] = "intel";
237static const char *valid_flavors[] =
c5aa993b 238{
c906108c
SS
239 att_flavor,
240 intel_flavor,
241 NULL
242};
53904c9e 243static const char *disassembly_flavor = att_flavor;
acd5c798 244\f
c906108c 245
acd5c798
MK
246/* Use the program counter to determine the contents and size of a
247 breakpoint instruction. Return a pointer to a string of bytes that
248 encode a breakpoint instruction, store the length of the string in
249 *LEN and optionally adjust *PC to point to the correct memory
250 location for inserting the breakpoint.
c906108c 251
acd5c798
MK
252 On the i386 we have a single breakpoint that fits in a single byte
253 and can be inserted anywhere.
c906108c 254
acd5c798
MK
255 This function is 64-bit safe. */
256
257static const unsigned char *
258i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 259{
acd5c798
MK
260 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
261
262 *len = sizeof (break_insn);
263 return break_insn;
c906108c 264}
fc338970 265\f
acd5c798
MK
266#ifdef I386_REGNO_TO_SYMMETRY
267#error "The Sequent Symmetry is no longer supported."
268#endif
c906108c 269
acd5c798
MK
270/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
271 and %esp "belong" to the calling function. Therefore these
272 registers should be saved if they're going to be modified. */
c906108c 273
acd5c798
MK
274/* The maximum number of saved registers. This should include all
275 registers mentioned above, and %eip. */
a3386186 276#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
277
278struct i386_frame_cache
c906108c 279{
acd5c798
MK
280 /* Base address. */
281 CORE_ADDR base;
282 CORE_ADDR sp_offset;
283 CORE_ADDR pc;
284
fd13a04a
AC
285 /* Saved registers. */
286 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
287 CORE_ADDR saved_sp;
288 int pc_in_eax;
289
290 /* Stack space reserved for local variables. */
291 long locals;
292};
293
294/* Allocate and initialize a frame cache. */
295
296static struct i386_frame_cache *
fd13a04a 297i386_alloc_frame_cache (void)
acd5c798
MK
298{
299 struct i386_frame_cache *cache;
300 int i;
301
302 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
303
304 /* Base address. */
305 cache->base = 0;
306 cache->sp_offset = -4;
307 cache->pc = 0;
308
fd13a04a
AC
309 /* Saved registers. We initialize these to -1 since zero is a valid
310 offset (that's where %ebp is supposed to be stored). */
311 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
312 cache->saved_regs[i] = -1;
acd5c798
MK
313 cache->saved_sp = 0;
314 cache->pc_in_eax = 0;
315
316 /* Frameless until proven otherwise. */
317 cache->locals = -1;
318
319 return cache;
320}
c906108c 321
acd5c798
MK
322/* If the instruction at PC is a jump, return the address of its
323 target. Otherwise, return PC. */
c906108c 324
acd5c798
MK
325static CORE_ADDR
326i386_follow_jump (CORE_ADDR pc)
327{
328 unsigned char op;
329 long delta = 0;
330 int data16 = 0;
c906108c 331
acd5c798
MK
332 op = read_memory_unsigned_integer (pc, 1);
333 if (op == 0x66)
c906108c 334 {
c906108c 335 data16 = 1;
acd5c798 336 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
337 }
338
acd5c798 339 switch (op)
c906108c
SS
340 {
341 case 0xe9:
fc338970 342 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
343 if (data16)
344 {
acd5c798 345 delta = read_memory_integer (pc + 2, 2);
c906108c 346
fc338970
MK
347 /* Include the size of the jmp instruction (including the
348 0x66 prefix). */
acd5c798 349 delta += 4;
c906108c
SS
350 }
351 else
352 {
acd5c798 353 delta = read_memory_integer (pc + 1, 4);
c906108c 354
acd5c798
MK
355 /* Include the size of the jmp instruction. */
356 delta += 5;
c906108c
SS
357 }
358 break;
359 case 0xeb:
fc338970 360 /* Relative jump, disp8 (ignore data16). */
acd5c798 361 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 362
acd5c798 363 delta += data16 + 2;
c906108c
SS
364 break;
365 }
c906108c 366
acd5c798
MK
367 return pc + delta;
368}
fc338970 369
acd5c798
MK
370/* Check whether PC points at a prologue for a function returning a
371 structure or union. If so, it updates CACHE and returns the
372 address of the first instruction after the code sequence that
373 removes the "hidden" argument from the stack or CURRENT_PC,
374 whichever is smaller. Otherwise, return PC. */
c906108c 375
acd5c798
MK
376static CORE_ADDR
377i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
378 struct i386_frame_cache *cache)
c906108c 379{
acd5c798
MK
380 /* Functions that return a structure or union start with:
381
382 popl %eax 0x58
383 xchgl %eax, (%esp) 0x87 0x04 0x24
384 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
385
386 (the System V compiler puts out the second `xchg' instruction,
387 and the assembler doesn't try to optimize it, so the 'sib' form
388 gets generated). This sequence is used to get the address of the
389 return buffer for a function that returns a structure. */
390 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
391 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
392 unsigned char buf[4];
c906108c
SS
393 unsigned char op;
394
acd5c798
MK
395 if (current_pc <= pc)
396 return pc;
397
398 op = read_memory_unsigned_integer (pc, 1);
c906108c 399
acd5c798
MK
400 if (op != 0x58) /* popl %eax */
401 return pc;
c906108c 402
acd5c798
MK
403 read_memory (pc + 1, buf, 4);
404 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
405 return pc;
c906108c 406
acd5c798 407 if (current_pc == pc)
c906108c 408 {
acd5c798
MK
409 cache->sp_offset += 4;
410 return current_pc;
c906108c
SS
411 }
412
acd5c798 413 if (current_pc == pc + 1)
c906108c 414 {
acd5c798
MK
415 cache->pc_in_eax = 1;
416 return current_pc;
417 }
418
419 if (buf[1] == proto1[1])
420 return pc + 4;
421 else
422 return pc + 5;
423}
424
425static CORE_ADDR
426i386_skip_probe (CORE_ADDR pc)
427{
428 /* A function may start with
fc338970 429
acd5c798
MK
430 pushl constant
431 call _probe
432 addl $4, %esp
fc338970 433
acd5c798
MK
434 followed by
435
436 pushl %ebp
fc338970 437
acd5c798
MK
438 etc. */
439 unsigned char buf[8];
440 unsigned char op;
fc338970 441
acd5c798
MK
442 op = read_memory_unsigned_integer (pc, 1);
443
444 if (op == 0x68 || op == 0x6a)
445 {
446 int delta;
c906108c 447
acd5c798
MK
448 /* Skip past the `pushl' instruction; it has either a one-byte or a
449 four-byte operand, depending on the opcode. */
c906108c 450 if (op == 0x68)
acd5c798 451 delta = 5;
c906108c 452 else
acd5c798 453 delta = 2;
c906108c 454
acd5c798
MK
455 /* Read the following 8 bytes, which should be `call _probe' (6
456 bytes) followed by `addl $4,%esp' (2 bytes). */
457 read_memory (pc + delta, buf, sizeof (buf));
c906108c 458 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 459 pc += delta + sizeof (buf);
c906108c
SS
460 }
461
acd5c798
MK
462 return pc;
463}
464
465/* Check whether PC points at a code that sets up a new stack frame.
466 If so, it updates CACHE and returns the address of the first
467 instruction after the sequence that sets removes the "hidden"
468 argument from the stack or CURRENT_PC, whichever is smaller.
469 Otherwise, return PC. */
470
471static CORE_ADDR
472i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
473 struct i386_frame_cache *cache)
474{
475 unsigned char op;
26604a34 476 int skip = 0;
acd5c798
MK
477
478 if (current_pc <= pc)
479 return current_pc;
480
481 op = read_memory_unsigned_integer (pc, 1);
482
c906108c 483 if (op == 0x55) /* pushl %ebp */
c5aa993b 484 {
acd5c798
MK
485 /* Take into account that we've executed the `pushl %ebp' that
486 starts this instruction sequence. */
fd13a04a 487 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
488 cache->sp_offset += 4;
489
490 /* If that's all, return now. */
491 if (current_pc <= pc + 1)
492 return current_pc;
493
acd5c798 494 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
495
496 /* Check for some special instructions that might be migrated
497 by GCC into the prologue. We check for
498
499 xorl %ebx, %ebx
500 xorl %ecx, %ecx
501 xorl %edx, %edx
7270b6ed 502 xorl %eax, %eax
26604a34
MK
503
504 and the equivalent
505
506 subl %ebx, %ebx
507 subl %ecx, %ecx
508 subl %edx, %edx
7270b6ed 509 subl %eax, %eax
26604a34
MK
510
511 Make sure we only skip these instructions if we later see the
512 `movl %esp, %ebp' that actually sets up the frame. */
513 while (op == 0x29 || op == 0x31)
514 {
515 op = read_memory_unsigned_integer (pc + skip + 2, 1);
516 switch (op)
517 {
518 case 0xdb: /* %ebx */
519 case 0xc9: /* %ecx */
520 case 0xd2: /* %edx */
7270b6ed 521 case 0xc0: /* %eax */
26604a34
MK
522 skip += 2;
523 break;
524 default:
525 return pc + 1;
526 }
527
528 op = read_memory_unsigned_integer (pc + skip + 1, 1);
529 }
530
531 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 532 switch (op)
c906108c
SS
533 {
534 case 0x8b:
26604a34 535 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 536 return pc + 1;
c906108c
SS
537 break;
538 case 0x89:
26604a34 539 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 540 return pc + 1;
c906108c
SS
541 break;
542 default:
acd5c798 543 return pc + 1;
c906108c 544 }
acd5c798 545
26604a34
MK
546 /* OK, we actually have a frame. We just don't know how large
547 it is yet. Set its size to zero. We'll adjust it if
548 necessary. We also now commit to skipping the special
549 instructions mentioned before. */
acd5c798 550 cache->locals = 0;
26604a34 551 pc += skip;
acd5c798
MK
552
553 /* If that's all, return now. */
554 if (current_pc <= pc + 3)
555 return current_pc;
556
fc338970
MK
557 /* Check for stack adjustment
558
acd5c798 559 subl $XXX, %esp
fc338970
MK
560
561 NOTE: You can't subtract a 16 bit immediate from a 32 bit
562 reg, so we don't have to worry about a data16 prefix. */
acd5c798 563 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
564 if (op == 0x83)
565 {
fc338970 566 /* `subl' with 8 bit immediate. */
acd5c798 567 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 568 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
569 return pc + 3;
570
571 /* `subl' with signed byte immediate (though it wouldn't make
572 sense to be negative). */
573 cache->locals = read_memory_integer (pc + 5, 1);
574 return pc + 6;
c906108c
SS
575 }
576 else if (op == 0x81)
577 {
fc338970 578 /* Maybe it is `subl' with a 32 bit immedediate. */
acd5c798 579 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 580 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
581 return pc + 3;
582
fc338970 583 /* It is `subl' with a 32 bit immediate. */
acd5c798
MK
584 cache->locals = read_memory_integer (pc + 5, 4);
585 return pc + 9;
c906108c
SS
586 }
587 else
588 {
acd5c798
MK
589 /* Some instruction other than `subl'. */
590 return pc + 3;
c906108c
SS
591 }
592 }
acd5c798 593 else if (op == 0xc8) /* enter $XXX */
c906108c 594 {
acd5c798
MK
595 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
596 return pc + 4;
c906108c 597 }
21d0e8a4 598
acd5c798 599 return pc;
21d0e8a4
MK
600}
601
acd5c798
MK
602/* Check whether PC points at code that saves registers on the stack.
603 If so, it updates CACHE and returns the address of the first
604 instruction after the register saves or CURRENT_PC, whichever is
605 smaller. Otherwise, return PC. */
6bff26de
MK
606
607static CORE_ADDR
acd5c798
MK
608i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct i386_frame_cache *cache)
6bff26de 610{
99ab4326
MK
611 CORE_ADDR offset = 0;
612 unsigned char op;
613 int i;
c0d1d883 614
99ab4326
MK
615 if (cache->locals > 0)
616 offset -= cache->locals;
617 for (i = 0; i < 8 && pc < current_pc; i++)
618 {
619 op = read_memory_unsigned_integer (pc, 1);
620 if (op < 0x50 || op > 0x57)
621 break;
0d17c81d 622
99ab4326
MK
623 offset -= 4;
624 cache->saved_regs[op - 0x50] = offset;
625 cache->sp_offset += 4;
626 pc++;
6bff26de
MK
627 }
628
acd5c798 629 return pc;
22797942
AC
630}
631
acd5c798
MK
632/* Do a full analysis of the prologue at PC and update CACHE
633 accordingly. Bail out early if CURRENT_PC is reached. Return the
634 address where the analysis stopped.
ed84f6c1 635
fc338970
MK
636 We handle these cases:
637
638 The startup sequence can be at the start of the function, or the
639 function can start with a branch to startup code at the end.
640
641 %ebp can be set up with either the 'enter' instruction, or "pushl
642 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
643 once used in the System V compiler).
644
645 Local space is allocated just below the saved %ebp by either the
646 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
647 bit unsigned argument for space to allocate, and the 'addl'
648 instruction could have either a signed byte, or 32 bit immediate.
649
650 Next, the registers used by this function are pushed. With the
651 System V compiler they will always be in the order: %edi, %esi,
652 %ebx (and sometimes a harmless bug causes it to also save but not
653 restore %eax); however, the code below is willing to see the pushes
654 in any order, and will handle up to 8 of them.
655
656 If the setup sequence is at the end of the function, then the next
657 instruction will be a branch back to the start. */
c906108c 658
acd5c798
MK
659static CORE_ADDR
660i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
661 struct i386_frame_cache *cache)
c906108c 662{
acd5c798
MK
663 pc = i386_follow_jump (pc);
664 pc = i386_analyze_struct_return (pc, current_pc, cache);
665 pc = i386_skip_probe (pc);
666 pc = i386_analyze_frame_setup (pc, current_pc, cache);
667 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
668}
669
fc338970 670/* Return PC of first real instruction. */
c906108c 671
3a1e71e3 672static CORE_ADDR
acd5c798 673i386_skip_prologue (CORE_ADDR start_pc)
c906108c 674{
c5aa993b 675 static unsigned char pic_pat[6] =
acd5c798
MK
676 {
677 0xe8, 0, 0, 0, 0, /* call 0x0 */
678 0x5b, /* popl %ebx */
c5aa993b 679 };
acd5c798
MK
680 struct i386_frame_cache cache;
681 CORE_ADDR pc;
682 unsigned char op;
683 int i;
c5aa993b 684
acd5c798
MK
685 cache.locals = -1;
686 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
687 if (cache.locals < 0)
688 return start_pc;
c5aa993b 689
acd5c798 690 /* Found valid frame setup. */
c906108c 691
fc338970
MK
692 /* The native cc on SVR4 in -K PIC mode inserts the following code
693 to get the address of the global offset table (GOT) into register
acd5c798
MK
694 %ebx:
695
fc338970
MK
696 call 0x0
697 popl %ebx
698 movl %ebx,x(%ebp) (optional)
699 addl y,%ebx
700
c906108c
SS
701 This code is with the rest of the prologue (at the end of the
702 function), so we have to skip it to get to the first real
703 instruction at the start of the function. */
c5aa993b 704
c906108c
SS
705 for (i = 0; i < 6; i++)
706 {
acd5c798 707 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 708 if (pic_pat[i] != op)
c906108c
SS
709 break;
710 }
711 if (i == 6)
712 {
acd5c798
MK
713 int delta = 6;
714
715 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 716
c5aa993b 717 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 718 {
acd5c798
MK
719 op = read_memory_unsigned_integer (pc + delta + 1, 1);
720
fc338970 721 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 722 delta += 3;
fc338970 723 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 724 delta += 6;
fc338970 725 else /* Unexpected instruction. */
acd5c798
MK
726 delta = 0;
727
728 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 729 }
acd5c798 730
c5aa993b 731 /* addl y,%ebx */
acd5c798
MK
732 if (delta > 0 && op == 0x81
733 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 734 {
acd5c798 735 pc += delta + 6;
c906108c
SS
736 }
737 }
c5aa993b 738
acd5c798 739 return i386_follow_jump (pc);
c906108c
SS
740}
741
acd5c798 742/* This function is 64-bit safe. */
93924b6b 743
acd5c798
MK
744static CORE_ADDR
745i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 746{
acd5c798
MK
747 char buf[8];
748
749 frame_unwind_register (next_frame, PC_REGNUM, buf);
750 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 751}
acd5c798 752\f
93924b6b 753
acd5c798 754/* Normal frames. */
c5aa993b 755
acd5c798
MK
756static struct i386_frame_cache *
757i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 758{
acd5c798 759 struct i386_frame_cache *cache;
c0d1d883 760 char buf[4];
acd5c798
MK
761 int i;
762
763 if (*this_cache)
764 return *this_cache;
765
fd13a04a 766 cache = i386_alloc_frame_cache ();
acd5c798
MK
767 *this_cache = cache;
768
769 /* In principle, for normal frames, %ebp holds the frame pointer,
770 which holds the base address for the current stack frame.
771 However, for functions that don't need it, the frame pointer is
772 optional. For these "frameless" functions the frame pointer is
773 actually the frame pointer of the calling frame. Signal
774 trampolines are just a special case of a "frameless" function.
775 They (usually) share their frame pointer with the frame that was
776 in progress when the signal occurred. */
777
778 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
779 cache->base = extract_unsigned_integer (buf, 4);
780 if (cache->base == 0)
781 return cache;
782
783 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 784 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
785
786 cache->pc = frame_func_unwind (next_frame);
787 if (cache->pc != 0)
788 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
789
790 if (cache->locals < 0)
791 {
792 /* We didn't find a valid frame, which means that CACHE->base
793 currently holds the frame pointer for our calling frame. If
794 we're at the start of a function, or somewhere half-way its
795 prologue, the function's frame probably hasn't been fully
796 setup yet. Try to reconstruct the base address for the stack
797 frame by looking at the stack pointer. For truly "frameless"
798 functions this might work too. */
799
800 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
801 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
802 }
803
804 /* Now that we have the base address for the stack frame we can
805 calculate the value of %esp in the calling frame. */
806 cache->saved_sp = cache->base + 8;
a7769679 807
acd5c798
MK
808 /* Adjust all the saved registers such that they contain addresses
809 instead of offsets. */
810 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
811 if (cache->saved_regs[i] != -1)
812 cache->saved_regs[i] += cache->base;
acd5c798
MK
813
814 return cache;
a7769679
MK
815}
816
3a1e71e3 817static void
acd5c798
MK
818i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
819 struct frame_id *this_id)
c906108c 820{
acd5c798
MK
821 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
822
823 /* This marks the outermost frame. */
824 if (cache->base == 0)
825 return;
826
3e210248 827 /* See the end of i386_push_dummy_call. */
acd5c798
MK
828 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
829}
830
831static void
832i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
833 int regnum, int *optimizedp,
834 enum lval_type *lvalp, CORE_ADDR *addrp,
835 int *realnump, void *valuep)
836{
837 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
838
839 gdb_assert (regnum >= 0);
840
841 /* The System V ABI says that:
842
843 "The flags register contains the system flags, such as the
844 direction flag and the carry flag. The direction flag must be
845 set to the forward (that is, zero) direction before entry and
846 upon exit from a function. Other user flags have no specified
847 role in the standard calling sequence and are not preserved."
848
849 To guarantee the "upon exit" part of that statement we fake a
850 saved flags register that has its direction flag cleared.
851
852 Note that GCC doesn't seem to rely on the fact that the direction
853 flag is cleared after a function return; it always explicitly
854 clears the flag before operations where it matters.
855
856 FIXME: kettenis/20030316: I'm not quite sure whether this is the
857 right thing to do. The way we fake the flags register here makes
858 it impossible to change it. */
859
860 if (regnum == I386_EFLAGS_REGNUM)
861 {
862 *optimizedp = 0;
863 *lvalp = not_lval;
864 *addrp = 0;
865 *realnump = -1;
866 if (valuep)
867 {
868 ULONGEST val;
c5aa993b 869
acd5c798 870 /* Clear the direction flag. */
f837910f
MK
871 val = frame_unwind_register_unsigned (next_frame,
872 I386_EFLAGS_REGNUM);
acd5c798
MK
873 val &= ~(1 << 10);
874 store_unsigned_integer (valuep, 4, val);
875 }
876
877 return;
878 }
1211c4e4 879
acd5c798 880 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 881 {
acd5c798
MK
882 frame_register_unwind (next_frame, I386_EAX_REGNUM,
883 optimizedp, lvalp, addrp, realnump, valuep);
884 return;
885 }
886
887 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
888 {
889 *optimizedp = 0;
890 *lvalp = not_lval;
891 *addrp = 0;
892 *realnump = -1;
893 if (valuep)
c906108c 894 {
acd5c798
MK
895 /* Store the value. */
896 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 897 }
acd5c798 898 return;
c906108c 899 }
acd5c798 900
fd13a04a
AC
901 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
902 {
903 *optimizedp = 0;
904 *lvalp = lval_memory;
905 *addrp = cache->saved_regs[regnum];
906 *realnump = -1;
907 if (valuep)
908 {
909 /* Read the value in from memory. */
910 read_memory (*addrp, valuep,
911 register_size (current_gdbarch, regnum));
912 }
913 return;
914 }
915
916 frame_register_unwind (next_frame, regnum,
917 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
918}
919
920static const struct frame_unwind i386_frame_unwind =
921{
922 NORMAL_FRAME,
923 i386_frame_this_id,
924 i386_frame_prev_register
925};
926
927static const struct frame_unwind *
336d1bba 928i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
929{
930 return &i386_frame_unwind;
931}
932\f
933
934/* Signal trampolines. */
935
936static struct i386_frame_cache *
937i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
938{
939 struct i386_frame_cache *cache;
940 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
941 CORE_ADDR addr;
942 char buf[4];
943
944 if (*this_cache)
945 return *this_cache;
946
fd13a04a 947 cache = i386_alloc_frame_cache ();
acd5c798
MK
948
949 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
950 cache->base = extract_unsigned_integer (buf, 4) - 4;
951
952 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
953 if (tdep->sc_reg_offset)
954 {
955 int i;
956
957 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
958
959 for (i = 0; i < tdep->sc_num_regs; i++)
960 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 961 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
962 }
963 else
964 {
fd13a04a
AC
965 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
966 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 967 }
acd5c798
MK
968
969 *this_cache = cache;
970 return cache;
971}
972
973static void
974i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
975 struct frame_id *this_id)
976{
977 struct i386_frame_cache *cache =
978 i386_sigtramp_frame_cache (next_frame, this_cache);
979
3e210248 980 /* See the end of i386_push_dummy_call. */
acd5c798
MK
981 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
982}
983
984static void
985i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
986 void **this_cache,
987 int regnum, int *optimizedp,
988 enum lval_type *lvalp, CORE_ADDR *addrp,
989 int *realnump, void *valuep)
990{
991 /* Make sure we've initialized the cache. */
992 i386_sigtramp_frame_cache (next_frame, this_cache);
993
994 i386_frame_prev_register (next_frame, this_cache, regnum,
995 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 996}
c0d1d883 997
acd5c798
MK
998static const struct frame_unwind i386_sigtramp_frame_unwind =
999{
1000 SIGTRAMP_FRAME,
1001 i386_sigtramp_frame_this_id,
1002 i386_sigtramp_frame_prev_register
1003};
1004
1005static const struct frame_unwind *
336d1bba 1006i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1007{
336d1bba 1008 CORE_ADDR pc = frame_pc_unwind (next_frame);
acd5c798
MK
1009 char *name;
1010
1c3545ae
MK
1011 /* We shouldn't even bother to try if the OSABI didn't register
1012 a sigcontext_addr handler. */
1013 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
1014 return NULL;
1015
acd5c798
MK
1016 find_pc_partial_function (pc, &name, NULL, NULL);
1017 if (PC_IN_SIGTRAMP (pc, name))
1018 return &i386_sigtramp_frame_unwind;
1019
1020 return NULL;
1021}
1022\f
1023
1024static CORE_ADDR
1025i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1026{
1027 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1028
1029 return cache->base;
1030}
1031
1032static const struct frame_base i386_frame_base =
1033{
1034 &i386_frame_unwind,
1035 i386_frame_base_address,
1036 i386_frame_base_address,
1037 i386_frame_base_address
1038};
1039
acd5c798
MK
1040static struct frame_id
1041i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1042{
1043 char buf[4];
1044 CORE_ADDR fp;
1045
1046 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1047 fp = extract_unsigned_integer (buf, 4);
1048
3e210248 1049 /* See the end of i386_push_dummy_call. */
acd5c798 1050 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1051}
fc338970 1052\f
c906108c 1053
fc338970
MK
1054/* Figure out where the longjmp will land. Slurp the args out of the
1055 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1056 structure from which we extract the address that we will land at.
28bcfd30 1057 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1058 success.
1059
1060 This function is 64-bit safe. */
c906108c 1061
8201327c
MK
1062static int
1063i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1064{
28bcfd30 1065 char buf[8];
c906108c 1066 CORE_ADDR sp, jb_addr;
8201327c 1067 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1068 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1069
8201327c
MK
1070 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1071 longjmp will land. */
1072 if (jb_pc_offset == -1)
c906108c
SS
1073 return 0;
1074
f837910f
MK
1075 /* Don't use I386_ESP_REGNUM here, since this function is also used
1076 for AMD64. */
1077 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1078 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1079 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1080 return 0;
1081
f837910f 1082 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1083 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1084 return 0;
c906108c 1085
f9d3c2a8 1086 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1087 return 1;
1088}
fc338970 1089\f
c906108c 1090
3a1e71e3 1091static CORE_ADDR
6a65450a
AC
1092i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1093 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1094 struct value **args, CORE_ADDR sp, int struct_return,
1095 CORE_ADDR struct_addr)
22f8ba57 1096{
acd5c798
MK
1097 char buf[4];
1098 int i;
1099
1100 /* Push arguments in reverse order. */
1101 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1102 {
acd5c798
MK
1103 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1104
1105 /* The System V ABI says that:
1106
1107 "An argument's size is increased, if necessary, to make it a
1108 multiple of [32-bit] words. This may require tail padding,
1109 depending on the size of the argument."
1110
1111 This makes sure the stack says word-aligned. */
1112 sp -= (len + 3) & ~3;
1113 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1114 }
22f8ba57 1115
acd5c798
MK
1116 /* Push value address. */
1117 if (struct_return)
1118 {
22f8ba57 1119 sp -= 4;
fbd9dcd3 1120 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1121 write_memory (sp, buf, 4);
1122 }
1123
acd5c798
MK
1124 /* Store return address. */
1125 sp -= 4;
6a65450a 1126 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1127 write_memory (sp, buf, 4);
1128
1129 /* Finally, update the stack pointer... */
1130 store_unsigned_integer (buf, 4, sp);
1131 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1132
1133 /* ...and fake a frame pointer. */
1134 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1135
3e210248
AC
1136 /* MarkK wrote: This "+ 8" is all over the place:
1137 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1138 i386_unwind_dummy_id). It's there, since all frame unwinders for
1139 a given target have to agree (within a certain margin) on the
1140 defenition of the stack address of a frame. Otherwise
1141 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1142 stack address *before* the function call as a frame's CFA. On
1143 the i386, when %ebp is used as a frame pointer, the offset
1144 between the contents %ebp and the CFA as defined by GCC. */
1145 return sp + 8;
22f8ba57
MK
1146}
1147
1a309862
MK
1148/* These registers are used for returning integers (and on some
1149 targets also for returning `struct' and `union' values when their
ef9dff19 1150 size and alignment match an integer type). */
acd5c798
MK
1151#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1152#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1153
c5e656c1
MK
1154/* Read, for architecture GDBARCH, a function return value of TYPE
1155 from REGCACHE, and copy that into VALBUF. */
1a309862 1156
3a1e71e3 1157static void
c5e656c1
MK
1158i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1159 struct regcache *regcache, void *valbuf)
c906108c 1160{
c5e656c1 1161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1162 int len = TYPE_LENGTH (type);
00f8375e 1163 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1164
1e8d0a7b 1165 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1166 {
5716833c 1167 if (tdep->st0_regnum < 0)
1a309862
MK
1168 {
1169 warning ("Cannot find floating-point return value.");
1170 memset (valbuf, 0, len);
ef9dff19 1171 return;
1a309862
MK
1172 }
1173
c6ba6f0d
MK
1174 /* Floating-point return values can be found in %st(0). Convert
1175 its contents to the desired type. This is probably not
1176 exactly how it would happen on the target itself, but it is
1177 the best we can do. */
acd5c798 1178 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1179 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1180 }
1181 else
c5aa993b 1182 {
f837910f
MK
1183 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1184 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1185
1186 if (len <= low_size)
00f8375e 1187 {
0818c12a 1188 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1189 memcpy (valbuf, buf, len);
1190 }
d4f3574e
SS
1191 else if (len <= (low_size + high_size))
1192 {
0818c12a 1193 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1194 memcpy (valbuf, buf, low_size);
0818c12a 1195 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1196 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1197 }
1198 else
8e65ff28
AC
1199 internal_error (__FILE__, __LINE__,
1200 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1201 }
1202}
1203
c5e656c1
MK
1204/* Write, for architecture GDBARCH, a function return value of TYPE
1205 from VALBUF into REGCACHE. */
ef9dff19 1206
3a1e71e3 1207static void
c5e656c1
MK
1208i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1209 struct regcache *regcache, const void *valbuf)
ef9dff19 1210{
c5e656c1 1211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1212 int len = TYPE_LENGTH (type);
1213
5716833c
MK
1214 /* Define I387_ST0_REGNUM such that we use the proper definitions
1215 for the architecture. */
1216#define I387_ST0_REGNUM I386_ST0_REGNUM
1217
1e8d0a7b 1218 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1219 {
3d7f4f49 1220 ULONGEST fstat;
5716833c 1221 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1222
5716833c 1223 if (tdep->st0_regnum < 0)
ef9dff19
MK
1224 {
1225 warning ("Cannot set floating-point return value.");
1226 return;
1227 }
1228
635b0cc1
MK
1229 /* Returning floating-point values is a bit tricky. Apart from
1230 storing the return value in %st(0), we have to simulate the
1231 state of the FPU at function return point. */
1232
c6ba6f0d
MK
1233 /* Convert the value found in VALBUF to the extended
1234 floating-point format used by the FPU. This is probably
1235 not exactly how it would happen on the target itself, but
1236 it is the best we can do. */
1237 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1238 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1239
635b0cc1
MK
1240 /* Set the top of the floating-point register stack to 7. The
1241 actual value doesn't really matter, but 7 is what a normal
1242 function return would end up with if the program started out
1243 with a freshly initialized FPU. */
5716833c 1244 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1245 fstat |= (7 << 11);
5716833c 1246 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1247
635b0cc1
MK
1248 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1249 the floating-point register stack to 7, the appropriate value
1250 for the tag word is 0x3fff. */
5716833c 1251 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1252 }
1253 else
1254 {
f837910f
MK
1255 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1256 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1257
1258 if (len <= low_size)
3d7f4f49 1259 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1260 else if (len <= (low_size + high_size))
1261 {
3d7f4f49
MK
1262 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1263 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1264 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1265 }
1266 else
8e65ff28
AC
1267 internal_error (__FILE__, __LINE__,
1268 "Cannot store return value of %d bytes long.", len);
ef9dff19 1269 }
5716833c
MK
1270
1271#undef I387_ST0_REGNUM
ef9dff19 1272}
f7af9647 1273
751f1375
MK
1274/* Extract from REGCACHE, which contains the (raw) register state, the
1275 address in which a function should return its structure value, as a
1276 CORE_ADDR. */
f7af9647 1277
3a1e71e3 1278static CORE_ADDR
00f8375e 1279i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1280{
acd5c798 1281 char buf[4];
751f1375 1282
acd5c798
MK
1283 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1284 return extract_unsigned_integer (buf, 4);
f7af9647 1285}
fc338970 1286\f
ef9dff19 1287
8201327c
MK
1288/* This is the variable that is set with "set struct-convention", and
1289 its legitimate values. */
1290static const char default_struct_convention[] = "default";
1291static const char pcc_struct_convention[] = "pcc";
1292static const char reg_struct_convention[] = "reg";
1293static const char *valid_conventions[] =
1294{
1295 default_struct_convention,
1296 pcc_struct_convention,
1297 reg_struct_convention,
1298 NULL
1299};
1300static const char *struct_convention = default_struct_convention;
1301
c5e656c1
MK
1302/* Return non-zero if TYPE, which is assumed to be a structure or
1303 union type, should be returned in registers for architecture
1304 GDBARCH. */
1305
8201327c 1306static int
c5e656c1 1307i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1308{
c5e656c1
MK
1309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1310 enum type_code code = TYPE_CODE (type);
1311 int len = TYPE_LENGTH (type);
8201327c 1312
c5e656c1
MK
1313 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1314
1315 if (struct_convention == pcc_struct_convention
1316 || (struct_convention == default_struct_convention
1317 && tdep->struct_return == pcc_struct_return))
1318 return 0;
1319
1320 return (len == 1 || len == 2 || len == 4 || len == 8);
1321}
1322
1323/* Determine, for architecture GDBARCH, how a return value of TYPE
1324 should be returned. If it is supposed to be returned in registers,
1325 and READBUF is non-zero, read the appropriate value from REGCACHE,
1326 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1327 from WRITEBUF into REGCACHE. */
1328
1329static enum return_value_convention
1330i386_return_value (struct gdbarch *gdbarch, struct type *type,
1331 struct regcache *regcache, void *readbuf,
1332 const void *writebuf)
1333{
1334 enum type_code code = TYPE_CODE (type);
1335
1336 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1337 && !i386_reg_struct_return_p (gdbarch, type))
1338 return RETURN_VALUE_STRUCT_CONVENTION;
1339
1340 /* This special case is for structures consisting of a single
1341 `float' or `double' member. These structures are returned in
1342 %st(0). For these structures, we call ourselves recursively,
1343 changing TYPE into the type of the first member of the structure.
1344 Since that should work for all structures that have only one
1345 member, we don't bother to check the member's type here. */
1346 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1347 {
1348 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1349 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1350 }
1351
1352 if (readbuf)
1353 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1354 if (writebuf)
1355 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1356
c5e656c1 1357 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1358}
1359\f
1360
d7a0d72c
MK
1361/* Return the GDB type object for the "standard" data type of data in
1362 register REGNUM. Perhaps %esi and %edi should go here, but
1363 potentially they could be used for things other than address. */
1364
3a1e71e3 1365static struct type *
4e259f09 1366i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1367{
acd5c798
MK
1368 if (regnum == I386_EIP_REGNUM
1369 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1370 return lookup_pointer_type (builtin_type_void);
1371
23a34459 1372 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1373 return builtin_type_i387_ext;
d7a0d72c 1374
5716833c 1375 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1376 return builtin_type_vec128i;
d7a0d72c 1377
5716833c 1378 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1379 return builtin_type_vec64i;
1380
d7a0d72c
MK
1381 return builtin_type_int;
1382}
1383
28fc6740 1384/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1385 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1386
1387static int
c86c27af 1388i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1389{
5716833c
MK
1390 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1391 int mmxreg, fpreg;
28fc6740
AC
1392 ULONGEST fstat;
1393 int tos;
c86c27af 1394
5716833c
MK
1395 /* Define I387_ST0_REGNUM such that we use the proper definitions
1396 for REGCACHE's architecture. */
1397#define I387_ST0_REGNUM tdep->st0_regnum
1398
1399 mmxreg = regnum - tdep->mm0_regnum;
1400 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1401 tos = (fstat >> 11) & 0x7;
5716833c
MK
1402 fpreg = (mmxreg + tos) % 8;
1403
1404 return (I387_ST0_REGNUM + fpreg);
c86c27af 1405
5716833c 1406#undef I387_ST0_REGNUM
28fc6740
AC
1407}
1408
1409static void
1410i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1411 int regnum, void *buf)
1412{
5716833c 1413 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1414 {
d9d9c31f 1415 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1416 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1417
28fc6740 1418 /* Extract (always little endian). */
c86c27af 1419 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1420 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1421 }
1422 else
1423 regcache_raw_read (regcache, regnum, buf);
1424}
1425
1426static void
1427i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1428 int regnum, const void *buf)
1429{
5716833c 1430 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1431 {
d9d9c31f 1432 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1433 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1434
28fc6740
AC
1435 /* Read ... */
1436 regcache_raw_read (regcache, fpnum, mmx_buf);
1437 /* ... Modify ... (always little endian). */
f837910f 1438 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1439 /* ... Write. */
1440 regcache_raw_write (regcache, fpnum, mmx_buf);
1441 }
1442 else
1443 regcache_raw_write (regcache, regnum, buf);
1444}
ff2e87ac
AC
1445\f
1446
ff2e87ac
AC
1447/* Return the register number of the register allocated by GCC after
1448 REGNUM, or -1 if there is no such register. */
1449
1450static int
1451i386_next_regnum (int regnum)
1452{
1453 /* GCC allocates the registers in the order:
1454
1455 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1456
1457 Since storing a variable in %esp doesn't make any sense we return
1458 -1 for %ebp and for %esp itself. */
1459 static int next_regnum[] =
1460 {
1461 I386_EDX_REGNUM, /* Slot for %eax. */
1462 I386_EBX_REGNUM, /* Slot for %ecx. */
1463 I386_ECX_REGNUM, /* Slot for %edx. */
1464 I386_ESI_REGNUM, /* Slot for %ebx. */
1465 -1, -1, /* Slots for %esp and %ebp. */
1466 I386_EDI_REGNUM, /* Slot for %esi. */
1467 I386_EBP_REGNUM /* Slot for %edi. */
1468 };
1469
de5b9bb9 1470 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1471 return next_regnum[regnum];
28fc6740 1472
ff2e87ac
AC
1473 return -1;
1474}
1475
1476/* Return nonzero if a value of type TYPE stored in register REGNUM
1477 needs any special handling. */
d7a0d72c 1478
3a1e71e3 1479static int
ff2e87ac 1480i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1481{
de5b9bb9
MK
1482 int len = TYPE_LENGTH (type);
1483
ff2e87ac
AC
1484 /* Values may be spread across multiple registers. Most debugging
1485 formats aren't expressive enough to specify the locations, so
1486 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1487 have a length that is a multiple of the word size, since GCC
1488 doesn't seem to put any other types into registers. */
1489 if (len > 4 && len % 4 == 0)
1490 {
1491 int last_regnum = regnum;
1492
1493 while (len > 4)
1494 {
1495 last_regnum = i386_next_regnum (last_regnum);
1496 len -= 4;
1497 }
1498
1499 if (last_regnum != -1)
1500 return 1;
1501 }
ff2e87ac 1502
23a34459 1503 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1504}
1505
ff2e87ac
AC
1506/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1507 return its contents in TO. */
ac27f131 1508
3a1e71e3 1509static void
ff2e87ac
AC
1510i386_register_to_value (struct frame_info *frame, int regnum,
1511 struct type *type, void *to)
ac27f131 1512{
de5b9bb9
MK
1513 int len = TYPE_LENGTH (type);
1514 char *buf = to;
1515
ff2e87ac
AC
1516 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1517 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1518
ff2e87ac 1519 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1520 {
d532c08f
MK
1521 i387_register_to_value (frame, regnum, type, to);
1522 return;
8d7f6b4a 1523 }
ff2e87ac 1524
de5b9bb9
MK
1525 /* Read a value spread accross multiple registers. */
1526
1527 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1528
de5b9bb9
MK
1529 while (len > 0)
1530 {
1531 gdb_assert (regnum != -1);
1532 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1533
f837910f 1534 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1535 regnum = i386_next_regnum (regnum);
1536 len -= 4;
1537 buf += 4;
1538 }
ac27f131
MK
1539}
1540
ff2e87ac
AC
1541/* Write the contents FROM of a value of type TYPE into register
1542 REGNUM in frame FRAME. */
ac27f131 1543
3a1e71e3 1544static void
ff2e87ac
AC
1545i386_value_to_register (struct frame_info *frame, int regnum,
1546 struct type *type, const void *from)
ac27f131 1547{
de5b9bb9
MK
1548 int len = TYPE_LENGTH (type);
1549 const char *buf = from;
1550
ff2e87ac 1551 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1552 {
d532c08f
MK
1553 i387_value_to_register (frame, regnum, type, from);
1554 return;
1555 }
3d261580 1556
de5b9bb9
MK
1557 /* Write a value spread accross multiple registers. */
1558
1559 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1560
de5b9bb9
MK
1561 while (len > 0)
1562 {
1563 gdb_assert (regnum != -1);
1564 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1565
de5b9bb9
MK
1566 put_frame_register (frame, regnum, buf);
1567 regnum = i386_next_regnum (regnum);
1568 len -= 4;
1569 buf += 4;
1570 }
ac27f131 1571}
ff2e87ac 1572\f
473f17b0
MK
1573/* Supply register REGNUM from the general-purpose register set REGSET
1574 to register cache REGCACHE. If REGNUM is -1, do this for all
1575 registers in REGSET. */
ff2e87ac 1576
20187ed5 1577void
473f17b0
MK
1578i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1579 int regnum, const void *gregs, size_t len)
1580{
1581 const struct gdbarch_tdep *tdep = regset->descr;
1582 const char *regs = gregs;
1583 int i;
1584
1585 gdb_assert (len == tdep->sizeof_gregset);
1586
1587 for (i = 0; i < tdep->gregset_num_regs; i++)
1588 {
1589 if ((regnum == i || regnum == -1)
1590 && tdep->gregset_reg_offset[i] != -1)
1591 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1592 }
1593}
1594
1595/* Supply register REGNUM from the floating-point register set REGSET
1596 to register cache REGCACHE. If REGNUM is -1, do this for all
1597 registers in REGSET. */
1598
1599static void
1600i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1601 int regnum, const void *fpregs, size_t len)
1602{
1603 const struct gdbarch_tdep *tdep = regset->descr;
1604
66a72d25
MK
1605 if (len == I387_SIZEOF_FXSAVE)
1606 {
1607 i387_supply_fxsave (regcache, regnum, fpregs);
1608 return;
1609 }
1610
473f17b0
MK
1611 gdb_assert (len == tdep->sizeof_fpregset);
1612 i387_supply_fsave (regcache, regnum, fpregs);
1613}
8446b36a
MK
1614
1615/* Return the appropriate register set for the core section identified
1616 by SECT_NAME and SECT_SIZE. */
1617
1618const struct regset *
1619i386_regset_from_core_section (struct gdbarch *gdbarch,
1620 const char *sect_name, size_t sect_size)
1621{
1622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1623
1624 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1625 {
1626 if (tdep->gregset == NULL)
1627 {
1628 tdep->gregset = XMALLOC (struct regset);
1629 tdep->gregset->descr = tdep;
1630 tdep->gregset->supply_regset = i386_supply_gregset;
1631 }
1632 return tdep->gregset;
1633 }
1634
66a72d25
MK
1635 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1636 || (strcmp (sect_name, ".reg-xfp") == 0
1637 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1638 {
1639 if (tdep->fpregset == NULL)
1640 {
1641 tdep->fpregset = XMALLOC (struct regset);
1642 tdep->fpregset->descr = tdep;
1643 tdep->fpregset->supply_regset = i386_supply_fpregset;
1644 }
1645 return tdep->fpregset;
1646 }
1647
1648 return NULL;
1649}
473f17b0 1650\f
fc338970 1651
c906108c 1652#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1653/* SunPRO encodes the static variables. This is not related to C++
1654 mangling, it is done for C too. */
c906108c
SS
1655
1656char *
fba45db2 1657sunpro_static_transform_name (char *name)
c906108c
SS
1658{
1659 char *p;
1660 if (IS_STATIC_TRANSFORM_NAME (name))
1661 {
fc338970
MK
1662 /* For file-local statics there will be a period, a bunch of
1663 junk (the contents of which match a string given in the
c5aa993b
JM
1664 N_OPT), a period and the name. For function-local statics
1665 there will be a bunch of junk (which seems to change the
1666 second character from 'A' to 'B'), a period, the name of the
1667 function, and the name. So just skip everything before the
1668 last period. */
c906108c
SS
1669 p = strrchr (name, '.');
1670 if (p != NULL)
1671 name = p + 1;
1672 }
1673 return name;
1674}
1675#endif /* STATIC_TRANSFORM_NAME */
fc338970 1676\f
c906108c 1677
fc338970 1678/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1679
1680CORE_ADDR
1cce71eb 1681i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1682{
fc338970 1683 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1684 {
c5aa993b 1685 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1686 struct minimal_symbol *indsym =
fc338970 1687 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1688 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1689
c5aa993b 1690 if (symname)
c906108c 1691 {
c5aa993b
JM
1692 if (strncmp (symname, "__imp_", 6) == 0
1693 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1694 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1695 }
1696 }
fc338970 1697 return 0; /* Not a trampoline. */
c906108c 1698}
fc338970
MK
1699\f
1700
8201327c
MK
1701/* Return non-zero if PC and NAME show that we are in a signal
1702 trampoline. */
1703
1704static int
1705i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1706{
1707 return (name && strcmp ("_sigtramp", name) == 0);
1708}
1709\f
1710
fc338970
MK
1711/* We have two flavours of disassembly. The machinery on this page
1712 deals with switching between those. */
c906108c
SS
1713
1714static int
a89aa300 1715i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1716{
5e3397bb
MK
1717 gdb_assert (disassembly_flavor == att_flavor
1718 || disassembly_flavor == intel_flavor);
1719
1720 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1721 constified, cast to prevent a compiler warning. */
1722 info->disassembler_options = (char *) disassembly_flavor;
1723 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1724
1725 return print_insn_i386 (pc, info);
7a292a7a 1726}
fc338970 1727\f
3ce1502b 1728
8201327c
MK
1729/* There are a few i386 architecture variants that differ only
1730 slightly from the generic i386 target. For now, we don't give them
1731 their own source file, but include them here. As a consequence,
1732 they'll always be included. */
3ce1502b 1733
8201327c 1734/* System V Release 4 (SVR4). */
3ce1502b 1735
8201327c
MK
1736static int
1737i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1738{
acd5c798
MK
1739 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1740 currently unknown. */
8201327c
MK
1741 return (name && (strcmp ("_sigreturn", name) == 0
1742 || strcmp ("_sigacthandler", name) == 0
1743 || strcmp ("sigvechandler", name) == 0));
1744}
d2a7c97a 1745
acd5c798
MK
1746/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1747 routine, return the address of the associated sigcontext (ucontext)
1748 structure. */
3ce1502b 1749
3a1e71e3 1750static CORE_ADDR
acd5c798 1751i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1752{
acd5c798
MK
1753 char buf[4];
1754 CORE_ADDR sp;
3ce1502b 1755
acd5c798
MK
1756 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1757 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1758
acd5c798 1759 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1760}
1761\f
3ce1502b 1762
8201327c 1763/* DJGPP. */
d2a7c97a 1764
8201327c
MK
1765static int
1766i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1767{
1768 /* DJGPP doesn't have any special frames for signal handlers. */
1769 return 0;
1770}
1771\f
d2a7c97a 1772
8201327c 1773/* Generic ELF. */
d2a7c97a 1774
8201327c
MK
1775void
1776i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1777{
1778 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1779 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1780}
3ce1502b 1781
8201327c 1782/* System V Release 4 (SVR4). */
3ce1502b 1783
8201327c
MK
1784void
1785i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1786{
1787 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1788
8201327c
MK
1789 /* System V Release 4 uses ELF. */
1790 i386_elf_init_abi (info, gdbarch);
3ce1502b 1791
dfe01d39
MK
1792 /* System V Release 4 has shared libraries. */
1793 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1794 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1795
8201327c 1796 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4 1797 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1798 tdep->sc_pc_offset = 36 + 14 * 4;
1799 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1800
8201327c 1801 tdep->jb_pc_offset = 20;
3ce1502b
MK
1802}
1803
8201327c 1804/* DJGPP. */
3ce1502b 1805
3a1e71e3 1806static void
8201327c 1807i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1808{
8201327c 1809 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1810
8201327c 1811 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1812
8201327c 1813 tdep->jb_pc_offset = 36;
3ce1502b
MK
1814}
1815
8201327c 1816/* NetWare. */
3ce1502b 1817
3a1e71e3 1818static void
8201327c 1819i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1820{
8201327c 1821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1822
8201327c 1823 tdep->jb_pc_offset = 24;
d2a7c97a 1824}
8201327c 1825\f
2acceee2 1826
38c968cf
AC
1827/* i386 register groups. In addition to the normal groups, add "mmx"
1828 and "sse". */
1829
1830static struct reggroup *i386_sse_reggroup;
1831static struct reggroup *i386_mmx_reggroup;
1832
1833static void
1834i386_init_reggroups (void)
1835{
1836 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1837 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1838}
1839
1840static void
1841i386_add_reggroups (struct gdbarch *gdbarch)
1842{
1843 reggroup_add (gdbarch, i386_sse_reggroup);
1844 reggroup_add (gdbarch, i386_mmx_reggroup);
1845 reggroup_add (gdbarch, general_reggroup);
1846 reggroup_add (gdbarch, float_reggroup);
1847 reggroup_add (gdbarch, all_reggroup);
1848 reggroup_add (gdbarch, save_reggroup);
1849 reggroup_add (gdbarch, restore_reggroup);
1850 reggroup_add (gdbarch, vector_reggroup);
1851 reggroup_add (gdbarch, system_reggroup);
1852}
1853
1854int
1855i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1856 struct reggroup *group)
1857{
5716833c
MK
1858 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1859 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
1860 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1861 || i386_fpc_regnum_p (regnum));
5716833c 1862 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 1863
38c968cf
AC
1864 if (group == i386_mmx_reggroup)
1865 return mmx_regnum_p;
1866 if (group == i386_sse_reggroup)
1867 return sse_regnum_p;
1868 if (group == vector_reggroup)
1869 return (mmx_regnum_p || sse_regnum_p);
1870 if (group == float_reggroup)
1871 return fp_regnum_p;
1872 if (group == general_reggroup)
1873 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1874
38c968cf
AC
1875 return default_register_reggroup_p (gdbarch, regnum, group);
1876}
38c968cf 1877\f
acd5c798 1878
f837910f
MK
1879/* Get the ARGIth function argument for the current function. */
1880
42c466d7 1881static CORE_ADDR
143985b7
AF
1882i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1883 struct type *type)
1884{
f837910f
MK
1885 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1886 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1887}
1888
1889\f
3a1e71e3 1890static struct gdbarch *
a62cc96e
AC
1891i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1892{
cd3c07fc 1893 struct gdbarch_tdep *tdep;
a62cc96e
AC
1894 struct gdbarch *gdbarch;
1895
4be87837
DJ
1896 /* If there is already a candidate, use it. */
1897 arches = gdbarch_list_lookup_by_info (arches, &info);
1898 if (arches != NULL)
1899 return arches->gdbarch;
a62cc96e
AC
1900
1901 /* Allocate space for the new architecture. */
1902 tdep = XMALLOC (struct gdbarch_tdep);
1903 gdbarch = gdbarch_alloc (&info, tdep);
1904
473f17b0
MK
1905 /* General-purpose registers. */
1906 tdep->gregset = NULL;
1907 tdep->gregset_reg_offset = NULL;
1908 tdep->gregset_num_regs = I386_NUM_GREGS;
1909 tdep->sizeof_gregset = 0;
1910
1911 /* Floating-point registers. */
1912 tdep->fpregset = NULL;
1913 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1914
5716833c
MK
1915 /* The default settings include the FPU registers, the MMX registers
1916 and the SSE registers. This can be overidden for a specific ABI
1917 by adjusting the members `st0_regnum', `mm0_regnum' and
1918 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1919 will show up in the output of "info all-registers". Ideally we
1920 should try to autodetect whether they are available, such that we
1921 can prevent "info all-registers" from displaying registers that
1922 aren't available.
1923
1924 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
1925 [the SSE registers] always (even when they don't exist) or never
1926 showing them to the user (even when they do exist), I prefer the
1927 former over the latter. */
1928
1929 tdep->st0_regnum = I386_ST0_REGNUM;
1930
1931 /* The MMX registers are implemented as pseudo-registers. Put off
1932 caclulating the register number for %mm0 until we know the number
1933 of raw registers. */
1934 tdep->mm0_regnum = 0;
1935
1936 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 1937 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 1938
8201327c
MK
1939 tdep->jb_pc_offset = -1;
1940 tdep->struct_return = pcc_struct_return;
8201327c
MK
1941 tdep->sigtramp_start = 0;
1942 tdep->sigtramp_end = 0;
21d0e8a4 1943 tdep->sigcontext_addr = NULL;
a3386186 1944 tdep->sc_reg_offset = NULL;
8201327c 1945 tdep->sc_pc_offset = -1;
21d0e8a4 1946 tdep->sc_sp_offset = -1;
8201327c 1947
896fb97d
MK
1948 /* The format used for `long double' on almost all i386 targets is
1949 the i387 extended floating-point format. In fact, of all targets
1950 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1951 on having a `long double' that's not `long' at all. */
1952 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1953
66da5fd8 1954 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1955 bits, a `long double' actually takes up 96, probably to enforce
1956 alignment. */
1957 set_gdbarch_long_double_bit (gdbarch, 96);
1958
49ed40de
KB
1959 /* The default ABI includes general-purpose registers,
1960 floating-point registers, and the SSE registers. */
1961 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
1962 set_gdbarch_register_name (gdbarch, i386_register_name);
1963 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1964
acd5c798
MK
1965 /* Register numbers of various important registers. */
1966 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1967 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1968 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1969 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e
MK
1970
1971 /* Use the "default" register numbering scheme for stabs and COFF. */
1972 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1973 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1974
1975 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1976 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1977 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1978
1979 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1980 be in use on any of the supported i386 targets. */
1981
61113f8b
MK
1982 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1983
8201327c 1984 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1985
a62cc96e 1986 /* Call dummy code. */
acd5c798 1987 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 1988
ff2e87ac
AC
1989 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1990 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1991 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 1992
c5e656c1 1993 set_gdbarch_return_value (gdbarch, i386_return_value);
00f8375e 1994 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1995 i386_extract_struct_value_address);
8201327c 1996
93924b6b
MK
1997 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1998
1999 /* Stack grows downward. */
2000 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2001
2002 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2003 set_gdbarch_decr_pc_after_break (gdbarch, 1);
2004 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 2005
42fdc8df 2006 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c
MK
2007 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
2008
28fc6740 2009 /* Wire in the MMX registers. */
0f751ff2 2010 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2011 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2012 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2013
5e3397bb
MK
2014 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2015
acd5c798 2016 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2017
2018 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2019
38c968cf
AC
2020 /* Add the i386 register groups. */
2021 i386_add_reggroups (gdbarch);
2022 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2023
143985b7
AF
2024 /* Helper for function argument information. */
2025 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2026
6405b0a6 2027 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2028 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2029
acd5c798 2030 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2031
3ce1502b 2032 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2033 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2034
336d1bba
AC
2035 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2036 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2037
8446b36a
MK
2038 /* If we have a register mapping, enable the generic core file
2039 support, unless it has already been enabled. */
2040 if (tdep->gregset_reg_offset
2041 && !gdbarch_regset_from_core_section_p (gdbarch))
2042 set_gdbarch_regset_from_core_section (gdbarch,
2043 i386_regset_from_core_section);
2044
5716833c
MK
2045 /* Unless support for MMX has been disabled, make %mm0 the first
2046 pseudo-register. */
2047 if (tdep->mm0_regnum == 0)
2048 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2049
a62cc96e
AC
2050 return gdbarch;
2051}
2052
8201327c
MK
2053static enum gdb_osabi
2054i386_coff_osabi_sniffer (bfd *abfd)
2055{
762c5349
MK
2056 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2057 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2058 return GDB_OSABI_GO32;
2059
2060 return GDB_OSABI_UNKNOWN;
2061}
2062
2063static enum gdb_osabi
2064i386_nlm_osabi_sniffer (bfd *abfd)
2065{
2066 return GDB_OSABI_NETWARE;
2067}
2068\f
2069
28e9e0f0
MK
2070/* Provide a prototype to silence -Wmissing-prototypes. */
2071void _initialize_i386_tdep (void);
2072
c906108c 2073void
fba45db2 2074_initialize_i386_tdep (void)
c906108c 2075{
a62cc96e
AC
2076 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2077
fc338970 2078 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2079 {
2080 struct cmd_list_element *new_cmd;
7a292a7a 2081
917317f4
JM
2082 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2083 valid_flavors,
1ed2a135 2084 &disassembly_flavor,
fc338970
MK
2085 "\
2086Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2087and the default value is \"att\".",
917317f4 2088 &setlist);
917317f4
JM
2089 add_show_from_set (new_cmd, &showlist);
2090 }
8201327c
MK
2091
2092 /* Add the variable that controls the convention for returning
2093 structs. */
2094 {
2095 struct cmd_list_element *new_cmd;
2096
2097 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2098 valid_conventions,
8201327c
MK
2099 &struct_convention, "\
2100Set the convention for returning small structs, valid values \
2101are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2102 &setlist);
2103 add_show_from_set (new_cmd, &showlist);
2104 }
2105
2106 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2107 i386_coff_osabi_sniffer);
2108 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2109 i386_nlm_osabi_sniffer);
2110
05816f70 2111 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2112 i386_svr4_init_abi);
05816f70 2113 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2114 i386_go32_init_abi);
05816f70 2115 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2116 i386_nw_init_abi);
38c968cf
AC
2117
2118 /* Initialize the i386 specific register groups. */
2119 i386_init_reggroups ();
c906108c 2120}
This page took 0.465868 seconds and 4 git commands to generate.