* regcache.c (register_buffer): Consitify first argument.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798
MK
28#include "doublest.h"
29#include "floatformat.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
acd5c798 44
3d261580 45#include "gdb_assert.h"
acd5c798 46#include "gdb_string.h"
3d261580 47
d2a7c97a 48#include "i386-tdep.h"
61113f8b 49#include "i387-tdep.h"
d2a7c97a 50
fc633446
MK
51/* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
c40e1eab
MK
69static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
28fc6740
AC
72/* MMX registers. */
73
74static char *i386_mmx_names[] =
75{
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78};
c40e1eab
MK
79
80static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83#define MM0_REGNUM NUM_REGS
28fc6740
AC
84
85static int
c40e1eab 86i386_mmx_regnum_p (int regnum)
28fc6740 87{
c40e1eab
MK
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
28fc6740
AC
90}
91
23a34459
AC
92/* FP register? */
93
94int
95i386_fp_regnum_p (int regnum)
96{
97 return (regnum < NUM_REGS
c40e1eab 98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
23a34459
AC
99}
100
101int
102i386_fpc_regnum_p (int regnum)
103{
104 return (regnum < NUM_REGS
c40e1eab 105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
23a34459
AC
106}
107
108/* SSE register? */
109
110int
111i386_sse_regnum_p (int regnum)
112{
113 return (regnum < NUM_REGS
c40e1eab 114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
23a34459
AC
115}
116
117int
118i386_mxcsr_regnum_p (int regnum)
119{
120 return (regnum < NUM_REGS
c40e1eab 121 && regnum == MXCSR_REGNUM);
23a34459
AC
122}
123
fc633446
MK
124/* Return the name of register REG. */
125
fa88f677 126const char *
fc633446
MK
127i386_register_name (int reg)
128{
23a34459 129 if (i386_mmx_regnum_p (reg))
28fc6740 130 return i386_mmx_names[reg - MM0_REGNUM];
fc633446 131
70913449
MK
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
c40e1eab 135 return NULL;
fc633446
MK
136}
137
85540d8c
MK
138/* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
8201327c 141static int
85540d8c
MK
142i386_stab_reg_to_regnum (int reg)
143{
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
acd5c798 147 /* General-purpose registers. */
85540d8c
MK
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
7d12f766 163 return reg - 29 + MM0_REGNUM;
85540d8c
MK
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168}
169
8201327c 170/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
171 number used by GDB. */
172
8201327c 173static int
85540d8c
MK
174i386_dwarf_reg_to_regnum (int reg)
175{
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
acd5c798 180 /* General-purpose registers. */
85540d8c
MK
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196}
fc338970 197\f
917317f4 198
fc338970
MK
199/* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
53904c9e
AC
201static const char att_flavor[] = "att";
202static const char intel_flavor[] = "intel";
203static const char *valid_flavors[] =
c5aa993b 204{
c906108c
SS
205 att_flavor,
206 intel_flavor,
207 NULL
208};
53904c9e 209static const char *disassembly_flavor = att_flavor;
acd5c798 210\f
c906108c 211
acd5c798
MK
212/* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
c906108c 217
acd5c798
MK
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
c906108c 220
acd5c798
MK
221 This function is 64-bit safe. */
222
223static const unsigned char *
224i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 225{
acd5c798
MK
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
c906108c 230}
fc338970 231\f
acd5c798
MK
232#ifdef I386_REGNO_TO_SYMMETRY
233#error "The Sequent Symmetry is no longer supported."
234#endif
c906108c 235
acd5c798
MK
236/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
c906108c 239
acd5c798
MK
240/* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
a3386186 242#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
243
244struct i386_frame_cache
c906108c 245{
acd5c798
MK
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
fd13a04a
AC
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258};
259
260/* Allocate and initialize a frame cache. */
261
262static struct i386_frame_cache *
fd13a04a 263i386_alloc_frame_cache (void)
acd5c798
MK
264{
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
fd13a04a
AC
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
acd5c798
MK
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286}
c906108c 287
acd5c798
MK
288/* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
c906108c 290
acd5c798
MK
291static CORE_ADDR
292i386_follow_jump (CORE_ADDR pc)
293{
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
c906108c 297
acd5c798
MK
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
c906108c 300 {
c906108c 301 data16 = 1;
acd5c798 302 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
303 }
304
acd5c798 305 switch (op)
c906108c
SS
306 {
307 case 0xe9:
fc338970 308 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
309 if (data16)
310 {
acd5c798 311 delta = read_memory_integer (pc + 2, 2);
c906108c 312
fc338970
MK
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
acd5c798 315 delta += 4;
c906108c
SS
316 }
317 else
318 {
acd5c798 319 delta = read_memory_integer (pc + 1, 4);
c906108c 320
acd5c798
MK
321 /* Include the size of the jmp instruction. */
322 delta += 5;
c906108c
SS
323 }
324 break;
325 case 0xeb:
fc338970 326 /* Relative jump, disp8 (ignore data16). */
acd5c798 327 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 328
acd5c798 329 delta += data16 + 2;
c906108c
SS
330 break;
331 }
c906108c 332
acd5c798
MK
333 return pc + delta;
334}
fc338970 335
acd5c798
MK
336/* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
c906108c 341
acd5c798
MK
342static CORE_ADDR
343i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
c906108c 345{
acd5c798
MK
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
c906108c
SS
359 unsigned char op;
360
acd5c798
MK
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
c906108c 365
acd5c798
MK
366 if (op != 0x58) /* popl %eax */
367 return pc;
c906108c 368
acd5c798
MK
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
c906108c 372
acd5c798 373 if (current_pc == pc)
c906108c 374 {
acd5c798
MK
375 cache->sp_offset += 4;
376 return current_pc;
c906108c
SS
377 }
378
acd5c798 379 if (current_pc == pc + 1)
c906108c 380 {
acd5c798
MK
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389}
390
391static CORE_ADDR
392i386_skip_probe (CORE_ADDR pc)
393{
394 /* A function may start with
fc338970 395
acd5c798
MK
396 pushl constant
397 call _probe
398 addl $4, %esp
fc338970 399
acd5c798
MK
400 followed by
401
402 pushl %ebp
fc338970 403
acd5c798
MK
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
fc338970 407
acd5c798
MK
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
c906108c 413
acd5c798
MK
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
c906108c 416 if (op == 0x68)
acd5c798 417 delta = 5;
c906108c 418 else
acd5c798 419 delta = 2;
c906108c 420
acd5c798
MK
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
c906108c 424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 425 pc += delta + sizeof (buf);
c906108c
SS
426 }
427
acd5c798
MK
428 return pc;
429}
430
431/* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437static CORE_ADDR
438i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440{
441 unsigned char op;
26604a34 442 int skip = 0;
acd5c798
MK
443
444 if (current_pc <= pc)
445 return current_pc;
446
447 op = read_memory_unsigned_integer (pc, 1);
448
c906108c 449 if (op == 0x55) /* pushl %ebp */
c5aa993b 450 {
acd5c798
MK
451 /* Take into account that we've executed the `pushl %ebp' that
452 starts this instruction sequence. */
fd13a04a 453 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
454 cache->sp_offset += 4;
455
456 /* If that's all, return now. */
457 if (current_pc <= pc + 1)
458 return current_pc;
459
acd5c798 460 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
461
462 /* Check for some special instructions that might be migrated
463 by GCC into the prologue. We check for
464
465 xorl %ebx, %ebx
466 xorl %ecx, %ecx
467 xorl %edx, %edx
468
469 and the equivalent
470
471 subl %ebx, %ebx
472 subl %ecx, %ecx
473 subl %edx, %edx
474
475 Make sure we only skip these instructions if we later see the
476 `movl %esp, %ebp' that actually sets up the frame. */
477 while (op == 0x29 || op == 0x31)
478 {
479 op = read_memory_unsigned_integer (pc + skip + 2, 1);
480 switch (op)
481 {
482 case 0xdb: /* %ebx */
483 case 0xc9: /* %ecx */
484 case 0xd2: /* %edx */
485 skip += 2;
486 break;
487 default:
488 return pc + 1;
489 }
490
491 op = read_memory_unsigned_integer (pc + skip + 1, 1);
492 }
493
494 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 495 switch (op)
c906108c
SS
496 {
497 case 0x8b:
26604a34 498 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 499 return pc + 1;
c906108c
SS
500 break;
501 case 0x89:
26604a34 502 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 503 return pc + 1;
c906108c
SS
504 break;
505 default:
acd5c798 506 return pc + 1;
c906108c 507 }
acd5c798 508
26604a34
MK
509 /* OK, we actually have a frame. We just don't know how large
510 it is yet. Set its size to zero. We'll adjust it if
511 necessary. We also now commit to skipping the special
512 instructions mentioned before. */
acd5c798 513 cache->locals = 0;
26604a34 514 pc += skip;
acd5c798
MK
515
516 /* If that's all, return now. */
517 if (current_pc <= pc + 3)
518 return current_pc;
519
fc338970
MK
520 /* Check for stack adjustment
521
acd5c798 522 subl $XXX, %esp
fc338970
MK
523
524 NOTE: You can't subtract a 16 bit immediate from a 32 bit
525 reg, so we don't have to worry about a data16 prefix. */
acd5c798 526 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
527 if (op == 0x83)
528 {
fc338970 529 /* `subl' with 8 bit immediate. */
acd5c798 530 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 531 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
532 return pc + 3;
533
534 /* `subl' with signed byte immediate (though it wouldn't make
535 sense to be negative). */
536 cache->locals = read_memory_integer (pc + 5, 1);
537 return pc + 6;
c906108c
SS
538 }
539 else if (op == 0x81)
540 {
fc338970 541 /* Maybe it is `subl' with a 32 bit immedediate. */
acd5c798 542 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 543 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
544 return pc + 3;
545
fc338970 546 /* It is `subl' with a 32 bit immediate. */
acd5c798
MK
547 cache->locals = read_memory_integer (pc + 5, 4);
548 return pc + 9;
c906108c
SS
549 }
550 else
551 {
acd5c798
MK
552 /* Some instruction other than `subl'. */
553 return pc + 3;
c906108c
SS
554 }
555 }
acd5c798 556 else if (op == 0xc8) /* enter $XXX */
c906108c 557 {
acd5c798
MK
558 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
559 return pc + 4;
c906108c 560 }
21d0e8a4 561
acd5c798 562 return pc;
21d0e8a4
MK
563}
564
acd5c798
MK
565/* Check whether PC points at code that saves registers on the stack.
566 If so, it updates CACHE and returns the address of the first
567 instruction after the register saves or CURRENT_PC, whichever is
568 smaller. Otherwise, return PC. */
6bff26de
MK
569
570static CORE_ADDR
acd5c798
MK
571i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
572 struct i386_frame_cache *cache)
6bff26de 573{
99ab4326
MK
574 CORE_ADDR offset = 0;
575 unsigned char op;
576 int i;
c0d1d883 577
99ab4326
MK
578 if (cache->locals > 0)
579 offset -= cache->locals;
580 for (i = 0; i < 8 && pc < current_pc; i++)
581 {
582 op = read_memory_unsigned_integer (pc, 1);
583 if (op < 0x50 || op > 0x57)
584 break;
0d17c81d 585
99ab4326
MK
586 offset -= 4;
587 cache->saved_regs[op - 0x50] = offset;
588 cache->sp_offset += 4;
589 pc++;
6bff26de
MK
590 }
591
acd5c798 592 return pc;
22797942
AC
593}
594
acd5c798
MK
595/* Do a full analysis of the prologue at PC and update CACHE
596 accordingly. Bail out early if CURRENT_PC is reached. Return the
597 address where the analysis stopped.
ed84f6c1 598
fc338970
MK
599 We handle these cases:
600
601 The startup sequence can be at the start of the function, or the
602 function can start with a branch to startup code at the end.
603
604 %ebp can be set up with either the 'enter' instruction, or "pushl
605 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
606 once used in the System V compiler).
607
608 Local space is allocated just below the saved %ebp by either the
609 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
610 bit unsigned argument for space to allocate, and the 'addl'
611 instruction could have either a signed byte, or 32 bit immediate.
612
613 Next, the registers used by this function are pushed. With the
614 System V compiler they will always be in the order: %edi, %esi,
615 %ebx (and sometimes a harmless bug causes it to also save but not
616 restore %eax); however, the code below is willing to see the pushes
617 in any order, and will handle up to 8 of them.
618
619 If the setup sequence is at the end of the function, then the next
620 instruction will be a branch back to the start. */
c906108c 621
acd5c798
MK
622static CORE_ADDR
623i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
624 struct i386_frame_cache *cache)
c906108c 625{
acd5c798
MK
626 pc = i386_follow_jump (pc);
627 pc = i386_analyze_struct_return (pc, current_pc, cache);
628 pc = i386_skip_probe (pc);
629 pc = i386_analyze_frame_setup (pc, current_pc, cache);
630 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
631}
632
fc338970 633/* Return PC of first real instruction. */
c906108c 634
3a1e71e3 635static CORE_ADDR
acd5c798 636i386_skip_prologue (CORE_ADDR start_pc)
c906108c 637{
c5aa993b 638 static unsigned char pic_pat[6] =
acd5c798
MK
639 {
640 0xe8, 0, 0, 0, 0, /* call 0x0 */
641 0x5b, /* popl %ebx */
c5aa993b 642 };
acd5c798
MK
643 struct i386_frame_cache cache;
644 CORE_ADDR pc;
645 unsigned char op;
646 int i;
c5aa993b 647
acd5c798
MK
648 cache.locals = -1;
649 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
650 if (cache.locals < 0)
651 return start_pc;
c5aa993b 652
acd5c798 653 /* Found valid frame setup. */
c906108c 654
fc338970
MK
655 /* The native cc on SVR4 in -K PIC mode inserts the following code
656 to get the address of the global offset table (GOT) into register
acd5c798
MK
657 %ebx:
658
fc338970
MK
659 call 0x0
660 popl %ebx
661 movl %ebx,x(%ebp) (optional)
662 addl y,%ebx
663
c906108c
SS
664 This code is with the rest of the prologue (at the end of the
665 function), so we have to skip it to get to the first real
666 instruction at the start of the function. */
c5aa993b 667
c906108c
SS
668 for (i = 0; i < 6; i++)
669 {
acd5c798 670 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 671 if (pic_pat[i] != op)
c906108c
SS
672 break;
673 }
674 if (i == 6)
675 {
acd5c798
MK
676 int delta = 6;
677
678 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 679
c5aa993b 680 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 681 {
acd5c798
MK
682 op = read_memory_unsigned_integer (pc + delta + 1, 1);
683
fc338970 684 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 685 delta += 3;
fc338970 686 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 687 delta += 6;
fc338970 688 else /* Unexpected instruction. */
acd5c798
MK
689 delta = 0;
690
691 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 692 }
acd5c798 693
c5aa993b 694 /* addl y,%ebx */
acd5c798
MK
695 if (delta > 0 && op == 0x81
696 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 697 {
acd5c798 698 pc += delta + 6;
c906108c
SS
699 }
700 }
c5aa993b 701
acd5c798 702 return i386_follow_jump (pc);
c906108c
SS
703}
704
acd5c798 705/* This function is 64-bit safe. */
93924b6b 706
acd5c798
MK
707static CORE_ADDR
708i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 709{
acd5c798
MK
710 char buf[8];
711
712 frame_unwind_register (next_frame, PC_REGNUM, buf);
713 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 714}
acd5c798 715\f
93924b6b 716
acd5c798 717/* Normal frames. */
c5aa993b 718
acd5c798
MK
719static struct i386_frame_cache *
720i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 721{
acd5c798 722 struct i386_frame_cache *cache;
c0d1d883 723 char buf[4];
acd5c798
MK
724 int i;
725
726 if (*this_cache)
727 return *this_cache;
728
fd13a04a 729 cache = i386_alloc_frame_cache ();
acd5c798
MK
730 *this_cache = cache;
731
732 /* In principle, for normal frames, %ebp holds the frame pointer,
733 which holds the base address for the current stack frame.
734 However, for functions that don't need it, the frame pointer is
735 optional. For these "frameless" functions the frame pointer is
736 actually the frame pointer of the calling frame. Signal
737 trampolines are just a special case of a "frameless" function.
738 They (usually) share their frame pointer with the frame that was
739 in progress when the signal occurred. */
740
741 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
742 cache->base = extract_unsigned_integer (buf, 4);
743 if (cache->base == 0)
744 return cache;
745
746 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 747 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
748
749 cache->pc = frame_func_unwind (next_frame);
750 if (cache->pc != 0)
751 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
752
753 if (cache->locals < 0)
754 {
755 /* We didn't find a valid frame, which means that CACHE->base
756 currently holds the frame pointer for our calling frame. If
757 we're at the start of a function, or somewhere half-way its
758 prologue, the function's frame probably hasn't been fully
759 setup yet. Try to reconstruct the base address for the stack
760 frame by looking at the stack pointer. For truly "frameless"
761 functions this might work too. */
762
763 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
764 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
765 }
766
767 /* Now that we have the base address for the stack frame we can
768 calculate the value of %esp in the calling frame. */
769 cache->saved_sp = cache->base + 8;
a7769679 770
acd5c798
MK
771 /* Adjust all the saved registers such that they contain addresses
772 instead of offsets. */
773 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
774 if (cache->saved_regs[i] != -1)
775 cache->saved_regs[i] += cache->base;
acd5c798
MK
776
777 return cache;
a7769679
MK
778}
779
3a1e71e3 780static void
acd5c798
MK
781i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
782 struct frame_id *this_id)
c906108c 783{
acd5c798
MK
784 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
785
786 /* This marks the outermost frame. */
787 if (cache->base == 0)
788 return;
789
3e210248 790 /* See the end of i386_push_dummy_call. */
acd5c798
MK
791 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
792}
793
794static void
795i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
796 int regnum, int *optimizedp,
797 enum lval_type *lvalp, CORE_ADDR *addrp,
798 int *realnump, void *valuep)
799{
800 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
801
802 gdb_assert (regnum >= 0);
803
804 /* The System V ABI says that:
805
806 "The flags register contains the system flags, such as the
807 direction flag and the carry flag. The direction flag must be
808 set to the forward (that is, zero) direction before entry and
809 upon exit from a function. Other user flags have no specified
810 role in the standard calling sequence and are not preserved."
811
812 To guarantee the "upon exit" part of that statement we fake a
813 saved flags register that has its direction flag cleared.
814
815 Note that GCC doesn't seem to rely on the fact that the direction
816 flag is cleared after a function return; it always explicitly
817 clears the flag before operations where it matters.
818
819 FIXME: kettenis/20030316: I'm not quite sure whether this is the
820 right thing to do. The way we fake the flags register here makes
821 it impossible to change it. */
822
823 if (regnum == I386_EFLAGS_REGNUM)
824 {
825 *optimizedp = 0;
826 *lvalp = not_lval;
827 *addrp = 0;
828 *realnump = -1;
829 if (valuep)
830 {
831 ULONGEST val;
c5aa993b 832
acd5c798 833 /* Clear the direction flag. */
f837910f
MK
834 val = frame_unwind_register_unsigned (next_frame,
835 I386_EFLAGS_REGNUM);
acd5c798
MK
836 val &= ~(1 << 10);
837 store_unsigned_integer (valuep, 4, val);
838 }
839
840 return;
841 }
1211c4e4 842
acd5c798 843 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 844 {
acd5c798
MK
845 frame_register_unwind (next_frame, I386_EAX_REGNUM,
846 optimizedp, lvalp, addrp, realnump, valuep);
847 return;
848 }
849
850 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
851 {
852 *optimizedp = 0;
853 *lvalp = not_lval;
854 *addrp = 0;
855 *realnump = -1;
856 if (valuep)
c906108c 857 {
acd5c798
MK
858 /* Store the value. */
859 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 860 }
acd5c798 861 return;
c906108c 862 }
acd5c798 863
fd13a04a
AC
864 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
865 {
866 *optimizedp = 0;
867 *lvalp = lval_memory;
868 *addrp = cache->saved_regs[regnum];
869 *realnump = -1;
870 if (valuep)
871 {
872 /* Read the value in from memory. */
873 read_memory (*addrp, valuep,
874 register_size (current_gdbarch, regnum));
875 }
876 return;
877 }
878
879 frame_register_unwind (next_frame, regnum,
880 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
881}
882
883static const struct frame_unwind i386_frame_unwind =
884{
885 NORMAL_FRAME,
886 i386_frame_this_id,
887 i386_frame_prev_register
888};
889
890static const struct frame_unwind *
336d1bba 891i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
892{
893 return &i386_frame_unwind;
894}
895\f
896
897/* Signal trampolines. */
898
899static struct i386_frame_cache *
900i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
901{
902 struct i386_frame_cache *cache;
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR addr;
905 char buf[4];
906
907 if (*this_cache)
908 return *this_cache;
909
fd13a04a 910 cache = i386_alloc_frame_cache ();
acd5c798
MK
911
912 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4) - 4;
914
915 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
916 if (tdep->sc_reg_offset)
917 {
918 int i;
919
920 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
921
922 for (i = 0; i < tdep->sc_num_regs; i++)
923 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 924 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
925 }
926 else
927 {
fd13a04a
AC
928 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
929 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 930 }
acd5c798
MK
931
932 *this_cache = cache;
933 return cache;
934}
935
936static void
937i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
938 struct frame_id *this_id)
939{
940 struct i386_frame_cache *cache =
941 i386_sigtramp_frame_cache (next_frame, this_cache);
942
3e210248 943 /* See the end of i386_push_dummy_call. */
acd5c798
MK
944 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
945}
946
947static void
948i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
949 void **this_cache,
950 int regnum, int *optimizedp,
951 enum lval_type *lvalp, CORE_ADDR *addrp,
952 int *realnump, void *valuep)
953{
954 /* Make sure we've initialized the cache. */
955 i386_sigtramp_frame_cache (next_frame, this_cache);
956
957 i386_frame_prev_register (next_frame, this_cache, regnum,
958 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 959}
c0d1d883 960
acd5c798
MK
961static const struct frame_unwind i386_sigtramp_frame_unwind =
962{
963 SIGTRAMP_FRAME,
964 i386_sigtramp_frame_this_id,
965 i386_sigtramp_frame_prev_register
966};
967
968static const struct frame_unwind *
336d1bba 969i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 970{
336d1bba 971 CORE_ADDR pc = frame_pc_unwind (next_frame);
acd5c798
MK
972 char *name;
973
1c3545ae
MK
974 /* We shouldn't even bother to try if the OSABI didn't register
975 a sigcontext_addr handler. */
976 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
977 return NULL;
978
acd5c798
MK
979 find_pc_partial_function (pc, &name, NULL, NULL);
980 if (PC_IN_SIGTRAMP (pc, name))
981 return &i386_sigtramp_frame_unwind;
982
983 return NULL;
984}
985\f
986
987static CORE_ADDR
988i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
989{
990 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
991
992 return cache->base;
993}
994
995static const struct frame_base i386_frame_base =
996{
997 &i386_frame_unwind,
998 i386_frame_base_address,
999 i386_frame_base_address,
1000 i386_frame_base_address
1001};
1002
acd5c798
MK
1003static struct frame_id
1004i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005{
1006 char buf[4];
1007 CORE_ADDR fp;
1008
1009 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1010 fp = extract_unsigned_integer (buf, 4);
1011
3e210248 1012 /* See the end of i386_push_dummy_call. */
acd5c798 1013 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1014}
fc338970 1015\f
c906108c 1016
fc338970
MK
1017/* Figure out where the longjmp will land. Slurp the args out of the
1018 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1019 structure from which we extract the address that we will land at.
28bcfd30 1020 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1021 success.
1022
1023 This function is 64-bit safe. */
c906108c 1024
8201327c
MK
1025static int
1026i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1027{
28bcfd30 1028 char buf[8];
c906108c 1029 CORE_ADDR sp, jb_addr;
8201327c 1030 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1031 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1032
8201327c
MK
1033 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1034 longjmp will land. */
1035 if (jb_pc_offset == -1)
c906108c
SS
1036 return 0;
1037
f837910f
MK
1038 /* Don't use I386_ESP_REGNUM here, since this function is also used
1039 for AMD64. */
1040 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1041 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1042 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1043 return 0;
1044
f837910f 1045 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1046 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1047 return 0;
c906108c 1048
f9d3c2a8 1049 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1050 return 1;
1051}
fc338970 1052\f
c906108c 1053
3a1e71e3 1054static CORE_ADDR
6a65450a
AC
1055i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1056 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1057 struct value **args, CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
22f8ba57 1059{
acd5c798
MK
1060 char buf[4];
1061 int i;
1062
1063 /* Push arguments in reverse order. */
1064 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1065 {
acd5c798
MK
1066 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1067
1068 /* The System V ABI says that:
1069
1070 "An argument's size is increased, if necessary, to make it a
1071 multiple of [32-bit] words. This may require tail padding,
1072 depending on the size of the argument."
1073
1074 This makes sure the stack says word-aligned. */
1075 sp -= (len + 3) & ~3;
1076 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1077 }
22f8ba57 1078
acd5c798
MK
1079 /* Push value address. */
1080 if (struct_return)
1081 {
22f8ba57 1082 sp -= 4;
fbd9dcd3 1083 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1084 write_memory (sp, buf, 4);
1085 }
1086
acd5c798
MK
1087 /* Store return address. */
1088 sp -= 4;
6a65450a 1089 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1090 write_memory (sp, buf, 4);
1091
1092 /* Finally, update the stack pointer... */
1093 store_unsigned_integer (buf, 4, sp);
1094 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1095
1096 /* ...and fake a frame pointer. */
1097 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1098
3e210248
AC
1099 /* MarkK wrote: This "+ 8" is all over the place:
1100 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1101 i386_unwind_dummy_id). It's there, since all frame unwinders for
1102 a given target have to agree (within a certain margin) on the
1103 defenition of the stack address of a frame. Otherwise
1104 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1105 stack address *before* the function call as a frame's CFA. On
1106 the i386, when %ebp is used as a frame pointer, the offset
1107 between the contents %ebp and the CFA as defined by GCC. */
1108 return sp + 8;
22f8ba57
MK
1109}
1110
1a309862
MK
1111/* These registers are used for returning integers (and on some
1112 targets also for returning `struct' and `union' values when their
ef9dff19 1113 size and alignment match an integer type). */
acd5c798
MK
1114#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1115#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862
MK
1116
1117/* Extract from an array REGBUF containing the (raw) register state, a
1118 function return value of TYPE, and copy that, in virtual format,
1119 into VALBUF. */
1120
3a1e71e3 1121static void
00f8375e 1122i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 1123 void *dst)
c906108c 1124{
ebba8386 1125 bfd_byte *valbuf = dst;
1a309862 1126 int len = TYPE_LENGTH (type);
00f8375e 1127 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1128
1e8d0a7b
MK
1129 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1130 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1131 {
00f8375e 1132 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1133 return;
1134 }
1e8d0a7b
MK
1135
1136 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1137 {
94ea66b3 1138 if (FP0_REGNUM < 0)
1a309862
MK
1139 {
1140 warning ("Cannot find floating-point return value.");
1141 memset (valbuf, 0, len);
ef9dff19 1142 return;
1a309862
MK
1143 }
1144
c6ba6f0d
MK
1145 /* Floating-point return values can be found in %st(0). Convert
1146 its contents to the desired type. This is probably not
1147 exactly how it would happen on the target itself, but it is
1148 the best we can do. */
acd5c798 1149 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1150 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1151 }
1152 else
c5aa993b 1153 {
f837910f
MK
1154 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1155 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1156
1157 if (len <= low_size)
00f8375e 1158 {
0818c12a 1159 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1160 memcpy (valbuf, buf, len);
1161 }
d4f3574e
SS
1162 else if (len <= (low_size + high_size))
1163 {
0818c12a 1164 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1165 memcpy (valbuf, buf, low_size);
0818c12a 1166 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1167 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1168 }
1169 else
8e65ff28
AC
1170 internal_error (__FILE__, __LINE__,
1171 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1172 }
1173}
1174
ef9dff19
MK
1175/* Write into the appropriate registers a function return value stored
1176 in VALBUF of type TYPE, given in virtual format. */
1177
3a1e71e3 1178static void
3d7f4f49
MK
1179i386_store_return_value (struct type *type, struct regcache *regcache,
1180 const void *valbuf)
ef9dff19
MK
1181{
1182 int len = TYPE_LENGTH (type);
1183
1e8d0a7b
MK
1184 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1185 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1186 {
3d7f4f49 1187 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1188 return;
1189 }
1e8d0a7b
MK
1190
1191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1192 {
3d7f4f49 1193 ULONGEST fstat;
c6ba6f0d 1194 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1195
94ea66b3 1196 if (FP0_REGNUM < 0)
ef9dff19
MK
1197 {
1198 warning ("Cannot set floating-point return value.");
1199 return;
1200 }
1201
635b0cc1
MK
1202 /* Returning floating-point values is a bit tricky. Apart from
1203 storing the return value in %st(0), we have to simulate the
1204 state of the FPU at function return point. */
1205
c6ba6f0d
MK
1206 /* Convert the value found in VALBUF to the extended
1207 floating-point format used by the FPU. This is probably
1208 not exactly how it would happen on the target itself, but
1209 it is the best we can do. */
1210 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1211 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1212
635b0cc1
MK
1213 /* Set the top of the floating-point register stack to 7. The
1214 actual value doesn't really matter, but 7 is what a normal
1215 function return would end up with if the program started out
1216 with a freshly initialized FPU. */
3d7f4f49 1217 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1218 fstat |= (7 << 11);
3d7f4f49 1219 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1220
635b0cc1
MK
1221 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1222 the floating-point register stack to 7, the appropriate value
1223 for the tag word is 0x3fff. */
3d7f4f49 1224 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1225 }
1226 else
1227 {
f837910f
MK
1228 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1229 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1230
1231 if (len <= low_size)
3d7f4f49 1232 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1233 else if (len <= (low_size + high_size))
1234 {
3d7f4f49
MK
1235 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1236 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1237 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1238 }
1239 else
8e65ff28
AC
1240 internal_error (__FILE__, __LINE__,
1241 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1242 }
1243}
f7af9647 1244
751f1375
MK
1245/* Extract from REGCACHE, which contains the (raw) register state, the
1246 address in which a function should return its structure value, as a
1247 CORE_ADDR. */
f7af9647 1248
3a1e71e3 1249static CORE_ADDR
00f8375e 1250i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1251{
acd5c798 1252 char buf[4];
751f1375 1253
acd5c798
MK
1254 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1255 return extract_unsigned_integer (buf, 4);
f7af9647 1256}
fc338970 1257\f
ef9dff19 1258
8201327c
MK
1259/* This is the variable that is set with "set struct-convention", and
1260 its legitimate values. */
1261static const char default_struct_convention[] = "default";
1262static const char pcc_struct_convention[] = "pcc";
1263static const char reg_struct_convention[] = "reg";
1264static const char *valid_conventions[] =
1265{
1266 default_struct_convention,
1267 pcc_struct_convention,
1268 reg_struct_convention,
1269 NULL
1270};
1271static const char *struct_convention = default_struct_convention;
1272
1273static int
1274i386_use_struct_convention (int gcc_p, struct type *type)
1275{
1276 enum struct_return struct_return;
1277
1278 if (struct_convention == default_struct_convention)
1279 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1280 else if (struct_convention == pcc_struct_convention)
1281 struct_return = pcc_struct_return;
1282 else
1283 struct_return = reg_struct_return;
1284
1285 return generic_use_struct_convention (struct_return == reg_struct_return,
1286 type);
1287}
1288\f
1289
d7a0d72c
MK
1290/* Return the GDB type object for the "standard" data type of data in
1291 register REGNUM. Perhaps %esi and %edi should go here, but
1292 potentially they could be used for things other than address. */
1293
3a1e71e3 1294static struct type *
4e259f09 1295i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1296{
acd5c798
MK
1297 if (regnum == I386_EIP_REGNUM
1298 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1299 return lookup_pointer_type (builtin_type_void);
1300
23a34459 1301 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1302 return builtin_type_i387_ext;
d7a0d72c 1303
23a34459 1304 if (i386_sse_regnum_p (regnum))
3139facc 1305 return builtin_type_vec128i;
d7a0d72c 1306
23a34459 1307 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1308 return builtin_type_vec64i;
1309
d7a0d72c
MK
1310 return builtin_type_int;
1311}
1312
28fc6740 1313/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1314 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1315
1316static int
c86c27af 1317i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740
AC
1318{
1319 int mmxi;
1320 ULONGEST fstat;
1321 int tos;
1322 int fpi;
c86c27af 1323
28fc6740
AC
1324 mmxi = regnum - MM0_REGNUM;
1325 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1326 tos = (fstat >> 11) & 0x7;
1327 fpi = (mmxi + tos) % 8;
c86c27af 1328
28fc6740
AC
1329 return (FP0_REGNUM + fpi);
1330}
1331
1332static void
1333i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1334 int regnum, void *buf)
1335{
23a34459 1336 if (i386_mmx_regnum_p (regnum))
28fc6740 1337 {
d9d9c31f 1338 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1339 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1340
28fc6740 1341 /* Extract (always little endian). */
c86c27af 1342 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1343 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1344 }
1345 else
1346 regcache_raw_read (regcache, regnum, buf);
1347}
1348
1349static void
1350i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1351 int regnum, const void *buf)
1352{
23a34459 1353 if (i386_mmx_regnum_p (regnum))
28fc6740 1354 {
d9d9c31f 1355 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1356 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1357
28fc6740
AC
1358 /* Read ... */
1359 regcache_raw_read (regcache, fpnum, mmx_buf);
1360 /* ... Modify ... (always little endian). */
f837910f 1361 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1362 /* ... Write. */
1363 regcache_raw_write (regcache, fpnum, mmx_buf);
1364 }
1365 else
1366 regcache_raw_write (regcache, regnum, buf);
1367}
ff2e87ac
AC
1368\f
1369
1370/* These registers don't have pervasive standard uses. Move them to
1371 i386-tdep.h if necessary. */
1372
1373#define I386_EBX_REGNUM 3 /* %ebx */
1374#define I386_ECX_REGNUM 1 /* %ecx */
1375#define I386_ESI_REGNUM 6 /* %esi */
1376#define I386_EDI_REGNUM 7 /* %edi */
1377
1378/* Return the register number of the register allocated by GCC after
1379 REGNUM, or -1 if there is no such register. */
1380
1381static int
1382i386_next_regnum (int regnum)
1383{
1384 /* GCC allocates the registers in the order:
1385
1386 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1387
1388 Since storing a variable in %esp doesn't make any sense we return
1389 -1 for %ebp and for %esp itself. */
1390 static int next_regnum[] =
1391 {
1392 I386_EDX_REGNUM, /* Slot for %eax. */
1393 I386_EBX_REGNUM, /* Slot for %ecx. */
1394 I386_ECX_REGNUM, /* Slot for %edx. */
1395 I386_ESI_REGNUM, /* Slot for %ebx. */
1396 -1, -1, /* Slots for %esp and %ebp. */
1397 I386_EDI_REGNUM, /* Slot for %esi. */
1398 I386_EBP_REGNUM /* Slot for %edi. */
1399 };
1400
de5b9bb9 1401 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1402 return next_regnum[regnum];
28fc6740 1403
ff2e87ac
AC
1404 return -1;
1405}
1406
1407/* Return nonzero if a value of type TYPE stored in register REGNUM
1408 needs any special handling. */
d7a0d72c 1409
3a1e71e3 1410static int
ff2e87ac 1411i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1412{
de5b9bb9
MK
1413 int len = TYPE_LENGTH (type);
1414
ff2e87ac
AC
1415 /* Values may be spread across multiple registers. Most debugging
1416 formats aren't expressive enough to specify the locations, so
1417 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1418 have a length that is a multiple of the word size, since GCC
1419 doesn't seem to put any other types into registers. */
1420 if (len > 4 && len % 4 == 0)
1421 {
1422 int last_regnum = regnum;
1423
1424 while (len > 4)
1425 {
1426 last_regnum = i386_next_regnum (last_regnum);
1427 len -= 4;
1428 }
1429
1430 if (last_regnum != -1)
1431 return 1;
1432 }
ff2e87ac 1433
23a34459 1434 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1435}
1436
ff2e87ac
AC
1437/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1438 return its contents in TO. */
ac27f131 1439
3a1e71e3 1440static void
ff2e87ac
AC
1441i386_register_to_value (struct frame_info *frame, int regnum,
1442 struct type *type, void *to)
ac27f131 1443{
de5b9bb9
MK
1444 int len = TYPE_LENGTH (type);
1445 char *buf = to;
1446
ff2e87ac
AC
1447 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1448 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1449
ff2e87ac 1450 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1451 {
d532c08f
MK
1452 i387_register_to_value (frame, regnum, type, to);
1453 return;
8d7f6b4a 1454 }
ff2e87ac 1455
de5b9bb9
MK
1456 /* Read a value spread accross multiple registers. */
1457
1458 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1459
de5b9bb9
MK
1460 while (len > 0)
1461 {
1462 gdb_assert (regnum != -1);
1463 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1464
f837910f 1465 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1466 regnum = i386_next_regnum (regnum);
1467 len -= 4;
1468 buf += 4;
1469 }
ac27f131
MK
1470}
1471
ff2e87ac
AC
1472/* Write the contents FROM of a value of type TYPE into register
1473 REGNUM in frame FRAME. */
ac27f131 1474
3a1e71e3 1475static void
ff2e87ac
AC
1476i386_value_to_register (struct frame_info *frame, int regnum,
1477 struct type *type, const void *from)
ac27f131 1478{
de5b9bb9
MK
1479 int len = TYPE_LENGTH (type);
1480 const char *buf = from;
1481
ff2e87ac 1482 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1483 {
d532c08f
MK
1484 i387_value_to_register (frame, regnum, type, from);
1485 return;
1486 }
3d261580 1487
de5b9bb9
MK
1488 /* Write a value spread accross multiple registers. */
1489
1490 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1491
de5b9bb9
MK
1492 while (len > 0)
1493 {
1494 gdb_assert (regnum != -1);
1495 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1496
de5b9bb9
MK
1497 put_frame_register (frame, regnum, buf);
1498 regnum = i386_next_regnum (regnum);
1499 len -= 4;
1500 buf += 4;
1501 }
ac27f131 1502}
ff2e87ac
AC
1503\f
1504
fc338970 1505
c906108c 1506#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1507/* SunPRO encodes the static variables. This is not related to C++
1508 mangling, it is done for C too. */
c906108c
SS
1509
1510char *
fba45db2 1511sunpro_static_transform_name (char *name)
c906108c
SS
1512{
1513 char *p;
1514 if (IS_STATIC_TRANSFORM_NAME (name))
1515 {
fc338970
MK
1516 /* For file-local statics there will be a period, a bunch of
1517 junk (the contents of which match a string given in the
c5aa993b
JM
1518 N_OPT), a period and the name. For function-local statics
1519 there will be a bunch of junk (which seems to change the
1520 second character from 'A' to 'B'), a period, the name of the
1521 function, and the name. So just skip everything before the
1522 last period. */
c906108c
SS
1523 p = strrchr (name, '.');
1524 if (p != NULL)
1525 name = p + 1;
1526 }
1527 return name;
1528}
1529#endif /* STATIC_TRANSFORM_NAME */
fc338970 1530\f
c906108c 1531
fc338970 1532/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1533
1534CORE_ADDR
1cce71eb 1535i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1536{
fc338970 1537 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1538 {
c5aa993b 1539 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1540 struct minimal_symbol *indsym =
fc338970 1541 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1542 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1543
c5aa993b 1544 if (symname)
c906108c 1545 {
c5aa993b
JM
1546 if (strncmp (symname, "__imp_", 6) == 0
1547 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1548 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1549 }
1550 }
fc338970 1551 return 0; /* Not a trampoline. */
c906108c 1552}
fc338970
MK
1553\f
1554
8201327c
MK
1555/* Return non-zero if PC and NAME show that we are in a signal
1556 trampoline. */
1557
1558static int
1559i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1560{
1561 return (name && strcmp ("_sigtramp", name) == 0);
1562}
1563\f
1564
fc338970
MK
1565/* We have two flavours of disassembly. The machinery on this page
1566 deals with switching between those. */
c906108c
SS
1567
1568static int
5e3397bb 1569i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1570{
5e3397bb
MK
1571 gdb_assert (disassembly_flavor == att_flavor
1572 || disassembly_flavor == intel_flavor);
1573
1574 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1575 constified, cast to prevent a compiler warning. */
1576 info->disassembler_options = (char *) disassembly_flavor;
1577 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1578
1579 return print_insn_i386 (pc, info);
7a292a7a 1580}
fc338970 1581\f
3ce1502b 1582
8201327c
MK
1583/* There are a few i386 architecture variants that differ only
1584 slightly from the generic i386 target. For now, we don't give them
1585 their own source file, but include them here. As a consequence,
1586 they'll always be included. */
3ce1502b 1587
8201327c 1588/* System V Release 4 (SVR4). */
3ce1502b 1589
8201327c
MK
1590static int
1591i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1592{
acd5c798
MK
1593 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1594 currently unknown. */
8201327c
MK
1595 return (name && (strcmp ("_sigreturn", name) == 0
1596 || strcmp ("_sigacthandler", name) == 0
1597 || strcmp ("sigvechandler", name) == 0));
1598}
d2a7c97a 1599
acd5c798
MK
1600/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1601 routine, return the address of the associated sigcontext (ucontext)
1602 structure. */
3ce1502b 1603
3a1e71e3 1604static CORE_ADDR
acd5c798 1605i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1606{
acd5c798
MK
1607 char buf[4];
1608 CORE_ADDR sp;
3ce1502b 1609
acd5c798
MK
1610 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1611 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1612
acd5c798 1613 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1614}
1615\f
3ce1502b 1616
8201327c 1617/* DJGPP. */
d2a7c97a 1618
8201327c
MK
1619static int
1620i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1621{
1622 /* DJGPP doesn't have any special frames for signal handlers. */
1623 return 0;
1624}
1625\f
d2a7c97a 1626
8201327c 1627/* Generic ELF. */
d2a7c97a 1628
8201327c
MK
1629void
1630i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1631{
1632 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1633 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1634}
3ce1502b 1635
8201327c 1636/* System V Release 4 (SVR4). */
3ce1502b 1637
8201327c
MK
1638void
1639i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1640{
1641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1642
8201327c
MK
1643 /* System V Release 4 uses ELF. */
1644 i386_elf_init_abi (info, gdbarch);
3ce1502b 1645
dfe01d39
MK
1646 /* System V Release 4 has shared libraries. */
1647 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1648 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1649
8201327c 1650 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4 1651 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1652 tdep->sc_pc_offset = 36 + 14 * 4;
1653 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1654
8201327c 1655 tdep->jb_pc_offset = 20;
3ce1502b
MK
1656}
1657
8201327c 1658/* DJGPP. */
3ce1502b 1659
3a1e71e3 1660static void
8201327c 1661i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1662{
8201327c 1663 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1664
8201327c 1665 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1666
8201327c 1667 tdep->jb_pc_offset = 36;
3ce1502b
MK
1668}
1669
8201327c 1670/* NetWare. */
3ce1502b 1671
3a1e71e3 1672static void
8201327c 1673i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1674{
8201327c 1675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1676
8201327c 1677 tdep->jb_pc_offset = 24;
d2a7c97a 1678}
8201327c 1679\f
2acceee2 1680
38c968cf
AC
1681/* i386 register groups. In addition to the normal groups, add "mmx"
1682 and "sse". */
1683
1684static struct reggroup *i386_sse_reggroup;
1685static struct reggroup *i386_mmx_reggroup;
1686
1687static void
1688i386_init_reggroups (void)
1689{
1690 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1691 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1692}
1693
1694static void
1695i386_add_reggroups (struct gdbarch *gdbarch)
1696{
1697 reggroup_add (gdbarch, i386_sse_reggroup);
1698 reggroup_add (gdbarch, i386_mmx_reggroup);
1699 reggroup_add (gdbarch, general_reggroup);
1700 reggroup_add (gdbarch, float_reggroup);
1701 reggroup_add (gdbarch, all_reggroup);
1702 reggroup_add (gdbarch, save_reggroup);
1703 reggroup_add (gdbarch, restore_reggroup);
1704 reggroup_add (gdbarch, vector_reggroup);
1705 reggroup_add (gdbarch, system_reggroup);
1706}
1707
1708int
1709i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1710 struct reggroup *group)
1711{
1712 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1713 || i386_mxcsr_regnum_p (regnum));
1714 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1715 || i386_fpc_regnum_p (regnum));
1716 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
acd5c798 1717
38c968cf
AC
1718 if (group == i386_mmx_reggroup)
1719 return mmx_regnum_p;
1720 if (group == i386_sse_reggroup)
1721 return sse_regnum_p;
1722 if (group == vector_reggroup)
1723 return (mmx_regnum_p || sse_regnum_p);
1724 if (group == float_reggroup)
1725 return fp_regnum_p;
1726 if (group == general_reggroup)
1727 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1728
38c968cf
AC
1729 return default_register_reggroup_p (gdbarch, regnum, group);
1730}
38c968cf 1731\f
acd5c798 1732
f837910f
MK
1733/* Get the ARGIth function argument for the current function. */
1734
42c466d7 1735static CORE_ADDR
143985b7
AF
1736i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1737 struct type *type)
1738{
f837910f
MK
1739 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1740 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1741}
1742
1743\f
3a1e71e3 1744static struct gdbarch *
a62cc96e
AC
1745i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1746{
cd3c07fc 1747 struct gdbarch_tdep *tdep;
a62cc96e
AC
1748 struct gdbarch *gdbarch;
1749
4be87837
DJ
1750 /* If there is already a candidate, use it. */
1751 arches = gdbarch_list_lookup_by_info (arches, &info);
1752 if (arches != NULL)
1753 return arches->gdbarch;
a62cc96e
AC
1754
1755 /* Allocate space for the new architecture. */
1756 tdep = XMALLOC (struct gdbarch_tdep);
1757 gdbarch = gdbarch_alloc (&info, tdep);
1758
49ed40de
KB
1759 /* The i386 default settings now include the SSE registers.
1760 I386_NUM_XREGS includes mxcsr, and we don't want to count
1761 this as one of the xmm regs -- which is why we subtract one.
1762
1763 Note: kevinb/2003-07-14: Whatever Mark's concerns are about the
1764 FPU registers in the FIXME below apply to the SSE registers as well.
1765 The only problem that I see is that these registers will show up
1766 in "info all-registers" even on CPUs where they don't exist. IMO,
1767 however, if it's a choice between printing them always (even when
1768 they don't exist) or never showing them to the user (even when they
1769 do exist), I prefer the former over the latter. Ideally, of course,
1770 we'd somehow autodetect that we have them (or not) and display them
1771 when we have them and suppress them when we don't.
1772
356a6b3e
MK
1773 FIXME: kettenis/20020614: They do include the FPU registers for
1774 now, which probably is not quite right. */
49ed40de 1775 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 1776
8201327c
MK
1777 tdep->jb_pc_offset = -1;
1778 tdep->struct_return = pcc_struct_return;
8201327c
MK
1779 tdep->sigtramp_start = 0;
1780 tdep->sigtramp_end = 0;
21d0e8a4 1781 tdep->sigcontext_addr = NULL;
a3386186 1782 tdep->sc_reg_offset = NULL;
8201327c 1783 tdep->sc_pc_offset = -1;
21d0e8a4 1784 tdep->sc_sp_offset = -1;
8201327c 1785
896fb97d
MK
1786 /* The format used for `long double' on almost all i386 targets is
1787 the i387 extended floating-point format. In fact, of all targets
1788 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1789 on having a `long double' that's not `long' at all. */
1790 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1791
66da5fd8 1792 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1793 bits, a `long double' actually takes up 96, probably to enforce
1794 alignment. */
1795 set_gdbarch_long_double_bit (gdbarch, 96);
1796
49ed40de
KB
1797 /* The default ABI includes general-purpose registers,
1798 floating-point registers, and the SSE registers. */
1799 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
1800 set_gdbarch_register_name (gdbarch, i386_register_name);
1801 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1802
acd5c798
MK
1803 /* Register numbers of various important registers. */
1804 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1805 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1806 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1807 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e
MK
1808
1809 /* Use the "default" register numbering scheme for stabs and COFF. */
1810 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1811 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1812
1813 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1814 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1815 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1816
1817 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1818 be in use on any of the supported i386 targets. */
1819
61113f8b
MK
1820 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1821
8201327c 1822 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1823
a62cc96e 1824 /* Call dummy code. */
acd5c798 1825 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 1826
ff2e87ac
AC
1827 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1828 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1829 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 1830
00f8375e 1831 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
3d7f4f49 1832 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1833 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1834 i386_extract_struct_value_address);
8201327c
MK
1835 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1836
93924b6b
MK
1837 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1838
1839 /* Stack grows downward. */
1840 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1841
1842 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1843 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1844 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1845
42fdc8df 1846 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c
MK
1847 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1848
28fc6740 1849 /* Wire in the MMX registers. */
0f751ff2 1850 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
1851 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1852 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1853
5e3397bb
MK
1854 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1855
acd5c798 1856 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
1857
1858 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1859
38c968cf
AC
1860 /* Add the i386 register groups. */
1861 i386_add_reggroups (gdbarch);
1862 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1863
143985b7
AF
1864 /* Helper for function argument information. */
1865 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1866
6405b0a6 1867 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 1868 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 1869
acd5c798 1870 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 1871
3ce1502b 1872 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1873 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1874
336d1bba
AC
1875 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1876 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 1877
a62cc96e
AC
1878 return gdbarch;
1879}
1880
8201327c
MK
1881static enum gdb_osabi
1882i386_coff_osabi_sniffer (bfd *abfd)
1883{
762c5349
MK
1884 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1885 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1886 return GDB_OSABI_GO32;
1887
1888 return GDB_OSABI_UNKNOWN;
1889}
1890
1891static enum gdb_osabi
1892i386_nlm_osabi_sniffer (bfd *abfd)
1893{
1894 return GDB_OSABI_NETWARE;
1895}
1896\f
1897
28e9e0f0
MK
1898/* Provide a prototype to silence -Wmissing-prototypes. */
1899void _initialize_i386_tdep (void);
1900
c906108c 1901void
fba45db2 1902_initialize_i386_tdep (void)
c906108c 1903{
a62cc96e
AC
1904 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1905
fc338970 1906 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1907 {
1908 struct cmd_list_element *new_cmd;
7a292a7a 1909
917317f4
JM
1910 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1911 valid_flavors,
1ed2a135 1912 &disassembly_flavor,
fc338970
MK
1913 "\
1914Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1915and the default value is \"att\".",
917317f4 1916 &setlist);
917317f4
JM
1917 add_show_from_set (new_cmd, &showlist);
1918 }
8201327c
MK
1919
1920 /* Add the variable that controls the convention for returning
1921 structs. */
1922 {
1923 struct cmd_list_element *new_cmd;
1924
1925 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1926 valid_conventions,
8201327c
MK
1927 &struct_convention, "\
1928Set the convention for returning small structs, valid values \
1929are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1930 &setlist);
1931 add_show_from_set (new_cmd, &showlist);
1932 }
1933
1934 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1935 i386_coff_osabi_sniffer);
1936 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1937 i386_nlm_osabi_sniffer);
1938
05816f70 1939 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1940 i386_svr4_init_abi);
05816f70 1941 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1942 i386_go32_init_abi);
05816f70 1943 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1944 i386_nw_init_abi);
38c968cf
AC
1945
1946 /* Initialize the i386 specific register groups. */
1947 i386_init_reggroups ();
c906108c 1948}
This page took 0.635147 seconds and 4 git commands to generate.