2011-03-11 Maxim Grigoriev <maxim2405@gmail.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
7b6bb8da 5 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
c8d5aac9 47#include "remote.h"
acd5c798 48
3d261580 49#include "gdb_assert.h"
acd5c798 50#include "gdb_string.h"
3d261580 51
d2a7c97a 52#include "i386-tdep.h"
61113f8b 53#include "i387-tdep.h"
c131fcee 54#include "i386-xstate.h"
d2a7c97a 55
7ad10968
HZ
56#include "record.h"
57#include <stdint.h>
58
90884b2b 59#include "features/i386/i386.c"
c131fcee 60#include "features/i386/i386-avx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
c4fc7f1b 63/* Register names. */
c40e1eab 64
90884b2b 65static const char *i386_register_names[] =
fc633446
MK
66{
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78};
79
c131fcee
L
80static const char *i386_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84};
85
86static const char *i386_ymmh_names[] =
87{
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90};
91
c4fc7f1b 92/* Register names for MMX pseudo-registers. */
28fc6740 93
90884b2b 94static const char *i386_mmx_names[] =
28fc6740
AC
95{
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98};
c40e1eab 99
1ba53b71
L
100/* Register names for byte pseudo-registers. */
101
102static const char *i386_byte_names[] =
103{
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106};
107
108/* Register names for word pseudo-registers. */
109
110static const char *i386_word_names[] =
111{
112 "ax", "cx", "dx", "bx",
9cad29ac 113 "", "bp", "si", "di"
1ba53b71
L
114};
115
116/* MMX register? */
c40e1eab 117
28fc6740 118static int
5716833c 119i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 120{
1ba53b71
L
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
123
124 if (mm0_regnum < 0)
125 return 0;
126
1ba53b71
L
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129}
130
131/* Byte register? */
132
133int
134i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140}
141
142/* Word register? */
143
144int
145i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151}
152
153/* Dword register? */
154
155int
156i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
166}
167
9191d390 168static int
c131fcee
L
169i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170{
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179}
180
181/* AVX register? */
182
183int
184i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194}
195
5716833c 196/* SSE register? */
23a34459 197
c131fcee
L
198int
199i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 200{
5716833c 201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 203
c131fcee 204 if (num_xmm_regs == 0)
5716833c
MK
205 return 0;
206
c131fcee
L
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
209}
210
5716833c
MK
211static int
212i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 213{
5716833c
MK
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
20a6ec49 216 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
217 return 0;
218
20a6ec49 219 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
220}
221
5716833c 222/* FP register? */
23a34459
AC
223
224int
20a6ec49 225i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 226{
20a6ec49
MD
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
230 return 0;
231
20a6ec49
MD
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
234}
235
236int
20a6ec49 237i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 238{
20a6ec49
MD
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
242 return 0;
243
20a6ec49
MD
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
246}
247
c131fcee
L
248/* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251static const char *
252i386_register_name (struct gdbarch *gdbarch, int regnum)
253{
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259}
260
30b0e2d8 261/* Return the name of register REGNUM. */
fc633446 262
1ba53b71 263const char *
90884b2b 264i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 265{
1ba53b71
L
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
277}
278
c4fc7f1b 279/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
280 number used by GDB. */
281
8201327c 282static int
d3f73121 283i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 284{
20a6ec49
MD
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
c4fc7f1b
MK
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
85540d8c
MK
290 if (reg >= 0 && reg <= 7)
291 {
9872ad24
JB
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
85540d8c
MK
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
20a6ec49 303 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
c131fcee
L
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
20a6ec49 319 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
320 }
321
322 /* This will hopefully provoke a warning. */
d3f73121 323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
324}
325
c4fc7f1b
MK
326/* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
85540d8c 328
8201327c 329static int
d3f73121 330i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 331{
20a6ec49
MD
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
c4fc7f1b
MK
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
acd5c798 341 /* General-purpose registers. */
85540d8c
MK
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
20a6ec49 347 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 348 }
c6f4c129 349 else if (reg >= 21 && reg <= 36)
85540d8c 350 {
c4fc7f1b 351 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 352 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
353 }
354
c6f4c129
JB
355 switch (reg)
356 {
20a6ec49
MD
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
85540d8c 368 /* This will hopefully provoke a warning. */
d3f73121 369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 370}
5716833c 371
fc338970 372\f
917317f4 373
fc338970
MK
374/* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
53904c9e
AC
376static const char att_flavor[] = "att";
377static const char intel_flavor[] = "intel";
378static const char *valid_flavors[] =
c5aa993b 379{
c906108c
SS
380 att_flavor,
381 intel_flavor,
382 NULL
383};
53904c9e 384static const char *disassembly_flavor = att_flavor;
acd5c798 385\f
c906108c 386
acd5c798
MK
387/* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
c906108c 392
acd5c798
MK
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
c906108c 395
acd5c798 396 This function is 64-bit safe. */
63c0089f
MK
397
398static const gdb_byte *
67d57894 399i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 400{
63c0089f
MK
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
acd5c798
MK
403 *len = sizeof (break_insn);
404 return break_insn;
c906108c 405}
237fc4c9
PA
406\f
407/* Displaced instruction handling. */
408
1903f0e6
DE
409/* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415static gdb_byte *
416i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417{
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443}
237fc4c9
PA
444
445static int
1903f0e6 446i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 447{
1777feb0 448 /* jmp far (absolute address in operand). */
237fc4c9
PA
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
1777feb0 454 /* jump near, absolute indirect (/4). */
237fc4c9
PA
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
1777feb0 458 /* jump far, absolute indirect (/5). */
237fc4c9
PA
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464}
465
466static int
1903f0e6 467i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 468{
1777feb0 469 /* call far, absolute. */
237fc4c9
PA
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
1777feb0 475 /* Call near, absolute indirect (/2). */
237fc4c9
PA
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
1777feb0 479 /* Call far, absolute indirect (/3). */
237fc4c9
PA
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485}
486
487static int
1903f0e6 488i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
489{
490 switch (insn[0])
491 {
1777feb0 492 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 493 case 0xc3: /* ret near */
1777feb0 494 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502}
503
504static int
1903f0e6 505i386_call_p (const gdb_byte *insn)
237fc4c9
PA
506{
507 if (i386_absolute_call_p (insn))
508 return 1;
509
1777feb0 510 /* call near, relative. */
237fc4c9
PA
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515}
516
237fc4c9
PA
517/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
1903f0e6 519
237fc4c9 520static int
b55078be 521i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9
PA
522{
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530}
531
b55078be
DE
532/* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535struct displaced_step_closure *
536i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539{
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567}
568
237fc4c9
PA
569/* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
1903f0e6 571
237fc4c9
PA
572void
573i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577{
e17a4113
UW
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
237fc4c9
PA
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
237fc4c9
PA
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
5af949e3 594 "displaced: fixup (%s, %s), "
237fc4c9 595 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
237fc4c9
PA
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
1903f0e6
DE
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
237fc4c9
PA
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
b55078be 627 int insn_len;
237fc4c9
PA
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
1903f0e6
DE
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
237fc4c9
PA
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
5af949e3
UW
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
237fc4c9
PA
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
237fc4c9
PA
701 }
702}
dde08ee1
PA
703
704static void
705append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706{
707 target_write_memory (*to, buf, len);
708 *to += len;
709}
710
711static void
712i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714{
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
1777feb0 739 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, newrel, byte_order);
751
752 /* Write the adjusted jump into its displaced location. */
753 append_insns (to, 5, insn);
754 return;
755 }
756
757 /* Adjust jumps with 32-bit relative addresses. Calls are already
758 handled above. */
759 if (insn[0] == 0xe9)
760 offset = 1;
761 /* Adjust conditional jumps. */
762 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763 offset = 2;
764
765 if (offset)
766 {
767 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768 newrel = (oldloc - *to) + rel32;
769 store_signed_integer (insn + offset, 4, newrel, byte_order);
770 if (debug_displaced)
771 fprintf_unfiltered (gdb_stdlog,
772 "Adjusted insn rel32=0x%s at 0x%s to"
773 " rel32=0x%s at 0x%s\n",
774 hex_string (rel32), paddress (gdbarch, oldloc),
775 hex_string (newrel), paddress (gdbarch, *to));
776 }
777
778 /* Write the adjusted instructions into their displaced
779 location. */
780 append_insns (to, insn_length, buf);
781}
782
fc338970 783\f
acd5c798
MK
784#ifdef I386_REGNO_TO_SYMMETRY
785#error "The Sequent Symmetry is no longer supported."
786#endif
c906108c 787
acd5c798
MK
788/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789 and %esp "belong" to the calling function. Therefore these
790 registers should be saved if they're going to be modified. */
c906108c 791
acd5c798
MK
792/* The maximum number of saved registers. This should include all
793 registers mentioned above, and %eip. */
a3386186 794#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
795
796struct i386_frame_cache
c906108c 797{
acd5c798
MK
798 /* Base address. */
799 CORE_ADDR base;
772562f8 800 LONGEST sp_offset;
acd5c798
MK
801 CORE_ADDR pc;
802
fd13a04a
AC
803 /* Saved registers. */
804 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 805 CORE_ADDR saved_sp;
e0c62198 806 int saved_sp_reg;
acd5c798
MK
807 int pc_in_eax;
808
809 /* Stack space reserved for local variables. */
810 long locals;
811};
812
813/* Allocate and initialize a frame cache. */
814
815static struct i386_frame_cache *
fd13a04a 816i386_alloc_frame_cache (void)
acd5c798
MK
817{
818 struct i386_frame_cache *cache;
819 int i;
820
821 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
823 /* Base address. */
824 cache->base = 0;
825 cache->sp_offset = -4;
826 cache->pc = 0;
827
fd13a04a
AC
828 /* Saved registers. We initialize these to -1 since zero is a valid
829 offset (that's where %ebp is supposed to be stored). */
830 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831 cache->saved_regs[i] = -1;
acd5c798 832 cache->saved_sp = 0;
e0c62198 833 cache->saved_sp_reg = -1;
acd5c798
MK
834 cache->pc_in_eax = 0;
835
836 /* Frameless until proven otherwise. */
837 cache->locals = -1;
838
839 return cache;
840}
c906108c 841
acd5c798
MK
842/* If the instruction at PC is a jump, return the address of its
843 target. Otherwise, return PC. */
c906108c 844
acd5c798 845static CORE_ADDR
e17a4113 846i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 847{
e17a4113 848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 849 gdb_byte op;
acd5c798
MK
850 long delta = 0;
851 int data16 = 0;
c906108c 852
3dcabaa8
MS
853 if (target_read_memory (pc, &op, 1))
854 return pc;
855
acd5c798 856 if (op == 0x66)
c906108c 857 {
c906108c 858 data16 = 1;
e17a4113 859 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
860 }
861
acd5c798 862 switch (op)
c906108c
SS
863 {
864 case 0xe9:
fc338970 865 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
866 if (data16)
867 {
e17a4113 868 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 869
fc338970
MK
870 /* Include the size of the jmp instruction (including the
871 0x66 prefix). */
acd5c798 872 delta += 4;
c906108c
SS
873 }
874 else
875 {
e17a4113 876 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 877
acd5c798
MK
878 /* Include the size of the jmp instruction. */
879 delta += 5;
c906108c
SS
880 }
881 break;
882 case 0xeb:
fc338970 883 /* Relative jump, disp8 (ignore data16). */
e17a4113 884 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 885
acd5c798 886 delta += data16 + 2;
c906108c
SS
887 break;
888 }
c906108c 889
acd5c798
MK
890 return pc + delta;
891}
fc338970 892
acd5c798
MK
893/* Check whether PC points at a prologue for a function returning a
894 structure or union. If so, it updates CACHE and returns the
895 address of the first instruction after the code sequence that
896 removes the "hidden" argument from the stack or CURRENT_PC,
897 whichever is smaller. Otherwise, return PC. */
c906108c 898
acd5c798
MK
899static CORE_ADDR
900i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
901 struct i386_frame_cache *cache)
c906108c 902{
acd5c798
MK
903 /* Functions that return a structure or union start with:
904
905 popl %eax 0x58
906 xchgl %eax, (%esp) 0x87 0x04 0x24
907 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
908
909 (the System V compiler puts out the second `xchg' instruction,
910 and the assembler doesn't try to optimize it, so the 'sib' form
911 gets generated). This sequence is used to get the address of the
912 return buffer for a function that returns a structure. */
63c0089f
MK
913 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
914 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
915 gdb_byte buf[4];
916 gdb_byte op;
c906108c 917
acd5c798
MK
918 if (current_pc <= pc)
919 return pc;
920
3dcabaa8
MS
921 if (target_read_memory (pc, &op, 1))
922 return pc;
c906108c 923
acd5c798
MK
924 if (op != 0x58) /* popl %eax */
925 return pc;
c906108c 926
3dcabaa8
MS
927 if (target_read_memory (pc + 1, buf, 4))
928 return pc;
929
acd5c798
MK
930 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
931 return pc;
c906108c 932
acd5c798 933 if (current_pc == pc)
c906108c 934 {
acd5c798
MK
935 cache->sp_offset += 4;
936 return current_pc;
c906108c
SS
937 }
938
acd5c798 939 if (current_pc == pc + 1)
c906108c 940 {
acd5c798
MK
941 cache->pc_in_eax = 1;
942 return current_pc;
943 }
944
945 if (buf[1] == proto1[1])
946 return pc + 4;
947 else
948 return pc + 5;
949}
950
951static CORE_ADDR
952i386_skip_probe (CORE_ADDR pc)
953{
954 /* A function may start with
fc338970 955
acd5c798
MK
956 pushl constant
957 call _probe
958 addl $4, %esp
fc338970 959
acd5c798
MK
960 followed by
961
962 pushl %ebp
fc338970 963
acd5c798 964 etc. */
63c0089f
MK
965 gdb_byte buf[8];
966 gdb_byte op;
fc338970 967
3dcabaa8
MS
968 if (target_read_memory (pc, &op, 1))
969 return pc;
acd5c798
MK
970
971 if (op == 0x68 || op == 0x6a)
972 {
973 int delta;
c906108c 974
acd5c798
MK
975 /* Skip past the `pushl' instruction; it has either a one-byte or a
976 four-byte operand, depending on the opcode. */
c906108c 977 if (op == 0x68)
acd5c798 978 delta = 5;
c906108c 979 else
acd5c798 980 delta = 2;
c906108c 981
acd5c798
MK
982 /* Read the following 8 bytes, which should be `call _probe' (6
983 bytes) followed by `addl $4,%esp' (2 bytes). */
984 read_memory (pc + delta, buf, sizeof (buf));
c906108c 985 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 986 pc += delta + sizeof (buf);
c906108c
SS
987 }
988
acd5c798
MK
989 return pc;
990}
991
92dd43fa
MK
992/* GCC 4.1 and later, can put code in the prologue to realign the
993 stack pointer. Check whether PC points to such code, and update
994 CACHE accordingly. Return the first instruction after the code
995 sequence or CURRENT_PC, whichever is smaller. If we don't
996 recognize the code, return PC. */
997
998static CORE_ADDR
999i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1000 struct i386_frame_cache *cache)
1001{
e0c62198
L
1002 /* There are 2 code sequences to re-align stack before the frame
1003 gets set up:
1004
1005 1. Use a caller-saved saved register:
1006
1007 leal 4(%esp), %reg
1008 andl $-XXX, %esp
1009 pushl -4(%reg)
1010
1011 2. Use a callee-saved saved register:
1012
1013 pushl %reg
1014 leal 8(%esp), %reg
1015 andl $-XXX, %esp
1016 pushl -4(%reg)
1017
1018 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1019
1020 0x83 0xe4 0xf0 andl $-16, %esp
1021 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1022 */
1023
1024 gdb_byte buf[14];
1025 int reg;
1026 int offset, offset_and;
1027 static int regnums[8] = {
1028 I386_EAX_REGNUM, /* %eax */
1029 I386_ECX_REGNUM, /* %ecx */
1030 I386_EDX_REGNUM, /* %edx */
1031 I386_EBX_REGNUM, /* %ebx */
1032 I386_ESP_REGNUM, /* %esp */
1033 I386_EBP_REGNUM, /* %ebp */
1034 I386_ESI_REGNUM, /* %esi */
1035 I386_EDI_REGNUM /* %edi */
92dd43fa 1036 };
92dd43fa 1037
e0c62198
L
1038 if (target_read_memory (pc, buf, sizeof buf))
1039 return pc;
1040
1041 /* Check caller-saved saved register. The first instruction has
1042 to be "leal 4(%esp), %reg". */
1043 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1044 {
1045 /* MOD must be binary 10 and R/M must be binary 100. */
1046 if ((buf[1] & 0xc7) != 0x44)
1047 return pc;
1048
1049 /* REG has register number. */
1050 reg = (buf[1] >> 3) & 7;
1051 offset = 4;
1052 }
1053 else
1054 {
1055 /* Check callee-saved saved register. The first instruction
1056 has to be "pushl %reg". */
1057 if ((buf[0] & 0xf8) != 0x50)
1058 return pc;
1059
1060 /* Get register. */
1061 reg = buf[0] & 0x7;
1062
1063 /* The next instruction has to be "leal 8(%esp), %reg". */
1064 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1065 return pc;
1066
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[2] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. Registers in pushl and leal have to
1072 be the same. */
1073 if (reg != ((buf[2] >> 3) & 7))
1074 return pc;
1075
1076 offset = 5;
1077 }
1078
1079 /* Rigister can't be %esp nor %ebp. */
1080 if (reg == 4 || reg == 5)
1081 return pc;
1082
1083 /* The next instruction has to be "andl $-XXX, %esp". */
1084 if (buf[offset + 1] != 0xe4
1085 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1086 return pc;
1087
1088 offset_and = offset;
1089 offset += buf[offset] == 0x81 ? 6 : 3;
1090
1091 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1092 0xfc. REG must be binary 110 and MOD must be binary 01. */
1093 if (buf[offset] != 0xff
1094 || buf[offset + 2] != 0xfc
1095 || (buf[offset + 1] & 0xf8) != 0x70)
1096 return pc;
1097
1098 /* R/M has register. Registers in leal and pushl have to be the
1099 same. */
1100 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1101 return pc;
1102
e0c62198
L
1103 if (current_pc > pc + offset_and)
1104 cache->saved_sp_reg = regnums[reg];
92dd43fa 1105
e0c62198 1106 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1107}
1108
37bdc87e 1109/* Maximum instruction length we need to handle. */
237fc4c9 1110#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1111
1112/* Instruction description. */
1113struct i386_insn
1114{
1115 size_t len;
237fc4c9
PA
1116 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1117 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1118};
1119
1120/* Search for the instruction at PC in the list SKIP_INSNS. Return
1121 the first instruction description that matches. Otherwise, return
1122 NULL. */
1123
1124static struct i386_insn *
1125i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1126{
1127 struct i386_insn *insn;
63c0089f 1128 gdb_byte op;
37bdc87e 1129
3dcabaa8
MS
1130 if (target_read_memory (pc, &op, 1))
1131 return NULL;
37bdc87e
MK
1132
1133 for (insn = skip_insns; insn->len > 0; insn++)
1134 {
1135 if ((op & insn->mask[0]) == insn->insn[0])
1136 {
237fc4c9 1137 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 1138 int insn_matched = 1;
37bdc87e
MK
1139 size_t i;
1140
1141 gdb_assert (insn->len > 1);
237fc4c9 1142 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 1143
3dcabaa8
MS
1144 if (target_read_memory (pc + 1, buf, insn->len - 1))
1145 return NULL;
1146
37bdc87e
MK
1147 for (i = 1; i < insn->len; i++)
1148 {
1149 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 1150 insn_matched = 0;
37bdc87e 1151 }
613e8135
MK
1152
1153 if (insn_matched)
1154 return insn;
37bdc87e
MK
1155 }
1156 }
1157
1158 return NULL;
1159}
1160
1161/* Some special instructions that might be migrated by GCC into the
1162 part of the prologue that sets up the new stack frame. Because the
1163 stack frame hasn't been setup yet, no registers have been saved
1164 yet, and only the scratch registers %eax, %ecx and %edx can be
1165 touched. */
1166
1167struct i386_insn i386_frame_setup_skip_insns[] =
1168{
1777feb0 1169 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1170
1171 ??? Should we handle 16-bit operand-sizes here? */
1172
1173 /* `movb imm8, %al' and `movb imm8, %ah' */
1174 /* `movb imm8, %cl' and `movb imm8, %ch' */
1175 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1176 /* `movb imm8, %dl' and `movb imm8, %dh' */
1177 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1178 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1179 { 5, { 0xb8 }, { 0xfe } },
1180 /* `movl imm32, %edx' */
1181 { 5, { 0xba }, { 0xff } },
1182
1183 /* Check for `mov imm32, r32'. Note that there is an alternative
1184 encoding for `mov m32, %eax'.
1185
1186 ??? Should we handle SIB adressing here?
1187 ??? Should we handle 16-bit operand-sizes here? */
1188
1189 /* `movl m32, %eax' */
1190 { 5, { 0xa1 }, { 0xff } },
1191 /* `movl m32, %eax' and `mov; m32, %ecx' */
1192 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1193 /* `movl m32, %edx' */
1194 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1195
1196 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1197 Because of the symmetry, there are actually two ways to encode
1198 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1199 opcode bytes 0x31 and 0x33 for `xorl'. */
1200
1201 /* `subl %eax, %eax' */
1202 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1203 /* `subl %ecx, %ecx' */
1204 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1205 /* `subl %edx, %edx' */
1206 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1207 /* `xorl %eax, %eax' */
1208 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1209 /* `xorl %ecx, %ecx' */
1210 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1211 /* `xorl %edx, %edx' */
1212 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1213 { 0 }
1214};
1215
e11481da
PM
1216
1217/* Check whether PC points to a no-op instruction. */
1218static CORE_ADDR
1219i386_skip_noop (CORE_ADDR pc)
1220{
1221 gdb_byte op;
1222 int check = 1;
1223
3dcabaa8
MS
1224 if (target_read_memory (pc, &op, 1))
1225 return pc;
e11481da
PM
1226
1227 while (check)
1228 {
1229 check = 0;
1230 /* Ignore `nop' instruction. */
1231 if (op == 0x90)
1232 {
1233 pc += 1;
3dcabaa8
MS
1234 if (target_read_memory (pc, &op, 1))
1235 return pc;
e11481da
PM
1236 check = 1;
1237 }
1238 /* Ignore no-op instruction `mov %edi, %edi'.
1239 Microsoft system dlls often start with
1240 a `mov %edi,%edi' instruction.
1241 The 5 bytes before the function start are
1242 filled with `nop' instructions.
1243 This pattern can be used for hot-patching:
1244 The `mov %edi, %edi' instruction can be replaced by a
1245 near jump to the location of the 5 `nop' instructions
1246 which can be replaced by a 32-bit jump to anywhere
1247 in the 32-bit address space. */
1248
1249 else if (op == 0x8b)
1250 {
3dcabaa8
MS
1251 if (target_read_memory (pc + 1, &op, 1))
1252 return pc;
1253
e11481da
PM
1254 if (op == 0xff)
1255 {
1256 pc += 2;
3dcabaa8
MS
1257 if (target_read_memory (pc, &op, 1))
1258 return pc;
1259
e11481da
PM
1260 check = 1;
1261 }
1262 }
1263 }
1264 return pc;
1265}
1266
acd5c798
MK
1267/* Check whether PC points at a code that sets up a new stack frame.
1268 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1269 instruction after the sequence that sets up the frame or LIMIT,
1270 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1271
1272static CORE_ADDR
e17a4113
UW
1273i386_analyze_frame_setup (struct gdbarch *gdbarch,
1274 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1275 struct i386_frame_cache *cache)
1276{
e17a4113 1277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1278 struct i386_insn *insn;
63c0089f 1279 gdb_byte op;
26604a34 1280 int skip = 0;
acd5c798 1281
37bdc87e
MK
1282 if (limit <= pc)
1283 return limit;
acd5c798 1284
3dcabaa8
MS
1285 if (target_read_memory (pc, &op, 1))
1286 return pc;
acd5c798 1287
c906108c 1288 if (op == 0x55) /* pushl %ebp */
c5aa993b 1289 {
acd5c798
MK
1290 /* Take into account that we've executed the `pushl %ebp' that
1291 starts this instruction sequence. */
fd13a04a 1292 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1293 cache->sp_offset += 4;
37bdc87e 1294 pc++;
acd5c798
MK
1295
1296 /* If that's all, return now. */
37bdc87e
MK
1297 if (limit <= pc)
1298 return limit;
26604a34 1299
b4632131 1300 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1301 GCC into the prologue and skip them. At this point in the
1302 prologue, code should only touch the scratch registers %eax,
1303 %ecx and %edx, so while the number of posibilities is sheer,
1304 it is limited.
5daa5b4e 1305
26604a34
MK
1306 Make sure we only skip these instructions if we later see the
1307 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1308 while (pc + skip < limit)
26604a34 1309 {
37bdc87e
MK
1310 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1311 if (insn == NULL)
1312 break;
b4632131 1313
37bdc87e 1314 skip += insn->len;
26604a34
MK
1315 }
1316
37bdc87e
MK
1317 /* If that's all, return now. */
1318 if (limit <= pc + skip)
1319 return limit;
1320
3dcabaa8
MS
1321 if (target_read_memory (pc + skip, &op, 1))
1322 return pc + skip;
37bdc87e 1323
26604a34 1324 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1325 switch (op)
c906108c
SS
1326 {
1327 case 0x8b:
e17a4113
UW
1328 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1329 != 0xec)
37bdc87e 1330 return pc;
c906108c
SS
1331 break;
1332 case 0x89:
e17a4113
UW
1333 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1334 != 0xe5)
37bdc87e 1335 return pc;
c906108c
SS
1336 break;
1337 default:
37bdc87e 1338 return pc;
c906108c 1339 }
acd5c798 1340
26604a34
MK
1341 /* OK, we actually have a frame. We just don't know how large
1342 it is yet. Set its size to zero. We'll adjust it if
1343 necessary. We also now commit to skipping the special
1344 instructions mentioned before. */
acd5c798 1345 cache->locals = 0;
37bdc87e 1346 pc += (skip + 2);
acd5c798
MK
1347
1348 /* If that's all, return now. */
37bdc87e
MK
1349 if (limit <= pc)
1350 return limit;
acd5c798 1351
fc338970
MK
1352 /* Check for stack adjustment
1353
acd5c798 1354 subl $XXX, %esp
fc338970 1355
fd35795f 1356 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1357 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1358 if (target_read_memory (pc, &op, 1))
1359 return pc;
c906108c
SS
1360 if (op == 0x83)
1361 {
fd35795f 1362 /* `subl' with 8-bit immediate. */
e17a4113 1363 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1364 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1365 return pc;
acd5c798 1366
37bdc87e
MK
1367 /* `subl' with signed 8-bit immediate (though it wouldn't
1368 make sense to be negative). */
e17a4113 1369 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1370 return pc + 3;
c906108c
SS
1371 }
1372 else if (op == 0x81)
1373 {
fd35795f 1374 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1375 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1376 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1377 return pc;
acd5c798 1378
fd35795f 1379 /* It is `subl' with a 32-bit immediate. */
e17a4113 1380 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1381 return pc + 6;
c906108c
SS
1382 }
1383 else
1384 {
acd5c798 1385 /* Some instruction other than `subl'. */
37bdc87e 1386 return pc;
c906108c
SS
1387 }
1388 }
37bdc87e 1389 else if (op == 0xc8) /* enter */
c906108c 1390 {
e17a4113 1391 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1392 return pc + 4;
c906108c 1393 }
21d0e8a4 1394
acd5c798 1395 return pc;
21d0e8a4
MK
1396}
1397
acd5c798
MK
1398/* Check whether PC points at code that saves registers on the stack.
1399 If so, it updates CACHE and returns the address of the first
1400 instruction after the register saves or CURRENT_PC, whichever is
1401 smaller. Otherwise, return PC. */
6bff26de
MK
1402
1403static CORE_ADDR
acd5c798
MK
1404i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1405 struct i386_frame_cache *cache)
6bff26de 1406{
99ab4326 1407 CORE_ADDR offset = 0;
63c0089f 1408 gdb_byte op;
99ab4326 1409 int i;
c0d1d883 1410
99ab4326
MK
1411 if (cache->locals > 0)
1412 offset -= cache->locals;
1413 for (i = 0; i < 8 && pc < current_pc; i++)
1414 {
3dcabaa8
MS
1415 if (target_read_memory (pc, &op, 1))
1416 return pc;
99ab4326
MK
1417 if (op < 0x50 || op > 0x57)
1418 break;
0d17c81d 1419
99ab4326
MK
1420 offset -= 4;
1421 cache->saved_regs[op - 0x50] = offset;
1422 cache->sp_offset += 4;
1423 pc++;
6bff26de
MK
1424 }
1425
acd5c798 1426 return pc;
22797942
AC
1427}
1428
acd5c798
MK
1429/* Do a full analysis of the prologue at PC and update CACHE
1430 accordingly. Bail out early if CURRENT_PC is reached. Return the
1431 address where the analysis stopped.
ed84f6c1 1432
fc338970
MK
1433 We handle these cases:
1434
1435 The startup sequence can be at the start of the function, or the
1436 function can start with a branch to startup code at the end.
1437
1438 %ebp can be set up with either the 'enter' instruction, or "pushl
1439 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1440 once used in the System V compiler).
1441
1442 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1443 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1444 16-bit unsigned argument for space to allocate, and the 'addl'
1445 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1446
1447 Next, the registers used by this function are pushed. With the
1448 System V compiler they will always be in the order: %edi, %esi,
1449 %ebx (and sometimes a harmless bug causes it to also save but not
1450 restore %eax); however, the code below is willing to see the pushes
1451 in any order, and will handle up to 8 of them.
1452
1453 If the setup sequence is at the end of the function, then the next
1454 instruction will be a branch back to the start. */
c906108c 1455
acd5c798 1456static CORE_ADDR
e17a4113
UW
1457i386_analyze_prologue (struct gdbarch *gdbarch,
1458 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1459 struct i386_frame_cache *cache)
c906108c 1460{
e11481da 1461 pc = i386_skip_noop (pc);
e17a4113 1462 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1463 pc = i386_analyze_struct_return (pc, current_pc, cache);
1464 pc = i386_skip_probe (pc);
92dd43fa 1465 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1466 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1467 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1468}
1469
fc338970 1470/* Return PC of first real instruction. */
c906108c 1471
3a1e71e3 1472static CORE_ADDR
6093d2eb 1473i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1474{
e17a4113
UW
1475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1476
63c0089f 1477 static gdb_byte pic_pat[6] =
acd5c798
MK
1478 {
1479 0xe8, 0, 0, 0, 0, /* call 0x0 */
1480 0x5b, /* popl %ebx */
c5aa993b 1481 };
acd5c798
MK
1482 struct i386_frame_cache cache;
1483 CORE_ADDR pc;
63c0089f 1484 gdb_byte op;
acd5c798 1485 int i;
c5aa993b 1486
acd5c798 1487 cache.locals = -1;
e17a4113 1488 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1489 if (cache.locals < 0)
1490 return start_pc;
c5aa993b 1491
acd5c798 1492 /* Found valid frame setup. */
c906108c 1493
fc338970
MK
1494 /* The native cc on SVR4 in -K PIC mode inserts the following code
1495 to get the address of the global offset table (GOT) into register
acd5c798
MK
1496 %ebx:
1497
fc338970
MK
1498 call 0x0
1499 popl %ebx
1500 movl %ebx,x(%ebp) (optional)
1501 addl y,%ebx
1502
c906108c
SS
1503 This code is with the rest of the prologue (at the end of the
1504 function), so we have to skip it to get to the first real
1505 instruction at the start of the function. */
c5aa993b 1506
c906108c
SS
1507 for (i = 0; i < 6; i++)
1508 {
3dcabaa8
MS
1509 if (target_read_memory (pc + i, &op, 1))
1510 return pc;
1511
c5aa993b 1512 if (pic_pat[i] != op)
c906108c
SS
1513 break;
1514 }
1515 if (i == 6)
1516 {
acd5c798
MK
1517 int delta = 6;
1518
3dcabaa8
MS
1519 if (target_read_memory (pc + delta, &op, 1))
1520 return pc;
c906108c 1521
c5aa993b 1522 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1523 {
e17a4113 1524 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1525
fc338970 1526 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1527 delta += 3;
fc338970 1528 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1529 delta += 6;
fc338970 1530 else /* Unexpected instruction. */
acd5c798
MK
1531 delta = 0;
1532
3dcabaa8
MS
1533 if (target_read_memory (pc + delta, &op, 1))
1534 return pc;
c906108c 1535 }
acd5c798 1536
c5aa993b 1537 /* addl y,%ebx */
acd5c798 1538 if (delta > 0 && op == 0x81
e17a4113
UW
1539 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1540 == 0xc3)
c906108c 1541 {
acd5c798 1542 pc += delta + 6;
c906108c
SS
1543 }
1544 }
c5aa993b 1545
e63bbc88
MK
1546 /* If the function starts with a branch (to startup code at the end)
1547 the last instruction should bring us back to the first
1548 instruction of the real code. */
e17a4113
UW
1549 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1550 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1551
1552 return pc;
c906108c
SS
1553}
1554
4309257c
PM
1555/* Check that the code pointed to by PC corresponds to a call to
1556 __main, skip it if so. Return PC otherwise. */
1557
1558CORE_ADDR
1559i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1560{
e17a4113 1561 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1562 gdb_byte op;
1563
3dcabaa8
MS
1564 if (target_read_memory (pc, &op, 1))
1565 return pc;
4309257c
PM
1566 if (op == 0xe8)
1567 {
1568 gdb_byte buf[4];
1569
1570 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1571 {
1572 /* Make sure address is computed correctly as a 32bit
1573 integer even if CORE_ADDR is 64 bit wide. */
1574 struct minimal_symbol *s;
e17a4113 1575 CORE_ADDR call_dest;
4309257c 1576
e17a4113 1577 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1578 call_dest = call_dest & 0xffffffffU;
1579 s = lookup_minimal_symbol_by_pc (call_dest);
1580 if (s != NULL
1581 && SYMBOL_LINKAGE_NAME (s) != NULL
1582 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1583 pc += 5;
1584 }
1585 }
1586
1587 return pc;
1588}
1589
acd5c798 1590/* This function is 64-bit safe. */
93924b6b 1591
acd5c798
MK
1592static CORE_ADDR
1593i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1594{
63c0089f 1595 gdb_byte buf[8];
acd5c798 1596
875f8d0e 1597 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1598 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1599}
acd5c798 1600\f
93924b6b 1601
acd5c798 1602/* Normal frames. */
c5aa993b 1603
acd5c798 1604static struct i386_frame_cache *
10458914 1605i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1606{
e17a4113
UW
1607 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1608 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1609 struct i386_frame_cache *cache;
63c0089f 1610 gdb_byte buf[4];
acd5c798
MK
1611 int i;
1612
1613 if (*this_cache)
1614 return *this_cache;
1615
fd13a04a 1616 cache = i386_alloc_frame_cache ();
acd5c798
MK
1617 *this_cache = cache;
1618
1619 /* In principle, for normal frames, %ebp holds the frame pointer,
1620 which holds the base address for the current stack frame.
1621 However, for functions that don't need it, the frame pointer is
1622 optional. For these "frameless" functions the frame pointer is
1623 actually the frame pointer of the calling frame. Signal
1624 trampolines are just a special case of a "frameless" function.
1625 They (usually) share their frame pointer with the frame that was
1626 in progress when the signal occurred. */
1627
10458914 1628 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1629 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798
MK
1630 if (cache->base == 0)
1631 return cache;
1632
1633 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1634 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1635
10458914 1636 cache->pc = get_frame_func (this_frame);
acd5c798 1637 if (cache->pc != 0)
e17a4113
UW
1638 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1639 cache);
acd5c798 1640
e0c62198 1641 if (cache->saved_sp_reg != -1)
92dd43fa 1642 {
e0c62198
L
1643 /* Saved stack pointer has been saved. */
1644 get_frame_register (this_frame, cache->saved_sp_reg, buf);
e17a4113 1645 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
92dd43fa
MK
1646 }
1647
acd5c798
MK
1648 if (cache->locals < 0)
1649 {
1650 /* We didn't find a valid frame, which means that CACHE->base
1651 currently holds the frame pointer for our calling frame. If
1652 we're at the start of a function, or somewhere half-way its
1653 prologue, the function's frame probably hasn't been fully
1654 setup yet. Try to reconstruct the base address for the stack
1655 frame by looking at the stack pointer. For truly "frameless"
1656 functions this might work too. */
1657
e0c62198 1658 if (cache->saved_sp_reg != -1)
92dd43fa
MK
1659 {
1660 /* We're halfway aligning the stack. */
1661 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1662 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1663
1664 /* This will be added back below. */
1665 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1666 }
7618e12b
DJ
1667 else if (cache->pc != 0
1668 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1669 {
7618e12b
DJ
1670 /* We're in a known function, but did not find a frame
1671 setup. Assume that the function does not use %ebp.
1672 Alternatively, we may have jumped to an invalid
1673 address; in that case there is definitely no new
1674 frame in %ebp. */
10458914 1675 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1676 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1677 + cache->sp_offset;
92dd43fa 1678 }
7618e12b
DJ
1679 else
1680 /* We're in an unknown function. We could not find the start
1681 of the function to analyze the prologue; our best option is
1682 to assume a typical frame layout with the caller's %ebp
1683 saved. */
1684 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1685 }
1686
1687 /* Now that we have the base address for the stack frame we can
1688 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1689 if (cache->saved_sp == 0)
1690 cache->saved_sp = cache->base + 8;
a7769679 1691
acd5c798
MK
1692 /* Adjust all the saved registers such that they contain addresses
1693 instead of offsets. */
1694 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1695 if (cache->saved_regs[i] != -1)
1696 cache->saved_regs[i] += cache->base;
acd5c798
MK
1697
1698 return cache;
a7769679
MK
1699}
1700
3a1e71e3 1701static void
10458914 1702i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1703 struct frame_id *this_id)
c906108c 1704{
10458914 1705 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1706
1707 /* This marks the outermost frame. */
1708 if (cache->base == 0)
1709 return;
1710
3e210248 1711 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1712 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1713}
1714
10458914
DJ
1715static struct value *
1716i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1717 int regnum)
acd5c798 1718{
10458914 1719 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1720
1721 gdb_assert (regnum >= 0);
1722
1723 /* The System V ABI says that:
1724
1725 "The flags register contains the system flags, such as the
1726 direction flag and the carry flag. The direction flag must be
1727 set to the forward (that is, zero) direction before entry and
1728 upon exit from a function. Other user flags have no specified
1729 role in the standard calling sequence and are not preserved."
1730
1731 To guarantee the "upon exit" part of that statement we fake a
1732 saved flags register that has its direction flag cleared.
1733
1734 Note that GCC doesn't seem to rely on the fact that the direction
1735 flag is cleared after a function return; it always explicitly
1736 clears the flag before operations where it matters.
1737
1738 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1739 right thing to do. The way we fake the flags register here makes
1740 it impossible to change it. */
1741
1742 if (regnum == I386_EFLAGS_REGNUM)
1743 {
10458914 1744 ULONGEST val;
c5aa993b 1745
10458914
DJ
1746 val = get_frame_register_unsigned (this_frame, regnum);
1747 val &= ~(1 << 10);
1748 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1749 }
1211c4e4 1750
acd5c798 1751 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1752 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1753
1754 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1755 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1756
fd13a04a 1757 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1758 return frame_unwind_got_memory (this_frame, regnum,
1759 cache->saved_regs[regnum]);
fd13a04a 1760
10458914 1761 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1762}
1763
1764static const struct frame_unwind i386_frame_unwind =
1765{
1766 NORMAL_FRAME,
1767 i386_frame_this_id,
10458914
DJ
1768 i386_frame_prev_register,
1769 NULL,
1770 default_frame_sniffer
acd5c798 1771};
06da04c6
MS
1772
1773/* Normal frames, but in a function epilogue. */
1774
1775/* The epilogue is defined here as the 'ret' instruction, which will
1776 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1777 the function's stack frame. */
1778
1779static int
1780i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1781{
1782 gdb_byte insn;
1783
1784 if (target_read_memory (pc, &insn, 1))
1785 return 0; /* Can't read memory at pc. */
1786
1787 if (insn != 0xc3) /* 'ret' instruction. */
1788 return 0;
1789
1790 return 1;
1791}
1792
1793static int
1794i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1795 struct frame_info *this_frame,
1796 void **this_prologue_cache)
1797{
1798 if (frame_relative_level (this_frame) == 0)
1799 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1800 get_frame_pc (this_frame));
1801 else
1802 return 0;
1803}
1804
1805static struct i386_frame_cache *
1806i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1807{
1808 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1809 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1810 struct i386_frame_cache *cache;
1811 gdb_byte buf[4];
1812
1813 if (*this_cache)
1814 return *this_cache;
1815
1816 cache = i386_alloc_frame_cache ();
1817 *this_cache = cache;
1818
1819 /* Cache base will be %esp plus cache->sp_offset (-4). */
1820 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1821 cache->base = extract_unsigned_integer (buf, 4,
1822 byte_order) + cache->sp_offset;
1823
1824 /* Cache pc will be the frame func. */
1825 cache->pc = get_frame_pc (this_frame);
1826
1827 /* The saved %esp will be at cache->base plus 8. */
1828 cache->saved_sp = cache->base + 8;
1829
1830 /* The saved %eip will be at cache->base plus 4. */
1831 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1832
1833 return cache;
1834}
1835
1836static void
1837i386_epilogue_frame_this_id (struct frame_info *this_frame,
1838 void **this_cache,
1839 struct frame_id *this_id)
1840{
1841 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1842 this_cache);
1843
1844 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1845}
1846
1847static const struct frame_unwind i386_epilogue_frame_unwind =
1848{
1849 NORMAL_FRAME,
1850 i386_epilogue_frame_this_id,
1851 i386_frame_prev_register,
1852 NULL,
1853 i386_epilogue_frame_sniffer
1854};
acd5c798
MK
1855\f
1856
1857/* Signal trampolines. */
1858
1859static struct i386_frame_cache *
10458914 1860i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1861{
e17a4113
UW
1862 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 1865 struct i386_frame_cache *cache;
acd5c798 1866 CORE_ADDR addr;
63c0089f 1867 gdb_byte buf[4];
acd5c798
MK
1868
1869 if (*this_cache)
1870 return *this_cache;
1871
fd13a04a 1872 cache = i386_alloc_frame_cache ();
acd5c798 1873
10458914 1874 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 1875 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
acd5c798 1876
10458914 1877 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1878 if (tdep->sc_reg_offset)
1879 {
1880 int i;
1881
1882 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1883
1884 for (i = 0; i < tdep->sc_num_regs; i++)
1885 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1886 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1887 }
1888 else
1889 {
fd13a04a
AC
1890 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1891 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1892 }
acd5c798
MK
1893
1894 *this_cache = cache;
1895 return cache;
1896}
1897
1898static void
10458914 1899i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1900 struct frame_id *this_id)
1901{
1902 struct i386_frame_cache *cache =
10458914 1903 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1904
3e210248 1905 /* See the end of i386_push_dummy_call. */
10458914 1906 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1907}
1908
10458914
DJ
1909static struct value *
1910i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1911 void **this_cache, int regnum)
acd5c798
MK
1912{
1913 /* Make sure we've initialized the cache. */
10458914 1914 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1915
10458914 1916 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1917}
c0d1d883 1918
10458914
DJ
1919static int
1920i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
acd5c798 1923{
10458914 1924 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1925
911bc6ee
MK
1926 /* We shouldn't even bother if we don't have a sigcontext_addr
1927 handler. */
1928 if (tdep->sigcontext_addr == NULL)
10458914 1929 return 0;
1c3545ae 1930
911bc6ee
MK
1931 if (tdep->sigtramp_p != NULL)
1932 {
10458914
DJ
1933 if (tdep->sigtramp_p (this_frame))
1934 return 1;
911bc6ee
MK
1935 }
1936
1937 if (tdep->sigtramp_start != 0)
1938 {
10458914 1939 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1940
1941 gdb_assert (tdep->sigtramp_end != 0);
1942 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1943 return 1;
911bc6ee 1944 }
acd5c798 1945
10458914 1946 return 0;
acd5c798 1947}
10458914
DJ
1948
1949static const struct frame_unwind i386_sigtramp_frame_unwind =
1950{
1951 SIGTRAMP_FRAME,
1952 i386_sigtramp_frame_this_id,
1953 i386_sigtramp_frame_prev_register,
1954 NULL,
1955 i386_sigtramp_frame_sniffer
1956};
acd5c798
MK
1957\f
1958
1959static CORE_ADDR
10458914 1960i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1961{
10458914 1962 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1963
1964 return cache->base;
1965}
1966
1967static const struct frame_base i386_frame_base =
1968{
1969 &i386_frame_unwind,
1970 i386_frame_base_address,
1971 i386_frame_base_address,
1972 i386_frame_base_address
1973};
1974
acd5c798 1975static struct frame_id
10458914 1976i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1977{
acd5c798
MK
1978 CORE_ADDR fp;
1979
10458914 1980 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1981
3e210248 1982 /* See the end of i386_push_dummy_call. */
10458914 1983 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1984}
fc338970 1985\f
c906108c 1986
fc338970
MK
1987/* Figure out where the longjmp will land. Slurp the args out of the
1988 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1989 structure from which we extract the address that we will land at.
28bcfd30 1990 This address is copied into PC. This routine returns non-zero on
436675d3 1991 success. */
c906108c 1992
8201327c 1993static int
60ade65d 1994i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1995{
436675d3 1996 gdb_byte buf[4];
c906108c 1997 CORE_ADDR sp, jb_addr;
20a6ec49 1998 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 1999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2000 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2001
8201327c
MK
2002 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2003 longjmp will land. */
2004 if (jb_pc_offset == -1)
c906108c
SS
2005 return 0;
2006
436675d3 2007 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2008 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2009 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2010 return 0;
2011
e17a4113 2012 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2013 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2014 return 0;
c906108c 2015
e17a4113 2016 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2017 return 1;
2018}
fc338970 2019\f
c906108c 2020
7ccc1c74
JM
2021/* Check whether TYPE must be 16-byte-aligned when passed as a
2022 function argument. 16-byte vectors, _Decimal128 and structures or
2023 unions containing such types must be 16-byte-aligned; other
2024 arguments are 4-byte-aligned. */
2025
2026static int
2027i386_16_byte_align_p (struct type *type)
2028{
2029 type = check_typedef (type);
2030 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2031 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2032 && TYPE_LENGTH (type) == 16)
2033 return 1;
2034 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2035 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2036 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2037 || TYPE_CODE (type) == TYPE_CODE_UNION)
2038 {
2039 int i;
2040 for (i = 0; i < TYPE_NFIELDS (type); i++)
2041 {
2042 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2043 return 1;
2044 }
2045 }
2046 return 0;
2047}
2048
3a1e71e3 2049static CORE_ADDR
7d9b040b 2050i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2051 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2052 struct value **args, CORE_ADDR sp, int struct_return,
2053 CORE_ADDR struct_addr)
22f8ba57 2054{
e17a4113 2055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2056 gdb_byte buf[4];
acd5c798 2057 int i;
7ccc1c74
JM
2058 int write_pass;
2059 int args_space = 0;
acd5c798 2060
7ccc1c74
JM
2061 /* Determine the total space required for arguments and struct
2062 return address in a first pass (allowing for 16-byte-aligned
2063 arguments), then push arguments in a second pass. */
2064
2065 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2066 {
7ccc1c74
JM
2067 int args_space_used = 0;
2068 int have_16_byte_aligned_arg = 0;
2069
2070 if (struct_return)
2071 {
2072 if (write_pass)
2073 {
2074 /* Push value address. */
e17a4113 2075 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2076 write_memory (sp, buf, 4);
2077 args_space_used += 4;
2078 }
2079 else
2080 args_space += 4;
2081 }
2082
2083 for (i = 0; i < nargs; i++)
2084 {
2085 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2086
7ccc1c74
JM
2087 if (write_pass)
2088 {
2089 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2090 args_space_used = align_up (args_space_used, 16);
acd5c798 2091
7ccc1c74
JM
2092 write_memory (sp + args_space_used,
2093 value_contents_all (args[i]), len);
2094 /* The System V ABI says that:
acd5c798 2095
7ccc1c74
JM
2096 "An argument's size is increased, if necessary, to make it a
2097 multiple of [32-bit] words. This may require tail padding,
2098 depending on the size of the argument."
22f8ba57 2099
7ccc1c74
JM
2100 This makes sure the stack stays word-aligned. */
2101 args_space_used += align_up (len, 4);
2102 }
2103 else
2104 {
2105 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2106 {
2107 args_space = align_up (args_space, 16);
2108 have_16_byte_aligned_arg = 1;
2109 }
2110 args_space += align_up (len, 4);
2111 }
2112 }
2113
2114 if (!write_pass)
2115 {
2116 if (have_16_byte_aligned_arg)
2117 args_space = align_up (args_space, 16);
2118 sp -= args_space;
2119 }
22f8ba57
MK
2120 }
2121
acd5c798
MK
2122 /* Store return address. */
2123 sp -= 4;
e17a4113 2124 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2125 write_memory (sp, buf, 4);
2126
2127 /* Finally, update the stack pointer... */
e17a4113 2128 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2129 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2130
2131 /* ...and fake a frame pointer. */
2132 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2133
3e210248
AC
2134 /* MarkK wrote: This "+ 8" is all over the place:
2135 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2136 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2137 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2138 definition of the stack address of a frame. Otherwise frame id
2139 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2140 stack address *before* the function call as a frame's CFA. On
2141 the i386, when %ebp is used as a frame pointer, the offset
2142 between the contents %ebp and the CFA as defined by GCC. */
2143 return sp + 8;
22f8ba57
MK
2144}
2145
1a309862
MK
2146/* These registers are used for returning integers (and on some
2147 targets also for returning `struct' and `union' values when their
ef9dff19 2148 size and alignment match an integer type). */
acd5c798
MK
2149#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2150#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2151
c5e656c1
MK
2152/* Read, for architecture GDBARCH, a function return value of TYPE
2153 from REGCACHE, and copy that into VALBUF. */
1a309862 2154
3a1e71e3 2155static void
c5e656c1 2156i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2157 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2158{
c5e656c1 2159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2160 int len = TYPE_LENGTH (type);
63c0089f 2161 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2162
1e8d0a7b 2163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2164 {
5716833c 2165 if (tdep->st0_regnum < 0)
1a309862 2166 {
8a3fe4f8 2167 warning (_("Cannot find floating-point return value."));
1a309862 2168 memset (valbuf, 0, len);
ef9dff19 2169 return;
1a309862
MK
2170 }
2171
c6ba6f0d
MK
2172 /* Floating-point return values can be found in %st(0). Convert
2173 its contents to the desired type. This is probably not
2174 exactly how it would happen on the target itself, but it is
2175 the best we can do. */
acd5c798 2176 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2177 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2178 }
2179 else
c5aa993b 2180 {
875f8d0e
UW
2181 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2182 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2183
2184 if (len <= low_size)
00f8375e 2185 {
0818c12a 2186 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2187 memcpy (valbuf, buf, len);
2188 }
d4f3574e
SS
2189 else if (len <= (low_size + high_size))
2190 {
0818c12a 2191 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2192 memcpy (valbuf, buf, low_size);
0818c12a 2193 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2194 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2195 }
2196 else
8e65ff28 2197 internal_error (__FILE__, __LINE__,
1777feb0
MS
2198 _("Cannot extract return value of %d bytes long."),
2199 len);
c906108c
SS
2200 }
2201}
2202
c5e656c1
MK
2203/* Write, for architecture GDBARCH, a function return value of TYPE
2204 from VALBUF into REGCACHE. */
ef9dff19 2205
3a1e71e3 2206static void
c5e656c1 2207i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2208 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2209{
c5e656c1 2210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2211 int len = TYPE_LENGTH (type);
2212
1e8d0a7b 2213 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2214 {
3d7f4f49 2215 ULONGEST fstat;
63c0089f 2216 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2217
5716833c 2218 if (tdep->st0_regnum < 0)
ef9dff19 2219 {
8a3fe4f8 2220 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2221 return;
2222 }
2223
635b0cc1
MK
2224 /* Returning floating-point values is a bit tricky. Apart from
2225 storing the return value in %st(0), we have to simulate the
2226 state of the FPU at function return point. */
2227
c6ba6f0d
MK
2228 /* Convert the value found in VALBUF to the extended
2229 floating-point format used by the FPU. This is probably
2230 not exactly how it would happen on the target itself, but
2231 it is the best we can do. */
27067745 2232 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2233 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2234
635b0cc1
MK
2235 /* Set the top of the floating-point register stack to 7. The
2236 actual value doesn't really matter, but 7 is what a normal
2237 function return would end up with if the program started out
2238 with a freshly initialized FPU. */
20a6ec49 2239 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2240 fstat |= (7 << 11);
20a6ec49 2241 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2242
635b0cc1
MK
2243 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2244 the floating-point register stack to 7, the appropriate value
2245 for the tag word is 0x3fff. */
20a6ec49 2246 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2247 }
2248 else
2249 {
875f8d0e
UW
2250 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2251 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2252
2253 if (len <= low_size)
3d7f4f49 2254 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2255 else if (len <= (low_size + high_size))
2256 {
3d7f4f49
MK
2257 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2258 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2259 len - low_size, valbuf + low_size);
ef9dff19
MK
2260 }
2261 else
8e65ff28 2262 internal_error (__FILE__, __LINE__,
e2e0b3e5 2263 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2264 }
2265}
fc338970 2266\f
ef9dff19 2267
8201327c
MK
2268/* This is the variable that is set with "set struct-convention", and
2269 its legitimate values. */
2270static const char default_struct_convention[] = "default";
2271static const char pcc_struct_convention[] = "pcc";
2272static const char reg_struct_convention[] = "reg";
2273static const char *valid_conventions[] =
2274{
2275 default_struct_convention,
2276 pcc_struct_convention,
2277 reg_struct_convention,
2278 NULL
2279};
2280static const char *struct_convention = default_struct_convention;
2281
0e4377e1
JB
2282/* Return non-zero if TYPE, which is assumed to be a structure,
2283 a union type, or an array type, should be returned in registers
2284 for architecture GDBARCH. */
c5e656c1 2285
8201327c 2286static int
c5e656c1 2287i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2288{
c5e656c1
MK
2289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2290 enum type_code code = TYPE_CODE (type);
2291 int len = TYPE_LENGTH (type);
8201327c 2292
0e4377e1
JB
2293 gdb_assert (code == TYPE_CODE_STRUCT
2294 || code == TYPE_CODE_UNION
2295 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2296
2297 if (struct_convention == pcc_struct_convention
2298 || (struct_convention == default_struct_convention
2299 && tdep->struct_return == pcc_struct_return))
2300 return 0;
2301
9edde48e
MK
2302 /* Structures consisting of a single `float', `double' or 'long
2303 double' member are returned in %st(0). */
2304 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2305 {
2306 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2307 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2308 return (len == 4 || len == 8 || len == 12);
2309 }
2310
c5e656c1
MK
2311 return (len == 1 || len == 2 || len == 4 || len == 8);
2312}
2313
2314/* Determine, for architecture GDBARCH, how a return value of TYPE
2315 should be returned. If it is supposed to be returned in registers,
2316 and READBUF is non-zero, read the appropriate value from REGCACHE,
2317 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2318 from WRITEBUF into REGCACHE. */
2319
2320static enum return_value_convention
c055b101
CV
2321i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2322 struct type *type, struct regcache *regcache,
2323 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2324{
2325 enum type_code code = TYPE_CODE (type);
2326
5daa78cc
TJB
2327 if (((code == TYPE_CODE_STRUCT
2328 || code == TYPE_CODE_UNION
2329 || code == TYPE_CODE_ARRAY)
2330 && !i386_reg_struct_return_p (gdbarch, type))
2331 /* 128-bit decimal float uses the struct return convention. */
2332 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2333 {
2334 /* The System V ABI says that:
2335
2336 "A function that returns a structure or union also sets %eax
2337 to the value of the original address of the caller's area
2338 before it returns. Thus when the caller receives control
2339 again, the address of the returned object resides in register
2340 %eax and can be used to access the object."
2341
2342 So the ABI guarantees that we can always find the return
2343 value just after the function has returned. */
2344
0e4377e1
JB
2345 /* Note that the ABI doesn't mention functions returning arrays,
2346 which is something possible in certain languages such as Ada.
2347 In this case, the value is returned as if it was wrapped in
2348 a record, so the convention applied to records also applies
2349 to arrays. */
2350
31db7b6c
MK
2351 if (readbuf)
2352 {
2353 ULONGEST addr;
2354
2355 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2356 read_memory (addr, readbuf, TYPE_LENGTH (type));
2357 }
2358
2359 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2360 }
c5e656c1
MK
2361
2362 /* This special case is for structures consisting of a single
9edde48e
MK
2363 `float', `double' or 'long double' member. These structures are
2364 returned in %st(0). For these structures, we call ourselves
2365 recursively, changing TYPE into the type of the first member of
2366 the structure. Since that should work for all structures that
2367 have only one member, we don't bother to check the member's type
2368 here. */
c5e656c1
MK
2369 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2370 {
2371 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2372 return i386_return_value (gdbarch, func_type, type, regcache,
2373 readbuf, writebuf);
c5e656c1
MK
2374 }
2375
2376 if (readbuf)
2377 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2378 if (writebuf)
2379 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2380
c5e656c1 2381 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2382}
2383\f
2384
27067745
UW
2385struct type *
2386i387_ext_type (struct gdbarch *gdbarch)
2387{
2388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2389
2390 if (!tdep->i387_ext_type)
90884b2b
L
2391 {
2392 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2393 gdb_assert (tdep->i387_ext_type != NULL);
2394 }
27067745
UW
2395
2396 return tdep->i387_ext_type;
2397}
2398
c131fcee
L
2399/* Construct vector type for pseudo YMM registers. We can't use
2400 tdesc_find_type since YMM isn't described in target description. */
2401
2402static struct type *
2403i386_ymm_type (struct gdbarch *gdbarch)
2404{
2405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2406
2407 if (!tdep->i386_ymm_type)
2408 {
2409 const struct builtin_type *bt = builtin_type (gdbarch);
2410
2411 /* The type we're building is this: */
2412#if 0
2413 union __gdb_builtin_type_vec256i
2414 {
2415 int128_t uint128[2];
2416 int64_t v2_int64[4];
2417 int32_t v4_int32[8];
2418 int16_t v8_int16[16];
2419 int8_t v16_int8[32];
2420 double v2_double[4];
2421 float v4_float[8];
2422 };
2423#endif
2424
2425 struct type *t;
2426
2427 t = arch_composite_type (gdbarch,
2428 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2429 append_composite_type_field (t, "v8_float",
2430 init_vector_type (bt->builtin_float, 8));
2431 append_composite_type_field (t, "v4_double",
2432 init_vector_type (bt->builtin_double, 4));
2433 append_composite_type_field (t, "v32_int8",
2434 init_vector_type (bt->builtin_int8, 32));
2435 append_composite_type_field (t, "v16_int16",
2436 init_vector_type (bt->builtin_int16, 16));
2437 append_composite_type_field (t, "v8_int32",
2438 init_vector_type (bt->builtin_int32, 8));
2439 append_composite_type_field (t, "v4_int64",
2440 init_vector_type (bt->builtin_int64, 4));
2441 append_composite_type_field (t, "v2_int128",
2442 init_vector_type (bt->builtin_int128, 2));
2443
2444 TYPE_VECTOR (t) = 1;
0c5acf93 2445 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2446 tdep->i386_ymm_type = t;
2447 }
2448
2449 return tdep->i386_ymm_type;
2450}
2451
794ac428 2452/* Construct vector type for MMX registers. */
90884b2b 2453static struct type *
794ac428
UW
2454i386_mmx_type (struct gdbarch *gdbarch)
2455{
2456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2457
2458 if (!tdep->i386_mmx_type)
2459 {
df4df182
UW
2460 const struct builtin_type *bt = builtin_type (gdbarch);
2461
794ac428
UW
2462 /* The type we're building is this: */
2463#if 0
2464 union __gdb_builtin_type_vec64i
2465 {
2466 int64_t uint64;
2467 int32_t v2_int32[2];
2468 int16_t v4_int16[4];
2469 int8_t v8_int8[8];
2470 };
2471#endif
2472
2473 struct type *t;
2474
e9bb382b
UW
2475 t = arch_composite_type (gdbarch,
2476 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2477
2478 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2479 append_composite_type_field (t, "v2_int32",
df4df182 2480 init_vector_type (bt->builtin_int32, 2));
794ac428 2481 append_composite_type_field (t, "v4_int16",
df4df182 2482 init_vector_type (bt->builtin_int16, 4));
794ac428 2483 append_composite_type_field (t, "v8_int8",
df4df182 2484 init_vector_type (bt->builtin_int8, 8));
794ac428 2485
876cecd0 2486 TYPE_VECTOR (t) = 1;
794ac428
UW
2487 TYPE_NAME (t) = "builtin_type_vec64i";
2488 tdep->i386_mmx_type = t;
2489 }
2490
2491 return tdep->i386_mmx_type;
2492}
2493
d7a0d72c 2494/* Return the GDB type object for the "standard" data type of data in
1777feb0 2495 register REGNUM. */
d7a0d72c 2496
3a1e71e3 2497static struct type *
90884b2b 2498i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2499{
1ba53b71
L
2500 if (i386_mmx_regnum_p (gdbarch, regnum))
2501 return i386_mmx_type (gdbarch);
c131fcee
L
2502 else if (i386_ymm_regnum_p (gdbarch, regnum))
2503 return i386_ymm_type (gdbarch);
1ba53b71
L
2504 else
2505 {
2506 const struct builtin_type *bt = builtin_type (gdbarch);
2507 if (i386_byte_regnum_p (gdbarch, regnum))
2508 return bt->builtin_int8;
2509 else if (i386_word_regnum_p (gdbarch, regnum))
2510 return bt->builtin_int16;
2511 else if (i386_dword_regnum_p (gdbarch, regnum))
2512 return bt->builtin_int32;
2513 }
2514
2515 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2516}
2517
28fc6740 2518/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2519 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2520
2521static int
c86c27af 2522i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2523{
5716833c
MK
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2525 int mmxreg, fpreg;
28fc6740
AC
2526 ULONGEST fstat;
2527 int tos;
c86c27af 2528
5716833c 2529 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2530 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2531 tos = (fstat >> 11) & 0x7;
5716833c
MK
2532 fpreg = (mmxreg + tos) % 8;
2533
20a6ec49 2534 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2535}
2536
1ba53b71 2537void
28fc6740 2538i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2539 int regnum, gdb_byte *buf)
28fc6740 2540{
1ba53b71
L
2541 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2542
5716833c 2543 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2544 {
c86c27af
MK
2545 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2546
28fc6740 2547 /* Extract (always little endian). */
1ba53b71
L
2548 regcache_raw_read (regcache, fpnum, raw_buf);
2549 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2550 }
2551 else
1ba53b71
L
2552 {
2553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2554
c131fcee
L
2555 if (i386_ymm_regnum_p (gdbarch, regnum))
2556 {
2557 regnum -= tdep->ymm0_regnum;
2558
1777feb0 2559 /* Extract (always little endian). Read lower 128bits. */
c131fcee
L
2560 regcache_raw_read (regcache,
2561 I387_XMM0_REGNUM (tdep) + regnum,
2562 raw_buf);
2563 memcpy (buf, raw_buf, 16);
2564 /* Read upper 128bits. */
2565 regcache_raw_read (regcache,
2566 tdep->ymm0h_regnum + regnum,
2567 raw_buf);
2568 memcpy (buf + 16, raw_buf, 16);
2569 }
2570 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2571 {
2572 int gpnum = regnum - tdep->ax_regnum;
2573
2574 /* Extract (always little endian). */
2575 regcache_raw_read (regcache, gpnum, raw_buf);
2576 memcpy (buf, raw_buf, 2);
2577 }
2578 else if (i386_byte_regnum_p (gdbarch, regnum))
2579 {
2580 /* Check byte pseudo registers last since this function will
2581 be called from amd64_pseudo_register_read, which handles
2582 byte pseudo registers differently. */
2583 int gpnum = regnum - tdep->al_regnum;
2584
2585 /* Extract (always little endian). We read both lower and
2586 upper registers. */
2587 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2588 if (gpnum >= 4)
2589 memcpy (buf, raw_buf + 1, 1);
2590 else
2591 memcpy (buf, raw_buf, 1);
2592 }
2593 else
2594 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2595 }
28fc6740
AC
2596}
2597
1ba53b71 2598void
28fc6740 2599i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2600 int regnum, const gdb_byte *buf)
28fc6740 2601{
1ba53b71
L
2602 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2603
5716833c 2604 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2605 {
c86c27af
MK
2606 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2607
28fc6740 2608 /* Read ... */
1ba53b71 2609 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2610 /* ... Modify ... (always little endian). */
1ba53b71 2611 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2612 /* ... Write. */
1ba53b71 2613 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2614 }
2615 else
1ba53b71
L
2616 {
2617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2618
c131fcee
L
2619 if (i386_ymm_regnum_p (gdbarch, regnum))
2620 {
2621 regnum -= tdep->ymm0_regnum;
2622
2623 /* ... Write lower 128bits. */
2624 regcache_raw_write (regcache,
2625 I387_XMM0_REGNUM (tdep) + regnum,
2626 buf);
2627 /* ... Write upper 128bits. */
2628 regcache_raw_write (regcache,
2629 tdep->ymm0h_regnum + regnum,
2630 buf + 16);
2631 }
2632 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2633 {
2634 int gpnum = regnum - tdep->ax_regnum;
2635
2636 /* Read ... */
2637 regcache_raw_read (regcache, gpnum, raw_buf);
2638 /* ... Modify ... (always little endian). */
2639 memcpy (raw_buf, buf, 2);
2640 /* ... Write. */
2641 regcache_raw_write (regcache, gpnum, raw_buf);
2642 }
2643 else if (i386_byte_regnum_p (gdbarch, regnum))
2644 {
2645 /* Check byte pseudo registers last since this function will
2646 be called from amd64_pseudo_register_read, which handles
2647 byte pseudo registers differently. */
2648 int gpnum = regnum - tdep->al_regnum;
2649
2650 /* Read ... We read both lower and upper registers. */
2651 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2652 /* ... Modify ... (always little endian). */
2653 if (gpnum >= 4)
2654 memcpy (raw_buf + 1, buf, 1);
2655 else
2656 memcpy (raw_buf, buf, 1);
2657 /* ... Write. */
2658 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2659 }
2660 else
2661 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2662 }
28fc6740 2663}
ff2e87ac
AC
2664\f
2665
ff2e87ac
AC
2666/* Return the register number of the register allocated by GCC after
2667 REGNUM, or -1 if there is no such register. */
2668
2669static int
2670i386_next_regnum (int regnum)
2671{
2672 /* GCC allocates the registers in the order:
2673
2674 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2675
2676 Since storing a variable in %esp doesn't make any sense we return
2677 -1 for %ebp and for %esp itself. */
2678 static int next_regnum[] =
2679 {
2680 I386_EDX_REGNUM, /* Slot for %eax. */
2681 I386_EBX_REGNUM, /* Slot for %ecx. */
2682 I386_ECX_REGNUM, /* Slot for %edx. */
2683 I386_ESI_REGNUM, /* Slot for %ebx. */
2684 -1, -1, /* Slots for %esp and %ebp. */
2685 I386_EDI_REGNUM, /* Slot for %esi. */
2686 I386_EBP_REGNUM /* Slot for %edi. */
2687 };
2688
de5b9bb9 2689 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2690 return next_regnum[regnum];
28fc6740 2691
ff2e87ac
AC
2692 return -1;
2693}
2694
2695/* Return nonzero if a value of type TYPE stored in register REGNUM
2696 needs any special handling. */
d7a0d72c 2697
3a1e71e3 2698static int
1777feb0
MS
2699i386_convert_register_p (struct gdbarch *gdbarch,
2700 int regnum, struct type *type)
d7a0d72c 2701{
de5b9bb9
MK
2702 int len = TYPE_LENGTH (type);
2703
ff2e87ac
AC
2704 /* Values may be spread across multiple registers. Most debugging
2705 formats aren't expressive enough to specify the locations, so
2706 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2707 have a length that is a multiple of the word size, since GCC
2708 doesn't seem to put any other types into registers. */
2709 if (len > 4 && len % 4 == 0)
2710 {
2711 int last_regnum = regnum;
2712
2713 while (len > 4)
2714 {
2715 last_regnum = i386_next_regnum (last_regnum);
2716 len -= 4;
2717 }
2718
2719 if (last_regnum != -1)
2720 return 1;
2721 }
ff2e87ac 2722
0abe36f5 2723 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2724}
2725
ff2e87ac
AC
2726/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2727 return its contents in TO. */
ac27f131 2728
3a1e71e3 2729static void
ff2e87ac 2730i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2731 struct type *type, gdb_byte *to)
ac27f131 2732{
20a6ec49 2733 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2734 int len = TYPE_LENGTH (type);
de5b9bb9 2735
ff2e87ac
AC
2736 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2737 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2738
20a6ec49 2739 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2740 {
d532c08f
MK
2741 i387_register_to_value (frame, regnum, type, to);
2742 return;
8d7f6b4a 2743 }
ff2e87ac 2744
fd35795f 2745 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2746
2747 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2748
de5b9bb9
MK
2749 while (len > 0)
2750 {
2751 gdb_assert (regnum != -1);
20a6ec49 2752 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2753
42835c2b 2754 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2755 regnum = i386_next_regnum (regnum);
2756 len -= 4;
42835c2b 2757 to += 4;
de5b9bb9 2758 }
ac27f131
MK
2759}
2760
ff2e87ac
AC
2761/* Write the contents FROM of a value of type TYPE into register
2762 REGNUM in frame FRAME. */
ac27f131 2763
3a1e71e3 2764static void
ff2e87ac 2765i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2766 struct type *type, const gdb_byte *from)
ac27f131 2767{
de5b9bb9 2768 int len = TYPE_LENGTH (type);
de5b9bb9 2769
20a6ec49 2770 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2771 {
d532c08f
MK
2772 i387_value_to_register (frame, regnum, type, from);
2773 return;
2774 }
3d261580 2775
fd35795f 2776 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2777
2778 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2779
de5b9bb9
MK
2780 while (len > 0)
2781 {
2782 gdb_assert (regnum != -1);
875f8d0e 2783 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2784
42835c2b 2785 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2786 regnum = i386_next_regnum (regnum);
2787 len -= 4;
42835c2b 2788 from += 4;
de5b9bb9 2789 }
ac27f131 2790}
ff2e87ac 2791\f
7fdafb5a
MK
2792/* Supply register REGNUM from the buffer specified by GREGS and LEN
2793 in the general-purpose register set REGSET to register cache
2794 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2795
20187ed5 2796void
473f17b0
MK
2797i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2798 int regnum, const void *gregs, size_t len)
2799{
9ea75c57 2800 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2801 const gdb_byte *regs = gregs;
473f17b0
MK
2802 int i;
2803
2804 gdb_assert (len == tdep->sizeof_gregset);
2805
2806 for (i = 0; i < tdep->gregset_num_regs; i++)
2807 {
2808 if ((regnum == i || regnum == -1)
2809 && tdep->gregset_reg_offset[i] != -1)
2810 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2811 }
2812}
2813
7fdafb5a
MK
2814/* Collect register REGNUM from the register cache REGCACHE and store
2815 it in the buffer specified by GREGS and LEN as described by the
2816 general-purpose register set REGSET. If REGNUM is -1, do this for
2817 all registers in REGSET. */
2818
2819void
2820i386_collect_gregset (const struct regset *regset,
2821 const struct regcache *regcache,
2822 int regnum, void *gregs, size_t len)
2823{
2824 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2825 gdb_byte *regs = gregs;
7fdafb5a
MK
2826 int i;
2827
2828 gdb_assert (len == tdep->sizeof_gregset);
2829
2830 for (i = 0; i < tdep->gregset_num_regs; i++)
2831 {
2832 if ((regnum == i || regnum == -1)
2833 && tdep->gregset_reg_offset[i] != -1)
2834 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2835 }
2836}
2837
2838/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2839 in the floating-point register set REGSET to register cache
2840 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2841
2842static void
2843i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2844 int regnum, const void *fpregs, size_t len)
2845{
9ea75c57 2846 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2847
66a72d25
MK
2848 if (len == I387_SIZEOF_FXSAVE)
2849 {
2850 i387_supply_fxsave (regcache, regnum, fpregs);
2851 return;
2852 }
2853
473f17b0
MK
2854 gdb_assert (len == tdep->sizeof_fpregset);
2855 i387_supply_fsave (regcache, regnum, fpregs);
2856}
8446b36a 2857
2f305df1
MK
2858/* Collect register REGNUM from the register cache REGCACHE and store
2859 it in the buffer specified by FPREGS and LEN as described by the
2860 floating-point register set REGSET. If REGNUM is -1, do this for
2861 all registers in REGSET. */
7fdafb5a
MK
2862
2863static void
2864i386_collect_fpregset (const struct regset *regset,
2865 const struct regcache *regcache,
2866 int regnum, void *fpregs, size_t len)
2867{
2868 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2869
2870 if (len == I387_SIZEOF_FXSAVE)
2871 {
2872 i387_collect_fxsave (regcache, regnum, fpregs);
2873 return;
2874 }
2875
2876 gdb_assert (len == tdep->sizeof_fpregset);
2877 i387_collect_fsave (regcache, regnum, fpregs);
2878}
2879
c131fcee
L
2880/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
2881
2882static void
2883i386_supply_xstateregset (const struct regset *regset,
2884 struct regcache *regcache, int regnum,
2885 const void *xstateregs, size_t len)
2886{
c131fcee
L
2887 i387_supply_xsave (regcache, regnum, xstateregs);
2888}
2889
2890/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
2891
2892static void
2893i386_collect_xstateregset (const struct regset *regset,
2894 const struct regcache *regcache,
2895 int regnum, void *xstateregs, size_t len)
2896{
c131fcee
L
2897 i387_collect_xsave (regcache, regnum, xstateregs, 1);
2898}
2899
8446b36a
MK
2900/* Return the appropriate register set for the core section identified
2901 by SECT_NAME and SECT_SIZE. */
2902
2903const struct regset *
2904i386_regset_from_core_section (struct gdbarch *gdbarch,
2905 const char *sect_name, size_t sect_size)
2906{
2907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2908
2909 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2910 {
2911 if (tdep->gregset == NULL)
7fdafb5a
MK
2912 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2913 i386_collect_gregset);
8446b36a
MK
2914 return tdep->gregset;
2915 }
2916
66a72d25
MK
2917 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2918 || (strcmp (sect_name, ".reg-xfp") == 0
2919 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2920 {
2921 if (tdep->fpregset == NULL)
7fdafb5a
MK
2922 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2923 i386_collect_fpregset);
8446b36a
MK
2924 return tdep->fpregset;
2925 }
2926
c131fcee
L
2927 if (strcmp (sect_name, ".reg-xstate") == 0)
2928 {
2929 if (tdep->xstateregset == NULL)
2930 tdep->xstateregset = regset_alloc (gdbarch,
2931 i386_supply_xstateregset,
2932 i386_collect_xstateregset);
2933
2934 return tdep->xstateregset;
2935 }
2936
8446b36a
MK
2937 return NULL;
2938}
473f17b0 2939\f
fc338970 2940
fc338970 2941/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2942
2943CORE_ADDR
e17a4113
UW
2944i386_pe_skip_trampoline_code (struct frame_info *frame,
2945 CORE_ADDR pc, char *name)
c906108c 2946{
e17a4113
UW
2947 struct gdbarch *gdbarch = get_frame_arch (frame);
2948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2949
2950 /* jmp *(dest) */
2951 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 2952 {
e17a4113
UW
2953 unsigned long indirect =
2954 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 2955 struct minimal_symbol *indsym =
fc338970 2956 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2957 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2958
c5aa993b 2959 if (symname)
c906108c 2960 {
c5aa993b
JM
2961 if (strncmp (symname, "__imp_", 6) == 0
2962 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
2963 return name ? 1 :
2964 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
2965 }
2966 }
fc338970 2967 return 0; /* Not a trampoline. */
c906108c 2968}
fc338970
MK
2969\f
2970
10458914
DJ
2971/* Return whether the THIS_FRAME corresponds to a sigtramp
2972 routine. */
8201327c 2973
4bd207ef 2974int
10458914 2975i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2976{
10458914 2977 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2978 char *name;
2979
2980 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2981 return (name && strcmp ("_sigtramp", name) == 0);
2982}
2983\f
2984
fc338970
MK
2985/* We have two flavours of disassembly. The machinery on this page
2986 deals with switching between those. */
c906108c
SS
2987
2988static int
a89aa300 2989i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2990{
5e3397bb
MK
2991 gdb_assert (disassembly_flavor == att_flavor
2992 || disassembly_flavor == intel_flavor);
2993
2994 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2995 constified, cast to prevent a compiler warning. */
2996 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2997
2998 return print_insn_i386 (pc, info);
7a292a7a 2999}
fc338970 3000\f
3ce1502b 3001
8201327c
MK
3002/* There are a few i386 architecture variants that differ only
3003 slightly from the generic i386 target. For now, we don't give them
3004 their own source file, but include them here. As a consequence,
3005 they'll always be included. */
3ce1502b 3006
8201327c 3007/* System V Release 4 (SVR4). */
3ce1502b 3008
10458914
DJ
3009/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3010 routine. */
911bc6ee 3011
8201327c 3012static int
10458914 3013i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3014{
10458914 3015 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3016 char *name;
3017
acd5c798
MK
3018 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3019 currently unknown. */
911bc6ee 3020 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3021 return (name && (strcmp ("_sigreturn", name) == 0
3022 || strcmp ("_sigacthandler", name) == 0
3023 || strcmp ("sigvechandler", name) == 0));
3024}
d2a7c97a 3025
10458914
DJ
3026/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3027 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3028
3a1e71e3 3029static CORE_ADDR
10458914 3030i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3031{
e17a4113
UW
3032 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3034 gdb_byte buf[4];
acd5c798 3035 CORE_ADDR sp;
3ce1502b 3036
10458914 3037 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3038 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3039
e17a4113 3040 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
3041}
3042\f
3ce1502b 3043
8201327c 3044/* Generic ELF. */
d2a7c97a 3045
8201327c
MK
3046void
3047i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3048{
c4fc7f1b
MK
3049 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3050 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 3051}
3ce1502b 3052
8201327c 3053/* System V Release 4 (SVR4). */
3ce1502b 3054
8201327c
MK
3055void
3056i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3057{
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3059
8201327c
MK
3060 /* System V Release 4 uses ELF. */
3061 i386_elf_init_abi (info, gdbarch);
3ce1502b 3062
dfe01d39 3063 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3064 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3065
911bc6ee 3066 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3067 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3068 tdep->sc_pc_offset = 36 + 14 * 4;
3069 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3070
8201327c 3071 tdep->jb_pc_offset = 20;
3ce1502b
MK
3072}
3073
8201327c 3074/* DJGPP. */
3ce1502b 3075
3a1e71e3 3076static void
8201327c 3077i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3078{
8201327c 3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3080
911bc6ee
MK
3081 /* DJGPP doesn't have any special frames for signal handlers. */
3082 tdep->sigtramp_p = NULL;
3ce1502b 3083
8201327c 3084 tdep->jb_pc_offset = 36;
15430fc0
EZ
3085
3086 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3087 if (! tdesc_has_registers (info.target_desc))
3088 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3089
3090 /* Native compiler is GCC, which uses the SVR4 register numbering
3091 even in COFF and STABS. See the comment in i386_gdbarch_init,
3092 before the calls to set_gdbarch_stab_reg_to_regnum and
3093 set_gdbarch_sdb_reg_to_regnum. */
3094 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3095 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3096
3097 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3098}
8201327c 3099\f
2acceee2 3100
38c968cf
AC
3101/* i386 register groups. In addition to the normal groups, add "mmx"
3102 and "sse". */
3103
3104static struct reggroup *i386_sse_reggroup;
3105static struct reggroup *i386_mmx_reggroup;
3106
3107static void
3108i386_init_reggroups (void)
3109{
3110 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3111 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3112}
3113
3114static void
3115i386_add_reggroups (struct gdbarch *gdbarch)
3116{
3117 reggroup_add (gdbarch, i386_sse_reggroup);
3118 reggroup_add (gdbarch, i386_mmx_reggroup);
3119 reggroup_add (gdbarch, general_reggroup);
3120 reggroup_add (gdbarch, float_reggroup);
3121 reggroup_add (gdbarch, all_reggroup);
3122 reggroup_add (gdbarch, save_reggroup);
3123 reggroup_add (gdbarch, restore_reggroup);
3124 reggroup_add (gdbarch, vector_reggroup);
3125 reggroup_add (gdbarch, system_reggroup);
3126}
3127
3128int
3129i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3130 struct reggroup *group)
3131{
c131fcee
L
3132 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3133 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3134 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3135
1ba53b71
L
3136 /* Don't include pseudo registers, except for MMX, in any register
3137 groups. */
c131fcee 3138 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3139 return 0;
3140
c131fcee 3141 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3142 return 0;
3143
c131fcee 3144 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3145 return 0;
3146
3147 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3148 if (group == i386_mmx_reggroup)
3149 return mmx_regnum_p;
1ba53b71 3150
c131fcee
L
3151 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3152 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3153 if (group == i386_sse_reggroup)
c131fcee
L
3154 return xmm_regnum_p || mxcsr_regnum_p;
3155
3156 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3157 if (group == vector_reggroup)
c131fcee
L
3158 return (mmx_regnum_p
3159 || ymm_regnum_p
3160 || mxcsr_regnum_p
3161 || (xmm_regnum_p
3162 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3163 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3164
3165 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3166 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3167 if (group == float_reggroup)
3168 return fp_regnum_p;
1ba53b71 3169
c131fcee
L
3170 /* For "info reg all", don't include upper YMM registers nor XMM
3171 registers when AVX is supported. */
3172 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3173 if (group == all_reggroup
3174 && ((xmm_regnum_p
3175 && (tdep->xcr0 & I386_XSTATE_AVX))
3176 || ymmh_regnum_p))
3177 return 0;
3178
38c968cf 3179 if (group == general_reggroup)
1ba53b71
L
3180 return (!fp_regnum_p
3181 && !mmx_regnum_p
c131fcee
L
3182 && !mxcsr_regnum_p
3183 && !xmm_regnum_p
3184 && !ymm_regnum_p
3185 && !ymmh_regnum_p);
acd5c798 3186
38c968cf
AC
3187 return default_register_reggroup_p (gdbarch, regnum, group);
3188}
38c968cf 3189\f
acd5c798 3190
f837910f
MK
3191/* Get the ARGIth function argument for the current function. */
3192
42c466d7 3193static CORE_ADDR
143985b7
AF
3194i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3195 struct type *type)
3196{
e17a4113
UW
3197 struct gdbarch *gdbarch = get_frame_arch (frame);
3198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3199 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3200 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3201}
3202
514f746b
AR
3203static void
3204i386_skip_permanent_breakpoint (struct regcache *regcache)
3205{
3206 CORE_ADDR current_pc = regcache_read_pc (regcache);
3207
3208 /* On i386, breakpoint is exactly 1 byte long, so we just
3209 adjust the PC in the regcache. */
3210 current_pc += 1;
3211 regcache_write_pc (regcache, current_pc);
3212}
3213
3214
7ad10968
HZ
3215#define PREFIX_REPZ 0x01
3216#define PREFIX_REPNZ 0x02
3217#define PREFIX_LOCK 0x04
3218#define PREFIX_DATA 0x08
3219#define PREFIX_ADDR 0x10
473f17b0 3220
7ad10968
HZ
3221/* operand size */
3222enum
3223{
3224 OT_BYTE = 0,
3225 OT_WORD,
3226 OT_LONG,
cf648174 3227 OT_QUAD,
a3c4230a 3228 OT_DQUAD,
7ad10968 3229};
473f17b0 3230
7ad10968
HZ
3231/* i386 arith/logic operations */
3232enum
3233{
3234 OP_ADDL,
3235 OP_ORL,
3236 OP_ADCL,
3237 OP_SBBL,
3238 OP_ANDL,
3239 OP_SUBL,
3240 OP_XORL,
3241 OP_CMPL,
3242};
5716833c 3243
7ad10968
HZ
3244struct i386_record_s
3245{
cf648174 3246 struct gdbarch *gdbarch;
7ad10968 3247 struct regcache *regcache;
df61f520 3248 CORE_ADDR orig_addr;
7ad10968
HZ
3249 CORE_ADDR addr;
3250 int aflag;
3251 int dflag;
3252 int override;
3253 uint8_t modrm;
3254 uint8_t mod, reg, rm;
3255 int ot;
cf648174
HZ
3256 uint8_t rex_x;
3257 uint8_t rex_b;
3258 int rip_offset;
3259 int popl_esp_hack;
3260 const int *regmap;
7ad10968 3261};
5716833c 3262
7ad10968 3263/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3264 Return -1 if something wrong. */
5716833c 3265
7ad10968
HZ
3266static int
3267i386_record_modrm (struct i386_record_s *irp)
3268{
cf648174 3269 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3270
7ad10968
HZ
3271 if (target_read_memory (irp->addr, &irp->modrm, 1))
3272 {
3273 if (record_debug)
3274 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3275 "addr %s len = 1.\n"),
3276 paddress (gdbarch, irp->addr));
7ad10968
HZ
3277 return -1;
3278 }
3279 irp->addr++;
3280 irp->mod = (irp->modrm >> 6) & 3;
3281 irp->reg = (irp->modrm >> 3) & 7;
3282 irp->rm = irp->modrm & 7;
5716833c 3283
7ad10968
HZ
3284 return 0;
3285}
d2a7c97a 3286
7ad10968
HZ
3287/* Get the memory address that current instruction write to and set it to
3288 the argument "addr".
1777feb0 3289 Return -1 if something wrong. */
8201327c 3290
7ad10968 3291static int
cf648174 3292i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3293{
cf648174 3294 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3296 gdb_byte buf[4];
3297 ULONGEST offset64;
21d0e8a4 3298
7ad10968
HZ
3299 *addr = 0;
3300 if (irp->aflag)
3301 {
3302 /* 32 bits */
3303 int havesib = 0;
3304 uint8_t scale = 0;
648d0c8b 3305 uint8_t byte;
7ad10968
HZ
3306 uint8_t index = 0;
3307 uint8_t base = irp->rm;
896fb97d 3308
7ad10968
HZ
3309 if (base == 4)
3310 {
3311 havesib = 1;
648d0c8b 3312 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3313 {
3314 if (record_debug)
3315 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3316 "at addr %s len = 1.\n"),
3317 paddress (gdbarch, irp->addr));
7ad10968
HZ
3318 return -1;
3319 }
3320 irp->addr++;
648d0c8b
MS
3321 scale = (byte >> 6) & 3;
3322 index = ((byte >> 3) & 7) | irp->rex_x;
3323 base = (byte & 7);
7ad10968 3324 }
cf648174 3325 base |= irp->rex_b;
21d0e8a4 3326
7ad10968
HZ
3327 switch (irp->mod)
3328 {
3329 case 0:
3330 if ((base & 7) == 5)
3331 {
3332 base = 0xff;
60a1502a 3333 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3334 {
3335 if (record_debug)
3336 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3337 "memory at addr %s len = 4.\n"),
3338 paddress (gdbarch, irp->addr));
7ad10968
HZ
3339 return -1;
3340 }
3341 irp->addr += 4;
60a1502a 3342 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3343 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3344 *addr += irp->addr + irp->rip_offset;
7ad10968 3345 }
7ad10968
HZ
3346 break;
3347 case 1:
60a1502a 3348 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3349 {
3350 if (record_debug)
3351 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3352 "at addr %s len = 1.\n"),
3353 paddress (gdbarch, irp->addr));
7ad10968
HZ
3354 return -1;
3355 }
3356 irp->addr++;
60a1502a 3357 *addr = (int8_t) buf[0];
7ad10968
HZ
3358 break;
3359 case 2:
60a1502a 3360 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3361 {
3362 if (record_debug)
3363 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3364 "at addr %s len = 4.\n"),
3365 paddress (gdbarch, irp->addr));
7ad10968
HZ
3366 return -1;
3367 }
60a1502a 3368 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
3369 irp->addr += 4;
3370 break;
3371 }
356a6b3e 3372
60a1502a 3373 offset64 = 0;
7ad10968 3374 if (base != 0xff)
cf648174
HZ
3375 {
3376 if (base == 4 && irp->popl_esp_hack)
3377 *addr += irp->popl_esp_hack;
3378 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 3379 &offset64);
7ad10968 3380 }
cf648174
HZ
3381 if (irp->aflag == 2)
3382 {
60a1502a 3383 *addr += offset64;
cf648174
HZ
3384 }
3385 else
60a1502a 3386 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 3387
7ad10968
HZ
3388 if (havesib && (index != 4 || scale != 0))
3389 {
cf648174 3390 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 3391 &offset64);
cf648174 3392 if (irp->aflag == 2)
60a1502a 3393 *addr += offset64 << scale;
cf648174 3394 else
60a1502a 3395 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
3396 }
3397 }
3398 else
3399 {
3400 /* 16 bits */
3401 switch (irp->mod)
3402 {
3403 case 0:
3404 if (irp->rm == 6)
3405 {
60a1502a 3406 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3407 {
3408 if (record_debug)
3409 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3410 "memory at addr %s len = 2.\n"),
3411 paddress (gdbarch, irp->addr));
7ad10968
HZ
3412 return -1;
3413 }
3414 irp->addr += 2;
60a1502a 3415 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3416 irp->rm = 0;
3417 goto no_rm;
3418 }
7ad10968
HZ
3419 break;
3420 case 1:
60a1502a 3421 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3422 {
3423 if (record_debug)
3424 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3425 "at addr %s len = 1.\n"),
3426 paddress (gdbarch, irp->addr));
7ad10968
HZ
3427 return -1;
3428 }
3429 irp->addr++;
60a1502a 3430 *addr = (int8_t) buf[0];
7ad10968
HZ
3431 break;
3432 case 2:
60a1502a 3433 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3434 {
3435 if (record_debug)
3436 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3437 "at addr %s len = 2.\n"),
3438 paddress (gdbarch, irp->addr));
7ad10968
HZ
3439 return -1;
3440 }
3441 irp->addr += 2;
60a1502a 3442 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3443 break;
3444 }
c4fc7f1b 3445
7ad10968
HZ
3446 switch (irp->rm)
3447 {
3448 case 0:
cf648174
HZ
3449 regcache_raw_read_unsigned (irp->regcache,
3450 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3451 &offset64);
3452 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3453 regcache_raw_read_unsigned (irp->regcache,
3454 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3455 &offset64);
3456 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3457 break;
3458 case 1:
cf648174
HZ
3459 regcache_raw_read_unsigned (irp->regcache,
3460 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3461 &offset64);
3462 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3463 regcache_raw_read_unsigned (irp->regcache,
3464 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3465 &offset64);
3466 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3467 break;
3468 case 2:
cf648174
HZ
3469 regcache_raw_read_unsigned (irp->regcache,
3470 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3471 &offset64);
3472 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3473 regcache_raw_read_unsigned (irp->regcache,
3474 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3475 &offset64);
3476 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3477 break;
3478 case 3:
cf648174
HZ
3479 regcache_raw_read_unsigned (irp->regcache,
3480 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3481 &offset64);
3482 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3483 regcache_raw_read_unsigned (irp->regcache,
3484 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3485 &offset64);
3486 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3487 break;
3488 case 4:
cf648174
HZ
3489 regcache_raw_read_unsigned (irp->regcache,
3490 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3491 &offset64);
3492 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3493 break;
3494 case 5:
cf648174
HZ
3495 regcache_raw_read_unsigned (irp->regcache,
3496 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3497 &offset64);
3498 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3499 break;
3500 case 6:
cf648174
HZ
3501 regcache_raw_read_unsigned (irp->regcache,
3502 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3503 &offset64);
3504 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3505 break;
3506 case 7:
cf648174
HZ
3507 regcache_raw_read_unsigned (irp->regcache,
3508 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3509 &offset64);
3510 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3511 break;
3512 }
3513 *addr &= 0xffff;
3514 }
c4fc7f1b 3515
01fe1b41 3516 no_rm:
7ad10968
HZ
3517 return 0;
3518}
c4fc7f1b 3519
7ad10968
HZ
3520/* Record the value of the memory that willbe changed in current instruction
3521 to "record_arch_list".
1777feb0 3522 Return -1 if something wrong. */
356a6b3e 3523
7ad10968
HZ
3524static int
3525i386_record_lea_modrm (struct i386_record_s *irp)
3526{
cf648174
HZ
3527 struct gdbarch *gdbarch = irp->gdbarch;
3528 uint64_t addr;
356a6b3e 3529
d7877f7e 3530 if (irp->override >= 0)
7ad10968 3531 {
bb08c432
HZ
3532 if (record_memory_query)
3533 {
3534 int q;
3535
3536 target_terminal_ours ();
3537 q = yquery (_("\
3538Process record ignores the memory change of instruction at address %s\n\
3539because it can't get the value of the segment register.\n\
3540Do you want to stop the program?"),
3541 paddress (gdbarch, irp->orig_addr));
3542 target_terminal_inferior ();
3543 if (q)
3544 return -1;
3545 }
3546
7ad10968
HZ
3547 return 0;
3548 }
61113f8b 3549
7ad10968
HZ
3550 if (i386_record_lea_modrm_addr (irp, &addr))
3551 return -1;
96297dab 3552
7ad10968
HZ
3553 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3554 return -1;
a62cc96e 3555
7ad10968
HZ
3556 return 0;
3557}
b6197528 3558
cf648174 3559/* Record the push operation to "record_arch_list".
1777feb0 3560 Return -1 if something wrong. */
cf648174
HZ
3561
3562static int
3563i386_record_push (struct i386_record_s *irp, int size)
3564{
648d0c8b 3565 ULONGEST addr;
cf648174
HZ
3566
3567 if (record_arch_list_add_reg (irp->regcache,
3568 irp->regmap[X86_RECORD_RESP_REGNUM]))
3569 return -1;
3570 regcache_raw_read_unsigned (irp->regcache,
3571 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3572 &addr);
3573 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3574 return -1;
3575
3576 return 0;
3577}
3578
0289bdd7
MS
3579
3580/* Defines contents to record. */
3581#define I386_SAVE_FPU_REGS 0xfffd
3582#define I386_SAVE_FPU_ENV 0xfffe
3583#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3584
1777feb0
MS
3585/* Record the value of floating point registers which will be changed
3586 by the current instruction to "record_arch_list". Return -1 if
3587 something is wrong. */
0289bdd7
MS
3588
3589static int i386_record_floats (struct gdbarch *gdbarch,
3590 struct i386_record_s *ir,
3591 uint32_t iregnum)
3592{
3593 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3594 int i;
3595
3596 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3597 happen. Currently we store st0-st7 registers, but we need not store all
3598 registers all the time, in future we use ftag register and record only
3599 those who are not marked as an empty. */
3600
3601 if (I386_SAVE_FPU_REGS == iregnum)
3602 {
3603 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3604 {
3605 if (record_arch_list_add_reg (ir->regcache, i))
3606 return -1;
3607 }
3608 }
3609 else if (I386_SAVE_FPU_ENV == iregnum)
3610 {
3611 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3612 {
3613 if (record_arch_list_add_reg (ir->regcache, i))
3614 return -1;
3615 }
3616 }
3617 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3618 {
3619 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3620 {
3621 if (record_arch_list_add_reg (ir->regcache, i))
3622 return -1;
3623 }
3624 }
3625 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3626 (iregnum <= I387_FOP_REGNUM (tdep)))
3627 {
3628 if (record_arch_list_add_reg (ir->regcache,iregnum))
3629 return -1;
3630 }
3631 else
3632 {
3633 /* Parameter error. */
3634 return -1;
3635 }
3636 if(I386_SAVE_FPU_ENV != iregnum)
3637 {
3638 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3639 {
3640 if (record_arch_list_add_reg (ir->regcache, i))
3641 return -1;
3642 }
3643 }
3644 return 0;
3645}
3646
7ad10968
HZ
3647/* Parse the current instruction and record the values of the registers and
3648 memory that will be changed in current instruction to "record_arch_list".
1777feb0 3649 Return -1 if something wrong. */
8201327c 3650
cf648174
HZ
3651#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3652 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3653
a6b808b4 3654int
7ad10968 3655i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3656 CORE_ADDR input_addr)
7ad10968 3657{
60a1502a 3658 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 3659 int prefixes = 0;
580879fc 3660 int regnum = 0;
425b824a
MS
3661 uint32_t opcode;
3662 uint8_t opcode8;
648d0c8b 3663 ULONGEST addr;
60a1502a 3664 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 3665 struct i386_record_s ir;
0289bdd7 3666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3667 int rex = 0;
3668 uint8_t rex_w = -1;
3669 uint8_t rex_r = 0;
7ad10968 3670
8408d274 3671 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3672 ir.regcache = regcache;
648d0c8b
MS
3673 ir.addr = input_addr;
3674 ir.orig_addr = input_addr;
7ad10968
HZ
3675 ir.aflag = 1;
3676 ir.dflag = 1;
cf648174
HZ
3677 ir.override = -1;
3678 ir.popl_esp_hack = 0;
a3c4230a 3679 ir.regmap = tdep->record_regmap;
cf648174 3680 ir.gdbarch = gdbarch;
7ad10968
HZ
3681
3682 if (record_debug > 1)
3683 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3684 "addr = %s\n",
3685 paddress (gdbarch, ir.addr));
7ad10968
HZ
3686
3687 /* prefixes */
3688 while (1)
3689 {
425b824a 3690 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3691 {
3692 if (record_debug)
3693 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3694 "addr %s len = 1.\n"),
3695 paddress (gdbarch, ir.addr));
7ad10968
HZ
3696 return -1;
3697 }
3698 ir.addr++;
425b824a 3699 switch (opcode8) /* Instruction prefixes */
7ad10968 3700 {
01fe1b41 3701 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3702 prefixes |= PREFIX_REPZ;
3703 break;
01fe1b41 3704 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3705 prefixes |= PREFIX_REPNZ;
3706 break;
01fe1b41 3707 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3708 prefixes |= PREFIX_LOCK;
3709 break;
01fe1b41 3710 case CS_PREFIX_OPCODE:
cf648174 3711 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3712 break;
01fe1b41 3713 case SS_PREFIX_OPCODE:
cf648174 3714 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3715 break;
01fe1b41 3716 case DS_PREFIX_OPCODE:
cf648174 3717 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3718 break;
01fe1b41 3719 case ES_PREFIX_OPCODE:
cf648174 3720 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3721 break;
01fe1b41 3722 case FS_PREFIX_OPCODE:
cf648174 3723 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3724 break;
01fe1b41 3725 case GS_PREFIX_OPCODE:
cf648174 3726 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3727 break;
01fe1b41 3728 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3729 prefixes |= PREFIX_DATA;
3730 break;
01fe1b41 3731 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3732 prefixes |= PREFIX_ADDR;
3733 break;
d691bec7
MS
3734 case 0x40: /* i386 inc %eax */
3735 case 0x41: /* i386 inc %ecx */
3736 case 0x42: /* i386 inc %edx */
3737 case 0x43: /* i386 inc %ebx */
3738 case 0x44: /* i386 inc %esp */
3739 case 0x45: /* i386 inc %ebp */
3740 case 0x46: /* i386 inc %esi */
3741 case 0x47: /* i386 inc %edi */
3742 case 0x48: /* i386 dec %eax */
3743 case 0x49: /* i386 dec %ecx */
3744 case 0x4a: /* i386 dec %edx */
3745 case 0x4b: /* i386 dec %ebx */
3746 case 0x4c: /* i386 dec %esp */
3747 case 0x4d: /* i386 dec %ebp */
3748 case 0x4e: /* i386 dec %esi */
3749 case 0x4f: /* i386 dec %edi */
3750 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3751 {
3752 /* REX */
3753 rex = 1;
425b824a
MS
3754 rex_w = (opcode8 >> 3) & 1;
3755 rex_r = (opcode8 & 0x4) << 1;
3756 ir.rex_x = (opcode8 & 0x2) << 2;
3757 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3758 }
d691bec7
MS
3759 else /* 32 bit target */
3760 goto out_prefixes;
cf648174 3761 break;
7ad10968
HZ
3762 default:
3763 goto out_prefixes;
3764 break;
3765 }
3766 }
01fe1b41 3767 out_prefixes:
cf648174
HZ
3768 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3769 {
3770 ir.dflag = 2;
3771 }
3772 else
3773 {
3774 if (prefixes & PREFIX_DATA)
3775 ir.dflag ^= 1;
3776 }
7ad10968
HZ
3777 if (prefixes & PREFIX_ADDR)
3778 ir.aflag ^= 1;
cf648174
HZ
3779 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3780 ir.aflag = 2;
7ad10968 3781
1777feb0 3782 /* Now check op code. */
425b824a 3783 opcode = (uint32_t) opcode8;
01fe1b41 3784 reswitch:
7ad10968
HZ
3785 switch (opcode)
3786 {
3787 case 0x0f:
425b824a 3788 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3789 {
3790 if (record_debug)
3791 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3792 "addr %s len = 1.\n"),
3793 paddress (gdbarch, ir.addr));
7ad10968
HZ
3794 return -1;
3795 }
3796 ir.addr++;
a3c4230a 3797 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
3798 goto reswitch;
3799 break;
93924b6b 3800
a38bba38 3801 case 0x00: /* arith & logic */
7ad10968
HZ
3802 case 0x01:
3803 case 0x02:
3804 case 0x03:
3805 case 0x04:
3806 case 0x05:
3807 case 0x08:
3808 case 0x09:
3809 case 0x0a:
3810 case 0x0b:
3811 case 0x0c:
3812 case 0x0d:
3813 case 0x10:
3814 case 0x11:
3815 case 0x12:
3816 case 0x13:
3817 case 0x14:
3818 case 0x15:
3819 case 0x18:
3820 case 0x19:
3821 case 0x1a:
3822 case 0x1b:
3823 case 0x1c:
3824 case 0x1d:
3825 case 0x20:
3826 case 0x21:
3827 case 0x22:
3828 case 0x23:
3829 case 0x24:
3830 case 0x25:
3831 case 0x28:
3832 case 0x29:
3833 case 0x2a:
3834 case 0x2b:
3835 case 0x2c:
3836 case 0x2d:
3837 case 0x30:
3838 case 0x31:
3839 case 0x32:
3840 case 0x33:
3841 case 0x34:
3842 case 0x35:
3843 case 0x38:
3844 case 0x39:
3845 case 0x3a:
3846 case 0x3b:
3847 case 0x3c:
3848 case 0x3d:
3849 if (((opcode >> 3) & 7) != OP_CMPL)
3850 {
3851 if ((opcode & 1) == 0)
3852 ir.ot = OT_BYTE;
3853 else
3854 ir.ot = ir.dflag + OT_WORD;
93924b6b 3855
7ad10968
HZ
3856 switch ((opcode >> 1) & 3)
3857 {
a38bba38 3858 case 0: /* OP Ev, Gv */
7ad10968
HZ
3859 if (i386_record_modrm (&ir))
3860 return -1;
3861 if (ir.mod != 3)
3862 {
3863 if (i386_record_lea_modrm (&ir))
3864 return -1;
3865 }
3866 else
3867 {
cf648174
HZ
3868 ir.rm |= ir.rex_b;
3869 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3870 ir.rm &= 0x3;
cf648174 3871 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3872 }
3873 break;
a38bba38 3874 case 1: /* OP Gv, Ev */
7ad10968
HZ
3875 if (i386_record_modrm (&ir))
3876 return -1;
cf648174
HZ
3877 ir.reg |= rex_r;
3878 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3879 ir.reg &= 0x3;
cf648174 3880 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 3881 break;
a38bba38 3882 case 2: /* OP A, Iv */
cf648174 3883 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
3884 break;
3885 }
3886 }
cf648174 3887 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3888 break;
42fdc8df 3889
a38bba38 3890 case 0x80: /* GRP1 */
7ad10968
HZ
3891 case 0x81:
3892 case 0x82:
3893 case 0x83:
3894 if (i386_record_modrm (&ir))
3895 return -1;
8201327c 3896
7ad10968
HZ
3897 if (ir.reg != OP_CMPL)
3898 {
3899 if ((opcode & 1) == 0)
3900 ir.ot = OT_BYTE;
3901 else
3902 ir.ot = ir.dflag + OT_WORD;
28fc6740 3903
7ad10968
HZ
3904 if (ir.mod != 3)
3905 {
cf648174
HZ
3906 if (opcode == 0x83)
3907 ir.rip_offset = 1;
3908 else
3909 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
3910 if (i386_record_lea_modrm (&ir))
3911 return -1;
3912 }
3913 else
cf648174 3914 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 3915 }
cf648174 3916 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3917 break;
5e3397bb 3918
a38bba38 3919 case 0x40: /* inc */
7ad10968
HZ
3920 case 0x41:
3921 case 0x42:
3922 case 0x43:
3923 case 0x44:
3924 case 0x45:
3925 case 0x46:
3926 case 0x47:
a38bba38
MS
3927
3928 case 0x48: /* dec */
7ad10968
HZ
3929 case 0x49:
3930 case 0x4a:
3931 case 0x4b:
3932 case 0x4c:
3933 case 0x4d:
3934 case 0x4e:
3935 case 0x4f:
a38bba38 3936
cf648174
HZ
3937 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3938 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3939 break;
acd5c798 3940
a38bba38 3941 case 0xf6: /* GRP3 */
7ad10968
HZ
3942 case 0xf7:
3943 if ((opcode & 1) == 0)
3944 ir.ot = OT_BYTE;
3945 else
3946 ir.ot = ir.dflag + OT_WORD;
3947 if (i386_record_modrm (&ir))
3948 return -1;
acd5c798 3949
cf648174
HZ
3950 if (ir.mod != 3 && ir.reg == 0)
3951 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3952
7ad10968
HZ
3953 switch (ir.reg)
3954 {
a38bba38 3955 case 0: /* test */
cf648174 3956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3957 break;
a38bba38
MS
3958 case 2: /* not */
3959 case 3: /* neg */
7ad10968
HZ
3960 if (ir.mod != 3)
3961 {
3962 if (i386_record_lea_modrm (&ir))
3963 return -1;
3964 }
3965 else
3966 {
cf648174
HZ
3967 ir.rm |= ir.rex_b;
3968 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3969 ir.rm &= 0x3;
cf648174 3970 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 3971 }
a38bba38 3972 if (ir.reg == 3) /* neg */
cf648174 3973 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 3974 break;
a38bba38
MS
3975 case 4: /* mul */
3976 case 5: /* imul */
3977 case 6: /* div */
3978 case 7: /* idiv */
cf648174 3979 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 3980 if (ir.ot != OT_BYTE)
cf648174
HZ
3981 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3982 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
3983 break;
3984 default:
3985 ir.addr -= 2;
3986 opcode = opcode << 8 | ir.modrm;
3987 goto no_support;
3988 break;
3989 }
3990 break;
3991
a38bba38
MS
3992 case 0xfe: /* GRP4 */
3993 case 0xff: /* GRP5 */
7ad10968
HZ
3994 if (i386_record_modrm (&ir))
3995 return -1;
3996 if (ir.reg >= 2 && opcode == 0xfe)
3997 {
3998 ir.addr -= 2;
3999 opcode = opcode << 8 | ir.modrm;
4000 goto no_support;
4001 }
7ad10968
HZ
4002 switch (ir.reg)
4003 {
a38bba38
MS
4004 case 0: /* inc */
4005 case 1: /* dec */
cf648174
HZ
4006 if ((opcode & 1) == 0)
4007 ir.ot = OT_BYTE;
4008 else
4009 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4010 if (ir.mod != 3)
4011 {
4012 if (i386_record_lea_modrm (&ir))
4013 return -1;
4014 }
4015 else
4016 {
cf648174
HZ
4017 ir.rm |= ir.rex_b;
4018 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4019 ir.rm &= 0x3;
cf648174 4020 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4021 }
cf648174 4022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4023 break;
a38bba38 4024 case 2: /* call */
cf648174
HZ
4025 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4026 ir.dflag = 2;
4027 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4028 return -1;
cf648174 4029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4030 break;
a38bba38 4031 case 3: /* lcall */
cf648174
HZ
4032 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4033 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4034 return -1;
cf648174 4035 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4036 break;
a38bba38
MS
4037 case 4: /* jmp */
4038 case 5: /* ljmp */
cf648174
HZ
4039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4040 break;
a38bba38 4041 case 6: /* push */
cf648174
HZ
4042 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4043 ir.dflag = 2;
4044 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4045 return -1;
7ad10968
HZ
4046 break;
4047 default:
4048 ir.addr -= 2;
4049 opcode = opcode << 8 | ir.modrm;
4050 goto no_support;
4051 break;
4052 }
4053 break;
4054
a38bba38 4055 case 0x84: /* test */
7ad10968
HZ
4056 case 0x85:
4057 case 0xa8:
4058 case 0xa9:
cf648174 4059 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4060 break;
4061
a38bba38 4062 case 0x98: /* CWDE/CBW */
cf648174 4063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4064 break;
4065
a38bba38 4066 case 0x99: /* CDQ/CWD */
cf648174
HZ
4067 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4069 break;
4070
a38bba38 4071 case 0x0faf: /* imul */
7ad10968
HZ
4072 case 0x69:
4073 case 0x6b:
4074 ir.ot = ir.dflag + OT_WORD;
4075 if (i386_record_modrm (&ir))
4076 return -1;
cf648174
HZ
4077 if (opcode == 0x69)
4078 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4079 else if (opcode == 0x6b)
4080 ir.rip_offset = 1;
4081 ir.reg |= rex_r;
4082 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4083 ir.reg &= 0x3;
cf648174
HZ
4084 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4086 break;
4087
a38bba38 4088 case 0x0fc0: /* xadd */
7ad10968
HZ
4089 case 0x0fc1:
4090 if ((opcode & 1) == 0)
4091 ir.ot = OT_BYTE;
4092 else
4093 ir.ot = ir.dflag + OT_WORD;
4094 if (i386_record_modrm (&ir))
4095 return -1;
cf648174 4096 ir.reg |= rex_r;
7ad10968
HZ
4097 if (ir.mod == 3)
4098 {
cf648174 4099 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4100 ir.reg &= 0x3;
cf648174
HZ
4101 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4102 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4103 ir.rm &= 0x3;
cf648174 4104 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4105 }
4106 else
4107 {
4108 if (i386_record_lea_modrm (&ir))
4109 return -1;
cf648174 4110 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4111 ir.reg &= 0x3;
cf648174 4112 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4113 }
cf648174 4114 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4115 break;
4116
a38bba38 4117 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4118 case 0x0fb1:
4119 if ((opcode & 1) == 0)
4120 ir.ot = OT_BYTE;
4121 else
4122 ir.ot = ir.dflag + OT_WORD;
4123 if (i386_record_modrm (&ir))
4124 return -1;
4125 if (ir.mod == 3)
4126 {
cf648174
HZ
4127 ir.reg |= rex_r;
4128 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4129 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4130 ir.reg &= 0x3;
cf648174 4131 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4132 }
4133 else
4134 {
cf648174 4135 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4136 if (i386_record_lea_modrm (&ir))
4137 return -1;
4138 }
cf648174 4139 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4140 break;
4141
a38bba38 4142 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4143 if (i386_record_modrm (&ir))
4144 return -1;
4145 if (ir.mod == 3)
4146 {
4147 ir.addr -= 2;
4148 opcode = opcode << 8 | ir.modrm;
4149 goto no_support;
4150 }
cf648174
HZ
4151 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4152 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4153 if (i386_record_lea_modrm (&ir))
4154 return -1;
cf648174 4155 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4156 break;
4157
a38bba38 4158 case 0x50: /* push */
7ad10968
HZ
4159 case 0x51:
4160 case 0x52:
4161 case 0x53:
4162 case 0x54:
4163 case 0x55:
4164 case 0x56:
4165 case 0x57:
4166 case 0x68:
4167 case 0x6a:
cf648174
HZ
4168 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4169 ir.dflag = 2;
4170 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4171 return -1;
4172 break;
4173
a38bba38
MS
4174 case 0x06: /* push es */
4175 case 0x0e: /* push cs */
4176 case 0x16: /* push ss */
4177 case 0x1e: /* push ds */
cf648174
HZ
4178 if (ir.regmap[X86_RECORD_R8_REGNUM])
4179 {
4180 ir.addr -= 1;
4181 goto no_support;
4182 }
4183 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4184 return -1;
4185 break;
4186
a38bba38
MS
4187 case 0x0fa0: /* push fs */
4188 case 0x0fa8: /* push gs */
cf648174
HZ
4189 if (ir.regmap[X86_RECORD_R8_REGNUM])
4190 {
4191 ir.addr -= 2;
4192 goto no_support;
4193 }
4194 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4195 return -1;
cf648174
HZ
4196 break;
4197
a38bba38 4198 case 0x60: /* pusha */
cf648174
HZ
4199 if (ir.regmap[X86_RECORD_R8_REGNUM])
4200 {
4201 ir.addr -= 1;
4202 goto no_support;
4203 }
4204 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4205 return -1;
4206 break;
4207
a38bba38 4208 case 0x58: /* pop */
7ad10968
HZ
4209 case 0x59:
4210 case 0x5a:
4211 case 0x5b:
4212 case 0x5c:
4213 case 0x5d:
4214 case 0x5e:
4215 case 0x5f:
cf648174
HZ
4216 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4217 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4218 break;
4219
a38bba38 4220 case 0x61: /* popa */
cf648174
HZ
4221 if (ir.regmap[X86_RECORD_R8_REGNUM])
4222 {
4223 ir.addr -= 1;
4224 goto no_support;
7ad10968 4225 }
425b824a
MS
4226 for (regnum = X86_RECORD_REAX_REGNUM;
4227 regnum <= X86_RECORD_REDI_REGNUM;
4228 regnum++)
4229 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4230 break;
4231
a38bba38 4232 case 0x8f: /* pop */
cf648174
HZ
4233 if (ir.regmap[X86_RECORD_R8_REGNUM])
4234 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4235 else
4236 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4237 if (i386_record_modrm (&ir))
4238 return -1;
4239 if (ir.mod == 3)
cf648174 4240 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4241 else
4242 {
cf648174 4243 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4244 if (i386_record_lea_modrm (&ir))
4245 return -1;
4246 }
cf648174 4247 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4248 break;
4249
a38bba38 4250 case 0xc8: /* enter */
cf648174
HZ
4251 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4252 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4253 ir.dflag = 2;
4254 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4255 return -1;
4256 break;
4257
a38bba38 4258 case 0xc9: /* leave */
cf648174
HZ
4259 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4260 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4261 break;
4262
a38bba38 4263 case 0x07: /* pop es */
cf648174
HZ
4264 if (ir.regmap[X86_RECORD_R8_REGNUM])
4265 {
4266 ir.addr -= 1;
4267 goto no_support;
4268 }
4269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4272 break;
4273
a38bba38 4274 case 0x17: /* pop ss */
cf648174
HZ
4275 if (ir.regmap[X86_RECORD_R8_REGNUM])
4276 {
4277 ir.addr -= 1;
4278 goto no_support;
4279 }
4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4281 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4282 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4283 break;
4284
a38bba38 4285 case 0x1f: /* pop ds */
cf648174
HZ
4286 if (ir.regmap[X86_RECORD_R8_REGNUM])
4287 {
4288 ir.addr -= 1;
4289 goto no_support;
4290 }
4291 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4294 break;
4295
a38bba38 4296 case 0x0fa1: /* pop fs */
cf648174
HZ
4297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4298 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4299 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4300 break;
4301
a38bba38 4302 case 0x0fa9: /* pop gs */
cf648174
HZ
4303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4306 break;
4307
a38bba38 4308 case 0x88: /* mov */
7ad10968
HZ
4309 case 0x89:
4310 case 0xc6:
4311 case 0xc7:
4312 if ((opcode & 1) == 0)
4313 ir.ot = OT_BYTE;
4314 else
4315 ir.ot = ir.dflag + OT_WORD;
4316
4317 if (i386_record_modrm (&ir))
4318 return -1;
4319
4320 if (ir.mod != 3)
4321 {
cf648174
HZ
4322 if (opcode == 0xc6 || opcode == 0xc7)
4323 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4324 if (i386_record_lea_modrm (&ir))
4325 return -1;
4326 }
4327 else
4328 {
cf648174
HZ
4329 if (opcode == 0xc6 || opcode == 0xc7)
4330 ir.rm |= ir.rex_b;
4331 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4332 ir.rm &= 0x3;
cf648174 4333 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4334 }
7ad10968 4335 break;
cf648174 4336
a38bba38 4337 case 0x8a: /* mov */
7ad10968
HZ
4338 case 0x8b:
4339 if ((opcode & 1) == 0)
4340 ir.ot = OT_BYTE;
4341 else
4342 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4343 if (i386_record_modrm (&ir))
4344 return -1;
cf648174
HZ
4345 ir.reg |= rex_r;
4346 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4347 ir.reg &= 0x3;
cf648174
HZ
4348 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4349 break;
7ad10968 4350
a38bba38 4351 case 0x8c: /* mov seg */
cf648174 4352 if (i386_record_modrm (&ir))
7ad10968 4353 return -1;
cf648174
HZ
4354 if (ir.reg > 5)
4355 {
4356 ir.addr -= 2;
4357 opcode = opcode << 8 | ir.modrm;
4358 goto no_support;
4359 }
4360
4361 if (ir.mod == 3)
4362 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4363 else
4364 {
4365 ir.ot = OT_WORD;
4366 if (i386_record_lea_modrm (&ir))
4367 return -1;
4368 }
7ad10968
HZ
4369 break;
4370
a38bba38 4371 case 0x8e: /* mov seg */
7ad10968
HZ
4372 if (i386_record_modrm (&ir))
4373 return -1;
7ad10968
HZ
4374 switch (ir.reg)
4375 {
4376 case 0:
425b824a 4377 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4378 break;
4379 case 2:
425b824a 4380 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4381 break;
4382 case 3:
425b824a 4383 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4384 break;
4385 case 4:
425b824a 4386 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4387 break;
4388 case 5:
425b824a 4389 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4390 break;
4391 default:
4392 ir.addr -= 2;
4393 opcode = opcode << 8 | ir.modrm;
4394 goto no_support;
4395 break;
4396 }
425b824a 4397 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4398 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4399 break;
4400
a38bba38
MS
4401 case 0x0fb6: /* movzbS */
4402 case 0x0fb7: /* movzwS */
4403 case 0x0fbe: /* movsbS */
4404 case 0x0fbf: /* movswS */
7ad10968
HZ
4405 if (i386_record_modrm (&ir))
4406 return -1;
cf648174 4407 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4408 break;
4409
a38bba38 4410 case 0x8d: /* lea */
7ad10968
HZ
4411 if (i386_record_modrm (&ir))
4412 return -1;
4413 if (ir.mod == 3)
4414 {
4415 ir.addr -= 2;
4416 opcode = opcode << 8 | ir.modrm;
4417 goto no_support;
4418 }
7ad10968 4419 ir.ot = ir.dflag;
cf648174
HZ
4420 ir.reg |= rex_r;
4421 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4422 ir.reg &= 0x3;
cf648174 4423 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4424 break;
4425
a38bba38 4426 case 0xa0: /* mov EAX */
7ad10968 4427 case 0xa1:
a38bba38
MS
4428
4429 case 0xd7: /* xlat */
cf648174 4430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4431 break;
4432
a38bba38 4433 case 0xa2: /* mov EAX */
7ad10968 4434 case 0xa3:
d7877f7e 4435 if (ir.override >= 0)
cf648174 4436 {
bb08c432
HZ
4437 if (record_memory_query)
4438 {
4439 int q;
4440
4441 target_terminal_ours ();
4442 q = yquery (_("\
4443Process record ignores the memory change of instruction at address %s\n\
4444because it can't get the value of the segment register.\n\
4445Do you want to stop the program?"),
4446 paddress (gdbarch, ir.orig_addr));
4447 target_terminal_inferior ();
4448 if (q)
4449 return -1;
4450 }
cf648174
HZ
4451 }
4452 else
4453 {
4454 if ((opcode & 1) == 0)
4455 ir.ot = OT_BYTE;
4456 else
4457 ir.ot = ir.dflag + OT_WORD;
4458 if (ir.aflag == 2)
4459 {
60a1502a 4460 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
4461 {
4462 if (record_debug)
4463 printf_unfiltered (_("Process record: error reading "
4464 "memory at addr 0x%s len = 8.\n"),
4465 paddress (gdbarch, ir.addr));
4466 return -1;
4467 }
4468 ir.addr += 8;
60a1502a 4469 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
4470 }
4471 else if (ir.aflag)
4472 {
60a1502a 4473 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
4474 {
4475 if (record_debug)
4476 printf_unfiltered (_("Process record: error reading "
4477 "memory at addr 0x%s len = 4.\n"),
4478 paddress (gdbarch, ir.addr));
4479 return -1;
4480 }
4481 ir.addr += 4;
60a1502a 4482 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
4483 }
4484 else
4485 {
60a1502a 4486 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
4487 {
4488 if (record_debug)
4489 printf_unfiltered (_("Process record: error reading "
4490 "memory at addr 0x%s len = 2.\n"),
4491 paddress (gdbarch, ir.addr));
4492 return -1;
4493 }
4494 ir.addr += 2;
60a1502a 4495 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 4496 }
648d0c8b 4497 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4498 return -1;
4499 }
7ad10968
HZ
4500 break;
4501
a38bba38 4502 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4503 case 0xb1:
4504 case 0xb2:
4505 case 0xb3:
4506 case 0xb4:
4507 case 0xb5:
4508 case 0xb6:
4509 case 0xb7:
cf648174
HZ
4510 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4511 ? ((opcode & 0x7) | ir.rex_b)
4512 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4513 break;
4514
a38bba38 4515 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4516 case 0xb9:
4517 case 0xba:
4518 case 0xbb:
4519 case 0xbc:
4520 case 0xbd:
4521 case 0xbe:
4522 case 0xbf:
cf648174 4523 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4524 break;
4525
a38bba38 4526 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4527 case 0x92:
4528 case 0x93:
4529 case 0x94:
4530 case 0x95:
4531 case 0x96:
4532 case 0x97:
cf648174
HZ
4533 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4534 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4535 break;
4536
a38bba38 4537 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4538 case 0x87:
4539 if ((opcode & 1) == 0)
4540 ir.ot = OT_BYTE;
4541 else
4542 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4543 if (i386_record_modrm (&ir))
4544 return -1;
7ad10968
HZ
4545 if (ir.mod == 3)
4546 {
86839d38 4547 ir.rm |= ir.rex_b;
cf648174
HZ
4548 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4549 ir.rm &= 0x3;
4550 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4551 }
4552 else
4553 {
4554 if (i386_record_lea_modrm (&ir))
4555 return -1;
4556 }
cf648174
HZ
4557 ir.reg |= rex_r;
4558 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4559 ir.reg &= 0x3;
cf648174 4560 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4561 break;
4562
a38bba38
MS
4563 case 0xc4: /* les Gv */
4564 case 0xc5: /* lds Gv */
cf648174
HZ
4565 if (ir.regmap[X86_RECORD_R8_REGNUM])
4566 {
4567 ir.addr -= 1;
4568 goto no_support;
4569 }
d3f323f3 4570 /* FALLTHROUGH */
a38bba38
MS
4571 case 0x0fb2: /* lss Gv */
4572 case 0x0fb4: /* lfs Gv */
4573 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4574 if (i386_record_modrm (&ir))
4575 return -1;
4576 if (ir.mod == 3)
4577 {
4578 if (opcode > 0xff)
4579 ir.addr -= 3;
4580 else
4581 ir.addr -= 2;
4582 opcode = opcode << 8 | ir.modrm;
4583 goto no_support;
4584 }
7ad10968
HZ
4585 switch (opcode)
4586 {
a38bba38 4587 case 0xc4: /* les Gv */
425b824a 4588 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4589 break;
a38bba38 4590 case 0xc5: /* lds Gv */
425b824a 4591 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4592 break;
a38bba38 4593 case 0x0fb2: /* lss Gv */
425b824a 4594 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4595 break;
a38bba38 4596 case 0x0fb4: /* lfs Gv */
425b824a 4597 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4598 break;
a38bba38 4599 case 0x0fb5: /* lgs Gv */
425b824a 4600 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4601 break;
4602 }
425b824a 4603 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4604 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4605 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4606 break;
4607
a38bba38 4608 case 0xc0: /* shifts */
7ad10968
HZ
4609 case 0xc1:
4610 case 0xd0:
4611 case 0xd1:
4612 case 0xd2:
4613 case 0xd3:
4614 if ((opcode & 1) == 0)
4615 ir.ot = OT_BYTE;
4616 else
4617 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4618 if (i386_record_modrm (&ir))
4619 return -1;
7ad10968
HZ
4620 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4621 {
4622 if (i386_record_lea_modrm (&ir))
4623 return -1;
4624 }
4625 else
4626 {
cf648174
HZ
4627 ir.rm |= ir.rex_b;
4628 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4629 ir.rm &= 0x3;
cf648174 4630 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4631 }
cf648174 4632 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4633 break;
4634
4635 case 0x0fa4:
4636 case 0x0fa5:
4637 case 0x0fac:
4638 case 0x0fad:
4639 if (i386_record_modrm (&ir))
4640 return -1;
4641 if (ir.mod == 3)
4642 {
4643 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4644 return -1;
4645 }
4646 else
4647 {
4648 if (i386_record_lea_modrm (&ir))
4649 return -1;
4650 }
4651 break;
4652
a38bba38 4653 case 0xd8: /* Floats. */
7ad10968
HZ
4654 case 0xd9:
4655 case 0xda:
4656 case 0xdb:
4657 case 0xdc:
4658 case 0xdd:
4659 case 0xde:
4660 case 0xdf:
4661 if (i386_record_modrm (&ir))
4662 return -1;
4663 ir.reg |= ((opcode & 7) << 3);
4664 if (ir.mod != 3)
4665 {
1777feb0 4666 /* Memory. */
955db0c0 4667 uint64_t addr64;
7ad10968 4668
955db0c0 4669 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4670 return -1;
4671 switch (ir.reg)
4672 {
7ad10968 4673 case 0x02:
0289bdd7
MS
4674 case 0x12:
4675 case 0x22:
4676 case 0x32:
4677 /* For fcom, ficom nothing to do. */
4678 break;
7ad10968 4679 case 0x03:
0289bdd7
MS
4680 case 0x13:
4681 case 0x23:
4682 case 0x33:
4683 /* For fcomp, ficomp pop FPU stack, store all. */
4684 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4685 return -1;
4686 break;
4687 case 0x00:
4688 case 0x01:
7ad10968
HZ
4689 case 0x04:
4690 case 0x05:
4691 case 0x06:
4692 case 0x07:
4693 case 0x10:
4694 case 0x11:
7ad10968
HZ
4695 case 0x14:
4696 case 0x15:
4697 case 0x16:
4698 case 0x17:
4699 case 0x20:
4700 case 0x21:
7ad10968
HZ
4701 case 0x24:
4702 case 0x25:
4703 case 0x26:
4704 case 0x27:
4705 case 0x30:
4706 case 0x31:
7ad10968
HZ
4707 case 0x34:
4708 case 0x35:
4709 case 0x36:
4710 case 0x37:
0289bdd7
MS
4711 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4712 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4713 of code, always affects st(0) register. */
4714 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4715 return -1;
7ad10968
HZ
4716 break;
4717 case 0x08:
4718 case 0x0a:
4719 case 0x0b:
4720 case 0x18:
4721 case 0x19:
4722 case 0x1a:
4723 case 0x1b:
0289bdd7 4724 case 0x1d:
7ad10968
HZ
4725 case 0x28:
4726 case 0x29:
4727 case 0x2a:
4728 case 0x2b:
4729 case 0x38:
4730 case 0x39:
4731 case 0x3a:
4732 case 0x3b:
0289bdd7
MS
4733 case 0x3c:
4734 case 0x3d:
7ad10968
HZ
4735 switch (ir.reg & 7)
4736 {
4737 case 0:
0289bdd7
MS
4738 /* Handling fld, fild. */
4739 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4740 return -1;
7ad10968
HZ
4741 break;
4742 case 1:
4743 switch (ir.reg >> 4)
4744 {
4745 case 0:
955db0c0 4746 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4747 return -1;
4748 break;
4749 case 2:
955db0c0 4750 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4751 return -1;
4752 break;
4753 case 3:
0289bdd7 4754 break;
7ad10968 4755 default:
955db0c0 4756 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4757 return -1;
4758 break;
4759 }
4760 break;
4761 default:
4762 switch (ir.reg >> 4)
4763 {
4764 case 0:
955db0c0 4765 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4766 return -1;
4767 if (3 == (ir.reg & 7))
4768 {
4769 /* For fstp m32fp. */
4770 if (i386_record_floats (gdbarch, &ir,
4771 I386_SAVE_FPU_REGS))
4772 return -1;
4773 }
4774 break;
7ad10968 4775 case 1:
955db0c0 4776 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4777 return -1;
0289bdd7
MS
4778 if ((3 == (ir.reg & 7))
4779 || (5 == (ir.reg & 7))
4780 || (7 == (ir.reg & 7)))
4781 {
4782 /* For fstp insn. */
4783 if (i386_record_floats (gdbarch, &ir,
4784 I386_SAVE_FPU_REGS))
4785 return -1;
4786 }
7ad10968
HZ
4787 break;
4788 case 2:
955db0c0 4789 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4790 return -1;
0289bdd7
MS
4791 if (3 == (ir.reg & 7))
4792 {
4793 /* For fstp m64fp. */
4794 if (i386_record_floats (gdbarch, &ir,
4795 I386_SAVE_FPU_REGS))
4796 return -1;
4797 }
7ad10968
HZ
4798 break;
4799 case 3:
0289bdd7
MS
4800 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4801 {
4802 /* For fistp, fbld, fild, fbstp. */
4803 if (i386_record_floats (gdbarch, &ir,
4804 I386_SAVE_FPU_REGS))
4805 return -1;
4806 }
4807 /* Fall through */
7ad10968 4808 default:
955db0c0 4809 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4810 return -1;
4811 break;
4812 }
4813 break;
4814 }
4815 break;
4816 case 0x0c:
0289bdd7
MS
4817 /* Insn fldenv. */
4818 if (i386_record_floats (gdbarch, &ir,
4819 I386_SAVE_FPU_ENV_REG_STACK))
4820 return -1;
4821 break;
7ad10968 4822 case 0x0d:
0289bdd7
MS
4823 /* Insn fldcw. */
4824 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4825 return -1;
4826 break;
7ad10968 4827 case 0x2c:
0289bdd7
MS
4828 /* Insn frstor. */
4829 if (i386_record_floats (gdbarch, &ir,
4830 I386_SAVE_FPU_ENV_REG_STACK))
4831 return -1;
7ad10968
HZ
4832 break;
4833 case 0x0e:
4834 if (ir.dflag)
4835 {
955db0c0 4836 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4837 return -1;
4838 }
4839 else
4840 {
955db0c0 4841 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4842 return -1;
4843 }
4844 break;
4845 case 0x0f:
4846 case 0x2f:
955db0c0 4847 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4848 return -1;
0289bdd7
MS
4849 /* Insn fstp, fbstp. */
4850 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4851 return -1;
7ad10968
HZ
4852 break;
4853 case 0x1f:
4854 case 0x3e:
955db0c0 4855 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4856 return -1;
4857 break;
4858 case 0x2e:
4859 if (ir.dflag)
4860 {
955db0c0 4861 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4862 return -1;
955db0c0 4863 addr64 += 28;
7ad10968
HZ
4864 }
4865 else
4866 {
955db0c0 4867 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4868 return -1;
955db0c0 4869 addr64 += 14;
7ad10968 4870 }
955db0c0 4871 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4872 return -1;
0289bdd7
MS
4873 /* Insn fsave. */
4874 if (i386_record_floats (gdbarch, &ir,
4875 I386_SAVE_FPU_ENV_REG_STACK))
4876 return -1;
7ad10968
HZ
4877 break;
4878 case 0x3f:
955db0c0 4879 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4880 return -1;
0289bdd7
MS
4881 /* Insn fistp. */
4882 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4883 return -1;
7ad10968
HZ
4884 break;
4885 default:
4886 ir.addr -= 2;
4887 opcode = opcode << 8 | ir.modrm;
4888 goto no_support;
4889 break;
4890 }
4891 }
0289bdd7
MS
4892 /* Opcode is an extension of modR/M byte. */
4893 else
4894 {
4895 switch (opcode)
4896 {
4897 case 0xd8:
4898 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4899 return -1;
4900 break;
4901 case 0xd9:
4902 if (0x0c == (ir.modrm >> 4))
4903 {
4904 if ((ir.modrm & 0x0f) <= 7)
4905 {
4906 if (i386_record_floats (gdbarch, &ir,
4907 I386_SAVE_FPU_REGS))
4908 return -1;
4909 }
4910 else
4911 {
4912 if (i386_record_floats (gdbarch, &ir,
4913 I387_ST0_REGNUM (tdep)))
4914 return -1;
4915 /* If only st(0) is changing, then we have already
4916 recorded. */
4917 if ((ir.modrm & 0x0f) - 0x08)
4918 {
4919 if (i386_record_floats (gdbarch, &ir,
4920 I387_ST0_REGNUM (tdep) +
4921 ((ir.modrm & 0x0f) - 0x08)))
4922 return -1;
4923 }
4924 }
4925 }
4926 else
4927 {
4928 switch (ir.modrm)
4929 {
4930 case 0xe0:
4931 case 0xe1:
4932 case 0xf0:
4933 case 0xf5:
4934 case 0xf8:
4935 case 0xfa:
4936 case 0xfc:
4937 case 0xfe:
4938 case 0xff:
4939 if (i386_record_floats (gdbarch, &ir,
4940 I387_ST0_REGNUM (tdep)))
4941 return -1;
4942 break;
4943 case 0xf1:
4944 case 0xf2:
4945 case 0xf3:
4946 case 0xf4:
4947 case 0xf6:
4948 case 0xf7:
4949 case 0xe8:
4950 case 0xe9:
4951 case 0xea:
4952 case 0xeb:
4953 case 0xec:
4954 case 0xed:
4955 case 0xee:
4956 case 0xf9:
4957 case 0xfb:
4958 if (i386_record_floats (gdbarch, &ir,
4959 I386_SAVE_FPU_REGS))
4960 return -1;
4961 break;
4962 case 0xfd:
4963 if (i386_record_floats (gdbarch, &ir,
4964 I387_ST0_REGNUM (tdep)))
4965 return -1;
4966 if (i386_record_floats (gdbarch, &ir,
4967 I387_ST0_REGNUM (tdep) + 1))
4968 return -1;
4969 break;
4970 }
4971 }
4972 break;
4973 case 0xda:
4974 if (0xe9 == ir.modrm)
4975 {
4976 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4977 return -1;
4978 }
4979 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4980 {
4981 if (i386_record_floats (gdbarch, &ir,
4982 I387_ST0_REGNUM (tdep)))
4983 return -1;
4984 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4985 {
4986 if (i386_record_floats (gdbarch, &ir,
4987 I387_ST0_REGNUM (tdep) +
4988 (ir.modrm & 0x0f)))
4989 return -1;
4990 }
4991 else if ((ir.modrm & 0x0f) - 0x08)
4992 {
4993 if (i386_record_floats (gdbarch, &ir,
4994 I387_ST0_REGNUM (tdep) +
4995 ((ir.modrm & 0x0f) - 0x08)))
4996 return -1;
4997 }
4998 }
4999 break;
5000 case 0xdb:
5001 if (0xe3 == ir.modrm)
5002 {
5003 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5004 return -1;
5005 }
5006 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5007 {
5008 if (i386_record_floats (gdbarch, &ir,
5009 I387_ST0_REGNUM (tdep)))
5010 return -1;
5011 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5012 {
5013 if (i386_record_floats (gdbarch, &ir,
5014 I387_ST0_REGNUM (tdep) +
5015 (ir.modrm & 0x0f)))
5016 return -1;
5017 }
5018 else if ((ir.modrm & 0x0f) - 0x08)
5019 {
5020 if (i386_record_floats (gdbarch, &ir,
5021 I387_ST0_REGNUM (tdep) +
5022 ((ir.modrm & 0x0f) - 0x08)))
5023 return -1;
5024 }
5025 }
5026 break;
5027 case 0xdc:
5028 if ((0x0c == ir.modrm >> 4)
5029 || (0x0d == ir.modrm >> 4)
5030 || (0x0f == ir.modrm >> 4))
5031 {
5032 if ((ir.modrm & 0x0f) <= 7)
5033 {
5034 if (i386_record_floats (gdbarch, &ir,
5035 I387_ST0_REGNUM (tdep) +
5036 (ir.modrm & 0x0f)))
5037 return -1;
5038 }
5039 else
5040 {
5041 if (i386_record_floats (gdbarch, &ir,
5042 I387_ST0_REGNUM (tdep) +
5043 ((ir.modrm & 0x0f) - 0x08)))
5044 return -1;
5045 }
5046 }
5047 break;
5048 case 0xdd:
5049 if (0x0c == ir.modrm >> 4)
5050 {
5051 if (i386_record_floats (gdbarch, &ir,
5052 I387_FTAG_REGNUM (tdep)))
5053 return -1;
5054 }
5055 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5056 {
5057 if ((ir.modrm & 0x0f) <= 7)
5058 {
5059 if (i386_record_floats (gdbarch, &ir,
5060 I387_ST0_REGNUM (tdep) +
5061 (ir.modrm & 0x0f)))
5062 return -1;
5063 }
5064 else
5065 {
5066 if (i386_record_floats (gdbarch, &ir,
5067 I386_SAVE_FPU_REGS))
5068 return -1;
5069 }
5070 }
5071 break;
5072 case 0xde:
5073 if ((0x0c == ir.modrm >> 4)
5074 || (0x0e == ir.modrm >> 4)
5075 || (0x0f == ir.modrm >> 4)
5076 || (0xd9 == ir.modrm))
5077 {
5078 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5079 return -1;
5080 }
5081 break;
5082 case 0xdf:
5083 if (0xe0 == ir.modrm)
5084 {
5085 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5086 return -1;
5087 }
5088 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5089 {
5090 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5091 return -1;
5092 }
5093 break;
5094 }
5095 }
7ad10968 5096 break;
7ad10968 5097 /* string ops */
a38bba38 5098 case 0xa4: /* movsS */
7ad10968 5099 case 0xa5:
a38bba38 5100 case 0xaa: /* stosS */
7ad10968 5101 case 0xab:
a38bba38 5102 case 0x6c: /* insS */
7ad10968 5103 case 0x6d:
cf648174 5104 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5105 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5106 &addr);
5107 if (addr)
cf648174 5108 {
77d7dc92
HZ
5109 ULONGEST es, ds;
5110
5111 if ((opcode & 1) == 0)
5112 ir.ot = OT_BYTE;
5113 else
5114 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5115 regcache_raw_read_unsigned (ir.regcache,
5116 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5117 &addr);
77d7dc92 5118
d7877f7e
HZ
5119 regcache_raw_read_unsigned (ir.regcache,
5120 ir.regmap[X86_RECORD_ES_REGNUM],
5121 &es);
5122 regcache_raw_read_unsigned (ir.regcache,
5123 ir.regmap[X86_RECORD_DS_REGNUM],
5124 &ds);
5125 if (ir.aflag && (es != ds))
77d7dc92
HZ
5126 {
5127 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5128 if (record_memory_query)
5129 {
5130 int q;
5131
5132 target_terminal_ours ();
5133 q = yquery (_("\
5134Process record ignores the memory change of instruction at address %s\n\
5135because it can't get the value of the segment register.\n\
5136Do you want to stop the program?"),
5137 paddress (gdbarch, ir.orig_addr));
5138 target_terminal_inferior ();
5139 if (q)
5140 return -1;
5141 }
df61f520
HZ
5142 }
5143 else
5144 {
648d0c8b 5145 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5146 return -1;
77d7dc92
HZ
5147 }
5148
5149 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5150 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5151 if (opcode == 0xa4 || opcode == 0xa5)
5152 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5154 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5155 }
cf648174 5156 break;
7ad10968 5157
a38bba38 5158 case 0xa6: /* cmpsS */
cf648174
HZ
5159 case 0xa7:
5160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5162 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5164 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5165 break;
5166
a38bba38 5167 case 0xac: /* lodsS */
7ad10968 5168 case 0xad:
cf648174
HZ
5169 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5170 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5171 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5172 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5174 break;
5175
a38bba38 5176 case 0xae: /* scasS */
7ad10968 5177 case 0xaf:
cf648174 5178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5179 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5180 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5181 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5182 break;
5183
a38bba38 5184 case 0x6e: /* outsS */
cf648174
HZ
5185 case 0x6f:
5186 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5187 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5188 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5189 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5190 break;
5191
a38bba38 5192 case 0xe4: /* port I/O */
7ad10968
HZ
5193 case 0xe5:
5194 case 0xec:
5195 case 0xed:
cf648174
HZ
5196 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5197 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5198 break;
5199
5200 case 0xe6:
5201 case 0xe7:
5202 case 0xee:
5203 case 0xef:
5204 break;
5205
5206 /* control */
a38bba38
MS
5207 case 0xc2: /* ret im */
5208 case 0xc3: /* ret */
cf648174
HZ
5209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5211 break;
5212
a38bba38
MS
5213 case 0xca: /* lret im */
5214 case 0xcb: /* lret */
5215 case 0xcf: /* iret */
cf648174
HZ
5216 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5217 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5218 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5219 break;
5220
a38bba38 5221 case 0xe8: /* call im */
cf648174
HZ
5222 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5223 ir.dflag = 2;
5224 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5225 return -1;
7ad10968
HZ
5226 break;
5227
a38bba38 5228 case 0x9a: /* lcall im */
cf648174
HZ
5229 if (ir.regmap[X86_RECORD_R8_REGNUM])
5230 {
5231 ir.addr -= 1;
5232 goto no_support;
5233 }
5234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5235 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5236 return -1;
7ad10968
HZ
5237 break;
5238
a38bba38
MS
5239 case 0xe9: /* jmp im */
5240 case 0xea: /* ljmp im */
5241 case 0xeb: /* jmp Jb */
5242 case 0x70: /* jcc Jb */
7ad10968
HZ
5243 case 0x71:
5244 case 0x72:
5245 case 0x73:
5246 case 0x74:
5247 case 0x75:
5248 case 0x76:
5249 case 0x77:
5250 case 0x78:
5251 case 0x79:
5252 case 0x7a:
5253 case 0x7b:
5254 case 0x7c:
5255 case 0x7d:
5256 case 0x7e:
5257 case 0x7f:
a38bba38 5258 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5259 case 0x0f81:
5260 case 0x0f82:
5261 case 0x0f83:
5262 case 0x0f84:
5263 case 0x0f85:
5264 case 0x0f86:
5265 case 0x0f87:
5266 case 0x0f88:
5267 case 0x0f89:
5268 case 0x0f8a:
5269 case 0x0f8b:
5270 case 0x0f8c:
5271 case 0x0f8d:
5272 case 0x0f8e:
5273 case 0x0f8f:
5274 break;
5275
a38bba38 5276 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5277 case 0x0f91:
5278 case 0x0f92:
5279 case 0x0f93:
5280 case 0x0f94:
5281 case 0x0f95:
5282 case 0x0f96:
5283 case 0x0f97:
5284 case 0x0f98:
5285 case 0x0f99:
5286 case 0x0f9a:
5287 case 0x0f9b:
5288 case 0x0f9c:
5289 case 0x0f9d:
5290 case 0x0f9e:
5291 case 0x0f9f:
cf648174 5292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5293 ir.ot = OT_BYTE;
5294 if (i386_record_modrm (&ir))
5295 return -1;
5296 if (ir.mod == 3)
cf648174
HZ
5297 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5298 : (ir.rm & 0x3));
7ad10968
HZ
5299 else
5300 {
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 break;
5305
a38bba38 5306 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5307 case 0x0f41:
5308 case 0x0f42:
5309 case 0x0f43:
5310 case 0x0f44:
5311 case 0x0f45:
5312 case 0x0f46:
5313 case 0x0f47:
5314 case 0x0f48:
5315 case 0x0f49:
5316 case 0x0f4a:
5317 case 0x0f4b:
5318 case 0x0f4c:
5319 case 0x0f4d:
5320 case 0x0f4e:
5321 case 0x0f4f:
5322 if (i386_record_modrm (&ir))
5323 return -1;
cf648174 5324 ir.reg |= rex_r;
7ad10968
HZ
5325 if (ir.dflag == OT_BYTE)
5326 ir.reg &= 0x3;
cf648174 5327 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5328 break;
5329
5330 /* flags */
a38bba38 5331 case 0x9c: /* pushf */
cf648174
HZ
5332 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5333 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5334 ir.dflag = 2;
5335 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5336 return -1;
7ad10968
HZ
5337 break;
5338
a38bba38 5339 case 0x9d: /* popf */
cf648174
HZ
5340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5342 break;
5343
a38bba38 5344 case 0x9e: /* sahf */
cf648174
HZ
5345 if (ir.regmap[X86_RECORD_R8_REGNUM])
5346 {
5347 ir.addr -= 1;
5348 goto no_support;
5349 }
d3f323f3 5350 /* FALLTHROUGH */
a38bba38
MS
5351 case 0xf5: /* cmc */
5352 case 0xf8: /* clc */
5353 case 0xf9: /* stc */
5354 case 0xfc: /* cld */
5355 case 0xfd: /* std */
cf648174 5356 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5357 break;
5358
a38bba38 5359 case 0x9f: /* lahf */
cf648174
HZ
5360 if (ir.regmap[X86_RECORD_R8_REGNUM])
5361 {
5362 ir.addr -= 1;
5363 goto no_support;
5364 }
5365 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5366 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5367 break;
5368
5369 /* bit operations */
a38bba38 5370 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (i386_record_modrm (&ir))
5373 return -1;
5374 if (ir.reg < 4)
5375 {
cf648174 5376 ir.addr -= 2;
7ad10968
HZ
5377 opcode = opcode << 8 | ir.modrm;
5378 goto no_support;
5379 }
cf648174 5380 if (ir.reg != 4)
7ad10968 5381 {
cf648174
HZ
5382 if (ir.mod == 3)
5383 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5384 else
5385 {
cf648174 5386 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5387 return -1;
5388 }
5389 }
cf648174 5390 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5391 break;
5392
a38bba38 5393 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396
a38bba38
MS
5397 case 0x0fab: /* bts */
5398 case 0x0fb3: /* btr */
5399 case 0x0fbb: /* btc */
cf648174
HZ
5400 ir.ot = ir.dflag + OT_WORD;
5401 if (i386_record_modrm (&ir))
5402 return -1;
5403 if (ir.mod == 3)
5404 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5405 else
5406 {
955db0c0
MS
5407 uint64_t addr64;
5408 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5409 return -1;
5410 regcache_raw_read_unsigned (ir.regcache,
5411 ir.regmap[ir.reg | rex_r],
648d0c8b 5412 &addr);
cf648174
HZ
5413 switch (ir.dflag)
5414 {
5415 case 0:
648d0c8b 5416 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5417 break;
5418 case 1:
648d0c8b 5419 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5420 break;
5421 case 2:
648d0c8b 5422 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5423 break;
5424 }
955db0c0 5425 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5426 return -1;
5427 if (i386_record_lea_modrm (&ir))
5428 return -1;
5429 }
5430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5431 break;
5432
a38bba38
MS
5433 case 0x0fbc: /* bsf */
5434 case 0x0fbd: /* bsr */
cf648174
HZ
5435 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5436 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5437 break;
5438
5439 /* bcd */
a38bba38
MS
5440 case 0x27: /* daa */
5441 case 0x2f: /* das */
5442 case 0x37: /* aaa */
5443 case 0x3f: /* aas */
5444 case 0xd4: /* aam */
5445 case 0xd5: /* aad */
cf648174
HZ
5446 if (ir.regmap[X86_RECORD_R8_REGNUM])
5447 {
5448 ir.addr -= 1;
5449 goto no_support;
5450 }
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5452 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5453 break;
5454
5455 /* misc */
a38bba38 5456 case 0x90: /* nop */
7ad10968
HZ
5457 if (prefixes & PREFIX_LOCK)
5458 {
5459 ir.addr -= 1;
5460 goto no_support;
5461 }
5462 break;
5463
a38bba38 5464 case 0x9b: /* fwait */
425b824a 5465 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5466 {
5467 if (record_debug)
5468 printf_unfiltered (_("Process record: error reading memory at "
5469 "addr 0x%s len = 1.\n"),
5470 paddress (gdbarch, ir.addr));
5471 return -1;
5472 }
425b824a 5473 opcode = (uint32_t) opcode8;
0289bdd7
MS
5474 ir.addr++;
5475 goto reswitch;
7ad10968
HZ
5476 break;
5477
7ad10968 5478 /* XXX */
a38bba38 5479 case 0xcc: /* int3 */
a3c4230a 5480 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
5481 "int3.\n"));
5482 ir.addr -= 1;
5483 goto no_support;
5484 break;
5485
7ad10968 5486 /* XXX */
a38bba38 5487 case 0xcd: /* int */
7ad10968
HZ
5488 {
5489 int ret;
425b824a
MS
5490 uint8_t interrupt;
5491 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5492 {
5493 if (record_debug)
5494 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5495 "at addr %s len = 1.\n"),
5496 paddress (gdbarch, ir.addr));
7ad10968
HZ
5497 return -1;
5498 }
5499 ir.addr++;
425b824a 5500 if (interrupt != 0x80
a3c4230a 5501 || tdep->i386_intx80_record == NULL)
7ad10968 5502 {
a3c4230a 5503 printf_unfiltered (_("Process record does not support "
7ad10968 5504 "instruction int 0x%02x.\n"),
425b824a 5505 interrupt);
7ad10968
HZ
5506 ir.addr -= 2;
5507 goto no_support;
5508 }
a3c4230a 5509 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
5510 if (ret)
5511 return ret;
5512 }
5513 break;
5514
7ad10968 5515 /* XXX */
a38bba38 5516 case 0xce: /* into */
a3c4230a 5517 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5518 "instruction into.\n"));
5519 ir.addr -= 1;
5520 goto no_support;
5521 break;
5522
a38bba38
MS
5523 case 0xfa: /* cli */
5524 case 0xfb: /* sti */
7ad10968
HZ
5525 break;
5526
a38bba38 5527 case 0x62: /* bound */
a3c4230a 5528 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5529 "instruction bound.\n"));
5530 ir.addr -= 1;
5531 goto no_support;
5532 break;
5533
a38bba38 5534 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5535 case 0x0fc9:
5536 case 0x0fca:
5537 case 0x0fcb:
5538 case 0x0fcc:
5539 case 0x0fcd:
5540 case 0x0fce:
5541 case 0x0fcf:
cf648174 5542 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5543 break;
5544
a38bba38 5545 case 0xd6: /* salc */
cf648174
HZ
5546 if (ir.regmap[X86_RECORD_R8_REGNUM])
5547 {
5548 ir.addr -= 1;
5549 goto no_support;
5550 }
5551 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5552 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5553 break;
5554
a38bba38
MS
5555 case 0xe0: /* loopnz */
5556 case 0xe1: /* loopz */
5557 case 0xe2: /* loop */
5558 case 0xe3: /* jecxz */
cf648174
HZ
5559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5561 break;
5562
a38bba38 5563 case 0x0f30: /* wrmsr */
a3c4230a 5564 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5565 "instruction wrmsr.\n"));
5566 ir.addr -= 2;
5567 goto no_support;
5568 break;
5569
a38bba38 5570 case 0x0f32: /* rdmsr */
a3c4230a 5571 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5572 "instruction rdmsr.\n"));
5573 ir.addr -= 2;
5574 goto no_support;
5575 break;
5576
a38bba38 5577 case 0x0f31: /* rdtsc */
f8c4f480
HZ
5578 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5580 break;
5581
a38bba38 5582 case 0x0f34: /* sysenter */
7ad10968
HZ
5583 {
5584 int ret;
cf648174
HZ
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5586 {
5587 ir.addr -= 2;
5588 goto no_support;
5589 }
a3c4230a 5590 if (tdep->i386_sysenter_record == NULL)
7ad10968 5591 {
a3c4230a 5592 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5593 "instruction sysenter.\n"));
5594 ir.addr -= 2;
5595 goto no_support;
5596 }
a3c4230a 5597 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
5598 if (ret)
5599 return ret;
5600 }
5601 break;
5602
a38bba38 5603 case 0x0f35: /* sysexit */
a3c4230a 5604 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5605 "instruction sysexit.\n"));
5606 ir.addr -= 2;
5607 goto no_support;
5608 break;
5609
a38bba38 5610 case 0x0f05: /* syscall */
cf648174
HZ
5611 {
5612 int ret;
a3c4230a 5613 if (tdep->i386_syscall_record == NULL)
cf648174 5614 {
a3c4230a 5615 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5616 "instruction syscall.\n"));
5617 ir.addr -= 2;
5618 goto no_support;
5619 }
a3c4230a 5620 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
5621 if (ret)
5622 return ret;
5623 }
5624 break;
5625
a38bba38 5626 case 0x0f07: /* sysret */
a3c4230a 5627 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5628 "instruction sysret.\n"));
5629 ir.addr -= 2;
5630 goto no_support;
5631 break;
5632
a38bba38 5633 case 0x0fa2: /* cpuid */
cf648174
HZ
5634 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5635 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5637 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5638 break;
5639
a38bba38 5640 case 0xf4: /* hlt */
a3c4230a 5641 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5642 "instruction hlt.\n"));
5643 ir.addr -= 1;
5644 goto no_support;
5645 break;
5646
5647 case 0x0f00:
5648 if (i386_record_modrm (&ir))
5649 return -1;
5650 switch (ir.reg)
5651 {
a38bba38
MS
5652 case 0: /* sldt */
5653 case 1: /* str */
7ad10968 5654 if (ir.mod == 3)
cf648174 5655 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5656 else
5657 {
5658 ir.ot = OT_WORD;
5659 if (i386_record_lea_modrm (&ir))
5660 return -1;
5661 }
5662 break;
a38bba38
MS
5663 case 2: /* lldt */
5664 case 3: /* ltr */
7ad10968 5665 break;
a38bba38
MS
5666 case 4: /* verr */
5667 case 5: /* verw */
cf648174 5668 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5669 break;
5670 default:
5671 ir.addr -= 3;
5672 opcode = opcode << 8 | ir.modrm;
5673 goto no_support;
5674 break;
5675 }
5676 break;
5677
5678 case 0x0f01:
5679 if (i386_record_modrm (&ir))
5680 return -1;
5681 switch (ir.reg)
5682 {
a38bba38 5683 case 0: /* sgdt */
7ad10968 5684 {
955db0c0 5685 uint64_t addr64;
7ad10968
HZ
5686
5687 if (ir.mod == 3)
5688 {
5689 ir.addr -= 3;
5690 opcode = opcode << 8 | ir.modrm;
5691 goto no_support;
5692 }
d7877f7e 5693 if (ir.override >= 0)
7ad10968 5694 {
bb08c432
HZ
5695 if (record_memory_query)
5696 {
5697 int q;
5698
5699 target_terminal_ours ();
5700 q = yquery (_("\
5701Process record ignores the memory change of instruction at address %s\n\
5702because it can't get the value of the segment register.\n\
5703Do you want to stop the program?"),
5704 paddress (gdbarch, ir.orig_addr));
5705 target_terminal_inferior ();
5706 if (q)
5707 return -1;
5708 }
7ad10968
HZ
5709 }
5710 else
5711 {
955db0c0 5712 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5713 return -1;
955db0c0 5714 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5715 return -1;
955db0c0 5716 addr64 += 2;
cf648174
HZ
5717 if (ir.regmap[X86_RECORD_R8_REGNUM])
5718 {
955db0c0 5719 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5720 return -1;
5721 }
5722 else
5723 {
955db0c0 5724 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5725 return -1;
5726 }
7ad10968
HZ
5727 }
5728 }
5729 break;
5730 case 1:
5731 if (ir.mod == 3)
5732 {
5733 switch (ir.rm)
5734 {
a38bba38 5735 case 0: /* monitor */
7ad10968 5736 break;
a38bba38 5737 case 1: /* mwait */
cf648174 5738 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5739 break;
5740 default:
5741 ir.addr -= 3;
5742 opcode = opcode << 8 | ir.modrm;
5743 goto no_support;
5744 break;
5745 }
5746 }
5747 else
5748 {
5749 /* sidt */
d7877f7e 5750 if (ir.override >= 0)
7ad10968 5751 {
bb08c432
HZ
5752 if (record_memory_query)
5753 {
5754 int q;
5755
5756 target_terminal_ours ();
5757 q = yquery (_("\
5758Process record ignores the memory change of instruction at address %s\n\
5759because it can't get the value of the segment register.\n\
5760Do you want to stop the program?"),
5761 paddress (gdbarch, ir.orig_addr));
5762 target_terminal_inferior ();
5763 if (q)
5764 return -1;
5765 }
7ad10968
HZ
5766 }
5767 else
5768 {
955db0c0 5769 uint64_t addr64;
7ad10968 5770
955db0c0 5771 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5772 return -1;
955db0c0 5773 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5774 return -1;
955db0c0 5775 addr64 += 2;
cf648174
HZ
5776 if (ir.regmap[X86_RECORD_R8_REGNUM])
5777 {
955db0c0 5778 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5779 return -1;
5780 }
5781 else
5782 {
955db0c0 5783 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5784 return -1;
5785 }
7ad10968
HZ
5786 }
5787 }
5788 break;
a38bba38 5789 case 2: /* lgdt */
3800e645
MS
5790 if (ir.mod == 3)
5791 {
5792 /* xgetbv */
5793 if (ir.rm == 0)
5794 {
5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5796 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5797 break;
5798 }
5799 /* xsetbv */
5800 else if (ir.rm == 1)
5801 break;
5802 }
a38bba38 5803 case 3: /* lidt */
7ad10968
HZ
5804 if (ir.mod == 3)
5805 {
5806 ir.addr -= 3;
5807 opcode = opcode << 8 | ir.modrm;
5808 goto no_support;
5809 }
5810 break;
a38bba38 5811 case 4: /* smsw */
7ad10968
HZ
5812 if (ir.mod == 3)
5813 {
cf648174 5814 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5815 return -1;
5816 }
5817 else
5818 {
5819 ir.ot = OT_WORD;
5820 if (i386_record_lea_modrm (&ir))
5821 return -1;
5822 }
cf648174 5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5824 break;
a38bba38 5825 case 6: /* lmsw */
cf648174
HZ
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5827 break;
a38bba38 5828 case 7: /* invlpg */
cf648174
HZ
5829 if (ir.mod == 3)
5830 {
5831 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5833 else
5834 {
5835 ir.addr -= 3;
5836 opcode = opcode << 8 | ir.modrm;
5837 goto no_support;
5838 }
5839 }
5840 else
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 break;
5843 default:
5844 ir.addr -= 3;
5845 opcode = opcode << 8 | ir.modrm;
5846 goto no_support;
7ad10968
HZ
5847 break;
5848 }
5849 break;
5850
a38bba38
MS
5851 case 0x0f08: /* invd */
5852 case 0x0f09: /* wbinvd */
7ad10968
HZ
5853 break;
5854
a38bba38 5855 case 0x63: /* arpl */
7ad10968
HZ
5856 if (i386_record_modrm (&ir))
5857 return -1;
cf648174
HZ
5858 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5859 {
5860 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5861 ? (ir.reg | rex_r) : ir.rm);
5862 }
7ad10968 5863 else
cf648174
HZ
5864 {
5865 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5866 if (i386_record_lea_modrm (&ir))
5867 return -1;
5868 }
5869 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5871 break;
5872
a38bba38
MS
5873 case 0x0f02: /* lar */
5874 case 0x0f03: /* lsl */
7ad10968
HZ
5875 if (i386_record_modrm (&ir))
5876 return -1;
cf648174
HZ
5877 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5879 break;
5880
5881 case 0x0f18:
cf648174
HZ
5882 if (i386_record_modrm (&ir))
5883 return -1;
5884 if (ir.mod == 3 && ir.reg == 3)
5885 {
5886 ir.addr -= 3;
5887 opcode = opcode << 8 | ir.modrm;
5888 goto no_support;
5889 }
7ad10968
HZ
5890 break;
5891
7ad10968
HZ
5892 case 0x0f19:
5893 case 0x0f1a:
5894 case 0x0f1b:
5895 case 0x0f1c:
5896 case 0x0f1d:
5897 case 0x0f1e:
5898 case 0x0f1f:
a38bba38 5899 /* nop (multi byte) */
7ad10968
HZ
5900 break;
5901
a38bba38
MS
5902 case 0x0f20: /* mov reg, crN */
5903 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
5904 if (i386_record_modrm (&ir))
5905 return -1;
5906 if ((ir.modrm & 0xc0) != 0xc0)
5907 {
cf648174 5908 ir.addr -= 3;
7ad10968
HZ
5909 opcode = opcode << 8 | ir.modrm;
5910 goto no_support;
5911 }
5912 switch (ir.reg)
5913 {
5914 case 0:
5915 case 2:
5916 case 3:
5917 case 4:
5918 case 8:
5919 if (opcode & 2)
cf648174 5920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5921 else
cf648174 5922 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5923 break;
5924 default:
cf648174 5925 ir.addr -= 3;
7ad10968
HZ
5926 opcode = opcode << 8 | ir.modrm;
5927 goto no_support;
5928 break;
5929 }
5930 break;
5931
a38bba38
MS
5932 case 0x0f21: /* mov reg, drN */
5933 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5937 || ir.reg == 5 || ir.reg >= 8)
5938 {
cf648174 5939 ir.addr -= 3;
7ad10968
HZ
5940 opcode = opcode << 8 | ir.modrm;
5941 goto no_support;
5942 }
5943 if (opcode & 2)
cf648174 5944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5945 else
cf648174 5946 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5947 break;
5948
a38bba38 5949 case 0x0f06: /* clts */
cf648174 5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5951 break;
5952
a3c4230a
HZ
5953 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5954
5955 case 0x0f0d: /* 3DNow! prefetch */
5956 break;
5957
5958 case 0x0f0e: /* 3DNow! femms */
5959 case 0x0f77: /* emms */
5960 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5961 goto no_support;
5962 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5963 break;
5964
5965 case 0x0f0f: /* 3DNow! data */
5966 if (i386_record_modrm (&ir))
5967 return -1;
5968 if (target_read_memory (ir.addr, &opcode8, 1))
5969 {
5970 printf_unfiltered (_("Process record: error reading memory at "
5971 "addr %s len = 1.\n"),
5972 paddress (gdbarch, ir.addr));
5973 return -1;
5974 }
5975 ir.addr++;
5976 switch (opcode8)
5977 {
5978 case 0x0c: /* 3DNow! pi2fw */
5979 case 0x0d: /* 3DNow! pi2fd */
5980 case 0x1c: /* 3DNow! pf2iw */
5981 case 0x1d: /* 3DNow! pf2id */
5982 case 0x8a: /* 3DNow! pfnacc */
5983 case 0x8e: /* 3DNow! pfpnacc */
5984 case 0x90: /* 3DNow! pfcmpge */
5985 case 0x94: /* 3DNow! pfmin */
5986 case 0x96: /* 3DNow! pfrcp */
5987 case 0x97: /* 3DNow! pfrsqrt */
5988 case 0x9a: /* 3DNow! pfsub */
5989 case 0x9e: /* 3DNow! pfadd */
5990 case 0xa0: /* 3DNow! pfcmpgt */
5991 case 0xa4: /* 3DNow! pfmax */
5992 case 0xa6: /* 3DNow! pfrcpit1 */
5993 case 0xa7: /* 3DNow! pfrsqit1 */
5994 case 0xaa: /* 3DNow! pfsubr */
5995 case 0xae: /* 3DNow! pfacc */
5996 case 0xb0: /* 3DNow! pfcmpeq */
5997 case 0xb4: /* 3DNow! pfmul */
5998 case 0xb6: /* 3DNow! pfrcpit2 */
5999 case 0xb7: /* 3DNow! pmulhrw */
6000 case 0xbb: /* 3DNow! pswapd */
6001 case 0xbf: /* 3DNow! pavgusb */
6002 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6003 goto no_support_3dnow_data;
6004 record_arch_list_add_reg (ir.regcache, ir.reg);
6005 break;
6006
6007 default:
6008no_support_3dnow_data:
6009 opcode = (opcode << 8) | opcode8;
6010 goto no_support;
6011 break;
6012 }
6013 break;
6014
6015 case 0x0faa: /* rsm */
6016 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6017 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6018 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6019 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6020 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6021 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6022 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6023 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6024 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6025 break;
6026
6027 case 0x0fae:
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 switch(ir.reg)
6031 {
6032 case 0: /* fxsave */
6033 {
6034 uint64_t tmpu64;
6035
6036 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6037 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6038 return -1;
6039 if (record_arch_list_add_mem (tmpu64, 512))
6040 return -1;
6041 }
6042 break;
6043
6044 case 1: /* fxrstor */
6045 {
6046 int i;
6047
6048 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6049
6050 for (i = I387_MM0_REGNUM (tdep);
6051 i386_mmx_regnum_p (gdbarch, i); i++)
6052 record_arch_list_add_reg (ir.regcache, i);
6053
6054 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6055 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6056 record_arch_list_add_reg (ir.regcache, i);
6057
6058 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6059 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6060
6061 for (i = I387_ST0_REGNUM (tdep);
6062 i386_fp_regnum_p (gdbarch, i); i++)
6063 record_arch_list_add_reg (ir.regcache, i);
6064
6065 for (i = I387_FCTRL_REGNUM (tdep);
6066 i386_fpc_regnum_p (gdbarch, i); i++)
6067 record_arch_list_add_reg (ir.regcache, i);
6068 }
6069 break;
6070
6071 case 2: /* ldmxcsr */
6072 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6073 goto no_support;
6074 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6075 break;
6076
6077 case 3: /* stmxcsr */
6078 ir.ot = OT_LONG;
6079 if (i386_record_lea_modrm (&ir))
6080 return -1;
6081 break;
6082
6083 case 5: /* lfence */
6084 case 6: /* mfence */
6085 case 7: /* sfence clflush */
6086 break;
6087
6088 default:
6089 opcode = (opcode << 8) | ir.modrm;
6090 goto no_support;
6091 break;
6092 }
6093 break;
6094
6095 case 0x0fc3: /* movnti */
6096 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6097 if (i386_record_modrm (&ir))
6098 return -1;
6099 if (ir.mod == 3)
6100 goto no_support;
6101 ir.reg |= rex_r;
6102 if (i386_record_lea_modrm (&ir))
6103 return -1;
6104 break;
6105
6106 /* Add prefix to opcode. */
6107 case 0x0f10:
6108 case 0x0f11:
6109 case 0x0f12:
6110 case 0x0f13:
6111 case 0x0f14:
6112 case 0x0f15:
6113 case 0x0f16:
6114 case 0x0f17:
6115 case 0x0f28:
6116 case 0x0f29:
6117 case 0x0f2a:
6118 case 0x0f2b:
6119 case 0x0f2c:
6120 case 0x0f2d:
6121 case 0x0f2e:
6122 case 0x0f2f:
6123 case 0x0f38:
6124 case 0x0f39:
6125 case 0x0f3a:
6126 case 0x0f50:
6127 case 0x0f51:
6128 case 0x0f52:
6129 case 0x0f53:
6130 case 0x0f54:
6131 case 0x0f55:
6132 case 0x0f56:
6133 case 0x0f57:
6134 case 0x0f58:
6135 case 0x0f59:
6136 case 0x0f5a:
6137 case 0x0f5b:
6138 case 0x0f5c:
6139 case 0x0f5d:
6140 case 0x0f5e:
6141 case 0x0f5f:
6142 case 0x0f60:
6143 case 0x0f61:
6144 case 0x0f62:
6145 case 0x0f63:
6146 case 0x0f64:
6147 case 0x0f65:
6148 case 0x0f66:
6149 case 0x0f67:
6150 case 0x0f68:
6151 case 0x0f69:
6152 case 0x0f6a:
6153 case 0x0f6b:
6154 case 0x0f6c:
6155 case 0x0f6d:
6156 case 0x0f6e:
6157 case 0x0f6f:
6158 case 0x0f70:
6159 case 0x0f71:
6160 case 0x0f72:
6161 case 0x0f73:
6162 case 0x0f74:
6163 case 0x0f75:
6164 case 0x0f76:
6165 case 0x0f7c:
6166 case 0x0f7d:
6167 case 0x0f7e:
6168 case 0x0f7f:
6169 case 0x0fb8:
6170 case 0x0fc2:
6171 case 0x0fc4:
6172 case 0x0fc5:
6173 case 0x0fc6:
6174 case 0x0fd0:
6175 case 0x0fd1:
6176 case 0x0fd2:
6177 case 0x0fd3:
6178 case 0x0fd4:
6179 case 0x0fd5:
6180 case 0x0fd6:
6181 case 0x0fd7:
6182 case 0x0fd8:
6183 case 0x0fd9:
6184 case 0x0fda:
6185 case 0x0fdb:
6186 case 0x0fdc:
6187 case 0x0fdd:
6188 case 0x0fde:
6189 case 0x0fdf:
6190 case 0x0fe0:
6191 case 0x0fe1:
6192 case 0x0fe2:
6193 case 0x0fe3:
6194 case 0x0fe4:
6195 case 0x0fe5:
6196 case 0x0fe6:
6197 case 0x0fe7:
6198 case 0x0fe8:
6199 case 0x0fe9:
6200 case 0x0fea:
6201 case 0x0feb:
6202 case 0x0fec:
6203 case 0x0fed:
6204 case 0x0fee:
6205 case 0x0fef:
6206 case 0x0ff0:
6207 case 0x0ff1:
6208 case 0x0ff2:
6209 case 0x0ff3:
6210 case 0x0ff4:
6211 case 0x0ff5:
6212 case 0x0ff6:
6213 case 0x0ff7:
6214 case 0x0ff8:
6215 case 0x0ff9:
6216 case 0x0ffa:
6217 case 0x0ffb:
6218 case 0x0ffc:
6219 case 0x0ffd:
6220 case 0x0ffe:
6221 switch (prefixes)
6222 {
6223 case PREFIX_REPNZ:
6224 opcode |= 0xf20000;
6225 break;
6226 case PREFIX_DATA:
6227 opcode |= 0x660000;
6228 break;
6229 case PREFIX_REPZ:
6230 opcode |= 0xf30000;
6231 break;
6232 }
6233reswitch_prefix_add:
6234 switch (opcode)
6235 {
6236 case 0x0f38:
6237 case 0x660f38:
6238 case 0xf20f38:
6239 case 0x0f3a:
6240 case 0x660f3a:
6241 if (target_read_memory (ir.addr, &opcode8, 1))
6242 {
6243 printf_unfiltered (_("Process record: error reading memory at "
6244 "addr %s len = 1.\n"),
6245 paddress (gdbarch, ir.addr));
6246 return -1;
6247 }
6248 ir.addr++;
6249 opcode = (uint32_t) opcode8 | opcode << 8;
6250 goto reswitch_prefix_add;
6251 break;
6252
6253 case 0x0f10: /* movups */
6254 case 0x660f10: /* movupd */
6255 case 0xf30f10: /* movss */
6256 case 0xf20f10: /* movsd */
6257 case 0x0f12: /* movlps */
6258 case 0x660f12: /* movlpd */
6259 case 0xf30f12: /* movsldup */
6260 case 0xf20f12: /* movddup */
6261 case 0x0f14: /* unpcklps */
6262 case 0x660f14: /* unpcklpd */
6263 case 0x0f15: /* unpckhps */
6264 case 0x660f15: /* unpckhpd */
6265 case 0x0f16: /* movhps */
6266 case 0x660f16: /* movhpd */
6267 case 0xf30f16: /* movshdup */
6268 case 0x0f28: /* movaps */
6269 case 0x660f28: /* movapd */
6270 case 0x0f2a: /* cvtpi2ps */
6271 case 0x660f2a: /* cvtpi2pd */
6272 case 0xf30f2a: /* cvtsi2ss */
6273 case 0xf20f2a: /* cvtsi2sd */
6274 case 0x0f2c: /* cvttps2pi */
6275 case 0x660f2c: /* cvttpd2pi */
6276 case 0x0f2d: /* cvtps2pi */
6277 case 0x660f2d: /* cvtpd2pi */
6278 case 0x660f3800: /* pshufb */
6279 case 0x660f3801: /* phaddw */
6280 case 0x660f3802: /* phaddd */
6281 case 0x660f3803: /* phaddsw */
6282 case 0x660f3804: /* pmaddubsw */
6283 case 0x660f3805: /* phsubw */
6284 case 0x660f3806: /* phsubd */
4f7d61a8 6285 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6286 case 0x660f3808: /* psignb */
6287 case 0x660f3809: /* psignw */
6288 case 0x660f380a: /* psignd */
6289 case 0x660f380b: /* pmulhrsw */
6290 case 0x660f3810: /* pblendvb */
6291 case 0x660f3814: /* blendvps */
6292 case 0x660f3815: /* blendvpd */
6293 case 0x660f381c: /* pabsb */
6294 case 0x660f381d: /* pabsw */
6295 case 0x660f381e: /* pabsd */
6296 case 0x660f3820: /* pmovsxbw */
6297 case 0x660f3821: /* pmovsxbd */
6298 case 0x660f3822: /* pmovsxbq */
6299 case 0x660f3823: /* pmovsxwd */
6300 case 0x660f3824: /* pmovsxwq */
6301 case 0x660f3825: /* pmovsxdq */
6302 case 0x660f3828: /* pmuldq */
6303 case 0x660f3829: /* pcmpeqq */
6304 case 0x660f382a: /* movntdqa */
6305 case 0x660f3a08: /* roundps */
6306 case 0x660f3a09: /* roundpd */
6307 case 0x660f3a0a: /* roundss */
6308 case 0x660f3a0b: /* roundsd */
6309 case 0x660f3a0c: /* blendps */
6310 case 0x660f3a0d: /* blendpd */
6311 case 0x660f3a0e: /* pblendw */
6312 case 0x660f3a0f: /* palignr */
6313 case 0x660f3a20: /* pinsrb */
6314 case 0x660f3a21: /* insertps */
6315 case 0x660f3a22: /* pinsrd pinsrq */
6316 case 0x660f3a40: /* dpps */
6317 case 0x660f3a41: /* dppd */
6318 case 0x660f3a42: /* mpsadbw */
6319 case 0x660f3a60: /* pcmpestrm */
6320 case 0x660f3a61: /* pcmpestri */
6321 case 0x660f3a62: /* pcmpistrm */
6322 case 0x660f3a63: /* pcmpistri */
6323 case 0x0f51: /* sqrtps */
6324 case 0x660f51: /* sqrtpd */
6325 case 0xf20f51: /* sqrtsd */
6326 case 0xf30f51: /* sqrtss */
6327 case 0x0f52: /* rsqrtps */
6328 case 0xf30f52: /* rsqrtss */
6329 case 0x0f53: /* rcpps */
6330 case 0xf30f53: /* rcpss */
6331 case 0x0f54: /* andps */
6332 case 0x660f54: /* andpd */
6333 case 0x0f55: /* andnps */
6334 case 0x660f55: /* andnpd */
6335 case 0x0f56: /* orps */
6336 case 0x660f56: /* orpd */
6337 case 0x0f57: /* xorps */
6338 case 0x660f57: /* xorpd */
6339 case 0x0f58: /* addps */
6340 case 0x660f58: /* addpd */
6341 case 0xf20f58: /* addsd */
6342 case 0xf30f58: /* addss */
6343 case 0x0f59: /* mulps */
6344 case 0x660f59: /* mulpd */
6345 case 0xf20f59: /* mulsd */
6346 case 0xf30f59: /* mulss */
6347 case 0x0f5a: /* cvtps2pd */
6348 case 0x660f5a: /* cvtpd2ps */
6349 case 0xf20f5a: /* cvtsd2ss */
6350 case 0xf30f5a: /* cvtss2sd */
6351 case 0x0f5b: /* cvtdq2ps */
6352 case 0x660f5b: /* cvtps2dq */
6353 case 0xf30f5b: /* cvttps2dq */
6354 case 0x0f5c: /* subps */
6355 case 0x660f5c: /* subpd */
6356 case 0xf20f5c: /* subsd */
6357 case 0xf30f5c: /* subss */
6358 case 0x0f5d: /* minps */
6359 case 0x660f5d: /* minpd */
6360 case 0xf20f5d: /* minsd */
6361 case 0xf30f5d: /* minss */
6362 case 0x0f5e: /* divps */
6363 case 0x660f5e: /* divpd */
6364 case 0xf20f5e: /* divsd */
6365 case 0xf30f5e: /* divss */
6366 case 0x0f5f: /* maxps */
6367 case 0x660f5f: /* maxpd */
6368 case 0xf20f5f: /* maxsd */
6369 case 0xf30f5f: /* maxss */
6370 case 0x660f60: /* punpcklbw */
6371 case 0x660f61: /* punpcklwd */
6372 case 0x660f62: /* punpckldq */
6373 case 0x660f63: /* packsswb */
6374 case 0x660f64: /* pcmpgtb */
6375 case 0x660f65: /* pcmpgtw */
56d2815c 6376 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6377 case 0x660f67: /* packuswb */
6378 case 0x660f68: /* punpckhbw */
6379 case 0x660f69: /* punpckhwd */
6380 case 0x660f6a: /* punpckhdq */
6381 case 0x660f6b: /* packssdw */
6382 case 0x660f6c: /* punpcklqdq */
6383 case 0x660f6d: /* punpckhqdq */
6384 case 0x660f6e: /* movd */
6385 case 0x660f6f: /* movdqa */
6386 case 0xf30f6f: /* movdqu */
6387 case 0x660f70: /* pshufd */
6388 case 0xf20f70: /* pshuflw */
6389 case 0xf30f70: /* pshufhw */
6390 case 0x660f74: /* pcmpeqb */
6391 case 0x660f75: /* pcmpeqw */
56d2815c 6392 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6393 case 0x660f7c: /* haddpd */
6394 case 0xf20f7c: /* haddps */
6395 case 0x660f7d: /* hsubpd */
6396 case 0xf20f7d: /* hsubps */
6397 case 0xf30f7e: /* movq */
6398 case 0x0fc2: /* cmpps */
6399 case 0x660fc2: /* cmppd */
6400 case 0xf20fc2: /* cmpsd */
6401 case 0xf30fc2: /* cmpss */
6402 case 0x660fc4: /* pinsrw */
6403 case 0x0fc6: /* shufps */
6404 case 0x660fc6: /* shufpd */
6405 case 0x660fd0: /* addsubpd */
6406 case 0xf20fd0: /* addsubps */
6407 case 0x660fd1: /* psrlw */
6408 case 0x660fd2: /* psrld */
6409 case 0x660fd3: /* psrlq */
6410 case 0x660fd4: /* paddq */
6411 case 0x660fd5: /* pmullw */
6412 case 0xf30fd6: /* movq2dq */
6413 case 0x660fd8: /* psubusb */
6414 case 0x660fd9: /* psubusw */
6415 case 0x660fda: /* pminub */
6416 case 0x660fdb: /* pand */
6417 case 0x660fdc: /* paddusb */
6418 case 0x660fdd: /* paddusw */
6419 case 0x660fde: /* pmaxub */
6420 case 0x660fdf: /* pandn */
6421 case 0x660fe0: /* pavgb */
6422 case 0x660fe1: /* psraw */
6423 case 0x660fe2: /* psrad */
6424 case 0x660fe3: /* pavgw */
6425 case 0x660fe4: /* pmulhuw */
6426 case 0x660fe5: /* pmulhw */
6427 case 0x660fe6: /* cvttpd2dq */
6428 case 0xf20fe6: /* cvtpd2dq */
6429 case 0xf30fe6: /* cvtdq2pd */
6430 case 0x660fe8: /* psubsb */
6431 case 0x660fe9: /* psubsw */
6432 case 0x660fea: /* pminsw */
6433 case 0x660feb: /* por */
6434 case 0x660fec: /* paddsb */
6435 case 0x660fed: /* paddsw */
6436 case 0x660fee: /* pmaxsw */
6437 case 0x660fef: /* pxor */
4f7d61a8 6438 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
6439 case 0x660ff1: /* psllw */
6440 case 0x660ff2: /* pslld */
6441 case 0x660ff3: /* psllq */
6442 case 0x660ff4: /* pmuludq */
6443 case 0x660ff5: /* pmaddwd */
6444 case 0x660ff6: /* psadbw */
6445 case 0x660ff8: /* psubb */
6446 case 0x660ff9: /* psubw */
56d2815c 6447 case 0x660ffa: /* psubd */
a3c4230a
HZ
6448 case 0x660ffb: /* psubq */
6449 case 0x660ffc: /* paddb */
6450 case 0x660ffd: /* paddw */
56d2815c 6451 case 0x660ffe: /* paddd */
a3c4230a
HZ
6452 if (i386_record_modrm (&ir))
6453 return -1;
6454 ir.reg |= rex_r;
c131fcee 6455 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
6456 goto no_support;
6457 record_arch_list_add_reg (ir.regcache,
6458 I387_XMM0_REGNUM (tdep) + ir.reg);
6459 if ((opcode & 0xfffffffc) == 0x660f3a60)
6460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6461 break;
6462
6463 case 0x0f11: /* movups */
6464 case 0x660f11: /* movupd */
6465 case 0xf30f11: /* movss */
6466 case 0xf20f11: /* movsd */
6467 case 0x0f13: /* movlps */
6468 case 0x660f13: /* movlpd */
6469 case 0x0f17: /* movhps */
6470 case 0x660f17: /* movhpd */
6471 case 0x0f29: /* movaps */
6472 case 0x660f29: /* movapd */
6473 case 0x660f3a14: /* pextrb */
6474 case 0x660f3a15: /* pextrw */
6475 case 0x660f3a16: /* pextrd pextrq */
6476 case 0x660f3a17: /* extractps */
6477 case 0x660f7f: /* movdqa */
6478 case 0xf30f7f: /* movdqu */
6479 if (i386_record_modrm (&ir))
6480 return -1;
6481 if (ir.mod == 3)
6482 {
6483 if (opcode == 0x0f13 || opcode == 0x660f13
6484 || opcode == 0x0f17 || opcode == 0x660f17)
6485 goto no_support;
6486 ir.rm |= ir.rex_b;
1777feb0
MS
6487 if (!i386_xmm_regnum_p (gdbarch,
6488 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6489 goto no_support;
6490 record_arch_list_add_reg (ir.regcache,
6491 I387_XMM0_REGNUM (tdep) + ir.rm);
6492 }
6493 else
6494 {
6495 switch (opcode)
6496 {
6497 case 0x660f3a14:
6498 ir.ot = OT_BYTE;
6499 break;
6500 case 0x660f3a15:
6501 ir.ot = OT_WORD;
6502 break;
6503 case 0x660f3a16:
6504 ir.ot = OT_LONG;
6505 break;
6506 case 0x660f3a17:
6507 ir.ot = OT_QUAD;
6508 break;
6509 default:
6510 ir.ot = OT_DQUAD;
6511 break;
6512 }
6513 if (i386_record_lea_modrm (&ir))
6514 return -1;
6515 }
6516 break;
6517
6518 case 0x0f2b: /* movntps */
6519 case 0x660f2b: /* movntpd */
6520 case 0x0fe7: /* movntq */
6521 case 0x660fe7: /* movntdq */
6522 if (ir.mod == 3)
6523 goto no_support;
6524 if (opcode == 0x0fe7)
6525 ir.ot = OT_QUAD;
6526 else
6527 ir.ot = OT_DQUAD;
6528 if (i386_record_lea_modrm (&ir))
6529 return -1;
6530 break;
6531
6532 case 0xf30f2c: /* cvttss2si */
6533 case 0xf20f2c: /* cvttsd2si */
6534 case 0xf30f2d: /* cvtss2si */
6535 case 0xf20f2d: /* cvtsd2si */
6536 case 0xf20f38f0: /* crc32 */
6537 case 0xf20f38f1: /* crc32 */
6538 case 0x0f50: /* movmskps */
6539 case 0x660f50: /* movmskpd */
6540 case 0x0fc5: /* pextrw */
6541 case 0x660fc5: /* pextrw */
6542 case 0x0fd7: /* pmovmskb */
6543 case 0x660fd7: /* pmovmskb */
6544 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6545 break;
6546
6547 case 0x0f3800: /* pshufb */
6548 case 0x0f3801: /* phaddw */
6549 case 0x0f3802: /* phaddd */
6550 case 0x0f3803: /* phaddsw */
6551 case 0x0f3804: /* pmaddubsw */
6552 case 0x0f3805: /* phsubw */
6553 case 0x0f3806: /* phsubd */
4f7d61a8 6554 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
6555 case 0x0f3808: /* psignb */
6556 case 0x0f3809: /* psignw */
6557 case 0x0f380a: /* psignd */
6558 case 0x0f380b: /* pmulhrsw */
6559 case 0x0f381c: /* pabsb */
6560 case 0x0f381d: /* pabsw */
6561 case 0x0f381e: /* pabsd */
6562 case 0x0f382b: /* packusdw */
6563 case 0x0f3830: /* pmovzxbw */
6564 case 0x0f3831: /* pmovzxbd */
6565 case 0x0f3832: /* pmovzxbq */
6566 case 0x0f3833: /* pmovzxwd */
6567 case 0x0f3834: /* pmovzxwq */
6568 case 0x0f3835: /* pmovzxdq */
6569 case 0x0f3837: /* pcmpgtq */
6570 case 0x0f3838: /* pminsb */
6571 case 0x0f3839: /* pminsd */
6572 case 0x0f383a: /* pminuw */
6573 case 0x0f383b: /* pminud */
6574 case 0x0f383c: /* pmaxsb */
6575 case 0x0f383d: /* pmaxsd */
6576 case 0x0f383e: /* pmaxuw */
6577 case 0x0f383f: /* pmaxud */
6578 case 0x0f3840: /* pmulld */
6579 case 0x0f3841: /* phminposuw */
6580 case 0x0f3a0f: /* palignr */
6581 case 0x0f60: /* punpcklbw */
6582 case 0x0f61: /* punpcklwd */
6583 case 0x0f62: /* punpckldq */
6584 case 0x0f63: /* packsswb */
6585 case 0x0f64: /* pcmpgtb */
6586 case 0x0f65: /* pcmpgtw */
56d2815c 6587 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
6588 case 0x0f67: /* packuswb */
6589 case 0x0f68: /* punpckhbw */
6590 case 0x0f69: /* punpckhwd */
6591 case 0x0f6a: /* punpckhdq */
6592 case 0x0f6b: /* packssdw */
6593 case 0x0f6e: /* movd */
6594 case 0x0f6f: /* movq */
6595 case 0x0f70: /* pshufw */
6596 case 0x0f74: /* pcmpeqb */
6597 case 0x0f75: /* pcmpeqw */
56d2815c 6598 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
6599 case 0x0fc4: /* pinsrw */
6600 case 0x0fd1: /* psrlw */
6601 case 0x0fd2: /* psrld */
6602 case 0x0fd3: /* psrlq */
6603 case 0x0fd4: /* paddq */
6604 case 0x0fd5: /* pmullw */
6605 case 0xf20fd6: /* movdq2q */
6606 case 0x0fd8: /* psubusb */
6607 case 0x0fd9: /* psubusw */
6608 case 0x0fda: /* pminub */
6609 case 0x0fdb: /* pand */
6610 case 0x0fdc: /* paddusb */
6611 case 0x0fdd: /* paddusw */
6612 case 0x0fde: /* pmaxub */
6613 case 0x0fdf: /* pandn */
6614 case 0x0fe0: /* pavgb */
6615 case 0x0fe1: /* psraw */
6616 case 0x0fe2: /* psrad */
6617 case 0x0fe3: /* pavgw */
6618 case 0x0fe4: /* pmulhuw */
6619 case 0x0fe5: /* pmulhw */
6620 case 0x0fe8: /* psubsb */
6621 case 0x0fe9: /* psubsw */
6622 case 0x0fea: /* pminsw */
6623 case 0x0feb: /* por */
6624 case 0x0fec: /* paddsb */
6625 case 0x0fed: /* paddsw */
6626 case 0x0fee: /* pmaxsw */
6627 case 0x0fef: /* pxor */
6628 case 0x0ff1: /* psllw */
6629 case 0x0ff2: /* pslld */
6630 case 0x0ff3: /* psllq */
6631 case 0x0ff4: /* pmuludq */
6632 case 0x0ff5: /* pmaddwd */
6633 case 0x0ff6: /* psadbw */
6634 case 0x0ff8: /* psubb */
6635 case 0x0ff9: /* psubw */
56d2815c 6636 case 0x0ffa: /* psubd */
a3c4230a
HZ
6637 case 0x0ffb: /* psubq */
6638 case 0x0ffc: /* paddb */
6639 case 0x0ffd: /* paddw */
56d2815c 6640 case 0x0ffe: /* paddd */
a3c4230a
HZ
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6644 goto no_support;
6645 record_arch_list_add_reg (ir.regcache,
6646 I387_MM0_REGNUM (tdep) + ir.reg);
6647 break;
6648
6649 case 0x0f71: /* psllw */
6650 case 0x0f72: /* pslld */
6651 case 0x0f73: /* psllq */
6652 if (i386_record_modrm (&ir))
6653 return -1;
6654 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6655 goto no_support;
6656 record_arch_list_add_reg (ir.regcache,
6657 I387_MM0_REGNUM (tdep) + ir.rm);
6658 break;
6659
6660 case 0x660f71: /* psllw */
6661 case 0x660f72: /* pslld */
6662 case 0x660f73: /* psllq */
6663 if (i386_record_modrm (&ir))
6664 return -1;
6665 ir.rm |= ir.rex_b;
c131fcee 6666 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6667 goto no_support;
6668 record_arch_list_add_reg (ir.regcache,
6669 I387_XMM0_REGNUM (tdep) + ir.rm);
6670 break;
6671
6672 case 0x0f7e: /* movd */
6673 case 0x660f7e: /* movd */
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 if (ir.mod == 3)
6677 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6678 else
6679 {
6680 if (ir.dflag == 2)
6681 ir.ot = OT_QUAD;
6682 else
6683 ir.ot = OT_LONG;
6684 if (i386_record_lea_modrm (&ir))
6685 return -1;
6686 }
6687 break;
6688
6689 case 0x0f7f: /* movq */
6690 if (i386_record_modrm (&ir))
6691 return -1;
6692 if (ir.mod == 3)
6693 {
6694 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6695 goto no_support;
6696 record_arch_list_add_reg (ir.regcache,
6697 I387_MM0_REGNUM (tdep) + ir.rm);
6698 }
6699 else
6700 {
6701 ir.ot = OT_QUAD;
6702 if (i386_record_lea_modrm (&ir))
6703 return -1;
6704 }
6705 break;
6706
6707 case 0xf30fb8: /* popcnt */
6708 if (i386_record_modrm (&ir))
6709 return -1;
6710 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6711 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6712 break;
6713
6714 case 0x660fd6: /* movq */
6715 if (i386_record_modrm (&ir))
6716 return -1;
6717 if (ir.mod == 3)
6718 {
6719 ir.rm |= ir.rex_b;
1777feb0
MS
6720 if (!i386_xmm_regnum_p (gdbarch,
6721 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6722 goto no_support;
6723 record_arch_list_add_reg (ir.regcache,
6724 I387_XMM0_REGNUM (tdep) + ir.rm);
6725 }
6726 else
6727 {
6728 ir.ot = OT_QUAD;
6729 if (i386_record_lea_modrm (&ir))
6730 return -1;
6731 }
6732 break;
6733
6734 case 0x660f3817: /* ptest */
6735 case 0x0f2e: /* ucomiss */
6736 case 0x660f2e: /* ucomisd */
6737 case 0x0f2f: /* comiss */
6738 case 0x660f2f: /* comisd */
6739 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6740 break;
6741
6742 case 0x0ff7: /* maskmovq */
6743 regcache_raw_read_unsigned (ir.regcache,
6744 ir.regmap[X86_RECORD_REDI_REGNUM],
6745 &addr);
6746 if (record_arch_list_add_mem (addr, 64))
6747 return -1;
6748 break;
6749
6750 case 0x660ff7: /* maskmovdqu */
6751 regcache_raw_read_unsigned (ir.regcache,
6752 ir.regmap[X86_RECORD_REDI_REGNUM],
6753 &addr);
6754 if (record_arch_list_add_mem (addr, 128))
6755 return -1;
6756 break;
6757
6758 default:
6759 goto no_support;
6760 break;
6761 }
6762 break;
7ad10968
HZ
6763
6764 default:
7ad10968
HZ
6765 goto no_support;
6766 break;
6767 }
6768
cf648174
HZ
6769 /* In the future, maybe still need to deal with need_dasm. */
6770 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
6771 if (record_arch_list_add_end ())
6772 return -1;
6773
6774 return 0;
6775
01fe1b41 6776 no_support:
a3c4230a
HZ
6777 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6778 "at address %s.\n"),
6779 (unsigned int) (opcode),
6780 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
6781 return -1;
6782}
6783
cf648174
HZ
6784static const int i386_record_regmap[] =
6785{
6786 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6787 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6788 0, 0, 0, 0, 0, 0, 0, 0,
6789 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6790 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6791};
6792
7a697b8d
SS
6793/* Check that the given address appears suitable for a fast
6794 tracepoint, which on x86 means that we need an instruction of at
6795 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6796 jump and not have to worry about program jumps to an address in the
6797 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6798 of instruction to replace, and 0 if not, plus an explanatory
6799 string. */
6800
6801static int
6802i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6803 CORE_ADDR addr, int *isize, char **msg)
6804{
6805 int len, jumplen;
6806 static struct ui_file *gdb_null = NULL;
6807
6808 /* This is based on the target agent using a 4-byte relative jump.
6809 Alternate future possibilities include 8-byte offset for x86-84,
6810 or 3-byte jumps if the program has trampoline space close by. */
6811 jumplen = 5;
6812
6813 /* Dummy file descriptor for the disassembler. */
6814 if (!gdb_null)
6815 gdb_null = ui_file_new ();
6816
6817 /* Check for fit. */
6818 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6819 if (len < jumplen)
6820 {
6821 /* Return a bit of target-specific detail to add to the caller's
6822 generic failure message. */
6823 if (msg)
1777feb0
MS
6824 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6825 "need at least %d bytes for the jump"),
7a697b8d
SS
6826 len, jumplen);
6827 return 0;
6828 }
6829
6830 if (isize)
6831 *isize = len;
6832 if (msg)
6833 *msg = NULL;
6834 return 1;
6835}
6836
90884b2b
L
6837static int
6838i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6839 struct tdesc_arch_data *tdesc_data)
6840{
6841 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
6842 const struct tdesc_feature *feature_core;
6843 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
6844 int i, num_regs, valid_p;
6845
6846 if (! tdesc_has_registers (tdesc))
6847 return 0;
6848
6849 /* Get core registers. */
6850 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
6851 if (feature_core == NULL)
6852 return 0;
90884b2b
L
6853
6854 /* Get SSE registers. */
c131fcee 6855 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 6856
c131fcee
L
6857 /* Try AVX registers. */
6858 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6859
90884b2b
L
6860 valid_p = 1;
6861
c131fcee
L
6862 /* The XCR0 bits. */
6863 if (feature_avx)
6864 {
3a13a53b
L
6865 /* AVX register description requires SSE register description. */
6866 if (!feature_sse)
6867 return 0;
6868
c131fcee
L
6869 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6870
6871 /* It may have been set by OSABI initialization function. */
6872 if (tdep->num_ymm_regs == 0)
6873 {
6874 tdep->ymmh_register_names = i386_ymmh_names;
6875 tdep->num_ymm_regs = 8;
6876 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6877 }
6878
6879 for (i = 0; i < tdep->num_ymm_regs; i++)
6880 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6881 tdep->ymm0h_regnum + i,
6882 tdep->ymmh_register_names[i]);
6883 }
3a13a53b 6884 else if (feature_sse)
c131fcee 6885 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
6886 else
6887 {
6888 tdep->xcr0 = I386_XSTATE_X87_MASK;
6889 tdep->num_xmm_regs = 0;
6890 }
c131fcee 6891
90884b2b
L
6892 num_regs = tdep->num_core_regs;
6893 for (i = 0; i < num_regs; i++)
6894 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6895 tdep->register_names[i]);
6896
3a13a53b
L
6897 if (feature_sse)
6898 {
6899 /* Need to include %mxcsr, so add one. */
6900 num_regs += tdep->num_xmm_regs + 1;
6901 for (; i < num_regs; i++)
6902 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6903 tdep->register_names[i]);
6904 }
90884b2b
L
6905
6906 return valid_p;
6907}
6908
7ad10968
HZ
6909\f
6910static struct gdbarch *
6911i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6912{
6913 struct gdbarch_tdep *tdep;
6914 struct gdbarch *gdbarch;
90884b2b
L
6915 struct tdesc_arch_data *tdesc_data;
6916 const struct target_desc *tdesc;
1ba53b71 6917 int mm0_regnum;
c131fcee 6918 int ymm0_regnum;
7ad10968
HZ
6919
6920 /* If there is already a candidate, use it. */
6921 arches = gdbarch_list_lookup_by_info (arches, &info);
6922 if (arches != NULL)
6923 return arches->gdbarch;
6924
6925 /* Allocate space for the new architecture. */
6926 tdep = XCALLOC (1, struct gdbarch_tdep);
6927 gdbarch = gdbarch_alloc (&info, tdep);
6928
6929 /* General-purpose registers. */
6930 tdep->gregset = NULL;
6931 tdep->gregset_reg_offset = NULL;
6932 tdep->gregset_num_regs = I386_NUM_GREGS;
6933 tdep->sizeof_gregset = 0;
6934
6935 /* Floating-point registers. */
6936 tdep->fpregset = NULL;
6937 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6938
c131fcee
L
6939 tdep->xstateregset = NULL;
6940
7ad10968
HZ
6941 /* The default settings include the FPU registers, the MMX registers
6942 and the SSE registers. This can be overridden for a specific ABI
6943 by adjusting the members `st0_regnum', `mm0_regnum' and
6944 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 6945 will show up in the output of "info all-registers". */
7ad10968
HZ
6946
6947 tdep->st0_regnum = I386_ST0_REGNUM;
6948
7ad10968
HZ
6949 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
6950 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6951
6952 tdep->jb_pc_offset = -1;
6953 tdep->struct_return = pcc_struct_return;
6954 tdep->sigtramp_start = 0;
6955 tdep->sigtramp_end = 0;
6956 tdep->sigtramp_p = i386_sigtramp_p;
6957 tdep->sigcontext_addr = NULL;
6958 tdep->sc_reg_offset = NULL;
6959 tdep->sc_pc_offset = -1;
6960 tdep->sc_sp_offset = -1;
6961
c131fcee
L
6962 tdep->xsave_xcr0_offset = -1;
6963
cf648174
HZ
6964 tdep->record_regmap = i386_record_regmap;
6965
7ad10968
HZ
6966 /* The format used for `long double' on almost all i386 targets is
6967 the i387 extended floating-point format. In fact, of all targets
6968 in the GCC 2.95 tree, only OSF/1 does it different, and insists
6969 on having a `long double' that's not `long' at all. */
6970 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6971
6972 /* Although the i387 extended floating-point has only 80 significant
6973 bits, a `long double' actually takes up 96, probably to enforce
6974 alignment. */
6975 set_gdbarch_long_double_bit (gdbarch, 96);
6976
7ad10968
HZ
6977 /* Register numbers of various important registers. */
6978 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6979 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6980 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6981 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6982
6983 /* NOTE: kettenis/20040418: GCC does have two possible register
6984 numbering schemes on the i386: dbx and SVR4. These schemes
6985 differ in how they number %ebp, %esp, %eflags, and the
6986 floating-point registers, and are implemented by the arrays
6987 dbx_register_map[] and svr4_dbx_register_map in
6988 gcc/config/i386.c. GCC also defines a third numbering scheme in
6989 gcc/config/i386.c, which it designates as the "default" register
6990 map used in 64bit mode. This last register numbering scheme is
6991 implemented in dbx64_register_map, and is used for AMD64; see
6992 amd64-tdep.c.
6993
6994 Currently, each GCC i386 target always uses the same register
6995 numbering scheme across all its supported debugging formats
6996 i.e. SDB (COFF), stabs and DWARF 2. This is because
6997 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6998 DBX_REGISTER_NUMBER macro which is defined by each target's
6999 respective config header in a manner independent of the requested
7000 output debugging format.
7001
7002 This does not match the arrangement below, which presumes that
7003 the SDB and stabs numbering schemes differ from the DWARF and
7004 DWARF 2 ones. The reason for this arrangement is that it is
7005 likely to get the numbering scheme for the target's
7006 default/native debug format right. For targets where GCC is the
7007 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7008 targets where the native toolchain uses a different numbering
7009 scheme for a particular debug format (stabs-in-ELF on Solaris)
7010 the defaults below will have to be overridden, like
7011 i386_elf_init_abi() does. */
7012
7013 /* Use the dbx register numbering scheme for stabs and COFF. */
7014 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7015 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7016
7017 /* Use the SVR4 register numbering scheme for DWARF 2. */
7018 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7019
7020 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7021 be in use on any of the supported i386 targets. */
7022
7023 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7024
7025 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7026
7027 /* Call dummy code. */
7028 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7029
7030 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7031 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7032 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7033
7034 set_gdbarch_return_value (gdbarch, i386_return_value);
7035
7036 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7037
7038 /* Stack grows downward. */
7039 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7040
7041 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7042 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7043 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7044
7045 set_gdbarch_frame_args_skip (gdbarch, 8);
7046
7ad10968
HZ
7047 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7048
7049 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7050
7051 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7052
7053 /* Add the i386 register groups. */
7054 i386_add_reggroups (gdbarch);
90884b2b 7055 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7056
143985b7
AF
7057 /* Helper for function argument information. */
7058 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7059
06da04c6
MS
7060 /* Hook the function epilogue frame unwinder. This unwinder is
7061 appended to the list first, so that it supercedes the Dwarf
7062 unwinder in function epilogues (where the Dwarf unwinder
7063 currently fails). */
7064 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7065
7066 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7067 to the list before the prologue-based unwinders, so that Dwarf
7068 CFI info will be used if it is available. */
10458914 7069 dwarf2_append_unwinders (gdbarch);
6405b0a6 7070
acd5c798 7071 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7072
1ba53b71 7073 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
7074 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7075 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7076
7077 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7078 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7079
c131fcee
L
7080 /* Override the normal target description method to make the AVX
7081 upper halves anonymous. */
7082 set_gdbarch_register_name (gdbarch, i386_register_name);
7083
7084 /* Even though the default ABI only includes general-purpose registers,
7085 floating-point registers and the SSE registers, we have to leave a
7086 gap for the upper AVX registers. */
7087 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7088
7089 /* Get the x86 target description from INFO. */
7090 tdesc = info.target_desc;
7091 if (! tdesc_has_registers (tdesc))
7092 tdesc = tdesc_i386;
7093 tdep->tdesc = tdesc;
7094
7095 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7096 tdep->register_names = i386_register_names;
7097
c131fcee
L
7098 /* No upper YMM registers. */
7099 tdep->ymmh_register_names = NULL;
7100 tdep->ymm0h_regnum = -1;
7101
1ba53b71
L
7102 tdep->num_byte_regs = 8;
7103 tdep->num_word_regs = 8;
7104 tdep->num_dword_regs = 0;
7105 tdep->num_mmx_regs = 8;
c131fcee 7106 tdep->num_ymm_regs = 0;
1ba53b71 7107
90884b2b
L
7108 tdesc_data = tdesc_data_alloc ();
7109
dde08ee1
PA
7110 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7111
3ce1502b 7112 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7113 info.tdep_info = (void *) tdesc_data;
4be87837 7114 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7115
c131fcee
L
7116 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7117 {
7118 tdesc_data_cleanup (tdesc_data);
7119 xfree (tdep);
7120 gdbarch_free (gdbarch);
7121 return NULL;
7122 }
7123
1ba53b71
L
7124 /* Wire in pseudo registers. Number of pseudo registers may be
7125 changed. */
7126 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7127 + tdep->num_word_regs
7128 + tdep->num_dword_regs
c131fcee
L
7129 + tdep->num_mmx_regs
7130 + tdep->num_ymm_regs));
1ba53b71 7131
90884b2b
L
7132 /* Target description may be changed. */
7133 tdesc = tdep->tdesc;
7134
90884b2b
L
7135 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7136
7137 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7138 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7139
1ba53b71
L
7140 /* Make %al the first pseudo-register. */
7141 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7142 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7143
c131fcee 7144 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7145 if (tdep->num_dword_regs)
7146 {
1c6272a6 7147 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7148 tdep->eax_regnum = ymm0_regnum;
7149 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7150 }
7151 else
7152 tdep->eax_regnum = -1;
7153
c131fcee
L
7154 mm0_regnum = ymm0_regnum;
7155 if (tdep->num_ymm_regs)
7156 {
1c6272a6 7157 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7158 tdep->ymm0_regnum = ymm0_regnum;
7159 mm0_regnum += tdep->num_ymm_regs;
7160 }
7161 else
7162 tdep->ymm0_regnum = -1;
7163
1ba53b71
L
7164 if (tdep->num_mmx_regs != 0)
7165 {
1c6272a6 7166 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7167 tdep->mm0_regnum = mm0_regnum;
7168 }
7169 else
7170 tdep->mm0_regnum = -1;
7171
06da04c6 7172 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
7173 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7174 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7175
8446b36a
MK
7176 /* If we have a register mapping, enable the generic core file
7177 support, unless it has already been enabled. */
7178 if (tdep->gregset_reg_offset
7179 && !gdbarch_regset_from_core_section_p (gdbarch))
7180 set_gdbarch_regset_from_core_section (gdbarch,
7181 i386_regset_from_core_section);
7182
514f746b
AR
7183 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7184 i386_skip_permanent_breakpoint);
7185
7a697b8d
SS
7186 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7187 i386_fast_tracepoint_valid_at);
7188
a62cc96e
AC
7189 return gdbarch;
7190}
7191
8201327c
MK
7192static enum gdb_osabi
7193i386_coff_osabi_sniffer (bfd *abfd)
7194{
762c5349
MK
7195 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7196 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7197 return GDB_OSABI_GO32;
7198
7199 return GDB_OSABI_UNKNOWN;
7200}
8201327c
MK
7201\f
7202
28e9e0f0
MK
7203/* Provide a prototype to silence -Wmissing-prototypes. */
7204void _initialize_i386_tdep (void);
7205
c906108c 7206void
fba45db2 7207_initialize_i386_tdep (void)
c906108c 7208{
a62cc96e
AC
7209 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7210
fc338970 7211 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7212 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7213 &disassembly_flavor, _("\
7214Set the disassembly flavor."), _("\
7215Show the disassembly flavor."), _("\
7216The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7217 NULL,
7218 NULL, /* FIXME: i18n: */
7219 &setlist, &showlist);
8201327c
MK
7220
7221 /* Add the variable that controls the convention for returning
7222 structs. */
7ab04401
AC
7223 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7224 &struct_convention, _("\
7225Set the convention for returning small structs."), _("\
7226Show the convention for returning small structs."), _("\
7227Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7228is \"default\"."),
7229 NULL,
7230 NULL, /* FIXME: i18n: */
7231 &setlist, &showlist);
8201327c
MK
7232
7233 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7234 i386_coff_osabi_sniffer);
8201327c 7235
05816f70 7236 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7237 i386_svr4_init_abi);
05816f70 7238 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7239 i386_go32_init_abi);
38c968cf 7240
209bd28e 7241 /* Initialize the i386-specific register groups. */
38c968cf 7242 i386_init_reggroups ();
90884b2b
L
7243
7244 /* Initialize the standard target descriptions. */
7245 initialize_tdesc_i386 ();
3a13a53b 7246 initialize_tdesc_i386_mmx ();
c131fcee 7247 initialize_tdesc_i386_avx ();
c8d5aac9
L
7248
7249 /* Tell remote stub that we support XML target description. */
7250 register_remote_support_xml ("i386");
c906108c 7251}
This page took 1.259573 seconds and 4 git commands to generate.