LITTLE_ENDIAN -> BFD_ENDIAN_LITTLE
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
b6ba6518
KB
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
a62cc96e 37#include "i386-tdep.h"
3d261580
MK
38#include "gdb_assert.h"
39
a62cc96e
AC
40#undef XMALLOC
41#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
42
fc633446
MK
43/* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45static char *i386_register_names[] =
46{
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58};
59
1a11ba71 60/* i386_register_offset[i] is the offset into the register file of the
917317f4 61 start of register number i. We initialize this from
1a11ba71
MK
62 i386_register_size. */
63static int i386_register_offset[MAX_NUM_REGS];
917317f4 64
1a11ba71
MK
65/* i386_register_size[i] is the number of bytes of storage in GDB's
66 register array occupied by register i. */
67static int i386_register_size[MAX_NUM_REGS] = {
917317f4
JM
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 4, 4, 4, 4,
71 4, 4, 4, 4,
72 10, 10, 10, 10,
73 10, 10, 10, 10,
74 4, 4, 4, 4,
75 4, 4, 4, 4,
76 16, 16, 16, 16,
77 16, 16, 16, 16,
78 4
79};
80
fc633446
MK
81/* Return the name of register REG. */
82
83char *
84i386_register_name (int reg)
85{
86 if (reg < 0)
87 return NULL;
88 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
89 return NULL;
90
91 return i386_register_names[reg];
92}
93
1a11ba71
MK
94/* Return the offset into the register array of the start of register
95 number REG. */
96int
97i386_register_byte (int reg)
98{
99 return i386_register_offset[reg];
100}
101
102/* Return the number of bytes of storage in GDB's register array
103 occupied by register REG. */
104
105int
106i386_register_raw_size (int reg)
107{
108 return i386_register_size[reg];
109}
110
111/* Return the size in bytes of the virtual type of register REG. */
112
113int
114i386_register_virtual_size (int reg)
115{
116 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg));
117}
118
85540d8c
MK
119/* Convert stabs register number REG to the appropriate register
120 number used by GDB. */
121
122int
123i386_stab_reg_to_regnum (int reg)
124{
125 /* This implements what GCC calls the "default" register map. */
126 if (reg >= 0 && reg <= 7)
127 {
128 /* General registers. */
129 return reg;
130 }
131 else if (reg >= 12 && reg <= 19)
132 {
133 /* Floating-point registers. */
134 return reg - 12 + FP0_REGNUM;
135 }
136 else if (reg >= 21 && reg <= 28)
137 {
138 /* SSE registers. */
139 return reg - 21 + XMM0_REGNUM;
140 }
141 else if (reg >= 29 && reg <= 36)
142 {
143 /* MMX registers. */
144 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
145 as pseudo-registers? */
146 return reg - 29 + FP0_REGNUM;
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151}
152
153/* Convert Dwarf register number REG to the appropriate register
154 number used by GDB. */
155
156int
157i386_dwarf_reg_to_regnum (int reg)
158{
159 /* The DWARF register numbering includes %eip and %eflags, and
160 numbers the floating point registers differently. */
161 if (reg >= 0 && reg <= 9)
162 {
163 /* General registers. */
164 return reg;
165 }
166 else if (reg >= 11 && reg <= 18)
167 {
168 /* Floating-point registers. */
169 return reg - 11 + FP0_REGNUM;
170 }
171 else if (reg >= 21)
172 {
173 /* The SSE and MMX registers have identical numbers as in stabs. */
174 return i386_stab_reg_to_regnum (reg);
175 }
176
177 /* This will hopefully provoke a warning. */
178 return NUM_REGS + NUM_PSEUDO_REGS;
179}
fc338970 180\f
917317f4 181
fc338970
MK
182/* This is the variable that is set with "set disassembly-flavor", and
183 its legitimate values. */
53904c9e
AC
184static const char att_flavor[] = "att";
185static const char intel_flavor[] = "intel";
186static const char *valid_flavors[] =
c5aa993b 187{
c906108c
SS
188 att_flavor,
189 intel_flavor,
190 NULL
191};
53904c9e 192static const char *disassembly_flavor = att_flavor;
c906108c 193
fc338970
MK
194/* Stdio style buffering was used to minimize calls to ptrace, but
195 this buffering did not take into account that the code section
196 being accessed may not be an even number of buffers long (even if
197 the buffer is only sizeof(int) long). In cases where the code
198 section size happened to be a non-integral number of buffers long,
199 attempting to read the last buffer would fail. Simply using
200 target_read_memory and ignoring errors, rather than read_memory, is
201 not the correct solution, since legitimate access errors would then
202 be totally ignored. To properly handle this situation and continue
203 to use buffering would require that this code be able to determine
204 the minimum code section size granularity (not the alignment of the
205 section itself, since the actual failing case that pointed out this
206 problem had a section alignment of 4 but was not a multiple of 4
207 bytes long), on a target by target basis, and then adjust it's
208 buffer size accordingly. This is messy, but potentially feasible.
209 It probably needs the bfd library's help and support. For now, the
210 buffer size is set to 1. (FIXME -fnf) */
211
212#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
213static CORE_ADDR codestream_next_addr;
214static CORE_ADDR codestream_addr;
215static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
216static int codestream_off;
217static int codestream_cnt;
218
219#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
220#define codestream_peek() \
221 (codestream_cnt == 0 ? \
222 codestream_fill(1) : codestream_buf[codestream_off])
223#define codestream_get() \
224 (codestream_cnt-- == 0 ? \
225 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 226
c5aa993b 227static unsigned char
fba45db2 228codestream_fill (int peek_flag)
c906108c
SS
229{
230 codestream_addr = codestream_next_addr;
231 codestream_next_addr += CODESTREAM_BUFSIZ;
232 codestream_off = 0;
233 codestream_cnt = CODESTREAM_BUFSIZ;
234 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 235
c906108c 236 if (peek_flag)
c5aa993b 237 return (codestream_peek ());
c906108c 238 else
c5aa993b 239 return (codestream_get ());
c906108c
SS
240}
241
242static void
fba45db2 243codestream_seek (CORE_ADDR place)
c906108c
SS
244{
245 codestream_next_addr = place / CODESTREAM_BUFSIZ;
246 codestream_next_addr *= CODESTREAM_BUFSIZ;
247 codestream_cnt = 0;
248 codestream_fill (1);
c5aa993b 249 while (codestream_tell () != place)
c906108c
SS
250 codestream_get ();
251}
252
253static void
fba45db2 254codestream_read (unsigned char *buf, int count)
c906108c
SS
255{
256 unsigned char *p;
257 int i;
258 p = buf;
259 for (i = 0; i < count; i++)
260 *p++ = codestream_get ();
261}
fc338970 262\f
c906108c 263
fc338970 264/* If the next instruction is a jump, move to its target. */
c906108c
SS
265
266static void
fba45db2 267i386_follow_jump (void)
c906108c
SS
268{
269 unsigned char buf[4];
270 long delta;
271
272 int data16;
273 CORE_ADDR pos;
274
275 pos = codestream_tell ();
276
277 data16 = 0;
278 if (codestream_peek () == 0x66)
279 {
280 codestream_get ();
281 data16 = 1;
282 }
283
284 switch (codestream_get ())
285 {
286 case 0xe9:
fc338970 287 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
288 if (data16)
289 {
290 codestream_read (buf, 2);
291 delta = extract_signed_integer (buf, 2);
292
fc338970
MK
293 /* Include the size of the jmp instruction (including the
294 0x66 prefix). */
c5aa993b 295 pos += delta + 4;
c906108c
SS
296 }
297 else
298 {
299 codestream_read (buf, 4);
300 delta = extract_signed_integer (buf, 4);
301
302 pos += delta + 5;
303 }
304 break;
305 case 0xeb:
fc338970 306 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
307 codestream_read (buf, 1);
308 /* Sign-extend it. */
309 delta = extract_signed_integer (buf, 1);
310
311 pos += delta + 2;
312 break;
313 }
314 codestream_seek (pos);
315}
316
fc338970
MK
317/* Find & return the amount a local space allocated, and advance the
318 codestream to the first register push (if any).
319
320 If the entry sequence doesn't make sense, return -1, and leave
321 codestream pointer at a random spot. */
c906108c
SS
322
323static long
fba45db2 324i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
325{
326 unsigned char op;
327
328 codestream_seek (pc);
329
330 i386_follow_jump ();
331
332 op = codestream_get ();
333
334 if (op == 0x58) /* popl %eax */
335 {
fc338970
MK
336 /* This function must start with
337
338 popl %eax 0x58
339 xchgl %eax, (%esp) 0x87 0x04 0x24
340 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
341
342 (the System V compiler puts out the second `xchg'
343 instruction, and the assembler doesn't try to optimize it, so
344 the 'sib' form gets generated). This sequence is used to get
345 the address of the return buffer for a function that returns
346 a structure. */
c906108c
SS
347 int pos;
348 unsigned char buf[4];
fc338970
MK
349 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
350 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
351
c906108c
SS
352 pos = codestream_tell ();
353 codestream_read (buf, 4);
354 if (memcmp (buf, proto1, 3) == 0)
355 pos += 3;
356 else if (memcmp (buf, proto2, 4) == 0)
357 pos += 4;
358
359 codestream_seek (pos);
fc338970 360 op = codestream_get (); /* Update next opcode. */
c906108c
SS
361 }
362
363 if (op == 0x68 || op == 0x6a)
364 {
fc338970
MK
365 /* This function may start with
366
367 pushl constant
368 call _probe
369 addl $4, %esp
370
371 followed by
372
373 pushl %ebp
374
375 etc. */
c906108c
SS
376 int pos;
377 unsigned char buf[8];
378
fc338970 379 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
380 or a four-byte operand, depending on the opcode. */
381 pos = codestream_tell ();
382 if (op == 0x68)
383 pos += 4;
384 else
385 pos += 1;
386 codestream_seek (pos);
387
fc338970
MK
388 /* Read the following 8 bytes, which should be "call _probe" (6
389 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
390 codestream_read (buf, sizeof (buf));
391 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
392 pos += sizeof (buf);
393 codestream_seek (pos);
fc338970 394 op = codestream_get (); /* Update next opcode. */
c906108c
SS
395 }
396
397 if (op == 0x55) /* pushl %ebp */
c5aa993b 398 {
fc338970 399 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
400 switch (codestream_get ())
401 {
402 case 0x8b:
403 if (codestream_get () != 0xec)
fc338970 404 return -1;
c906108c
SS
405 break;
406 case 0x89:
407 if (codestream_get () != 0xe5)
fc338970 408 return -1;
c906108c
SS
409 break;
410 default:
fc338970 411 return -1;
c906108c 412 }
fc338970
MK
413 /* Check for stack adjustment
414
415 subl $XXX, %esp
416
417 NOTE: You can't subtract a 16 bit immediate from a 32 bit
418 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
419 op = codestream_peek ();
420 if (op == 0x83)
421 {
fc338970 422 /* `subl' with 8 bit immediate. */
c906108c
SS
423 codestream_get ();
424 if (codestream_get () != 0xec)
fc338970 425 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
426 {
427 codestream_seek (codestream_tell () - 2);
428 return 0;
429 }
fc338970
MK
430 /* `subl' with signed byte immediate (though it wouldn't
431 make sense to be negative). */
c5aa993b 432 return (codestream_get ());
c906108c
SS
433 }
434 else if (op == 0x81)
435 {
436 char buf[4];
fc338970 437 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 438 codestream_get ();
c906108c 439 if (codestream_get () != 0xec)
fc338970 440 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
441 {
442 codestream_seek (codestream_tell () - 2);
443 return 0;
444 }
fc338970 445 /* It is `subl' with a 32 bit immediate. */
c5aa993b 446 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
447 return extract_signed_integer (buf, 4);
448 }
449 else
450 {
fc338970 451 return 0;
c906108c
SS
452 }
453 }
454 else if (op == 0xc8)
455 {
456 char buf[2];
fc338970 457 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 458 codestream_read ((unsigned char *) buf, 2);
fc338970 459 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
460 return extract_unsigned_integer (buf, 2);
461 }
462 return (-1);
463}
464
c833a37e
MK
465/* Return the chain-pointer for FRAME. In the case of the i386, the
466 frame's nominal address is the address of a 4-byte word containing
467 the calling frame's address. */
468
469CORE_ADDR
470i386_frame_chain (struct frame_info *frame)
471{
472 if (frame->signal_handler_caller)
473 return frame->frame;
474
475 if (! inside_entry_file (frame->pc))
476 return read_memory_unsigned_integer (frame->frame, 4);
477
478 return 0;
479}
480
539ffe0b
MK
481/* Determine whether the function invocation represented by FRAME does
482 not have a from on the stack associated with it. If it does not,
483 return non-zero, otherwise return zero. */
484
485int
486i386_frameless_function_invocation (struct frame_info *frame)
487{
488 if (frame->signal_handler_caller)
489 return 0;
490
491 return frameless_look_for_prologue (frame);
492}
493
0d17c81d
MK
494/* Return the saved program counter for FRAME. */
495
496CORE_ADDR
497i386_frame_saved_pc (struct frame_info *frame)
498{
499 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
500 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
501 considered a temporary hack. I plan to come up with something
502 better when we go multi-arch. */
503#if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
504 if (frame->signal_handler_caller)
505 return sigtramp_saved_pc (frame);
506#endif
507
508 return read_memory_unsigned_integer (frame->frame + 4, 4);
509}
510
22797942
AC
511CORE_ADDR
512i386go32_frame_saved_pc (struct frame_info *frame)
513{
514 return read_memory_integer (frame->frame + 4, 4);
515}
516
ed84f6c1
MK
517/* Immediately after a function call, return the saved pc. */
518
519CORE_ADDR
520i386_saved_pc_after_call (struct frame_info *frame)
521{
522 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
523}
524
c906108c
SS
525/* Return number of args passed to a frame.
526 Can return -1, meaning no way to tell. */
527
528int
fba45db2 529i386_frame_num_args (struct frame_info *fi)
c906108c
SS
530{
531#if 1
532 return -1;
533#else
534 /* This loses because not only might the compiler not be popping the
fc338970
MK
535 args right after the function call, it might be popping args from
536 both this call and a previous one, and we would say there are
537 more args than there really are. */
c906108c 538
c5aa993b
JM
539 int retpc;
540 unsigned char op;
c906108c
SS
541 struct frame_info *pfi;
542
fc338970 543 /* On the i386, the instruction following the call could be:
c906108c
SS
544 popl %ecx - one arg
545 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 546 anything else - zero args. */
c906108c
SS
547
548 int frameless;
549
392a587b 550 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 551 if (frameless)
fc338970
MK
552 /* In the absence of a frame pointer, GDB doesn't get correct
553 values for nameless arguments. Return -1, so it doesn't print
554 any nameless arguments. */
c906108c
SS
555 return -1;
556
c5aa993b 557 pfi = get_prev_frame (fi);
c906108c
SS
558 if (pfi == 0)
559 {
fc338970
MK
560 /* NOTE: This can happen if we are looking at the frame for
561 main, because FRAME_CHAIN_VALID won't let us go into start.
562 If we have debugging symbols, that's not really a big deal;
563 it just means it will only show as many arguments to main as
564 are declared. */
c906108c
SS
565 return -1;
566 }
567 else
568 {
c5aa993b
JM
569 retpc = pfi->pc;
570 op = read_memory_integer (retpc, 1);
fc338970 571 if (op == 0x59) /* pop %ecx */
c5aa993b 572 return 1;
c906108c
SS
573 else if (op == 0x83)
574 {
c5aa993b
JM
575 op = read_memory_integer (retpc + 1, 1);
576 if (op == 0xc4)
577 /* addl $<signed imm 8 bits>, %esp */
578 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
579 else
580 return 0;
581 }
fc338970
MK
582 else if (op == 0x81) /* `add' with 32 bit immediate. */
583 {
c5aa993b
JM
584 op = read_memory_integer (retpc + 1, 1);
585 if (op == 0xc4)
586 /* addl $<imm 32>, %esp */
587 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
588 else
589 return 0;
590 }
591 else
592 {
593 return 0;
594 }
595 }
596#endif
597}
598
fc338970
MK
599/* Parse the first few instructions the function to see what registers
600 were stored.
601
602 We handle these cases:
603
604 The startup sequence can be at the start of the function, or the
605 function can start with a branch to startup code at the end.
606
607 %ebp can be set up with either the 'enter' instruction, or "pushl
608 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
609 once used in the System V compiler).
610
611 Local space is allocated just below the saved %ebp by either the
612 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
613 bit unsigned argument for space to allocate, and the 'addl'
614 instruction could have either a signed byte, or 32 bit immediate.
615
616 Next, the registers used by this function are pushed. With the
617 System V compiler they will always be in the order: %edi, %esi,
618 %ebx (and sometimes a harmless bug causes it to also save but not
619 restore %eax); however, the code below is willing to see the pushes
620 in any order, and will handle up to 8 of them.
621
622 If the setup sequence is at the end of the function, then the next
623 instruction will be a branch back to the start. */
c906108c
SS
624
625void
fba45db2 626i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
627{
628 long locals = -1;
629 unsigned char op;
630 CORE_ADDR dummy_bottom;
fc338970 631 CORE_ADDR addr;
c906108c
SS
632 CORE_ADDR pc;
633 int i;
c5aa993b 634
1211c4e4
AC
635 if (fip->saved_regs)
636 return;
637
638 frame_saved_regs_zalloc (fip);
c5aa993b 639
fc338970
MK
640 /* If the frame is the end of a dummy, compute where the beginning
641 would be. */
c906108c 642 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 643
fc338970 644 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 645 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 646 {
fc338970
MK
647 /* All registers were saved by push_call_dummy. */
648 addr = fip->frame;
c5aa993b 649 for (i = 0; i < NUM_REGS; i++)
c906108c 650 {
fc338970
MK
651 addr -= REGISTER_RAW_SIZE (i);
652 fip->saved_regs[i] = addr;
c906108c
SS
653 }
654 return;
655 }
c5aa993b 656
c906108c
SS
657 pc = get_pc_function_start (fip->pc);
658 if (pc != 0)
659 locals = i386_get_frame_setup (pc);
c5aa993b
JM
660
661 if (locals >= 0)
c906108c 662 {
fc338970 663 addr = fip->frame - 4 - locals;
c5aa993b 664 for (i = 0; i < 8; i++)
c906108c
SS
665 {
666 op = codestream_get ();
667 if (op < 0x50 || op > 0x57)
668 break;
669#ifdef I386_REGNO_TO_SYMMETRY
670 /* Dynix uses different internal numbering. Ick. */
fc338970 671 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 672#else
fc338970 673 fip->saved_regs[op - 0x50] = addr;
c906108c 674#endif
fc338970 675 addr -= 4;
c906108c
SS
676 }
677 }
c5aa993b 678
1211c4e4
AC
679 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
680 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
681}
682
fc338970 683/* Return PC of first real instruction. */
c906108c
SS
684
685int
fba45db2 686i386_skip_prologue (int pc)
c906108c
SS
687{
688 unsigned char op;
689 int i;
c5aa993b 690 static unsigned char pic_pat[6] =
fc338970
MK
691 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
c5aa993b 693 };
c906108c 694 CORE_ADDR pos;
c5aa993b 695
c906108c
SS
696 if (i386_get_frame_setup (pc) < 0)
697 return (pc);
c5aa993b 698
fc338970
MK
699 /* Found valid frame setup -- codestream now points to start of push
700 instructions for saving registers. */
c5aa993b 701
fc338970 702 /* Skip over register saves. */
c906108c
SS
703 for (i = 0; i < 8; i++)
704 {
705 op = codestream_peek ();
fc338970 706 /* Break if not `pushl' instrunction. */
c5aa993b 707 if (op < 0x50 || op > 0x57)
c906108c
SS
708 break;
709 codestream_get ();
710 }
711
fc338970
MK
712 /* The native cc on SVR4 in -K PIC mode inserts the following code
713 to get the address of the global offset table (GOT) into register
714 %ebx
715
716 call 0x0
717 popl %ebx
718 movl %ebx,x(%ebp) (optional)
719 addl y,%ebx
720
c906108c
SS
721 This code is with the rest of the prologue (at the end of the
722 function), so we have to skip it to get to the first real
723 instruction at the start of the function. */
c5aa993b 724
c906108c
SS
725 pos = codestream_tell ();
726 for (i = 0; i < 6; i++)
727 {
728 op = codestream_get ();
c5aa993b 729 if (pic_pat[i] != op)
c906108c
SS
730 break;
731 }
732 if (i == 6)
733 {
734 unsigned char buf[4];
735 long delta = 6;
736
737 op = codestream_get ();
c5aa993b 738 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
739 {
740 op = codestream_get ();
fc338970 741 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
742 {
743 delta += 3;
744 codestream_read (buf, 1);
745 }
fc338970 746 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
747 {
748 delta += 6;
749 codestream_read (buf, 4);
750 }
fc338970 751 else /* Unexpected instruction. */
c5aa993b
JM
752 delta = -1;
753 op = codestream_get ();
c906108c 754 }
c5aa993b
JM
755 /* addl y,%ebx */
756 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 757 {
c5aa993b 758 pos += delta + 6;
c906108c
SS
759 }
760 }
761 codestream_seek (pos);
c5aa993b 762
c906108c 763 i386_follow_jump ();
c5aa993b 764
c906108c
SS
765 return (codestream_tell ());
766}
767
768void
fba45db2 769i386_push_dummy_frame (void)
c906108c
SS
770{
771 CORE_ADDR sp = read_register (SP_REGNUM);
772 int regnum;
773 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 774
c906108c
SS
775 sp = push_word (sp, read_register (PC_REGNUM));
776 sp = push_word (sp, read_register (FP_REGNUM));
777 write_register (FP_REGNUM, sp);
778 for (regnum = 0; regnum < NUM_REGS; regnum++)
779 {
780 read_register_gen (regnum, regbuf);
781 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
782 }
783 write_register (SP_REGNUM, sp);
784}
785
a7769679
MK
786/* Insert the (relative) function address into the call sequence
787 stored at DYMMY. */
788
789void
790i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 791 struct value **args, struct type *type, int gcc_p)
a7769679
MK
792{
793 int from, to, delta, loc;
794
795 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
796 from = loc + 5;
797 to = (int)(fun);
798 delta = to - from;
799
800 *((char *)(dummy) + 1) = (delta & 0xff);
801 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
802 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
803 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
804}
805
c906108c 806void
fba45db2 807i386_pop_frame (void)
c906108c
SS
808{
809 struct frame_info *frame = get_current_frame ();
810 CORE_ADDR fp;
811 int regnum;
c906108c 812 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 813
c906108c 814 fp = FRAME_FP (frame);
1211c4e4
AC
815 i386_frame_init_saved_regs (frame);
816
c5aa993b 817 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 818 {
fc338970
MK
819 CORE_ADDR addr;
820 addr = frame->saved_regs[regnum];
821 if (addr)
c906108c 822 {
fc338970 823 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
824 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
825 REGISTER_RAW_SIZE (regnum));
826 }
827 }
828 write_register (FP_REGNUM, read_memory_integer (fp, 4));
829 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
830 write_register (SP_REGNUM, fp + 8);
831 flush_cached_frames ();
832}
fc338970 833\f
c906108c
SS
834
835#ifdef GET_LONGJMP_TARGET
836
fc338970
MK
837/* Figure out where the longjmp will land. Slurp the args out of the
838 stack. We expect the first arg to be a pointer to the jmp_buf
839 structure from which we extract the pc (JB_PC) that we will land
840 at. The pc is copied into PC. This routine returns true on
841 success. */
c906108c
SS
842
843int
fba45db2 844get_longjmp_target (CORE_ADDR *pc)
c906108c
SS
845{
846 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
847 CORE_ADDR sp, jb_addr;
848
849 sp = read_register (SP_REGNUM);
850
fc338970 851 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c906108c
SS
852 buf,
853 TARGET_PTR_BIT / TARGET_CHAR_BIT))
854 return 0;
855
856 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
857
858 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
859 TARGET_PTR_BIT / TARGET_CHAR_BIT))
860 return 0;
861
862 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
863
864 return 1;
865}
866
867#endif /* GET_LONGJMP_TARGET */
fc338970 868\f
c906108c 869
22f8ba57 870CORE_ADDR
ea7c478f 871i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
872 int struct_return, CORE_ADDR struct_addr)
873{
874 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
875
876 if (struct_return)
877 {
878 char buf[4];
879
880 sp -= 4;
881 store_address (buf, 4, struct_addr);
882 write_memory (sp, buf, 4);
883 }
884
885 return sp;
886}
887
888void
889i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
890{
891 /* Do nothing. Everything was already done by i386_push_arguments. */
892}
893
1a309862
MK
894/* These registers are used for returning integers (and on some
895 targets also for returning `struct' and `union' values when their
ef9dff19 896 size and alignment match an integer type). */
1a309862
MK
897#define LOW_RETURN_REGNUM 0 /* %eax */
898#define HIGH_RETURN_REGNUM 2 /* %edx */
899
900/* Extract from an array REGBUF containing the (raw) register state, a
901 function return value of TYPE, and copy that, in virtual format,
902 into VALBUF. */
903
c906108c 904void
1a309862 905i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 906{
1a309862
MK
907 int len = TYPE_LENGTH (type);
908
1e8d0a7b
MK
909 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
910 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
911 {
912 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
913 return;
914 }
1e8d0a7b
MK
915
916 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 917 {
1a309862
MK
918 if (NUM_FREGS == 0)
919 {
920 warning ("Cannot find floating-point return value.");
921 memset (valbuf, 0, len);
ef9dff19 922 return;
1a309862
MK
923 }
924
c6ba6f0d
MK
925 /* Floating-point return values can be found in %st(0). Convert
926 its contents to the desired type. This is probably not
927 exactly how it would happen on the target itself, but it is
928 the best we can do. */
929 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
930 builtin_type_i387_ext, valbuf, type);
c906108c
SS
931 }
932 else
c5aa993b 933 {
d4f3574e
SS
934 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
935 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
936
937 if (len <= low_size)
1a309862 938 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
939 else if (len <= (low_size + high_size))
940 {
941 memcpy (valbuf,
1a309862 942 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 943 memcpy (valbuf + low_size,
1a309862 944 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
945 }
946 else
8e65ff28
AC
947 internal_error (__FILE__, __LINE__,
948 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
949 }
950}
951
ef9dff19
MK
952/* Write into the appropriate registers a function return value stored
953 in VALBUF of type TYPE, given in virtual format. */
954
955void
956i386_store_return_value (struct type *type, char *valbuf)
957{
958 int len = TYPE_LENGTH (type);
959
1e8d0a7b
MK
960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
961 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
962 {
963 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
964 return;
965 }
1e8d0a7b
MK
966
967 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 968 {
ccb945b8 969 unsigned int fstat;
c6ba6f0d 970 char buf[FPU_REG_RAW_SIZE];
ccb945b8 971
ef9dff19
MK
972 if (NUM_FREGS == 0)
973 {
974 warning ("Cannot set floating-point return value.");
975 return;
976 }
977
635b0cc1
MK
978 /* Returning floating-point values is a bit tricky. Apart from
979 storing the return value in %st(0), we have to simulate the
980 state of the FPU at function return point. */
981
c6ba6f0d
MK
982 /* Convert the value found in VALBUF to the extended
983 floating-point format used by the FPU. This is probably
984 not exactly how it would happen on the target itself, but
985 it is the best we can do. */
986 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
987 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
988 FPU_REG_RAW_SIZE);
ccb945b8 989
635b0cc1
MK
990 /* Set the top of the floating-point register stack to 7. The
991 actual value doesn't really matter, but 7 is what a normal
992 function return would end up with if the program started out
993 with a freshly initialized FPU. */
ccb945b8
MK
994 fstat = read_register (FSTAT_REGNUM);
995 fstat |= (7 << 11);
996 write_register (FSTAT_REGNUM, fstat);
997
635b0cc1
MK
998 /* Mark %st(1) through %st(7) as empty. Since we set the top of
999 the floating-point register stack to 7, the appropriate value
1000 for the tag word is 0x3fff. */
ccb945b8 1001 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1002 }
1003 else
1004 {
1005 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1006 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1007
1008 if (len <= low_size)
1009 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1010 else if (len <= (low_size + high_size))
1011 {
1012 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1013 valbuf, low_size);
1014 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1015 valbuf + low_size, len - low_size);
1016 }
1017 else
8e65ff28
AC
1018 internal_error (__FILE__, __LINE__,
1019 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1020 }
1021}
f7af9647
MK
1022
1023/* Extract from an array REGBUF containing the (raw) register state
1024 the address in which a function should return its structure value,
1025 as a CORE_ADDR. */
1026
1027CORE_ADDR
1028i386_extract_struct_value_address (char *regbuf)
1029{
1030 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1031 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1032}
fc338970 1033\f
ef9dff19 1034
d7a0d72c
MK
1035/* Return the GDB type object for the "standard" data type of data in
1036 register REGNUM. Perhaps %esi and %edi should go here, but
1037 potentially they could be used for things other than address. */
1038
1039struct type *
1040i386_register_virtual_type (int regnum)
1041{
1042 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1043 return lookup_pointer_type (builtin_type_void);
1044
1045 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1046 return builtin_type_i387_ext;
d7a0d72c
MK
1047
1048 if (IS_SSE_REGNUM (regnum))
1049 return builtin_type_v4sf;
1050
1051 return builtin_type_int;
1052}
1053
1054/* Return true iff register REGNUM's virtual format is different from
1055 its raw format. Note that this definition assumes that the host
1056 supports IEEE 32-bit floats, since it doesn't say that SSE
1057 registers need conversion. Even if we can't find a counterexample,
1058 this is still sloppy. */
1059
1060int
1061i386_register_convertible (int regnum)
1062{
1063 return IS_FP_REGNUM (regnum);
1064}
1065
ac27f131 1066/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1067 virtual format with type TYPE in buffer TO. */
ac27f131
MK
1068
1069void
1070i386_register_convert_to_virtual (int regnum, struct type *type,
1071 char *from, char *to)
1072{
c6ba6f0d 1073 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1074
1075 /* We only support floating-point values. */
8d7f6b4a
MK
1076 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1077 {
1078 warning ("Cannot convert floating-point register value "
1079 "to non-floating-point type.");
1080 memset (to, 0, TYPE_LENGTH (type));
1081 return;
1082 }
3d261580 1083
c6ba6f0d
MK
1084 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1085 the extended floating-point format used by the FPU. */
1086 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1087}
1088
1089/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1090 raw format for register REGNUM in buffer TO. */
ac27f131
MK
1091
1092void
1093i386_register_convert_to_raw (struct type *type, int regnum,
1094 char *from, char *to)
1095{
c6ba6f0d
MK
1096 gdb_assert (IS_FP_REGNUM (regnum));
1097
1098 /* We only support floating-point values. */
1099 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1100 {
1101 warning ("Cannot convert non-floating-point type "
1102 "to floating-point register value.");
1103 memset (to, 0, TYPE_LENGTH (type));
1104 return;
1105 }
3d261580 1106
c6ba6f0d
MK
1107 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1108 to the extended floating-point format used by the FPU. */
1109 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1110}
ac27f131 1111\f
fc338970 1112
c906108c 1113#ifdef I386V4_SIGTRAMP_SAVED_PC
fc338970
MK
1114/* Get saved user PC for sigtramp from the pushed ucontext on the
1115 stack for all three variants of SVR4 sigtramps. */
c906108c
SS
1116
1117CORE_ADDR
fba45db2 1118i386v4_sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
1119{
1120 CORE_ADDR saved_pc_offset = 4;
1121 char *name = NULL;
1122
1123 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1124 if (name)
1125 {
1126 if (STREQ (name, "_sigreturn"))
1127 saved_pc_offset = 132 + 14 * 4;
1128 else if (STREQ (name, "_sigacthandler"))
1129 saved_pc_offset = 80 + 14 * 4;
1130 else if (STREQ (name, "sigvechandler"))
1131 saved_pc_offset = 120 + 14 * 4;
1132 }
1133
1134 if (frame->next)
1135 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1136 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1137}
1138#endif /* I386V4_SIGTRAMP_SAVED_PC */
fc338970 1139\f
a0b3c4fd 1140
c906108c 1141#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1142/* SunPRO encodes the static variables. This is not related to C++
1143 mangling, it is done for C too. */
c906108c
SS
1144
1145char *
fba45db2 1146sunpro_static_transform_name (char *name)
c906108c
SS
1147{
1148 char *p;
1149 if (IS_STATIC_TRANSFORM_NAME (name))
1150 {
fc338970
MK
1151 /* For file-local statics there will be a period, a bunch of
1152 junk (the contents of which match a string given in the
c5aa993b
JM
1153 N_OPT), a period and the name. For function-local statics
1154 there will be a bunch of junk (which seems to change the
1155 second character from 'A' to 'B'), a period, the name of the
1156 function, and the name. So just skip everything before the
1157 last period. */
c906108c
SS
1158 p = strrchr (name, '.');
1159 if (p != NULL)
1160 name = p + 1;
1161 }
1162 return name;
1163}
1164#endif /* STATIC_TRANSFORM_NAME */
fc338970 1165\f
c906108c 1166
fc338970 1167/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1168
1169CORE_ADDR
fba45db2 1170skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1171{
fc338970 1172 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1173 {
c5aa993b 1174 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1175 struct minimal_symbol *indsym =
fc338970 1176 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1177 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1178
c5aa993b 1179 if (symname)
c906108c 1180 {
c5aa993b
JM
1181 if (strncmp (symname, "__imp_", 6) == 0
1182 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1183 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1184 }
1185 }
fc338970 1186 return 0; /* Not a trampoline. */
c906108c 1187}
fc338970
MK
1188\f
1189
1190/* We have two flavours of disassembly. The machinery on this page
1191 deals with switching between those. */
c906108c
SS
1192
1193static int
fba45db2 1194gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1195{
1196 if (disassembly_flavor == att_flavor)
1197 return print_insn_i386_att (memaddr, info);
1198 else if (disassembly_flavor == intel_flavor)
1199 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1200 /* Never reached -- disassembly_flavour is always either att_flavor
1201 or intel_flavor. */
e1e9e218 1202 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a
SS
1203}
1204
fc338970 1205\f
2acceee2 1206
a62cc96e
AC
1207struct gdbarch *
1208i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1209{
cd3c07fc 1210 struct gdbarch_tdep *tdep;
a62cc96e
AC
1211 struct gdbarch *gdbarch;
1212
1213 /* For the moment there is only one i386 architecture. */
1214 if (arches != NULL)
1215 return arches->gdbarch;
1216
1217 /* Allocate space for the new architecture. */
1218 tdep = XMALLOC (struct gdbarch_tdep);
1219 gdbarch = gdbarch_alloc (&info, tdep);
1220
1221 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1222
1223 /* Call dummy code. */
1224 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1225 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1226 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1227 set_gdbarch_call_dummy_p (gdbarch, 1);
1228 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1229
1230 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1231 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1232
1233 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1234
1235 /* NOTE: tm-i386nw.h and tm-i386v4.h override this. */
1236 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1237
bd1ef5d2
AC
1238 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-linux.h,
1239 tm-ptx.h, tm-symmetry.h currently override this. Sigh. */
1240 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SSE_REGS);
1241
a62cc96e
AC
1242 return gdbarch;
1243}
1244
28e9e0f0
MK
1245/* Provide a prototype to silence -Wmissing-prototypes. */
1246void _initialize_i386_tdep (void);
1247
c906108c 1248void
fba45db2 1249_initialize_i386_tdep (void)
c906108c 1250{
a62cc96e
AC
1251 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1252
917317f4
JM
1253 /* Initialize the table saying where each register starts in the
1254 register file. */
1255 {
1256 int i, offset;
1257
1258 offset = 0;
1259 for (i = 0; i < MAX_NUM_REGS; i++)
1260 {
1a11ba71
MK
1261 i386_register_offset[i] = offset;
1262 offset += i386_register_size[i];
917317f4
JM
1263 }
1264 }
1265
c906108c
SS
1266 tm_print_insn = gdb_print_insn_i386;
1267 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1268
fc338970 1269 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1270 {
1271 struct cmd_list_element *new_cmd;
7a292a7a 1272
917317f4
JM
1273 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1274 valid_flavors,
1ed2a135 1275 &disassembly_flavor,
fc338970
MK
1276 "\
1277Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1278and the default value is \"att\".",
917317f4 1279 &setlist);
917317f4
JM
1280 add_show_from_set (new_cmd, &showlist);
1281 }
c906108c 1282}
This page took 0.192799 seconds and 4 git commands to generate.