Use range-based for loop in remote_add_target_side_condition
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
61baf725 3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
90884b2b 53#include "features/i386/i386.c"
c131fcee 54#include "features/i386/i386-avx.c"
1dbcd68c 55#include "features/i386/i386-mpx.c"
2b863f51 56#include "features/i386/i386-avx-mpx.c"
a1fa17ee 57#include "features/i386/i386-avx-avx512.c"
51547df6 58#include "features/i386/i386-avx-mpx-avx512-pku.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
325fac50 70#include <algorithm>
55aa24fb 71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
01f9f808
MS
89static const char *i386_zmm_names[] =
90{
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93};
94
95static const char *i386_zmmh_names[] =
96{
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99};
100
101static const char *i386_k_names[] =
102{
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105};
106
c131fcee
L
107static const char *i386_ymm_names[] =
108{
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111};
112
113static const char *i386_ymmh_names[] =
114{
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117};
118
1dbcd68c
WT
119static const char *i386_mpx_names[] =
120{
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122};
123
51547df6
MS
124static const char* i386_pkeys_names[] =
125{
126 "pkru"
127};
128
1dbcd68c
WT
129/* Register names for MPX pseudo-registers. */
130
131static const char *i386_bnd_names[] =
132{
133 "bnd0", "bnd1", "bnd2", "bnd3"
134};
135
c4fc7f1b 136/* Register names for MMX pseudo-registers. */
28fc6740 137
90884b2b 138static const char *i386_mmx_names[] =
28fc6740
AC
139{
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142};
c40e1eab 143
1ba53b71
L
144/* Register names for byte pseudo-registers. */
145
146static const char *i386_byte_names[] =
147{
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150};
151
152/* Register names for word pseudo-registers. */
153
154static const char *i386_word_names[] =
155{
156 "ax", "cx", "dx", "bx",
9cad29ac 157 "", "bp", "si", "di"
1ba53b71
L
158};
159
01f9f808
MS
160/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164const int num_lower_zmm_regs = 16;
165
1ba53b71 166/* MMX register? */
c40e1eab 167
28fc6740 168static int
5716833c 169i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 170{
1ba53b71
L
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
173
174 if (mm0_regnum < 0)
175 return 0;
176
1ba53b71
L
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179}
180
181/* Byte register? */
182
183int
184i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190}
191
192/* Word register? */
193
194int
195i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196{
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201}
202
203/* Dword register? */
204
205int
206i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207{
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
216}
217
01f9f808
MS
218/* AVX512 register? */
219
220int
221i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222{
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231}
232
233int
234i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235{
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244}
245
246int
247i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248{
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257}
258
9191d390 259static int
c131fcee
L
260i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261{
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270}
271
272/* AVX register? */
273
274int
275i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276{
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285}
286
01f9f808
MS
287static int
288i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289{
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298}
299
300int
301i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302{
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311}
312
1dbcd68c
WT
313/* BND register? */
314
315int
316i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317{
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326}
327
5716833c 328/* SSE register? */
23a34459 329
c131fcee
L
330int
331i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 332{
5716833c 333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 335
c131fcee 336 if (num_xmm_regs == 0)
5716833c
MK
337 return 0;
338
c131fcee
L
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
341}
342
01f9f808
MS
343/* XMM_512 register? */
344
345int
346i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347{
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356}
357
5716833c
MK
358static int
359i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 360{
5716833c
MK
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
20a6ec49 363 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
364 return 0;
365
20a6ec49 366 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
367}
368
5716833c 369/* FP register? */
23a34459
AC
370
371int
20a6ec49 372i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 373{
20a6ec49
MD
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
377 return 0;
378
20a6ec49
MD
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
381}
382
383int
20a6ec49 384i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 385{
20a6ec49
MD
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
389 return 0;
390
20a6ec49
MD
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
393}
394
1dbcd68c
WT
395/* BNDr (raw) register? */
396
397static int
398i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399{
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407}
408
409/* BND control register? */
410
411static int
412i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421}
422
51547df6
MS
423/* PKRU register? */
424
425bool
426i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427{
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436}
437
c131fcee
L
438/* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441static const char *
442i386_register_name (struct gdbarch *gdbarch, int regnum)
443{
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
01f9f808
MS
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
c131fcee
L
456 return tdesc_register_name (gdbarch, regnum);
457}
458
30b0e2d8 459/* Return the name of register REGNUM. */
fc633446 460
1ba53b71 461const char *
90884b2b 462i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 463{
1ba53b71 464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
479}
480
c4fc7f1b 481/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
482 number used by GDB. */
483
8201327c 484static int
d3f73121 485i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 486{
20a6ec49
MD
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
c4fc7f1b
MK
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
85540d8c
MK
492 if (reg >= 0 && reg <= 7)
493 {
9872ad24
JB
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
85540d8c
MK
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
20a6ec49 505 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
c131fcee
L
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
20a6ec49 521 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
522 }
523
524 /* This will hopefully provoke a warning. */
d3f73121 525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
526}
527
0fde2c53 528/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 529 used by GDB. */
85540d8c 530
8201327c 531static int
0fde2c53 532i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 533{
20a6ec49
MD
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
c4fc7f1b
MK
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
acd5c798 543 /* General-purpose registers. */
85540d8c
MK
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
20a6ec49 549 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 550 }
c6f4c129 551 else if (reg >= 21 && reg <= 36)
85540d8c 552 {
c4fc7f1b 553 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 554 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
555 }
556
c6f4c129
JB
557 switch (reg)
558 {
20a6ec49
MD
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
0fde2c53
DE
570 return -1;
571}
572
573/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
576static int
577i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578{
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
85540d8c 584}
5716833c 585
fc338970 586\f
917317f4 587
fc338970
MK
588/* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
53904c9e
AC
590static const char att_flavor[] = "att";
591static const char intel_flavor[] = "intel";
40478521 592static const char *const valid_flavors[] =
c5aa993b 593{
c906108c
SS
594 att_flavor,
595 intel_flavor,
596 NULL
597};
53904c9e 598static const char *disassembly_flavor = att_flavor;
acd5c798 599\f
c906108c 600
acd5c798
MK
601/* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
c906108c 606
acd5c798
MK
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
c906108c 609
acd5c798 610 This function is 64-bit safe. */
63c0089f 611
04180708
YQ
612constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 615
237fc4c9
PA
616\f
617/* Displaced instruction handling. */
618
1903f0e6
DE
619/* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625static gdb_byte *
626i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627{
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653}
237fc4c9
PA
654
655static int
1903f0e6 656i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 657{
1777feb0 658 /* jmp far (absolute address in operand). */
237fc4c9
PA
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
1777feb0 664 /* jump near, absolute indirect (/4). */
237fc4c9
PA
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
1777feb0 668 /* jump far, absolute indirect (/5). */
237fc4c9
PA
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674}
675
c2170eef
MM
676/* Return non-zero if INSN is a jump, zero otherwise. */
677
678static int
679i386_jmp_p (const gdb_byte *insn)
680{
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690}
691
237fc4c9 692static int
1903f0e6 693i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 694{
1777feb0 695 /* call far, absolute. */
237fc4c9
PA
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
1777feb0 701 /* Call near, absolute indirect (/2). */
237fc4c9
PA
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
1777feb0 705 /* Call far, absolute indirect (/3). */
237fc4c9
PA
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711}
712
713static int
1903f0e6 714i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
715{
716 switch (insn[0])
717 {
1777feb0 718 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 719 case 0xc3: /* ret near */
1777feb0 720 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728}
729
730static int
1903f0e6 731i386_call_p (const gdb_byte *insn)
237fc4c9
PA
732{
733 if (i386_absolute_call_p (insn))
734 return 1;
735
1777feb0 736 /* call near, relative. */
237fc4c9
PA
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741}
742
237fc4c9
PA
743/* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
1903f0e6 745
237fc4c9 746static int
b55078be 747i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 748{
9a7f938f
JK
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761}
762
c2170eef
MM
763/* The gdbarch insn_is_call method. */
764
765static int
766i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767{
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774}
775
776/* The gdbarch insn_is_ret method. */
777
778static int
779i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780{
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787}
788
789/* The gdbarch insn_is_jump method. */
790
791static int
792i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793{
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800}
801
b55078be
DE
802/* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805struct displaced_step_closure *
806i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809{
810 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
b55078be
DE
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837}
838
237fc4c9
PA
839/* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
1903f0e6 841
237fc4c9
PA
842void
843i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847{
e17a4113
UW
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
237fc4c9
PA
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
237fc4c9
PA
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
5af949e3 864 "displaced: fixup (%s, %s), "
237fc4c9 865 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
237fc4c9
PA
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
1903f0e6
DE
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
237fc4c9
PA
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
b55078be 897 int insn_len;
237fc4c9
PA
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
1903f0e6
DE
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
237fc4c9
PA
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
5af949e3
UW
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
237fc4c9
PA
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
237fc4c9
PA
971 }
972}
dde08ee1
PA
973
974static void
975append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976{
977 target_write_memory (*to, buf, len);
978 *to += len;
979}
980
981static void
982i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984{
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1777feb0 1009 push_buf[0] = 0x68; /* pushq $... */
144db827 1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
f4a1794a 1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
dde08ee1
PA
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058}
1059
fc338970 1060\f
acd5c798
MK
1061#ifdef I386_REGNO_TO_SYMMETRY
1062#error "The Sequent Symmetry is no longer supported."
1063#endif
c906108c 1064
acd5c798
MK
1065/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
c906108c 1068
acd5c798
MK
1069/* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
a3386186 1071#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1072
1073struct i386_frame_cache
c906108c 1074{
acd5c798
MK
1075 /* Base address. */
1076 CORE_ADDR base;
8fbca658 1077 int base_p;
772562f8 1078 LONGEST sp_offset;
acd5c798
MK
1079 CORE_ADDR pc;
1080
fd13a04a
AC
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1083 CORE_ADDR saved_sp;
e0c62198 1084 int saved_sp_reg;
acd5c798
MK
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089};
1090
1091/* Allocate and initialize a frame cache. */
1092
1093static struct i386_frame_cache *
fd13a04a 1094i386_alloc_frame_cache (void)
acd5c798
MK
1095{
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
8fbca658 1102 cache->base_p = 0;
acd5c798
MK
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
fd13a04a
AC
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
acd5c798 1111 cache->saved_sp = 0;
e0c62198 1112 cache->saved_sp_reg = -1;
acd5c798
MK
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119}
c906108c 1120
acd5c798
MK
1121/* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
c906108c 1123
acd5c798 1124static CORE_ADDR
e17a4113 1125i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1126{
e17a4113 1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1128 gdb_byte op;
acd5c798
MK
1129 long delta = 0;
1130 int data16 = 0;
c906108c 1131
0865b04a 1132 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1133 return pc;
1134
acd5c798 1135 if (op == 0x66)
c906108c 1136 {
c906108c 1137 data16 = 1;
0865b04a
YQ
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1140 }
1141
acd5c798 1142 switch (op)
c906108c
SS
1143 {
1144 case 0xe9:
fc338970 1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1146 if (data16)
1147 {
e17a4113 1148 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1149
fc338970
MK
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
acd5c798 1152 delta += 4;
c906108c
SS
1153 }
1154 else
1155 {
e17a4113 1156 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1157
acd5c798
MK
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
c906108c
SS
1160 }
1161 break;
1162 case 0xeb:
fc338970 1163 /* Relative jump, disp8 (ignore data16). */
e17a4113 1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1165
acd5c798 1166 delta += data16 + 2;
c906108c
SS
1167 break;
1168 }
c906108c 1169
acd5c798
MK
1170 return pc + delta;
1171}
fc338970 1172
acd5c798
MK
1173/* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
c906108c 1178
acd5c798
MK
1179static CORE_ADDR
1180i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
c906108c 1182{
acd5c798
MK
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
63c0089f
MK
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
c906108c 1197
acd5c798
MK
1198 if (current_pc <= pc)
1199 return pc;
1200
0865b04a 1201 if (target_read_code (pc, &op, 1))
3dcabaa8 1202 return pc;
c906108c 1203
acd5c798
MK
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
c906108c 1206
0865b04a 1207 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1208 return pc;
1209
acd5c798
MK
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
c906108c 1212
acd5c798 1213 if (current_pc == pc)
c906108c 1214 {
acd5c798
MK
1215 cache->sp_offset += 4;
1216 return current_pc;
c906108c
SS
1217 }
1218
acd5c798 1219 if (current_pc == pc + 1)
c906108c 1220 {
acd5c798
MK
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229}
1230
1231static CORE_ADDR
1232i386_skip_probe (CORE_ADDR pc)
1233{
1234 /* A function may start with
fc338970 1235
acd5c798
MK
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
fc338970 1239
acd5c798
MK
1240 followed by
1241
1242 pushl %ebp
fc338970 1243
acd5c798 1244 etc. */
63c0089f
MK
1245 gdb_byte buf[8];
1246 gdb_byte op;
fc338970 1247
0865b04a 1248 if (target_read_code (pc, &op, 1))
3dcabaa8 1249 return pc;
acd5c798
MK
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
c906108c 1254
acd5c798
MK
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
c906108c 1257 if (op == 0x68)
acd5c798 1258 delta = 5;
c906108c 1259 else
acd5c798 1260 delta = 2;
c906108c 1261
acd5c798
MK
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1266 pc += delta + sizeof (buf);
c906108c
SS
1267 }
1268
acd5c798
MK
1269 return pc;
1270}
1271
92dd43fa
MK
1272/* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278static CORE_ADDR
1279i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281{
e0c62198
L
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
92dd43fa 1316 };
92dd43fa 1317
0865b04a 1318 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1381 return pc;
1382
e0c62198
L
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
92dd43fa 1385
325fac50 1386 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1387}
1388
37bdc87e 1389/* Maximum instruction length we need to handle. */
237fc4c9 1390#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1391
1392/* Instruction description. */
1393struct i386_insn
1394{
1395 size_t len;
237fc4c9
PA
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1398};
1399
a3fcb948 1400/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1401
a3fcb948
JG
1402static int
1403i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1404{
63c0089f 1405 gdb_byte op;
37bdc87e 1406
0865b04a 1407 if (target_read_code (pc, &op, 1))
a3fcb948 1408 return 0;
37bdc87e 1409
a3fcb948 1410 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1411 {
a3fcb948
JG
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
37bdc87e 1415
a3fcb948
JG
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1418
0865b04a 1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1420 return 0;
613e8135 1421
a3fcb948
JG
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
37bdc87e 1426 }
a3fcb948
JG
1427 return insn_matched;
1428 }
1429 return 0;
1430}
1431
1432/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436static struct i386_insn *
1437i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438{
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
37bdc87e
MK
1445 }
1446
1447 return NULL;
1448}
1449
a3fcb948
JG
1450/* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453static int
1454i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455{
1456 CORE_ADDR current_pc;
1457 int ix, i;
a3fcb948
JG
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
8bbdd3f4 1464 current_pc = pc;
a3fcb948
JG
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
8bbdd3f4
MK
1468 current_pc -= insn_patterns[i].len;
1469
a3fcb948
JG
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
a3fcb948
JG
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484}
1485
37bdc87e
MK
1486/* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492struct i386_insn i386_frame_setup_skip_insns[] =
1493{
1777feb0 1494 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539};
1540
e11481da
PM
1541
1542/* Check whether PC points to a no-op instruction. */
1543static CORE_ADDR
1544i386_skip_noop (CORE_ADDR pc)
1545{
1546 gdb_byte op;
1547 int check = 1;
1548
0865b04a 1549 if (target_read_code (pc, &op, 1))
3dcabaa8 1550 return pc;
e11481da
PM
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
0865b04a 1559 if (target_read_code (pc, &op, 1))
3dcabaa8 1560 return pc;
e11481da
PM
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
0865b04a 1576 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1577 return pc;
1578
e11481da
PM
1579 if (op == 0xff)
1580 {
1581 pc += 2;
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1583 return pc;
1584
e11481da
PM
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590}
1591
acd5c798
MK
1592/* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1596
1597static CORE_ADDR
e17a4113
UW
1598i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1600 struct i386_frame_cache *cache)
1601{
e17a4113 1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1603 struct i386_insn *insn;
63c0089f 1604 gdb_byte op;
26604a34 1605 int skip = 0;
acd5c798 1606
37bdc87e
MK
1607 if (limit <= pc)
1608 return limit;
acd5c798 1609
0865b04a 1610 if (target_read_code (pc, &op, 1))
3dcabaa8 1611 return pc;
acd5c798 1612
c906108c 1613 if (op == 0x55) /* pushl %ebp */
c5aa993b 1614 {
acd5c798
MK
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
fd13a04a 1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1618 cache->sp_offset += 4;
37bdc87e 1619 pc++;
acd5c798
MK
1620
1621 /* If that's all, return now. */
37bdc87e
MK
1622 if (limit <= pc)
1623 return limit;
26604a34 1624
b4632131 1625 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
5daa5b4e 1630
26604a34
MK
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1633 while (pc + skip < limit)
26604a34 1634 {
37bdc87e
MK
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
b4632131 1638
37bdc87e 1639 skip += insn->len;
26604a34
MK
1640 }
1641
37bdc87e
MK
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
0865b04a 1646 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1647 return pc + skip;
37bdc87e 1648
30f8135b
YQ
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
acd5c798 1663 switch (op)
c906108c 1664 {
30f8135b 1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1666 case 0x8b:
0865b04a 1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1668 != 0xec)
37bdc87e 1669 return pc;
30f8135b 1670 pc += (skip + 2);
c906108c
SS
1671 break;
1672 case 0x89:
0865b04a 1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1674 != 0xe5)
37bdc87e 1675 return pc;
30f8135b
YQ
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
c906108c
SS
1683 break;
1684 default:
37bdc87e 1685 return pc;
c906108c 1686 }
acd5c798 1687
26604a34
MK
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
acd5c798
MK
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
37bdc87e
MK
1695 if (limit <= pc)
1696 return limit;
acd5c798 1697
fc338970
MK
1698 /* Check for stack adjustment
1699
acd5c798 1700 subl $XXX, %esp
30f8135b
YQ
1701 or
1702 lea -XXX(%esp),%esp
fc338970 1703
fd35795f 1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1705 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1706 if (target_read_code (pc, &op, 1))
3dcabaa8 1707 return pc;
c906108c
SS
1708 if (op == 0x83)
1709 {
fd35795f 1710 /* `subl' with 8-bit immediate. */
0865b04a 1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1712 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1713 return pc;
acd5c798 1714
37bdc87e
MK
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
0865b04a 1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1718 return pc + 3;
c906108c
SS
1719 }
1720 else if (op == 0x81)
1721 {
fd35795f 1722 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1724 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1725 return pc;
acd5c798 1726
fd35795f 1727 /* It is `subl' with a 32-bit immediate. */
0865b04a 1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1729 return pc + 6;
c906108c 1730 }
30f8135b
YQ
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
0865b04a 1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
0865b04a 1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1738 return pc + 4;
1739 }
c906108c
SS
1740 else
1741 {
30f8135b 1742 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1743 return pc;
c906108c
SS
1744 }
1745 }
37bdc87e 1746 else if (op == 0xc8) /* enter */
c906108c 1747 {
0865b04a 1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1749 return pc + 4;
c906108c 1750 }
21d0e8a4 1751
acd5c798 1752 return pc;
21d0e8a4
MK
1753}
1754
acd5c798
MK
1755/* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
6bff26de
MK
1759
1760static CORE_ADDR
acd5c798
MK
1761i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
6bff26de 1763{
99ab4326 1764 CORE_ADDR offset = 0;
63c0089f 1765 gdb_byte op;
99ab4326 1766 int i;
c0d1d883 1767
99ab4326
MK
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
0865b04a 1772 if (target_read_code (pc, &op, 1))
3dcabaa8 1773 return pc;
99ab4326
MK
1774 if (op < 0x50 || op > 0x57)
1775 break;
0d17c81d 1776
99ab4326
MK
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
6bff26de
MK
1781 }
1782
acd5c798 1783 return pc;
22797942
AC
1784}
1785
acd5c798
MK
1786/* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
ed84f6c1 1789
fc338970
MK
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
c906108c 1812
acd5c798 1813static CORE_ADDR
e17a4113
UW
1814i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1816 struct i386_frame_cache *cache)
c906108c 1817{
e11481da 1818 pc = i386_skip_noop (pc);
e17a4113 1819 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
92dd43fa 1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1824 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1825}
1826
fc338970 1827/* Return PC of first real instruction. */
c906108c 1828
3a1e71e3 1829static CORE_ADDR
6093d2eb 1830i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1831{
e17a4113
UW
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
63c0089f 1834 static gdb_byte pic_pat[6] =
acd5c798
MK
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
c5aa993b 1838 };
acd5c798
MK
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
63c0089f 1841 gdb_byte op;
acd5c798 1842 int i;
56bf0743 1843 CORE_ADDR func_addr;
4e879fc2 1844
56bf0743
KB
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
43f3e411
DE
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1857 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1858 }
1859
e0f33b1f 1860 cache.locals = -1;
e17a4113 1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1862 if (cache.locals < 0)
1863 return start_pc;
c5aa993b 1864
acd5c798 1865 /* Found valid frame setup. */
c906108c 1866
fc338970
MK
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
acd5c798
MK
1869 %ebx:
1870
fc338970
MK
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
c906108c
SS
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
c5aa993b 1879
c906108c
SS
1880 for (i = 0; i < 6; i++)
1881 {
0865b04a 1882 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1883 return pc;
1884
c5aa993b 1885 if (pic_pat[i] != op)
c906108c
SS
1886 break;
1887 }
1888 if (i == 6)
1889 {
acd5c798
MK
1890 int delta = 6;
1891
0865b04a 1892 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1893 return pc;
c906108c 1894
c5aa993b 1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1896 {
0865b04a 1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1898
fc338970 1899 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1900 delta += 3;
fc338970 1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1902 delta += 6;
fc338970 1903 else /* Unexpected instruction. */
acd5c798
MK
1904 delta = 0;
1905
0865b04a 1906 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1907 return pc;
c906108c 1908 }
acd5c798 1909
c5aa993b 1910 /* addl y,%ebx */
acd5c798 1911 if (delta > 0 && op == 0x81
0865b04a 1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1913 == 0xc3)
c906108c 1914 {
acd5c798 1915 pc += delta + 6;
c906108c
SS
1916 }
1917 }
c5aa993b 1918
e63bbc88
MK
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
e17a4113
UW
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1924
1925 return pc;
c906108c
SS
1926}
1927
4309257c
PM
1928/* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931CORE_ADDR
1932i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933{
e17a4113 1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1935 gdb_byte op;
1936
0865b04a 1937 if (target_read_code (pc, &op, 1))
3dcabaa8 1938 return pc;
4309257c
PM
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
0865b04a 1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1947 struct bound_minimal_symbol s;
e17a4113 1948 CORE_ADDR call_dest;
4309257c 1949
e17a4113 1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1953 if (s.minsym != NULL
efd66ac6
TT
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961}
1962
acd5c798 1963/* This function is 64-bit safe. */
93924b6b 1964
acd5c798
MK
1965static CORE_ADDR
1966i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1967{
63c0089f 1968 gdb_byte buf[8];
acd5c798 1969
875f8d0e 1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1972}
acd5c798 1973\f
93924b6b 1974
acd5c798 1975/* Normal frames. */
c5aa993b 1976
8fbca658
PA
1977static void
1978i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
a7769679 1980{
e17a4113
UW
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1983 gdb_byte buf[4];
acd5c798
MK
1984 int i;
1985
8fbca658 1986 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
10458914 1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1999 if (cache->base == 0)
620fa63a
PA
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
acd5c798
MK
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2007
acd5c798 2008 if (cache->pc != 0)
e17a4113
UW
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
acd5c798
MK
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
e0c62198 2022 if (cache->saved_sp_reg != -1)
92dd43fa 2023 {
8fbca658
PA
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
92dd43fa
MK
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
7618e12b 2035 else if (cache->pc != 0
0865b04a 2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2037 {
7618e12b
DJ
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
10458914 2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
92dd43fa 2046 }
7618e12b
DJ
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2053 }
2054
8fbca658
PA
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
ca9d61b9
JB
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
8fbca658
PA
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
acd5c798
MK
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
8fbca658 2066 else if (cache->saved_sp == 0)
92dd43fa 2067 cache->saved_sp = cache->base + 8;
a7769679 2068
acd5c798
MK
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
acd5c798 2074
8fbca658
PA
2075 cache->base_p = 1;
2076}
2077
2078static struct i386_frame_cache *
2079i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080{
8fbca658
PA
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
9a3c8263 2084 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
492d29ea 2089 TRY
8fbca658
PA
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
492d29ea 2093 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
492d29ea 2098 END_CATCH
8fbca658 2099
acd5c798 2100 return cache;
a7769679
MK
2101}
2102
3a1e71e3 2103static void
10458914 2104i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2105 struct frame_id *this_id)
c906108c 2106{
10458914 2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2108
5ce0145d
PA
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
acd5c798
MK
2120}
2121
8fbca658
PA
2122static enum unwind_stop_reason
2123i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125{
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136}
2137
10458914
DJ
2138static struct value *
2139i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
acd5c798 2141{
10458914 2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
10458914 2167 ULONGEST val;
c5aa993b 2168
10458914
DJ
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2172 }
1211c4e4 2173
acd5c798 2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2176
fcf250e2
UW
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
fcf250e2 2183 if (cache->saved_sp == 0)
8fbca658
PA
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
acd5c798 2190
fd13a04a 2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
fd13a04a 2194
10458914 2195 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2196}
2197
2198static const struct frame_unwind i386_frame_unwind =
2199{
2200 NORMAL_FRAME,
8fbca658 2201 i386_frame_unwind_stop_reason,
acd5c798 2202 i386_frame_this_id,
10458914
DJ
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
acd5c798 2206};
06da04c6
MS
2207
2208/* Normal frames, but in a function epilogue. */
2209
c9cf6e20
MG
2210/* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216static int
c9cf6e20 2217i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2218{
2219 gdb_byte insn;
43f3e411 2220 struct compunit_symtab *cust;
e0d00bc7 2221
43f3e411
DE
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2224 return 0;
06da04c6
MS
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233}
2234
2235static int
2236i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239{
2240 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
06da04c6
MS
2243 else
2244 return 0;
2245}
2246
2247static struct i386_frame_cache *
2248i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249{
06da04c6 2250 struct i386_frame_cache *cache;
0d6c2135 2251 CORE_ADDR sp;
06da04c6
MS
2252
2253 if (*this_cache)
9a3c8263 2254 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
492d29ea 2259 TRY
8fbca658 2260 {
0d6c2135 2261 cache->pc = get_frame_func (this_frame);
06da04c6 2262
0d6c2135
MK
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
8fbca658 2268 cache->saved_sp = cache->base + 8;
8fbca658 2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2270
8fbca658
PA
2271 cache->base_p = 1;
2272 }
492d29ea 2273 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
492d29ea 2278 END_CATCH
06da04c6
MS
2279
2280 return cache;
2281}
2282
8fbca658
PA
2283static enum unwind_stop_reason
2284i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286{
0d6c2135
MK
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294}
2295
06da04c6
MS
2296static void
2297i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300{
0d6c2135
MK
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2303
8fbca658 2304 if (!cache->base_p)
5ce0145d
PA
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2308}
2309
0d6c2135
MK
2310static struct value *
2311i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313{
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318}
2319
06da04c6
MS
2320static const struct frame_unwind i386_epilogue_frame_unwind =
2321{
2322 NORMAL_FRAME,
8fbca658 2323 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2324 i386_epilogue_frame_this_id,
0d6c2135 2325 i386_epilogue_frame_prev_register,
06da04c6
MS
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328};
acd5c798
MK
2329\f
2330
a3fcb948
JG
2331/* Stack-based trampolines. */
2332
2333/* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338/* Static chain passed in register. */
2339
2340struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341{
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349};
2350
2351/* Static chain passed on stack (when regparm=3). */
2352
2353struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354{
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362};
2363
2364/* Return whether PC points inside a stack trampoline. */
2365
2366static int
6df81a63 2367i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2368{
2369 gdb_byte insn;
2c02bd72 2370 const char *name;
a3fcb948
JG
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388}
2389
2390static int
2391i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2392 struct frame_info *this_frame,
2393 void **this_cache)
a3fcb948
JG
2394{
2395 if (frame_relative_level (this_frame) == 0)
6df81a63 2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2397 else
2398 return 0;
2399}
2400
2401static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402{
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
0d6c2135 2406 i386_epilogue_frame_prev_register,
a3fcb948
JG
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409};
2410\f
6710bf39
SS
2411/* Generate a bytecode expression to get the value of the saved PC. */
2412
2413static void
2414i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417{
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425}
2426\f
a3fcb948 2427
acd5c798
MK
2428/* Signal trampolines. */
2429
2430static struct i386_frame_cache *
10458914 2431i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2432{
e17a4113
UW
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2436 struct i386_frame_cache *cache;
acd5c798 2437 CORE_ADDR addr;
63c0089f 2438 gdb_byte buf[4];
acd5c798
MK
2439
2440 if (*this_cache)
9a3c8263 2441 return (struct i386_frame_cache *) *this_cache;
acd5c798 2442
fd13a04a 2443 cache = i386_alloc_frame_cache ();
acd5c798 2444
492d29ea 2445 TRY
a3386186 2446 {
8fbca658
PA
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2449
8fbca658
PA
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
a3386186 2454
8fbca658
PA
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
a3386186 2468 }
492d29ea 2469 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
492d29ea 2474 END_CATCH
acd5c798
MK
2475
2476 *this_cache = cache;
2477 return cache;
2478}
2479
8fbca658
PA
2480static enum unwind_stop_reason
2481i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483{
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491}
2492
acd5c798 2493static void
10458914 2494i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2495 struct frame_id *this_id)
2496{
2497 struct i386_frame_cache *cache =
10458914 2498 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2499
8fbca658 2500 if (!cache->base_p)
5ce0145d
PA
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
acd5c798
MK
2507}
2508
10458914
DJ
2509static struct value *
2510i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
acd5c798
MK
2512{
2513 /* Make sure we've initialized the cache. */
10458914 2514 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2515
10458914 2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2517}
c0d1d883 2518
10458914
DJ
2519static int
2520i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
acd5c798 2523{
10458914 2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2525
911bc6ee
MK
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
10458914 2529 return 0;
1c3545ae 2530
911bc6ee
MK
2531 if (tdep->sigtramp_p != NULL)
2532 {
10458914
DJ
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
911bc6ee
MK
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
10458914 2539 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2543 return 1;
911bc6ee 2544 }
acd5c798 2545
10458914 2546 return 0;
acd5c798 2547}
10458914
DJ
2548
2549static const struct frame_unwind i386_sigtramp_frame_unwind =
2550{
2551 SIGTRAMP_FRAME,
8fbca658 2552 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557};
acd5c798
MK
2558\f
2559
2560static CORE_ADDR
10458914 2561i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2562{
10458914 2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2564
2565 return cache->base;
2566}
2567
2568static const struct frame_base i386_frame_base =
2569{
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574};
2575
acd5c798 2576static struct frame_id
10458914 2577i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2578{
acd5c798
MK
2579 CORE_ADDR fp;
2580
10458914 2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2582
3e210248 2583 /* See the end of i386_push_dummy_call. */
10458914 2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2585}
e04e5beb
JM
2586
2587/* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590static CORE_ADDR
2591i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592{
2593 return sp & -(CORE_ADDR)16;
2594}
fc338970 2595\f
c906108c 2596
fc338970
MK
2597/* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2599 structure from which we extract the address that we will land at.
28bcfd30 2600 This address is copied into PC. This routine returns non-zero on
436675d3 2601 success. */
c906108c 2602
8201327c 2603static int
60ade65d 2604i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2605{
436675d3 2606 gdb_byte buf[4];
c906108c 2607 CORE_ADDR sp, jb_addr;
20a6ec49 2608 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2611
8201327c
MK
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
c906108c
SS
2615 return 0;
2616
436675d3 2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2618 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2619 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2620 return 0;
2621
e17a4113 2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2624 return 0;
c906108c 2625
e17a4113 2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2627 return 1;
2628}
fc338970 2629\f
c906108c 2630
7ccc1c74
JM
2631/* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636static int
2637i386_16_byte_align_p (struct type *type)
2638{
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657}
2658
a9b8d892
JK
2659/* Implementation for set_gdbarch_push_dummy_code. */
2660
2661static CORE_ADDR
2662i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666{
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673}
2674
3a1e71e3 2675static CORE_ADDR
7d9b040b 2676i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
22f8ba57 2680{
e17a4113 2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2682 gdb_byte buf[4];
acd5c798 2683 int i;
7ccc1c74
JM
2684 int write_pass;
2685 int args_space = 0;
acd5c798 2686
7ccc1c74
JM
2687 /* Determine the total space required for arguments and struct
2688 return address in a first pass (allowing for 16-byte-aligned
2689 arguments), then push arguments in a second pass. */
2690
2691 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2692 {
7ccc1c74 2693 int args_space_used = 0;
7ccc1c74
JM
2694
2695 if (struct_return)
2696 {
2697 if (write_pass)
2698 {
2699 /* Push value address. */
e17a4113 2700 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2701 write_memory (sp, buf, 4);
2702 args_space_used += 4;
2703 }
2704 else
2705 args_space += 4;
2706 }
2707
2708 for (i = 0; i < nargs; i++)
2709 {
2710 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2711
7ccc1c74
JM
2712 if (write_pass)
2713 {
2714 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2715 args_space_used = align_up (args_space_used, 16);
acd5c798 2716
7ccc1c74
JM
2717 write_memory (sp + args_space_used,
2718 value_contents_all (args[i]), len);
2719 /* The System V ABI says that:
acd5c798 2720
7ccc1c74
JM
2721 "An argument's size is increased, if necessary, to make it a
2722 multiple of [32-bit] words. This may require tail padding,
2723 depending on the size of the argument."
22f8ba57 2724
7ccc1c74
JM
2725 This makes sure the stack stays word-aligned. */
2726 args_space_used += align_up (len, 4);
2727 }
2728 else
2729 {
2730 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2731 args_space = align_up (args_space, 16);
7ccc1c74
JM
2732 args_space += align_up (len, 4);
2733 }
2734 }
2735
2736 if (!write_pass)
2737 {
7ccc1c74 2738 sp -= args_space;
284c5a60
MK
2739
2740 /* The original System V ABI only requires word alignment,
2741 but modern incarnations need 16-byte alignment in order
2742 to support SSE. Since wasting a few bytes here isn't
2743 harmful we unconditionally enforce 16-byte alignment. */
2744 sp &= ~0xf;
7ccc1c74 2745 }
22f8ba57
MK
2746 }
2747
acd5c798
MK
2748 /* Store return address. */
2749 sp -= 4;
e17a4113 2750 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2751 write_memory (sp, buf, 4);
2752
2753 /* Finally, update the stack pointer... */
e17a4113 2754 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2755 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2756
2757 /* ...and fake a frame pointer. */
2758 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2759
3e210248
AC
2760 /* MarkK wrote: This "+ 8" is all over the place:
2761 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2762 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2763 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2764 definition of the stack address of a frame. Otherwise frame id
2765 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2766 stack address *before* the function call as a frame's CFA. On
2767 the i386, when %ebp is used as a frame pointer, the offset
2768 between the contents %ebp and the CFA as defined by GCC. */
2769 return sp + 8;
22f8ba57
MK
2770}
2771
1a309862
MK
2772/* These registers are used for returning integers (and on some
2773 targets also for returning `struct' and `union' values when their
ef9dff19 2774 size and alignment match an integer type). */
acd5c798
MK
2775#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2776#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2777
c5e656c1
MK
2778/* Read, for architecture GDBARCH, a function return value of TYPE
2779 from REGCACHE, and copy that into VALBUF. */
1a309862 2780
3a1e71e3 2781static void
c5e656c1 2782i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2783 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2784{
c5e656c1 2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2786 int len = TYPE_LENGTH (type);
63c0089f 2787 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2788
1e8d0a7b 2789 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2790 {
5716833c 2791 if (tdep->st0_regnum < 0)
1a309862 2792 {
8a3fe4f8 2793 warning (_("Cannot find floating-point return value."));
1a309862 2794 memset (valbuf, 0, len);
ef9dff19 2795 return;
1a309862
MK
2796 }
2797
c6ba6f0d
MK
2798 /* Floating-point return values can be found in %st(0). Convert
2799 its contents to the desired type. This is probably not
2800 exactly how it would happen on the target itself, but it is
2801 the best we can do. */
acd5c798 2802 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2803 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2804 }
2805 else
c5aa993b 2806 {
875f8d0e
UW
2807 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2808 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2809
2810 if (len <= low_size)
00f8375e 2811 {
0818c12a 2812 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2813 memcpy (valbuf, buf, len);
2814 }
d4f3574e
SS
2815 else if (len <= (low_size + high_size))
2816 {
0818c12a 2817 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2818 memcpy (valbuf, buf, low_size);
0818c12a 2819 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2820 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2821 }
2822 else
8e65ff28 2823 internal_error (__FILE__, __LINE__,
1777feb0
MS
2824 _("Cannot extract return value of %d bytes long."),
2825 len);
c906108c
SS
2826 }
2827}
2828
c5e656c1
MK
2829/* Write, for architecture GDBARCH, a function return value of TYPE
2830 from VALBUF into REGCACHE. */
ef9dff19 2831
3a1e71e3 2832static void
c5e656c1 2833i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2834 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2835{
c5e656c1 2836 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2837 int len = TYPE_LENGTH (type);
2838
1e8d0a7b 2839 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2840 {
3d7f4f49 2841 ULONGEST fstat;
63c0089f 2842 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2843
5716833c 2844 if (tdep->st0_regnum < 0)
ef9dff19 2845 {
8a3fe4f8 2846 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2847 return;
2848 }
2849
635b0cc1
MK
2850 /* Returning floating-point values is a bit tricky. Apart from
2851 storing the return value in %st(0), we have to simulate the
2852 state of the FPU at function return point. */
2853
c6ba6f0d
MK
2854 /* Convert the value found in VALBUF to the extended
2855 floating-point format used by the FPU. This is probably
2856 not exactly how it would happen on the target itself, but
2857 it is the best we can do. */
27067745 2858 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2859 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2860
635b0cc1
MK
2861 /* Set the top of the floating-point register stack to 7. The
2862 actual value doesn't really matter, but 7 is what a normal
2863 function return would end up with if the program started out
2864 with a freshly initialized FPU. */
20a6ec49 2865 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2866 fstat |= (7 << 11);
20a6ec49 2867 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2868
635b0cc1
MK
2869 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2870 the floating-point register stack to 7, the appropriate value
2871 for the tag word is 0x3fff. */
20a6ec49 2872 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2873 }
2874 else
2875 {
875f8d0e
UW
2876 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2877 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2878
2879 if (len <= low_size)
3d7f4f49 2880 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2881 else if (len <= (low_size + high_size))
2882 {
3d7f4f49
MK
2883 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2884 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2885 len - low_size, valbuf + low_size);
ef9dff19
MK
2886 }
2887 else
8e65ff28 2888 internal_error (__FILE__, __LINE__,
e2e0b3e5 2889 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2890 }
2891}
fc338970 2892\f
ef9dff19 2893
8201327c
MK
2894/* This is the variable that is set with "set struct-convention", and
2895 its legitimate values. */
2896static const char default_struct_convention[] = "default";
2897static const char pcc_struct_convention[] = "pcc";
2898static const char reg_struct_convention[] = "reg";
40478521 2899static const char *const valid_conventions[] =
8201327c
MK
2900{
2901 default_struct_convention,
2902 pcc_struct_convention,
2903 reg_struct_convention,
2904 NULL
2905};
2906static const char *struct_convention = default_struct_convention;
2907
0e4377e1
JB
2908/* Return non-zero if TYPE, which is assumed to be a structure,
2909 a union type, or an array type, should be returned in registers
2910 for architecture GDBARCH. */
c5e656c1 2911
8201327c 2912static int
c5e656c1 2913i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2914{
c5e656c1
MK
2915 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2916 enum type_code code = TYPE_CODE (type);
2917 int len = TYPE_LENGTH (type);
8201327c 2918
0e4377e1
JB
2919 gdb_assert (code == TYPE_CODE_STRUCT
2920 || code == TYPE_CODE_UNION
2921 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2922
2923 if (struct_convention == pcc_struct_convention
2924 || (struct_convention == default_struct_convention
2925 && tdep->struct_return == pcc_struct_return))
2926 return 0;
2927
9edde48e
MK
2928 /* Structures consisting of a single `float', `double' or 'long
2929 double' member are returned in %st(0). */
2930 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2931 {
2932 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2934 return (len == 4 || len == 8 || len == 12);
2935 }
2936
c5e656c1
MK
2937 return (len == 1 || len == 2 || len == 4 || len == 8);
2938}
2939
2940/* Determine, for architecture GDBARCH, how a return value of TYPE
2941 should be returned. If it is supposed to be returned in registers,
2942 and READBUF is non-zero, read the appropriate value from REGCACHE,
2943 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2944 from WRITEBUF into REGCACHE. */
2945
2946static enum return_value_convention
6a3a010b 2947i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2948 struct type *type, struct regcache *regcache,
2949 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2950{
2951 enum type_code code = TYPE_CODE (type);
2952
5daa78cc
TJB
2953 if (((code == TYPE_CODE_STRUCT
2954 || code == TYPE_CODE_UNION
2955 || code == TYPE_CODE_ARRAY)
2956 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2957 /* Complex double and long double uses the struct return covention. */
2958 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2959 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2960 /* 128-bit decimal float uses the struct return convention. */
2961 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2962 {
2963 /* The System V ABI says that:
2964
2965 "A function that returns a structure or union also sets %eax
2966 to the value of the original address of the caller's area
2967 before it returns. Thus when the caller receives control
2968 again, the address of the returned object resides in register
2969 %eax and can be used to access the object."
2970
2971 So the ABI guarantees that we can always find the return
2972 value just after the function has returned. */
2973
0e4377e1
JB
2974 /* Note that the ABI doesn't mention functions returning arrays,
2975 which is something possible in certain languages such as Ada.
2976 In this case, the value is returned as if it was wrapped in
2977 a record, so the convention applied to records also applies
2978 to arrays. */
2979
31db7b6c
MK
2980 if (readbuf)
2981 {
2982 ULONGEST addr;
2983
2984 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2985 read_memory (addr, readbuf, TYPE_LENGTH (type));
2986 }
2987
2988 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2989 }
c5e656c1
MK
2990
2991 /* This special case is for structures consisting of a single
9edde48e
MK
2992 `float', `double' or 'long double' member. These structures are
2993 returned in %st(0). For these structures, we call ourselves
2994 recursively, changing TYPE into the type of the first member of
2995 the structure. Since that should work for all structures that
2996 have only one member, we don't bother to check the member's type
2997 here. */
c5e656c1
MK
2998 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2999 {
3000 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3001 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3002 readbuf, writebuf);
c5e656c1
MK
3003 }
3004
3005 if (readbuf)
3006 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3007 if (writebuf)
3008 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3009
c5e656c1 3010 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3011}
3012\f
3013
27067745
UW
3014struct type *
3015i387_ext_type (struct gdbarch *gdbarch)
3016{
3017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018
3019 if (!tdep->i387_ext_type)
90884b2b
L
3020 {
3021 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3022 gdb_assert (tdep->i387_ext_type != NULL);
3023 }
27067745
UW
3024
3025 return tdep->i387_ext_type;
3026}
3027
1dbcd68c
WT
3028/* Construct type for pseudo BND registers. We can't use
3029 tdesc_find_type since a complement of one value has to be used
3030 to describe the upper bound. */
3031
3032static struct type *
3033i386_bnd_type (struct gdbarch *gdbarch)
3034{
3035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3036
3037
3038 if (!tdep->i386_bnd_type)
3039 {
870f88f7 3040 struct type *t;
1dbcd68c
WT
3041 const struct builtin_type *bt = builtin_type (gdbarch);
3042
3043 /* The type we're building is described bellow: */
3044#if 0
3045 struct __bound128
3046 {
3047 void *lbound;
3048 void *ubound; /* One complement of raw ubound field. */
3049 };
3050#endif
3051
3052 t = arch_composite_type (gdbarch,
3053 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3054
3055 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3056 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3057
3058 TYPE_NAME (t) = "builtin_type_bound128";
3059 tdep->i386_bnd_type = t;
3060 }
3061
3062 return tdep->i386_bnd_type;
3063}
3064
01f9f808
MS
3065/* Construct vector type for pseudo ZMM registers. We can't use
3066 tdesc_find_type since ZMM isn't described in target description. */
3067
3068static struct type *
3069i386_zmm_type (struct gdbarch *gdbarch)
3070{
3071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3072
3073 if (!tdep->i386_zmm_type)
3074 {
3075 const struct builtin_type *bt = builtin_type (gdbarch);
3076
3077 /* The type we're building is this: */
3078#if 0
3079 union __gdb_builtin_type_vec512i
3080 {
3081 int128_t uint128[4];
3082 int64_t v4_int64[8];
3083 int32_t v8_int32[16];
3084 int16_t v16_int16[32];
3085 int8_t v32_int8[64];
3086 double v4_double[8];
3087 float v8_float[16];
3088 };
3089#endif
3090
3091 struct type *t;
3092
3093 t = arch_composite_type (gdbarch,
3094 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3095 append_composite_type_field (t, "v16_float",
3096 init_vector_type (bt->builtin_float, 16));
3097 append_composite_type_field (t, "v8_double",
3098 init_vector_type (bt->builtin_double, 8));
3099 append_composite_type_field (t, "v64_int8",
3100 init_vector_type (bt->builtin_int8, 64));
3101 append_composite_type_field (t, "v32_int16",
3102 init_vector_type (bt->builtin_int16, 32));
3103 append_composite_type_field (t, "v16_int32",
3104 init_vector_type (bt->builtin_int32, 16));
3105 append_composite_type_field (t, "v8_int64",
3106 init_vector_type (bt->builtin_int64, 8));
3107 append_composite_type_field (t, "v4_int128",
3108 init_vector_type (bt->builtin_int128, 4));
3109
3110 TYPE_VECTOR (t) = 1;
3111 TYPE_NAME (t) = "builtin_type_vec512i";
3112 tdep->i386_zmm_type = t;
3113 }
3114
3115 return tdep->i386_zmm_type;
3116}
3117
c131fcee
L
3118/* Construct vector type for pseudo YMM registers. We can't use
3119 tdesc_find_type since YMM isn't described in target description. */
3120
3121static struct type *
3122i386_ymm_type (struct gdbarch *gdbarch)
3123{
3124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3125
3126 if (!tdep->i386_ymm_type)
3127 {
3128 const struct builtin_type *bt = builtin_type (gdbarch);
3129
3130 /* The type we're building is this: */
3131#if 0
3132 union __gdb_builtin_type_vec256i
3133 {
3134 int128_t uint128[2];
3135 int64_t v2_int64[4];
3136 int32_t v4_int32[8];
3137 int16_t v8_int16[16];
3138 int8_t v16_int8[32];
3139 double v2_double[4];
3140 float v4_float[8];
3141 };
3142#endif
3143
3144 struct type *t;
3145
3146 t = arch_composite_type (gdbarch,
3147 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3148 append_composite_type_field (t, "v8_float",
3149 init_vector_type (bt->builtin_float, 8));
3150 append_composite_type_field (t, "v4_double",
3151 init_vector_type (bt->builtin_double, 4));
3152 append_composite_type_field (t, "v32_int8",
3153 init_vector_type (bt->builtin_int8, 32));
3154 append_composite_type_field (t, "v16_int16",
3155 init_vector_type (bt->builtin_int16, 16));
3156 append_composite_type_field (t, "v8_int32",
3157 init_vector_type (bt->builtin_int32, 8));
3158 append_composite_type_field (t, "v4_int64",
3159 init_vector_type (bt->builtin_int64, 4));
3160 append_composite_type_field (t, "v2_int128",
3161 init_vector_type (bt->builtin_int128, 2));
3162
3163 TYPE_VECTOR (t) = 1;
0c5acf93 3164 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3165 tdep->i386_ymm_type = t;
3166 }
3167
3168 return tdep->i386_ymm_type;
3169}
3170
794ac428 3171/* Construct vector type for MMX registers. */
90884b2b 3172static struct type *
794ac428
UW
3173i386_mmx_type (struct gdbarch *gdbarch)
3174{
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176
3177 if (!tdep->i386_mmx_type)
3178 {
df4df182
UW
3179 const struct builtin_type *bt = builtin_type (gdbarch);
3180
794ac428
UW
3181 /* The type we're building is this: */
3182#if 0
3183 union __gdb_builtin_type_vec64i
3184 {
3185 int64_t uint64;
3186 int32_t v2_int32[2];
3187 int16_t v4_int16[4];
3188 int8_t v8_int8[8];
3189 };
3190#endif
3191
3192 struct type *t;
3193
e9bb382b
UW
3194 t = arch_composite_type (gdbarch,
3195 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3196
3197 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3198 append_composite_type_field (t, "v2_int32",
df4df182 3199 init_vector_type (bt->builtin_int32, 2));
794ac428 3200 append_composite_type_field (t, "v4_int16",
df4df182 3201 init_vector_type (bt->builtin_int16, 4));
794ac428 3202 append_composite_type_field (t, "v8_int8",
df4df182 3203 init_vector_type (bt->builtin_int8, 8));
794ac428 3204
876cecd0 3205 TYPE_VECTOR (t) = 1;
794ac428
UW
3206 TYPE_NAME (t) = "builtin_type_vec64i";
3207 tdep->i386_mmx_type = t;
3208 }
3209
3210 return tdep->i386_mmx_type;
3211}
3212
d7a0d72c 3213/* Return the GDB type object for the "standard" data type of data in
1777feb0 3214 register REGNUM. */
d7a0d72c 3215
fff4548b 3216struct type *
90884b2b 3217i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3218{
1dbcd68c
WT
3219 if (i386_bnd_regnum_p (gdbarch, regnum))
3220 return i386_bnd_type (gdbarch);
1ba53b71
L
3221 if (i386_mmx_regnum_p (gdbarch, regnum))
3222 return i386_mmx_type (gdbarch);
c131fcee
L
3223 else if (i386_ymm_regnum_p (gdbarch, regnum))
3224 return i386_ymm_type (gdbarch);
01f9f808
MS
3225 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3226 return i386_ymm_type (gdbarch);
3227 else if (i386_zmm_regnum_p (gdbarch, regnum))
3228 return i386_zmm_type (gdbarch);
1ba53b71
L
3229 else
3230 {
3231 const struct builtin_type *bt = builtin_type (gdbarch);
3232 if (i386_byte_regnum_p (gdbarch, regnum))
3233 return bt->builtin_int8;
3234 else if (i386_word_regnum_p (gdbarch, regnum))
3235 return bt->builtin_int16;
3236 else if (i386_dword_regnum_p (gdbarch, regnum))
3237 return bt->builtin_int32;
01f9f808
MS
3238 else if (i386_k_regnum_p (gdbarch, regnum))
3239 return bt->builtin_int64;
1ba53b71
L
3240 }
3241
3242 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3243}
3244
28fc6740 3245/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3246 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3247
3248static int
c86c27af 3249i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3250{
5716833c
MK
3251 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3252 int mmxreg, fpreg;
28fc6740
AC
3253 ULONGEST fstat;
3254 int tos;
c86c27af 3255
5716833c 3256 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3257 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3258 tos = (fstat >> 11) & 0x7;
5716833c
MK
3259 fpreg = (mmxreg + tos) % 8;
3260
20a6ec49 3261 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3262}
3263
3543a589
TT
3264/* A helper function for us by i386_pseudo_register_read_value and
3265 amd64_pseudo_register_read_value. It does all the work but reads
3266 the data into an already-allocated value. */
3267
3268void
3269i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3270 struct regcache *regcache,
3271 int regnum,
3272 struct value *result_value)
28fc6740 3273{
975c21ab 3274 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3275 enum register_status status;
3543a589 3276 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3277
5716833c 3278 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3279 {
c86c27af
MK
3280 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3281
28fc6740 3282 /* Extract (always little endian). */
05d1431c
PA
3283 status = regcache_raw_read (regcache, fpnum, raw_buf);
3284 if (status != REG_VALID)
3543a589
TT
3285 mark_value_bytes_unavailable (result_value, 0,
3286 TYPE_LENGTH (value_type (result_value)));
3287 else
3288 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3289 }
3290 else
1ba53b71
L
3291 {
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3293 if (i386_bnd_regnum_p (gdbarch, regnum))
3294 {
3295 regnum -= tdep->bnd0_regnum;
1ba53b71 3296
1dbcd68c
WT
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_BND0R_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 {
3305 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3306 LONGEST upper, lower;
3307 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3308
3309 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3310 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3311 upper = ~upper;
3312
3313 memcpy (buf, &lower, size);
3314 memcpy (buf + size, &upper, size);
3315 }
3316 }
01f9f808
MS
3317 else if (i386_k_regnum_p (gdbarch, regnum))
3318 {
3319 regnum -= tdep->k0_regnum;
3320
3321 /* Extract (always little endian). */
3322 status = regcache_raw_read (regcache,
3323 tdep->k0_regnum + regnum,
3324 raw_buf);
3325 if (status != REG_VALID)
3326 mark_value_bytes_unavailable (result_value, 0, 8);
3327 else
3328 memcpy (buf, raw_buf, 8);
3329 }
3330 else if (i386_zmm_regnum_p (gdbarch, regnum))
3331 {
3332 regnum -= tdep->zmm0_regnum;
3333
3334 if (regnum < num_lower_zmm_regs)
3335 {
3336 /* Extract (always little endian). Read lower 128bits. */
3337 status = regcache_raw_read (regcache,
3338 I387_XMM0_REGNUM (tdep) + regnum,
3339 raw_buf);
3340 if (status != REG_VALID)
3341 mark_value_bytes_unavailable (result_value, 0, 16);
3342 else
3343 memcpy (buf, raw_buf, 16);
3344
3345 /* Extract (always little endian). Read upper 128bits. */
3346 status = regcache_raw_read (regcache,
3347 tdep->ymm0h_regnum + regnum,
3348 raw_buf);
3349 if (status != REG_VALID)
3350 mark_value_bytes_unavailable (result_value, 16, 16);
3351 else
3352 memcpy (buf + 16, raw_buf, 16);
3353 }
3354 else
3355 {
3356 /* Extract (always little endian). Read lower 128bits. */
3357 status = regcache_raw_read (regcache,
3358 I387_XMM16_REGNUM (tdep) + regnum
3359 - num_lower_zmm_regs,
3360 raw_buf);
3361 if (status != REG_VALID)
3362 mark_value_bytes_unavailable (result_value, 0, 16);
3363 else
3364 memcpy (buf, raw_buf, 16);
3365
3366 /* Extract (always little endian). Read upper 128bits. */
3367 status = regcache_raw_read (regcache,
3368 I387_YMM16H_REGNUM (tdep) + regnum
3369 - num_lower_zmm_regs,
3370 raw_buf);
3371 if (status != REG_VALID)
3372 mark_value_bytes_unavailable (result_value, 16, 16);
3373 else
3374 memcpy (buf + 16, raw_buf, 16);
3375 }
3376
3377 /* Read upper 256bits. */
3378 status = regcache_raw_read (regcache,
3379 tdep->zmm0h_regnum + regnum,
3380 raw_buf);
3381 if (status != REG_VALID)
3382 mark_value_bytes_unavailable (result_value, 32, 32);
3383 else
3384 memcpy (buf + 32, raw_buf, 32);
3385 }
1dbcd68c 3386 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3387 {
3388 regnum -= tdep->ymm0_regnum;
3389
1777feb0 3390 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3391 status = regcache_raw_read (regcache,
3392 I387_XMM0_REGNUM (tdep) + regnum,
3393 raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0, 16);
3396 else
3397 memcpy (buf, raw_buf, 16);
c131fcee 3398 /* Read upper 128bits. */
05d1431c
PA
3399 status = regcache_raw_read (regcache,
3400 tdep->ymm0h_regnum + regnum,
3401 raw_buf);
3402 if (status != REG_VALID)
3543a589
TT
3403 mark_value_bytes_unavailable (result_value, 16, 32);
3404 else
3405 memcpy (buf + 16, raw_buf, 16);
c131fcee 3406 }
01f9f808
MS
3407 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3408 {
3409 regnum -= tdep->ymm16_regnum;
3410 /* Extract (always little endian). Read lower 128bits. */
3411 status = regcache_raw_read (regcache,
3412 I387_XMM16_REGNUM (tdep) + regnum,
3413 raw_buf);
3414 if (status != REG_VALID)
3415 mark_value_bytes_unavailable (result_value, 0, 16);
3416 else
3417 memcpy (buf, raw_buf, 16);
3418 /* Read upper 128bits. */
3419 status = regcache_raw_read (regcache,
3420 tdep->ymm16h_regnum + regnum,
3421 raw_buf);
3422 if (status != REG_VALID)
3423 mark_value_bytes_unavailable (result_value, 16, 16);
3424 else
3425 memcpy (buf + 16, raw_buf, 16);
3426 }
c131fcee 3427 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3428 {
3429 int gpnum = regnum - tdep->ax_regnum;
3430
3431 /* Extract (always little endian). */
05d1431c
PA
3432 status = regcache_raw_read (regcache, gpnum, raw_buf);
3433 if (status != REG_VALID)
3543a589
TT
3434 mark_value_bytes_unavailable (result_value, 0,
3435 TYPE_LENGTH (value_type (result_value)));
3436 else
3437 memcpy (buf, raw_buf, 2);
1ba53b71
L
3438 }
3439 else if (i386_byte_regnum_p (gdbarch, regnum))
3440 {
1ba53b71
L
3441 int gpnum = regnum - tdep->al_regnum;
3442
3443 /* Extract (always little endian). We read both lower and
3444 upper registers. */
05d1431c
PA
3445 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3446 if (status != REG_VALID)
3543a589
TT
3447 mark_value_bytes_unavailable (result_value, 0,
3448 TYPE_LENGTH (value_type (result_value)));
3449 else if (gpnum >= 4)
1ba53b71
L
3450 memcpy (buf, raw_buf + 1, 1);
3451 else
3452 memcpy (buf, raw_buf, 1);
3453 }
3454 else
3455 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3456 }
3543a589
TT
3457}
3458
3459static struct value *
3460i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3461 struct regcache *regcache,
3462 int regnum)
3463{
3464 struct value *result;
3465
3466 result = allocate_value (register_type (gdbarch, regnum));
3467 VALUE_LVAL (result) = lval_register;
3468 VALUE_REGNUM (result) = regnum;
3469
3470 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3471
3543a589 3472 return result;
28fc6740
AC
3473}
3474
1ba53b71 3475void
28fc6740 3476i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3477 int regnum, const gdb_byte *buf)
28fc6740 3478{
975c21ab 3479 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3480
5716833c 3481 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3482 {
c86c27af
MK
3483 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3484
28fc6740 3485 /* Read ... */
1ba53b71 3486 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3487 /* ... Modify ... (always little endian). */
1ba53b71 3488 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3489 /* ... Write. */
1ba53b71 3490 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3491 }
3492 else
1ba53b71
L
3493 {
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3495
1dbcd68c
WT
3496 if (i386_bnd_regnum_p (gdbarch, regnum))
3497 {
3498 ULONGEST upper, lower;
3499 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3500 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3501
3502 /* New values from input value. */
3503 regnum -= tdep->bnd0_regnum;
3504 lower = extract_unsigned_integer (buf, size, byte_order);
3505 upper = extract_unsigned_integer (buf + size, size, byte_order);
3506
3507 /* Fetching register buffer. */
3508 regcache_raw_read (regcache,
3509 I387_BND0R_REGNUM (tdep) + regnum,
3510 raw_buf);
3511
3512 upper = ~upper;
3513
3514 /* Set register bits. */
3515 memcpy (raw_buf, &lower, 8);
3516 memcpy (raw_buf + 8, &upper, 8);
3517
3518
3519 regcache_raw_write (regcache,
3520 I387_BND0R_REGNUM (tdep) + regnum,
3521 raw_buf);
3522 }
01f9f808
MS
3523 else if (i386_k_regnum_p (gdbarch, regnum))
3524 {
3525 regnum -= tdep->k0_regnum;
3526
3527 regcache_raw_write (regcache,
3528 tdep->k0_regnum + regnum,
3529 buf);
3530 }
3531 else if (i386_zmm_regnum_p (gdbarch, regnum))
3532 {
3533 regnum -= tdep->zmm0_regnum;
3534
3535 if (regnum < num_lower_zmm_regs)
3536 {
3537 /* Write lower 128bits. */
3538 regcache_raw_write (regcache,
3539 I387_XMM0_REGNUM (tdep) + regnum,
3540 buf);
3541 /* Write upper 128bits. */
3542 regcache_raw_write (regcache,
3543 I387_YMM0_REGNUM (tdep) + regnum,
3544 buf + 16);
3545 }
3546 else
3547 {
3548 /* Write lower 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_XMM16_REGNUM (tdep) + regnum
3551 - num_lower_zmm_regs,
3552 buf);
3553 /* Write upper 128bits. */
3554 regcache_raw_write (regcache,
3555 I387_YMM16H_REGNUM (tdep) + regnum
3556 - num_lower_zmm_regs,
3557 buf + 16);
3558 }
3559 /* Write upper 256bits. */
3560 regcache_raw_write (regcache,
3561 tdep->zmm0h_regnum + regnum,
3562 buf + 32);
3563 }
1dbcd68c 3564 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3565 {
3566 regnum -= tdep->ymm0_regnum;
3567
3568 /* ... Write lower 128bits. */
3569 regcache_raw_write (regcache,
3570 I387_XMM0_REGNUM (tdep) + regnum,
3571 buf);
3572 /* ... Write upper 128bits. */
3573 regcache_raw_write (regcache,
3574 tdep->ymm0h_regnum + regnum,
3575 buf + 16);
3576 }
01f9f808
MS
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
3582 regcache_raw_write (regcache,
3583 I387_XMM16_REGNUM (tdep) + regnum,
3584 buf);
3585 /* ... Write upper 128bits. */
3586 regcache_raw_write (regcache,
3587 tdep->ymm16h_regnum + regnum,
3588 buf + 16);
3589 }
c131fcee 3590 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3591 {
3592 int gpnum = regnum - tdep->ax_regnum;
3593
3594 /* Read ... */
3595 regcache_raw_read (regcache, gpnum, raw_buf);
3596 /* ... Modify ... (always little endian). */
3597 memcpy (raw_buf, buf, 2);
3598 /* ... Write. */
3599 regcache_raw_write (regcache, gpnum, raw_buf);
3600 }
3601 else if (i386_byte_regnum_p (gdbarch, regnum))
3602 {
1ba53b71
L
3603 int gpnum = regnum - tdep->al_regnum;
3604
3605 /* Read ... We read both lower and upper registers. */
3606 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3607 /* ... Modify ... (always little endian). */
3608 if (gpnum >= 4)
3609 memcpy (raw_buf + 1, buf, 1);
3610 else
3611 memcpy (raw_buf, buf, 1);
3612 /* ... Write. */
3613 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3614 }
3615 else
3616 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3617 }
28fc6740 3618}
62e5fd57
MK
3619
3620/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3621
3622int
3623i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3624 struct agent_expr *ax, int regnum)
3625{
3626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3627
3628 if (i386_mmx_regnum_p (gdbarch, regnum))
3629 {
3630 /* MMX to FPU register mapping depends on current TOS. Let's just
3631 not care and collect everything... */
3632 int i;
3633
3634 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3635 for (i = 0; i < 8; i++)
3636 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3637 return 0;
3638 }
3639 else if (i386_bnd_regnum_p (gdbarch, regnum))
3640 {
3641 regnum -= tdep->bnd0_regnum;
3642 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3643 return 0;
3644 }
3645 else if (i386_k_regnum_p (gdbarch, regnum))
3646 {
3647 regnum -= tdep->k0_regnum;
3648 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3649 return 0;
3650 }
3651 else if (i386_zmm_regnum_p (gdbarch, regnum))
3652 {
3653 regnum -= tdep->zmm0_regnum;
3654 if (regnum < num_lower_zmm_regs)
3655 {
3656 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3657 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3658 }
3659 else
3660 {
3661 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3662 - num_lower_zmm_regs);
3663 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3664 - num_lower_zmm_regs);
3665 }
3666 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3667 return 0;
3668 }
3669 else if (i386_ymm_regnum_p (gdbarch, regnum))
3670 {
3671 regnum -= tdep->ymm0_regnum;
3672 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3673 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm16_regnum;
3679 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_word_regnum_p (gdbarch, regnum))
3684 {
3685 int gpnum = regnum - tdep->ax_regnum;
3686
3687 ax_reg_mask (ax, gpnum);
3688 return 0;
3689 }
3690 else if (i386_byte_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->al_regnum;
3693
3694 ax_reg_mask (ax, gpnum % 4);
3695 return 0;
3696 }
3697 else
3698 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3699 return 1;
3700}
ff2e87ac
AC
3701\f
3702
ff2e87ac
AC
3703/* Return the register number of the register allocated by GCC after
3704 REGNUM, or -1 if there is no such register. */
3705
3706static int
3707i386_next_regnum (int regnum)
3708{
3709 /* GCC allocates the registers in the order:
3710
3711 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3712
3713 Since storing a variable in %esp doesn't make any sense we return
3714 -1 for %ebp and for %esp itself. */
3715 static int next_regnum[] =
3716 {
3717 I386_EDX_REGNUM, /* Slot for %eax. */
3718 I386_EBX_REGNUM, /* Slot for %ecx. */
3719 I386_ECX_REGNUM, /* Slot for %edx. */
3720 I386_ESI_REGNUM, /* Slot for %ebx. */
3721 -1, -1, /* Slots for %esp and %ebp. */
3722 I386_EDI_REGNUM, /* Slot for %esi. */
3723 I386_EBP_REGNUM /* Slot for %edi. */
3724 };
3725
de5b9bb9 3726 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3727 return next_regnum[regnum];
28fc6740 3728
ff2e87ac
AC
3729 return -1;
3730}
3731
3732/* Return nonzero if a value of type TYPE stored in register REGNUM
3733 needs any special handling. */
d7a0d72c 3734
3a1e71e3 3735static int
1777feb0
MS
3736i386_convert_register_p (struct gdbarch *gdbarch,
3737 int regnum, struct type *type)
d7a0d72c 3738{
de5b9bb9
MK
3739 int len = TYPE_LENGTH (type);
3740
ff2e87ac
AC
3741 /* Values may be spread across multiple registers. Most debugging
3742 formats aren't expressive enough to specify the locations, so
3743 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3744 have a length that is a multiple of the word size, since GCC
3745 doesn't seem to put any other types into registers. */
3746 if (len > 4 && len % 4 == 0)
3747 {
3748 int last_regnum = regnum;
3749
3750 while (len > 4)
3751 {
3752 last_regnum = i386_next_regnum (last_regnum);
3753 len -= 4;
3754 }
3755
3756 if (last_regnum != -1)
3757 return 1;
3758 }
ff2e87ac 3759
0abe36f5 3760 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3761}
3762
ff2e87ac
AC
3763/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3764 return its contents in TO. */
ac27f131 3765
8dccd430 3766static int
ff2e87ac 3767i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3768 struct type *type, gdb_byte *to,
3769 int *optimizedp, int *unavailablep)
ac27f131 3770{
20a6ec49 3771 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3772 int len = TYPE_LENGTH (type);
de5b9bb9 3773
20a6ec49 3774 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3775 return i387_register_to_value (frame, regnum, type, to,
3776 optimizedp, unavailablep);
ff2e87ac 3777
fd35795f 3778 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3779
3780 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3781
de5b9bb9
MK
3782 while (len > 0)
3783 {
3784 gdb_assert (regnum != -1);
20a6ec49 3785 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3786
8dccd430
PA
3787 if (!get_frame_register_bytes (frame, regnum, 0,
3788 register_size (gdbarch, regnum),
3789 to, optimizedp, unavailablep))
3790 return 0;
3791
de5b9bb9
MK
3792 regnum = i386_next_regnum (regnum);
3793 len -= 4;
42835c2b 3794 to += 4;
de5b9bb9 3795 }
8dccd430
PA
3796
3797 *optimizedp = *unavailablep = 0;
3798 return 1;
ac27f131
MK
3799}
3800
ff2e87ac
AC
3801/* Write the contents FROM of a value of type TYPE into register
3802 REGNUM in frame FRAME. */
ac27f131 3803
3a1e71e3 3804static void
ff2e87ac 3805i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3806 struct type *type, const gdb_byte *from)
ac27f131 3807{
de5b9bb9 3808 int len = TYPE_LENGTH (type);
de5b9bb9 3809
20a6ec49 3810 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3811 {
d532c08f
MK
3812 i387_value_to_register (frame, regnum, type, from);
3813 return;
3814 }
3d261580 3815
fd35795f 3816 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3817
3818 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3819
de5b9bb9
MK
3820 while (len > 0)
3821 {
3822 gdb_assert (regnum != -1);
875f8d0e 3823 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3824
42835c2b 3825 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3826 regnum = i386_next_regnum (regnum);
3827 len -= 4;
42835c2b 3828 from += 4;
de5b9bb9 3829 }
ac27f131 3830}
ff2e87ac 3831\f
7fdafb5a
MK
3832/* Supply register REGNUM from the buffer specified by GREGS and LEN
3833 in the general-purpose register set REGSET to register cache
3834 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3835
20187ed5 3836void
473f17b0
MK
3837i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3838 int regnum, const void *gregs, size_t len)
3839{
09424cff
AA
3840 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3841 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3842 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3843 int i;
3844
1528345d 3845 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3846
3847 for (i = 0; i < tdep->gregset_num_regs; i++)
3848 {
3849 if ((regnum == i || regnum == -1)
3850 && tdep->gregset_reg_offset[i] != -1)
3851 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3852 }
3853}
3854
7fdafb5a
MK
3855/* Collect register REGNUM from the register cache REGCACHE and store
3856 it in the buffer specified by GREGS and LEN as described by the
3857 general-purpose register set REGSET. If REGNUM is -1, do this for
3858 all registers in REGSET. */
3859
ecc37a5a 3860static void
7fdafb5a
MK
3861i386_collect_gregset (const struct regset *regset,
3862 const struct regcache *regcache,
3863 int regnum, void *gregs, size_t len)
3864{
09424cff
AA
3865 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3866 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3867 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3868 int i;
3869
1528345d 3870 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3871
3872 for (i = 0; i < tdep->gregset_num_regs; i++)
3873 {
3874 if ((regnum == i || regnum == -1)
3875 && tdep->gregset_reg_offset[i] != -1)
3876 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3877 }
3878}
3879
3880/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3881 in the floating-point register set REGSET to register cache
3882 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3883
3884static void
3885i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3886 int regnum, const void *fpregs, size_t len)
3887{
09424cff
AA
3888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3889 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3890
66a72d25
MK
3891 if (len == I387_SIZEOF_FXSAVE)
3892 {
3893 i387_supply_fxsave (regcache, regnum, fpregs);
3894 return;
3895 }
3896
1528345d 3897 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3898 i387_supply_fsave (regcache, regnum, fpregs);
3899}
8446b36a 3900
2f305df1
MK
3901/* Collect register REGNUM from the register cache REGCACHE and store
3902 it in the buffer specified by FPREGS and LEN as described by the
3903 floating-point register set REGSET. If REGNUM is -1, do this for
3904 all registers in REGSET. */
7fdafb5a
MK
3905
3906static void
3907i386_collect_fpregset (const struct regset *regset,
3908 const struct regcache *regcache,
3909 int regnum, void *fpregs, size_t len)
3910{
09424cff
AA
3911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3913
3914 if (len == I387_SIZEOF_FXSAVE)
3915 {
3916 i387_collect_fxsave (regcache, regnum, fpregs);
3917 return;
3918 }
3919
1528345d 3920 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3921 i387_collect_fsave (regcache, regnum, fpregs);
3922}
3923
ecc37a5a
AA
3924/* Register set definitions. */
3925
3926const struct regset i386_gregset =
3927 {
3928 NULL, i386_supply_gregset, i386_collect_gregset
3929 };
3930
8f0435f7 3931const struct regset i386_fpregset =
ecc37a5a
AA
3932 {
3933 NULL, i386_supply_fpregset, i386_collect_fpregset
3934 };
3935
490496c3 3936/* Default iterator over core file register note sections. */
8446b36a 3937
490496c3
AA
3938void
3939i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3940 iterate_over_regset_sections_cb *cb,
3941 void *cb_data,
3942 const struct regcache *regcache)
8446b36a
MK
3943{
3944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3945
490496c3
AA
3946 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3947 if (tdep->sizeof_fpregset)
3948 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3949}
473f17b0 3950\f
fc338970 3951
fc338970 3952/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3953
3954CORE_ADDR
e17a4113
UW
3955i386_pe_skip_trampoline_code (struct frame_info *frame,
3956 CORE_ADDR pc, char *name)
c906108c 3957{
e17a4113
UW
3958 struct gdbarch *gdbarch = get_frame_arch (frame);
3959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3960
3961 /* jmp *(dest) */
3962 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3963 {
e17a4113
UW
3964 unsigned long indirect =
3965 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3966 struct minimal_symbol *indsym =
7cbd4a93 3967 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3968 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3969
c5aa993b 3970 if (symname)
c906108c 3971 {
61012eef
GB
3972 if (startswith (symname, "__imp_")
3973 || startswith (symname, "_imp_"))
e17a4113
UW
3974 return name ? 1 :
3975 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3976 }
3977 }
fc338970 3978 return 0; /* Not a trampoline. */
c906108c 3979}
fc338970
MK
3980\f
3981
10458914
DJ
3982/* Return whether the THIS_FRAME corresponds to a sigtramp
3983 routine. */
8201327c 3984
4bd207ef 3985int
10458914 3986i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3987{
10458914 3988 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3989 const char *name;
911bc6ee
MK
3990
3991 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3992 return (name && strcmp ("_sigtramp", name) == 0);
3993}
3994\f
3995
fc338970
MK
3996/* We have two flavours of disassembly. The machinery on this page
3997 deals with switching between those. */
c906108c
SS
3998
3999static int
a89aa300 4000i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4001{
5e3397bb
MK
4002 gdb_assert (disassembly_flavor == att_flavor
4003 || disassembly_flavor == intel_flavor);
4004
4005 /* FIXME: kettenis/20020915: Until disassembler_options is properly
4006 constified, cast to prevent a compiler warning. */
4007 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
4008
4009 return print_insn_i386 (pc, info);
7a292a7a 4010}
fc338970 4011\f
3ce1502b 4012
8201327c
MK
4013/* There are a few i386 architecture variants that differ only
4014 slightly from the generic i386 target. For now, we don't give them
4015 their own source file, but include them here. As a consequence,
4016 they'll always be included. */
3ce1502b 4017
8201327c 4018/* System V Release 4 (SVR4). */
3ce1502b 4019
10458914
DJ
4020/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4021 routine. */
911bc6ee 4022
8201327c 4023static int
10458914 4024i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4025{
10458914 4026 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4027 const char *name;
911bc6ee 4028
05b4bd79 4029 /* The origin of these symbols is currently unknown. */
911bc6ee 4030 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4031 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4032 || strcmp ("sigvechandler", name) == 0));
4033}
d2a7c97a 4034
10458914
DJ
4035/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4036 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4037
3a1e71e3 4038static CORE_ADDR
10458914 4039i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4040{
e17a4113
UW
4041 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4042 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4043 gdb_byte buf[4];
acd5c798 4044 CORE_ADDR sp;
3ce1502b 4045
10458914 4046 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4047 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4048
e17a4113 4049 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4050}
55aa24fb
SDJ
4051
4052\f
4053
4054/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4055 gdbarch.h. */
4056
4057int
4058i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4059{
4060 return (*s == '$' /* Literal number. */
4061 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4062 || (*s == '(' && s[1] == '%') /* Register indirection. */
4063 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4064}
4065
5acfdbae
SDJ
4066/* Helper function for i386_stap_parse_special_token.
4067
4068 This function parses operands of the form `-8+3+1(%rbp)', which
4069 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4070
4071 Return 1 if the operand was parsed successfully, zero
4072 otherwise. */
4073
4074static int
4075i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4076 struct stap_parse_info *p)
4077{
4078 const char *s = p->arg;
4079
4080 if (isdigit (*s) || *s == '-' || *s == '+')
4081 {
4082 int got_minus[3];
4083 int i;
4084 long displacements[3];
4085 const char *start;
4086 char *regname;
4087 int len;
4088 struct stoken str;
4089 char *endp;
4090
4091 got_minus[0] = 0;
4092 if (*s == '+')
4093 ++s;
4094 else if (*s == '-')
4095 {
4096 ++s;
4097 got_minus[0] = 1;
4098 }
4099
d7b30f67
SDJ
4100 if (!isdigit ((unsigned char) *s))
4101 return 0;
4102
5acfdbae
SDJ
4103 displacements[0] = strtol (s, &endp, 10);
4104 s = endp;
4105
4106 if (*s != '+' && *s != '-')
4107 {
4108 /* We are not dealing with a triplet. */
4109 return 0;
4110 }
4111
4112 got_minus[1] = 0;
4113 if (*s == '+')
4114 ++s;
4115 else
4116 {
4117 ++s;
4118 got_minus[1] = 1;
4119 }
4120
d7b30f67
SDJ
4121 if (!isdigit ((unsigned char) *s))
4122 return 0;
4123
5acfdbae
SDJ
4124 displacements[1] = strtol (s, &endp, 10);
4125 s = endp;
4126
4127 if (*s != '+' && *s != '-')
4128 {
4129 /* We are not dealing with a triplet. */
4130 return 0;
4131 }
4132
4133 got_minus[2] = 0;
4134 if (*s == '+')
4135 ++s;
4136 else
4137 {
4138 ++s;
4139 got_minus[2] = 1;
4140 }
4141
d7b30f67
SDJ
4142 if (!isdigit ((unsigned char) *s))
4143 return 0;
4144
5acfdbae
SDJ
4145 displacements[2] = strtol (s, &endp, 10);
4146 s = endp;
4147
4148 if (*s != '(' || s[1] != '%')
4149 return 0;
4150
4151 s += 2;
4152 start = s;
4153
4154 while (isalnum (*s))
4155 ++s;
4156
4157 if (*s++ != ')')
4158 return 0;
4159
d7b30f67 4160 len = s - start - 1;
224c3ddb 4161 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4162
4163 strncpy (regname, start, len);
4164 regname[len] = '\0';
4165
4166 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4167 error (_("Invalid register name `%s' on expression `%s'."),
4168 regname, p->saved_arg);
4169
4170 for (i = 0; i < 3; i++)
4171 {
410a0ff2
SDJ
4172 write_exp_elt_opcode (&p->pstate, OP_LONG);
4173 write_exp_elt_type
4174 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4175 write_exp_elt_longcst (&p->pstate, displacements[i]);
4176 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4177 if (got_minus[i])
410a0ff2 4178 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4179 }
4180
410a0ff2 4181 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4182 str.ptr = regname;
4183 str.length = len;
410a0ff2
SDJ
4184 write_exp_string (&p->pstate, str);
4185 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4186
410a0ff2
SDJ
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4188 write_exp_elt_type (&p->pstate,
4189 builtin_type (gdbarch)->builtin_data_ptr);
4190 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4191
410a0ff2
SDJ
4192 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4193 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4194 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4195
410a0ff2
SDJ
4196 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4197 write_exp_elt_type (&p->pstate,
4198 lookup_pointer_type (p->arg_type));
4199 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4200
410a0ff2 4201 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4202
4203 p->arg = s;
4204
4205 return 1;
4206 }
4207
4208 return 0;
4209}
4210
4211/* Helper function for i386_stap_parse_special_token.
4212
4213 This function parses operands of the form `register base +
4214 (register index * size) + offset', as represented in
4215 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4216
4217 Return 1 if the operand was parsed successfully, zero
4218 otherwise. */
4219
4220static int
4221i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4222 struct stap_parse_info *p)
4223{
4224 const char *s = p->arg;
4225
4226 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4227 {
4228 int offset_minus = 0;
4229 long offset = 0;
4230 int size_minus = 0;
4231 long size = 0;
4232 const char *start;
4233 char *base;
4234 int len_base;
4235 char *index;
4236 int len_index;
4237 struct stoken base_token, index_token;
4238
4239 if (*s == '+')
4240 ++s;
4241 else if (*s == '-')
4242 {
4243 ++s;
4244 offset_minus = 1;
4245 }
4246
4247 if (offset_minus && !isdigit (*s))
4248 return 0;
4249
4250 if (isdigit (*s))
4251 {
4252 char *endp;
4253
4254 offset = strtol (s, &endp, 10);
4255 s = endp;
4256 }
4257
4258 if (*s != '(' || s[1] != '%')
4259 return 0;
4260
4261 s += 2;
4262 start = s;
4263
4264 while (isalnum (*s))
4265 ++s;
4266
4267 if (*s != ',' || s[1] != '%')
4268 return 0;
4269
4270 len_base = s - start;
224c3ddb 4271 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4272 strncpy (base, start, len_base);
4273 base[len_base] = '\0';
4274
4275 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4276 error (_("Invalid register name `%s' on expression `%s'."),
4277 base, p->saved_arg);
4278
4279 s += 2;
4280 start = s;
4281
4282 while (isalnum (*s))
4283 ++s;
4284
4285 len_index = s - start;
224c3ddb 4286 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4287 strncpy (index, start, len_index);
4288 index[len_index] = '\0';
4289
4290 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4291 error (_("Invalid register name `%s' on expression `%s'."),
4292 index, p->saved_arg);
4293
4294 if (*s != ',' && *s != ')')
4295 return 0;
4296
4297 if (*s == ',')
4298 {
4299 char *endp;
4300
4301 ++s;
4302 if (*s == '+')
4303 ++s;
4304 else if (*s == '-')
4305 {
4306 ++s;
4307 size_minus = 1;
4308 }
4309
4310 size = strtol (s, &endp, 10);
4311 s = endp;
4312
4313 if (*s != ')')
4314 return 0;
4315 }
4316
4317 ++s;
4318
4319 if (offset)
4320 {
410a0ff2
SDJ
4321 write_exp_elt_opcode (&p->pstate, OP_LONG);
4322 write_exp_elt_type (&p->pstate,
4323 builtin_type (gdbarch)->builtin_long);
4324 write_exp_elt_longcst (&p->pstate, offset);
4325 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4326 if (offset_minus)
410a0ff2 4327 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4328 }
4329
410a0ff2 4330 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4331 base_token.ptr = base;
4332 base_token.length = len_base;
410a0ff2
SDJ
4333 write_exp_string (&p->pstate, base_token);
4334 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4335
4336 if (offset)
410a0ff2 4337 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4338
410a0ff2 4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4340 index_token.ptr = index;
4341 index_token.length = len_index;
410a0ff2
SDJ
4342 write_exp_string (&p->pstate, index_token);
4343 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4344
4345 if (size)
4346 {
410a0ff2
SDJ
4347 write_exp_elt_opcode (&p->pstate, OP_LONG);
4348 write_exp_elt_type (&p->pstate,
4349 builtin_type (gdbarch)->builtin_long);
4350 write_exp_elt_longcst (&p->pstate, size);
4351 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4352 if (size_minus)
410a0ff2
SDJ
4353 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4354 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4355 }
4356
410a0ff2 4357 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4358
410a0ff2
SDJ
4359 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4360 write_exp_elt_type (&p->pstate,
4361 lookup_pointer_type (p->arg_type));
4362 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4363
410a0ff2 4364 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4365
4366 p->arg = s;
4367
4368 return 1;
4369 }
4370
4371 return 0;
4372}
4373
55aa24fb
SDJ
4374/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4375 gdbarch.h. */
4376
4377int
4378i386_stap_parse_special_token (struct gdbarch *gdbarch,
4379 struct stap_parse_info *p)
4380{
55aa24fb
SDJ
4381 /* In order to parse special tokens, we use a state-machine that go
4382 through every known token and try to get a match. */
4383 enum
4384 {
4385 TRIPLET,
4386 THREE_ARG_DISPLACEMENT,
4387 DONE
570dc176
TT
4388 };
4389 int current_state;
55aa24fb
SDJ
4390
4391 current_state = TRIPLET;
4392
4393 /* The special tokens to be parsed here are:
4394
4395 - `register base + (register index * size) + offset', as represented
4396 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4397
4398 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4399 `*(-8 + 3 - 1 + (void *) $eax)'. */
4400
4401 while (current_state != DONE)
4402 {
55aa24fb
SDJ
4403 switch (current_state)
4404 {
4405 case TRIPLET:
5acfdbae
SDJ
4406 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4407 return 1;
4408 break;
4409
55aa24fb 4410 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4411 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4412 return 1;
4413 break;
55aa24fb
SDJ
4414 }
4415
4416 /* Advancing to the next state. */
4417 ++current_state;
4418 }
4419
4420 return 0;
4421}
4422
8201327c 4423\f
3ce1502b 4424
ac04f72b
TT
4425/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4426 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4427
4428static const char *
4429i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4430{
4431 return "(x86_64|i.86)";
4432}
4433
4434\f
4435
8201327c 4436/* Generic ELF. */
d2a7c97a 4437
8201327c
MK
4438void
4439i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4440{
05c0465e
SDJ
4441 static const char *const stap_integer_prefixes[] = { "$", NULL };
4442 static const char *const stap_register_prefixes[] = { "%", NULL };
4443 static const char *const stap_register_indirection_prefixes[] = { "(",
4444 NULL };
4445 static const char *const stap_register_indirection_suffixes[] = { ")",
4446 NULL };
4447
c4fc7f1b
MK
4448 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4449 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4450
4451 /* Registering SystemTap handlers. */
05c0465e
SDJ
4452 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4453 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4454 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4455 stap_register_indirection_prefixes);
4456 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4457 stap_register_indirection_suffixes);
55aa24fb
SDJ
4458 set_gdbarch_stap_is_single_operand (gdbarch,
4459 i386_stap_is_single_operand);
4460 set_gdbarch_stap_parse_special_token (gdbarch,
4461 i386_stap_parse_special_token);
ac04f72b
TT
4462
4463 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8201327c 4464}
3ce1502b 4465
8201327c 4466/* System V Release 4 (SVR4). */
3ce1502b 4467
8201327c
MK
4468void
4469i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470{
4471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4472
8201327c
MK
4473 /* System V Release 4 uses ELF. */
4474 i386_elf_init_abi (info, gdbarch);
3ce1502b 4475
dfe01d39 4476 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4477 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4478
911bc6ee 4479 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4480 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4481 tdep->sc_pc_offset = 36 + 14 * 4;
4482 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4483
8201327c 4484 tdep->jb_pc_offset = 20;
3ce1502b
MK
4485}
4486
8201327c 4487/* DJGPP. */
3ce1502b 4488
3a1e71e3 4489static void
8201327c 4490i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4491{
8201327c 4492 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4493
911bc6ee
MK
4494 /* DJGPP doesn't have any special frames for signal handlers. */
4495 tdep->sigtramp_p = NULL;
3ce1502b 4496
8201327c 4497 tdep->jb_pc_offset = 36;
15430fc0
EZ
4498
4499 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4500 if (! tdesc_has_registers (info.target_desc))
4501 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4502
4503 /* Native compiler is GCC, which uses the SVR4 register numbering
4504 even in COFF and STABS. See the comment in i386_gdbarch_init,
4505 before the calls to set_gdbarch_stab_reg_to_regnum and
4506 set_gdbarch_sdb_reg_to_regnum. */
4507 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4508 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4509
4510 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
ac04f72b
TT
4511
4512 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
3ce1502b 4513}
8201327c 4514\f
2acceee2 4515
38c968cf
AC
4516/* i386 register groups. In addition to the normal groups, add "mmx"
4517 and "sse". */
4518
4519static struct reggroup *i386_sse_reggroup;
4520static struct reggroup *i386_mmx_reggroup;
4521
4522static void
4523i386_init_reggroups (void)
4524{
4525 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4526 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4527}
4528
4529static void
4530i386_add_reggroups (struct gdbarch *gdbarch)
4531{
4532 reggroup_add (gdbarch, i386_sse_reggroup);
4533 reggroup_add (gdbarch, i386_mmx_reggroup);
4534 reggroup_add (gdbarch, general_reggroup);
4535 reggroup_add (gdbarch, float_reggroup);
4536 reggroup_add (gdbarch, all_reggroup);
4537 reggroup_add (gdbarch, save_reggroup);
4538 reggroup_add (gdbarch, restore_reggroup);
4539 reggroup_add (gdbarch, vector_reggroup);
4540 reggroup_add (gdbarch, system_reggroup);
4541}
4542
4543int
4544i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4545 struct reggroup *group)
4546{
c131fcee
L
4547 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4548 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4549 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4550 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4551 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4552 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4553
1ba53b71
L
4554 /* Don't include pseudo registers, except for MMX, in any register
4555 groups. */
c131fcee 4556 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4557 return 0;
4558
c131fcee 4559 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4560 return 0;
4561
c131fcee 4562 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4563 return 0;
4564
4565 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4566 if (group == i386_mmx_reggroup)
4567 return mmx_regnum_p;
1ba53b71 4568
51547df6 4569 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4570 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4571 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4572 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4573 if (group == i386_sse_reggroup)
01f9f808 4574 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4575
4576 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4577 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4578 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4579
22049425
MS
4580 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4581 == X86_XSTATE_AVX_AVX512_MASK);
4582 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4583 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4584 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4585 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4586
38c968cf 4587 if (group == vector_reggroup)
c131fcee 4588 return (mmx_regnum_p
01f9f808
MS
4589 || (zmm_regnum_p && avx512_p)
4590 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4591 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4592 || mxcsr_regnum_p);
1ba53b71
L
4593
4594 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4595 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4596 if (group == float_reggroup)
4597 return fp_regnum_p;
1ba53b71 4598
c131fcee
L
4599 /* For "info reg all", don't include upper YMM registers nor XMM
4600 registers when AVX is supported. */
4601 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4602 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4603 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4604 if (group == all_reggroup
01f9f808
MS
4605 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4606 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4607 || ymmh_regnum_p
4608 || ymmh_avx512_regnum_p
4609 || zmmh_regnum_p))
c131fcee
L
4610 return 0;
4611
1dbcd68c
WT
4612 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4613 if (group == all_reggroup
df7e5265 4614 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4615 return bnd_regnum_p;
4616
4617 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4618 if (group == all_reggroup
df7e5265 4619 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4620 return 0;
4621
4622 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4623 if (group == all_reggroup
df7e5265 4624 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4625 return mpx_ctrl_regnum_p;
4626
38c968cf 4627 if (group == general_reggroup)
1ba53b71
L
4628 return (!fp_regnum_p
4629 && !mmx_regnum_p
c131fcee
L
4630 && !mxcsr_regnum_p
4631 && !xmm_regnum_p
01f9f808 4632 && !xmm_avx512_regnum_p
c131fcee 4633 && !ymm_regnum_p
1dbcd68c 4634 && !ymmh_regnum_p
01f9f808
MS
4635 && !ymm_avx512_regnum_p
4636 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4637 && !bndr_regnum_p
4638 && !bnd_regnum_p
01f9f808
MS
4639 && !mpx_ctrl_regnum_p
4640 && !zmm_regnum_p
51547df6
MS
4641 && !zmmh_regnum_p
4642 && !pkru_regnum_p);
acd5c798 4643
38c968cf
AC
4644 return default_register_reggroup_p (gdbarch, regnum, group);
4645}
38c968cf 4646\f
acd5c798 4647
f837910f
MK
4648/* Get the ARGIth function argument for the current function. */
4649
42c466d7 4650static CORE_ADDR
143985b7
AF
4651i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4652 struct type *type)
4653{
e17a4113
UW
4654 struct gdbarch *gdbarch = get_frame_arch (frame);
4655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4656 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4657 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4658}
4659
7ad10968
HZ
4660#define PREFIX_REPZ 0x01
4661#define PREFIX_REPNZ 0x02
4662#define PREFIX_LOCK 0x04
4663#define PREFIX_DATA 0x08
4664#define PREFIX_ADDR 0x10
473f17b0 4665
7ad10968
HZ
4666/* operand size */
4667enum
4668{
4669 OT_BYTE = 0,
4670 OT_WORD,
4671 OT_LONG,
cf648174 4672 OT_QUAD,
a3c4230a 4673 OT_DQUAD,
7ad10968 4674};
473f17b0 4675
7ad10968
HZ
4676/* i386 arith/logic operations */
4677enum
4678{
4679 OP_ADDL,
4680 OP_ORL,
4681 OP_ADCL,
4682 OP_SBBL,
4683 OP_ANDL,
4684 OP_SUBL,
4685 OP_XORL,
4686 OP_CMPL,
4687};
5716833c 4688
7ad10968
HZ
4689struct i386_record_s
4690{
cf648174 4691 struct gdbarch *gdbarch;
7ad10968 4692 struct regcache *regcache;
df61f520 4693 CORE_ADDR orig_addr;
7ad10968
HZ
4694 CORE_ADDR addr;
4695 int aflag;
4696 int dflag;
4697 int override;
4698 uint8_t modrm;
4699 uint8_t mod, reg, rm;
4700 int ot;
cf648174
HZ
4701 uint8_t rex_x;
4702 uint8_t rex_b;
4703 int rip_offset;
4704 int popl_esp_hack;
4705 const int *regmap;
7ad10968 4706};
5716833c 4707
99c1624c
PA
4708/* Parse the "modrm" part of the memory address irp->addr points at.
4709 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4710
7ad10968
HZ
4711static int
4712i386_record_modrm (struct i386_record_s *irp)
4713{
cf648174 4714 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4715
4ffa4fc7
PA
4716 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4717 return -1;
4718
7ad10968
HZ
4719 irp->addr++;
4720 irp->mod = (irp->modrm >> 6) & 3;
4721 irp->reg = (irp->modrm >> 3) & 7;
4722 irp->rm = irp->modrm & 7;
5716833c 4723
7ad10968
HZ
4724 return 0;
4725}
d2a7c97a 4726
99c1624c
PA
4727/* Extract the memory address that the current instruction writes to,
4728 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4729
7ad10968 4730static int
cf648174 4731i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4732{
cf648174 4733 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4734 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4735 gdb_byte buf[4];
4736 ULONGEST offset64;
21d0e8a4 4737
7ad10968 4738 *addr = 0;
1e87984a 4739 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4740 {
1e87984a 4741 /* 32/64 bits */
7ad10968
HZ
4742 int havesib = 0;
4743 uint8_t scale = 0;
648d0c8b 4744 uint8_t byte;
7ad10968
HZ
4745 uint8_t index = 0;
4746 uint8_t base = irp->rm;
896fb97d 4747
7ad10968
HZ
4748 if (base == 4)
4749 {
4750 havesib = 1;
4ffa4fc7
PA
4751 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4752 return -1;
7ad10968 4753 irp->addr++;
648d0c8b
MS
4754 scale = (byte >> 6) & 3;
4755 index = ((byte >> 3) & 7) | irp->rex_x;
4756 base = (byte & 7);
7ad10968 4757 }
cf648174 4758 base |= irp->rex_b;
21d0e8a4 4759
7ad10968
HZ
4760 switch (irp->mod)
4761 {
4762 case 0:
4763 if ((base & 7) == 5)
4764 {
4765 base = 0xff;
4ffa4fc7
PA
4766 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4767 return -1;
7ad10968 4768 irp->addr += 4;
60a1502a 4769 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4770 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4771 *addr += irp->addr + irp->rip_offset;
7ad10968 4772 }
7ad10968
HZ
4773 break;
4774 case 1:
4ffa4fc7
PA
4775 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4776 return -1;
7ad10968 4777 irp->addr++;
60a1502a 4778 *addr = (int8_t) buf[0];
7ad10968
HZ
4779 break;
4780 case 2:
4ffa4fc7
PA
4781 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4782 return -1;
60a1502a 4783 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4784 irp->addr += 4;
4785 break;
4786 }
356a6b3e 4787
60a1502a 4788 offset64 = 0;
7ad10968 4789 if (base != 0xff)
cf648174
HZ
4790 {
4791 if (base == 4 && irp->popl_esp_hack)
4792 *addr += irp->popl_esp_hack;
4793 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4794 &offset64);
7ad10968 4795 }
cf648174
HZ
4796 if (irp->aflag == 2)
4797 {
60a1502a 4798 *addr += offset64;
cf648174
HZ
4799 }
4800 else
60a1502a 4801 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4802
7ad10968
HZ
4803 if (havesib && (index != 4 || scale != 0))
4804 {
cf648174 4805 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4806 &offset64);
cf648174 4807 if (irp->aflag == 2)
60a1502a 4808 *addr += offset64 << scale;
cf648174 4809 else
60a1502a 4810 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4811 }
e85596e0
L
4812
4813 if (!irp->aflag)
4814 {
4815 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4816 address from 32-bit to 64-bit. */
4817 *addr = (uint32_t) *addr;
4818 }
7ad10968
HZ
4819 }
4820 else
4821 {
4822 /* 16 bits */
4823 switch (irp->mod)
4824 {
4825 case 0:
4826 if (irp->rm == 6)
4827 {
4ffa4fc7
PA
4828 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4829 return -1;
7ad10968 4830 irp->addr += 2;
60a1502a 4831 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4832 irp->rm = 0;
4833 goto no_rm;
4834 }
7ad10968
HZ
4835 break;
4836 case 1:
4ffa4fc7
PA
4837 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4838 return -1;
7ad10968 4839 irp->addr++;
60a1502a 4840 *addr = (int8_t) buf[0];
7ad10968
HZ
4841 break;
4842 case 2:
4ffa4fc7
PA
4843 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4844 return -1;
7ad10968 4845 irp->addr += 2;
60a1502a 4846 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4847 break;
4848 }
c4fc7f1b 4849
7ad10968
HZ
4850 switch (irp->rm)
4851 {
4852 case 0:
cf648174
HZ
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4857 regcache_raw_read_unsigned (irp->regcache,
4858 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4859 &offset64);
4860 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4861 break;
4862 case 1:
cf648174
HZ
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4867 regcache_raw_read_unsigned (irp->regcache,
4868 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4869 &offset64);
4870 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4871 break;
4872 case 2:
cf648174
HZ
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4875 &offset64);
4876 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4881 break;
4882 case 3:
cf648174
HZ
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4891 break;
4892 case 4:
cf648174
HZ
4893 regcache_raw_read_unsigned (irp->regcache,
4894 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4895 &offset64);
4896 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4897 break;
4898 case 5:
cf648174
HZ
4899 regcache_raw_read_unsigned (irp->regcache,
4900 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4901 &offset64);
4902 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4903 break;
4904 case 6:
cf648174
HZ
4905 regcache_raw_read_unsigned (irp->regcache,
4906 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4907 &offset64);
4908 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4909 break;
4910 case 7:
cf648174
HZ
4911 regcache_raw_read_unsigned (irp->regcache,
4912 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4913 &offset64);
4914 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4915 break;
4916 }
4917 *addr &= 0xffff;
4918 }
c4fc7f1b 4919
01fe1b41 4920 no_rm:
7ad10968
HZ
4921 return 0;
4922}
c4fc7f1b 4923
99c1624c
PA
4924/* Record the address and contents of the memory that will be changed
4925 by the current instruction. Return -1 if something goes wrong, 0
4926 otherwise. */
356a6b3e 4927
7ad10968
HZ
4928static int
4929i386_record_lea_modrm (struct i386_record_s *irp)
4930{
cf648174
HZ
4931 struct gdbarch *gdbarch = irp->gdbarch;
4932 uint64_t addr;
356a6b3e 4933
d7877f7e 4934 if (irp->override >= 0)
7ad10968 4935 {
25ea693b 4936 if (record_full_memory_query)
bb08c432 4937 {
651ce16a 4938 if (yquery (_("\
bb08c432
HZ
4939Process record ignores the memory change of instruction at address %s\n\
4940because it can't get the value of the segment register.\n\
4941Do you want to stop the program?"),
651ce16a
PA
4942 paddress (gdbarch, irp->orig_addr)))
4943 return -1;
bb08c432
HZ
4944 }
4945
7ad10968
HZ
4946 return 0;
4947 }
61113f8b 4948
7ad10968
HZ
4949 if (i386_record_lea_modrm_addr (irp, &addr))
4950 return -1;
96297dab 4951
25ea693b 4952 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4953 return -1;
a62cc96e 4954
7ad10968
HZ
4955 return 0;
4956}
b6197528 4957
99c1624c
PA
4958/* Record the effects of a push operation. Return -1 if something
4959 goes wrong, 0 otherwise. */
cf648174
HZ
4960
4961static int
4962i386_record_push (struct i386_record_s *irp, int size)
4963{
648d0c8b 4964 ULONGEST addr;
cf648174 4965
25ea693b
MM
4966 if (record_full_arch_list_add_reg (irp->regcache,
4967 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4968 return -1;
4969 regcache_raw_read_unsigned (irp->regcache,
4970 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4971 &addr);
25ea693b 4972 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4973 return -1;
4974
4975 return 0;
4976}
4977
0289bdd7
MS
4978
4979/* Defines contents to record. */
4980#define I386_SAVE_FPU_REGS 0xfffd
4981#define I386_SAVE_FPU_ENV 0xfffe
4982#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4983
99c1624c
PA
4984/* Record the values of the floating point registers which will be
4985 changed by the current instruction. Returns -1 if something is
4986 wrong, 0 otherwise. */
0289bdd7
MS
4987
4988static int i386_record_floats (struct gdbarch *gdbarch,
4989 struct i386_record_s *ir,
4990 uint32_t iregnum)
4991{
4992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4993 int i;
4994
4995 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4996 happen. Currently we store st0-st7 registers, but we need not store all
4997 registers all the time, in future we use ftag register and record only
4998 those who are not marked as an empty. */
4999
5000 if (I386_SAVE_FPU_REGS == iregnum)
5001 {
5002 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5003 {
25ea693b 5004 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5005 return -1;
5006 }
5007 }
5008 else if (I386_SAVE_FPU_ENV == iregnum)
5009 {
5010 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5011 {
25ea693b 5012 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5013 return -1;
5014 }
5015 }
5016 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5017 {
5018 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
25ea693b 5020 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5021 return -1;
5022 }
5023 }
5024 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5025 (iregnum <= I387_FOP_REGNUM (tdep)))
5026 {
25ea693b 5027 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5028 return -1;
5029 }
5030 else
5031 {
5032 /* Parameter error. */
5033 return -1;
5034 }
5035 if(I386_SAVE_FPU_ENV != iregnum)
5036 {
5037 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5038 {
25ea693b 5039 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5040 return -1;
5041 }
5042 }
5043 return 0;
5044}
5045
99c1624c
PA
5046/* Parse the current instruction, and record the values of the
5047 registers and memory that will be changed by the current
5048 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5049
25ea693b
MM
5050#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5051 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5052
a6b808b4 5053int
7ad10968 5054i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5055 CORE_ADDR input_addr)
7ad10968 5056{
60a1502a 5057 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5058 int prefixes = 0;
580879fc 5059 int regnum = 0;
425b824a 5060 uint32_t opcode;
f4644a3f 5061 uint8_t opcode8;
648d0c8b 5062 ULONGEST addr;
975c21ab 5063 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5064 struct i386_record_s ir;
0289bdd7 5065 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5066 uint8_t rex_w = -1;
5067 uint8_t rex_r = 0;
7ad10968 5068
8408d274 5069 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5070 ir.regcache = regcache;
648d0c8b
MS
5071 ir.addr = input_addr;
5072 ir.orig_addr = input_addr;
7ad10968
HZ
5073 ir.aflag = 1;
5074 ir.dflag = 1;
cf648174
HZ
5075 ir.override = -1;
5076 ir.popl_esp_hack = 0;
a3c4230a 5077 ir.regmap = tdep->record_regmap;
cf648174 5078 ir.gdbarch = gdbarch;
7ad10968
HZ
5079
5080 if (record_debug > 1)
5081 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5082 "addr = %s\n",
5083 paddress (gdbarch, ir.addr));
7ad10968
HZ
5084
5085 /* prefixes */
5086 while (1)
5087 {
4ffa4fc7
PA
5088 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5089 return -1;
7ad10968 5090 ir.addr++;
425b824a 5091 switch (opcode8) /* Instruction prefixes */
7ad10968 5092 {
01fe1b41 5093 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5094 prefixes |= PREFIX_REPZ;
5095 break;
01fe1b41 5096 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5097 prefixes |= PREFIX_REPNZ;
5098 break;
01fe1b41 5099 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5100 prefixes |= PREFIX_LOCK;
5101 break;
01fe1b41 5102 case CS_PREFIX_OPCODE:
cf648174 5103 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5104 break;
01fe1b41 5105 case SS_PREFIX_OPCODE:
cf648174 5106 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5107 break;
01fe1b41 5108 case DS_PREFIX_OPCODE:
cf648174 5109 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5110 break;
01fe1b41 5111 case ES_PREFIX_OPCODE:
cf648174 5112 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5113 break;
01fe1b41 5114 case FS_PREFIX_OPCODE:
cf648174 5115 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5116 break;
01fe1b41 5117 case GS_PREFIX_OPCODE:
cf648174 5118 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5119 break;
01fe1b41 5120 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5121 prefixes |= PREFIX_DATA;
5122 break;
01fe1b41 5123 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5124 prefixes |= PREFIX_ADDR;
5125 break;
d691bec7
MS
5126 case 0x40: /* i386 inc %eax */
5127 case 0x41: /* i386 inc %ecx */
5128 case 0x42: /* i386 inc %edx */
5129 case 0x43: /* i386 inc %ebx */
5130 case 0x44: /* i386 inc %esp */
5131 case 0x45: /* i386 inc %ebp */
5132 case 0x46: /* i386 inc %esi */
5133 case 0x47: /* i386 inc %edi */
5134 case 0x48: /* i386 dec %eax */
5135 case 0x49: /* i386 dec %ecx */
5136 case 0x4a: /* i386 dec %edx */
5137 case 0x4b: /* i386 dec %ebx */
5138 case 0x4c: /* i386 dec %esp */
5139 case 0x4d: /* i386 dec %ebp */
5140 case 0x4e: /* i386 dec %esi */
5141 case 0x4f: /* i386 dec %edi */
5142 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5143 {
5144 /* REX */
425b824a
MS
5145 rex_w = (opcode8 >> 3) & 1;
5146 rex_r = (opcode8 & 0x4) << 1;
5147 ir.rex_x = (opcode8 & 0x2) << 2;
5148 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5149 }
d691bec7
MS
5150 else /* 32 bit target */
5151 goto out_prefixes;
cf648174 5152 break;
7ad10968
HZ
5153 default:
5154 goto out_prefixes;
5155 break;
5156 }
5157 }
01fe1b41 5158 out_prefixes:
cf648174
HZ
5159 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5160 {
5161 ir.dflag = 2;
5162 }
5163 else
5164 {
5165 if (prefixes & PREFIX_DATA)
5166 ir.dflag ^= 1;
5167 }
7ad10968
HZ
5168 if (prefixes & PREFIX_ADDR)
5169 ir.aflag ^= 1;
cf648174
HZ
5170 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5171 ir.aflag = 2;
7ad10968 5172
1777feb0 5173 /* Now check op code. */
425b824a 5174 opcode = (uint32_t) opcode8;
01fe1b41 5175 reswitch:
7ad10968
HZ
5176 switch (opcode)
5177 {
5178 case 0x0f:
4ffa4fc7
PA
5179 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5180 return -1;
7ad10968 5181 ir.addr++;
a3c4230a 5182 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5183 goto reswitch;
5184 break;
93924b6b 5185
a38bba38 5186 case 0x00: /* arith & logic */
7ad10968
HZ
5187 case 0x01:
5188 case 0x02:
5189 case 0x03:
5190 case 0x04:
5191 case 0x05:
5192 case 0x08:
5193 case 0x09:
5194 case 0x0a:
5195 case 0x0b:
5196 case 0x0c:
5197 case 0x0d:
5198 case 0x10:
5199 case 0x11:
5200 case 0x12:
5201 case 0x13:
5202 case 0x14:
5203 case 0x15:
5204 case 0x18:
5205 case 0x19:
5206 case 0x1a:
5207 case 0x1b:
5208 case 0x1c:
5209 case 0x1d:
5210 case 0x20:
5211 case 0x21:
5212 case 0x22:
5213 case 0x23:
5214 case 0x24:
5215 case 0x25:
5216 case 0x28:
5217 case 0x29:
5218 case 0x2a:
5219 case 0x2b:
5220 case 0x2c:
5221 case 0x2d:
5222 case 0x30:
5223 case 0x31:
5224 case 0x32:
5225 case 0x33:
5226 case 0x34:
5227 case 0x35:
5228 case 0x38:
5229 case 0x39:
5230 case 0x3a:
5231 case 0x3b:
5232 case 0x3c:
5233 case 0x3d:
5234 if (((opcode >> 3) & 7) != OP_CMPL)
5235 {
5236 if ((opcode & 1) == 0)
5237 ir.ot = OT_BYTE;
5238 else
5239 ir.ot = ir.dflag + OT_WORD;
93924b6b 5240
7ad10968
HZ
5241 switch ((opcode >> 1) & 3)
5242 {
a38bba38 5243 case 0: /* OP Ev, Gv */
7ad10968
HZ
5244 if (i386_record_modrm (&ir))
5245 return -1;
5246 if (ir.mod != 3)
5247 {
5248 if (i386_record_lea_modrm (&ir))
5249 return -1;
5250 }
5251 else
5252 {
cf648174
HZ
5253 ir.rm |= ir.rex_b;
5254 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5255 ir.rm &= 0x3;
25ea693b 5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5257 }
5258 break;
a38bba38 5259 case 1: /* OP Gv, Ev */
7ad10968
HZ
5260 if (i386_record_modrm (&ir))
5261 return -1;
cf648174
HZ
5262 ir.reg |= rex_r;
5263 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5264 ir.reg &= 0x3;
25ea693b 5265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5266 break;
a38bba38 5267 case 2: /* OP A, Iv */
25ea693b 5268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5269 break;
5270 }
5271 }
25ea693b 5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5273 break;
42fdc8df 5274
a38bba38 5275 case 0x80: /* GRP1 */
7ad10968
HZ
5276 case 0x81:
5277 case 0x82:
5278 case 0x83:
5279 if (i386_record_modrm (&ir))
5280 return -1;
8201327c 5281
7ad10968
HZ
5282 if (ir.reg != OP_CMPL)
5283 {
5284 if ((opcode & 1) == 0)
5285 ir.ot = OT_BYTE;
5286 else
5287 ir.ot = ir.dflag + OT_WORD;
28fc6740 5288
7ad10968
HZ
5289 if (ir.mod != 3)
5290 {
cf648174
HZ
5291 if (opcode == 0x83)
5292 ir.rip_offset = 1;
5293 else
5294 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5295 if (i386_record_lea_modrm (&ir))
5296 return -1;
5297 }
5298 else
25ea693b 5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5300 }
25ea693b 5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5302 break;
5e3397bb 5303
a38bba38 5304 case 0x40: /* inc */
7ad10968
HZ
5305 case 0x41:
5306 case 0x42:
5307 case 0x43:
5308 case 0x44:
5309 case 0x45:
5310 case 0x46:
5311 case 0x47:
a38bba38
MS
5312
5313 case 0x48: /* dec */
7ad10968
HZ
5314 case 0x49:
5315 case 0x4a:
5316 case 0x4b:
5317 case 0x4c:
5318 case 0x4d:
5319 case 0x4e:
5320 case 0x4f:
a38bba38 5321
25ea693b
MM
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5324 break;
acd5c798 5325
a38bba38 5326 case 0xf6: /* GRP3 */
7ad10968
HZ
5327 case 0xf7:
5328 if ((opcode & 1) == 0)
5329 ir.ot = OT_BYTE;
5330 else
5331 ir.ot = ir.dflag + OT_WORD;
5332 if (i386_record_modrm (&ir))
5333 return -1;
acd5c798 5334
cf648174
HZ
5335 if (ir.mod != 3 && ir.reg == 0)
5336 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5337
7ad10968
HZ
5338 switch (ir.reg)
5339 {
a38bba38 5340 case 0: /* test */
25ea693b 5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5342 break;
a38bba38
MS
5343 case 2: /* not */
5344 case 3: /* neg */
7ad10968
HZ
5345 if (ir.mod != 3)
5346 {
5347 if (i386_record_lea_modrm (&ir))
5348 return -1;
5349 }
5350 else
5351 {
cf648174
HZ
5352 ir.rm |= ir.rex_b;
5353 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5354 ir.rm &= 0x3;
25ea693b 5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5356 }
a38bba38 5357 if (ir.reg == 3) /* neg */
25ea693b 5358 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5359 break;
a38bba38
MS
5360 case 4: /* mul */
5361 case 5: /* imul */
5362 case 6: /* div */
5363 case 7: /* idiv */
25ea693b 5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5365 if (ir.ot != OT_BYTE)
25ea693b
MM
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5368 break;
5369 default:
5370 ir.addr -= 2;
5371 opcode = opcode << 8 | ir.modrm;
5372 goto no_support;
5373 break;
5374 }
5375 break;
5376
a38bba38
MS
5377 case 0xfe: /* GRP4 */
5378 case 0xff: /* GRP5 */
7ad10968
HZ
5379 if (i386_record_modrm (&ir))
5380 return -1;
5381 if (ir.reg >= 2 && opcode == 0xfe)
5382 {
5383 ir.addr -= 2;
5384 opcode = opcode << 8 | ir.modrm;
5385 goto no_support;
5386 }
7ad10968
HZ
5387 switch (ir.reg)
5388 {
a38bba38
MS
5389 case 0: /* inc */
5390 case 1: /* dec */
cf648174
HZ
5391 if ((opcode & 1) == 0)
5392 ir.ot = OT_BYTE;
5393 else
5394 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5395 if (ir.mod != 3)
5396 {
5397 if (i386_record_lea_modrm (&ir))
5398 return -1;
5399 }
5400 else
5401 {
cf648174
HZ
5402 ir.rm |= ir.rex_b;
5403 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5404 ir.rm &= 0x3;
25ea693b 5405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5406 }
25ea693b 5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5408 break;
a38bba38 5409 case 2: /* call */
cf648174
HZ
5410 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5411 ir.dflag = 2;
5412 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5413 return -1;
25ea693b 5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5415 break;
a38bba38 5416 case 3: /* lcall */
25ea693b 5417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5418 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5419 return -1;
25ea693b 5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5421 break;
a38bba38
MS
5422 case 4: /* jmp */
5423 case 5: /* ljmp */
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5425 break;
a38bba38 5426 case 6: /* push */
cf648174
HZ
5427 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5428 ir.dflag = 2;
5429 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5430 return -1;
7ad10968
HZ
5431 break;
5432 default:
5433 ir.addr -= 2;
5434 opcode = opcode << 8 | ir.modrm;
5435 goto no_support;
5436 break;
5437 }
5438 break;
5439
a38bba38 5440 case 0x84: /* test */
7ad10968
HZ
5441 case 0x85:
5442 case 0xa8:
5443 case 0xa9:
25ea693b 5444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5445 break;
5446
a38bba38 5447 case 0x98: /* CWDE/CBW */
25ea693b 5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5449 break;
5450
a38bba38 5451 case 0x99: /* CDQ/CWD */
25ea693b
MM
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5454 break;
5455
a38bba38 5456 case 0x0faf: /* imul */
7ad10968
HZ
5457 case 0x69:
5458 case 0x6b:
5459 ir.ot = ir.dflag + OT_WORD;
5460 if (i386_record_modrm (&ir))
5461 return -1;
cf648174
HZ
5462 if (opcode == 0x69)
5463 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5464 else if (opcode == 0x6b)
5465 ir.rip_offset = 1;
5466 ir.reg |= rex_r;
5467 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5468 ir.reg &= 0x3;
25ea693b
MM
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5471 break;
5472
a38bba38 5473 case 0x0fc0: /* xadd */
7ad10968
HZ
5474 case 0x0fc1:
5475 if ((opcode & 1) == 0)
5476 ir.ot = OT_BYTE;
5477 else
5478 ir.ot = ir.dflag + OT_WORD;
5479 if (i386_record_modrm (&ir))
5480 return -1;
cf648174 5481 ir.reg |= rex_r;
7ad10968
HZ
5482 if (ir.mod == 3)
5483 {
cf648174 5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5485 ir.reg &= 0x3;
25ea693b 5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5487 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5488 ir.rm &= 0x3;
25ea693b 5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5490 }
5491 else
5492 {
5493 if (i386_record_lea_modrm (&ir))
5494 return -1;
cf648174 5495 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5496 ir.reg &= 0x3;
25ea693b 5497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5498 }
25ea693b 5499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5500 break;
5501
a38bba38 5502 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5503 case 0x0fb1:
5504 if ((opcode & 1) == 0)
5505 ir.ot = OT_BYTE;
5506 else
5507 ir.ot = ir.dflag + OT_WORD;
5508 if (i386_record_modrm (&ir))
5509 return -1;
5510 if (ir.mod == 3)
5511 {
cf648174 5512 ir.reg |= rex_r;
25ea693b 5513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5514 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5515 ir.reg &= 0x3;
25ea693b 5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5517 }
5518 else
5519 {
25ea693b 5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5521 if (i386_record_lea_modrm (&ir))
5522 return -1;
5523 }
25ea693b 5524 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5525 break;
5526
20b477a7 5527 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5528 if (i386_record_modrm (&ir))
5529 return -1;
5530 if (ir.mod == 3)
5531 {
20b477a7
LM
5532 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5533 an extended opcode. rdrand has bits 110 (/6) and rdseed
5534 has bits 111 (/7). */
5535 if (ir.reg == 6 || ir.reg == 7)
5536 {
5537 /* The storage register is described by the 3 R/M bits, but the
5538 REX.B prefix may be used to give access to registers
5539 R8~R15. In this case ir.rex_b + R/M will give us the register
5540 in the range R8~R15.
5541
5542 REX.W may also be used to access 64-bit registers, but we
5543 already record entire registers and not just partial bits
5544 of them. */
5545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5546 /* These instructions also set conditional bits. */
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5548 break;
5549 }
5550 else
5551 {
5552 /* We don't handle this particular instruction yet. */
5553 ir.addr -= 2;
5554 opcode = opcode << 8 | ir.modrm;
5555 goto no_support;
5556 }
7ad10968 5557 }
25ea693b
MM
5558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5560 if (i386_record_lea_modrm (&ir))
5561 return -1;
25ea693b 5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5563 break;
5564
a38bba38 5565 case 0x50: /* push */
7ad10968
HZ
5566 case 0x51:
5567 case 0x52:
5568 case 0x53:
5569 case 0x54:
5570 case 0x55:
5571 case 0x56:
5572 case 0x57:
5573 case 0x68:
5574 case 0x6a:
cf648174
HZ
5575 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5576 ir.dflag = 2;
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5578 return -1;
5579 break;
5580
a38bba38
MS
5581 case 0x06: /* push es */
5582 case 0x0e: /* push cs */
5583 case 0x16: /* push ss */
5584 case 0x1e: /* push ds */
cf648174
HZ
5585 if (ir.regmap[X86_RECORD_R8_REGNUM])
5586 {
5587 ir.addr -= 1;
5588 goto no_support;
5589 }
5590 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5591 return -1;
5592 break;
5593
a38bba38
MS
5594 case 0x0fa0: /* push fs */
5595 case 0x0fa8: /* push gs */
cf648174
HZ
5596 if (ir.regmap[X86_RECORD_R8_REGNUM])
5597 {
5598 ir.addr -= 2;
5599 goto no_support;
5600 }
5601 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5602 return -1;
cf648174
HZ
5603 break;
5604
a38bba38 5605 case 0x60: /* pusha */
cf648174
HZ
5606 if (ir.regmap[X86_RECORD_R8_REGNUM])
5607 {
5608 ir.addr -= 1;
5609 goto no_support;
5610 }
5611 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5612 return -1;
5613 break;
5614
a38bba38 5615 case 0x58: /* pop */
7ad10968
HZ
5616 case 0x59:
5617 case 0x5a:
5618 case 0x5b:
5619 case 0x5c:
5620 case 0x5d:
5621 case 0x5e:
5622 case 0x5f:
25ea693b
MM
5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5625 break;
5626
a38bba38 5627 case 0x61: /* popa */
cf648174
HZ
5628 if (ir.regmap[X86_RECORD_R8_REGNUM])
5629 {
5630 ir.addr -= 1;
5631 goto no_support;
7ad10968 5632 }
425b824a
MS
5633 for (regnum = X86_RECORD_REAX_REGNUM;
5634 regnum <= X86_RECORD_REDI_REGNUM;
5635 regnum++)
25ea693b 5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5637 break;
5638
a38bba38 5639 case 0x8f: /* pop */
cf648174
HZ
5640 if (ir.regmap[X86_RECORD_R8_REGNUM])
5641 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5642 else
5643 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5644 if (i386_record_modrm (&ir))
5645 return -1;
5646 if (ir.mod == 3)
25ea693b 5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5648 else
5649 {
cf648174 5650 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5651 if (i386_record_lea_modrm (&ir))
5652 return -1;
5653 }
25ea693b 5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5655 break;
5656
a38bba38 5657 case 0xc8: /* enter */
25ea693b 5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5659 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5660 ir.dflag = 2;
5661 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5662 return -1;
5663 break;
5664
a38bba38 5665 case 0xc9: /* leave */
25ea693b
MM
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5668 break;
5669
a38bba38 5670 case 0x07: /* pop es */
cf648174
HZ
5671 if (ir.regmap[X86_RECORD_R8_REGNUM])
5672 {
5673 ir.addr -= 1;
5674 goto no_support;
5675 }
25ea693b
MM
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5679 break;
5680
a38bba38 5681 case 0x17: /* pop ss */
cf648174
HZ
5682 if (ir.regmap[X86_RECORD_R8_REGNUM])
5683 {
5684 ir.addr -= 1;
5685 goto no_support;
5686 }
25ea693b
MM
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5690 break;
5691
a38bba38 5692 case 0x1f: /* pop ds */
cf648174
HZ
5693 if (ir.regmap[X86_RECORD_R8_REGNUM])
5694 {
5695 ir.addr -= 1;
5696 goto no_support;
5697 }
25ea693b
MM
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5701 break;
5702
a38bba38 5703 case 0x0fa1: /* pop fs */
25ea693b
MM
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5707 break;
5708
a38bba38 5709 case 0x0fa9: /* pop gs */
25ea693b
MM
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5713 break;
5714
a38bba38 5715 case 0x88: /* mov */
7ad10968
HZ
5716 case 0x89:
5717 case 0xc6:
5718 case 0xc7:
5719 if ((opcode & 1) == 0)
5720 ir.ot = OT_BYTE;
5721 else
5722 ir.ot = ir.dflag + OT_WORD;
5723
5724 if (i386_record_modrm (&ir))
5725 return -1;
5726
5727 if (ir.mod != 3)
5728 {
cf648174
HZ
5729 if (opcode == 0xc6 || opcode == 0xc7)
5730 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5731 if (i386_record_lea_modrm (&ir))
5732 return -1;
5733 }
5734 else
5735 {
cf648174
HZ
5736 if (opcode == 0xc6 || opcode == 0xc7)
5737 ir.rm |= ir.rex_b;
5738 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5739 ir.rm &= 0x3;
25ea693b 5740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5741 }
7ad10968 5742 break;
cf648174 5743
a38bba38 5744 case 0x8a: /* mov */
7ad10968
HZ
5745 case 0x8b:
5746 if ((opcode & 1) == 0)
5747 ir.ot = OT_BYTE;
5748 else
5749 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5750 if (i386_record_modrm (&ir))
5751 return -1;
cf648174
HZ
5752 ir.reg |= rex_r;
5753 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5754 ir.reg &= 0x3;
25ea693b 5755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5756 break;
7ad10968 5757
a38bba38 5758 case 0x8c: /* mov seg */
cf648174 5759 if (i386_record_modrm (&ir))
7ad10968 5760 return -1;
cf648174
HZ
5761 if (ir.reg > 5)
5762 {
5763 ir.addr -= 2;
5764 opcode = opcode << 8 | ir.modrm;
5765 goto no_support;
5766 }
5767
5768 if (ir.mod == 3)
25ea693b 5769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5770 else
5771 {
5772 ir.ot = OT_WORD;
5773 if (i386_record_lea_modrm (&ir))
5774 return -1;
5775 }
7ad10968
HZ
5776 break;
5777
a38bba38 5778 case 0x8e: /* mov seg */
7ad10968
HZ
5779 if (i386_record_modrm (&ir))
5780 return -1;
7ad10968
HZ
5781 switch (ir.reg)
5782 {
5783 case 0:
425b824a 5784 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5785 break;
5786 case 2:
425b824a 5787 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5788 break;
5789 case 3:
425b824a 5790 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5791 break;
5792 case 4:
425b824a 5793 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5794 break;
5795 case 5:
425b824a 5796 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5797 break;
5798 default:
5799 ir.addr -= 2;
5800 opcode = opcode << 8 | ir.modrm;
5801 goto no_support;
5802 break;
5803 }
25ea693b
MM
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5806 break;
5807
a38bba38
MS
5808 case 0x0fb6: /* movzbS */
5809 case 0x0fb7: /* movzwS */
5810 case 0x0fbe: /* movsbS */
5811 case 0x0fbf: /* movswS */
7ad10968
HZ
5812 if (i386_record_modrm (&ir))
5813 return -1;
25ea693b 5814 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5815 break;
5816
a38bba38 5817 case 0x8d: /* lea */
7ad10968
HZ
5818 if (i386_record_modrm (&ir))
5819 return -1;
5820 if (ir.mod == 3)
5821 {
5822 ir.addr -= 2;
5823 opcode = opcode << 8 | ir.modrm;
5824 goto no_support;
5825 }
7ad10968 5826 ir.ot = ir.dflag;
cf648174
HZ
5827 ir.reg |= rex_r;
5828 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5829 ir.reg &= 0x3;
25ea693b 5830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5831 break;
5832
a38bba38 5833 case 0xa0: /* mov EAX */
7ad10968 5834 case 0xa1:
a38bba38
MS
5835
5836 case 0xd7: /* xlat */
25ea693b 5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5838 break;
5839
a38bba38 5840 case 0xa2: /* mov EAX */
7ad10968 5841 case 0xa3:
d7877f7e 5842 if (ir.override >= 0)
cf648174 5843 {
25ea693b 5844 if (record_full_memory_query)
bb08c432 5845 {
651ce16a 5846 if (yquery (_("\
bb08c432
HZ
5847Process record ignores the memory change of instruction at address %s\n\
5848because it can't get the value of the segment register.\n\
5849Do you want to stop the program?"),
651ce16a 5850 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5851 return -1;
5852 }
cf648174
HZ
5853 }
5854 else
5855 {
5856 if ((opcode & 1) == 0)
5857 ir.ot = OT_BYTE;
5858 else
5859 ir.ot = ir.dflag + OT_WORD;
5860 if (ir.aflag == 2)
5861 {
4ffa4fc7
PA
5862 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5863 return -1;
cf648174 5864 ir.addr += 8;
60a1502a 5865 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5866 }
5867 else if (ir.aflag)
5868 {
4ffa4fc7
PA
5869 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5870 return -1;
cf648174 5871 ir.addr += 4;
60a1502a 5872 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5873 }
5874 else
5875 {
4ffa4fc7
PA
5876 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5877 return -1;
cf648174 5878 ir.addr += 2;
60a1502a 5879 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5880 }
25ea693b 5881 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5882 return -1;
5883 }
7ad10968
HZ
5884 break;
5885
a38bba38 5886 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5887 case 0xb1:
5888 case 0xb2:
5889 case 0xb3:
5890 case 0xb4:
5891 case 0xb5:
5892 case 0xb6:
5893 case 0xb7:
25ea693b
MM
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5895 ? ((opcode & 0x7) | ir.rex_b)
5896 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5897 break;
5898
a38bba38 5899 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5900 case 0xb9:
5901 case 0xba:
5902 case 0xbb:
5903 case 0xbc:
5904 case 0xbd:
5905 case 0xbe:
5906 case 0xbf:
25ea693b 5907 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5908 break;
5909
a38bba38 5910 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5911 case 0x92:
5912 case 0x93:
5913 case 0x94:
5914 case 0x95:
5915 case 0x96:
5916 case 0x97:
25ea693b
MM
5917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5918 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5919 break;
5920
a38bba38 5921 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5922 case 0x87:
5923 if ((opcode & 1) == 0)
5924 ir.ot = OT_BYTE;
5925 else
5926 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5927 if (i386_record_modrm (&ir))
5928 return -1;
7ad10968
HZ
5929 if (ir.mod == 3)
5930 {
86839d38 5931 ir.rm |= ir.rex_b;
cf648174
HZ
5932 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5933 ir.rm &= 0x3;
25ea693b 5934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5935 }
5936 else
5937 {
5938 if (i386_record_lea_modrm (&ir))
5939 return -1;
5940 }
cf648174
HZ
5941 ir.reg |= rex_r;
5942 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5943 ir.reg &= 0x3;
25ea693b 5944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5945 break;
5946
a38bba38
MS
5947 case 0xc4: /* les Gv */
5948 case 0xc5: /* lds Gv */
cf648174
HZ
5949 if (ir.regmap[X86_RECORD_R8_REGNUM])
5950 {
5951 ir.addr -= 1;
5952 goto no_support;
5953 }
d3f323f3 5954 /* FALLTHROUGH */
a38bba38
MS
5955 case 0x0fb2: /* lss Gv */
5956 case 0x0fb4: /* lfs Gv */
5957 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5958 if (i386_record_modrm (&ir))
5959 return -1;
5960 if (ir.mod == 3)
5961 {
5962 if (opcode > 0xff)
5963 ir.addr -= 3;
5964 else
5965 ir.addr -= 2;
5966 opcode = opcode << 8 | ir.modrm;
5967 goto no_support;
5968 }
7ad10968
HZ
5969 switch (opcode)
5970 {
a38bba38 5971 case 0xc4: /* les Gv */
425b824a 5972 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5973 break;
a38bba38 5974 case 0xc5: /* lds Gv */
425b824a 5975 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5976 break;
a38bba38 5977 case 0x0fb2: /* lss Gv */
425b824a 5978 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5979 break;
a38bba38 5980 case 0x0fb4: /* lfs Gv */
425b824a 5981 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5982 break;
a38bba38 5983 case 0x0fb5: /* lgs Gv */
425b824a 5984 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5985 break;
5986 }
25ea693b
MM
5987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5988 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5990 break;
5991
a38bba38 5992 case 0xc0: /* shifts */
7ad10968
HZ
5993 case 0xc1:
5994 case 0xd0:
5995 case 0xd1:
5996 case 0xd2:
5997 case 0xd3:
5998 if ((opcode & 1) == 0)
5999 ir.ot = OT_BYTE;
6000 else
6001 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
6002 if (i386_record_modrm (&ir))
6003 return -1;
7ad10968
HZ
6004 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6005 {
6006 if (i386_record_lea_modrm (&ir))
6007 return -1;
6008 }
6009 else
6010 {
cf648174
HZ
6011 ir.rm |= ir.rex_b;
6012 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6013 ir.rm &= 0x3;
25ea693b 6014 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6015 }
25ea693b 6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6017 break;
6018
6019 case 0x0fa4:
6020 case 0x0fa5:
6021 case 0x0fac:
6022 case 0x0fad:
6023 if (i386_record_modrm (&ir))
6024 return -1;
6025 if (ir.mod == 3)
6026 {
25ea693b 6027 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6028 return -1;
6029 }
6030 else
6031 {
6032 if (i386_record_lea_modrm (&ir))
6033 return -1;
6034 }
6035 break;
6036
a38bba38 6037 case 0xd8: /* Floats. */
7ad10968
HZ
6038 case 0xd9:
6039 case 0xda:
6040 case 0xdb:
6041 case 0xdc:
6042 case 0xdd:
6043 case 0xde:
6044 case 0xdf:
6045 if (i386_record_modrm (&ir))
6046 return -1;
6047 ir.reg |= ((opcode & 7) << 3);
6048 if (ir.mod != 3)
6049 {
1777feb0 6050 /* Memory. */
955db0c0 6051 uint64_t addr64;
7ad10968 6052
955db0c0 6053 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6054 return -1;
6055 switch (ir.reg)
6056 {
7ad10968 6057 case 0x02:
0289bdd7
MS
6058 case 0x12:
6059 case 0x22:
6060 case 0x32:
6061 /* For fcom, ficom nothing to do. */
6062 break;
7ad10968 6063 case 0x03:
0289bdd7
MS
6064 case 0x13:
6065 case 0x23:
6066 case 0x33:
6067 /* For fcomp, ficomp pop FPU stack, store all. */
6068 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6069 return -1;
6070 break;
6071 case 0x00:
6072 case 0x01:
7ad10968
HZ
6073 case 0x04:
6074 case 0x05:
6075 case 0x06:
6076 case 0x07:
6077 case 0x10:
6078 case 0x11:
7ad10968
HZ
6079 case 0x14:
6080 case 0x15:
6081 case 0x16:
6082 case 0x17:
6083 case 0x20:
6084 case 0x21:
7ad10968
HZ
6085 case 0x24:
6086 case 0x25:
6087 case 0x26:
6088 case 0x27:
6089 case 0x30:
6090 case 0x31:
7ad10968
HZ
6091 case 0x34:
6092 case 0x35:
6093 case 0x36:
6094 case 0x37:
0289bdd7
MS
6095 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6096 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6097 of code, always affects st(0) register. */
6098 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6099 return -1;
7ad10968
HZ
6100 break;
6101 case 0x08:
6102 case 0x0a:
6103 case 0x0b:
6104 case 0x18:
6105 case 0x19:
6106 case 0x1a:
6107 case 0x1b:
0289bdd7 6108 case 0x1d:
7ad10968
HZ
6109 case 0x28:
6110 case 0x29:
6111 case 0x2a:
6112 case 0x2b:
6113 case 0x38:
6114 case 0x39:
6115 case 0x3a:
6116 case 0x3b:
0289bdd7
MS
6117 case 0x3c:
6118 case 0x3d:
7ad10968
HZ
6119 switch (ir.reg & 7)
6120 {
6121 case 0:
0289bdd7
MS
6122 /* Handling fld, fild. */
6123 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6124 return -1;
7ad10968
HZ
6125 break;
6126 case 1:
6127 switch (ir.reg >> 4)
6128 {
6129 case 0:
25ea693b 6130 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6131 return -1;
6132 break;
6133 case 2:
25ea693b 6134 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6135 return -1;
6136 break;
6137 case 3:
0289bdd7 6138 break;
7ad10968 6139 default:
25ea693b 6140 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6141 return -1;
6142 break;
6143 }
6144 break;
6145 default:
6146 switch (ir.reg >> 4)
6147 {
6148 case 0:
25ea693b 6149 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6150 return -1;
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m32fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 break;
7ad10968 6159 case 1:
25ea693b 6160 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6161 return -1;
0289bdd7
MS
6162 if ((3 == (ir.reg & 7))
6163 || (5 == (ir.reg & 7))
6164 || (7 == (ir.reg & 7)))
6165 {
6166 /* For fstp insn. */
6167 if (i386_record_floats (gdbarch, &ir,
6168 I386_SAVE_FPU_REGS))
6169 return -1;
6170 }
7ad10968
HZ
6171 break;
6172 case 2:
25ea693b 6173 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6174 return -1;
0289bdd7
MS
6175 if (3 == (ir.reg & 7))
6176 {
6177 /* For fstp m64fp. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_REGS))
6180 return -1;
6181 }
7ad10968
HZ
6182 break;
6183 case 3:
0289bdd7
MS
6184 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6185 {
6186 /* For fistp, fbld, fild, fbstp. */
6187 if (i386_record_floats (gdbarch, &ir,
6188 I386_SAVE_FPU_REGS))
6189 return -1;
6190 }
6191 /* Fall through */
7ad10968 6192 default:
25ea693b 6193 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6194 return -1;
6195 break;
6196 }
6197 break;
6198 }
6199 break;
6200 case 0x0c:
0289bdd7
MS
6201 /* Insn fldenv. */
6202 if (i386_record_floats (gdbarch, &ir,
6203 I386_SAVE_FPU_ENV_REG_STACK))
6204 return -1;
6205 break;
7ad10968 6206 case 0x0d:
0289bdd7
MS
6207 /* Insn fldcw. */
6208 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6209 return -1;
6210 break;
7ad10968 6211 case 0x2c:
0289bdd7
MS
6212 /* Insn frstor. */
6213 if (i386_record_floats (gdbarch, &ir,
6214 I386_SAVE_FPU_ENV_REG_STACK))
6215 return -1;
7ad10968
HZ
6216 break;
6217 case 0x0e:
6218 if (ir.dflag)
6219 {
25ea693b 6220 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6221 return -1;
6222 }
6223 else
6224 {
25ea693b 6225 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6226 return -1;
6227 }
6228 break;
6229 case 0x0f:
6230 case 0x2f:
25ea693b 6231 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6232 return -1;
0289bdd7
MS
6233 /* Insn fstp, fbstp. */
6234 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6235 return -1;
7ad10968
HZ
6236 break;
6237 case 0x1f:
6238 case 0x3e:
25ea693b 6239 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6240 return -1;
6241 break;
6242 case 0x2e:
6243 if (ir.dflag)
6244 {
25ea693b 6245 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6246 return -1;
955db0c0 6247 addr64 += 28;
7ad10968
HZ
6248 }
6249 else
6250 {
25ea693b 6251 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6252 return -1;
955db0c0 6253 addr64 += 14;
7ad10968 6254 }
25ea693b 6255 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6256 return -1;
0289bdd7
MS
6257 /* Insn fsave. */
6258 if (i386_record_floats (gdbarch, &ir,
6259 I386_SAVE_FPU_ENV_REG_STACK))
6260 return -1;
7ad10968
HZ
6261 break;
6262 case 0x3f:
25ea693b 6263 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6264 return -1;
0289bdd7
MS
6265 /* Insn fistp. */
6266 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6267 return -1;
7ad10968
HZ
6268 break;
6269 default:
6270 ir.addr -= 2;
6271 opcode = opcode << 8 | ir.modrm;
6272 goto no_support;
6273 break;
6274 }
6275 }
0289bdd7
MS
6276 /* Opcode is an extension of modR/M byte. */
6277 else
6278 {
6279 switch (opcode)
6280 {
6281 case 0xd8:
6282 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6283 return -1;
6284 break;
6285 case 0xd9:
6286 if (0x0c == (ir.modrm >> 4))
6287 {
6288 if ((ir.modrm & 0x0f) <= 7)
6289 {
6290 if (i386_record_floats (gdbarch, &ir,
6291 I386_SAVE_FPU_REGS))
6292 return -1;
6293 }
6294 else
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I387_ST0_REGNUM (tdep)))
6298 return -1;
6299 /* If only st(0) is changing, then we have already
6300 recorded. */
6301 if ((ir.modrm & 0x0f) - 0x08)
6302 {
6303 if (i386_record_floats (gdbarch, &ir,
6304 I387_ST0_REGNUM (tdep) +
6305 ((ir.modrm & 0x0f) - 0x08)))
6306 return -1;
6307 }
6308 }
6309 }
6310 else
6311 {
6312 switch (ir.modrm)
6313 {
6314 case 0xe0:
6315 case 0xe1:
6316 case 0xf0:
6317 case 0xf5:
6318 case 0xf8:
6319 case 0xfa:
6320 case 0xfc:
6321 case 0xfe:
6322 case 0xff:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 break;
6327 case 0xf1:
6328 case 0xf2:
6329 case 0xf3:
6330 case 0xf4:
6331 case 0xf6:
6332 case 0xf7:
6333 case 0xe8:
6334 case 0xe9:
6335 case 0xea:
6336 case 0xeb:
6337 case 0xec:
6338 case 0xed:
6339 case 0xee:
6340 case 0xf9:
6341 case 0xfb:
6342 if (i386_record_floats (gdbarch, &ir,
6343 I386_SAVE_FPU_REGS))
6344 return -1;
6345 break;
6346 case 0xfd:
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep)))
6349 return -1;
6350 if (i386_record_floats (gdbarch, &ir,
6351 I387_ST0_REGNUM (tdep) + 1))
6352 return -1;
6353 break;
6354 }
6355 }
6356 break;
6357 case 0xda:
6358 if (0xe9 == ir.modrm)
6359 {
6360 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6361 return -1;
6362 }
6363 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6364 {
6365 if (i386_record_floats (gdbarch, &ir,
6366 I387_ST0_REGNUM (tdep)))
6367 return -1;
6368 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep) +
6372 (ir.modrm & 0x0f)))
6373 return -1;
6374 }
6375 else if ((ir.modrm & 0x0f) - 0x08)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 ((ir.modrm & 0x0f) - 0x08)))
6380 return -1;
6381 }
6382 }
6383 break;
6384 case 0xdb:
6385 if (0xe3 == ir.modrm)
6386 {
6387 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6388 return -1;
6389 }
6390 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep)))
6394 return -1;
6395 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep) +
6399 (ir.modrm & 0x0f)))
6400 return -1;
6401 }
6402 else if ((ir.modrm & 0x0f) - 0x08)
6403 {
6404 if (i386_record_floats (gdbarch, &ir,
6405 I387_ST0_REGNUM (tdep) +
6406 ((ir.modrm & 0x0f) - 0x08)))
6407 return -1;
6408 }
6409 }
6410 break;
6411 case 0xdc:
6412 if ((0x0c == ir.modrm >> 4)
6413 || (0x0d == ir.modrm >> 4)
6414 || (0x0f == ir.modrm >> 4))
6415 {
6416 if ((ir.modrm & 0x0f) <= 7)
6417 {
6418 if (i386_record_floats (gdbarch, &ir,
6419 I387_ST0_REGNUM (tdep) +
6420 (ir.modrm & 0x0f)))
6421 return -1;
6422 }
6423 else
6424 {
6425 if (i386_record_floats (gdbarch, &ir,
6426 I387_ST0_REGNUM (tdep) +
6427 ((ir.modrm & 0x0f) - 0x08)))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xdd:
6433 if (0x0c == ir.modrm >> 4)
6434 {
6435 if (i386_record_floats (gdbarch, &ir,
6436 I387_FTAG_REGNUM (tdep)))
6437 return -1;
6438 }
6439 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6440 {
6441 if ((ir.modrm & 0x0f) <= 7)
6442 {
6443 if (i386_record_floats (gdbarch, &ir,
6444 I387_ST0_REGNUM (tdep) +
6445 (ir.modrm & 0x0f)))
6446 return -1;
6447 }
6448 else
6449 {
6450 if (i386_record_floats (gdbarch, &ir,
6451 I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 }
6455 break;
6456 case 0xde:
6457 if ((0x0c == ir.modrm >> 4)
6458 || (0x0e == ir.modrm >> 4)
6459 || (0x0f == ir.modrm >> 4)
6460 || (0xd9 == ir.modrm))
6461 {
6462 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6463 return -1;
6464 }
6465 break;
6466 case 0xdf:
6467 if (0xe0 == ir.modrm)
6468 {
25ea693b
MM
6469 if (record_full_arch_list_add_reg (ir.regcache,
6470 I386_EAX_REGNUM))
0289bdd7
MS
6471 return -1;
6472 }
6473 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6474 {
6475 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6476 return -1;
6477 }
6478 break;
6479 }
6480 }
7ad10968 6481 break;
7ad10968 6482 /* string ops */
a38bba38 6483 case 0xa4: /* movsS */
7ad10968 6484 case 0xa5:
a38bba38 6485 case 0xaa: /* stosS */
7ad10968 6486 case 0xab:
a38bba38 6487 case 0x6c: /* insS */
7ad10968 6488 case 0x6d:
cf648174 6489 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6490 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6491 &addr);
6492 if (addr)
cf648174 6493 {
77d7dc92
HZ
6494 ULONGEST es, ds;
6495
6496 if ((opcode & 1) == 0)
6497 ir.ot = OT_BYTE;
6498 else
6499 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6500 regcache_raw_read_unsigned (ir.regcache,
6501 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6502 &addr);
77d7dc92 6503
d7877f7e
HZ
6504 regcache_raw_read_unsigned (ir.regcache,
6505 ir.regmap[X86_RECORD_ES_REGNUM],
6506 &es);
6507 regcache_raw_read_unsigned (ir.regcache,
6508 ir.regmap[X86_RECORD_DS_REGNUM],
6509 &ds);
6510 if (ir.aflag && (es != ds))
77d7dc92
HZ
6511 {
6512 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6513 if (record_full_memory_query)
bb08c432 6514 {
651ce16a 6515 if (yquery (_("\
bb08c432
HZ
6516Process record ignores the memory change of instruction at address %s\n\
6517because it can't get the value of the segment register.\n\
6518Do you want to stop the program?"),
651ce16a 6519 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6520 return -1;
6521 }
df61f520
HZ
6522 }
6523 else
6524 {
25ea693b 6525 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6526 return -1;
77d7dc92
HZ
6527 }
6528
6529 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6531 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6535 }
cf648174 6536 break;
7ad10968 6537
a38bba38 6538 case 0xa6: /* cmpsS */
cf648174 6539 case 0xa7:
25ea693b
MM
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6542 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6545 break;
6546
a38bba38 6547 case 0xac: /* lodsS */
7ad10968 6548 case 0xad:
25ea693b
MM
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6551 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6554 break;
6555
a38bba38 6556 case 0xae: /* scasS */
7ad10968 6557 case 0xaf:
25ea693b 6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6559 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6562 break;
6563
a38bba38 6564 case 0x6e: /* outsS */
cf648174 6565 case 0x6f:
25ea693b 6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6567 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6570 break;
6571
a38bba38 6572 case 0xe4: /* port I/O */
7ad10968
HZ
6573 case 0xe5:
6574 case 0xec:
6575 case 0xed:
25ea693b
MM
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6578 break;
6579
6580 case 0xe6:
6581 case 0xe7:
6582 case 0xee:
6583 case 0xef:
6584 break;
6585
6586 /* control */
a38bba38
MS
6587 case 0xc2: /* ret im */
6588 case 0xc3: /* ret */
25ea693b
MM
6589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6591 break;
6592
a38bba38
MS
6593 case 0xca: /* lret im */
6594 case 0xcb: /* lret */
6595 case 0xcf: /* iret */
25ea693b
MM
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6599 break;
6600
a38bba38 6601 case 0xe8: /* call im */
cf648174
HZ
6602 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6603 ir.dflag = 2;
6604 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6605 return -1;
7ad10968
HZ
6606 break;
6607
a38bba38 6608 case 0x9a: /* lcall im */
cf648174
HZ
6609 if (ir.regmap[X86_RECORD_R8_REGNUM])
6610 {
6611 ir.addr -= 1;
6612 goto no_support;
6613 }
25ea693b 6614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6615 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6616 return -1;
7ad10968
HZ
6617 break;
6618
a38bba38
MS
6619 case 0xe9: /* jmp im */
6620 case 0xea: /* ljmp im */
6621 case 0xeb: /* jmp Jb */
6622 case 0x70: /* jcc Jb */
7ad10968
HZ
6623 case 0x71:
6624 case 0x72:
6625 case 0x73:
6626 case 0x74:
6627 case 0x75:
6628 case 0x76:
6629 case 0x77:
6630 case 0x78:
6631 case 0x79:
6632 case 0x7a:
6633 case 0x7b:
6634 case 0x7c:
6635 case 0x7d:
6636 case 0x7e:
6637 case 0x7f:
a38bba38 6638 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6639 case 0x0f81:
6640 case 0x0f82:
6641 case 0x0f83:
6642 case 0x0f84:
6643 case 0x0f85:
6644 case 0x0f86:
6645 case 0x0f87:
6646 case 0x0f88:
6647 case 0x0f89:
6648 case 0x0f8a:
6649 case 0x0f8b:
6650 case 0x0f8c:
6651 case 0x0f8d:
6652 case 0x0f8e:
6653 case 0x0f8f:
6654 break;
6655
a38bba38 6656 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6657 case 0x0f91:
6658 case 0x0f92:
6659 case 0x0f93:
6660 case 0x0f94:
6661 case 0x0f95:
6662 case 0x0f96:
6663 case 0x0f97:
6664 case 0x0f98:
6665 case 0x0f99:
6666 case 0x0f9a:
6667 case 0x0f9b:
6668 case 0x0f9c:
6669 case 0x0f9d:
6670 case 0x0f9e:
6671 case 0x0f9f:
25ea693b 6672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6673 ir.ot = OT_BYTE;
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 if (ir.mod == 3)
25ea693b
MM
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6678 : (ir.rm & 0x3));
7ad10968
HZ
6679 else
6680 {
6681 if (i386_record_lea_modrm (&ir))
6682 return -1;
6683 }
6684 break;
6685
a38bba38 6686 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6687 case 0x0f41:
6688 case 0x0f42:
6689 case 0x0f43:
6690 case 0x0f44:
6691 case 0x0f45:
6692 case 0x0f46:
6693 case 0x0f47:
6694 case 0x0f48:
6695 case 0x0f49:
6696 case 0x0f4a:
6697 case 0x0f4b:
6698 case 0x0f4c:
6699 case 0x0f4d:
6700 case 0x0f4e:
6701 case 0x0f4f:
6702 if (i386_record_modrm (&ir))
6703 return -1;
cf648174 6704 ir.reg |= rex_r;
7ad10968
HZ
6705 if (ir.dflag == OT_BYTE)
6706 ir.reg &= 0x3;
25ea693b 6707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6708 break;
6709
6710 /* flags */
a38bba38 6711 case 0x9c: /* pushf */
25ea693b 6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6713 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6714 ir.dflag = 2;
6715 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6716 return -1;
7ad10968
HZ
6717 break;
6718
a38bba38 6719 case 0x9d: /* popf */
25ea693b
MM
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6722 break;
6723
a38bba38 6724 case 0x9e: /* sahf */
cf648174
HZ
6725 if (ir.regmap[X86_RECORD_R8_REGNUM])
6726 {
6727 ir.addr -= 1;
6728 goto no_support;
6729 }
d3f323f3 6730 /* FALLTHROUGH */
a38bba38
MS
6731 case 0xf5: /* cmc */
6732 case 0xf8: /* clc */
6733 case 0xf9: /* stc */
6734 case 0xfc: /* cld */
6735 case 0xfd: /* std */
25ea693b 6736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6737 break;
6738
a38bba38 6739 case 0x9f: /* lahf */
cf648174
HZ
6740 if (ir.regmap[X86_RECORD_R8_REGNUM])
6741 {
6742 ir.addr -= 1;
6743 goto no_support;
6744 }
25ea693b
MM
6745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6747 break;
6748
6749 /* bit operations */
a38bba38 6750 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6751 ir.ot = ir.dflag + OT_WORD;
6752 if (i386_record_modrm (&ir))
6753 return -1;
6754 if (ir.reg < 4)
6755 {
cf648174 6756 ir.addr -= 2;
7ad10968
HZ
6757 opcode = opcode << 8 | ir.modrm;
6758 goto no_support;
6759 }
cf648174 6760 if (ir.reg != 4)
7ad10968 6761 {
cf648174 6762 if (ir.mod == 3)
25ea693b 6763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6764 else
6765 {
cf648174 6766 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6767 return -1;
6768 }
6769 }
25ea693b 6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6771 break;
6772
a38bba38 6773 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6775 break;
6776
a38bba38
MS
6777 case 0x0fab: /* bts */
6778 case 0x0fb3: /* btr */
6779 case 0x0fbb: /* btc */
cf648174
HZ
6780 ir.ot = ir.dflag + OT_WORD;
6781 if (i386_record_modrm (&ir))
6782 return -1;
6783 if (ir.mod == 3)
25ea693b 6784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6785 else
6786 {
955db0c0
MS
6787 uint64_t addr64;
6788 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6789 return -1;
6790 regcache_raw_read_unsigned (ir.regcache,
6791 ir.regmap[ir.reg | rex_r],
648d0c8b 6792 &addr);
cf648174
HZ
6793 switch (ir.dflag)
6794 {
6795 case 0:
648d0c8b 6796 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6797 break;
6798 case 1:
648d0c8b 6799 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6800 break;
6801 case 2:
648d0c8b 6802 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6803 break;
6804 }
25ea693b 6805 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6806 return -1;
6807 if (i386_record_lea_modrm (&ir))
6808 return -1;
6809 }
25ea693b 6810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6811 break;
6812
a38bba38
MS
6813 case 0x0fbc: /* bsf */
6814 case 0x0fbd: /* bsr */
25ea693b
MM
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6817 break;
6818
6819 /* bcd */
a38bba38
MS
6820 case 0x27: /* daa */
6821 case 0x2f: /* das */
6822 case 0x37: /* aaa */
6823 case 0x3f: /* aas */
6824 case 0xd4: /* aam */
6825 case 0xd5: /* aad */
cf648174
HZ
6826 if (ir.regmap[X86_RECORD_R8_REGNUM])
6827 {
6828 ir.addr -= 1;
6829 goto no_support;
6830 }
25ea693b
MM
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6833 break;
6834
6835 /* misc */
a38bba38 6836 case 0x90: /* nop */
7ad10968
HZ
6837 if (prefixes & PREFIX_LOCK)
6838 {
6839 ir.addr -= 1;
6840 goto no_support;
6841 }
6842 break;
6843
a38bba38 6844 case 0x9b: /* fwait */
4ffa4fc7
PA
6845 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6846 return -1;
425b824a 6847 opcode = (uint32_t) opcode8;
0289bdd7
MS
6848 ir.addr++;
6849 goto reswitch;
7ad10968
HZ
6850 break;
6851
7ad10968 6852 /* XXX */
a38bba38 6853 case 0xcc: /* int3 */
a3c4230a 6854 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6855 "int3.\n"));
6856 ir.addr -= 1;
6857 goto no_support;
6858 break;
6859
7ad10968 6860 /* XXX */
a38bba38 6861 case 0xcd: /* int */
7ad10968
HZ
6862 {
6863 int ret;
425b824a 6864 uint8_t interrupt;
4ffa4fc7
PA
6865 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6866 return -1;
7ad10968 6867 ir.addr++;
425b824a 6868 if (interrupt != 0x80
a3c4230a 6869 || tdep->i386_intx80_record == NULL)
7ad10968 6870 {
a3c4230a 6871 printf_unfiltered (_("Process record does not support "
7ad10968 6872 "instruction int 0x%02x.\n"),
425b824a 6873 interrupt);
7ad10968
HZ
6874 ir.addr -= 2;
6875 goto no_support;
6876 }
a3c4230a 6877 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6878 if (ret)
6879 return ret;
6880 }
6881 break;
6882
7ad10968 6883 /* XXX */
a38bba38 6884 case 0xce: /* into */
a3c4230a 6885 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6886 "instruction into.\n"));
6887 ir.addr -= 1;
6888 goto no_support;
6889 break;
6890
a38bba38
MS
6891 case 0xfa: /* cli */
6892 case 0xfb: /* sti */
7ad10968
HZ
6893 break;
6894
a38bba38 6895 case 0x62: /* bound */
a3c4230a 6896 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6897 "instruction bound.\n"));
6898 ir.addr -= 1;
6899 goto no_support;
6900 break;
6901
a38bba38 6902 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6903 case 0x0fc9:
6904 case 0x0fca:
6905 case 0x0fcb:
6906 case 0x0fcc:
6907 case 0x0fcd:
6908 case 0x0fce:
6909 case 0x0fcf:
25ea693b 6910 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6911 break;
6912
a38bba38 6913 case 0xd6: /* salc */
cf648174
HZ
6914 if (ir.regmap[X86_RECORD_R8_REGNUM])
6915 {
6916 ir.addr -= 1;
6917 goto no_support;
6918 }
25ea693b
MM
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6921 break;
6922
a38bba38
MS
6923 case 0xe0: /* loopnz */
6924 case 0xe1: /* loopz */
6925 case 0xe2: /* loop */
6926 case 0xe3: /* jecxz */
25ea693b
MM
6927 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6929 break;
6930
a38bba38 6931 case 0x0f30: /* wrmsr */
a3c4230a 6932 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6933 "instruction wrmsr.\n"));
6934 ir.addr -= 2;
6935 goto no_support;
6936 break;
6937
a38bba38 6938 case 0x0f32: /* rdmsr */
a3c4230a 6939 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6940 "instruction rdmsr.\n"));
6941 ir.addr -= 2;
6942 goto no_support;
6943 break;
6944
a38bba38 6945 case 0x0f31: /* rdtsc */
25ea693b
MM
6946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6948 break;
6949
a38bba38 6950 case 0x0f34: /* sysenter */
7ad10968
HZ
6951 {
6952 int ret;
cf648174
HZ
6953 if (ir.regmap[X86_RECORD_R8_REGNUM])
6954 {
6955 ir.addr -= 2;
6956 goto no_support;
6957 }
a3c4230a 6958 if (tdep->i386_sysenter_record == NULL)
7ad10968 6959 {
a3c4230a 6960 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6961 "instruction sysenter.\n"));
6962 ir.addr -= 2;
6963 goto no_support;
6964 }
a3c4230a 6965 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6966 if (ret)
6967 return ret;
6968 }
6969 break;
6970
a38bba38 6971 case 0x0f35: /* sysexit */
a3c4230a 6972 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6973 "instruction sysexit.\n"));
6974 ir.addr -= 2;
6975 goto no_support;
6976 break;
6977
a38bba38 6978 case 0x0f05: /* syscall */
cf648174
HZ
6979 {
6980 int ret;
a3c4230a 6981 if (tdep->i386_syscall_record == NULL)
cf648174 6982 {
a3c4230a 6983 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6984 "instruction syscall.\n"));
6985 ir.addr -= 2;
6986 goto no_support;
6987 }
a3c4230a 6988 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6989 if (ret)
6990 return ret;
6991 }
6992 break;
6993
a38bba38 6994 case 0x0f07: /* sysret */
a3c4230a 6995 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6996 "instruction sysret.\n"));
6997 ir.addr -= 2;
6998 goto no_support;
6999 break;
7000
a38bba38 7001 case 0x0fa2: /* cpuid */
25ea693b
MM
7002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7005 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7006 break;
7007
a38bba38 7008 case 0xf4: /* hlt */
a3c4230a 7009 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7010 "instruction hlt.\n"));
7011 ir.addr -= 1;
7012 goto no_support;
7013 break;
7014
7015 case 0x0f00:
7016 if (i386_record_modrm (&ir))
7017 return -1;
7018 switch (ir.reg)
7019 {
a38bba38
MS
7020 case 0: /* sldt */
7021 case 1: /* str */
7ad10968 7022 if (ir.mod == 3)
25ea693b 7023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7024 else
7025 {
7026 ir.ot = OT_WORD;
7027 if (i386_record_lea_modrm (&ir))
7028 return -1;
7029 }
7030 break;
a38bba38
MS
7031 case 2: /* lldt */
7032 case 3: /* ltr */
7ad10968 7033 break;
a38bba38
MS
7034 case 4: /* verr */
7035 case 5: /* verw */
25ea693b 7036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7037 break;
7038 default:
7039 ir.addr -= 3;
7040 opcode = opcode << 8 | ir.modrm;
7041 goto no_support;
7042 break;
7043 }
7044 break;
7045
7046 case 0x0f01:
7047 if (i386_record_modrm (&ir))
7048 return -1;
7049 switch (ir.reg)
7050 {
a38bba38 7051 case 0: /* sgdt */
7ad10968 7052 {
955db0c0 7053 uint64_t addr64;
7ad10968
HZ
7054
7055 if (ir.mod == 3)
7056 {
7057 ir.addr -= 3;
7058 opcode = opcode << 8 | ir.modrm;
7059 goto no_support;
7060 }
d7877f7e 7061 if (ir.override >= 0)
7ad10968 7062 {
25ea693b 7063 if (record_full_memory_query)
bb08c432 7064 {
651ce16a 7065 if (yquery (_("\
bb08c432
HZ
7066Process record ignores the memory change of instruction at address %s\n\
7067because it can't get the value of the segment register.\n\
7068Do you want to stop the program?"),
651ce16a
PA
7069 paddress (gdbarch, ir.orig_addr)))
7070 return -1;
bb08c432 7071 }
7ad10968
HZ
7072 }
7073 else
7074 {
955db0c0 7075 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7076 return -1;
25ea693b 7077 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7078 return -1;
955db0c0 7079 addr64 += 2;
cf648174
HZ
7080 if (ir.regmap[X86_RECORD_R8_REGNUM])
7081 {
25ea693b 7082 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7083 return -1;
7084 }
7085 else
7086 {
25ea693b 7087 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7088 return -1;
7089 }
7ad10968
HZ
7090 }
7091 }
7092 break;
7093 case 1:
7094 if (ir.mod == 3)
7095 {
7096 switch (ir.rm)
7097 {
a38bba38 7098 case 0: /* monitor */
7ad10968 7099 break;
a38bba38 7100 case 1: /* mwait */
25ea693b 7101 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7102 break;
7103 default:
7104 ir.addr -= 3;
7105 opcode = opcode << 8 | ir.modrm;
7106 goto no_support;
7107 break;
7108 }
7109 }
7110 else
7111 {
7112 /* sidt */
d7877f7e 7113 if (ir.override >= 0)
7ad10968 7114 {
25ea693b 7115 if (record_full_memory_query)
bb08c432 7116 {
651ce16a 7117 if (yquery (_("\
bb08c432
HZ
7118Process record ignores the memory change of instruction at address %s\n\
7119because it can't get the value of the segment register.\n\
7120Do you want to stop the program?"),
651ce16a 7121 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7122 return -1;
7123 }
7ad10968
HZ
7124 }
7125 else
7126 {
955db0c0 7127 uint64_t addr64;
7ad10968 7128
955db0c0 7129 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7130 return -1;
25ea693b 7131 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7132 return -1;
955db0c0 7133 addr64 += 2;
cf648174
HZ
7134 if (ir.regmap[X86_RECORD_R8_REGNUM])
7135 {
25ea693b 7136 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7137 return -1;
7138 }
7139 else
7140 {
25ea693b 7141 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7142 return -1;
7143 }
7ad10968
HZ
7144 }
7145 }
7146 break;
a38bba38 7147 case 2: /* lgdt */
3800e645
MS
7148 if (ir.mod == 3)
7149 {
7150 /* xgetbv */
7151 if (ir.rm == 0)
7152 {
25ea693b
MM
7153 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7154 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7155 break;
7156 }
7157 /* xsetbv */
7158 else if (ir.rm == 1)
7159 break;
7160 }
a38bba38 7161 case 3: /* lidt */
7ad10968
HZ
7162 if (ir.mod == 3)
7163 {
7164 ir.addr -= 3;
7165 opcode = opcode << 8 | ir.modrm;
7166 goto no_support;
7167 }
7168 break;
a38bba38 7169 case 4: /* smsw */
7ad10968
HZ
7170 if (ir.mod == 3)
7171 {
25ea693b 7172 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7173 return -1;
7174 }
7175 else
7176 {
7177 ir.ot = OT_WORD;
7178 if (i386_record_lea_modrm (&ir))
7179 return -1;
7180 }
25ea693b 7181 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7182 break;
a38bba38 7183 case 6: /* lmsw */
25ea693b 7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7185 break;
a38bba38 7186 case 7: /* invlpg */
cf648174
HZ
7187 if (ir.mod == 3)
7188 {
7189 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7191 else
7192 {
7193 ir.addr -= 3;
7194 opcode = opcode << 8 | ir.modrm;
7195 goto no_support;
7196 }
7197 }
7198 else
25ea693b 7199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7200 break;
7201 default:
7202 ir.addr -= 3;
7203 opcode = opcode << 8 | ir.modrm;
7204 goto no_support;
7ad10968
HZ
7205 break;
7206 }
7207 break;
7208
a38bba38
MS
7209 case 0x0f08: /* invd */
7210 case 0x0f09: /* wbinvd */
7ad10968
HZ
7211 break;
7212
a38bba38 7213 case 0x63: /* arpl */
7ad10968
HZ
7214 if (i386_record_modrm (&ir))
7215 return -1;
cf648174
HZ
7216 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7217 {
25ea693b
MM
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7219 ? (ir.reg | rex_r) : ir.rm);
cf648174 7220 }
7ad10968 7221 else
cf648174
HZ
7222 {
7223 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7224 if (i386_record_lea_modrm (&ir))
7225 return -1;
7226 }
7227 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7228 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7229 break;
7230
a38bba38
MS
7231 case 0x0f02: /* lar */
7232 case 0x0f03: /* lsl */
7ad10968
HZ
7233 if (i386_record_modrm (&ir))
7234 return -1;
25ea693b
MM
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7237 break;
7238
7239 case 0x0f18:
cf648174
HZ
7240 if (i386_record_modrm (&ir))
7241 return -1;
7242 if (ir.mod == 3 && ir.reg == 3)
7243 {
7244 ir.addr -= 3;
7245 opcode = opcode << 8 | ir.modrm;
7246 goto no_support;
7247 }
7ad10968
HZ
7248 break;
7249
7ad10968
HZ
7250 case 0x0f19:
7251 case 0x0f1a:
7252 case 0x0f1b:
7253 case 0x0f1c:
7254 case 0x0f1d:
7255 case 0x0f1e:
7256 case 0x0f1f:
a38bba38 7257 /* nop (multi byte) */
7ad10968
HZ
7258 break;
7259
a38bba38
MS
7260 case 0x0f20: /* mov reg, crN */
7261 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7262 if (i386_record_modrm (&ir))
7263 return -1;
7264 if ((ir.modrm & 0xc0) != 0xc0)
7265 {
cf648174 7266 ir.addr -= 3;
7ad10968
HZ
7267 opcode = opcode << 8 | ir.modrm;
7268 goto no_support;
7269 }
7270 switch (ir.reg)
7271 {
7272 case 0:
7273 case 2:
7274 case 3:
7275 case 4:
7276 case 8:
7277 if (opcode & 2)
25ea693b 7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7279 else
25ea693b 7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7281 break;
7282 default:
cf648174 7283 ir.addr -= 3;
7ad10968
HZ
7284 opcode = opcode << 8 | ir.modrm;
7285 goto no_support;
7286 break;
7287 }
7288 break;
7289
a38bba38
MS
7290 case 0x0f21: /* mov reg, drN */
7291 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7292 if (i386_record_modrm (&ir))
7293 return -1;
7294 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7295 || ir.reg == 5 || ir.reg >= 8)
7296 {
cf648174 7297 ir.addr -= 3;
7ad10968
HZ
7298 opcode = opcode << 8 | ir.modrm;
7299 goto no_support;
7300 }
7301 if (opcode & 2)
25ea693b 7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7303 else
25ea693b 7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7305 break;
7306
a38bba38 7307 case 0x0f06: /* clts */
25ea693b 7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7309 break;
7310
a3c4230a
HZ
7311 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7312
7313 case 0x0f0d: /* 3DNow! prefetch */
7314 break;
7315
7316 case 0x0f0e: /* 3DNow! femms */
7317 case 0x0f77: /* emms */
7318 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7319 goto no_support;
25ea693b 7320 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7321 break;
7322
7323 case 0x0f0f: /* 3DNow! data */
7324 if (i386_record_modrm (&ir))
7325 return -1;
4ffa4fc7
PA
7326 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7327 return -1;
a3c4230a
HZ
7328 ir.addr++;
7329 switch (opcode8)
7330 {
7331 case 0x0c: /* 3DNow! pi2fw */
7332 case 0x0d: /* 3DNow! pi2fd */
7333 case 0x1c: /* 3DNow! pf2iw */
7334 case 0x1d: /* 3DNow! pf2id */
7335 case 0x8a: /* 3DNow! pfnacc */
7336 case 0x8e: /* 3DNow! pfpnacc */
7337 case 0x90: /* 3DNow! pfcmpge */
7338 case 0x94: /* 3DNow! pfmin */
7339 case 0x96: /* 3DNow! pfrcp */
7340 case 0x97: /* 3DNow! pfrsqrt */
7341 case 0x9a: /* 3DNow! pfsub */
7342 case 0x9e: /* 3DNow! pfadd */
7343 case 0xa0: /* 3DNow! pfcmpgt */
7344 case 0xa4: /* 3DNow! pfmax */
7345 case 0xa6: /* 3DNow! pfrcpit1 */
7346 case 0xa7: /* 3DNow! pfrsqit1 */
7347 case 0xaa: /* 3DNow! pfsubr */
7348 case 0xae: /* 3DNow! pfacc */
7349 case 0xb0: /* 3DNow! pfcmpeq */
7350 case 0xb4: /* 3DNow! pfmul */
7351 case 0xb6: /* 3DNow! pfrcpit2 */
7352 case 0xb7: /* 3DNow! pmulhrw */
7353 case 0xbb: /* 3DNow! pswapd */
7354 case 0xbf: /* 3DNow! pavgusb */
7355 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7356 goto no_support_3dnow_data;
25ea693b 7357 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7358 break;
7359
7360 default:
7361no_support_3dnow_data:
7362 opcode = (opcode << 8) | opcode8;
7363 goto no_support;
7364 break;
7365 }
7366 break;
7367
7368 case 0x0faa: /* rsm */
25ea693b
MM
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7378 break;
7379
7380 case 0x0fae:
7381 if (i386_record_modrm (&ir))
7382 return -1;
7383 switch(ir.reg)
7384 {
7385 case 0: /* fxsave */
7386 {
7387 uint64_t tmpu64;
7388
25ea693b 7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7390 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7391 return -1;
25ea693b 7392 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7393 return -1;
7394 }
7395 break;
7396
7397 case 1: /* fxrstor */
7398 {
7399 int i;
7400
25ea693b 7401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7402
7403 for (i = I387_MM0_REGNUM (tdep);
7404 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7405 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7406
7407 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7408 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7409 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7410
7411 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7412 record_full_arch_list_add_reg (ir.regcache,
7413 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7414
7415 for (i = I387_ST0_REGNUM (tdep);
7416 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7417 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7418
7419 for (i = I387_FCTRL_REGNUM (tdep);
7420 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7421 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7422 }
7423 break;
7424
7425 case 2: /* ldmxcsr */
7426 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7427 goto no_support;
25ea693b 7428 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7429 break;
7430
7431 case 3: /* stmxcsr */
7432 ir.ot = OT_LONG;
7433 if (i386_record_lea_modrm (&ir))
7434 return -1;
7435 break;
7436
7437 case 5: /* lfence */
7438 case 6: /* mfence */
7439 case 7: /* sfence clflush */
7440 break;
7441
7442 default:
7443 opcode = (opcode << 8) | ir.modrm;
7444 goto no_support;
7445 break;
7446 }
7447 break;
7448
7449 case 0x0fc3: /* movnti */
7450 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7451 if (i386_record_modrm (&ir))
7452 return -1;
7453 if (ir.mod == 3)
7454 goto no_support;
7455 ir.reg |= rex_r;
7456 if (i386_record_lea_modrm (&ir))
7457 return -1;
7458 break;
7459
7460 /* Add prefix to opcode. */
7461 case 0x0f10:
7462 case 0x0f11:
7463 case 0x0f12:
7464 case 0x0f13:
7465 case 0x0f14:
7466 case 0x0f15:
7467 case 0x0f16:
7468 case 0x0f17:
7469 case 0x0f28:
7470 case 0x0f29:
7471 case 0x0f2a:
7472 case 0x0f2b:
7473 case 0x0f2c:
7474 case 0x0f2d:
7475 case 0x0f2e:
7476 case 0x0f2f:
7477 case 0x0f38:
7478 case 0x0f39:
7479 case 0x0f3a:
7480 case 0x0f50:
7481 case 0x0f51:
7482 case 0x0f52:
7483 case 0x0f53:
7484 case 0x0f54:
7485 case 0x0f55:
7486 case 0x0f56:
7487 case 0x0f57:
7488 case 0x0f58:
7489 case 0x0f59:
7490 case 0x0f5a:
7491 case 0x0f5b:
7492 case 0x0f5c:
7493 case 0x0f5d:
7494 case 0x0f5e:
7495 case 0x0f5f:
7496 case 0x0f60:
7497 case 0x0f61:
7498 case 0x0f62:
7499 case 0x0f63:
7500 case 0x0f64:
7501 case 0x0f65:
7502 case 0x0f66:
7503 case 0x0f67:
7504 case 0x0f68:
7505 case 0x0f69:
7506 case 0x0f6a:
7507 case 0x0f6b:
7508 case 0x0f6c:
7509 case 0x0f6d:
7510 case 0x0f6e:
7511 case 0x0f6f:
7512 case 0x0f70:
7513 case 0x0f71:
7514 case 0x0f72:
7515 case 0x0f73:
7516 case 0x0f74:
7517 case 0x0f75:
7518 case 0x0f76:
7519 case 0x0f7c:
7520 case 0x0f7d:
7521 case 0x0f7e:
7522 case 0x0f7f:
7523 case 0x0fb8:
7524 case 0x0fc2:
7525 case 0x0fc4:
7526 case 0x0fc5:
7527 case 0x0fc6:
7528 case 0x0fd0:
7529 case 0x0fd1:
7530 case 0x0fd2:
7531 case 0x0fd3:
7532 case 0x0fd4:
7533 case 0x0fd5:
7534 case 0x0fd6:
7535 case 0x0fd7:
7536 case 0x0fd8:
7537 case 0x0fd9:
7538 case 0x0fda:
7539 case 0x0fdb:
7540 case 0x0fdc:
7541 case 0x0fdd:
7542 case 0x0fde:
7543 case 0x0fdf:
7544 case 0x0fe0:
7545 case 0x0fe1:
7546 case 0x0fe2:
7547 case 0x0fe3:
7548 case 0x0fe4:
7549 case 0x0fe5:
7550 case 0x0fe6:
7551 case 0x0fe7:
7552 case 0x0fe8:
7553 case 0x0fe9:
7554 case 0x0fea:
7555 case 0x0feb:
7556 case 0x0fec:
7557 case 0x0fed:
7558 case 0x0fee:
7559 case 0x0fef:
7560 case 0x0ff0:
7561 case 0x0ff1:
7562 case 0x0ff2:
7563 case 0x0ff3:
7564 case 0x0ff4:
7565 case 0x0ff5:
7566 case 0x0ff6:
7567 case 0x0ff7:
7568 case 0x0ff8:
7569 case 0x0ff9:
7570 case 0x0ffa:
7571 case 0x0ffb:
7572 case 0x0ffc:
7573 case 0x0ffd:
7574 case 0x0ffe:
f9fda3f5
L
7575 /* Mask out PREFIX_ADDR. */
7576 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7577 {
7578 case PREFIX_REPNZ:
7579 opcode |= 0xf20000;
7580 break;
7581 case PREFIX_DATA:
7582 opcode |= 0x660000;
7583 break;
7584 case PREFIX_REPZ:
7585 opcode |= 0xf30000;
7586 break;
7587 }
7588reswitch_prefix_add:
7589 switch (opcode)
7590 {
7591 case 0x0f38:
7592 case 0x660f38:
7593 case 0xf20f38:
7594 case 0x0f3a:
7595 case 0x660f3a:
4ffa4fc7
PA
7596 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7597 return -1;
a3c4230a
HZ
7598 ir.addr++;
7599 opcode = (uint32_t) opcode8 | opcode << 8;
7600 goto reswitch_prefix_add;
7601 break;
7602
7603 case 0x0f10: /* movups */
7604 case 0x660f10: /* movupd */
7605 case 0xf30f10: /* movss */
7606 case 0xf20f10: /* movsd */
7607 case 0x0f12: /* movlps */
7608 case 0x660f12: /* movlpd */
7609 case 0xf30f12: /* movsldup */
7610 case 0xf20f12: /* movddup */
7611 case 0x0f14: /* unpcklps */
7612 case 0x660f14: /* unpcklpd */
7613 case 0x0f15: /* unpckhps */
7614 case 0x660f15: /* unpckhpd */
7615 case 0x0f16: /* movhps */
7616 case 0x660f16: /* movhpd */
7617 case 0xf30f16: /* movshdup */
7618 case 0x0f28: /* movaps */
7619 case 0x660f28: /* movapd */
7620 case 0x0f2a: /* cvtpi2ps */
7621 case 0x660f2a: /* cvtpi2pd */
7622 case 0xf30f2a: /* cvtsi2ss */
7623 case 0xf20f2a: /* cvtsi2sd */
7624 case 0x0f2c: /* cvttps2pi */
7625 case 0x660f2c: /* cvttpd2pi */
7626 case 0x0f2d: /* cvtps2pi */
7627 case 0x660f2d: /* cvtpd2pi */
7628 case 0x660f3800: /* pshufb */
7629 case 0x660f3801: /* phaddw */
7630 case 0x660f3802: /* phaddd */
7631 case 0x660f3803: /* phaddsw */
7632 case 0x660f3804: /* pmaddubsw */
7633 case 0x660f3805: /* phsubw */
7634 case 0x660f3806: /* phsubd */
4f7d61a8 7635 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7636 case 0x660f3808: /* psignb */
7637 case 0x660f3809: /* psignw */
7638 case 0x660f380a: /* psignd */
7639 case 0x660f380b: /* pmulhrsw */
7640 case 0x660f3810: /* pblendvb */
7641 case 0x660f3814: /* blendvps */
7642 case 0x660f3815: /* blendvpd */
7643 case 0x660f381c: /* pabsb */
7644 case 0x660f381d: /* pabsw */
7645 case 0x660f381e: /* pabsd */
7646 case 0x660f3820: /* pmovsxbw */
7647 case 0x660f3821: /* pmovsxbd */
7648 case 0x660f3822: /* pmovsxbq */
7649 case 0x660f3823: /* pmovsxwd */
7650 case 0x660f3824: /* pmovsxwq */
7651 case 0x660f3825: /* pmovsxdq */
7652 case 0x660f3828: /* pmuldq */
7653 case 0x660f3829: /* pcmpeqq */
7654 case 0x660f382a: /* movntdqa */
7655 case 0x660f3a08: /* roundps */
7656 case 0x660f3a09: /* roundpd */
7657 case 0x660f3a0a: /* roundss */
7658 case 0x660f3a0b: /* roundsd */
7659 case 0x660f3a0c: /* blendps */
7660 case 0x660f3a0d: /* blendpd */
7661 case 0x660f3a0e: /* pblendw */
7662 case 0x660f3a0f: /* palignr */
7663 case 0x660f3a20: /* pinsrb */
7664 case 0x660f3a21: /* insertps */
7665 case 0x660f3a22: /* pinsrd pinsrq */
7666 case 0x660f3a40: /* dpps */
7667 case 0x660f3a41: /* dppd */
7668 case 0x660f3a42: /* mpsadbw */
7669 case 0x660f3a60: /* pcmpestrm */
7670 case 0x660f3a61: /* pcmpestri */
7671 case 0x660f3a62: /* pcmpistrm */
7672 case 0x660f3a63: /* pcmpistri */
7673 case 0x0f51: /* sqrtps */
7674 case 0x660f51: /* sqrtpd */
7675 case 0xf20f51: /* sqrtsd */
7676 case 0xf30f51: /* sqrtss */
7677 case 0x0f52: /* rsqrtps */
7678 case 0xf30f52: /* rsqrtss */
7679 case 0x0f53: /* rcpps */
7680 case 0xf30f53: /* rcpss */
7681 case 0x0f54: /* andps */
7682 case 0x660f54: /* andpd */
7683 case 0x0f55: /* andnps */
7684 case 0x660f55: /* andnpd */
7685 case 0x0f56: /* orps */
7686 case 0x660f56: /* orpd */
7687 case 0x0f57: /* xorps */
7688 case 0x660f57: /* xorpd */
7689 case 0x0f58: /* addps */
7690 case 0x660f58: /* addpd */
7691 case 0xf20f58: /* addsd */
7692 case 0xf30f58: /* addss */
7693 case 0x0f59: /* mulps */
7694 case 0x660f59: /* mulpd */
7695 case 0xf20f59: /* mulsd */
7696 case 0xf30f59: /* mulss */
7697 case 0x0f5a: /* cvtps2pd */
7698 case 0x660f5a: /* cvtpd2ps */
7699 case 0xf20f5a: /* cvtsd2ss */
7700 case 0xf30f5a: /* cvtss2sd */
7701 case 0x0f5b: /* cvtdq2ps */
7702 case 0x660f5b: /* cvtps2dq */
7703 case 0xf30f5b: /* cvttps2dq */
7704 case 0x0f5c: /* subps */
7705 case 0x660f5c: /* subpd */
7706 case 0xf20f5c: /* subsd */
7707 case 0xf30f5c: /* subss */
7708 case 0x0f5d: /* minps */
7709 case 0x660f5d: /* minpd */
7710 case 0xf20f5d: /* minsd */
7711 case 0xf30f5d: /* minss */
7712 case 0x0f5e: /* divps */
7713 case 0x660f5e: /* divpd */
7714 case 0xf20f5e: /* divsd */
7715 case 0xf30f5e: /* divss */
7716 case 0x0f5f: /* maxps */
7717 case 0x660f5f: /* maxpd */
7718 case 0xf20f5f: /* maxsd */
7719 case 0xf30f5f: /* maxss */
7720 case 0x660f60: /* punpcklbw */
7721 case 0x660f61: /* punpcklwd */
7722 case 0x660f62: /* punpckldq */
7723 case 0x660f63: /* packsswb */
7724 case 0x660f64: /* pcmpgtb */
7725 case 0x660f65: /* pcmpgtw */
56d2815c 7726 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7727 case 0x660f67: /* packuswb */
7728 case 0x660f68: /* punpckhbw */
7729 case 0x660f69: /* punpckhwd */
7730 case 0x660f6a: /* punpckhdq */
7731 case 0x660f6b: /* packssdw */
7732 case 0x660f6c: /* punpcklqdq */
7733 case 0x660f6d: /* punpckhqdq */
7734 case 0x660f6e: /* movd */
7735 case 0x660f6f: /* movdqa */
7736 case 0xf30f6f: /* movdqu */
7737 case 0x660f70: /* pshufd */
7738 case 0xf20f70: /* pshuflw */
7739 case 0xf30f70: /* pshufhw */
7740 case 0x660f74: /* pcmpeqb */
7741 case 0x660f75: /* pcmpeqw */
56d2815c 7742 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7743 case 0x660f7c: /* haddpd */
7744 case 0xf20f7c: /* haddps */
7745 case 0x660f7d: /* hsubpd */
7746 case 0xf20f7d: /* hsubps */
7747 case 0xf30f7e: /* movq */
7748 case 0x0fc2: /* cmpps */
7749 case 0x660fc2: /* cmppd */
7750 case 0xf20fc2: /* cmpsd */
7751 case 0xf30fc2: /* cmpss */
7752 case 0x660fc4: /* pinsrw */
7753 case 0x0fc6: /* shufps */
7754 case 0x660fc6: /* shufpd */
7755 case 0x660fd0: /* addsubpd */
7756 case 0xf20fd0: /* addsubps */
7757 case 0x660fd1: /* psrlw */
7758 case 0x660fd2: /* psrld */
7759 case 0x660fd3: /* psrlq */
7760 case 0x660fd4: /* paddq */
7761 case 0x660fd5: /* pmullw */
7762 case 0xf30fd6: /* movq2dq */
7763 case 0x660fd8: /* psubusb */
7764 case 0x660fd9: /* psubusw */
7765 case 0x660fda: /* pminub */
7766 case 0x660fdb: /* pand */
7767 case 0x660fdc: /* paddusb */
7768 case 0x660fdd: /* paddusw */
7769 case 0x660fde: /* pmaxub */
7770 case 0x660fdf: /* pandn */
7771 case 0x660fe0: /* pavgb */
7772 case 0x660fe1: /* psraw */
7773 case 0x660fe2: /* psrad */
7774 case 0x660fe3: /* pavgw */
7775 case 0x660fe4: /* pmulhuw */
7776 case 0x660fe5: /* pmulhw */
7777 case 0x660fe6: /* cvttpd2dq */
7778 case 0xf20fe6: /* cvtpd2dq */
7779 case 0xf30fe6: /* cvtdq2pd */
7780 case 0x660fe8: /* psubsb */
7781 case 0x660fe9: /* psubsw */
7782 case 0x660fea: /* pminsw */
7783 case 0x660feb: /* por */
7784 case 0x660fec: /* paddsb */
7785 case 0x660fed: /* paddsw */
7786 case 0x660fee: /* pmaxsw */
7787 case 0x660fef: /* pxor */
4f7d61a8 7788 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7789 case 0x660ff1: /* psllw */
7790 case 0x660ff2: /* pslld */
7791 case 0x660ff3: /* psllq */
7792 case 0x660ff4: /* pmuludq */
7793 case 0x660ff5: /* pmaddwd */
7794 case 0x660ff6: /* psadbw */
7795 case 0x660ff8: /* psubb */
7796 case 0x660ff9: /* psubw */
56d2815c 7797 case 0x660ffa: /* psubd */
a3c4230a
HZ
7798 case 0x660ffb: /* psubq */
7799 case 0x660ffc: /* paddb */
7800 case 0x660ffd: /* paddw */
56d2815c 7801 case 0x660ffe: /* paddd */
a3c4230a
HZ
7802 if (i386_record_modrm (&ir))
7803 return -1;
7804 ir.reg |= rex_r;
c131fcee 7805 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7806 goto no_support;
25ea693b
MM
7807 record_full_arch_list_add_reg (ir.regcache,
7808 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7809 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7811 break;
7812
7813 case 0x0f11: /* movups */
7814 case 0x660f11: /* movupd */
7815 case 0xf30f11: /* movss */
7816 case 0xf20f11: /* movsd */
7817 case 0x0f13: /* movlps */
7818 case 0x660f13: /* movlpd */
7819 case 0x0f17: /* movhps */
7820 case 0x660f17: /* movhpd */
7821 case 0x0f29: /* movaps */
7822 case 0x660f29: /* movapd */
7823 case 0x660f3a14: /* pextrb */
7824 case 0x660f3a15: /* pextrw */
7825 case 0x660f3a16: /* pextrd pextrq */
7826 case 0x660f3a17: /* extractps */
7827 case 0x660f7f: /* movdqa */
7828 case 0xf30f7f: /* movdqu */
7829 if (i386_record_modrm (&ir))
7830 return -1;
7831 if (ir.mod == 3)
7832 {
7833 if (opcode == 0x0f13 || opcode == 0x660f13
7834 || opcode == 0x0f17 || opcode == 0x660f17)
7835 goto no_support;
7836 ir.rm |= ir.rex_b;
1777feb0
MS
7837 if (!i386_xmm_regnum_p (gdbarch,
7838 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7839 goto no_support;
25ea693b
MM
7840 record_full_arch_list_add_reg (ir.regcache,
7841 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7842 }
7843 else
7844 {
7845 switch (opcode)
7846 {
7847 case 0x660f3a14:
7848 ir.ot = OT_BYTE;
7849 break;
7850 case 0x660f3a15:
7851 ir.ot = OT_WORD;
7852 break;
7853 case 0x660f3a16:
7854 ir.ot = OT_LONG;
7855 break;
7856 case 0x660f3a17:
7857 ir.ot = OT_QUAD;
7858 break;
7859 default:
7860 ir.ot = OT_DQUAD;
7861 break;
7862 }
7863 if (i386_record_lea_modrm (&ir))
7864 return -1;
7865 }
7866 break;
7867
7868 case 0x0f2b: /* movntps */
7869 case 0x660f2b: /* movntpd */
7870 case 0x0fe7: /* movntq */
7871 case 0x660fe7: /* movntdq */
7872 if (ir.mod == 3)
7873 goto no_support;
7874 if (opcode == 0x0fe7)
7875 ir.ot = OT_QUAD;
7876 else
7877 ir.ot = OT_DQUAD;
7878 if (i386_record_lea_modrm (&ir))
7879 return -1;
7880 break;
7881
7882 case 0xf30f2c: /* cvttss2si */
7883 case 0xf20f2c: /* cvttsd2si */
7884 case 0xf30f2d: /* cvtss2si */
7885 case 0xf20f2d: /* cvtsd2si */
7886 case 0xf20f38f0: /* crc32 */
7887 case 0xf20f38f1: /* crc32 */
7888 case 0x0f50: /* movmskps */
7889 case 0x660f50: /* movmskpd */
7890 case 0x0fc5: /* pextrw */
7891 case 0x660fc5: /* pextrw */
7892 case 0x0fd7: /* pmovmskb */
7893 case 0x660fd7: /* pmovmskb */
25ea693b 7894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7895 break;
7896
7897 case 0x0f3800: /* pshufb */
7898 case 0x0f3801: /* phaddw */
7899 case 0x0f3802: /* phaddd */
7900 case 0x0f3803: /* phaddsw */
7901 case 0x0f3804: /* pmaddubsw */
7902 case 0x0f3805: /* phsubw */
7903 case 0x0f3806: /* phsubd */
4f7d61a8 7904 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7905 case 0x0f3808: /* psignb */
7906 case 0x0f3809: /* psignw */
7907 case 0x0f380a: /* psignd */
7908 case 0x0f380b: /* pmulhrsw */
7909 case 0x0f381c: /* pabsb */
7910 case 0x0f381d: /* pabsw */
7911 case 0x0f381e: /* pabsd */
7912 case 0x0f382b: /* packusdw */
7913 case 0x0f3830: /* pmovzxbw */
7914 case 0x0f3831: /* pmovzxbd */
7915 case 0x0f3832: /* pmovzxbq */
7916 case 0x0f3833: /* pmovzxwd */
7917 case 0x0f3834: /* pmovzxwq */
7918 case 0x0f3835: /* pmovzxdq */
7919 case 0x0f3837: /* pcmpgtq */
7920 case 0x0f3838: /* pminsb */
7921 case 0x0f3839: /* pminsd */
7922 case 0x0f383a: /* pminuw */
7923 case 0x0f383b: /* pminud */
7924 case 0x0f383c: /* pmaxsb */
7925 case 0x0f383d: /* pmaxsd */
7926 case 0x0f383e: /* pmaxuw */
7927 case 0x0f383f: /* pmaxud */
7928 case 0x0f3840: /* pmulld */
7929 case 0x0f3841: /* phminposuw */
7930 case 0x0f3a0f: /* palignr */
7931 case 0x0f60: /* punpcklbw */
7932 case 0x0f61: /* punpcklwd */
7933 case 0x0f62: /* punpckldq */
7934 case 0x0f63: /* packsswb */
7935 case 0x0f64: /* pcmpgtb */
7936 case 0x0f65: /* pcmpgtw */
56d2815c 7937 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7938 case 0x0f67: /* packuswb */
7939 case 0x0f68: /* punpckhbw */
7940 case 0x0f69: /* punpckhwd */
7941 case 0x0f6a: /* punpckhdq */
7942 case 0x0f6b: /* packssdw */
7943 case 0x0f6e: /* movd */
7944 case 0x0f6f: /* movq */
7945 case 0x0f70: /* pshufw */
7946 case 0x0f74: /* pcmpeqb */
7947 case 0x0f75: /* pcmpeqw */
56d2815c 7948 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7949 case 0x0fc4: /* pinsrw */
7950 case 0x0fd1: /* psrlw */
7951 case 0x0fd2: /* psrld */
7952 case 0x0fd3: /* psrlq */
7953 case 0x0fd4: /* paddq */
7954 case 0x0fd5: /* pmullw */
7955 case 0xf20fd6: /* movdq2q */
7956 case 0x0fd8: /* psubusb */
7957 case 0x0fd9: /* psubusw */
7958 case 0x0fda: /* pminub */
7959 case 0x0fdb: /* pand */
7960 case 0x0fdc: /* paddusb */
7961 case 0x0fdd: /* paddusw */
7962 case 0x0fde: /* pmaxub */
7963 case 0x0fdf: /* pandn */
7964 case 0x0fe0: /* pavgb */
7965 case 0x0fe1: /* psraw */
7966 case 0x0fe2: /* psrad */
7967 case 0x0fe3: /* pavgw */
7968 case 0x0fe4: /* pmulhuw */
7969 case 0x0fe5: /* pmulhw */
7970 case 0x0fe8: /* psubsb */
7971 case 0x0fe9: /* psubsw */
7972 case 0x0fea: /* pminsw */
7973 case 0x0feb: /* por */
7974 case 0x0fec: /* paddsb */
7975 case 0x0fed: /* paddsw */
7976 case 0x0fee: /* pmaxsw */
7977 case 0x0fef: /* pxor */
7978 case 0x0ff1: /* psllw */
7979 case 0x0ff2: /* pslld */
7980 case 0x0ff3: /* psllq */
7981 case 0x0ff4: /* pmuludq */
7982 case 0x0ff5: /* pmaddwd */
7983 case 0x0ff6: /* psadbw */
7984 case 0x0ff8: /* psubb */
7985 case 0x0ff9: /* psubw */
56d2815c 7986 case 0x0ffa: /* psubd */
a3c4230a
HZ
7987 case 0x0ffb: /* psubq */
7988 case 0x0ffc: /* paddb */
7989 case 0x0ffd: /* paddw */
56d2815c 7990 case 0x0ffe: /* paddd */
a3c4230a
HZ
7991 if (i386_record_modrm (&ir))
7992 return -1;
7993 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7994 goto no_support;
25ea693b
MM
7995 record_full_arch_list_add_reg (ir.regcache,
7996 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7997 break;
7998
7999 case 0x0f71: /* psllw */
8000 case 0x0f72: /* pslld */
8001 case 0x0f73: /* psllq */
8002 if (i386_record_modrm (&ir))
8003 return -1;
8004 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8005 goto no_support;
25ea693b
MM
8006 record_full_arch_list_add_reg (ir.regcache,
8007 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8008 break;
8009
8010 case 0x660f71: /* psllw */
8011 case 0x660f72: /* pslld */
8012 case 0x660f73: /* psllq */
8013 if (i386_record_modrm (&ir))
8014 return -1;
8015 ir.rm |= ir.rex_b;
c131fcee 8016 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8017 goto no_support;
25ea693b
MM
8018 record_full_arch_list_add_reg (ir.regcache,
8019 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8020 break;
8021
8022 case 0x0f7e: /* movd */
8023 case 0x660f7e: /* movd */
8024 if (i386_record_modrm (&ir))
8025 return -1;
8026 if (ir.mod == 3)
25ea693b 8027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8028 else
8029 {
8030 if (ir.dflag == 2)
8031 ir.ot = OT_QUAD;
8032 else
8033 ir.ot = OT_LONG;
8034 if (i386_record_lea_modrm (&ir))
8035 return -1;
8036 }
8037 break;
8038
8039 case 0x0f7f: /* movq */
8040 if (i386_record_modrm (&ir))
8041 return -1;
8042 if (ir.mod == 3)
8043 {
8044 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8045 goto no_support;
25ea693b
MM
8046 record_full_arch_list_add_reg (ir.regcache,
8047 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8048 }
8049 else
8050 {
8051 ir.ot = OT_QUAD;
8052 if (i386_record_lea_modrm (&ir))
8053 return -1;
8054 }
8055 break;
8056
8057 case 0xf30fb8: /* popcnt */
8058 if (i386_record_modrm (&ir))
8059 return -1;
25ea693b
MM
8060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8061 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8062 break;
8063
8064 case 0x660fd6: /* movq */
8065 if (i386_record_modrm (&ir))
8066 return -1;
8067 if (ir.mod == 3)
8068 {
8069 ir.rm |= ir.rex_b;
1777feb0
MS
8070 if (!i386_xmm_regnum_p (gdbarch,
8071 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8072 goto no_support;
25ea693b
MM
8073 record_full_arch_list_add_reg (ir.regcache,
8074 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8075 }
8076 else
8077 {
8078 ir.ot = OT_QUAD;
8079 if (i386_record_lea_modrm (&ir))
8080 return -1;
8081 }
8082 break;
8083
8084 case 0x660f3817: /* ptest */
8085 case 0x0f2e: /* ucomiss */
8086 case 0x660f2e: /* ucomisd */
8087 case 0x0f2f: /* comiss */
8088 case 0x660f2f: /* comisd */
25ea693b 8089 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8090 break;
8091
8092 case 0x0ff7: /* maskmovq */
8093 regcache_raw_read_unsigned (ir.regcache,
8094 ir.regmap[X86_RECORD_REDI_REGNUM],
8095 &addr);
25ea693b 8096 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8097 return -1;
8098 break;
8099
8100 case 0x660ff7: /* maskmovdqu */
8101 regcache_raw_read_unsigned (ir.regcache,
8102 ir.regmap[X86_RECORD_REDI_REGNUM],
8103 &addr);
25ea693b 8104 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8105 return -1;
8106 break;
8107
8108 default:
8109 goto no_support;
8110 break;
8111 }
8112 break;
7ad10968
HZ
8113
8114 default:
7ad10968
HZ
8115 goto no_support;
8116 break;
8117 }
8118
cf648174 8119 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8121 if (record_full_arch_list_add_end ())
7ad10968
HZ
8122 return -1;
8123
8124 return 0;
8125
01fe1b41 8126 no_support:
a3c4230a
HZ
8127 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8128 "at address %s.\n"),
8129 (unsigned int) (opcode),
8130 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8131 return -1;
8132}
8133
cf648174
HZ
8134static const int i386_record_regmap[] =
8135{
8136 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8137 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8138 0, 0, 0, 0, 0, 0, 0, 0,
8139 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8140 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8141};
8142
7a697b8d 8143/* Check that the given address appears suitable for a fast
405f8e94 8144 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8145 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8146 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8147 middle of the tracepoint jump. On x86, it may be possible to use
8148 4-byte jumps with a 2-byte offset to a trampoline located in the
8149 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8150 of instruction to replace, and 0 if not, plus an explanatory
8151 string. */
8152
8153static int
6b940e6a
PL
8154i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8155 char **msg)
7a697b8d
SS
8156{
8157 int len, jumplen;
7a697b8d 8158
405f8e94
SS
8159 /* Ask the target for the minimum instruction length supported. */
8160 jumplen = target_get_min_fast_tracepoint_insn_len ();
8161
8162 if (jumplen < 0)
8163 {
8164 /* If the target does not support the get_min_fast_tracepoint_insn_len
8165 operation, assume that fast tracepoints will always be implemented
8166 using 4-byte relative jumps on both x86 and x86-64. */
8167 jumplen = 5;
8168 }
8169 else if (jumplen == 0)
8170 {
8171 /* If the target does support get_min_fast_tracepoint_insn_len but
8172 returns zero, then the IPA has not loaded yet. In this case,
8173 we optimistically assume that truncated 2-byte relative jumps
8174 will be available on x86, and compensate later if this assumption
8175 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8176 jumps will always be used. */
8177 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8178 }
7a697b8d 8179
7a697b8d 8180 /* Check for fit. */
be85ce7d 8181 len = gdb_insn_length (gdbarch, addr);
405f8e94 8182
7a697b8d
SS
8183 if (len < jumplen)
8184 {
8185 /* Return a bit of target-specific detail to add to the caller's
8186 generic failure message. */
8187 if (msg)
1777feb0
MS
8188 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8189 "need at least %d bytes for the jump"),
7a697b8d
SS
8190 len, jumplen);
8191 return 0;
8192 }
405f8e94
SS
8193 else
8194 {
8195 if (msg)
8196 *msg = NULL;
8197 return 1;
8198 }
7a697b8d
SS
8199}
8200
00d5215e
UW
8201/* Return a floating-point format for a floating-point variable of
8202 length LEN in bits. If non-NULL, NAME is the name of its type.
8203 If no suitable type is found, return NULL. */
8204
8205const struct floatformat **
8206i386_floatformat_for_type (struct gdbarch *gdbarch,
8207 const char *name, int len)
8208{
8209 if (len == 128 && name)
8210 if (strcmp (name, "__float128") == 0
8211 || strcmp (name, "_Float128") == 0
8212 || strcmp (name, "complex _Float128") == 0)
8213 return floatformats_ia64_quad;
8214
8215 return default_floatformat_for_type (gdbarch, name, len);
8216}
8217
90884b2b
L
8218static int
8219i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8220 struct tdesc_arch_data *tdesc_data)
8221{
8222 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8223 const struct tdesc_feature *feature_core;
01f9f808
MS
8224
8225 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
51547df6 8226 *feature_avx512, *feature_pkeys;
90884b2b
L
8227 int i, num_regs, valid_p;
8228
8229 if (! tdesc_has_registers (tdesc))
8230 return 0;
8231
8232 /* Get core registers. */
8233 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8234 if (feature_core == NULL)
8235 return 0;
90884b2b
L
8236
8237 /* Get SSE registers. */
c131fcee 8238 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8239
c131fcee
L
8240 /* Try AVX registers. */
8241 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8242
1dbcd68c
WT
8243 /* Try MPX registers. */
8244 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8245
01f9f808
MS
8246 /* Try AVX512 registers. */
8247 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8248
51547df6
MS
8249 /* Try PKEYS */
8250 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8251
90884b2b
L
8252 valid_p = 1;
8253
c131fcee 8254 /* The XCR0 bits. */
01f9f808
MS
8255 if (feature_avx512)
8256 {
8257 /* AVX512 register description requires AVX register description. */
8258 if (!feature_avx)
8259 return 0;
8260
a1fa17ee 8261 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8262
8263 /* It may have been set by OSABI initialization function. */
8264 if (tdep->k0_regnum < 0)
8265 {
8266 tdep->k_register_names = i386_k_names;
8267 tdep->k0_regnum = I386_K0_REGNUM;
8268 }
8269
8270 for (i = 0; i < I387_NUM_K_REGS; i++)
8271 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8272 tdep->k0_regnum + i,
8273 i386_k_names[i]);
8274
8275 if (tdep->num_zmm_regs == 0)
8276 {
8277 tdep->zmmh_register_names = i386_zmmh_names;
8278 tdep->num_zmm_regs = 8;
8279 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8280 }
8281
8282 for (i = 0; i < tdep->num_zmm_regs; i++)
8283 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8284 tdep->zmm0h_regnum + i,
8285 tdep->zmmh_register_names[i]);
8286
8287 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8288 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8289 tdep->xmm16_regnum + i,
8290 tdep->xmm_avx512_register_names[i]);
8291
8292 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8294 tdep->ymm16h_regnum + i,
8295 tdep->ymm16h_register_names[i]);
8296 }
c131fcee
L
8297 if (feature_avx)
8298 {
3a13a53b
L
8299 /* AVX register description requires SSE register description. */
8300 if (!feature_sse)
8301 return 0;
8302
01f9f808 8303 if (!feature_avx512)
df7e5265 8304 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8305
8306 /* It may have been set by OSABI initialization function. */
8307 if (tdep->num_ymm_regs == 0)
8308 {
8309 tdep->ymmh_register_names = i386_ymmh_names;
8310 tdep->num_ymm_regs = 8;
8311 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8312 }
8313
8314 for (i = 0; i < tdep->num_ymm_regs; i++)
8315 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8316 tdep->ymm0h_regnum + i,
8317 tdep->ymmh_register_names[i]);
8318 }
3a13a53b 8319 else if (feature_sse)
df7e5265 8320 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8321 else
8322 {
df7e5265 8323 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8324 tdep->num_xmm_regs = 0;
8325 }
c131fcee 8326
90884b2b
L
8327 num_regs = tdep->num_core_regs;
8328 for (i = 0; i < num_regs; i++)
8329 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8330 tdep->register_names[i]);
8331
3a13a53b
L
8332 if (feature_sse)
8333 {
8334 /* Need to include %mxcsr, so add one. */
8335 num_regs += tdep->num_xmm_regs + 1;
8336 for (; i < num_regs; i++)
8337 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8338 tdep->register_names[i]);
8339 }
90884b2b 8340
1dbcd68c
WT
8341 if (feature_mpx)
8342 {
df7e5265 8343 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8344
8345 if (tdep->bnd0r_regnum < 0)
8346 {
8347 tdep->mpx_register_names = i386_mpx_names;
8348 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8349 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8350 }
8351
8352 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8353 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8354 I387_BND0R_REGNUM (tdep) + i,
8355 tdep->mpx_register_names[i]);
8356 }
8357
51547df6
MS
8358 if (feature_pkeys)
8359 {
8360 tdep->xcr0 |= X86_XSTATE_PKRU;
8361 if (tdep->pkru_regnum < 0)
8362 {
8363 tdep->pkeys_register_names = i386_pkeys_names;
8364 tdep->pkru_regnum = I386_PKRU_REGNUM;
8365 tdep->num_pkeys_regs = 1;
8366 }
8367
8368 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8369 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8370 I387_PKRU_REGNUM (tdep) + i,
8371 tdep->pkeys_register_names[i]);
8372 }
8373
90884b2b
L
8374 return valid_p;
8375}
8376
7ad10968 8377\f
ad9eb1fd
DE
8378/* Note: This is called for both i386 and amd64. */
8379
7ad10968
HZ
8380static struct gdbarch *
8381i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8382{
8383 struct gdbarch_tdep *tdep;
8384 struct gdbarch *gdbarch;
90884b2b
L
8385 struct tdesc_arch_data *tdesc_data;
8386 const struct target_desc *tdesc;
1ba53b71 8387 int mm0_regnum;
c131fcee 8388 int ymm0_regnum;
1dbcd68c
WT
8389 int bnd0_regnum;
8390 int num_bnd_cooked;
7ad10968
HZ
8391
8392 /* If there is already a candidate, use it. */
8393 arches = gdbarch_list_lookup_by_info (arches, &info);
8394 if (arches != NULL)
8395 return arches->gdbarch;
8396
ad9eb1fd 8397 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8398 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8399 gdbarch = gdbarch_alloc (&info, tdep);
8400
8401 /* General-purpose registers. */
7ad10968
HZ
8402 tdep->gregset_reg_offset = NULL;
8403 tdep->gregset_num_regs = I386_NUM_GREGS;
8404 tdep->sizeof_gregset = 0;
8405
8406 /* Floating-point registers. */
7ad10968 8407 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8408 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8409
8410 /* The default settings include the FPU registers, the MMX registers
8411 and the SSE registers. This can be overridden for a specific ABI
8412 by adjusting the members `st0_regnum', `mm0_regnum' and
8413 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8414 will show up in the output of "info all-registers". */
7ad10968
HZ
8415
8416 tdep->st0_regnum = I386_ST0_REGNUM;
8417
7ad10968
HZ
8418 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8419 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8420
8421 tdep->jb_pc_offset = -1;
8422 tdep->struct_return = pcc_struct_return;
8423 tdep->sigtramp_start = 0;
8424 tdep->sigtramp_end = 0;
8425 tdep->sigtramp_p = i386_sigtramp_p;
8426 tdep->sigcontext_addr = NULL;
8427 tdep->sc_reg_offset = NULL;
8428 tdep->sc_pc_offset = -1;
8429 tdep->sc_sp_offset = -1;
8430
c131fcee
L
8431 tdep->xsave_xcr0_offset = -1;
8432
cf648174
HZ
8433 tdep->record_regmap = i386_record_regmap;
8434
205c306f
DM
8435 set_gdbarch_long_long_align_bit (gdbarch, 32);
8436
7ad10968
HZ
8437 /* The format used for `long double' on almost all i386 targets is
8438 the i387 extended floating-point format. In fact, of all targets
8439 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8440 on having a `long double' that's not `long' at all. */
8441 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8442
8443 /* Although the i387 extended floating-point has only 80 significant
8444 bits, a `long double' actually takes up 96, probably to enforce
8445 alignment. */
8446 set_gdbarch_long_double_bit (gdbarch, 96);
8447
00d5215e
UW
8448 /* Support for floating-point data type variants. */
8449 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8450
7ad10968
HZ
8451 /* Register numbers of various important registers. */
8452 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8453 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8454 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8455 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8456
8457 /* NOTE: kettenis/20040418: GCC does have two possible register
8458 numbering schemes on the i386: dbx and SVR4. These schemes
8459 differ in how they number %ebp, %esp, %eflags, and the
8460 floating-point registers, and are implemented by the arrays
8461 dbx_register_map[] and svr4_dbx_register_map in
8462 gcc/config/i386.c. GCC also defines a third numbering scheme in
8463 gcc/config/i386.c, which it designates as the "default" register
8464 map used in 64bit mode. This last register numbering scheme is
8465 implemented in dbx64_register_map, and is used for AMD64; see
8466 amd64-tdep.c.
8467
8468 Currently, each GCC i386 target always uses the same register
8469 numbering scheme across all its supported debugging formats
8470 i.e. SDB (COFF), stabs and DWARF 2. This is because
8471 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8472 DBX_REGISTER_NUMBER macro which is defined by each target's
8473 respective config header in a manner independent of the requested
8474 output debugging format.
8475
8476 This does not match the arrangement below, which presumes that
8477 the SDB and stabs numbering schemes differ from the DWARF and
8478 DWARF 2 ones. The reason for this arrangement is that it is
8479 likely to get the numbering scheme for the target's
8480 default/native debug format right. For targets where GCC is the
8481 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8482 targets where the native toolchain uses a different numbering
8483 scheme for a particular debug format (stabs-in-ELF on Solaris)
8484 the defaults below will have to be overridden, like
8485 i386_elf_init_abi() does. */
8486
8487 /* Use the dbx register numbering scheme for stabs and COFF. */
8488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8489 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8490
8491 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8492 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8493
8494 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8495 be in use on any of the supported i386 targets. */
8496
8497 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8498
8499 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8500
8501 /* Call dummy code. */
a9b8d892
JK
8502 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8503 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8504 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8505 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8506
8507 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8508 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8509 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8510
8511 set_gdbarch_return_value (gdbarch, i386_return_value);
8512
8513 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8514
8515 /* Stack grows downward. */
8516 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8517
04180708
YQ
8518 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8519 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8520
7ad10968
HZ
8521 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8522 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8523
8524 set_gdbarch_frame_args_skip (gdbarch, 8);
8525
7ad10968
HZ
8526 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8527
8528 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8529
8530 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8531
8532 /* Add the i386 register groups. */
8533 i386_add_reggroups (gdbarch);
90884b2b 8534 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8535
143985b7
AF
8536 /* Helper for function argument information. */
8537 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8538
06da04c6 8539 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8540 appended to the list first, so that it supercedes the DWARF
8541 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8542 currently fails). */
8543 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8544
8545 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8546 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8547 CFI info will be used if it is available. */
10458914 8548 dwarf2_append_unwinders (gdbarch);
6405b0a6 8549
acd5c798 8550 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8551
1ba53b71 8552 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8553 set_gdbarch_pseudo_register_read_value (gdbarch,
8554 i386_pseudo_register_read_value);
90884b2b 8555 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8556 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8557 i386_ax_pseudo_register_collect);
90884b2b
L
8558
8559 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8560 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8561
c131fcee
L
8562 /* Override the normal target description method to make the AVX
8563 upper halves anonymous. */
8564 set_gdbarch_register_name (gdbarch, i386_register_name);
8565
8566 /* Even though the default ABI only includes general-purpose registers,
8567 floating-point registers and the SSE registers, we have to leave a
01f9f808 8568 gap for the upper AVX, MPX and AVX512 registers. */
51547df6 8569 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
90884b2b 8570
ac04f72b
TT
8571 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8572
90884b2b
L
8573 /* Get the x86 target description from INFO. */
8574 tdesc = info.target_desc;
8575 if (! tdesc_has_registers (tdesc))
8576 tdesc = tdesc_i386;
8577 tdep->tdesc = tdesc;
8578
8579 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8580 tdep->register_names = i386_register_names;
8581
c131fcee
L
8582 /* No upper YMM registers. */
8583 tdep->ymmh_register_names = NULL;
8584 tdep->ymm0h_regnum = -1;
8585
01f9f808
MS
8586 /* No upper ZMM registers. */
8587 tdep->zmmh_register_names = NULL;
8588 tdep->zmm0h_regnum = -1;
8589
8590 /* No high XMM registers. */
8591 tdep->xmm_avx512_register_names = NULL;
8592 tdep->xmm16_regnum = -1;
8593
8594 /* No upper YMM16-31 registers. */
8595 tdep->ymm16h_register_names = NULL;
8596 tdep->ymm16h_regnum = -1;
8597
1ba53b71
L
8598 tdep->num_byte_regs = 8;
8599 tdep->num_word_regs = 8;
8600 tdep->num_dword_regs = 0;
8601 tdep->num_mmx_regs = 8;
c131fcee 8602 tdep->num_ymm_regs = 0;
1ba53b71 8603
1dbcd68c
WT
8604 /* No MPX registers. */
8605 tdep->bnd0r_regnum = -1;
8606 tdep->bndcfgu_regnum = -1;
8607
01f9f808
MS
8608 /* No AVX512 registers. */
8609 tdep->k0_regnum = -1;
8610 tdep->num_zmm_regs = 0;
8611 tdep->num_ymm_avx512_regs = 0;
8612 tdep->num_xmm_avx512_regs = 0;
8613
51547df6
MS
8614 /* No PKEYS registers */
8615 tdep->pkru_regnum = -1;
8616 tdep->num_pkeys_regs = 0;
8617
90884b2b
L
8618 tdesc_data = tdesc_data_alloc ();
8619
dde08ee1
PA
8620 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8621
6710bf39
SS
8622 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8623
c2170eef
MM
8624 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8625 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8626 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8627
ad9eb1fd
DE
8628 /* Hook in ABI-specific overrides, if they have been registered.
8629 Note: If INFO specifies a 64 bit arch, this is where we turn
8630 a 32-bit i386 into a 64-bit amd64. */
ede5f151 8631 info.tdep_info = tdesc_data;
4be87837 8632 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8633
c131fcee
L
8634 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8635 {
8636 tdesc_data_cleanup (tdesc_data);
8637 xfree (tdep);
8638 gdbarch_free (gdbarch);
8639 return NULL;
8640 }
8641
1dbcd68c
WT
8642 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8643
1ba53b71
L
8644 /* Wire in pseudo registers. Number of pseudo registers may be
8645 changed. */
8646 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8647 + tdep->num_word_regs
8648 + tdep->num_dword_regs
c131fcee 8649 + tdep->num_mmx_regs
1dbcd68c 8650 + tdep->num_ymm_regs
01f9f808
MS
8651 + num_bnd_cooked
8652 + tdep->num_ymm_avx512_regs
8653 + tdep->num_zmm_regs));
1ba53b71 8654
90884b2b
L
8655 /* Target description may be changed. */
8656 tdesc = tdep->tdesc;
8657
90884b2b
L
8658 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8659
8660 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8661 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8662
1ba53b71
L
8663 /* Make %al the first pseudo-register. */
8664 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8665 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8666
c131fcee 8667 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8668 if (tdep->num_dword_regs)
8669 {
1c6272a6 8670 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8671 tdep->eax_regnum = ymm0_regnum;
8672 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8673 }
8674 else
8675 tdep->eax_regnum = -1;
8676
c131fcee
L
8677 mm0_regnum = ymm0_regnum;
8678 if (tdep->num_ymm_regs)
8679 {
1c6272a6 8680 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8681 tdep->ymm0_regnum = ymm0_regnum;
8682 mm0_regnum += tdep->num_ymm_regs;
8683 }
8684 else
8685 tdep->ymm0_regnum = -1;
8686
01f9f808
MS
8687 if (tdep->num_ymm_avx512_regs)
8688 {
8689 /* Support YMM16-31 pseudo registers if available. */
8690 tdep->ymm16_regnum = mm0_regnum;
8691 mm0_regnum += tdep->num_ymm_avx512_regs;
8692 }
8693 else
8694 tdep->ymm16_regnum = -1;
8695
8696 if (tdep->num_zmm_regs)
8697 {
8698 /* Support ZMM pseudo-register if it is available. */
8699 tdep->zmm0_regnum = mm0_regnum;
8700 mm0_regnum += tdep->num_zmm_regs;
8701 }
8702 else
8703 tdep->zmm0_regnum = -1;
8704
1dbcd68c 8705 bnd0_regnum = mm0_regnum;
1ba53b71
L
8706 if (tdep->num_mmx_regs != 0)
8707 {
1c6272a6 8708 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8709 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8710 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8711 }
8712 else
8713 tdep->mm0_regnum = -1;
8714
1dbcd68c
WT
8715 if (tdep->bnd0r_regnum > 0)
8716 tdep->bnd0_regnum = bnd0_regnum;
8717 else
8718 tdep-> bnd0_regnum = -1;
8719
06da04c6 8720 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8721 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8722 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8723 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8724
8446b36a
MK
8725 /* If we have a register mapping, enable the generic core file
8726 support, unless it has already been enabled. */
8727 if (tdep->gregset_reg_offset
8f0435f7 8728 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8729 set_gdbarch_iterate_over_regset_sections
8730 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8731
7a697b8d
SS
8732 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8733 i386_fast_tracepoint_valid_at);
8734
a62cc96e
AC
8735 return gdbarch;
8736}
8737
8201327c
MK
8738static enum gdb_osabi
8739i386_coff_osabi_sniffer (bfd *abfd)
8740{
762c5349
MK
8741 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8742 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8743 return GDB_OSABI_GO32;
8744
8745 return GDB_OSABI_UNKNOWN;
8746}
8201327c
MK
8747\f
8748
97de3545
JB
8749/* Return the target description for a specified XSAVE feature mask. */
8750
8751const struct target_desc *
8752i386_target_description (uint64_t xcr0)
8753{
8754 switch (xcr0 & X86_XSTATE_ALL_MASK)
8755 {
51547df6
MS
8756 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8757 return tdesc_i386_avx_mpx_avx512_pku;
a1fa17ee
MS
8758 case X86_XSTATE_AVX_AVX512_MASK:
8759 return tdesc_i386_avx_avx512;
2b863f51
WT
8760 case X86_XSTATE_AVX_MPX_MASK:
8761 return tdesc_i386_avx_mpx;
97de3545
JB
8762 case X86_XSTATE_MPX_MASK:
8763 return tdesc_i386_mpx;
8764 case X86_XSTATE_AVX_MASK:
8765 return tdesc_i386_avx;
8766 default:
8767 return tdesc_i386;
8768 }
8769}
8770
29c1c244
WT
8771#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8772
8773/* Find the bound directory base address. */
8774
8775static unsigned long
8776i386_mpx_bd_base (void)
8777{
8778 struct regcache *rcache;
8779 struct gdbarch_tdep *tdep;
8780 ULONGEST ret;
8781 enum register_status regstatus;
29c1c244
WT
8782
8783 rcache = get_current_regcache ();
8784 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8785
8786 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8787
8788 if (regstatus != REG_VALID)
8789 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8790
8791 return ret & MPX_BASE_MASK;
8792}
8793
012b3a21 8794int
29c1c244
WT
8795i386_mpx_enabled (void)
8796{
8797 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8798 const struct target_desc *tdesc = tdep->tdesc;
8799
8800 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8801}
8802
8803#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8804#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8805#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8806#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8807
8808/* Find the bound table entry given the pointer location and the base
8809 address of the table. */
8810
8811static CORE_ADDR
8812i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8813{
8814 CORE_ADDR offset1;
8815 CORE_ADDR offset2;
8816 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8817 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8818 CORE_ADDR bd_entry_addr;
8819 CORE_ADDR bt_addr;
8820 CORE_ADDR bd_entry;
8821 struct gdbarch *gdbarch = get_current_arch ();
8822 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8823
8824
8825 if (gdbarch_ptr_bit (gdbarch) == 64)
8826 {
966f0aef 8827 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8828 bd_ptr_r_shift = 20;
8829 bd_ptr_l_shift = 3;
8830 bt_select_r_shift = 3;
8831 bt_select_l_shift = 5;
966f0aef
WT
8832 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8833
8834 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8835 error (_("bound table examination not supported\
8836 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8837 }
8838 else
8839 {
8840 mpx_bd_mask = MPX_BD_MASK_32;
8841 bd_ptr_r_shift = 12;
8842 bd_ptr_l_shift = 2;
8843 bt_select_r_shift = 2;
8844 bt_select_l_shift = 4;
8845 bt_mask = MPX_BT_MASK_32;
8846 }
8847
8848 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8849 bd_entry_addr = bd_base + offset1;
8850 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8851
8852 if ((bd_entry & 0x1) == 0)
8853 error (_("Invalid bounds directory entry at %s."),
8854 paddress (get_current_arch (), bd_entry_addr));
8855
8856 /* Clearing status bit. */
8857 bd_entry--;
8858 bt_addr = bd_entry & ~bt_select_r_shift;
8859 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8860
8861 return bt_addr + offset2;
8862}
8863
8864/* Print routine for the mpx bounds. */
8865
8866static void
8867i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8868{
8869 struct ui_out *uiout = current_uiout;
34f8ac9f 8870 LONGEST size;
29c1c244
WT
8871 struct gdbarch *gdbarch = get_current_arch ();
8872 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8873 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8874
8875 if (bounds_in_map == 1)
8876 {
112e8700
SM
8877 uiout->text ("Null bounds on map:");
8878 uiout->text (" pointer value = ");
8879 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8880 uiout->text (".");
8881 uiout->text ("\n");
29c1c244
WT
8882 }
8883 else
8884 {
112e8700
SM
8885 uiout->text ("{lbound = ");
8886 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8887 uiout->text (", ubound = ");
29c1c244
WT
8888
8889 /* The upper bound is stored in 1's complement. */
112e8700
SM
8890 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8891 uiout->text ("}: pointer value = ");
8892 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8893
8894 if (gdbarch_ptr_bit (gdbarch) == 64)
8895 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8896 else
8897 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8898
8899 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8900 -1 represents in this sense full memory access, and there is no need
8901 one to the size. */
8902
8903 size = (size > -1 ? size + 1 : size);
112e8700
SM
8904 uiout->text (", size = ");
8905 uiout->field_fmt ("size", "%s", plongest (size));
29c1c244 8906
112e8700
SM
8907 uiout->text (", metadata = ");
8908 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8909 uiout->text ("\n");
29c1c244
WT
8910 }
8911}
8912
8913/* Implement the command "show mpx bound". */
8914
8915static void
8916i386_mpx_info_bounds (char *args, int from_tty)
8917{
8918 CORE_ADDR bd_base = 0;
8919 CORE_ADDR addr;
8920 CORE_ADDR bt_entry_addr = 0;
8921 CORE_ADDR bt_entry[4];
8922 int i;
8923 struct gdbarch *gdbarch = get_current_arch ();
8924 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8925
ae71e7b5
MR
8926 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8927 || !i386_mpx_enabled ())
118ca224 8928 {
bc504a31 8929 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8930 "supported on this target.\n"));
8931 return;
8932 }
29c1c244
WT
8933
8934 if (args == NULL)
118ca224
PP
8935 {
8936 printf_unfiltered (_("Address of pointer variable expected.\n"));
8937 return;
8938 }
29c1c244
WT
8939
8940 addr = parse_and_eval_address (args);
8941
8942 bd_base = i386_mpx_bd_base ();
8943 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8944
8945 memset (bt_entry, 0, sizeof (bt_entry));
8946
8947 for (i = 0; i < 4; i++)
8948 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8949 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8950 data_ptr_type);
8951
8952 i386_mpx_print_bounds (bt_entry);
8953}
8954
8955/* Implement the command "set mpx bound". */
8956
8957static void
8958i386_mpx_set_bounds (char *args, int from_tty)
8959{
8960 CORE_ADDR bd_base = 0;
8961 CORE_ADDR addr, lower, upper;
8962 CORE_ADDR bt_entry_addr = 0;
8963 CORE_ADDR bt_entry[2];
8964 const char *input = args;
8965 int i;
8966 struct gdbarch *gdbarch = get_current_arch ();
8967 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8968 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8969
ae71e7b5
MR
8970 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8971 || !i386_mpx_enabled ())
bc504a31 8972 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8973 on this target."));
8974
8975 if (args == NULL)
8976 error (_("Pointer value expected."));
8977
8978 addr = value_as_address (parse_to_comma_and_eval (&input));
8979
8980 if (input[0] == ',')
8981 ++input;
8982 if (input[0] == '\0')
8983 error (_("wrong number of arguments: missing lower and upper bound."));
8984 lower = value_as_address (parse_to_comma_and_eval (&input));
8985
8986 if (input[0] == ',')
8987 ++input;
8988 if (input[0] == '\0')
8989 error (_("Wrong number of arguments; Missing upper bound."));
8990 upper = value_as_address (parse_to_comma_and_eval (&input));
8991
8992 bd_base = i386_mpx_bd_base ();
8993 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8994 for (i = 0; i < 2; i++)
8995 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8996 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8997 data_ptr_type);
8998 bt_entry[0] = (uint64_t) lower;
8999 bt_entry[1] = ~(uint64_t) upper;
9000
9001 for (i = 0; i < 2; i++)
132874d7
AB
9002 write_memory_unsigned_integer (bt_entry_addr
9003 + i * TYPE_LENGTH (data_ptr_type),
9004 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9005 bt_entry[i]);
9006}
9007
9008static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9009
9010/* Helper function for the CLI commands. */
9011
9012static void
9013set_mpx_cmd (char *args, int from_tty)
9014{
118ca224 9015 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
29c1c244
WT
9016}
9017
9018/* Helper function for the CLI commands. */
9019
9020static void
9021show_mpx_cmd (char *args, int from_tty)
9022{
9023 cmd_show_list (mpx_show_cmdlist, from_tty, "");
9024}
9025
28e9e0f0
MK
9026/* Provide a prototype to silence -Wmissing-prototypes. */
9027void _initialize_i386_tdep (void);
9028
c906108c 9029void
fba45db2 9030_initialize_i386_tdep (void)
c906108c 9031{
a62cc96e
AC
9032 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9033
fc338970 9034 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9035 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9036 &disassembly_flavor, _("\
9037Set the disassembly flavor."), _("\
9038Show the disassembly flavor."), _("\
9039The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9040 NULL,
9041 NULL, /* FIXME: i18n: */
9042 &setlist, &showlist);
8201327c
MK
9043
9044 /* Add the variable that controls the convention for returning
9045 structs. */
7ab04401
AC
9046 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9047 &struct_convention, _("\
9048Set the convention for returning small structs."), _("\
9049Show the convention for returning small structs."), _("\
9050Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9051is \"default\"."),
9052 NULL,
9053 NULL, /* FIXME: i18n: */
9054 &setlist, &showlist);
8201327c 9055
29c1c244
WT
9056 /* Add "mpx" prefix for the set commands. */
9057
9058 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
bc504a31 9059Set Intel Memory Protection Extensions specific variables."),
118ca224 9060 &mpx_set_cmdlist, "set mpx ",
29c1c244
WT
9061 0 /* allow-unknown */, &setlist);
9062
9063 /* Add "mpx" prefix for the show commands. */
9064
9065 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
bc504a31 9066Show Intel Memory Protection Extensions specific variables."),
29c1c244
WT
9067 &mpx_show_cmdlist, "show mpx ",
9068 0 /* allow-unknown */, &showlist);
9069
9070 /* Add "bound" command for the show mpx commands list. */
9071
9072 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9073 "Show the memory bounds for a given array/pointer storage\
9074 in the bound table.",
9075 &mpx_show_cmdlist);
9076
9077 /* Add "bound" command for the set mpx commands list. */
9078
9079 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9080 "Set the memory bounds for a given array/pointer storage\
9081 in the bound table.",
9082 &mpx_set_cmdlist);
9083
8201327c
MK
9084 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
9085 i386_coff_osabi_sniffer);
8201327c 9086
05816f70 9087 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9088 i386_svr4_init_abi);
05816f70 9089 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 9090 i386_go32_init_abi);
38c968cf 9091
209bd28e 9092 /* Initialize the i386-specific register groups. */
38c968cf 9093 i386_init_reggroups ();
90884b2b
L
9094
9095 /* Initialize the standard target descriptions. */
9096 initialize_tdesc_i386 ();
3a13a53b 9097 initialize_tdesc_i386_mmx ();
c131fcee 9098 initialize_tdesc_i386_avx ();
1dbcd68c 9099 initialize_tdesc_i386_mpx ();
2b863f51 9100 initialize_tdesc_i386_avx_mpx ();
a1fa17ee 9101 initialize_tdesc_i386_avx_avx512 ();
51547df6 9102 initialize_tdesc_i386_avx_mpx_avx512_pku ();
c8d5aac9
L
9103
9104 /* Tell remote stub that we support XML target description. */
9105 register_remote_support_xml ("i386");
c906108c 9106}
This page took 2.437309 seconds and 4 git commands to generate.