*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
931aecf5
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798
MK
265 This function is 64-bit safe. */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
acd5c798
MK
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
c906108c
SS
403 unsigned char op;
404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798
MK
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
37bdc87e
MK
475/* Maximum instruction length we need to handle. */
476#define I386_MAX_INSN_LEN 6
477
478/* Instruction description. */
479struct i386_insn
480{
481 size_t len;
482 unsigned char insn[I386_MAX_INSN_LEN];
483 unsigned char mask[I386_MAX_INSN_LEN];
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS. Return
487 the first instruction description that matches. Otherwise, return
488 NULL. */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493 struct i386_insn *insn;
494 unsigned char op;
495
496 op = read_memory_unsigned_integer (pc, 1);
497
498 for (insn = skip_insns; insn->len > 0; insn++)
499 {
500 if ((op & insn->mask[0]) == insn->insn[0])
501 {
502 unsigned char buf[I386_MAX_INSN_LEN - 1];
503 size_t i;
504
505 gdb_assert (insn->len > 1);
506 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508 read_memory (pc + 1, buf, insn->len - 1);
509 for (i = 1; i < insn->len; i++)
510 {
511 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512 break;
513
514 return insn;
515 }
516 }
517 }
518
519 return NULL;
520}
521
522/* Some special instructions that might be migrated by GCC into the
523 part of the prologue that sets up the new stack frame. Because the
524 stack frame hasn't been setup yet, no registers have been saved
525 yet, and only the scratch registers %eax, %ecx and %edx can be
526 touched. */
527
528struct i386_insn i386_frame_setup_skip_insns[] =
529{
530 /* Check for `movb imm8, r' and `movl imm32, r'.
531
532 ??? Should we handle 16-bit operand-sizes here? */
533
534 /* `movb imm8, %al' and `movb imm8, %ah' */
535 /* `movb imm8, %cl' and `movb imm8, %ch' */
536 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537 /* `movb imm8, %dl' and `movb imm8, %dh' */
538 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539 /* `movl imm32, %eax' and `movl imm32, %ecx' */
540 { 5, { 0xb8 }, { 0xfe } },
541 /* `movl imm32, %edx' */
542 { 5, { 0xba }, { 0xff } },
543
544 /* Check for `mov imm32, r32'. Note that there is an alternative
545 encoding for `mov m32, %eax'.
546
547 ??? Should we handle SIB adressing here?
548 ??? Should we handle 16-bit operand-sizes here? */
549
550 /* `movl m32, %eax' */
551 { 5, { 0xa1 }, { 0xff } },
552 /* `movl m32, %eax' and `mov; m32, %ecx' */
553 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554 /* `movl m32, %edx' */
555 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558 Because of the symmetry, there are actually two ways to encode
559 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560 opcode bytes 0x31 and 0x33 for `xorl'. */
561
562 /* `subl %eax, %eax' */
563 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564 /* `subl %ecx, %ecx' */
565 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566 /* `subl %edx, %edx' */
567 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568 /* `xorl %eax, %eax' */
569 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570 /* `xorl %ecx, %ecx' */
571 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572 /* `xorl %edx, %edx' */
573 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574 { 0 }
575};
576
acd5c798
MK
577/* Check whether PC points at a code that sets up a new stack frame.
578 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
579 instruction after the sequence that sets up the frame or LIMIT,
580 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
581
582static CORE_ADDR
37bdc87e 583i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
584 struct i386_frame_cache *cache)
585{
37bdc87e 586 struct i386_insn *insn;
acd5c798 587 unsigned char op;
26604a34 588 int skip = 0;
acd5c798 589
37bdc87e
MK
590 if (limit <= pc)
591 return limit;
acd5c798
MK
592
593 op = read_memory_unsigned_integer (pc, 1);
594
c906108c 595 if (op == 0x55) /* pushl %ebp */
c5aa993b 596 {
acd5c798
MK
597 /* Take into account that we've executed the `pushl %ebp' that
598 starts this instruction sequence. */
fd13a04a 599 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 600 cache->sp_offset += 4;
37bdc87e 601 pc++;
acd5c798
MK
602
603 /* If that's all, return now. */
37bdc87e
MK
604 if (limit <= pc)
605 return limit;
26604a34 606
b4632131 607 /* Check for some special instructions that might be migrated by
37bdc87e
MK
608 GCC into the prologue and skip them. At this point in the
609 prologue, code should only touch the scratch registers %eax,
610 %ecx and %edx, so while the number of posibilities is sheer,
611 it is limited.
5daa5b4e 612
26604a34
MK
613 Make sure we only skip these instructions if we later see the
614 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 615 while (pc + skip < limit)
26604a34 616 {
37bdc87e
MK
617 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618 if (insn == NULL)
619 break;
b4632131 620
37bdc87e 621 skip += insn->len;
26604a34
MK
622 }
623
37bdc87e
MK
624 /* If that's all, return now. */
625 if (limit <= pc + skip)
626 return limit;
627
628 op = read_memory_unsigned_integer (pc + skip, 1);
629
26604a34 630 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 631 switch (op)
c906108c
SS
632 {
633 case 0x8b:
37bdc87e
MK
634 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635 return pc;
c906108c
SS
636 break;
637 case 0x89:
37bdc87e
MK
638 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639 return pc;
c906108c
SS
640 break;
641 default:
37bdc87e 642 return pc;
c906108c 643 }
acd5c798 644
26604a34
MK
645 /* OK, we actually have a frame. We just don't know how large
646 it is yet. Set its size to zero. We'll adjust it if
647 necessary. We also now commit to skipping the special
648 instructions mentioned before. */
acd5c798 649 cache->locals = 0;
37bdc87e 650 pc += (skip + 2);
acd5c798
MK
651
652 /* If that's all, return now. */
37bdc87e
MK
653 if (limit <= pc)
654 return limit;
acd5c798 655
fc338970
MK
656 /* Check for stack adjustment
657
acd5c798 658 subl $XXX, %esp
fc338970 659
fd35795f 660 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 661 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 662 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
663 if (op == 0x83)
664 {
fd35795f 665 /* `subl' with 8-bit immediate. */
37bdc87e 666 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 667 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 668 return pc;
acd5c798 669
37bdc87e
MK
670 /* `subl' with signed 8-bit immediate (though it wouldn't
671 make sense to be negative). */
672 cache->locals = read_memory_integer (pc + 2, 1);
673 return pc + 3;
c906108c
SS
674 }
675 else if (op == 0x81)
676 {
fd35795f 677 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 678 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 679 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 680 return pc;
acd5c798 681
fd35795f 682 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
683 cache->locals = read_memory_integer (pc + 2, 4);
684 return pc + 6;
c906108c
SS
685 }
686 else
687 {
acd5c798 688 /* Some instruction other than `subl'. */
37bdc87e 689 return pc;
c906108c
SS
690 }
691 }
37bdc87e 692 else if (op == 0xc8) /* enter */
c906108c 693 {
acd5c798
MK
694 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695 return pc + 4;
c906108c 696 }
21d0e8a4 697
acd5c798 698 return pc;
21d0e8a4
MK
699}
700
acd5c798
MK
701/* Check whether PC points at code that saves registers on the stack.
702 If so, it updates CACHE and returns the address of the first
703 instruction after the register saves or CURRENT_PC, whichever is
704 smaller. Otherwise, return PC. */
6bff26de
MK
705
706static CORE_ADDR
acd5c798
MK
707i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708 struct i386_frame_cache *cache)
6bff26de 709{
99ab4326
MK
710 CORE_ADDR offset = 0;
711 unsigned char op;
712 int i;
c0d1d883 713
99ab4326
MK
714 if (cache->locals > 0)
715 offset -= cache->locals;
716 for (i = 0; i < 8 && pc < current_pc; i++)
717 {
718 op = read_memory_unsigned_integer (pc, 1);
719 if (op < 0x50 || op > 0x57)
720 break;
0d17c81d 721
99ab4326
MK
722 offset -= 4;
723 cache->saved_regs[op - 0x50] = offset;
724 cache->sp_offset += 4;
725 pc++;
6bff26de
MK
726 }
727
acd5c798 728 return pc;
22797942
AC
729}
730
acd5c798
MK
731/* Do a full analysis of the prologue at PC and update CACHE
732 accordingly. Bail out early if CURRENT_PC is reached. Return the
733 address where the analysis stopped.
ed84f6c1 734
fc338970
MK
735 We handle these cases:
736
737 The startup sequence can be at the start of the function, or the
738 function can start with a branch to startup code at the end.
739
740 %ebp can be set up with either the 'enter' instruction, or "pushl
741 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742 once used in the System V compiler).
743
744 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
745 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
746 16-bit unsigned argument for space to allocate, and the 'addl'
747 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
748
749 Next, the registers used by this function are pushed. With the
750 System V compiler they will always be in the order: %edi, %esi,
751 %ebx (and sometimes a harmless bug causes it to also save but not
752 restore %eax); however, the code below is willing to see the pushes
753 in any order, and will handle up to 8 of them.
754
755 If the setup sequence is at the end of the function, then the next
756 instruction will be a branch back to the start. */
c906108c 757
acd5c798
MK
758static CORE_ADDR
759i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760 struct i386_frame_cache *cache)
c906108c 761{
acd5c798
MK
762 pc = i386_follow_jump (pc);
763 pc = i386_analyze_struct_return (pc, current_pc, cache);
764 pc = i386_skip_probe (pc);
765 pc = i386_analyze_frame_setup (pc, current_pc, cache);
766 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
767}
768
fc338970 769/* Return PC of first real instruction. */
c906108c 770
3a1e71e3 771static CORE_ADDR
acd5c798 772i386_skip_prologue (CORE_ADDR start_pc)
c906108c 773{
c5aa993b 774 static unsigned char pic_pat[6] =
acd5c798
MK
775 {
776 0xe8, 0, 0, 0, 0, /* call 0x0 */
777 0x5b, /* popl %ebx */
c5aa993b 778 };
acd5c798
MK
779 struct i386_frame_cache cache;
780 CORE_ADDR pc;
781 unsigned char op;
782 int i;
c5aa993b 783
acd5c798
MK
784 cache.locals = -1;
785 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786 if (cache.locals < 0)
787 return start_pc;
c5aa993b 788
acd5c798 789 /* Found valid frame setup. */
c906108c 790
fc338970
MK
791 /* The native cc on SVR4 in -K PIC mode inserts the following code
792 to get the address of the global offset table (GOT) into register
acd5c798
MK
793 %ebx:
794
fc338970
MK
795 call 0x0
796 popl %ebx
797 movl %ebx,x(%ebp) (optional)
798 addl y,%ebx
799
c906108c
SS
800 This code is with the rest of the prologue (at the end of the
801 function), so we have to skip it to get to the first real
802 instruction at the start of the function. */
c5aa993b 803
c906108c
SS
804 for (i = 0; i < 6; i++)
805 {
acd5c798 806 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 807 if (pic_pat[i] != op)
c906108c
SS
808 break;
809 }
810 if (i == 6)
811 {
acd5c798
MK
812 int delta = 6;
813
814 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 815
c5aa993b 816 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 817 {
acd5c798
MK
818 op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
fc338970 820 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 821 delta += 3;
fc338970 822 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 823 delta += 6;
fc338970 824 else /* Unexpected instruction. */
acd5c798
MK
825 delta = 0;
826
827 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 828 }
acd5c798 829
c5aa993b 830 /* addl y,%ebx */
acd5c798
MK
831 if (delta > 0 && op == 0x81
832 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 833 {
acd5c798 834 pc += delta + 6;
c906108c
SS
835 }
836 }
c5aa993b 837
e63bbc88
MK
838 /* If the function starts with a branch (to startup code at the end)
839 the last instruction should bring us back to the first
840 instruction of the real code. */
841 if (i386_follow_jump (start_pc) != start_pc)
842 pc = i386_follow_jump (pc);
843
844 return pc;
c906108c
SS
845}
846
acd5c798 847/* This function is 64-bit safe. */
93924b6b 848
acd5c798
MK
849static CORE_ADDR
850i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 851{
acd5c798
MK
852 char buf[8];
853
854 frame_unwind_register (next_frame, PC_REGNUM, buf);
855 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 856}
acd5c798 857\f
93924b6b 858
acd5c798 859/* Normal frames. */
c5aa993b 860
acd5c798
MK
861static struct i386_frame_cache *
862i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 863{
acd5c798 864 struct i386_frame_cache *cache;
c0d1d883 865 char buf[4];
acd5c798
MK
866 int i;
867
868 if (*this_cache)
869 return *this_cache;
870
fd13a04a 871 cache = i386_alloc_frame_cache ();
acd5c798
MK
872 *this_cache = cache;
873
874 /* In principle, for normal frames, %ebp holds the frame pointer,
875 which holds the base address for the current stack frame.
876 However, for functions that don't need it, the frame pointer is
877 optional. For these "frameless" functions the frame pointer is
878 actually the frame pointer of the calling frame. Signal
879 trampolines are just a special case of a "frameless" function.
880 They (usually) share their frame pointer with the frame that was
881 in progress when the signal occurred. */
882
883 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884 cache->base = extract_unsigned_integer (buf, 4);
885 if (cache->base == 0)
886 return cache;
887
888 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 889 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
890
891 cache->pc = frame_func_unwind (next_frame);
892 if (cache->pc != 0)
893 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895 if (cache->locals < 0)
896 {
897 /* We didn't find a valid frame, which means that CACHE->base
898 currently holds the frame pointer for our calling frame. If
899 we're at the start of a function, or somewhere half-way its
900 prologue, the function's frame probably hasn't been fully
901 setup yet. Try to reconstruct the base address for the stack
902 frame by looking at the stack pointer. For truly "frameless"
903 functions this might work too. */
904
905 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907 }
908
909 /* Now that we have the base address for the stack frame we can
910 calculate the value of %esp in the calling frame. */
911 cache->saved_sp = cache->base + 8;
a7769679 912
acd5c798
MK
913 /* Adjust all the saved registers such that they contain addresses
914 instead of offsets. */
915 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
916 if (cache->saved_regs[i] != -1)
917 cache->saved_regs[i] += cache->base;
acd5c798
MK
918
919 return cache;
a7769679
MK
920}
921
3a1e71e3 922static void
acd5c798
MK
923i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924 struct frame_id *this_id)
c906108c 925{
acd5c798
MK
926 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
3e210248 932 /* See the end of i386_push_dummy_call. */
acd5c798
MK
933 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934}
935
936static void
937i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938 int regnum, int *optimizedp,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, void *valuep)
941{
942 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944 gdb_assert (regnum >= 0);
945
946 /* The System V ABI says that:
947
948 "The flags register contains the system flags, such as the
949 direction flag and the carry flag. The direction flag must be
950 set to the forward (that is, zero) direction before entry and
951 upon exit from a function. Other user flags have no specified
952 role in the standard calling sequence and are not preserved."
953
954 To guarantee the "upon exit" part of that statement we fake a
955 saved flags register that has its direction flag cleared.
956
957 Note that GCC doesn't seem to rely on the fact that the direction
958 flag is cleared after a function return; it always explicitly
959 clears the flag before operations where it matters.
960
961 FIXME: kettenis/20030316: I'm not quite sure whether this is the
962 right thing to do. The way we fake the flags register here makes
963 it impossible to change it. */
964
965 if (regnum == I386_EFLAGS_REGNUM)
966 {
967 *optimizedp = 0;
968 *lvalp = not_lval;
969 *addrp = 0;
970 *realnump = -1;
971 if (valuep)
972 {
973 ULONGEST val;
c5aa993b 974
acd5c798 975 /* Clear the direction flag. */
f837910f
MK
976 val = frame_unwind_register_unsigned (next_frame,
977 I386_EFLAGS_REGNUM);
acd5c798
MK
978 val &= ~(1 << 10);
979 store_unsigned_integer (valuep, 4, val);
980 }
981
982 return;
983 }
1211c4e4 984
acd5c798 985 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 986 {
acd5c798
MK
987 frame_register_unwind (next_frame, I386_EAX_REGNUM,
988 optimizedp, lvalp, addrp, realnump, valuep);
989 return;
990 }
991
992 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
993 {
994 *optimizedp = 0;
995 *lvalp = not_lval;
996 *addrp = 0;
997 *realnump = -1;
998 if (valuep)
c906108c 999 {
acd5c798
MK
1000 /* Store the value. */
1001 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1002 }
acd5c798 1003 return;
c906108c 1004 }
acd5c798 1005
fd13a04a
AC
1006 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1007 {
1008 *optimizedp = 0;
1009 *lvalp = lval_memory;
1010 *addrp = cache->saved_regs[regnum];
1011 *realnump = -1;
1012 if (valuep)
1013 {
1014 /* Read the value in from memory. */
1015 read_memory (*addrp, valuep,
1016 register_size (current_gdbarch, regnum));
1017 }
1018 return;
1019 }
1020
1021 frame_register_unwind (next_frame, regnum,
1022 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
1023}
1024
1025static const struct frame_unwind i386_frame_unwind =
1026{
1027 NORMAL_FRAME,
1028 i386_frame_this_id,
1029 i386_frame_prev_register
1030};
1031
1032static const struct frame_unwind *
336d1bba 1033i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1034{
1035 return &i386_frame_unwind;
1036}
1037\f
1038
1039/* Signal trampolines. */
1040
1041static struct i386_frame_cache *
1042i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1043{
1044 struct i386_frame_cache *cache;
1045 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1046 CORE_ADDR addr;
1047 char buf[4];
1048
1049 if (*this_cache)
1050 return *this_cache;
1051
fd13a04a 1052 cache = i386_alloc_frame_cache ();
acd5c798
MK
1053
1054 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1055 cache->base = extract_unsigned_integer (buf, 4) - 4;
1056
1057 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1058 if (tdep->sc_reg_offset)
1059 {
1060 int i;
1061
1062 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1063
1064 for (i = 0; i < tdep->sc_num_regs; i++)
1065 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1066 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1067 }
1068 else
1069 {
fd13a04a
AC
1070 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1071 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1072 }
acd5c798
MK
1073
1074 *this_cache = cache;
1075 return cache;
1076}
1077
1078static void
1079i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1080 struct frame_id *this_id)
1081{
1082 struct i386_frame_cache *cache =
1083 i386_sigtramp_frame_cache (next_frame, this_cache);
1084
3e210248 1085 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1086 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1087}
1088
1089static void
1090i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1091 void **this_cache,
1092 int regnum, int *optimizedp,
1093 enum lval_type *lvalp, CORE_ADDR *addrp,
1094 int *realnump, void *valuep)
1095{
1096 /* Make sure we've initialized the cache. */
1097 i386_sigtramp_frame_cache (next_frame, this_cache);
1098
1099 i386_frame_prev_register (next_frame, this_cache, regnum,
1100 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1101}
c0d1d883 1102
acd5c798
MK
1103static const struct frame_unwind i386_sigtramp_frame_unwind =
1104{
1105 SIGTRAMP_FRAME,
1106 i386_sigtramp_frame_this_id,
1107 i386_sigtramp_frame_prev_register
1108};
1109
1110static const struct frame_unwind *
336d1bba 1111i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1112{
911bc6ee 1113 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1114
911bc6ee
MK
1115 /* We shouldn't even bother if we don't have a sigcontext_addr
1116 handler. */
1117 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1118 return NULL;
1119
911bc6ee
MK
1120 if (tdep->sigtramp_p != NULL)
1121 {
1122 if (tdep->sigtramp_p (next_frame))
1123 return &i386_sigtramp_frame_unwind;
1124 }
1125
1126 if (tdep->sigtramp_start != 0)
1127 {
1128 CORE_ADDR pc = frame_pc_unwind (next_frame);
1129
1130 gdb_assert (tdep->sigtramp_end != 0);
1131 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1132 return &i386_sigtramp_frame_unwind;
1133 }
acd5c798
MK
1134
1135 return NULL;
1136}
1137\f
1138
1139static CORE_ADDR
1140i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1141{
1142 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1143
1144 return cache->base;
1145}
1146
1147static const struct frame_base i386_frame_base =
1148{
1149 &i386_frame_unwind,
1150 i386_frame_base_address,
1151 i386_frame_base_address,
1152 i386_frame_base_address
1153};
1154
acd5c798
MK
1155static struct frame_id
1156i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1157{
1158 char buf[4];
1159 CORE_ADDR fp;
1160
1161 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1162 fp = extract_unsigned_integer (buf, 4);
1163
3e210248 1164 /* See the end of i386_push_dummy_call. */
acd5c798 1165 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1166}
fc338970 1167\f
c906108c 1168
fc338970
MK
1169/* Figure out where the longjmp will land. Slurp the args out of the
1170 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1171 structure from which we extract the address that we will land at.
28bcfd30 1172 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1173 success.
1174
1175 This function is 64-bit safe. */
c906108c 1176
8201327c
MK
1177static int
1178i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1179{
28bcfd30 1180 char buf[8];
c906108c 1181 CORE_ADDR sp, jb_addr;
8201327c 1182 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1183 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1184
8201327c
MK
1185 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1186 longjmp will land. */
1187 if (jb_pc_offset == -1)
c906108c
SS
1188 return 0;
1189
f837910f
MK
1190 /* Don't use I386_ESP_REGNUM here, since this function is also used
1191 for AMD64. */
1192 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1193 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1194 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1195 return 0;
1196
f837910f 1197 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1198 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1199 return 0;
c906108c 1200
f9d3c2a8 1201 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1202 return 1;
1203}
fc338970 1204\f
c906108c 1205
3a1e71e3 1206static CORE_ADDR
7d9b040b 1207i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1208 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1209 struct value **args, CORE_ADDR sp, int struct_return,
1210 CORE_ADDR struct_addr)
22f8ba57 1211{
acd5c798
MK
1212 char buf[4];
1213 int i;
1214
1215 /* Push arguments in reverse order. */
1216 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1217 {
acd5c798
MK
1218 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1219
1220 /* The System V ABI says that:
1221
1222 "An argument's size is increased, if necessary, to make it a
1223 multiple of [32-bit] words. This may require tail padding,
1224 depending on the size of the argument."
1225
1226 This makes sure the stack says word-aligned. */
1227 sp -= (len + 3) & ~3;
1228 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1229 }
22f8ba57 1230
acd5c798
MK
1231 /* Push value address. */
1232 if (struct_return)
1233 {
22f8ba57 1234 sp -= 4;
fbd9dcd3 1235 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1236 write_memory (sp, buf, 4);
1237 }
1238
acd5c798
MK
1239 /* Store return address. */
1240 sp -= 4;
6a65450a 1241 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1242 write_memory (sp, buf, 4);
1243
1244 /* Finally, update the stack pointer... */
1245 store_unsigned_integer (buf, 4, sp);
1246 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1247
1248 /* ...and fake a frame pointer. */
1249 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1250
3e210248
AC
1251 /* MarkK wrote: This "+ 8" is all over the place:
1252 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1253 i386_unwind_dummy_id). It's there, since all frame unwinders for
1254 a given target have to agree (within a certain margin) on the
fd35795f 1255 definition of the stack address of a frame. Otherwise
3e210248
AC
1256 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1257 stack address *before* the function call as a frame's CFA. On
1258 the i386, when %ebp is used as a frame pointer, the offset
1259 between the contents %ebp and the CFA as defined by GCC. */
1260 return sp + 8;
22f8ba57
MK
1261}
1262
1a309862
MK
1263/* These registers are used for returning integers (and on some
1264 targets also for returning `struct' and `union' values when their
ef9dff19 1265 size and alignment match an integer type). */
acd5c798
MK
1266#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1267#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1268
c5e656c1
MK
1269/* Read, for architecture GDBARCH, a function return value of TYPE
1270 from REGCACHE, and copy that into VALBUF. */
1a309862 1271
3a1e71e3 1272static void
c5e656c1
MK
1273i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1274 struct regcache *regcache, void *valbuf)
c906108c 1275{
c5e656c1 1276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1277 int len = TYPE_LENGTH (type);
00f8375e 1278 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1279
1e8d0a7b 1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1281 {
5716833c 1282 if (tdep->st0_regnum < 0)
1a309862
MK
1283 {
1284 warning ("Cannot find floating-point return value.");
1285 memset (valbuf, 0, len);
ef9dff19 1286 return;
1a309862
MK
1287 }
1288
c6ba6f0d
MK
1289 /* Floating-point return values can be found in %st(0). Convert
1290 its contents to the desired type. This is probably not
1291 exactly how it would happen on the target itself, but it is
1292 the best we can do. */
acd5c798 1293 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1294 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1295 }
1296 else
c5aa993b 1297 {
f837910f
MK
1298 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1299 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1300
1301 if (len <= low_size)
00f8375e 1302 {
0818c12a 1303 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1304 memcpy (valbuf, buf, len);
1305 }
d4f3574e
SS
1306 else if (len <= (low_size + high_size))
1307 {
0818c12a 1308 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1309 memcpy (valbuf, buf, low_size);
0818c12a 1310 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1311 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1312 }
1313 else
8e65ff28
AC
1314 internal_error (__FILE__, __LINE__,
1315 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1316 }
1317}
1318
c5e656c1
MK
1319/* Write, for architecture GDBARCH, a function return value of TYPE
1320 from VALBUF into REGCACHE. */
ef9dff19 1321
3a1e71e3 1322static void
c5e656c1
MK
1323i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1324 struct regcache *regcache, const void *valbuf)
ef9dff19 1325{
c5e656c1 1326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1327 int len = TYPE_LENGTH (type);
1328
5716833c
MK
1329 /* Define I387_ST0_REGNUM such that we use the proper definitions
1330 for the architecture. */
1331#define I387_ST0_REGNUM I386_ST0_REGNUM
1332
1e8d0a7b 1333 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1334 {
3d7f4f49 1335 ULONGEST fstat;
5716833c 1336 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1337
5716833c 1338 if (tdep->st0_regnum < 0)
ef9dff19
MK
1339 {
1340 warning ("Cannot set floating-point return value.");
1341 return;
1342 }
1343
635b0cc1
MK
1344 /* Returning floating-point values is a bit tricky. Apart from
1345 storing the return value in %st(0), we have to simulate the
1346 state of the FPU at function return point. */
1347
c6ba6f0d
MK
1348 /* Convert the value found in VALBUF to the extended
1349 floating-point format used by the FPU. This is probably
1350 not exactly how it would happen on the target itself, but
1351 it is the best we can do. */
1352 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1353 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1354
635b0cc1
MK
1355 /* Set the top of the floating-point register stack to 7. The
1356 actual value doesn't really matter, but 7 is what a normal
1357 function return would end up with if the program started out
1358 with a freshly initialized FPU. */
5716833c 1359 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1360 fstat |= (7 << 11);
5716833c 1361 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1362
635b0cc1
MK
1363 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1364 the floating-point register stack to 7, the appropriate value
1365 for the tag word is 0x3fff. */
5716833c 1366 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1367 }
1368 else
1369 {
f837910f
MK
1370 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1371 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1372
1373 if (len <= low_size)
3d7f4f49 1374 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1375 else if (len <= (low_size + high_size))
1376 {
3d7f4f49
MK
1377 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1378 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1379 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1380 }
1381 else
8e65ff28
AC
1382 internal_error (__FILE__, __LINE__,
1383 "Cannot store return value of %d bytes long.", len);
ef9dff19 1384 }
5716833c
MK
1385
1386#undef I387_ST0_REGNUM
ef9dff19 1387}
fc338970 1388\f
ef9dff19 1389
8201327c
MK
1390/* This is the variable that is set with "set struct-convention", and
1391 its legitimate values. */
1392static const char default_struct_convention[] = "default";
1393static const char pcc_struct_convention[] = "pcc";
1394static const char reg_struct_convention[] = "reg";
1395static const char *valid_conventions[] =
1396{
1397 default_struct_convention,
1398 pcc_struct_convention,
1399 reg_struct_convention,
1400 NULL
1401};
1402static const char *struct_convention = default_struct_convention;
1403
c5e656c1
MK
1404/* Return non-zero if TYPE, which is assumed to be a structure or
1405 union type, should be returned in registers for architecture
1406 GDBARCH. */
1407
8201327c 1408static int
c5e656c1 1409i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1410{
c5e656c1
MK
1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412 enum type_code code = TYPE_CODE (type);
1413 int len = TYPE_LENGTH (type);
8201327c 1414
c5e656c1
MK
1415 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1416
1417 if (struct_convention == pcc_struct_convention
1418 || (struct_convention == default_struct_convention
1419 && tdep->struct_return == pcc_struct_return))
1420 return 0;
1421
1422 return (len == 1 || len == 2 || len == 4 || len == 8);
1423}
1424
1425/* Determine, for architecture GDBARCH, how a return value of TYPE
1426 should be returned. If it is supposed to be returned in registers,
1427 and READBUF is non-zero, read the appropriate value from REGCACHE,
1428 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1429 from WRITEBUF into REGCACHE. */
1430
1431static enum return_value_convention
1432i386_return_value (struct gdbarch *gdbarch, struct type *type,
1433 struct regcache *regcache, void *readbuf,
1434 const void *writebuf)
1435{
1436 enum type_code code = TYPE_CODE (type);
1437
1438 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1439 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1440 {
1441 /* The System V ABI says that:
1442
1443 "A function that returns a structure or union also sets %eax
1444 to the value of the original address of the caller's area
1445 before it returns. Thus when the caller receives control
1446 again, the address of the returned object resides in register
1447 %eax and can be used to access the object."
1448
1449 So the ABI guarantees that we can always find the return
1450 value just after the function has returned. */
1451
1452 if (readbuf)
1453 {
1454 ULONGEST addr;
1455
1456 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1457 read_memory (addr, readbuf, TYPE_LENGTH (type));
1458 }
1459
1460 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1461 }
c5e656c1
MK
1462
1463 /* This special case is for structures consisting of a single
1464 `float' or `double' member. These structures are returned in
1465 %st(0). For these structures, we call ourselves recursively,
1466 changing TYPE into the type of the first member of the structure.
1467 Since that should work for all structures that have only one
1468 member, we don't bother to check the member's type here. */
1469 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1470 {
1471 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1472 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1473 }
1474
1475 if (readbuf)
1476 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1477 if (writebuf)
1478 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1479
c5e656c1 1480 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1481}
1482\f
1483
d7a0d72c
MK
1484/* Return the GDB type object for the "standard" data type of data in
1485 register REGNUM. Perhaps %esi and %edi should go here, but
1486 potentially they could be used for things other than address. */
1487
3a1e71e3 1488static struct type *
4e259f09 1489i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1490{
acd5c798
MK
1491 if (regnum == I386_EIP_REGNUM
1492 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1493 return lookup_pointer_type (builtin_type_void);
1494
23a34459 1495 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1496 return builtin_type_i387_ext;
d7a0d72c 1497
5716833c 1498 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1499 return builtin_type_vec128i;
d7a0d72c 1500
5716833c 1501 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1502 return builtin_type_vec64i;
1503
d7a0d72c
MK
1504 return builtin_type_int;
1505}
1506
28fc6740 1507/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1508 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1509
1510static int
c86c27af 1511i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1512{
5716833c
MK
1513 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1514 int mmxreg, fpreg;
28fc6740
AC
1515 ULONGEST fstat;
1516 int tos;
c86c27af 1517
5716833c
MK
1518 /* Define I387_ST0_REGNUM such that we use the proper definitions
1519 for REGCACHE's architecture. */
1520#define I387_ST0_REGNUM tdep->st0_regnum
1521
1522 mmxreg = regnum - tdep->mm0_regnum;
1523 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1524 tos = (fstat >> 11) & 0x7;
5716833c
MK
1525 fpreg = (mmxreg + tos) % 8;
1526
1527 return (I387_ST0_REGNUM + fpreg);
c86c27af 1528
5716833c 1529#undef I387_ST0_REGNUM
28fc6740
AC
1530}
1531
1532static void
1533i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1534 int regnum, void *buf)
1535{
5716833c 1536 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1537 {
d9d9c31f 1538 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1539 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1540
28fc6740 1541 /* Extract (always little endian). */
c86c27af 1542 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1543 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1544 }
1545 else
1546 regcache_raw_read (regcache, regnum, buf);
1547}
1548
1549static void
1550i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1551 int regnum, const void *buf)
1552{
5716833c 1553 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1554 {
d9d9c31f 1555 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1556 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1557
28fc6740
AC
1558 /* Read ... */
1559 regcache_raw_read (regcache, fpnum, mmx_buf);
1560 /* ... Modify ... (always little endian). */
f837910f 1561 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1562 /* ... Write. */
1563 regcache_raw_write (regcache, fpnum, mmx_buf);
1564 }
1565 else
1566 regcache_raw_write (regcache, regnum, buf);
1567}
ff2e87ac
AC
1568\f
1569
ff2e87ac
AC
1570/* Return the register number of the register allocated by GCC after
1571 REGNUM, or -1 if there is no such register. */
1572
1573static int
1574i386_next_regnum (int regnum)
1575{
1576 /* GCC allocates the registers in the order:
1577
1578 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1579
1580 Since storing a variable in %esp doesn't make any sense we return
1581 -1 for %ebp and for %esp itself. */
1582 static int next_regnum[] =
1583 {
1584 I386_EDX_REGNUM, /* Slot for %eax. */
1585 I386_EBX_REGNUM, /* Slot for %ecx. */
1586 I386_ECX_REGNUM, /* Slot for %edx. */
1587 I386_ESI_REGNUM, /* Slot for %ebx. */
1588 -1, -1, /* Slots for %esp and %ebp. */
1589 I386_EDI_REGNUM, /* Slot for %esi. */
1590 I386_EBP_REGNUM /* Slot for %edi. */
1591 };
1592
de5b9bb9 1593 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1594 return next_regnum[regnum];
28fc6740 1595
ff2e87ac
AC
1596 return -1;
1597}
1598
1599/* Return nonzero if a value of type TYPE stored in register REGNUM
1600 needs any special handling. */
d7a0d72c 1601
3a1e71e3 1602static int
ff2e87ac 1603i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1604{
de5b9bb9
MK
1605 int len = TYPE_LENGTH (type);
1606
ff2e87ac
AC
1607 /* Values may be spread across multiple registers. Most debugging
1608 formats aren't expressive enough to specify the locations, so
1609 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1610 have a length that is a multiple of the word size, since GCC
1611 doesn't seem to put any other types into registers. */
1612 if (len > 4 && len % 4 == 0)
1613 {
1614 int last_regnum = regnum;
1615
1616 while (len > 4)
1617 {
1618 last_regnum = i386_next_regnum (last_regnum);
1619 len -= 4;
1620 }
1621
1622 if (last_regnum != -1)
1623 return 1;
1624 }
ff2e87ac 1625
23a34459 1626 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1627}
1628
ff2e87ac
AC
1629/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1630 return its contents in TO. */
ac27f131 1631
3a1e71e3 1632static void
ff2e87ac
AC
1633i386_register_to_value (struct frame_info *frame, int regnum,
1634 struct type *type, void *to)
ac27f131 1635{
de5b9bb9
MK
1636 int len = TYPE_LENGTH (type);
1637 char *buf = to;
1638
ff2e87ac
AC
1639 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1640 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1641
ff2e87ac 1642 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1643 {
d532c08f
MK
1644 i387_register_to_value (frame, regnum, type, to);
1645 return;
8d7f6b4a 1646 }
ff2e87ac 1647
fd35795f 1648 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1649
1650 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1651
de5b9bb9
MK
1652 while (len > 0)
1653 {
1654 gdb_assert (regnum != -1);
1655 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1656
f837910f 1657 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1658 regnum = i386_next_regnum (regnum);
1659 len -= 4;
1660 buf += 4;
1661 }
ac27f131
MK
1662}
1663
ff2e87ac
AC
1664/* Write the contents FROM of a value of type TYPE into register
1665 REGNUM in frame FRAME. */
ac27f131 1666
3a1e71e3 1667static void
ff2e87ac
AC
1668i386_value_to_register (struct frame_info *frame, int regnum,
1669 struct type *type, const void *from)
ac27f131 1670{
de5b9bb9
MK
1671 int len = TYPE_LENGTH (type);
1672 const char *buf = from;
1673
ff2e87ac 1674 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1675 {
d532c08f
MK
1676 i387_value_to_register (frame, regnum, type, from);
1677 return;
1678 }
3d261580 1679
fd35795f 1680 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1681
1682 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1683
de5b9bb9
MK
1684 while (len > 0)
1685 {
1686 gdb_assert (regnum != -1);
1687 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1688
de5b9bb9
MK
1689 put_frame_register (frame, regnum, buf);
1690 regnum = i386_next_regnum (regnum);
1691 len -= 4;
1692 buf += 4;
1693 }
ac27f131 1694}
ff2e87ac 1695\f
7fdafb5a
MK
1696/* Supply register REGNUM from the buffer specified by GREGS and LEN
1697 in the general-purpose register set REGSET to register cache
1698 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1699
20187ed5 1700void
473f17b0
MK
1701i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1702 int regnum, const void *gregs, size_t len)
1703{
9ea75c57 1704 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0
MK
1705 const char *regs = gregs;
1706 int i;
1707
1708 gdb_assert (len == tdep->sizeof_gregset);
1709
1710 for (i = 0; i < tdep->gregset_num_regs; i++)
1711 {
1712 if ((regnum == i || regnum == -1)
1713 && tdep->gregset_reg_offset[i] != -1)
1714 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1715 }
1716}
1717
7fdafb5a
MK
1718/* Collect register REGNUM from the register cache REGCACHE and store
1719 it in the buffer specified by GREGS and LEN as described by the
1720 general-purpose register set REGSET. If REGNUM is -1, do this for
1721 all registers in REGSET. */
1722
1723void
1724i386_collect_gregset (const struct regset *regset,
1725 const struct regcache *regcache,
1726 int regnum, void *gregs, size_t len)
1727{
1728 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1729 char *regs = gregs;
1730 int i;
1731
1732 gdb_assert (len == tdep->sizeof_gregset);
1733
1734 for (i = 0; i < tdep->gregset_num_regs; i++)
1735 {
1736 if ((regnum == i || regnum == -1)
1737 && tdep->gregset_reg_offset[i] != -1)
1738 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1739 }
1740}
1741
1742/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1743 in the floating-point register set REGSET to register cache
1744 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1745
1746static void
1747i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1748 int regnum, const void *fpregs, size_t len)
1749{
9ea75c57 1750 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1751
66a72d25
MK
1752 if (len == I387_SIZEOF_FXSAVE)
1753 {
1754 i387_supply_fxsave (regcache, regnum, fpregs);
1755 return;
1756 }
1757
473f17b0
MK
1758 gdb_assert (len == tdep->sizeof_fpregset);
1759 i387_supply_fsave (regcache, regnum, fpregs);
1760}
8446b36a 1761
2f305df1
MK
1762/* Collect register REGNUM from the register cache REGCACHE and store
1763 it in the buffer specified by FPREGS and LEN as described by the
1764 floating-point register set REGSET. If REGNUM is -1, do this for
1765 all registers in REGSET. */
7fdafb5a
MK
1766
1767static void
1768i386_collect_fpregset (const struct regset *regset,
1769 const struct regcache *regcache,
1770 int regnum, void *fpregs, size_t len)
1771{
1772 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1773
1774 if (len == I387_SIZEOF_FXSAVE)
1775 {
1776 i387_collect_fxsave (regcache, regnum, fpregs);
1777 return;
1778 }
1779
1780 gdb_assert (len == tdep->sizeof_fpregset);
1781 i387_collect_fsave (regcache, regnum, fpregs);
1782}
1783
8446b36a
MK
1784/* Return the appropriate register set for the core section identified
1785 by SECT_NAME and SECT_SIZE. */
1786
1787const struct regset *
1788i386_regset_from_core_section (struct gdbarch *gdbarch,
1789 const char *sect_name, size_t sect_size)
1790{
1791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792
1793 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1794 {
1795 if (tdep->gregset == NULL)
7fdafb5a
MK
1796 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1797 i386_collect_gregset);
8446b36a
MK
1798 return tdep->gregset;
1799 }
1800
66a72d25
MK
1801 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1802 || (strcmp (sect_name, ".reg-xfp") == 0
1803 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1804 {
1805 if (tdep->fpregset == NULL)
7fdafb5a
MK
1806 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1807 i386_collect_fpregset);
8446b36a
MK
1808 return tdep->fpregset;
1809 }
1810
1811 return NULL;
1812}
473f17b0 1813\f
fc338970 1814
c906108c 1815#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1816/* SunPRO encodes the static variables. This is not related to C++
1817 mangling, it is done for C too. */
c906108c
SS
1818
1819char *
fba45db2 1820sunpro_static_transform_name (char *name)
c906108c
SS
1821{
1822 char *p;
1823 if (IS_STATIC_TRANSFORM_NAME (name))
1824 {
fc338970
MK
1825 /* For file-local statics there will be a period, a bunch of
1826 junk (the contents of which match a string given in the
c5aa993b
JM
1827 N_OPT), a period and the name. For function-local statics
1828 there will be a bunch of junk (which seems to change the
1829 second character from 'A' to 'B'), a period, the name of the
1830 function, and the name. So just skip everything before the
1831 last period. */
c906108c
SS
1832 p = strrchr (name, '.');
1833 if (p != NULL)
1834 name = p + 1;
1835 }
1836 return name;
1837}
1838#endif /* STATIC_TRANSFORM_NAME */
fc338970 1839\f
c906108c 1840
fc338970 1841/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1842
1843CORE_ADDR
1cce71eb 1844i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1845{
fc338970 1846 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1847 {
c5aa993b 1848 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1849 struct minimal_symbol *indsym =
fc338970 1850 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1851 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1852
c5aa993b 1853 if (symname)
c906108c 1854 {
c5aa993b
JM
1855 if (strncmp (symname, "__imp_", 6) == 0
1856 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1857 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1858 }
1859 }
fc338970 1860 return 0; /* Not a trampoline. */
c906108c 1861}
fc338970
MK
1862\f
1863
377d9ebd 1864/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1865 sigtramp routine. */
8201327c
MK
1866
1867static int
911bc6ee 1868i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1869{
911bc6ee
MK
1870 CORE_ADDR pc = frame_pc_unwind (next_frame);
1871 char *name;
1872
1873 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1874 return (name && strcmp ("_sigtramp", name) == 0);
1875}
1876\f
1877
fc338970
MK
1878/* We have two flavours of disassembly. The machinery on this page
1879 deals with switching between those. */
c906108c
SS
1880
1881static int
a89aa300 1882i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1883{
5e3397bb
MK
1884 gdb_assert (disassembly_flavor == att_flavor
1885 || disassembly_flavor == intel_flavor);
1886
1887 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1888 constified, cast to prevent a compiler warning. */
1889 info->disassembler_options = (char *) disassembly_flavor;
1890 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1891
1892 return print_insn_i386 (pc, info);
7a292a7a 1893}
fc338970 1894\f
3ce1502b 1895
8201327c
MK
1896/* There are a few i386 architecture variants that differ only
1897 slightly from the generic i386 target. For now, we don't give them
1898 their own source file, but include them here. As a consequence,
1899 they'll always be included. */
3ce1502b 1900
8201327c 1901/* System V Release 4 (SVR4). */
3ce1502b 1902
377d9ebd 1903/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1904 sigtramp routine. */
1905
8201327c 1906static int
911bc6ee 1907i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1908{
911bc6ee
MK
1909 CORE_ADDR pc = frame_pc_unwind (next_frame);
1910 char *name;
1911
acd5c798
MK
1912 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1913 currently unknown. */
911bc6ee 1914 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1915 return (name && (strcmp ("_sigreturn", name) == 0
1916 || strcmp ("_sigacthandler", name) == 0
1917 || strcmp ("sigvechandler", name) == 0));
1918}
d2a7c97a 1919
acd5c798
MK
1920/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1921 routine, return the address of the associated sigcontext (ucontext)
1922 structure. */
3ce1502b 1923
3a1e71e3 1924static CORE_ADDR
acd5c798 1925i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1926{
acd5c798
MK
1927 char buf[4];
1928 CORE_ADDR sp;
3ce1502b 1929
acd5c798
MK
1930 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1931 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1932
acd5c798 1933 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1934}
1935\f
3ce1502b 1936
8201327c 1937/* Generic ELF. */
d2a7c97a 1938
8201327c
MK
1939void
1940i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1941{
c4fc7f1b
MK
1942 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1943 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 1944}
3ce1502b 1945
8201327c 1946/* System V Release 4 (SVR4). */
3ce1502b 1947
8201327c
MK
1948void
1949i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1950{
1951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1952
8201327c
MK
1953 /* System V Release 4 uses ELF. */
1954 i386_elf_init_abi (info, gdbarch);
3ce1502b 1955
dfe01d39
MK
1956 /* System V Release 4 has shared libraries. */
1957 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1958 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1959
911bc6ee 1960 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 1961 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1962 tdep->sc_pc_offset = 36 + 14 * 4;
1963 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1964
8201327c 1965 tdep->jb_pc_offset = 20;
3ce1502b
MK
1966}
1967
8201327c 1968/* DJGPP. */
3ce1502b 1969
3a1e71e3 1970static void
8201327c 1971i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1972{
8201327c 1973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1974
911bc6ee
MK
1975 /* DJGPP doesn't have any special frames for signal handlers. */
1976 tdep->sigtramp_p = NULL;
3ce1502b 1977
8201327c 1978 tdep->jb_pc_offset = 36;
3ce1502b
MK
1979}
1980
8201327c 1981/* NetWare. */
3ce1502b 1982
3a1e71e3 1983static void
8201327c 1984i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1985{
8201327c 1986 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1987
8201327c 1988 tdep->jb_pc_offset = 24;
d2a7c97a 1989}
8201327c 1990\f
2acceee2 1991
38c968cf
AC
1992/* i386 register groups. In addition to the normal groups, add "mmx"
1993 and "sse". */
1994
1995static struct reggroup *i386_sse_reggroup;
1996static struct reggroup *i386_mmx_reggroup;
1997
1998static void
1999i386_init_reggroups (void)
2000{
2001 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2002 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2003}
2004
2005static void
2006i386_add_reggroups (struct gdbarch *gdbarch)
2007{
2008 reggroup_add (gdbarch, i386_sse_reggroup);
2009 reggroup_add (gdbarch, i386_mmx_reggroup);
2010 reggroup_add (gdbarch, general_reggroup);
2011 reggroup_add (gdbarch, float_reggroup);
2012 reggroup_add (gdbarch, all_reggroup);
2013 reggroup_add (gdbarch, save_reggroup);
2014 reggroup_add (gdbarch, restore_reggroup);
2015 reggroup_add (gdbarch, vector_reggroup);
2016 reggroup_add (gdbarch, system_reggroup);
2017}
2018
2019int
2020i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2021 struct reggroup *group)
2022{
5716833c
MK
2023 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2024 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2025 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2026 || i386_fpc_regnum_p (regnum));
5716833c 2027 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2028
38c968cf
AC
2029 if (group == i386_mmx_reggroup)
2030 return mmx_regnum_p;
2031 if (group == i386_sse_reggroup)
2032 return sse_regnum_p;
2033 if (group == vector_reggroup)
2034 return (mmx_regnum_p || sse_regnum_p);
2035 if (group == float_reggroup)
2036 return fp_regnum_p;
2037 if (group == general_reggroup)
2038 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2039
38c968cf
AC
2040 return default_register_reggroup_p (gdbarch, regnum, group);
2041}
38c968cf 2042\f
acd5c798 2043
f837910f
MK
2044/* Get the ARGIth function argument for the current function. */
2045
42c466d7 2046static CORE_ADDR
143985b7
AF
2047i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2048 struct type *type)
2049{
f837910f
MK
2050 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2051 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2052}
2053
2054\f
3a1e71e3 2055static struct gdbarch *
a62cc96e
AC
2056i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2057{
cd3c07fc 2058 struct gdbarch_tdep *tdep;
a62cc96e
AC
2059 struct gdbarch *gdbarch;
2060
4be87837
DJ
2061 /* If there is already a candidate, use it. */
2062 arches = gdbarch_list_lookup_by_info (arches, &info);
2063 if (arches != NULL)
2064 return arches->gdbarch;
a62cc96e
AC
2065
2066 /* Allocate space for the new architecture. */
2067 tdep = XMALLOC (struct gdbarch_tdep);
2068 gdbarch = gdbarch_alloc (&info, tdep);
2069
473f17b0
MK
2070 /* General-purpose registers. */
2071 tdep->gregset = NULL;
2072 tdep->gregset_reg_offset = NULL;
2073 tdep->gregset_num_regs = I386_NUM_GREGS;
2074 tdep->sizeof_gregset = 0;
2075
2076 /* Floating-point registers. */
2077 tdep->fpregset = NULL;
2078 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2079
5716833c 2080 /* The default settings include the FPU registers, the MMX registers
fd35795f 2081 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2082 by adjusting the members `st0_regnum', `mm0_regnum' and
2083 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2084 will show up in the output of "info all-registers". Ideally we
2085 should try to autodetect whether they are available, such that we
2086 can prevent "info all-registers" from displaying registers that
2087 aren't available.
2088
2089 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2090 [the SSE registers] always (even when they don't exist) or never
2091 showing them to the user (even when they do exist), I prefer the
2092 former over the latter. */
2093
2094 tdep->st0_regnum = I386_ST0_REGNUM;
2095
2096 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2097 calculating the register number for %mm0 until we know the number
5716833c
MK
2098 of raw registers. */
2099 tdep->mm0_regnum = 0;
2100
2101 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2102 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2103
8201327c
MK
2104 tdep->jb_pc_offset = -1;
2105 tdep->struct_return = pcc_struct_return;
8201327c
MK
2106 tdep->sigtramp_start = 0;
2107 tdep->sigtramp_end = 0;
911bc6ee 2108 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2109 tdep->sigcontext_addr = NULL;
a3386186 2110 tdep->sc_reg_offset = NULL;
8201327c 2111 tdep->sc_pc_offset = -1;
21d0e8a4 2112 tdep->sc_sp_offset = -1;
8201327c 2113
896fb97d
MK
2114 /* The format used for `long double' on almost all i386 targets is
2115 the i387 extended floating-point format. In fact, of all targets
2116 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2117 on having a `long double' that's not `long' at all. */
2118 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2119
66da5fd8 2120 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2121 bits, a `long double' actually takes up 96, probably to enforce
2122 alignment. */
2123 set_gdbarch_long_double_bit (gdbarch, 96);
2124
49ed40de
KB
2125 /* The default ABI includes general-purpose registers,
2126 floating-point registers, and the SSE registers. */
2127 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2128 set_gdbarch_register_name (gdbarch, i386_register_name);
2129 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2130
acd5c798
MK
2131 /* Register numbers of various important registers. */
2132 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2133 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2134 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2135 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2136
c4fc7f1b
MK
2137 /* NOTE: kettenis/20040418: GCC does have two possible register
2138 numbering schemes on the i386: dbx and SVR4. These schemes
2139 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2140 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2141 dbx_register_map[] and svr4_dbx_register_map in
2142 gcc/config/i386.c. GCC also defines a third numbering scheme in
2143 gcc/config/i386.c, which it designates as the "default" register
2144 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2145 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2146 amd64-tdep.c.
2147
2148 Currently, each GCC i386 target always uses the same register
2149 numbering scheme across all its supported debugging formats
2150 i.e. SDB (COFF), stabs and DWARF 2. This is because
2151 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2152 DBX_REGISTER_NUMBER macro which is defined by each target's
2153 respective config header in a manner independent of the requested
2154 output debugging format.
2155
2156 This does not match the arrangement below, which presumes that
2157 the SDB and stabs numbering schemes differ from the DWARF and
2158 DWARF 2 ones. The reason for this arrangement is that it is
2159 likely to get the numbering scheme for the target's
2160 default/native debug format right. For targets where GCC is the
2161 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2162 targets where the native toolchain uses a different numbering
2163 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2164 the defaults below will have to be overridden, like
2165 i386_elf_init_abi() does. */
c4fc7f1b
MK
2166
2167 /* Use the dbx register numbering scheme for stabs and COFF. */
2168 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2169 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2170
2171 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2172 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2173 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2174
2175 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2176 be in use on any of the supported i386 targets. */
2177
61113f8b
MK
2178 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2179
8201327c 2180 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2181
a62cc96e 2182 /* Call dummy code. */
acd5c798 2183 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2184
ff2e87ac
AC
2185 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2186 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2187 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2188
c5e656c1 2189 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2190
93924b6b
MK
2191 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2192
2193 /* Stack grows downward. */
2194 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2195
2196 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2197 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2198
42fdc8df 2199 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2200
28fc6740 2201 /* Wire in the MMX registers. */
0f751ff2 2202 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2203 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2204 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2205
5e3397bb
MK
2206 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2207
acd5c798 2208 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2209
2210 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2211
38c968cf
AC
2212 /* Add the i386 register groups. */
2213 i386_add_reggroups (gdbarch);
2214 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2215
143985b7
AF
2216 /* Helper for function argument information. */
2217 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2218
6405b0a6 2219 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2220 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2221
acd5c798 2222 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2223
3ce1502b 2224 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2225 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2226
336d1bba
AC
2227 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2228 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2229
8446b36a
MK
2230 /* If we have a register mapping, enable the generic core file
2231 support, unless it has already been enabled. */
2232 if (tdep->gregset_reg_offset
2233 && !gdbarch_regset_from_core_section_p (gdbarch))
2234 set_gdbarch_regset_from_core_section (gdbarch,
2235 i386_regset_from_core_section);
2236
5716833c
MK
2237 /* Unless support for MMX has been disabled, make %mm0 the first
2238 pseudo-register. */
2239 if (tdep->mm0_regnum == 0)
2240 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2241
a62cc96e
AC
2242 return gdbarch;
2243}
2244
8201327c
MK
2245static enum gdb_osabi
2246i386_coff_osabi_sniffer (bfd *abfd)
2247{
762c5349
MK
2248 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2249 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2250 return GDB_OSABI_GO32;
2251
2252 return GDB_OSABI_UNKNOWN;
2253}
2254
2255static enum gdb_osabi
2256i386_nlm_osabi_sniffer (bfd *abfd)
2257{
2258 return GDB_OSABI_NETWARE;
2259}
2260\f
2261
28e9e0f0
MK
2262/* Provide a prototype to silence -Wmissing-prototypes. */
2263void _initialize_i386_tdep (void);
2264
c906108c 2265void
fba45db2 2266_initialize_i386_tdep (void)
c906108c 2267{
a62cc96e
AC
2268 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2269
fc338970 2270 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2271 {
2272 struct cmd_list_element *new_cmd;
7a292a7a 2273
917317f4
JM
2274 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2275 valid_flavors,
1ed2a135 2276 &disassembly_flavor,
fc338970
MK
2277 "\
2278Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2279and the default value is \"att\".",
917317f4 2280 &setlist);
cb1a6d5f 2281 deprecated_add_show_from_set (new_cmd, &showlist);
917317f4 2282 }
8201327c
MK
2283
2284 /* Add the variable that controls the convention for returning
2285 structs. */
2286 {
2287 struct cmd_list_element *new_cmd;
2288
2289 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2290 valid_conventions,
8201327c
MK
2291 &struct_convention, "\
2292Set the convention for returning small structs, valid values \
2293are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2294 &setlist);
cb1a6d5f 2295 deprecated_add_show_from_set (new_cmd, &showlist);
8201327c
MK
2296 }
2297
2298 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2299 i386_coff_osabi_sniffer);
2300 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2301 i386_nlm_osabi_sniffer);
2302
05816f70 2303 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2304 i386_svr4_init_abi);
05816f70 2305 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2306 i386_go32_init_abi);
05816f70 2307 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2308 i386_nw_init_abi);
38c968cf
AC
2309
2310 /* Initialize the i386 specific register groups. */
2311 i386_init_reggroups ();
c906108c 2312}
This page took 0.519507 seconds and 4 git commands to generate.