* gdbtypes.c (_initialize_gdbtypes): Set floating-point type for
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
b6ba6518
KB
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
c906108c 37
3d261580
MK
38#include "gdb_assert.h"
39
917317f4
JM
40/* i386_register_byte[i] is the offset into the register file of the
41 start of register number i. We initialize this from
42 i386_register_raw_size. */
43int i386_register_byte[MAX_NUM_REGS];
44
ceb4951f
JB
45/* i386_register_raw_size[i] is the number of bytes of storage in
46 GDB's register array occupied by register i. */
917317f4
JM
47int i386_register_raw_size[MAX_NUM_REGS] = {
48 4, 4, 4, 4,
49 4, 4, 4, 4,
50 4, 4, 4, 4,
51 4, 4, 4, 4,
52 10, 10, 10, 10,
53 10, 10, 10, 10,
54 4, 4, 4, 4,
55 4, 4, 4, 4,
56 16, 16, 16, 16,
57 16, 16, 16, 16,
58 4
59};
60
61/* i386_register_virtual_size[i] is the size in bytes of the virtual
62 type of register i. */
63int i386_register_virtual_size[MAX_NUM_REGS];
85540d8c
MK
64
65/* Convert stabs register number REG to the appropriate register
66 number used by GDB. */
67
68int
69i386_stab_reg_to_regnum (int reg)
70{
71 /* This implements what GCC calls the "default" register map. */
72 if (reg >= 0 && reg <= 7)
73 {
74 /* General registers. */
75 return reg;
76 }
77 else if (reg >= 12 && reg <= 19)
78 {
79 /* Floating-point registers. */
80 return reg - 12 + FP0_REGNUM;
81 }
82 else if (reg >= 21 && reg <= 28)
83 {
84 /* SSE registers. */
85 return reg - 21 + XMM0_REGNUM;
86 }
87 else if (reg >= 29 && reg <= 36)
88 {
89 /* MMX registers. */
90 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
91 as pseudo-registers? */
92 return reg - 29 + FP0_REGNUM;
93 }
94
95 /* This will hopefully provoke a warning. */
96 return NUM_REGS + NUM_PSEUDO_REGS;
97}
98
99/* Convert Dwarf register number REG to the appropriate register
100 number used by GDB. */
101
102int
103i386_dwarf_reg_to_regnum (int reg)
104{
105 /* The DWARF register numbering includes %eip and %eflags, and
106 numbers the floating point registers differently. */
107 if (reg >= 0 && reg <= 9)
108 {
109 /* General registers. */
110 return reg;
111 }
112 else if (reg >= 11 && reg <= 18)
113 {
114 /* Floating-point registers. */
115 return reg - 11 + FP0_REGNUM;
116 }
117 else if (reg >= 21)
118 {
119 /* The SSE and MMX registers have identical numbers as in stabs. */
120 return i386_stab_reg_to_regnum (reg);
121 }
122
123 /* This will hopefully provoke a warning. */
124 return NUM_REGS + NUM_PSEUDO_REGS;
125}
fc338970 126\f
917317f4 127
fc338970
MK
128/* This is the variable that is set with "set disassembly-flavor", and
129 its legitimate values. */
53904c9e
AC
130static const char att_flavor[] = "att";
131static const char intel_flavor[] = "intel";
132static const char *valid_flavors[] =
c5aa993b 133{
c906108c
SS
134 att_flavor,
135 intel_flavor,
136 NULL
137};
53904c9e 138static const char *disassembly_flavor = att_flavor;
c906108c 139
fc338970
MK
140/* This is used to keep the bfd arch_info in sync with the disassembly
141 flavor. */
a14ed312
KB
142static void set_disassembly_flavor_sfunc (char *, int,
143 struct cmd_list_element *);
144static void set_disassembly_flavor (void);
fc338970
MK
145\f
146
147/* Stdio style buffering was used to minimize calls to ptrace, but
148 this buffering did not take into account that the code section
149 being accessed may not be an even number of buffers long (even if
150 the buffer is only sizeof(int) long). In cases where the code
151 section size happened to be a non-integral number of buffers long,
152 attempting to read the last buffer would fail. Simply using
153 target_read_memory and ignoring errors, rather than read_memory, is
154 not the correct solution, since legitimate access errors would then
155 be totally ignored. To properly handle this situation and continue
156 to use buffering would require that this code be able to determine
157 the minimum code section size granularity (not the alignment of the
158 section itself, since the actual failing case that pointed out this
159 problem had a section alignment of 4 but was not a multiple of 4
160 bytes long), on a target by target basis, and then adjust it's
161 buffer size accordingly. This is messy, but potentially feasible.
162 It probably needs the bfd library's help and support. For now, the
163 buffer size is set to 1. (FIXME -fnf) */
164
165#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
166static CORE_ADDR codestream_next_addr;
167static CORE_ADDR codestream_addr;
168static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
169static int codestream_off;
170static int codestream_cnt;
171
172#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
173#define codestream_peek() \
174 (codestream_cnt == 0 ? \
175 codestream_fill(1) : codestream_buf[codestream_off])
176#define codestream_get() \
177 (codestream_cnt-- == 0 ? \
178 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 179
c5aa993b 180static unsigned char
fba45db2 181codestream_fill (int peek_flag)
c906108c
SS
182{
183 codestream_addr = codestream_next_addr;
184 codestream_next_addr += CODESTREAM_BUFSIZ;
185 codestream_off = 0;
186 codestream_cnt = CODESTREAM_BUFSIZ;
187 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 188
c906108c 189 if (peek_flag)
c5aa993b 190 return (codestream_peek ());
c906108c 191 else
c5aa993b 192 return (codestream_get ());
c906108c
SS
193}
194
195static void
fba45db2 196codestream_seek (CORE_ADDR place)
c906108c
SS
197{
198 codestream_next_addr = place / CODESTREAM_BUFSIZ;
199 codestream_next_addr *= CODESTREAM_BUFSIZ;
200 codestream_cnt = 0;
201 codestream_fill (1);
c5aa993b 202 while (codestream_tell () != place)
c906108c
SS
203 codestream_get ();
204}
205
206static void
fba45db2 207codestream_read (unsigned char *buf, int count)
c906108c
SS
208{
209 unsigned char *p;
210 int i;
211 p = buf;
212 for (i = 0; i < count; i++)
213 *p++ = codestream_get ();
214}
fc338970 215\f
c906108c 216
fc338970 217/* If the next instruction is a jump, move to its target. */
c906108c
SS
218
219static void
fba45db2 220i386_follow_jump (void)
c906108c
SS
221{
222 unsigned char buf[4];
223 long delta;
224
225 int data16;
226 CORE_ADDR pos;
227
228 pos = codestream_tell ();
229
230 data16 = 0;
231 if (codestream_peek () == 0x66)
232 {
233 codestream_get ();
234 data16 = 1;
235 }
236
237 switch (codestream_get ())
238 {
239 case 0xe9:
fc338970 240 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
241 if (data16)
242 {
243 codestream_read (buf, 2);
244 delta = extract_signed_integer (buf, 2);
245
fc338970
MK
246 /* Include the size of the jmp instruction (including the
247 0x66 prefix). */
c5aa993b 248 pos += delta + 4;
c906108c
SS
249 }
250 else
251 {
252 codestream_read (buf, 4);
253 delta = extract_signed_integer (buf, 4);
254
255 pos += delta + 5;
256 }
257 break;
258 case 0xeb:
fc338970 259 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
260 codestream_read (buf, 1);
261 /* Sign-extend it. */
262 delta = extract_signed_integer (buf, 1);
263
264 pos += delta + 2;
265 break;
266 }
267 codestream_seek (pos);
268}
269
fc338970
MK
270/* Find & return the amount a local space allocated, and advance the
271 codestream to the first register push (if any).
272
273 If the entry sequence doesn't make sense, return -1, and leave
274 codestream pointer at a random spot. */
c906108c
SS
275
276static long
fba45db2 277i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
278{
279 unsigned char op;
280
281 codestream_seek (pc);
282
283 i386_follow_jump ();
284
285 op = codestream_get ();
286
287 if (op == 0x58) /* popl %eax */
288 {
fc338970
MK
289 /* This function must start with
290
291 popl %eax 0x58
292 xchgl %eax, (%esp) 0x87 0x04 0x24
293 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
294
295 (the System V compiler puts out the second `xchg'
296 instruction, and the assembler doesn't try to optimize it, so
297 the 'sib' form gets generated). This sequence is used to get
298 the address of the return buffer for a function that returns
299 a structure. */
c906108c
SS
300 int pos;
301 unsigned char buf[4];
fc338970
MK
302 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
303 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
304
c906108c
SS
305 pos = codestream_tell ();
306 codestream_read (buf, 4);
307 if (memcmp (buf, proto1, 3) == 0)
308 pos += 3;
309 else if (memcmp (buf, proto2, 4) == 0)
310 pos += 4;
311
312 codestream_seek (pos);
fc338970 313 op = codestream_get (); /* Update next opcode. */
c906108c
SS
314 }
315
316 if (op == 0x68 || op == 0x6a)
317 {
fc338970
MK
318 /* This function may start with
319
320 pushl constant
321 call _probe
322 addl $4, %esp
323
324 followed by
325
326 pushl %ebp
327
328 etc. */
c906108c
SS
329 int pos;
330 unsigned char buf[8];
331
fc338970 332 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
333 or a four-byte operand, depending on the opcode. */
334 pos = codestream_tell ();
335 if (op == 0x68)
336 pos += 4;
337 else
338 pos += 1;
339 codestream_seek (pos);
340
fc338970
MK
341 /* Read the following 8 bytes, which should be "call _probe" (6
342 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
343 codestream_read (buf, sizeof (buf));
344 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
345 pos += sizeof (buf);
346 codestream_seek (pos);
fc338970 347 op = codestream_get (); /* Update next opcode. */
c906108c
SS
348 }
349
350 if (op == 0x55) /* pushl %ebp */
c5aa993b 351 {
fc338970 352 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
353 switch (codestream_get ())
354 {
355 case 0x8b:
356 if (codestream_get () != 0xec)
fc338970 357 return -1;
c906108c
SS
358 break;
359 case 0x89:
360 if (codestream_get () != 0xe5)
fc338970 361 return -1;
c906108c
SS
362 break;
363 default:
fc338970 364 return -1;
c906108c 365 }
fc338970
MK
366 /* Check for stack adjustment
367
368 subl $XXX, %esp
369
370 NOTE: You can't subtract a 16 bit immediate from a 32 bit
371 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
372 op = codestream_peek ();
373 if (op == 0x83)
374 {
fc338970 375 /* `subl' with 8 bit immediate. */
c906108c
SS
376 codestream_get ();
377 if (codestream_get () != 0xec)
fc338970 378 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
379 {
380 codestream_seek (codestream_tell () - 2);
381 return 0;
382 }
fc338970
MK
383 /* `subl' with signed byte immediate (though it wouldn't
384 make sense to be negative). */
c5aa993b 385 return (codestream_get ());
c906108c
SS
386 }
387 else if (op == 0x81)
388 {
389 char buf[4];
fc338970 390 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 391 codestream_get ();
c906108c 392 if (codestream_get () != 0xec)
fc338970 393 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
394 {
395 codestream_seek (codestream_tell () - 2);
396 return 0;
397 }
fc338970 398 /* It is `subl' with a 32 bit immediate. */
c5aa993b 399 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
400 return extract_signed_integer (buf, 4);
401 }
402 else
403 {
fc338970 404 return 0;
c906108c
SS
405 }
406 }
407 else if (op == 0xc8)
408 {
409 char buf[2];
fc338970 410 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 411 codestream_read ((unsigned char *) buf, 2);
fc338970 412 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
413 return extract_unsigned_integer (buf, 2);
414 }
415 return (-1);
416}
417
c833a37e
MK
418/* Return the chain-pointer for FRAME. In the case of the i386, the
419 frame's nominal address is the address of a 4-byte word containing
420 the calling frame's address. */
421
422CORE_ADDR
423i386_frame_chain (struct frame_info *frame)
424{
425 if (frame->signal_handler_caller)
426 return frame->frame;
427
428 if (! inside_entry_file (frame->pc))
429 return read_memory_unsigned_integer (frame->frame, 4);
430
431 return 0;
432}
433
539ffe0b
MK
434/* Determine whether the function invocation represented by FRAME does
435 not have a from on the stack associated with it. If it does not,
436 return non-zero, otherwise return zero. */
437
438int
439i386_frameless_function_invocation (struct frame_info *frame)
440{
441 if (frame->signal_handler_caller)
442 return 0;
443
444 return frameless_look_for_prologue (frame);
445}
446
0d17c81d
MK
447/* Return the saved program counter for FRAME. */
448
449CORE_ADDR
450i386_frame_saved_pc (struct frame_info *frame)
451{
452 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
453 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
454 considered a temporary hack. I plan to come up with something
455 better when we go multi-arch. */
456#if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
457 if (frame->signal_handler_caller)
458 return sigtramp_saved_pc (frame);
459#endif
460
461 return read_memory_unsigned_integer (frame->frame + 4, 4);
462}
463
ed84f6c1
MK
464/* Immediately after a function call, return the saved pc. */
465
466CORE_ADDR
467i386_saved_pc_after_call (struct frame_info *frame)
468{
469 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
470}
471
c906108c
SS
472/* Return number of args passed to a frame.
473 Can return -1, meaning no way to tell. */
474
475int
fba45db2 476i386_frame_num_args (struct frame_info *fi)
c906108c
SS
477{
478#if 1
479 return -1;
480#else
481 /* This loses because not only might the compiler not be popping the
fc338970
MK
482 args right after the function call, it might be popping args from
483 both this call and a previous one, and we would say there are
484 more args than there really are. */
c906108c 485
c5aa993b
JM
486 int retpc;
487 unsigned char op;
c906108c
SS
488 struct frame_info *pfi;
489
fc338970 490 /* On the i386, the instruction following the call could be:
c906108c
SS
491 popl %ecx - one arg
492 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 493 anything else - zero args. */
c906108c
SS
494
495 int frameless;
496
392a587b 497 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 498 if (frameless)
fc338970
MK
499 /* In the absence of a frame pointer, GDB doesn't get correct
500 values for nameless arguments. Return -1, so it doesn't print
501 any nameless arguments. */
c906108c
SS
502 return -1;
503
c5aa993b 504 pfi = get_prev_frame (fi);
c906108c
SS
505 if (pfi == 0)
506 {
fc338970
MK
507 /* NOTE: This can happen if we are looking at the frame for
508 main, because FRAME_CHAIN_VALID won't let us go into start.
509 If we have debugging symbols, that's not really a big deal;
510 it just means it will only show as many arguments to main as
511 are declared. */
c906108c
SS
512 return -1;
513 }
514 else
515 {
c5aa993b
JM
516 retpc = pfi->pc;
517 op = read_memory_integer (retpc, 1);
fc338970 518 if (op == 0x59) /* pop %ecx */
c5aa993b 519 return 1;
c906108c
SS
520 else if (op == 0x83)
521 {
c5aa993b
JM
522 op = read_memory_integer (retpc + 1, 1);
523 if (op == 0xc4)
524 /* addl $<signed imm 8 bits>, %esp */
525 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
526 else
527 return 0;
528 }
fc338970
MK
529 else if (op == 0x81) /* `add' with 32 bit immediate. */
530 {
c5aa993b
JM
531 op = read_memory_integer (retpc + 1, 1);
532 if (op == 0xc4)
533 /* addl $<imm 32>, %esp */
534 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
535 else
536 return 0;
537 }
538 else
539 {
540 return 0;
541 }
542 }
543#endif
544}
545
fc338970
MK
546/* Parse the first few instructions the function to see what registers
547 were stored.
548
549 We handle these cases:
550
551 The startup sequence can be at the start of the function, or the
552 function can start with a branch to startup code at the end.
553
554 %ebp can be set up with either the 'enter' instruction, or "pushl
555 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
556 once used in the System V compiler).
557
558 Local space is allocated just below the saved %ebp by either the
559 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
560 bit unsigned argument for space to allocate, and the 'addl'
561 instruction could have either a signed byte, or 32 bit immediate.
562
563 Next, the registers used by this function are pushed. With the
564 System V compiler they will always be in the order: %edi, %esi,
565 %ebx (and sometimes a harmless bug causes it to also save but not
566 restore %eax); however, the code below is willing to see the pushes
567 in any order, and will handle up to 8 of them.
568
569 If the setup sequence is at the end of the function, then the next
570 instruction will be a branch back to the start. */
c906108c
SS
571
572void
fba45db2 573i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
574{
575 long locals = -1;
576 unsigned char op;
577 CORE_ADDR dummy_bottom;
fc338970 578 CORE_ADDR addr;
c906108c
SS
579 CORE_ADDR pc;
580 int i;
c5aa993b 581
1211c4e4
AC
582 if (fip->saved_regs)
583 return;
584
585 frame_saved_regs_zalloc (fip);
c5aa993b 586
fc338970
MK
587 /* If the frame is the end of a dummy, compute where the beginning
588 would be. */
c906108c 589 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 590
fc338970 591 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 592 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 593 {
fc338970
MK
594 /* All registers were saved by push_call_dummy. */
595 addr = fip->frame;
c5aa993b 596 for (i = 0; i < NUM_REGS; i++)
c906108c 597 {
fc338970
MK
598 addr -= REGISTER_RAW_SIZE (i);
599 fip->saved_regs[i] = addr;
c906108c
SS
600 }
601 return;
602 }
c5aa993b 603
c906108c
SS
604 pc = get_pc_function_start (fip->pc);
605 if (pc != 0)
606 locals = i386_get_frame_setup (pc);
c5aa993b
JM
607
608 if (locals >= 0)
c906108c 609 {
fc338970 610 addr = fip->frame - 4 - locals;
c5aa993b 611 for (i = 0; i < 8; i++)
c906108c
SS
612 {
613 op = codestream_get ();
614 if (op < 0x50 || op > 0x57)
615 break;
616#ifdef I386_REGNO_TO_SYMMETRY
617 /* Dynix uses different internal numbering. Ick. */
fc338970 618 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 619#else
fc338970 620 fip->saved_regs[op - 0x50] = addr;
c906108c 621#endif
fc338970 622 addr -= 4;
c906108c
SS
623 }
624 }
c5aa993b 625
1211c4e4
AC
626 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
627 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
628}
629
fc338970 630/* Return PC of first real instruction. */
c906108c
SS
631
632int
fba45db2 633i386_skip_prologue (int pc)
c906108c
SS
634{
635 unsigned char op;
636 int i;
c5aa993b 637 static unsigned char pic_pat[6] =
fc338970
MK
638 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
639 0x5b, /* popl %ebx */
c5aa993b 640 };
c906108c 641 CORE_ADDR pos;
c5aa993b 642
c906108c
SS
643 if (i386_get_frame_setup (pc) < 0)
644 return (pc);
c5aa993b 645
fc338970
MK
646 /* Found valid frame setup -- codestream now points to start of push
647 instructions for saving registers. */
c5aa993b 648
fc338970 649 /* Skip over register saves. */
c906108c
SS
650 for (i = 0; i < 8; i++)
651 {
652 op = codestream_peek ();
fc338970 653 /* Break if not `pushl' instrunction. */
c5aa993b 654 if (op < 0x50 || op > 0x57)
c906108c
SS
655 break;
656 codestream_get ();
657 }
658
fc338970
MK
659 /* The native cc on SVR4 in -K PIC mode inserts the following code
660 to get the address of the global offset table (GOT) into register
661 %ebx
662
663 call 0x0
664 popl %ebx
665 movl %ebx,x(%ebp) (optional)
666 addl y,%ebx
667
c906108c
SS
668 This code is with the rest of the prologue (at the end of the
669 function), so we have to skip it to get to the first real
670 instruction at the start of the function. */
c5aa993b 671
c906108c
SS
672 pos = codestream_tell ();
673 for (i = 0; i < 6; i++)
674 {
675 op = codestream_get ();
c5aa993b 676 if (pic_pat[i] != op)
c906108c
SS
677 break;
678 }
679 if (i == 6)
680 {
681 unsigned char buf[4];
682 long delta = 6;
683
684 op = codestream_get ();
c5aa993b 685 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
686 {
687 op = codestream_get ();
fc338970 688 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
689 {
690 delta += 3;
691 codestream_read (buf, 1);
692 }
fc338970 693 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
694 {
695 delta += 6;
696 codestream_read (buf, 4);
697 }
fc338970 698 else /* Unexpected instruction. */
c5aa993b
JM
699 delta = -1;
700 op = codestream_get ();
c906108c 701 }
c5aa993b
JM
702 /* addl y,%ebx */
703 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 704 {
c5aa993b 705 pos += delta + 6;
c906108c
SS
706 }
707 }
708 codestream_seek (pos);
c5aa993b 709
c906108c 710 i386_follow_jump ();
c5aa993b 711
c906108c
SS
712 return (codestream_tell ());
713}
714
715void
fba45db2 716i386_push_dummy_frame (void)
c906108c
SS
717{
718 CORE_ADDR sp = read_register (SP_REGNUM);
719 int regnum;
720 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 721
c906108c
SS
722 sp = push_word (sp, read_register (PC_REGNUM));
723 sp = push_word (sp, read_register (FP_REGNUM));
724 write_register (FP_REGNUM, sp);
725 for (regnum = 0; regnum < NUM_REGS; regnum++)
726 {
727 read_register_gen (regnum, regbuf);
728 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
729 }
730 write_register (SP_REGNUM, sp);
731}
732
a7769679
MK
733/* Insert the (relative) function address into the call sequence
734 stored at DYMMY. */
735
736void
737i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 738 struct value **args, struct type *type, int gcc_p)
a7769679
MK
739{
740 int from, to, delta, loc;
741
742 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
743 from = loc + 5;
744 to = (int)(fun);
745 delta = to - from;
746
747 *((char *)(dummy) + 1) = (delta & 0xff);
748 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
749 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
750 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
751}
752
c906108c 753void
fba45db2 754i386_pop_frame (void)
c906108c
SS
755{
756 struct frame_info *frame = get_current_frame ();
757 CORE_ADDR fp;
758 int regnum;
c906108c 759 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 760
c906108c 761 fp = FRAME_FP (frame);
1211c4e4
AC
762 i386_frame_init_saved_regs (frame);
763
c5aa993b 764 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 765 {
fc338970
MK
766 CORE_ADDR addr;
767 addr = frame->saved_regs[regnum];
768 if (addr)
c906108c 769 {
fc338970 770 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
771 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
772 REGISTER_RAW_SIZE (regnum));
773 }
774 }
775 write_register (FP_REGNUM, read_memory_integer (fp, 4));
776 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
777 write_register (SP_REGNUM, fp + 8);
778 flush_cached_frames ();
779}
fc338970 780\f
c906108c
SS
781
782#ifdef GET_LONGJMP_TARGET
783
fc338970
MK
784/* Figure out where the longjmp will land. Slurp the args out of the
785 stack. We expect the first arg to be a pointer to the jmp_buf
786 structure from which we extract the pc (JB_PC) that we will land
787 at. The pc is copied into PC. This routine returns true on
788 success. */
c906108c
SS
789
790int
fba45db2 791get_longjmp_target (CORE_ADDR *pc)
c906108c
SS
792{
793 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
794 CORE_ADDR sp, jb_addr;
795
796 sp = read_register (SP_REGNUM);
797
fc338970 798 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c906108c
SS
799 buf,
800 TARGET_PTR_BIT / TARGET_CHAR_BIT))
801 return 0;
802
803 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
804
805 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
806 TARGET_PTR_BIT / TARGET_CHAR_BIT))
807 return 0;
808
809 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
810
811 return 1;
812}
813
814#endif /* GET_LONGJMP_TARGET */
fc338970 815\f
c906108c 816
22f8ba57 817CORE_ADDR
ea7c478f 818i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
819 int struct_return, CORE_ADDR struct_addr)
820{
821 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
822
823 if (struct_return)
824 {
825 char buf[4];
826
827 sp -= 4;
828 store_address (buf, 4, struct_addr);
829 write_memory (sp, buf, 4);
830 }
831
832 return sp;
833}
834
835void
836i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
837{
838 /* Do nothing. Everything was already done by i386_push_arguments. */
839}
840
1a309862
MK
841/* These registers are used for returning integers (and on some
842 targets also for returning `struct' and `union' values when their
ef9dff19 843 size and alignment match an integer type). */
1a309862
MK
844#define LOW_RETURN_REGNUM 0 /* %eax */
845#define HIGH_RETURN_REGNUM 2 /* %edx */
846
847/* Extract from an array REGBUF containing the (raw) register state, a
848 function return value of TYPE, and copy that, in virtual format,
849 into VALBUF. */
850
c906108c 851void
1a309862 852i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 853{
1a309862
MK
854 int len = TYPE_LENGTH (type);
855
1e8d0a7b
MK
856 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
857 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
858 {
859 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
860 return;
861 }
1e8d0a7b
MK
862
863 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 864 {
1a309862
MK
865 if (NUM_FREGS == 0)
866 {
867 warning ("Cannot find floating-point return value.");
868 memset (valbuf, 0, len);
ef9dff19 869 return;
1a309862
MK
870 }
871
635b0cc1 872 /* Floating-point return values can be found in %st(0). */
1a309862
MK
873 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
874 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
875 {
876 /* Copy straight over, but take care of the padding. */
877 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
878 FPU_REG_RAW_SIZE);
879 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
880 }
881 else
882 {
883 /* Convert the extended floating-point number found in
884 %st(0) to the desired type. This is probably not exactly
885 how it would happen on the target itself, but it is the
886 best we can do. */
887 DOUBLEST val;
888 floatformat_to_doublest (&floatformat_i387_ext,
889 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
890 store_floating (valbuf, TYPE_LENGTH (type), val);
891 }
c906108c
SS
892 }
893 else
c5aa993b 894 {
d4f3574e
SS
895 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
896 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
897
898 if (len <= low_size)
1a309862 899 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
900 else if (len <= (low_size + high_size))
901 {
902 memcpy (valbuf,
1a309862 903 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 904 memcpy (valbuf + low_size,
1a309862 905 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
906 }
907 else
8e65ff28
AC
908 internal_error (__FILE__, __LINE__,
909 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
910 }
911}
912
ef9dff19
MK
913/* Write into the appropriate registers a function return value stored
914 in VALBUF of type TYPE, given in virtual format. */
915
916void
917i386_store_return_value (struct type *type, char *valbuf)
918{
919 int len = TYPE_LENGTH (type);
920
1e8d0a7b
MK
921 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
922 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
923 {
924 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
925 return;
926 }
1e8d0a7b
MK
927
928 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 929 {
ccb945b8
MK
930 unsigned int fstat;
931
ef9dff19
MK
932 if (NUM_FREGS == 0)
933 {
934 warning ("Cannot set floating-point return value.");
935 return;
936 }
937
635b0cc1
MK
938 /* Returning floating-point values is a bit tricky. Apart from
939 storing the return value in %st(0), we have to simulate the
940 state of the FPU at function return point. */
941
ef9dff19
MK
942 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
943 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
944 {
945 /* Copy straight over. */
946 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
947 FPU_REG_RAW_SIZE);
948 }
949 else
950 {
951 char buf[FPU_REG_RAW_SIZE];
952 DOUBLEST val;
953
954 /* Convert the value found in VALBUF to the extended
635b0cc1 955 floating-point format used by the FPU. This is probably
ef9dff19
MK
956 not exactly how it would happen on the target itself, but
957 it is the best we can do. */
958 val = extract_floating (valbuf, TYPE_LENGTH (type));
959 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
960 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
961 FPU_REG_RAW_SIZE);
962 }
ccb945b8 963
635b0cc1
MK
964 /* Set the top of the floating-point register stack to 7. The
965 actual value doesn't really matter, but 7 is what a normal
966 function return would end up with if the program started out
967 with a freshly initialized FPU. */
ccb945b8
MK
968 fstat = read_register (FSTAT_REGNUM);
969 fstat |= (7 << 11);
970 write_register (FSTAT_REGNUM, fstat);
971
635b0cc1
MK
972 /* Mark %st(1) through %st(7) as empty. Since we set the top of
973 the floating-point register stack to 7, the appropriate value
974 for the tag word is 0x3fff. */
ccb945b8 975 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
976 }
977 else
978 {
979 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
980 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
981
982 if (len <= low_size)
983 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
984 else if (len <= (low_size + high_size))
985 {
986 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
987 valbuf, low_size);
988 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
989 valbuf + low_size, len - low_size);
990 }
991 else
8e65ff28
AC
992 internal_error (__FILE__, __LINE__,
993 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
994 }
995}
f7af9647
MK
996
997/* Extract from an array REGBUF containing the (raw) register state
998 the address in which a function should return its structure value,
999 as a CORE_ADDR. */
1000
1001CORE_ADDR
1002i386_extract_struct_value_address (char *regbuf)
1003{
1004 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1005 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1006}
fc338970 1007\f
ef9dff19 1008
d7a0d72c
MK
1009/* Return the GDB type object for the "standard" data type of data in
1010 register REGNUM. Perhaps %esi and %edi should go here, but
1011 potentially they could be used for things other than address. */
1012
1013struct type *
1014i386_register_virtual_type (int regnum)
1015{
1016 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1017 return lookup_pointer_type (builtin_type_void);
1018
1019 if (IS_FP_REGNUM (regnum))
1020 return builtin_type_long_double;
1021
1022 if (IS_SSE_REGNUM (regnum))
1023 return builtin_type_v4sf;
1024
1025 return builtin_type_int;
1026}
1027
1028/* Return true iff register REGNUM's virtual format is different from
1029 its raw format. Note that this definition assumes that the host
1030 supports IEEE 32-bit floats, since it doesn't say that SSE
1031 registers need conversion. Even if we can't find a counterexample,
1032 this is still sloppy. */
1033
1034int
1035i386_register_convertible (int regnum)
1036{
1037 return IS_FP_REGNUM (regnum);
1038}
1039
ac27f131 1040/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1041 virtual format with type TYPE in buffer TO. */
ac27f131
MK
1042
1043void
1044i386_register_convert_to_virtual (int regnum, struct type *type,
1045 char *from, char *to)
1046{
3d261580
MK
1047 char buf[12];
1048 DOUBLEST d;
1049
1050 /* We only support floating-point values. */
8d7f6b4a
MK
1051 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1052 {
1053 warning ("Cannot convert floating-point register value "
1054 "to non-floating-point type.");
1055 memset (to, 0, TYPE_LENGTH (type));
1056 return;
1057 }
3d261580
MK
1058
1059 /* First add the necessary padding. */
1060 memcpy (buf, from, FPU_REG_RAW_SIZE);
1061 memset (buf + FPU_REG_RAW_SIZE, 0, sizeof buf - FPU_REG_RAW_SIZE);
1062
1063 /* Convert to TYPE. This should be a no-op, if TYPE is equivalent
1064 to the extended floating-point format used by the FPU. */
1065 d = extract_floating (buf, sizeof buf);
1066 store_floating (to, TYPE_LENGTH (type), d);
ac27f131
MK
1067}
1068
1069/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1070 raw format for register REGNUM in buffer TO. */
ac27f131
MK
1071
1072void
1073i386_register_convert_to_raw (struct type *type, int regnum,
1074 char *from, char *to)
1075{
3d261580
MK
1076 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT
1077 && TYPE_LENGTH (type) == 12);
1078
1079 /* Simply omit the two unused bytes. */
ac27f131
MK
1080 memcpy (to, from, FPU_REG_RAW_SIZE);
1081}
ac27f131 1082\f
fc338970 1083
c906108c 1084#ifdef I386V4_SIGTRAMP_SAVED_PC
fc338970
MK
1085/* Get saved user PC for sigtramp from the pushed ucontext on the
1086 stack for all three variants of SVR4 sigtramps. */
c906108c
SS
1087
1088CORE_ADDR
fba45db2 1089i386v4_sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
1090{
1091 CORE_ADDR saved_pc_offset = 4;
1092 char *name = NULL;
1093
1094 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1095 if (name)
1096 {
1097 if (STREQ (name, "_sigreturn"))
1098 saved_pc_offset = 132 + 14 * 4;
1099 else if (STREQ (name, "_sigacthandler"))
1100 saved_pc_offset = 80 + 14 * 4;
1101 else if (STREQ (name, "sigvechandler"))
1102 saved_pc_offset = 120 + 14 * 4;
1103 }
1104
1105 if (frame->next)
1106 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1107 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1108}
1109#endif /* I386V4_SIGTRAMP_SAVED_PC */
fc338970 1110\f
a0b3c4fd 1111
c906108c 1112#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1113/* SunPRO encodes the static variables. This is not related to C++
1114 mangling, it is done for C too. */
c906108c
SS
1115
1116char *
fba45db2 1117sunpro_static_transform_name (char *name)
c906108c
SS
1118{
1119 char *p;
1120 if (IS_STATIC_TRANSFORM_NAME (name))
1121 {
fc338970
MK
1122 /* For file-local statics there will be a period, a bunch of
1123 junk (the contents of which match a string given in the
c5aa993b
JM
1124 N_OPT), a period and the name. For function-local statics
1125 there will be a bunch of junk (which seems to change the
1126 second character from 'A' to 'B'), a period, the name of the
1127 function, and the name. So just skip everything before the
1128 last period. */
c906108c
SS
1129 p = strrchr (name, '.');
1130 if (p != NULL)
1131 name = p + 1;
1132 }
1133 return name;
1134}
1135#endif /* STATIC_TRANSFORM_NAME */
fc338970 1136\f
c906108c 1137
fc338970 1138/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1139
1140CORE_ADDR
fba45db2 1141skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1142{
fc338970 1143 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1144 {
c5aa993b 1145 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1146 struct minimal_symbol *indsym =
fc338970 1147 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1148 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1149
c5aa993b 1150 if (symname)
c906108c 1151 {
c5aa993b
JM
1152 if (strncmp (symname, "__imp_", 6) == 0
1153 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1154 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1155 }
1156 }
fc338970 1157 return 0; /* Not a trampoline. */
c906108c 1158}
fc338970
MK
1159\f
1160
1161/* We have two flavours of disassembly. The machinery on this page
1162 deals with switching between those. */
c906108c
SS
1163
1164static int
fba45db2 1165gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1166{
1167 if (disassembly_flavor == att_flavor)
1168 return print_insn_i386_att (memaddr, info);
1169 else if (disassembly_flavor == intel_flavor)
1170 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1171 /* Never reached -- disassembly_flavour is always either att_flavor
1172 or intel_flavor. */
e1e9e218 1173 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a
SS
1174}
1175
fc338970
MK
1176/* If the disassembly mode is intel, we have to also switch the bfd
1177 mach_type. This function is run in the set disassembly_flavor
7a292a7a
SS
1178 command, and does that. */
1179
1180static void
fba45db2
KB
1181set_disassembly_flavor_sfunc (char *args, int from_tty,
1182 struct cmd_list_element *c)
7a292a7a
SS
1183{
1184 set_disassembly_flavor ();
7a292a7a
SS
1185}
1186
1187static void
fba45db2 1188set_disassembly_flavor (void)
7a292a7a
SS
1189{
1190 if (disassembly_flavor == att_flavor)
1191 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1192 else if (disassembly_flavor == intel_flavor)
fc338970
MK
1193 set_architecture_from_arch_mach (bfd_arch_i386,
1194 bfd_mach_i386_i386_intel_syntax);
c906108c 1195}
fc338970 1196\f
2acceee2 1197
28e9e0f0
MK
1198/* Provide a prototype to silence -Wmissing-prototypes. */
1199void _initialize_i386_tdep (void);
1200
c906108c 1201void
fba45db2 1202_initialize_i386_tdep (void)
c906108c 1203{
917317f4
JM
1204 /* Initialize the table saying where each register starts in the
1205 register file. */
1206 {
1207 int i, offset;
1208
1209 offset = 0;
1210 for (i = 0; i < MAX_NUM_REGS; i++)
1211 {
1212 i386_register_byte[i] = offset;
1213 offset += i386_register_raw_size[i];
1214 }
1215 }
1216
1217 /* Initialize the table of virtual register sizes. */
1218 {
1219 int i;
1220
1221 for (i = 0; i < MAX_NUM_REGS; i++)
1222 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1223 }
c5aa993b 1224
c906108c
SS
1225 tm_print_insn = gdb_print_insn_i386;
1226 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1227
fc338970 1228 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1229 {
1230 struct cmd_list_element *new_cmd;
7a292a7a 1231
917317f4
JM
1232 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1233 valid_flavors,
1ed2a135 1234 &disassembly_flavor,
fc338970
MK
1235 "\
1236Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1237and the default value is \"att\".",
917317f4
JM
1238 &setlist);
1239 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1240 add_show_from_set (new_cmd, &showlist);
1241 }
c5aa993b 1242
7a292a7a 1243 /* Finally, initialize the disassembly flavor to the default given
fc338970 1244 in the disassembly_flavor variable. */
7a292a7a 1245 set_disassembly_flavor ();
c906108c 1246}
This page took 0.178883 seconds and 4 git commands to generate.