* i386-tdep.c (i386_analyze_frame_setup): Also handle xorl/subl
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798
MK
28#include "doublest.h"
29#include "floatformat.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
acd5c798 46
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
d2a7c97a 52
fc633446
MK
53/* Names of the registers. The first 10 registers match the register
54 numbering scheme used by GCC for stabs and DWARF. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
28fc6740
AC
73/* MMX registers. */
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
85540d8c
MK
168/* Convert stabs register number REG to the appropriate register
169 number used by GDB. */
170
8201327c 171static int
85540d8c
MK
172i386_stab_reg_to_regnum (int reg)
173{
174 /* This implements what GCC calls the "default" register map. */
175 if (reg >= 0 && reg <= 7)
176 {
acd5c798 177 /* General-purpose registers. */
85540d8c
MK
178 return reg;
179 }
180 else if (reg >= 12 && reg <= 19)
181 {
182 /* Floating-point registers. */
5716833c 183 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
184 }
185 else if (reg >= 21 && reg <= 28)
186 {
187 /* SSE registers. */
5716833c 188 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
189 }
190 else if (reg >= 29 && reg <= 36)
191 {
192 /* MMX registers. */
5716833c 193 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
194 }
195
196 /* This will hopefully provoke a warning. */
197 return NUM_REGS + NUM_PSEUDO_REGS;
198}
199
8201327c 200/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
201 number used by GDB. */
202
8201327c 203static int
85540d8c
MK
204i386_dwarf_reg_to_regnum (int reg)
205{
206 /* The DWARF register numbering includes %eip and %eflags, and
207 numbers the floating point registers differently. */
208 if (reg >= 0 && reg <= 9)
209 {
acd5c798 210 /* General-purpose registers. */
85540d8c
MK
211 return reg;
212 }
213 else if (reg >= 11 && reg <= 18)
214 {
215 /* Floating-point registers. */
5716833c 216 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
217 }
218 else if (reg >= 21)
219 {
220 /* The SSE and MMX registers have identical numbers as in stabs. */
221 return i386_stab_reg_to_regnum (reg);
222 }
223
224 /* This will hopefully provoke a warning. */
225 return NUM_REGS + NUM_PSEUDO_REGS;
226}
5716833c
MK
227
228#undef I387_ST0_REGNUM
229#undef I387_MM0_REGNUM
230#undef I387_NUM_XMM_REGS
fc338970 231\f
917317f4 232
fc338970
MK
233/* This is the variable that is set with "set disassembly-flavor", and
234 its legitimate values. */
53904c9e
AC
235static const char att_flavor[] = "att";
236static const char intel_flavor[] = "intel";
237static const char *valid_flavors[] =
c5aa993b 238{
c906108c
SS
239 att_flavor,
240 intel_flavor,
241 NULL
242};
53904c9e 243static const char *disassembly_flavor = att_flavor;
acd5c798 244\f
c906108c 245
acd5c798
MK
246/* Use the program counter to determine the contents and size of a
247 breakpoint instruction. Return a pointer to a string of bytes that
248 encode a breakpoint instruction, store the length of the string in
249 *LEN and optionally adjust *PC to point to the correct memory
250 location for inserting the breakpoint.
c906108c 251
acd5c798
MK
252 On the i386 we have a single breakpoint that fits in a single byte
253 and can be inserted anywhere.
c906108c 254
acd5c798
MK
255 This function is 64-bit safe. */
256
257static const unsigned char *
258i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 259{
acd5c798
MK
260 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
261
262 *len = sizeof (break_insn);
263 return break_insn;
c906108c 264}
fc338970 265\f
acd5c798
MK
266#ifdef I386_REGNO_TO_SYMMETRY
267#error "The Sequent Symmetry is no longer supported."
268#endif
c906108c 269
acd5c798
MK
270/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
271 and %esp "belong" to the calling function. Therefore these
272 registers should be saved if they're going to be modified. */
c906108c 273
acd5c798
MK
274/* The maximum number of saved registers. This should include all
275 registers mentioned above, and %eip. */
a3386186 276#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
277
278struct i386_frame_cache
c906108c 279{
acd5c798
MK
280 /* Base address. */
281 CORE_ADDR base;
282 CORE_ADDR sp_offset;
283 CORE_ADDR pc;
284
fd13a04a
AC
285 /* Saved registers. */
286 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
287 CORE_ADDR saved_sp;
288 int pc_in_eax;
289
290 /* Stack space reserved for local variables. */
291 long locals;
292};
293
294/* Allocate and initialize a frame cache. */
295
296static struct i386_frame_cache *
fd13a04a 297i386_alloc_frame_cache (void)
acd5c798
MK
298{
299 struct i386_frame_cache *cache;
300 int i;
301
302 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
303
304 /* Base address. */
305 cache->base = 0;
306 cache->sp_offset = -4;
307 cache->pc = 0;
308
fd13a04a
AC
309 /* Saved registers. We initialize these to -1 since zero is a valid
310 offset (that's where %ebp is supposed to be stored). */
311 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
312 cache->saved_regs[i] = -1;
acd5c798
MK
313 cache->saved_sp = 0;
314 cache->pc_in_eax = 0;
315
316 /* Frameless until proven otherwise. */
317 cache->locals = -1;
318
319 return cache;
320}
c906108c 321
acd5c798
MK
322/* If the instruction at PC is a jump, return the address of its
323 target. Otherwise, return PC. */
c906108c 324
acd5c798
MK
325static CORE_ADDR
326i386_follow_jump (CORE_ADDR pc)
327{
328 unsigned char op;
329 long delta = 0;
330 int data16 = 0;
c906108c 331
acd5c798
MK
332 op = read_memory_unsigned_integer (pc, 1);
333 if (op == 0x66)
c906108c 334 {
c906108c 335 data16 = 1;
acd5c798 336 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
337 }
338
acd5c798 339 switch (op)
c906108c
SS
340 {
341 case 0xe9:
fc338970 342 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
343 if (data16)
344 {
acd5c798 345 delta = read_memory_integer (pc + 2, 2);
c906108c 346
fc338970
MK
347 /* Include the size of the jmp instruction (including the
348 0x66 prefix). */
acd5c798 349 delta += 4;
c906108c
SS
350 }
351 else
352 {
acd5c798 353 delta = read_memory_integer (pc + 1, 4);
c906108c 354
acd5c798
MK
355 /* Include the size of the jmp instruction. */
356 delta += 5;
c906108c
SS
357 }
358 break;
359 case 0xeb:
fc338970 360 /* Relative jump, disp8 (ignore data16). */
acd5c798 361 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 362
acd5c798 363 delta += data16 + 2;
c906108c
SS
364 break;
365 }
c906108c 366
acd5c798
MK
367 return pc + delta;
368}
fc338970 369
acd5c798
MK
370/* Check whether PC points at a prologue for a function returning a
371 structure or union. If so, it updates CACHE and returns the
372 address of the first instruction after the code sequence that
373 removes the "hidden" argument from the stack or CURRENT_PC,
374 whichever is smaller. Otherwise, return PC. */
c906108c 375
acd5c798
MK
376static CORE_ADDR
377i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
378 struct i386_frame_cache *cache)
c906108c 379{
acd5c798
MK
380 /* Functions that return a structure or union start with:
381
382 popl %eax 0x58
383 xchgl %eax, (%esp) 0x87 0x04 0x24
384 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
385
386 (the System V compiler puts out the second `xchg' instruction,
387 and the assembler doesn't try to optimize it, so the 'sib' form
388 gets generated). This sequence is used to get the address of the
389 return buffer for a function that returns a structure. */
390 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
391 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
392 unsigned char buf[4];
c906108c
SS
393 unsigned char op;
394
acd5c798
MK
395 if (current_pc <= pc)
396 return pc;
397
398 op = read_memory_unsigned_integer (pc, 1);
c906108c 399
acd5c798
MK
400 if (op != 0x58) /* popl %eax */
401 return pc;
c906108c 402
acd5c798
MK
403 read_memory (pc + 1, buf, 4);
404 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
405 return pc;
c906108c 406
acd5c798 407 if (current_pc == pc)
c906108c 408 {
acd5c798
MK
409 cache->sp_offset += 4;
410 return current_pc;
c906108c
SS
411 }
412
acd5c798 413 if (current_pc == pc + 1)
c906108c 414 {
acd5c798
MK
415 cache->pc_in_eax = 1;
416 return current_pc;
417 }
418
419 if (buf[1] == proto1[1])
420 return pc + 4;
421 else
422 return pc + 5;
423}
424
425static CORE_ADDR
426i386_skip_probe (CORE_ADDR pc)
427{
428 /* A function may start with
fc338970 429
acd5c798
MK
430 pushl constant
431 call _probe
432 addl $4, %esp
fc338970 433
acd5c798
MK
434 followed by
435
436 pushl %ebp
fc338970 437
acd5c798
MK
438 etc. */
439 unsigned char buf[8];
440 unsigned char op;
fc338970 441
acd5c798
MK
442 op = read_memory_unsigned_integer (pc, 1);
443
444 if (op == 0x68 || op == 0x6a)
445 {
446 int delta;
c906108c 447
acd5c798
MK
448 /* Skip past the `pushl' instruction; it has either a one-byte or a
449 four-byte operand, depending on the opcode. */
c906108c 450 if (op == 0x68)
acd5c798 451 delta = 5;
c906108c 452 else
acd5c798 453 delta = 2;
c906108c 454
acd5c798
MK
455 /* Read the following 8 bytes, which should be `call _probe' (6
456 bytes) followed by `addl $4,%esp' (2 bytes). */
457 read_memory (pc + delta, buf, sizeof (buf));
c906108c 458 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 459 pc += delta + sizeof (buf);
c906108c
SS
460 }
461
acd5c798
MK
462 return pc;
463}
464
465/* Check whether PC points at a code that sets up a new stack frame.
466 If so, it updates CACHE and returns the address of the first
467 instruction after the sequence that sets removes the "hidden"
468 argument from the stack or CURRENT_PC, whichever is smaller.
469 Otherwise, return PC. */
470
471static CORE_ADDR
472i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
473 struct i386_frame_cache *cache)
474{
475 unsigned char op;
26604a34 476 int skip = 0;
acd5c798
MK
477
478 if (current_pc <= pc)
479 return current_pc;
480
481 op = read_memory_unsigned_integer (pc, 1);
482
c906108c 483 if (op == 0x55) /* pushl %ebp */
c5aa993b 484 {
acd5c798
MK
485 /* Take into account that we've executed the `pushl %ebp' that
486 starts this instruction sequence. */
fd13a04a 487 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
488 cache->sp_offset += 4;
489
490 /* If that's all, return now. */
491 if (current_pc <= pc + 1)
492 return current_pc;
493
acd5c798 494 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
495
496 /* Check for some special instructions that might be migrated
497 by GCC into the prologue. We check for
498
499 xorl %ebx, %ebx
500 xorl %ecx, %ecx
501 xorl %edx, %edx
7270b6ed 502 xorl %eax, %eax
26604a34
MK
503
504 and the equivalent
505
506 subl %ebx, %ebx
507 subl %ecx, %ecx
508 subl %edx, %edx
7270b6ed 509 subl %eax, %eax
26604a34
MK
510
511 Make sure we only skip these instructions if we later see the
512 `movl %esp, %ebp' that actually sets up the frame. */
513 while (op == 0x29 || op == 0x31)
514 {
515 op = read_memory_unsigned_integer (pc + skip + 2, 1);
516 switch (op)
517 {
518 case 0xdb: /* %ebx */
519 case 0xc9: /* %ecx */
520 case 0xd2: /* %edx */
7270b6ed 521 case 0xc0: /* %eax */
26604a34
MK
522 skip += 2;
523 break;
524 default:
525 return pc + 1;
526 }
527
528 op = read_memory_unsigned_integer (pc + skip + 1, 1);
529 }
530
531 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 532 switch (op)
c906108c
SS
533 {
534 case 0x8b:
26604a34 535 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 536 return pc + 1;
c906108c
SS
537 break;
538 case 0x89:
26604a34 539 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 540 return pc + 1;
c906108c
SS
541 break;
542 default:
acd5c798 543 return pc + 1;
c906108c 544 }
acd5c798 545
26604a34
MK
546 /* OK, we actually have a frame. We just don't know how large
547 it is yet. Set its size to zero. We'll adjust it if
548 necessary. We also now commit to skipping the special
549 instructions mentioned before. */
acd5c798 550 cache->locals = 0;
26604a34 551 pc += skip;
acd5c798
MK
552
553 /* If that's all, return now. */
554 if (current_pc <= pc + 3)
555 return current_pc;
556
fc338970
MK
557 /* Check for stack adjustment
558
acd5c798 559 subl $XXX, %esp
fc338970
MK
560
561 NOTE: You can't subtract a 16 bit immediate from a 32 bit
562 reg, so we don't have to worry about a data16 prefix. */
acd5c798 563 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
564 if (op == 0x83)
565 {
fc338970 566 /* `subl' with 8 bit immediate. */
acd5c798 567 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 568 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
569 return pc + 3;
570
571 /* `subl' with signed byte immediate (though it wouldn't make
572 sense to be negative). */
573 cache->locals = read_memory_integer (pc + 5, 1);
574 return pc + 6;
c906108c
SS
575 }
576 else if (op == 0x81)
577 {
fc338970 578 /* Maybe it is `subl' with a 32 bit immedediate. */
acd5c798 579 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 580 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
581 return pc + 3;
582
fc338970 583 /* It is `subl' with a 32 bit immediate. */
acd5c798
MK
584 cache->locals = read_memory_integer (pc + 5, 4);
585 return pc + 9;
c906108c
SS
586 }
587 else
588 {
acd5c798
MK
589 /* Some instruction other than `subl'. */
590 return pc + 3;
c906108c
SS
591 }
592 }
acd5c798 593 else if (op == 0xc8) /* enter $XXX */
c906108c 594 {
acd5c798
MK
595 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
596 return pc + 4;
c906108c 597 }
21d0e8a4 598
acd5c798 599 return pc;
21d0e8a4
MK
600}
601
acd5c798
MK
602/* Check whether PC points at code that saves registers on the stack.
603 If so, it updates CACHE and returns the address of the first
604 instruction after the register saves or CURRENT_PC, whichever is
605 smaller. Otherwise, return PC. */
6bff26de
MK
606
607static CORE_ADDR
acd5c798
MK
608i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct i386_frame_cache *cache)
6bff26de 610{
99ab4326
MK
611 CORE_ADDR offset = 0;
612 unsigned char op;
613 int i;
c0d1d883 614
99ab4326
MK
615 if (cache->locals > 0)
616 offset -= cache->locals;
617 for (i = 0; i < 8 && pc < current_pc; i++)
618 {
619 op = read_memory_unsigned_integer (pc, 1);
620 if (op < 0x50 || op > 0x57)
621 break;
0d17c81d 622
99ab4326
MK
623 offset -= 4;
624 cache->saved_regs[op - 0x50] = offset;
625 cache->sp_offset += 4;
626 pc++;
6bff26de
MK
627 }
628
acd5c798 629 return pc;
22797942
AC
630}
631
acd5c798
MK
632/* Do a full analysis of the prologue at PC and update CACHE
633 accordingly. Bail out early if CURRENT_PC is reached. Return the
634 address where the analysis stopped.
ed84f6c1 635
fc338970
MK
636 We handle these cases:
637
638 The startup sequence can be at the start of the function, or the
639 function can start with a branch to startup code at the end.
640
641 %ebp can be set up with either the 'enter' instruction, or "pushl
642 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
643 once used in the System V compiler).
644
645 Local space is allocated just below the saved %ebp by either the
646 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
647 bit unsigned argument for space to allocate, and the 'addl'
648 instruction could have either a signed byte, or 32 bit immediate.
649
650 Next, the registers used by this function are pushed. With the
651 System V compiler they will always be in the order: %edi, %esi,
652 %ebx (and sometimes a harmless bug causes it to also save but not
653 restore %eax); however, the code below is willing to see the pushes
654 in any order, and will handle up to 8 of them.
655
656 If the setup sequence is at the end of the function, then the next
657 instruction will be a branch back to the start. */
c906108c 658
acd5c798
MK
659static CORE_ADDR
660i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
661 struct i386_frame_cache *cache)
c906108c 662{
acd5c798
MK
663 pc = i386_follow_jump (pc);
664 pc = i386_analyze_struct_return (pc, current_pc, cache);
665 pc = i386_skip_probe (pc);
666 pc = i386_analyze_frame_setup (pc, current_pc, cache);
667 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
668}
669
fc338970 670/* Return PC of first real instruction. */
c906108c 671
3a1e71e3 672static CORE_ADDR
acd5c798 673i386_skip_prologue (CORE_ADDR start_pc)
c906108c 674{
c5aa993b 675 static unsigned char pic_pat[6] =
acd5c798
MK
676 {
677 0xe8, 0, 0, 0, 0, /* call 0x0 */
678 0x5b, /* popl %ebx */
c5aa993b 679 };
acd5c798
MK
680 struct i386_frame_cache cache;
681 CORE_ADDR pc;
682 unsigned char op;
683 int i;
c5aa993b 684
acd5c798
MK
685 cache.locals = -1;
686 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
687 if (cache.locals < 0)
688 return start_pc;
c5aa993b 689
acd5c798 690 /* Found valid frame setup. */
c906108c 691
fc338970
MK
692 /* The native cc on SVR4 in -K PIC mode inserts the following code
693 to get the address of the global offset table (GOT) into register
acd5c798
MK
694 %ebx:
695
fc338970
MK
696 call 0x0
697 popl %ebx
698 movl %ebx,x(%ebp) (optional)
699 addl y,%ebx
700
c906108c
SS
701 This code is with the rest of the prologue (at the end of the
702 function), so we have to skip it to get to the first real
703 instruction at the start of the function. */
c5aa993b 704
c906108c
SS
705 for (i = 0; i < 6; i++)
706 {
acd5c798 707 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 708 if (pic_pat[i] != op)
c906108c
SS
709 break;
710 }
711 if (i == 6)
712 {
acd5c798
MK
713 int delta = 6;
714
715 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 716
c5aa993b 717 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 718 {
acd5c798
MK
719 op = read_memory_unsigned_integer (pc + delta + 1, 1);
720
fc338970 721 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 722 delta += 3;
fc338970 723 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 724 delta += 6;
fc338970 725 else /* Unexpected instruction. */
acd5c798
MK
726 delta = 0;
727
728 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 729 }
acd5c798 730
c5aa993b 731 /* addl y,%ebx */
acd5c798
MK
732 if (delta > 0 && op == 0x81
733 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 734 {
acd5c798 735 pc += delta + 6;
c906108c
SS
736 }
737 }
c5aa993b 738
acd5c798 739 return i386_follow_jump (pc);
c906108c
SS
740}
741
acd5c798 742/* This function is 64-bit safe. */
93924b6b 743
acd5c798
MK
744static CORE_ADDR
745i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 746{
acd5c798
MK
747 char buf[8];
748
749 frame_unwind_register (next_frame, PC_REGNUM, buf);
750 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 751}
acd5c798 752\f
93924b6b 753
acd5c798 754/* Normal frames. */
c5aa993b 755
acd5c798
MK
756static struct i386_frame_cache *
757i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 758{
acd5c798 759 struct i386_frame_cache *cache;
c0d1d883 760 char buf[4];
acd5c798
MK
761 int i;
762
763 if (*this_cache)
764 return *this_cache;
765
fd13a04a 766 cache = i386_alloc_frame_cache ();
acd5c798
MK
767 *this_cache = cache;
768
769 /* In principle, for normal frames, %ebp holds the frame pointer,
770 which holds the base address for the current stack frame.
771 However, for functions that don't need it, the frame pointer is
772 optional. For these "frameless" functions the frame pointer is
773 actually the frame pointer of the calling frame. Signal
774 trampolines are just a special case of a "frameless" function.
775 They (usually) share their frame pointer with the frame that was
776 in progress when the signal occurred. */
777
778 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
779 cache->base = extract_unsigned_integer (buf, 4);
780 if (cache->base == 0)
781 return cache;
782
783 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 784 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
785
786 cache->pc = frame_func_unwind (next_frame);
787 if (cache->pc != 0)
788 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
789
790 if (cache->locals < 0)
791 {
792 /* We didn't find a valid frame, which means that CACHE->base
793 currently holds the frame pointer for our calling frame. If
794 we're at the start of a function, or somewhere half-way its
795 prologue, the function's frame probably hasn't been fully
796 setup yet. Try to reconstruct the base address for the stack
797 frame by looking at the stack pointer. For truly "frameless"
798 functions this might work too. */
799
800 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
801 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
802 }
803
804 /* Now that we have the base address for the stack frame we can
805 calculate the value of %esp in the calling frame. */
806 cache->saved_sp = cache->base + 8;
a7769679 807
acd5c798
MK
808 /* Adjust all the saved registers such that they contain addresses
809 instead of offsets. */
810 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
811 if (cache->saved_regs[i] != -1)
812 cache->saved_regs[i] += cache->base;
acd5c798
MK
813
814 return cache;
a7769679
MK
815}
816
3a1e71e3 817static void
acd5c798
MK
818i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
819 struct frame_id *this_id)
c906108c 820{
acd5c798
MK
821 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
822
823 /* This marks the outermost frame. */
824 if (cache->base == 0)
825 return;
826
3e210248 827 /* See the end of i386_push_dummy_call. */
acd5c798
MK
828 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
829}
830
831static void
832i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
833 int regnum, int *optimizedp,
834 enum lval_type *lvalp, CORE_ADDR *addrp,
835 int *realnump, void *valuep)
836{
837 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
838
839 gdb_assert (regnum >= 0);
840
841 /* The System V ABI says that:
842
843 "The flags register contains the system flags, such as the
844 direction flag and the carry flag. The direction flag must be
845 set to the forward (that is, zero) direction before entry and
846 upon exit from a function. Other user flags have no specified
847 role in the standard calling sequence and are not preserved."
848
849 To guarantee the "upon exit" part of that statement we fake a
850 saved flags register that has its direction flag cleared.
851
852 Note that GCC doesn't seem to rely on the fact that the direction
853 flag is cleared after a function return; it always explicitly
854 clears the flag before operations where it matters.
855
856 FIXME: kettenis/20030316: I'm not quite sure whether this is the
857 right thing to do. The way we fake the flags register here makes
858 it impossible to change it. */
859
860 if (regnum == I386_EFLAGS_REGNUM)
861 {
862 *optimizedp = 0;
863 *lvalp = not_lval;
864 *addrp = 0;
865 *realnump = -1;
866 if (valuep)
867 {
868 ULONGEST val;
c5aa993b 869
acd5c798 870 /* Clear the direction flag. */
f837910f
MK
871 val = frame_unwind_register_unsigned (next_frame,
872 I386_EFLAGS_REGNUM);
acd5c798
MK
873 val &= ~(1 << 10);
874 store_unsigned_integer (valuep, 4, val);
875 }
876
877 return;
878 }
1211c4e4 879
acd5c798 880 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 881 {
acd5c798
MK
882 frame_register_unwind (next_frame, I386_EAX_REGNUM,
883 optimizedp, lvalp, addrp, realnump, valuep);
884 return;
885 }
886
887 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
888 {
889 *optimizedp = 0;
890 *lvalp = not_lval;
891 *addrp = 0;
892 *realnump = -1;
893 if (valuep)
c906108c 894 {
acd5c798
MK
895 /* Store the value. */
896 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 897 }
acd5c798 898 return;
c906108c 899 }
acd5c798 900
fd13a04a
AC
901 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
902 {
903 *optimizedp = 0;
904 *lvalp = lval_memory;
905 *addrp = cache->saved_regs[regnum];
906 *realnump = -1;
907 if (valuep)
908 {
909 /* Read the value in from memory. */
910 read_memory (*addrp, valuep,
911 register_size (current_gdbarch, regnum));
912 }
913 return;
914 }
915
916 frame_register_unwind (next_frame, regnum,
917 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
918}
919
920static const struct frame_unwind i386_frame_unwind =
921{
922 NORMAL_FRAME,
923 i386_frame_this_id,
924 i386_frame_prev_register
925};
926
927static const struct frame_unwind *
336d1bba 928i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
929{
930 return &i386_frame_unwind;
931}
932\f
933
934/* Signal trampolines. */
935
936static struct i386_frame_cache *
937i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
938{
939 struct i386_frame_cache *cache;
940 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
941 CORE_ADDR addr;
942 char buf[4];
943
944 if (*this_cache)
945 return *this_cache;
946
fd13a04a 947 cache = i386_alloc_frame_cache ();
acd5c798
MK
948
949 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
950 cache->base = extract_unsigned_integer (buf, 4) - 4;
951
952 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
953 if (tdep->sc_reg_offset)
954 {
955 int i;
956
957 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
958
959 for (i = 0; i < tdep->sc_num_regs; i++)
960 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 961 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
962 }
963 else
964 {
fd13a04a
AC
965 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
966 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 967 }
acd5c798
MK
968
969 *this_cache = cache;
970 return cache;
971}
972
973static void
974i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
975 struct frame_id *this_id)
976{
977 struct i386_frame_cache *cache =
978 i386_sigtramp_frame_cache (next_frame, this_cache);
979
3e210248 980 /* See the end of i386_push_dummy_call. */
acd5c798
MK
981 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
982}
983
984static void
985i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
986 void **this_cache,
987 int regnum, int *optimizedp,
988 enum lval_type *lvalp, CORE_ADDR *addrp,
989 int *realnump, void *valuep)
990{
991 /* Make sure we've initialized the cache. */
992 i386_sigtramp_frame_cache (next_frame, this_cache);
993
994 i386_frame_prev_register (next_frame, this_cache, regnum,
995 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 996}
c0d1d883 997
acd5c798
MK
998static const struct frame_unwind i386_sigtramp_frame_unwind =
999{
1000 SIGTRAMP_FRAME,
1001 i386_sigtramp_frame_this_id,
1002 i386_sigtramp_frame_prev_register
1003};
1004
1005static const struct frame_unwind *
336d1bba 1006i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1007{
336d1bba 1008 CORE_ADDR pc = frame_pc_unwind (next_frame);
acd5c798
MK
1009 char *name;
1010
1c3545ae
MK
1011 /* We shouldn't even bother to try if the OSABI didn't register
1012 a sigcontext_addr handler. */
1013 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
1014 return NULL;
1015
acd5c798
MK
1016 find_pc_partial_function (pc, &name, NULL, NULL);
1017 if (PC_IN_SIGTRAMP (pc, name))
1018 return &i386_sigtramp_frame_unwind;
1019
1020 return NULL;
1021}
1022\f
1023
1024static CORE_ADDR
1025i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1026{
1027 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1028
1029 return cache->base;
1030}
1031
1032static const struct frame_base i386_frame_base =
1033{
1034 &i386_frame_unwind,
1035 i386_frame_base_address,
1036 i386_frame_base_address,
1037 i386_frame_base_address
1038};
1039
acd5c798
MK
1040static struct frame_id
1041i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1042{
1043 char buf[4];
1044 CORE_ADDR fp;
1045
1046 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1047 fp = extract_unsigned_integer (buf, 4);
1048
3e210248 1049 /* See the end of i386_push_dummy_call. */
acd5c798 1050 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1051}
fc338970 1052\f
c906108c 1053
fc338970
MK
1054/* Figure out where the longjmp will land. Slurp the args out of the
1055 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1056 structure from which we extract the address that we will land at.
28bcfd30 1057 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1058 success.
1059
1060 This function is 64-bit safe. */
c906108c 1061
8201327c
MK
1062static int
1063i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1064{
28bcfd30 1065 char buf[8];
c906108c 1066 CORE_ADDR sp, jb_addr;
8201327c 1067 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1068 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1069
8201327c
MK
1070 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1071 longjmp will land. */
1072 if (jb_pc_offset == -1)
c906108c
SS
1073 return 0;
1074
f837910f
MK
1075 /* Don't use I386_ESP_REGNUM here, since this function is also used
1076 for AMD64. */
1077 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1078 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1079 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1080 return 0;
1081
f837910f 1082 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1083 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1084 return 0;
c906108c 1085
f9d3c2a8 1086 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1087 return 1;
1088}
fc338970 1089\f
c906108c 1090
3a1e71e3 1091static CORE_ADDR
6a65450a
AC
1092i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1093 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1094 struct value **args, CORE_ADDR sp, int struct_return,
1095 CORE_ADDR struct_addr)
22f8ba57 1096{
acd5c798
MK
1097 char buf[4];
1098 int i;
1099
1100 /* Push arguments in reverse order. */
1101 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1102 {
acd5c798
MK
1103 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1104
1105 /* The System V ABI says that:
1106
1107 "An argument's size is increased, if necessary, to make it a
1108 multiple of [32-bit] words. This may require tail padding,
1109 depending on the size of the argument."
1110
1111 This makes sure the stack says word-aligned. */
1112 sp -= (len + 3) & ~3;
1113 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1114 }
22f8ba57 1115
acd5c798
MK
1116 /* Push value address. */
1117 if (struct_return)
1118 {
22f8ba57 1119 sp -= 4;
fbd9dcd3 1120 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1121 write_memory (sp, buf, 4);
1122 }
1123
acd5c798
MK
1124 /* Store return address. */
1125 sp -= 4;
6a65450a 1126 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1127 write_memory (sp, buf, 4);
1128
1129 /* Finally, update the stack pointer... */
1130 store_unsigned_integer (buf, 4, sp);
1131 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1132
1133 /* ...and fake a frame pointer. */
1134 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1135
3e210248
AC
1136 /* MarkK wrote: This "+ 8" is all over the place:
1137 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1138 i386_unwind_dummy_id). It's there, since all frame unwinders for
1139 a given target have to agree (within a certain margin) on the
1140 defenition of the stack address of a frame. Otherwise
1141 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1142 stack address *before* the function call as a frame's CFA. On
1143 the i386, when %ebp is used as a frame pointer, the offset
1144 between the contents %ebp and the CFA as defined by GCC. */
1145 return sp + 8;
22f8ba57
MK
1146}
1147
1a309862
MK
1148/* These registers are used for returning integers (and on some
1149 targets also for returning `struct' and `union' values when their
ef9dff19 1150 size and alignment match an integer type). */
acd5c798
MK
1151#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1152#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862
MK
1153
1154/* Extract from an array REGBUF containing the (raw) register state, a
1155 function return value of TYPE, and copy that, in virtual format,
1156 into VALBUF. */
1157
3a1e71e3 1158static void
00f8375e 1159i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 1160 void *dst)
c906108c 1161{
5716833c 1162 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
ebba8386 1163 bfd_byte *valbuf = dst;
1a309862 1164 int len = TYPE_LENGTH (type);
00f8375e 1165 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1166
1e8d0a7b
MK
1167 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1168 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1169 {
00f8375e 1170 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1171 return;
1172 }
1e8d0a7b
MK
1173
1174 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1175 {
5716833c 1176 if (tdep->st0_regnum < 0)
1a309862
MK
1177 {
1178 warning ("Cannot find floating-point return value.");
1179 memset (valbuf, 0, len);
ef9dff19 1180 return;
1a309862
MK
1181 }
1182
c6ba6f0d
MK
1183 /* Floating-point return values can be found in %st(0). Convert
1184 its contents to the desired type. This is probably not
1185 exactly how it would happen on the target itself, but it is
1186 the best we can do. */
acd5c798 1187 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1188 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1189 }
1190 else
c5aa993b 1191 {
f837910f
MK
1192 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1193 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1194
1195 if (len <= low_size)
00f8375e 1196 {
0818c12a 1197 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1198 memcpy (valbuf, buf, len);
1199 }
d4f3574e
SS
1200 else if (len <= (low_size + high_size))
1201 {
0818c12a 1202 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1203 memcpy (valbuf, buf, low_size);
0818c12a 1204 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1205 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1206 }
1207 else
8e65ff28
AC
1208 internal_error (__FILE__, __LINE__,
1209 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1210 }
1211}
1212
ef9dff19
MK
1213/* Write into the appropriate registers a function return value stored
1214 in VALBUF of type TYPE, given in virtual format. */
1215
3a1e71e3 1216static void
3d7f4f49
MK
1217i386_store_return_value (struct type *type, struct regcache *regcache,
1218 const void *valbuf)
ef9dff19 1219{
5716833c 1220 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
ef9dff19
MK
1221 int len = TYPE_LENGTH (type);
1222
5716833c
MK
1223 /* Define I387_ST0_REGNUM such that we use the proper definitions
1224 for the architecture. */
1225#define I387_ST0_REGNUM I386_ST0_REGNUM
1226
1e8d0a7b
MK
1227 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1228 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1229 {
3d7f4f49 1230 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1231 return;
1232 }
1e8d0a7b
MK
1233
1234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1235 {
3d7f4f49 1236 ULONGEST fstat;
5716833c 1237 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1238
5716833c 1239 if (tdep->st0_regnum < 0)
ef9dff19
MK
1240 {
1241 warning ("Cannot set floating-point return value.");
1242 return;
1243 }
1244
635b0cc1
MK
1245 /* Returning floating-point values is a bit tricky. Apart from
1246 storing the return value in %st(0), we have to simulate the
1247 state of the FPU at function return point. */
1248
c6ba6f0d
MK
1249 /* Convert the value found in VALBUF to the extended
1250 floating-point format used by the FPU. This is probably
1251 not exactly how it would happen on the target itself, but
1252 it is the best we can do. */
1253 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1254 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1255
635b0cc1
MK
1256 /* Set the top of the floating-point register stack to 7. The
1257 actual value doesn't really matter, but 7 is what a normal
1258 function return would end up with if the program started out
1259 with a freshly initialized FPU. */
5716833c 1260 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1261 fstat |= (7 << 11);
5716833c 1262 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1263
635b0cc1
MK
1264 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1265 the floating-point register stack to 7, the appropriate value
1266 for the tag word is 0x3fff. */
5716833c 1267 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1268 }
1269 else
1270 {
f837910f
MK
1271 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1272 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1273
1274 if (len <= low_size)
3d7f4f49 1275 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1276 else if (len <= (low_size + high_size))
1277 {
3d7f4f49
MK
1278 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1279 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1280 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1281 }
1282 else
8e65ff28
AC
1283 internal_error (__FILE__, __LINE__,
1284 "Cannot store return value of %d bytes long.", len);
ef9dff19 1285 }
5716833c
MK
1286
1287#undef I387_ST0_REGNUM
ef9dff19 1288}
f7af9647 1289
751f1375
MK
1290/* Extract from REGCACHE, which contains the (raw) register state, the
1291 address in which a function should return its structure value, as a
1292 CORE_ADDR. */
f7af9647 1293
3a1e71e3 1294static CORE_ADDR
00f8375e 1295i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1296{
acd5c798 1297 char buf[4];
751f1375 1298
acd5c798
MK
1299 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1300 return extract_unsigned_integer (buf, 4);
f7af9647 1301}
fc338970 1302\f
ef9dff19 1303
8201327c
MK
1304/* This is the variable that is set with "set struct-convention", and
1305 its legitimate values. */
1306static const char default_struct_convention[] = "default";
1307static const char pcc_struct_convention[] = "pcc";
1308static const char reg_struct_convention[] = "reg";
1309static const char *valid_conventions[] =
1310{
1311 default_struct_convention,
1312 pcc_struct_convention,
1313 reg_struct_convention,
1314 NULL
1315};
1316static const char *struct_convention = default_struct_convention;
1317
1318static int
1319i386_use_struct_convention (int gcc_p, struct type *type)
1320{
1321 enum struct_return struct_return;
1322
1323 if (struct_convention == default_struct_convention)
1324 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1325 else if (struct_convention == pcc_struct_convention)
1326 struct_return = pcc_struct_return;
1327 else
1328 struct_return = reg_struct_return;
1329
1330 return generic_use_struct_convention (struct_return == reg_struct_return,
1331 type);
1332}
1333\f
1334
d7a0d72c
MK
1335/* Return the GDB type object for the "standard" data type of data in
1336 register REGNUM. Perhaps %esi and %edi should go here, but
1337 potentially they could be used for things other than address. */
1338
3a1e71e3 1339static struct type *
4e259f09 1340i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1341{
acd5c798
MK
1342 if (regnum == I386_EIP_REGNUM
1343 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1344 return lookup_pointer_type (builtin_type_void);
1345
23a34459 1346 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1347 return builtin_type_i387_ext;
d7a0d72c 1348
5716833c 1349 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1350 return builtin_type_vec128i;
d7a0d72c 1351
5716833c 1352 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1353 return builtin_type_vec64i;
1354
d7a0d72c
MK
1355 return builtin_type_int;
1356}
1357
28fc6740 1358/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1359 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1360
1361static int
c86c27af 1362i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1363{
5716833c
MK
1364 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1365 int mmxreg, fpreg;
28fc6740
AC
1366 ULONGEST fstat;
1367 int tos;
c86c27af 1368
5716833c
MK
1369 /* Define I387_ST0_REGNUM such that we use the proper definitions
1370 for REGCACHE's architecture. */
1371#define I387_ST0_REGNUM tdep->st0_regnum
1372
1373 mmxreg = regnum - tdep->mm0_regnum;
1374 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1375 tos = (fstat >> 11) & 0x7;
5716833c
MK
1376 fpreg = (mmxreg + tos) % 8;
1377
1378 return (I387_ST0_REGNUM + fpreg);
c86c27af 1379
5716833c 1380#undef I387_ST0_REGNUM
28fc6740
AC
1381}
1382
1383static void
1384i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1385 int regnum, void *buf)
1386{
5716833c 1387 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1388 {
d9d9c31f 1389 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1390 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1391
28fc6740 1392 /* Extract (always little endian). */
c86c27af 1393 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1394 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1395 }
1396 else
1397 regcache_raw_read (regcache, regnum, buf);
1398}
1399
1400static void
1401i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1402 int regnum, const void *buf)
1403{
5716833c 1404 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1405 {
d9d9c31f 1406 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1407 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1408
28fc6740
AC
1409 /* Read ... */
1410 regcache_raw_read (regcache, fpnum, mmx_buf);
1411 /* ... Modify ... (always little endian). */
f837910f 1412 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1413 /* ... Write. */
1414 regcache_raw_write (regcache, fpnum, mmx_buf);
1415 }
1416 else
1417 regcache_raw_write (regcache, regnum, buf);
1418}
ff2e87ac
AC
1419\f
1420
1421/* These registers don't have pervasive standard uses. Move them to
1422 i386-tdep.h if necessary. */
1423
1424#define I386_EBX_REGNUM 3 /* %ebx */
1425#define I386_ECX_REGNUM 1 /* %ecx */
1426#define I386_ESI_REGNUM 6 /* %esi */
1427#define I386_EDI_REGNUM 7 /* %edi */
1428
1429/* Return the register number of the register allocated by GCC after
1430 REGNUM, or -1 if there is no such register. */
1431
1432static int
1433i386_next_regnum (int regnum)
1434{
1435 /* GCC allocates the registers in the order:
1436
1437 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1438
1439 Since storing a variable in %esp doesn't make any sense we return
1440 -1 for %ebp and for %esp itself. */
1441 static int next_regnum[] =
1442 {
1443 I386_EDX_REGNUM, /* Slot for %eax. */
1444 I386_EBX_REGNUM, /* Slot for %ecx. */
1445 I386_ECX_REGNUM, /* Slot for %edx. */
1446 I386_ESI_REGNUM, /* Slot for %ebx. */
1447 -1, -1, /* Slots for %esp and %ebp. */
1448 I386_EDI_REGNUM, /* Slot for %esi. */
1449 I386_EBP_REGNUM /* Slot for %edi. */
1450 };
1451
de5b9bb9 1452 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1453 return next_regnum[regnum];
28fc6740 1454
ff2e87ac
AC
1455 return -1;
1456}
1457
1458/* Return nonzero if a value of type TYPE stored in register REGNUM
1459 needs any special handling. */
d7a0d72c 1460
3a1e71e3 1461static int
ff2e87ac 1462i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1463{
de5b9bb9
MK
1464 int len = TYPE_LENGTH (type);
1465
ff2e87ac
AC
1466 /* Values may be spread across multiple registers. Most debugging
1467 formats aren't expressive enough to specify the locations, so
1468 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1469 have a length that is a multiple of the word size, since GCC
1470 doesn't seem to put any other types into registers. */
1471 if (len > 4 && len % 4 == 0)
1472 {
1473 int last_regnum = regnum;
1474
1475 while (len > 4)
1476 {
1477 last_regnum = i386_next_regnum (last_regnum);
1478 len -= 4;
1479 }
1480
1481 if (last_regnum != -1)
1482 return 1;
1483 }
ff2e87ac 1484
23a34459 1485 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1486}
1487
ff2e87ac
AC
1488/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1489 return its contents in TO. */
ac27f131 1490
3a1e71e3 1491static void
ff2e87ac
AC
1492i386_register_to_value (struct frame_info *frame, int regnum,
1493 struct type *type, void *to)
ac27f131 1494{
de5b9bb9
MK
1495 int len = TYPE_LENGTH (type);
1496 char *buf = to;
1497
ff2e87ac
AC
1498 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1499 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1500
ff2e87ac 1501 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1502 {
d532c08f
MK
1503 i387_register_to_value (frame, regnum, type, to);
1504 return;
8d7f6b4a 1505 }
ff2e87ac 1506
de5b9bb9
MK
1507 /* Read a value spread accross multiple registers. */
1508
1509 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1510
de5b9bb9
MK
1511 while (len > 0)
1512 {
1513 gdb_assert (regnum != -1);
1514 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1515
f837910f 1516 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1517 regnum = i386_next_regnum (regnum);
1518 len -= 4;
1519 buf += 4;
1520 }
ac27f131
MK
1521}
1522
ff2e87ac
AC
1523/* Write the contents FROM of a value of type TYPE into register
1524 REGNUM in frame FRAME. */
ac27f131 1525
3a1e71e3 1526static void
ff2e87ac
AC
1527i386_value_to_register (struct frame_info *frame, int regnum,
1528 struct type *type, const void *from)
ac27f131 1529{
de5b9bb9
MK
1530 int len = TYPE_LENGTH (type);
1531 const char *buf = from;
1532
ff2e87ac 1533 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1534 {
d532c08f
MK
1535 i387_value_to_register (frame, regnum, type, from);
1536 return;
1537 }
3d261580 1538
de5b9bb9
MK
1539 /* Write a value spread accross multiple registers. */
1540
1541 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1542
de5b9bb9
MK
1543 while (len > 0)
1544 {
1545 gdb_assert (regnum != -1);
1546 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1547
de5b9bb9
MK
1548 put_frame_register (frame, regnum, buf);
1549 regnum = i386_next_regnum (regnum);
1550 len -= 4;
1551 buf += 4;
1552 }
ac27f131 1553}
ff2e87ac 1554\f
473f17b0
MK
1555/* Supply register REGNUM from the general-purpose register set REGSET
1556 to register cache REGCACHE. If REGNUM is -1, do this for all
1557 registers in REGSET. */
ff2e87ac 1558
473f17b0
MK
1559static void
1560i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1561 int regnum, const void *gregs, size_t len)
1562{
1563 const struct gdbarch_tdep *tdep = regset->descr;
1564 const char *regs = gregs;
1565 int i;
1566
1567 gdb_assert (len == tdep->sizeof_gregset);
1568
1569 for (i = 0; i < tdep->gregset_num_regs; i++)
1570 {
1571 if ((regnum == i || regnum == -1)
1572 && tdep->gregset_reg_offset[i] != -1)
1573 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1574 }
1575}
1576
1577/* Supply register REGNUM from the floating-point register set REGSET
1578 to register cache REGCACHE. If REGNUM is -1, do this for all
1579 registers in REGSET. */
1580
1581static void
1582i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1583 int regnum, const void *fpregs, size_t len)
1584{
1585 const struct gdbarch_tdep *tdep = regset->descr;
1586
1587 gdb_assert (len == tdep->sizeof_fpregset);
1588 i387_supply_fsave (regcache, regnum, fpregs);
1589}
1590\f
fc338970 1591
c906108c 1592#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1593/* SunPRO encodes the static variables. This is not related to C++
1594 mangling, it is done for C too. */
c906108c
SS
1595
1596char *
fba45db2 1597sunpro_static_transform_name (char *name)
c906108c
SS
1598{
1599 char *p;
1600 if (IS_STATIC_TRANSFORM_NAME (name))
1601 {
fc338970
MK
1602 /* For file-local statics there will be a period, a bunch of
1603 junk (the contents of which match a string given in the
c5aa993b
JM
1604 N_OPT), a period and the name. For function-local statics
1605 there will be a bunch of junk (which seems to change the
1606 second character from 'A' to 'B'), a period, the name of the
1607 function, and the name. So just skip everything before the
1608 last period. */
c906108c
SS
1609 p = strrchr (name, '.');
1610 if (p != NULL)
1611 name = p + 1;
1612 }
1613 return name;
1614}
1615#endif /* STATIC_TRANSFORM_NAME */
fc338970 1616\f
c906108c 1617
fc338970 1618/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1619
1620CORE_ADDR
1cce71eb 1621i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1622{
fc338970 1623 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1624 {
c5aa993b 1625 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1626 struct minimal_symbol *indsym =
fc338970 1627 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1628 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1629
c5aa993b 1630 if (symname)
c906108c 1631 {
c5aa993b
JM
1632 if (strncmp (symname, "__imp_", 6) == 0
1633 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1634 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1635 }
1636 }
fc338970 1637 return 0; /* Not a trampoline. */
c906108c 1638}
fc338970
MK
1639\f
1640
8201327c
MK
1641/* Return non-zero if PC and NAME show that we are in a signal
1642 trampoline. */
1643
1644static int
1645i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1646{
1647 return (name && strcmp ("_sigtramp", name) == 0);
1648}
1649\f
1650
fc338970
MK
1651/* We have two flavours of disassembly. The machinery on this page
1652 deals with switching between those. */
c906108c
SS
1653
1654static int
a89aa300 1655i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1656{
5e3397bb
MK
1657 gdb_assert (disassembly_flavor == att_flavor
1658 || disassembly_flavor == intel_flavor);
1659
1660 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1661 constified, cast to prevent a compiler warning. */
1662 info->disassembler_options = (char *) disassembly_flavor;
1663 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1664
1665 return print_insn_i386 (pc, info);
7a292a7a 1666}
fc338970 1667\f
3ce1502b 1668
8201327c
MK
1669/* There are a few i386 architecture variants that differ only
1670 slightly from the generic i386 target. For now, we don't give them
1671 their own source file, but include them here. As a consequence,
1672 they'll always be included. */
3ce1502b 1673
8201327c 1674/* System V Release 4 (SVR4). */
3ce1502b 1675
8201327c
MK
1676static int
1677i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1678{
acd5c798
MK
1679 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1680 currently unknown. */
8201327c
MK
1681 return (name && (strcmp ("_sigreturn", name) == 0
1682 || strcmp ("_sigacthandler", name) == 0
1683 || strcmp ("sigvechandler", name) == 0));
1684}
d2a7c97a 1685
acd5c798
MK
1686/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1687 routine, return the address of the associated sigcontext (ucontext)
1688 structure. */
3ce1502b 1689
3a1e71e3 1690static CORE_ADDR
acd5c798 1691i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1692{
acd5c798
MK
1693 char buf[4];
1694 CORE_ADDR sp;
3ce1502b 1695
acd5c798
MK
1696 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1697 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1698
acd5c798 1699 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1700}
1701\f
3ce1502b 1702
8201327c 1703/* DJGPP. */
d2a7c97a 1704
8201327c
MK
1705static int
1706i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1707{
1708 /* DJGPP doesn't have any special frames for signal handlers. */
1709 return 0;
1710}
1711\f
d2a7c97a 1712
8201327c 1713/* Generic ELF. */
d2a7c97a 1714
8201327c
MK
1715void
1716i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1717{
1718 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1719 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1720}
3ce1502b 1721
8201327c 1722/* System V Release 4 (SVR4). */
3ce1502b 1723
8201327c
MK
1724void
1725i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1726{
1727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1728
8201327c
MK
1729 /* System V Release 4 uses ELF. */
1730 i386_elf_init_abi (info, gdbarch);
3ce1502b 1731
dfe01d39
MK
1732 /* System V Release 4 has shared libraries. */
1733 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1734 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1735
8201327c 1736 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4 1737 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1738 tdep->sc_pc_offset = 36 + 14 * 4;
1739 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1740
8201327c 1741 tdep->jb_pc_offset = 20;
3ce1502b
MK
1742}
1743
8201327c 1744/* DJGPP. */
3ce1502b 1745
3a1e71e3 1746static void
8201327c 1747i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1748{
8201327c 1749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1750
8201327c 1751 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1752
8201327c 1753 tdep->jb_pc_offset = 36;
3ce1502b
MK
1754}
1755
8201327c 1756/* NetWare. */
3ce1502b 1757
3a1e71e3 1758static void
8201327c 1759i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1760{
8201327c 1761 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1762
8201327c 1763 tdep->jb_pc_offset = 24;
d2a7c97a 1764}
8201327c 1765\f
2acceee2 1766
38c968cf
AC
1767/* i386 register groups. In addition to the normal groups, add "mmx"
1768 and "sse". */
1769
1770static struct reggroup *i386_sse_reggroup;
1771static struct reggroup *i386_mmx_reggroup;
1772
1773static void
1774i386_init_reggroups (void)
1775{
1776 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1777 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1778}
1779
1780static void
1781i386_add_reggroups (struct gdbarch *gdbarch)
1782{
1783 reggroup_add (gdbarch, i386_sse_reggroup);
1784 reggroup_add (gdbarch, i386_mmx_reggroup);
1785 reggroup_add (gdbarch, general_reggroup);
1786 reggroup_add (gdbarch, float_reggroup);
1787 reggroup_add (gdbarch, all_reggroup);
1788 reggroup_add (gdbarch, save_reggroup);
1789 reggroup_add (gdbarch, restore_reggroup);
1790 reggroup_add (gdbarch, vector_reggroup);
1791 reggroup_add (gdbarch, system_reggroup);
1792}
1793
1794int
1795i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1796 struct reggroup *group)
1797{
5716833c
MK
1798 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1799 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
1800 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1801 || i386_fpc_regnum_p (regnum));
5716833c 1802 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 1803
38c968cf
AC
1804 if (group == i386_mmx_reggroup)
1805 return mmx_regnum_p;
1806 if (group == i386_sse_reggroup)
1807 return sse_regnum_p;
1808 if (group == vector_reggroup)
1809 return (mmx_regnum_p || sse_regnum_p);
1810 if (group == float_reggroup)
1811 return fp_regnum_p;
1812 if (group == general_reggroup)
1813 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1814
38c968cf
AC
1815 return default_register_reggroup_p (gdbarch, regnum, group);
1816}
38c968cf 1817\f
acd5c798 1818
f837910f
MK
1819/* Get the ARGIth function argument for the current function. */
1820
42c466d7 1821static CORE_ADDR
143985b7
AF
1822i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1823 struct type *type)
1824{
f837910f
MK
1825 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1826 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1827}
1828
1829\f
3a1e71e3 1830static struct gdbarch *
a62cc96e
AC
1831i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1832{
cd3c07fc 1833 struct gdbarch_tdep *tdep;
a62cc96e
AC
1834 struct gdbarch *gdbarch;
1835
4be87837
DJ
1836 /* If there is already a candidate, use it. */
1837 arches = gdbarch_list_lookup_by_info (arches, &info);
1838 if (arches != NULL)
1839 return arches->gdbarch;
a62cc96e
AC
1840
1841 /* Allocate space for the new architecture. */
1842 tdep = XMALLOC (struct gdbarch_tdep);
1843 gdbarch = gdbarch_alloc (&info, tdep);
1844
473f17b0
MK
1845 /* General-purpose registers. */
1846 tdep->gregset = NULL;
1847 tdep->gregset_reg_offset = NULL;
1848 tdep->gregset_num_regs = I386_NUM_GREGS;
1849 tdep->sizeof_gregset = 0;
1850
1851 /* Floating-point registers. */
1852 tdep->fpregset = NULL;
1853 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1854
5716833c
MK
1855 /* The default settings include the FPU registers, the MMX registers
1856 and the SSE registers. This can be overidden for a specific ABI
1857 by adjusting the members `st0_regnum', `mm0_regnum' and
1858 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1859 will show up in the output of "info all-registers". Ideally we
1860 should try to autodetect whether they are available, such that we
1861 can prevent "info all-registers" from displaying registers that
1862 aren't available.
1863
1864 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
1865 [the SSE registers] always (even when they don't exist) or never
1866 showing them to the user (even when they do exist), I prefer the
1867 former over the latter. */
1868
1869 tdep->st0_regnum = I386_ST0_REGNUM;
1870
1871 /* The MMX registers are implemented as pseudo-registers. Put off
1872 caclulating the register number for %mm0 until we know the number
1873 of raw registers. */
1874 tdep->mm0_regnum = 0;
1875
1876 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 1877 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 1878
8201327c
MK
1879 tdep->jb_pc_offset = -1;
1880 tdep->struct_return = pcc_struct_return;
8201327c
MK
1881 tdep->sigtramp_start = 0;
1882 tdep->sigtramp_end = 0;
21d0e8a4 1883 tdep->sigcontext_addr = NULL;
a3386186 1884 tdep->sc_reg_offset = NULL;
8201327c 1885 tdep->sc_pc_offset = -1;
21d0e8a4 1886 tdep->sc_sp_offset = -1;
8201327c 1887
896fb97d
MK
1888 /* The format used for `long double' on almost all i386 targets is
1889 the i387 extended floating-point format. In fact, of all targets
1890 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1891 on having a `long double' that's not `long' at all. */
1892 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1893
66da5fd8 1894 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1895 bits, a `long double' actually takes up 96, probably to enforce
1896 alignment. */
1897 set_gdbarch_long_double_bit (gdbarch, 96);
1898
49ed40de
KB
1899 /* The default ABI includes general-purpose registers,
1900 floating-point registers, and the SSE registers. */
1901 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
1902 set_gdbarch_register_name (gdbarch, i386_register_name);
1903 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1904
acd5c798
MK
1905 /* Register numbers of various important registers. */
1906 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1907 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1908 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1909 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e
MK
1910
1911 /* Use the "default" register numbering scheme for stabs and COFF. */
1912 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1913 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1914
1915 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1916 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1917 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1918
1919 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1920 be in use on any of the supported i386 targets. */
1921
61113f8b
MK
1922 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1923
8201327c 1924 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1925
a62cc96e 1926 /* Call dummy code. */
acd5c798 1927 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 1928
ff2e87ac
AC
1929 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1930 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1931 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 1932
00f8375e 1933 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
3d7f4f49 1934 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1935 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1936 i386_extract_struct_value_address);
8201327c
MK
1937 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1938
93924b6b
MK
1939 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1940
1941 /* Stack grows downward. */
1942 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1943
1944 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1945 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1946 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1947
42fdc8df 1948 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c
MK
1949 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1950
28fc6740 1951 /* Wire in the MMX registers. */
0f751ff2 1952 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
1953 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1954 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1955
5e3397bb
MK
1956 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1957
acd5c798 1958 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
1959
1960 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1961
38c968cf
AC
1962 /* Add the i386 register groups. */
1963 i386_add_reggroups (gdbarch);
1964 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1965
143985b7
AF
1966 /* Helper for function argument information. */
1967 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1968
6405b0a6 1969 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 1970 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 1971
acd5c798 1972 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 1973
3ce1502b 1974 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1975 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1976
336d1bba
AC
1977 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1978 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 1979
5716833c
MK
1980 /* Unless support for MMX has been disabled, make %mm0 the first
1981 pseudo-register. */
1982 if (tdep->mm0_regnum == 0)
1983 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
1984
a62cc96e
AC
1985 return gdbarch;
1986}
1987
8201327c
MK
1988static enum gdb_osabi
1989i386_coff_osabi_sniffer (bfd *abfd)
1990{
762c5349
MK
1991 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1992 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1993 return GDB_OSABI_GO32;
1994
1995 return GDB_OSABI_UNKNOWN;
1996}
1997
1998static enum gdb_osabi
1999i386_nlm_osabi_sniffer (bfd *abfd)
2000{
2001 return GDB_OSABI_NETWARE;
2002}
2003\f
2004
28e9e0f0
MK
2005/* Provide a prototype to silence -Wmissing-prototypes. */
2006void _initialize_i386_tdep (void);
2007
c906108c 2008void
fba45db2 2009_initialize_i386_tdep (void)
c906108c 2010{
a62cc96e
AC
2011 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2012
fc338970 2013 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2014 {
2015 struct cmd_list_element *new_cmd;
7a292a7a 2016
917317f4
JM
2017 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2018 valid_flavors,
1ed2a135 2019 &disassembly_flavor,
fc338970
MK
2020 "\
2021Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2022and the default value is \"att\".",
917317f4 2023 &setlist);
917317f4
JM
2024 add_show_from_set (new_cmd, &showlist);
2025 }
8201327c
MK
2026
2027 /* Add the variable that controls the convention for returning
2028 structs. */
2029 {
2030 struct cmd_list_element *new_cmd;
2031
2032 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2033 valid_conventions,
8201327c
MK
2034 &struct_convention, "\
2035Set the convention for returning small structs, valid values \
2036are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2037 &setlist);
2038 add_show_from_set (new_cmd, &showlist);
2039 }
2040
2041 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2042 i386_coff_osabi_sniffer);
2043 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2044 i386_nlm_osabi_sniffer);
2045
05816f70 2046 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2047 i386_svr4_init_abi);
05816f70 2048 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2049 i386_go32_init_abi);
05816f70 2050 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2051 i386_nw_init_abi);
38c968cf
AC
2052
2053 /* Initialize the i386 specific register groups. */
2054 i386_init_reggroups ();
c906108c 2055}
This page took 0.429879 seconds and 4 git commands to generate.