solib-darwin.c: handle PIE when attaching processes.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
0b302171 3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
acd5c798 48#include "gdb_string.h"
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968
HZ
54#include "record.h"
55#include <stdint.h>
56
90884b2b 57#include "features/i386/i386.c"
c131fcee 58#include "features/i386/i386-avx.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
c131fcee
L
88static const char *i386_ymm_names[] =
89{
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92};
93
94static const char *i386_ymmh_names[] =
95{
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98};
99
c4fc7f1b 100/* Register names for MMX pseudo-registers. */
28fc6740 101
90884b2b 102static const char *i386_mmx_names[] =
28fc6740
AC
103{
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106};
c40e1eab 107
1ba53b71
L
108/* Register names for byte pseudo-registers. */
109
110static const char *i386_byte_names[] =
111{
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114};
115
116/* Register names for word pseudo-registers. */
117
118static const char *i386_word_names[] =
119{
120 "ax", "cx", "dx", "bx",
9cad29ac 121 "", "bp", "si", "di"
1ba53b71
L
122};
123
124/* MMX register? */
c40e1eab 125
28fc6740 126static int
5716833c 127i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 128{
1ba53b71
L
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
131
132 if (mm0_regnum < 0)
133 return 0;
134
1ba53b71
L
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137}
138
139/* Byte register? */
140
141int
142i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143{
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148}
149
150/* Word register? */
151
152int
153i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159}
160
161/* Dword register? */
162
163int
164i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165{
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
174}
175
9191d390 176static int
c131fcee
L
177i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187}
188
189/* AVX register? */
190
191int
192i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202}
203
5716833c 204/* SSE register? */
23a34459 205
c131fcee
L
206int
207i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 208{
5716833c 209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 211
c131fcee 212 if (num_xmm_regs == 0)
5716833c
MK
213 return 0;
214
c131fcee
L
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
217}
218
5716833c
MK
219static int
220i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 221{
5716833c
MK
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
20a6ec49 224 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
225 return 0;
226
20a6ec49 227 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
228}
229
5716833c 230/* FP register? */
23a34459
AC
231
232int
20a6ec49 233i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 234{
20a6ec49
MD
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
238 return 0;
239
20a6ec49
MD
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
242}
243
244int
20a6ec49 245i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 246{
20a6ec49
MD
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
250 return 0;
251
20a6ec49
MD
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
254}
255
c131fcee
L
256/* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259static const char *
260i386_register_name (struct gdbarch *gdbarch, int regnum)
261{
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267}
268
30b0e2d8 269/* Return the name of register REGNUM. */
fc633446 270
1ba53b71 271const char *
90884b2b 272i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 273{
1ba53b71
L
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
285}
286
c4fc7f1b 287/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
288 number used by GDB. */
289
8201327c 290static int
d3f73121 291i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 292{
20a6ec49
MD
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
c4fc7f1b
MK
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
85540d8c
MK
298 if (reg >= 0 && reg <= 7)
299 {
9872ad24
JB
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
85540d8c
MK
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
20a6ec49 311 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
c131fcee
L
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
20a6ec49 327 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
328 }
329
330 /* This will hopefully provoke a warning. */
d3f73121 331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
332}
333
c4fc7f1b
MK
334/* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
85540d8c 336
8201327c 337static int
d3f73121 338i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 339{
20a6ec49
MD
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
c4fc7f1b
MK
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
acd5c798 349 /* General-purpose registers. */
85540d8c
MK
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
20a6ec49 355 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 356 }
c6f4c129 357 else if (reg >= 21 && reg <= 36)
85540d8c 358 {
c4fc7f1b 359 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 360 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
361 }
362
c6f4c129
JB
363 switch (reg)
364 {
20a6ec49
MD
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
85540d8c 376 /* This will hopefully provoke a warning. */
d3f73121 377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 378}
5716833c 379
fc338970 380\f
917317f4 381
fc338970
MK
382/* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
53904c9e
AC
384static const char att_flavor[] = "att";
385static const char intel_flavor[] = "intel";
40478521 386static const char *const valid_flavors[] =
c5aa993b 387{
c906108c
SS
388 att_flavor,
389 intel_flavor,
390 NULL
391};
53904c9e 392static const char *disassembly_flavor = att_flavor;
acd5c798 393\f
c906108c 394
acd5c798
MK
395/* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
c906108c 400
acd5c798
MK
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
c906108c 403
acd5c798 404 This function is 64-bit safe. */
63c0089f
MK
405
406static const gdb_byte *
67d57894 407i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 408{
63c0089f
MK
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
acd5c798
MK
411 *len = sizeof (break_insn);
412 return break_insn;
c906108c 413}
237fc4c9
PA
414\f
415/* Displaced instruction handling. */
416
1903f0e6
DE
417/* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423static gdb_byte *
424i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425{
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451}
237fc4c9
PA
452
453static int
1903f0e6 454i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 455{
1777feb0 456 /* jmp far (absolute address in operand). */
237fc4c9
PA
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
1777feb0 462 /* jump near, absolute indirect (/4). */
237fc4c9
PA
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
1777feb0 466 /* jump far, absolute indirect (/5). */
237fc4c9
PA
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472}
473
474static int
1903f0e6 475i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 476{
1777feb0 477 /* call far, absolute. */
237fc4c9
PA
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
1777feb0 483 /* Call near, absolute indirect (/2). */
237fc4c9
PA
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
1777feb0 487 /* Call far, absolute indirect (/3). */
237fc4c9
PA
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493}
494
495static int
1903f0e6 496i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
497{
498 switch (insn[0])
499 {
1777feb0 500 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 501 case 0xc3: /* ret near */
1777feb0 502 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510}
511
512static int
1903f0e6 513i386_call_p (const gdb_byte *insn)
237fc4c9
PA
514{
515 if (i386_absolute_call_p (insn))
516 return 1;
517
1777feb0 518 /* call near, relative. */
237fc4c9
PA
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523}
524
237fc4c9
PA
525/* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
1903f0e6 527
237fc4c9 528static int
b55078be 529i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 530{
9a7f938f
JK
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543}
544
b55078be
DE
545/* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548struct displaced_step_closure *
549i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552{
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580}
581
237fc4c9
PA
582/* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
1903f0e6 584
237fc4c9
PA
585void
586i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590{
e17a4113
UW
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
237fc4c9
PA
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
237fc4c9
PA
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
5af949e3 607 "displaced: fixup (%s, %s), "
237fc4c9 608 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
237fc4c9
PA
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
1903f0e6
DE
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
237fc4c9
PA
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
b55078be 640 int insn_len;
237fc4c9
PA
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
1903f0e6
DE
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
237fc4c9
PA
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
5af949e3
UW
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
237fc4c9
PA
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
237fc4c9
PA
714 }
715}
dde08ee1
PA
716
717static void
718append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719{
720 target_write_memory (*to, buf, len);
721 *to += len;
722}
723
724static void
725i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727{
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
1777feb0 752 push_buf[0] = 0x68; /* pushq $... */
144db827 753 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
f4a1794a 789 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
dde08ee1
PA
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801}
802
fc338970 803\f
acd5c798
MK
804#ifdef I386_REGNO_TO_SYMMETRY
805#error "The Sequent Symmetry is no longer supported."
806#endif
c906108c 807
acd5c798
MK
808/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
c906108c 811
acd5c798
MK
812/* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
a3386186 814#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
815
816struct i386_frame_cache
c906108c 817{
acd5c798
MK
818 /* Base address. */
819 CORE_ADDR base;
8fbca658 820 int base_p;
772562f8 821 LONGEST sp_offset;
acd5c798
MK
822 CORE_ADDR pc;
823
fd13a04a
AC
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 826 CORE_ADDR saved_sp;
e0c62198 827 int saved_sp_reg;
acd5c798
MK
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832};
833
834/* Allocate and initialize a frame cache. */
835
836static struct i386_frame_cache *
fd13a04a 837i386_alloc_frame_cache (void)
acd5c798
MK
838{
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
8fbca658 845 cache->base_p = 0;
acd5c798
MK
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
fd13a04a
AC
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
acd5c798 854 cache->saved_sp = 0;
e0c62198 855 cache->saved_sp_reg = -1;
acd5c798
MK
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862}
c906108c 863
acd5c798
MK
864/* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
c906108c 866
acd5c798 867static CORE_ADDR
e17a4113 868i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 869{
e17a4113 870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 871 gdb_byte op;
acd5c798
MK
872 long delta = 0;
873 int data16 = 0;
c906108c 874
3dcabaa8
MS
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
acd5c798 878 if (op == 0x66)
c906108c 879 {
c906108c 880 data16 = 1;
e17a4113 881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
882 }
883
acd5c798 884 switch (op)
c906108c
SS
885 {
886 case 0xe9:
fc338970 887 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
888 if (data16)
889 {
e17a4113 890 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 891
fc338970
MK
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
acd5c798 894 delta += 4;
c906108c
SS
895 }
896 else
897 {
e17a4113 898 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 899
acd5c798
MK
900 /* Include the size of the jmp instruction. */
901 delta += 5;
c906108c
SS
902 }
903 break;
904 case 0xeb:
fc338970 905 /* Relative jump, disp8 (ignore data16). */
e17a4113 906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 907
acd5c798 908 delta += data16 + 2;
c906108c
SS
909 break;
910 }
c906108c 911
acd5c798
MK
912 return pc + delta;
913}
fc338970 914
acd5c798
MK
915/* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
c906108c 920
acd5c798
MK
921static CORE_ADDR
922i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
c906108c 924{
acd5c798
MK
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
63c0089f
MK
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
c906108c 939
acd5c798
MK
940 if (current_pc <= pc)
941 return pc;
942
3dcabaa8
MS
943 if (target_read_memory (pc, &op, 1))
944 return pc;
c906108c 945
acd5c798
MK
946 if (op != 0x58) /* popl %eax */
947 return pc;
c906108c 948
3dcabaa8
MS
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
acd5c798
MK
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
c906108c 954
acd5c798 955 if (current_pc == pc)
c906108c 956 {
acd5c798
MK
957 cache->sp_offset += 4;
958 return current_pc;
c906108c
SS
959 }
960
acd5c798 961 if (current_pc == pc + 1)
c906108c 962 {
acd5c798
MK
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971}
972
973static CORE_ADDR
974i386_skip_probe (CORE_ADDR pc)
975{
976 /* A function may start with
fc338970 977
acd5c798
MK
978 pushl constant
979 call _probe
980 addl $4, %esp
fc338970 981
acd5c798
MK
982 followed by
983
984 pushl %ebp
fc338970 985
acd5c798 986 etc. */
63c0089f
MK
987 gdb_byte buf[8];
988 gdb_byte op;
fc338970 989
3dcabaa8
MS
990 if (target_read_memory (pc, &op, 1))
991 return pc;
acd5c798
MK
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
c906108c 996
acd5c798
MK
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
c906108c 999 if (op == 0x68)
acd5c798 1000 delta = 5;
c906108c 1001 else
acd5c798 1002 delta = 2;
c906108c 1003
acd5c798
MK
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1008 pc += delta + sizeof (buf);
c906108c
SS
1009 }
1010
acd5c798
MK
1011 return pc;
1012}
1013
92dd43fa
MK
1014/* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020static CORE_ADDR
1021i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023{
e0c62198
L
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
92dd43fa 1058 };
92dd43fa 1059
e0c62198
L
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1123 return pc;
1124
e0c62198
L
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
92dd43fa 1127
e0c62198 1128 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1129}
1130
37bdc87e 1131/* Maximum instruction length we need to handle. */
237fc4c9 1132#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1133
1134/* Instruction description. */
1135struct i386_insn
1136{
1137 size_t len;
237fc4c9
PA
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1140};
1141
a3fcb948 1142/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1143
a3fcb948
JG
1144static int
1145i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1146{
63c0089f 1147 gdb_byte op;
37bdc87e 1148
3dcabaa8 1149 if (target_read_memory (pc, &op, 1))
a3fcb948 1150 return 0;
37bdc87e 1151
a3fcb948 1152 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1153 {
a3fcb948
JG
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
37bdc87e 1157
a3fcb948
JG
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1160
a3fcb948
JG
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
613e8135 1163
a3fcb948
JG
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
37bdc87e 1168 }
a3fcb948
JG
1169 return insn_matched;
1170 }
1171 return 0;
1172}
1173
1174/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178static struct i386_insn *
1179i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180{
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
37bdc87e
MK
1187 }
1188
1189 return NULL;
1190}
1191
a3fcb948
JG
1192/* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195static int
1196i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197{
1198 CORE_ADDR current_pc;
1199 int ix, i;
a3fcb948
JG
1200 struct i386_insn *insn;
1201
1202 insn = i386_match_insn (pc, insn_patterns);
1203 if (insn == NULL)
1204 return 0;
1205
8bbdd3f4 1206 current_pc = pc;
a3fcb948
JG
1207 ix = insn - insn_patterns;
1208 for (i = ix - 1; i >= 0; i--)
1209 {
8bbdd3f4
MK
1210 current_pc -= insn_patterns[i].len;
1211
a3fcb948
JG
1212 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1213 return 0;
a3fcb948
JG
1214 }
1215
1216 current_pc = pc + insn->len;
1217 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1218 {
1219 if (!i386_match_pattern (current_pc, *insn))
1220 return 0;
1221
1222 current_pc += insn->len;
1223 }
1224
1225 return 1;
1226}
1227
37bdc87e
MK
1228/* Some special instructions that might be migrated by GCC into the
1229 part of the prologue that sets up the new stack frame. Because the
1230 stack frame hasn't been setup yet, no registers have been saved
1231 yet, and only the scratch registers %eax, %ecx and %edx can be
1232 touched. */
1233
1234struct i386_insn i386_frame_setup_skip_insns[] =
1235{
1777feb0 1236 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1237
1238 ??? Should we handle 16-bit operand-sizes here? */
1239
1240 /* `movb imm8, %al' and `movb imm8, %ah' */
1241 /* `movb imm8, %cl' and `movb imm8, %ch' */
1242 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1243 /* `movb imm8, %dl' and `movb imm8, %dh' */
1244 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1245 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1246 { 5, { 0xb8 }, { 0xfe } },
1247 /* `movl imm32, %edx' */
1248 { 5, { 0xba }, { 0xff } },
1249
1250 /* Check for `mov imm32, r32'. Note that there is an alternative
1251 encoding for `mov m32, %eax'.
1252
1253 ??? Should we handle SIB adressing here?
1254 ??? Should we handle 16-bit operand-sizes here? */
1255
1256 /* `movl m32, %eax' */
1257 { 5, { 0xa1 }, { 0xff } },
1258 /* `movl m32, %eax' and `mov; m32, %ecx' */
1259 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1260 /* `movl m32, %edx' */
1261 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1262
1263 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1264 Because of the symmetry, there are actually two ways to encode
1265 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1266 opcode bytes 0x31 and 0x33 for `xorl'. */
1267
1268 /* `subl %eax, %eax' */
1269 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1270 /* `subl %ecx, %ecx' */
1271 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1272 /* `subl %edx, %edx' */
1273 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1274 /* `xorl %eax, %eax' */
1275 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1276 /* `xorl %ecx, %ecx' */
1277 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1278 /* `xorl %edx, %edx' */
1279 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1280 { 0 }
1281};
1282
e11481da
PM
1283
1284/* Check whether PC points to a no-op instruction. */
1285static CORE_ADDR
1286i386_skip_noop (CORE_ADDR pc)
1287{
1288 gdb_byte op;
1289 int check = 1;
1290
3dcabaa8
MS
1291 if (target_read_memory (pc, &op, 1))
1292 return pc;
e11481da
PM
1293
1294 while (check)
1295 {
1296 check = 0;
1297 /* Ignore `nop' instruction. */
1298 if (op == 0x90)
1299 {
1300 pc += 1;
3dcabaa8
MS
1301 if (target_read_memory (pc, &op, 1))
1302 return pc;
e11481da
PM
1303 check = 1;
1304 }
1305 /* Ignore no-op instruction `mov %edi, %edi'.
1306 Microsoft system dlls often start with
1307 a `mov %edi,%edi' instruction.
1308 The 5 bytes before the function start are
1309 filled with `nop' instructions.
1310 This pattern can be used for hot-patching:
1311 The `mov %edi, %edi' instruction can be replaced by a
1312 near jump to the location of the 5 `nop' instructions
1313 which can be replaced by a 32-bit jump to anywhere
1314 in the 32-bit address space. */
1315
1316 else if (op == 0x8b)
1317 {
3dcabaa8
MS
1318 if (target_read_memory (pc + 1, &op, 1))
1319 return pc;
1320
e11481da
PM
1321 if (op == 0xff)
1322 {
1323 pc += 2;
3dcabaa8
MS
1324 if (target_read_memory (pc, &op, 1))
1325 return pc;
1326
e11481da
PM
1327 check = 1;
1328 }
1329 }
1330 }
1331 return pc;
1332}
1333
acd5c798
MK
1334/* Check whether PC points at a code that sets up a new stack frame.
1335 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1336 instruction after the sequence that sets up the frame or LIMIT,
1337 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1338
1339static CORE_ADDR
e17a4113
UW
1340i386_analyze_frame_setup (struct gdbarch *gdbarch,
1341 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1342 struct i386_frame_cache *cache)
1343{
e17a4113 1344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1345 struct i386_insn *insn;
63c0089f 1346 gdb_byte op;
26604a34 1347 int skip = 0;
acd5c798 1348
37bdc87e
MK
1349 if (limit <= pc)
1350 return limit;
acd5c798 1351
3dcabaa8
MS
1352 if (target_read_memory (pc, &op, 1))
1353 return pc;
acd5c798 1354
c906108c 1355 if (op == 0x55) /* pushl %ebp */
c5aa993b 1356 {
acd5c798
MK
1357 /* Take into account that we've executed the `pushl %ebp' that
1358 starts this instruction sequence. */
fd13a04a 1359 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1360 cache->sp_offset += 4;
37bdc87e 1361 pc++;
acd5c798
MK
1362
1363 /* If that's all, return now. */
37bdc87e
MK
1364 if (limit <= pc)
1365 return limit;
26604a34 1366
b4632131 1367 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1368 GCC into the prologue and skip them. At this point in the
1369 prologue, code should only touch the scratch registers %eax,
1370 %ecx and %edx, so while the number of posibilities is sheer,
1371 it is limited.
5daa5b4e 1372
26604a34
MK
1373 Make sure we only skip these instructions if we later see the
1374 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1375 while (pc + skip < limit)
26604a34 1376 {
37bdc87e
MK
1377 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1378 if (insn == NULL)
1379 break;
b4632131 1380
37bdc87e 1381 skip += insn->len;
26604a34
MK
1382 }
1383
37bdc87e
MK
1384 /* If that's all, return now. */
1385 if (limit <= pc + skip)
1386 return limit;
1387
3dcabaa8
MS
1388 if (target_read_memory (pc + skip, &op, 1))
1389 return pc + skip;
37bdc87e 1390
30f8135b
YQ
1391 /* The i386 prologue looks like
1392
1393 push %ebp
1394 mov %esp,%ebp
1395 sub $0x10,%esp
1396
1397 and a different prologue can be generated for atom.
1398
1399 push %ebp
1400 lea (%esp),%ebp
1401 lea -0x10(%esp),%esp
1402
1403 We handle both of them here. */
1404
acd5c798 1405 switch (op)
c906108c 1406 {
30f8135b 1407 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1408 case 0x8b:
e17a4113
UW
1409 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1410 != 0xec)
37bdc87e 1411 return pc;
30f8135b 1412 pc += (skip + 2);
c906108c
SS
1413 break;
1414 case 0x89:
e17a4113
UW
1415 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1416 != 0xe5)
37bdc87e 1417 return pc;
30f8135b
YQ
1418 pc += (skip + 2);
1419 break;
1420 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1421 if (read_memory_unsigned_integer (pc + skip + 1, 2, byte_order)
1422 != 0x242c)
1423 return pc;
1424 pc += (skip + 3);
c906108c
SS
1425 break;
1426 default:
37bdc87e 1427 return pc;
c906108c 1428 }
acd5c798 1429
26604a34
MK
1430 /* OK, we actually have a frame. We just don't know how large
1431 it is yet. Set its size to zero. We'll adjust it if
1432 necessary. We also now commit to skipping the special
1433 instructions mentioned before. */
acd5c798
MK
1434 cache->locals = 0;
1435
1436 /* If that's all, return now. */
37bdc87e
MK
1437 if (limit <= pc)
1438 return limit;
acd5c798 1439
fc338970
MK
1440 /* Check for stack adjustment
1441
acd5c798 1442 subl $XXX, %esp
30f8135b
YQ
1443 or
1444 lea -XXX(%esp),%esp
fc338970 1445
fd35795f 1446 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1447 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1448 if (target_read_memory (pc, &op, 1))
1449 return pc;
c906108c
SS
1450 if (op == 0x83)
1451 {
fd35795f 1452 /* `subl' with 8-bit immediate. */
e17a4113 1453 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1454 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1455 return pc;
acd5c798 1456
37bdc87e
MK
1457 /* `subl' with signed 8-bit immediate (though it wouldn't
1458 make sense to be negative). */
e17a4113 1459 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1460 return pc + 3;
c906108c
SS
1461 }
1462 else if (op == 0x81)
1463 {
fd35795f 1464 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1465 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1466 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1467 return pc;
acd5c798 1468
fd35795f 1469 /* It is `subl' with a 32-bit immediate. */
e17a4113 1470 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1471 return pc + 6;
c906108c 1472 }
30f8135b
YQ
1473 else if (op == 0x8d)
1474 {
1475 /* The ModR/M byte is 0x64. */
1476 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1477 return pc;
1478 /* 'lea' with 8-bit displacement. */
1479 cache->locals = -1 * read_memory_integer (pc + 3, 1, byte_order);
1480 return pc + 4;
1481 }
c906108c
SS
1482 else
1483 {
30f8135b 1484 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1485 return pc;
c906108c
SS
1486 }
1487 }
37bdc87e 1488 else if (op == 0xc8) /* enter */
c906108c 1489 {
e17a4113 1490 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1491 return pc + 4;
c906108c 1492 }
21d0e8a4 1493
acd5c798 1494 return pc;
21d0e8a4
MK
1495}
1496
acd5c798
MK
1497/* Check whether PC points at code that saves registers on the stack.
1498 If so, it updates CACHE and returns the address of the first
1499 instruction after the register saves or CURRENT_PC, whichever is
1500 smaller. Otherwise, return PC. */
6bff26de
MK
1501
1502static CORE_ADDR
acd5c798
MK
1503i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1504 struct i386_frame_cache *cache)
6bff26de 1505{
99ab4326 1506 CORE_ADDR offset = 0;
63c0089f 1507 gdb_byte op;
99ab4326 1508 int i;
c0d1d883 1509
99ab4326
MK
1510 if (cache->locals > 0)
1511 offset -= cache->locals;
1512 for (i = 0; i < 8 && pc < current_pc; i++)
1513 {
3dcabaa8
MS
1514 if (target_read_memory (pc, &op, 1))
1515 return pc;
99ab4326
MK
1516 if (op < 0x50 || op > 0x57)
1517 break;
0d17c81d 1518
99ab4326
MK
1519 offset -= 4;
1520 cache->saved_regs[op - 0x50] = offset;
1521 cache->sp_offset += 4;
1522 pc++;
6bff26de
MK
1523 }
1524
acd5c798 1525 return pc;
22797942
AC
1526}
1527
acd5c798
MK
1528/* Do a full analysis of the prologue at PC and update CACHE
1529 accordingly. Bail out early if CURRENT_PC is reached. Return the
1530 address where the analysis stopped.
ed84f6c1 1531
fc338970
MK
1532 We handle these cases:
1533
1534 The startup sequence can be at the start of the function, or the
1535 function can start with a branch to startup code at the end.
1536
1537 %ebp can be set up with either the 'enter' instruction, or "pushl
1538 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1539 once used in the System V compiler).
1540
1541 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1542 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1543 16-bit unsigned argument for space to allocate, and the 'addl'
1544 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1545
1546 Next, the registers used by this function are pushed. With the
1547 System V compiler they will always be in the order: %edi, %esi,
1548 %ebx (and sometimes a harmless bug causes it to also save but not
1549 restore %eax); however, the code below is willing to see the pushes
1550 in any order, and will handle up to 8 of them.
1551
1552 If the setup sequence is at the end of the function, then the next
1553 instruction will be a branch back to the start. */
c906108c 1554
acd5c798 1555static CORE_ADDR
e17a4113
UW
1556i386_analyze_prologue (struct gdbarch *gdbarch,
1557 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1558 struct i386_frame_cache *cache)
c906108c 1559{
e11481da 1560 pc = i386_skip_noop (pc);
e17a4113 1561 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1562 pc = i386_analyze_struct_return (pc, current_pc, cache);
1563 pc = i386_skip_probe (pc);
92dd43fa 1564 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1565 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1566 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1567}
1568
fc338970 1569/* Return PC of first real instruction. */
c906108c 1570
3a1e71e3 1571static CORE_ADDR
6093d2eb 1572i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1573{
e17a4113
UW
1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1575
63c0089f 1576 static gdb_byte pic_pat[6] =
acd5c798
MK
1577 {
1578 0xe8, 0, 0, 0, 0, /* call 0x0 */
1579 0x5b, /* popl %ebx */
c5aa993b 1580 };
acd5c798
MK
1581 struct i386_frame_cache cache;
1582 CORE_ADDR pc;
63c0089f 1583 gdb_byte op;
acd5c798 1584 int i;
56bf0743 1585 CORE_ADDR func_addr;
4e879fc2 1586
56bf0743
KB
1587 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1588 {
1589 CORE_ADDR post_prologue_pc
1590 = skip_prologue_using_sal (gdbarch, func_addr);
1591 struct symtab *s = find_pc_symtab (func_addr);
1592
1593 /* Clang always emits a line note before the prologue and another
1594 one after. We trust clang to emit usable line notes. */
1595 if (post_prologue_pc
1596 && (s != NULL
1597 && s->producer != NULL
1598 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1599 return max (start_pc, post_prologue_pc);
1600 }
1601
e0f33b1f 1602 cache.locals = -1;
e17a4113 1603 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1604 if (cache.locals < 0)
1605 return start_pc;
c5aa993b 1606
acd5c798 1607 /* Found valid frame setup. */
c906108c 1608
fc338970
MK
1609 /* The native cc on SVR4 in -K PIC mode inserts the following code
1610 to get the address of the global offset table (GOT) into register
acd5c798
MK
1611 %ebx:
1612
fc338970
MK
1613 call 0x0
1614 popl %ebx
1615 movl %ebx,x(%ebp) (optional)
1616 addl y,%ebx
1617
c906108c
SS
1618 This code is with the rest of the prologue (at the end of the
1619 function), so we have to skip it to get to the first real
1620 instruction at the start of the function. */
c5aa993b 1621
c906108c
SS
1622 for (i = 0; i < 6; i++)
1623 {
3dcabaa8
MS
1624 if (target_read_memory (pc + i, &op, 1))
1625 return pc;
1626
c5aa993b 1627 if (pic_pat[i] != op)
c906108c
SS
1628 break;
1629 }
1630 if (i == 6)
1631 {
acd5c798
MK
1632 int delta = 6;
1633
3dcabaa8
MS
1634 if (target_read_memory (pc + delta, &op, 1))
1635 return pc;
c906108c 1636
c5aa993b 1637 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1638 {
e17a4113 1639 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1640
fc338970 1641 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1642 delta += 3;
fc338970 1643 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1644 delta += 6;
fc338970 1645 else /* Unexpected instruction. */
acd5c798
MK
1646 delta = 0;
1647
3dcabaa8
MS
1648 if (target_read_memory (pc + delta, &op, 1))
1649 return pc;
c906108c 1650 }
acd5c798 1651
c5aa993b 1652 /* addl y,%ebx */
acd5c798 1653 if (delta > 0 && op == 0x81
e17a4113
UW
1654 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1655 == 0xc3)
c906108c 1656 {
acd5c798 1657 pc += delta + 6;
c906108c
SS
1658 }
1659 }
c5aa993b 1660
e63bbc88
MK
1661 /* If the function starts with a branch (to startup code at the end)
1662 the last instruction should bring us back to the first
1663 instruction of the real code. */
e17a4113
UW
1664 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1665 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1666
1667 return pc;
c906108c
SS
1668}
1669
4309257c
PM
1670/* Check that the code pointed to by PC corresponds to a call to
1671 __main, skip it if so. Return PC otherwise. */
1672
1673CORE_ADDR
1674i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1675{
e17a4113 1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1677 gdb_byte op;
1678
3dcabaa8
MS
1679 if (target_read_memory (pc, &op, 1))
1680 return pc;
4309257c
PM
1681 if (op == 0xe8)
1682 {
1683 gdb_byte buf[4];
1684
1685 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1686 {
1687 /* Make sure address is computed correctly as a 32bit
1688 integer even if CORE_ADDR is 64 bit wide. */
1689 struct minimal_symbol *s;
e17a4113 1690 CORE_ADDR call_dest;
4309257c 1691
e17a4113 1692 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1693 call_dest = call_dest & 0xffffffffU;
1694 s = lookup_minimal_symbol_by_pc (call_dest);
1695 if (s != NULL
1696 && SYMBOL_LINKAGE_NAME (s) != NULL
1697 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1698 pc += 5;
1699 }
1700 }
1701
1702 return pc;
1703}
1704
acd5c798 1705/* This function is 64-bit safe. */
93924b6b 1706
acd5c798
MK
1707static CORE_ADDR
1708i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1709{
63c0089f 1710 gdb_byte buf[8];
acd5c798 1711
875f8d0e 1712 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1713 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1714}
acd5c798 1715\f
93924b6b 1716
acd5c798 1717/* Normal frames. */
c5aa993b 1718
8fbca658
PA
1719static void
1720i386_frame_cache_1 (struct frame_info *this_frame,
1721 struct i386_frame_cache *cache)
a7769679 1722{
e17a4113
UW
1723 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1725 gdb_byte buf[4];
acd5c798
MK
1726 int i;
1727
8fbca658 1728 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1729
1730 /* In principle, for normal frames, %ebp holds the frame pointer,
1731 which holds the base address for the current stack frame.
1732 However, for functions that don't need it, the frame pointer is
1733 optional. For these "frameless" functions the frame pointer is
1734 actually the frame pointer of the calling frame. Signal
1735 trampolines are just a special case of a "frameless" function.
1736 They (usually) share their frame pointer with the frame that was
1737 in progress when the signal occurred. */
1738
10458914 1739 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1740 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1741 if (cache->base == 0)
620fa63a
PA
1742 {
1743 cache->base_p = 1;
1744 return;
1745 }
acd5c798
MK
1746
1747 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1748 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1749
acd5c798 1750 if (cache->pc != 0)
e17a4113
UW
1751 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1752 cache);
acd5c798
MK
1753
1754 if (cache->locals < 0)
1755 {
1756 /* We didn't find a valid frame, which means that CACHE->base
1757 currently holds the frame pointer for our calling frame. If
1758 we're at the start of a function, or somewhere half-way its
1759 prologue, the function's frame probably hasn't been fully
1760 setup yet. Try to reconstruct the base address for the stack
1761 frame by looking at the stack pointer. For truly "frameless"
1762 functions this might work too. */
1763
e0c62198 1764 if (cache->saved_sp_reg != -1)
92dd43fa 1765 {
8fbca658
PA
1766 /* Saved stack pointer has been saved. */
1767 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1768 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1769
92dd43fa
MK
1770 /* We're halfway aligning the stack. */
1771 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1772 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1773
1774 /* This will be added back below. */
1775 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1776 }
7618e12b
DJ
1777 else if (cache->pc != 0
1778 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1779 {
7618e12b
DJ
1780 /* We're in a known function, but did not find a frame
1781 setup. Assume that the function does not use %ebp.
1782 Alternatively, we may have jumped to an invalid
1783 address; in that case there is definitely no new
1784 frame in %ebp. */
10458914 1785 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1786 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1787 + cache->sp_offset;
92dd43fa 1788 }
7618e12b
DJ
1789 else
1790 /* We're in an unknown function. We could not find the start
1791 of the function to analyze the prologue; our best option is
1792 to assume a typical frame layout with the caller's %ebp
1793 saved. */
1794 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1795 }
1796
8fbca658
PA
1797 if (cache->saved_sp_reg != -1)
1798 {
1799 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1800 register may be unavailable). */
1801 if (cache->saved_sp == 0
ca9d61b9
JB
1802 && deprecated_frame_register_read (this_frame,
1803 cache->saved_sp_reg, buf))
8fbca658
PA
1804 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1805 }
acd5c798
MK
1806 /* Now that we have the base address for the stack frame we can
1807 calculate the value of %esp in the calling frame. */
8fbca658 1808 else if (cache->saved_sp == 0)
92dd43fa 1809 cache->saved_sp = cache->base + 8;
a7769679 1810
acd5c798
MK
1811 /* Adjust all the saved registers such that they contain addresses
1812 instead of offsets. */
1813 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1814 if (cache->saved_regs[i] != -1)
1815 cache->saved_regs[i] += cache->base;
acd5c798 1816
8fbca658
PA
1817 cache->base_p = 1;
1818}
1819
1820static struct i386_frame_cache *
1821i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1822{
1823 volatile struct gdb_exception ex;
1824 struct i386_frame_cache *cache;
1825
1826 if (*this_cache)
1827 return *this_cache;
1828
1829 cache = i386_alloc_frame_cache ();
1830 *this_cache = cache;
1831
1832 TRY_CATCH (ex, RETURN_MASK_ERROR)
1833 {
1834 i386_frame_cache_1 (this_frame, cache);
1835 }
1836 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1837 throw_exception (ex);
1838
acd5c798 1839 return cache;
a7769679
MK
1840}
1841
3a1e71e3 1842static void
10458914 1843i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1844 struct frame_id *this_id)
c906108c 1845{
10458914 1846 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1847
1848 /* This marks the outermost frame. */
1849 if (cache->base == 0)
1850 return;
1851
3e210248 1852 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1853 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1854}
1855
8fbca658
PA
1856static enum unwind_stop_reason
1857i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1858 void **this_cache)
1859{
1860 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1861
1862 if (!cache->base_p)
1863 return UNWIND_UNAVAILABLE;
1864
1865 /* This marks the outermost frame. */
1866 if (cache->base == 0)
1867 return UNWIND_OUTERMOST;
1868
1869 return UNWIND_NO_REASON;
1870}
1871
10458914
DJ
1872static struct value *
1873i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1874 int regnum)
acd5c798 1875{
10458914 1876 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1877
1878 gdb_assert (regnum >= 0);
1879
1880 /* The System V ABI says that:
1881
1882 "The flags register contains the system flags, such as the
1883 direction flag and the carry flag. The direction flag must be
1884 set to the forward (that is, zero) direction before entry and
1885 upon exit from a function. Other user flags have no specified
1886 role in the standard calling sequence and are not preserved."
1887
1888 To guarantee the "upon exit" part of that statement we fake a
1889 saved flags register that has its direction flag cleared.
1890
1891 Note that GCC doesn't seem to rely on the fact that the direction
1892 flag is cleared after a function return; it always explicitly
1893 clears the flag before operations where it matters.
1894
1895 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1896 right thing to do. The way we fake the flags register here makes
1897 it impossible to change it. */
1898
1899 if (regnum == I386_EFLAGS_REGNUM)
1900 {
10458914 1901 ULONGEST val;
c5aa993b 1902
10458914
DJ
1903 val = get_frame_register_unsigned (this_frame, regnum);
1904 val &= ~(1 << 10);
1905 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1906 }
1211c4e4 1907
acd5c798 1908 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1909 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1910
fcf250e2
UW
1911 if (regnum == I386_ESP_REGNUM
1912 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1913 {
1914 /* If the SP has been saved, but we don't know where, then this
1915 means that SAVED_SP_REG register was found unavailable back
1916 when we built the cache. */
fcf250e2 1917 if (cache->saved_sp == 0)
8fbca658
PA
1918 return frame_unwind_got_register (this_frame, regnum,
1919 cache->saved_sp_reg);
1920 else
1921 return frame_unwind_got_constant (this_frame, regnum,
1922 cache->saved_sp);
1923 }
acd5c798 1924
fd13a04a 1925 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1926 return frame_unwind_got_memory (this_frame, regnum,
1927 cache->saved_regs[regnum]);
fd13a04a 1928
10458914 1929 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1930}
1931
1932static const struct frame_unwind i386_frame_unwind =
1933{
1934 NORMAL_FRAME,
8fbca658 1935 i386_frame_unwind_stop_reason,
acd5c798 1936 i386_frame_this_id,
10458914
DJ
1937 i386_frame_prev_register,
1938 NULL,
1939 default_frame_sniffer
acd5c798 1940};
06da04c6
MS
1941
1942/* Normal frames, but in a function epilogue. */
1943
1944/* The epilogue is defined here as the 'ret' instruction, which will
1945 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1946 the function's stack frame. */
1947
1948static int
1949i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1950{
1951 gdb_byte insn;
e0d00bc7
JK
1952 struct symtab *symtab;
1953
1954 symtab = find_pc_symtab (pc);
1955 if (symtab && symtab->epilogue_unwind_valid)
1956 return 0;
06da04c6
MS
1957
1958 if (target_read_memory (pc, &insn, 1))
1959 return 0; /* Can't read memory at pc. */
1960
1961 if (insn != 0xc3) /* 'ret' instruction. */
1962 return 0;
1963
1964 return 1;
1965}
1966
1967static int
1968i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1969 struct frame_info *this_frame,
1970 void **this_prologue_cache)
1971{
1972 if (frame_relative_level (this_frame) == 0)
1973 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1974 get_frame_pc (this_frame));
1975 else
1976 return 0;
1977}
1978
1979static struct i386_frame_cache *
1980i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1981{
8fbca658 1982 volatile struct gdb_exception ex;
06da04c6 1983 struct i386_frame_cache *cache;
0d6c2135 1984 CORE_ADDR sp;
06da04c6
MS
1985
1986 if (*this_cache)
1987 return *this_cache;
1988
1989 cache = i386_alloc_frame_cache ();
1990 *this_cache = cache;
1991
8fbca658
PA
1992 TRY_CATCH (ex, RETURN_MASK_ERROR)
1993 {
0d6c2135 1994 cache->pc = get_frame_func (this_frame);
06da04c6 1995
0d6c2135
MK
1996 /* At this point the stack looks as if we just entered the
1997 function, with the return address at the top of the
1998 stack. */
1999 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2000 cache->base = sp + cache->sp_offset;
8fbca658 2001 cache->saved_sp = cache->base + 8;
8fbca658 2002 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2003
8fbca658
PA
2004 cache->base_p = 1;
2005 }
2006 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2007 throw_exception (ex);
06da04c6
MS
2008
2009 return cache;
2010}
2011
8fbca658
PA
2012static enum unwind_stop_reason
2013i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2014 void **this_cache)
2015{
0d6c2135
MK
2016 struct i386_frame_cache *cache =
2017 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2018
2019 if (!cache->base_p)
2020 return UNWIND_UNAVAILABLE;
2021
2022 return UNWIND_NO_REASON;
2023}
2024
06da04c6
MS
2025static void
2026i386_epilogue_frame_this_id (struct frame_info *this_frame,
2027 void **this_cache,
2028 struct frame_id *this_id)
2029{
0d6c2135
MK
2030 struct i386_frame_cache *cache =
2031 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2032
8fbca658
PA
2033 if (!cache->base_p)
2034 return;
2035
06da04c6
MS
2036 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2037}
2038
0d6c2135
MK
2039static struct value *
2040i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2041 void **this_cache, int regnum)
2042{
2043 /* Make sure we've initialized the cache. */
2044 i386_epilogue_frame_cache (this_frame, this_cache);
2045
2046 return i386_frame_prev_register (this_frame, this_cache, regnum);
2047}
2048
06da04c6
MS
2049static const struct frame_unwind i386_epilogue_frame_unwind =
2050{
2051 NORMAL_FRAME,
8fbca658 2052 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2053 i386_epilogue_frame_this_id,
0d6c2135 2054 i386_epilogue_frame_prev_register,
06da04c6
MS
2055 NULL,
2056 i386_epilogue_frame_sniffer
2057};
acd5c798
MK
2058\f
2059
a3fcb948
JG
2060/* Stack-based trampolines. */
2061
2062/* These trampolines are used on cross x86 targets, when taking the
2063 address of a nested function. When executing these trampolines,
2064 no stack frame is set up, so we are in a similar situation as in
2065 epilogues and i386_epilogue_frame_this_id can be re-used. */
2066
2067/* Static chain passed in register. */
2068
2069struct i386_insn i386_tramp_chain_in_reg_insns[] =
2070{
2071 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2072 { 5, { 0xb8 }, { 0xfe } },
2073
2074 /* `jmp imm32' */
2075 { 5, { 0xe9 }, { 0xff } },
2076
2077 {0}
2078};
2079
2080/* Static chain passed on stack (when regparm=3). */
2081
2082struct i386_insn i386_tramp_chain_on_stack_insns[] =
2083{
2084 /* `push imm32' */
2085 { 5, { 0x68 }, { 0xff } },
2086
2087 /* `jmp imm32' */
2088 { 5, { 0xe9 }, { 0xff } },
2089
2090 {0}
2091};
2092
2093/* Return whether PC points inside a stack trampoline. */
2094
2095static int
2096i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2097{
2098 gdb_byte insn;
2c02bd72 2099 const char *name;
a3fcb948
JG
2100
2101 /* A stack trampoline is detected if no name is associated
2102 to the current pc and if it points inside a trampoline
2103 sequence. */
2104
2105 find_pc_partial_function (pc, &name, NULL, NULL);
2106 if (name)
2107 return 0;
2108
2109 if (target_read_memory (pc, &insn, 1))
2110 return 0;
2111
2112 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2113 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2114 return 0;
2115
2116 return 1;
2117}
2118
2119static int
2120i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2121 struct frame_info *this_frame,
2122 void **this_cache)
a3fcb948
JG
2123{
2124 if (frame_relative_level (this_frame) == 0)
2125 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2126 get_frame_pc (this_frame));
2127 else
2128 return 0;
2129}
2130
2131static const struct frame_unwind i386_stack_tramp_frame_unwind =
2132{
2133 NORMAL_FRAME,
2134 i386_epilogue_frame_unwind_stop_reason,
2135 i386_epilogue_frame_this_id,
0d6c2135 2136 i386_epilogue_frame_prev_register,
a3fcb948
JG
2137 NULL,
2138 i386_stack_tramp_frame_sniffer
2139};
2140\f
6710bf39
SS
2141/* Generate a bytecode expression to get the value of the saved PC. */
2142
2143static void
2144i386_gen_return_address (struct gdbarch *gdbarch,
2145 struct agent_expr *ax, struct axs_value *value,
2146 CORE_ADDR scope)
2147{
2148 /* The following sequence assumes the traditional use of the base
2149 register. */
2150 ax_reg (ax, I386_EBP_REGNUM);
2151 ax_const_l (ax, 4);
2152 ax_simple (ax, aop_add);
2153 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2154 value->kind = axs_lvalue_memory;
2155}
2156\f
a3fcb948 2157
acd5c798
MK
2158/* Signal trampolines. */
2159
2160static struct i386_frame_cache *
10458914 2161i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2162{
e17a4113
UW
2163 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2166 volatile struct gdb_exception ex;
acd5c798 2167 struct i386_frame_cache *cache;
acd5c798 2168 CORE_ADDR addr;
63c0089f 2169 gdb_byte buf[4];
acd5c798
MK
2170
2171 if (*this_cache)
2172 return *this_cache;
2173
fd13a04a 2174 cache = i386_alloc_frame_cache ();
acd5c798 2175
8fbca658 2176 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2177 {
8fbca658
PA
2178 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2179 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2180
8fbca658
PA
2181 addr = tdep->sigcontext_addr (this_frame);
2182 if (tdep->sc_reg_offset)
2183 {
2184 int i;
a3386186 2185
8fbca658
PA
2186 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2187
2188 for (i = 0; i < tdep->sc_num_regs; i++)
2189 if (tdep->sc_reg_offset[i] != -1)
2190 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2191 }
2192 else
2193 {
2194 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2195 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2196 }
2197
2198 cache->base_p = 1;
a3386186 2199 }
8fbca658
PA
2200 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2201 throw_exception (ex);
acd5c798
MK
2202
2203 *this_cache = cache;
2204 return cache;
2205}
2206
8fbca658
PA
2207static enum unwind_stop_reason
2208i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2209 void **this_cache)
2210{
2211 struct i386_frame_cache *cache =
2212 i386_sigtramp_frame_cache (this_frame, this_cache);
2213
2214 if (!cache->base_p)
2215 return UNWIND_UNAVAILABLE;
2216
2217 return UNWIND_NO_REASON;
2218}
2219
acd5c798 2220static void
10458914 2221i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2222 struct frame_id *this_id)
2223{
2224 struct i386_frame_cache *cache =
10458914 2225 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2226
8fbca658
PA
2227 if (!cache->base_p)
2228 return;
2229
3e210248 2230 /* See the end of i386_push_dummy_call. */
10458914 2231 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2232}
2233
10458914
DJ
2234static struct value *
2235i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2236 void **this_cache, int regnum)
acd5c798
MK
2237{
2238 /* Make sure we've initialized the cache. */
10458914 2239 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2240
10458914 2241 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2242}
c0d1d883 2243
10458914
DJ
2244static int
2245i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2246 struct frame_info *this_frame,
2247 void **this_prologue_cache)
acd5c798 2248{
10458914 2249 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2250
911bc6ee
MK
2251 /* We shouldn't even bother if we don't have a sigcontext_addr
2252 handler. */
2253 if (tdep->sigcontext_addr == NULL)
10458914 2254 return 0;
1c3545ae 2255
911bc6ee
MK
2256 if (tdep->sigtramp_p != NULL)
2257 {
10458914
DJ
2258 if (tdep->sigtramp_p (this_frame))
2259 return 1;
911bc6ee
MK
2260 }
2261
2262 if (tdep->sigtramp_start != 0)
2263 {
10458914 2264 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2265
2266 gdb_assert (tdep->sigtramp_end != 0);
2267 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2268 return 1;
911bc6ee 2269 }
acd5c798 2270
10458914 2271 return 0;
acd5c798 2272}
10458914
DJ
2273
2274static const struct frame_unwind i386_sigtramp_frame_unwind =
2275{
2276 SIGTRAMP_FRAME,
8fbca658 2277 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2278 i386_sigtramp_frame_this_id,
2279 i386_sigtramp_frame_prev_register,
2280 NULL,
2281 i386_sigtramp_frame_sniffer
2282};
acd5c798
MK
2283\f
2284
2285static CORE_ADDR
10458914 2286i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2287{
10458914 2288 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2289
2290 return cache->base;
2291}
2292
2293static const struct frame_base i386_frame_base =
2294{
2295 &i386_frame_unwind,
2296 i386_frame_base_address,
2297 i386_frame_base_address,
2298 i386_frame_base_address
2299};
2300
acd5c798 2301static struct frame_id
10458914 2302i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2303{
acd5c798
MK
2304 CORE_ADDR fp;
2305
10458914 2306 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2307
3e210248 2308 /* See the end of i386_push_dummy_call. */
10458914 2309 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2310}
e04e5beb
JM
2311
2312/* _Decimal128 function return values need 16-byte alignment on the
2313 stack. */
2314
2315static CORE_ADDR
2316i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2317{
2318 return sp & -(CORE_ADDR)16;
2319}
fc338970 2320\f
c906108c 2321
fc338970
MK
2322/* Figure out where the longjmp will land. Slurp the args out of the
2323 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2324 structure from which we extract the address that we will land at.
28bcfd30 2325 This address is copied into PC. This routine returns non-zero on
436675d3 2326 success. */
c906108c 2327
8201327c 2328static int
60ade65d 2329i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2330{
436675d3 2331 gdb_byte buf[4];
c906108c 2332 CORE_ADDR sp, jb_addr;
20a6ec49 2333 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2335 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2336
8201327c
MK
2337 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2338 longjmp will land. */
2339 if (jb_pc_offset == -1)
c906108c
SS
2340 return 0;
2341
436675d3 2342 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2343 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2344 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2345 return 0;
2346
e17a4113 2347 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2348 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2349 return 0;
c906108c 2350
e17a4113 2351 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2352 return 1;
2353}
fc338970 2354\f
c906108c 2355
7ccc1c74
JM
2356/* Check whether TYPE must be 16-byte-aligned when passed as a
2357 function argument. 16-byte vectors, _Decimal128 and structures or
2358 unions containing such types must be 16-byte-aligned; other
2359 arguments are 4-byte-aligned. */
2360
2361static int
2362i386_16_byte_align_p (struct type *type)
2363{
2364 type = check_typedef (type);
2365 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2366 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2367 && TYPE_LENGTH (type) == 16)
2368 return 1;
2369 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2370 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2371 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2372 || TYPE_CODE (type) == TYPE_CODE_UNION)
2373 {
2374 int i;
2375 for (i = 0; i < TYPE_NFIELDS (type); i++)
2376 {
2377 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2378 return 1;
2379 }
2380 }
2381 return 0;
2382}
2383
a9b8d892
JK
2384/* Implementation for set_gdbarch_push_dummy_code. */
2385
2386static CORE_ADDR
2387i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2388 struct value **args, int nargs, struct type *value_type,
2389 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2390 struct regcache *regcache)
2391{
2392 /* Use 0xcc breakpoint - 1 byte. */
2393 *bp_addr = sp - 1;
2394 *real_pc = funaddr;
2395
2396 /* Keep the stack aligned. */
2397 return sp - 16;
2398}
2399
3a1e71e3 2400static CORE_ADDR
7d9b040b 2401i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2402 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2403 struct value **args, CORE_ADDR sp, int struct_return,
2404 CORE_ADDR struct_addr)
22f8ba57 2405{
e17a4113 2406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2407 gdb_byte buf[4];
acd5c798 2408 int i;
7ccc1c74
JM
2409 int write_pass;
2410 int args_space = 0;
acd5c798 2411
7ccc1c74
JM
2412 /* Determine the total space required for arguments and struct
2413 return address in a first pass (allowing for 16-byte-aligned
2414 arguments), then push arguments in a second pass. */
2415
2416 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2417 {
7ccc1c74 2418 int args_space_used = 0;
7ccc1c74
JM
2419
2420 if (struct_return)
2421 {
2422 if (write_pass)
2423 {
2424 /* Push value address. */
e17a4113 2425 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2426 write_memory (sp, buf, 4);
2427 args_space_used += 4;
2428 }
2429 else
2430 args_space += 4;
2431 }
2432
2433 for (i = 0; i < nargs; i++)
2434 {
2435 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2436
7ccc1c74
JM
2437 if (write_pass)
2438 {
2439 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2440 args_space_used = align_up (args_space_used, 16);
acd5c798 2441
7ccc1c74
JM
2442 write_memory (sp + args_space_used,
2443 value_contents_all (args[i]), len);
2444 /* The System V ABI says that:
acd5c798 2445
7ccc1c74
JM
2446 "An argument's size is increased, if necessary, to make it a
2447 multiple of [32-bit] words. This may require tail padding,
2448 depending on the size of the argument."
22f8ba57 2449
7ccc1c74
JM
2450 This makes sure the stack stays word-aligned. */
2451 args_space_used += align_up (len, 4);
2452 }
2453 else
2454 {
2455 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2456 args_space = align_up (args_space, 16);
7ccc1c74
JM
2457 args_space += align_up (len, 4);
2458 }
2459 }
2460
2461 if (!write_pass)
2462 {
7ccc1c74 2463 sp -= args_space;
284c5a60
MK
2464
2465 /* The original System V ABI only requires word alignment,
2466 but modern incarnations need 16-byte alignment in order
2467 to support SSE. Since wasting a few bytes here isn't
2468 harmful we unconditionally enforce 16-byte alignment. */
2469 sp &= ~0xf;
7ccc1c74 2470 }
22f8ba57
MK
2471 }
2472
acd5c798
MK
2473 /* Store return address. */
2474 sp -= 4;
e17a4113 2475 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2476 write_memory (sp, buf, 4);
2477
2478 /* Finally, update the stack pointer... */
e17a4113 2479 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2480 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2481
2482 /* ...and fake a frame pointer. */
2483 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2484
3e210248
AC
2485 /* MarkK wrote: This "+ 8" is all over the place:
2486 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2487 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2488 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2489 definition of the stack address of a frame. Otherwise frame id
2490 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2491 stack address *before* the function call as a frame's CFA. On
2492 the i386, when %ebp is used as a frame pointer, the offset
2493 between the contents %ebp and the CFA as defined by GCC. */
2494 return sp + 8;
22f8ba57
MK
2495}
2496
1a309862
MK
2497/* These registers are used for returning integers (and on some
2498 targets also for returning `struct' and `union' values when their
ef9dff19 2499 size and alignment match an integer type). */
acd5c798
MK
2500#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2501#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2502
c5e656c1
MK
2503/* Read, for architecture GDBARCH, a function return value of TYPE
2504 from REGCACHE, and copy that into VALBUF. */
1a309862 2505
3a1e71e3 2506static void
c5e656c1 2507i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2508 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2509{
c5e656c1 2510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2511 int len = TYPE_LENGTH (type);
63c0089f 2512 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2513
1e8d0a7b 2514 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2515 {
5716833c 2516 if (tdep->st0_regnum < 0)
1a309862 2517 {
8a3fe4f8 2518 warning (_("Cannot find floating-point return value."));
1a309862 2519 memset (valbuf, 0, len);
ef9dff19 2520 return;
1a309862
MK
2521 }
2522
c6ba6f0d
MK
2523 /* Floating-point return values can be found in %st(0). Convert
2524 its contents to the desired type. This is probably not
2525 exactly how it would happen on the target itself, but it is
2526 the best we can do. */
acd5c798 2527 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2528 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2529 }
2530 else
c5aa993b 2531 {
875f8d0e
UW
2532 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2533 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2534
2535 if (len <= low_size)
00f8375e 2536 {
0818c12a 2537 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2538 memcpy (valbuf, buf, len);
2539 }
d4f3574e
SS
2540 else if (len <= (low_size + high_size))
2541 {
0818c12a 2542 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2543 memcpy (valbuf, buf, low_size);
0818c12a 2544 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2545 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2546 }
2547 else
8e65ff28 2548 internal_error (__FILE__, __LINE__,
1777feb0
MS
2549 _("Cannot extract return value of %d bytes long."),
2550 len);
c906108c
SS
2551 }
2552}
2553
c5e656c1
MK
2554/* Write, for architecture GDBARCH, a function return value of TYPE
2555 from VALBUF into REGCACHE. */
ef9dff19 2556
3a1e71e3 2557static void
c5e656c1 2558i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2559 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2560{
c5e656c1 2561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2562 int len = TYPE_LENGTH (type);
2563
1e8d0a7b 2564 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2565 {
3d7f4f49 2566 ULONGEST fstat;
63c0089f 2567 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2568
5716833c 2569 if (tdep->st0_regnum < 0)
ef9dff19 2570 {
8a3fe4f8 2571 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2572 return;
2573 }
2574
635b0cc1
MK
2575 /* Returning floating-point values is a bit tricky. Apart from
2576 storing the return value in %st(0), we have to simulate the
2577 state of the FPU at function return point. */
2578
c6ba6f0d
MK
2579 /* Convert the value found in VALBUF to the extended
2580 floating-point format used by the FPU. This is probably
2581 not exactly how it would happen on the target itself, but
2582 it is the best we can do. */
27067745 2583 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2584 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2585
635b0cc1
MK
2586 /* Set the top of the floating-point register stack to 7. The
2587 actual value doesn't really matter, but 7 is what a normal
2588 function return would end up with if the program started out
2589 with a freshly initialized FPU. */
20a6ec49 2590 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2591 fstat |= (7 << 11);
20a6ec49 2592 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2593
635b0cc1
MK
2594 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2595 the floating-point register stack to 7, the appropriate value
2596 for the tag word is 0x3fff. */
20a6ec49 2597 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2598 }
2599 else
2600 {
875f8d0e
UW
2601 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2602 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2603
2604 if (len <= low_size)
3d7f4f49 2605 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2606 else if (len <= (low_size + high_size))
2607 {
3d7f4f49
MK
2608 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2609 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2610 len - low_size, valbuf + low_size);
ef9dff19
MK
2611 }
2612 else
8e65ff28 2613 internal_error (__FILE__, __LINE__,
e2e0b3e5 2614 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2615 }
2616}
fc338970 2617\f
ef9dff19 2618
8201327c
MK
2619/* This is the variable that is set with "set struct-convention", and
2620 its legitimate values. */
2621static const char default_struct_convention[] = "default";
2622static const char pcc_struct_convention[] = "pcc";
2623static const char reg_struct_convention[] = "reg";
40478521 2624static const char *const valid_conventions[] =
8201327c
MK
2625{
2626 default_struct_convention,
2627 pcc_struct_convention,
2628 reg_struct_convention,
2629 NULL
2630};
2631static const char *struct_convention = default_struct_convention;
2632
0e4377e1
JB
2633/* Return non-zero if TYPE, which is assumed to be a structure,
2634 a union type, or an array type, should be returned in registers
2635 for architecture GDBARCH. */
c5e656c1 2636
8201327c 2637static int
c5e656c1 2638i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2639{
c5e656c1
MK
2640 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2641 enum type_code code = TYPE_CODE (type);
2642 int len = TYPE_LENGTH (type);
8201327c 2643
0e4377e1
JB
2644 gdb_assert (code == TYPE_CODE_STRUCT
2645 || code == TYPE_CODE_UNION
2646 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2647
2648 if (struct_convention == pcc_struct_convention
2649 || (struct_convention == default_struct_convention
2650 && tdep->struct_return == pcc_struct_return))
2651 return 0;
2652
9edde48e
MK
2653 /* Structures consisting of a single `float', `double' or 'long
2654 double' member are returned in %st(0). */
2655 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2656 {
2657 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2658 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2659 return (len == 4 || len == 8 || len == 12);
2660 }
2661
c5e656c1
MK
2662 return (len == 1 || len == 2 || len == 4 || len == 8);
2663}
2664
2665/* Determine, for architecture GDBARCH, how a return value of TYPE
2666 should be returned. If it is supposed to be returned in registers,
2667 and READBUF is non-zero, read the appropriate value from REGCACHE,
2668 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2669 from WRITEBUF into REGCACHE. */
2670
2671static enum return_value_convention
6a3a010b 2672i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2673 struct type *type, struct regcache *regcache,
2674 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2675{
2676 enum type_code code = TYPE_CODE (type);
2677
5daa78cc
TJB
2678 if (((code == TYPE_CODE_STRUCT
2679 || code == TYPE_CODE_UNION
2680 || code == TYPE_CODE_ARRAY)
2681 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2682 /* Complex double and long double uses the struct return covention. */
2683 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2684 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2685 /* 128-bit decimal float uses the struct return convention. */
2686 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2687 {
2688 /* The System V ABI says that:
2689
2690 "A function that returns a structure or union also sets %eax
2691 to the value of the original address of the caller's area
2692 before it returns. Thus when the caller receives control
2693 again, the address of the returned object resides in register
2694 %eax and can be used to access the object."
2695
2696 So the ABI guarantees that we can always find the return
2697 value just after the function has returned. */
2698
0e4377e1
JB
2699 /* Note that the ABI doesn't mention functions returning arrays,
2700 which is something possible in certain languages such as Ada.
2701 In this case, the value is returned as if it was wrapped in
2702 a record, so the convention applied to records also applies
2703 to arrays. */
2704
31db7b6c
MK
2705 if (readbuf)
2706 {
2707 ULONGEST addr;
2708
2709 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2710 read_memory (addr, readbuf, TYPE_LENGTH (type));
2711 }
2712
2713 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2714 }
c5e656c1
MK
2715
2716 /* This special case is for structures consisting of a single
9edde48e
MK
2717 `float', `double' or 'long double' member. These structures are
2718 returned in %st(0). For these structures, we call ourselves
2719 recursively, changing TYPE into the type of the first member of
2720 the structure. Since that should work for all structures that
2721 have only one member, we don't bother to check the member's type
2722 here. */
c5e656c1
MK
2723 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2724 {
2725 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2726 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2727 readbuf, writebuf);
c5e656c1
MK
2728 }
2729
2730 if (readbuf)
2731 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2732 if (writebuf)
2733 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2734
c5e656c1 2735 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2736}
2737\f
2738
27067745
UW
2739struct type *
2740i387_ext_type (struct gdbarch *gdbarch)
2741{
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743
2744 if (!tdep->i387_ext_type)
90884b2b
L
2745 {
2746 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2747 gdb_assert (tdep->i387_ext_type != NULL);
2748 }
27067745
UW
2749
2750 return tdep->i387_ext_type;
2751}
2752
c131fcee
L
2753/* Construct vector type for pseudo YMM registers. We can't use
2754 tdesc_find_type since YMM isn't described in target description. */
2755
2756static struct type *
2757i386_ymm_type (struct gdbarch *gdbarch)
2758{
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760
2761 if (!tdep->i386_ymm_type)
2762 {
2763 const struct builtin_type *bt = builtin_type (gdbarch);
2764
2765 /* The type we're building is this: */
2766#if 0
2767 union __gdb_builtin_type_vec256i
2768 {
2769 int128_t uint128[2];
2770 int64_t v2_int64[4];
2771 int32_t v4_int32[8];
2772 int16_t v8_int16[16];
2773 int8_t v16_int8[32];
2774 double v2_double[4];
2775 float v4_float[8];
2776 };
2777#endif
2778
2779 struct type *t;
2780
2781 t = arch_composite_type (gdbarch,
2782 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2783 append_composite_type_field (t, "v8_float",
2784 init_vector_type (bt->builtin_float, 8));
2785 append_composite_type_field (t, "v4_double",
2786 init_vector_type (bt->builtin_double, 4));
2787 append_composite_type_field (t, "v32_int8",
2788 init_vector_type (bt->builtin_int8, 32));
2789 append_composite_type_field (t, "v16_int16",
2790 init_vector_type (bt->builtin_int16, 16));
2791 append_composite_type_field (t, "v8_int32",
2792 init_vector_type (bt->builtin_int32, 8));
2793 append_composite_type_field (t, "v4_int64",
2794 init_vector_type (bt->builtin_int64, 4));
2795 append_composite_type_field (t, "v2_int128",
2796 init_vector_type (bt->builtin_int128, 2));
2797
2798 TYPE_VECTOR (t) = 1;
0c5acf93 2799 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2800 tdep->i386_ymm_type = t;
2801 }
2802
2803 return tdep->i386_ymm_type;
2804}
2805
794ac428 2806/* Construct vector type for MMX registers. */
90884b2b 2807static struct type *
794ac428
UW
2808i386_mmx_type (struct gdbarch *gdbarch)
2809{
2810 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2811
2812 if (!tdep->i386_mmx_type)
2813 {
df4df182
UW
2814 const struct builtin_type *bt = builtin_type (gdbarch);
2815
794ac428
UW
2816 /* The type we're building is this: */
2817#if 0
2818 union __gdb_builtin_type_vec64i
2819 {
2820 int64_t uint64;
2821 int32_t v2_int32[2];
2822 int16_t v4_int16[4];
2823 int8_t v8_int8[8];
2824 };
2825#endif
2826
2827 struct type *t;
2828
e9bb382b
UW
2829 t = arch_composite_type (gdbarch,
2830 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2831
2832 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2833 append_composite_type_field (t, "v2_int32",
df4df182 2834 init_vector_type (bt->builtin_int32, 2));
794ac428 2835 append_composite_type_field (t, "v4_int16",
df4df182 2836 init_vector_type (bt->builtin_int16, 4));
794ac428 2837 append_composite_type_field (t, "v8_int8",
df4df182 2838 init_vector_type (bt->builtin_int8, 8));
794ac428 2839
876cecd0 2840 TYPE_VECTOR (t) = 1;
794ac428
UW
2841 TYPE_NAME (t) = "builtin_type_vec64i";
2842 tdep->i386_mmx_type = t;
2843 }
2844
2845 return tdep->i386_mmx_type;
2846}
2847
d7a0d72c 2848/* Return the GDB type object for the "standard" data type of data in
1777feb0 2849 register REGNUM. */
d7a0d72c 2850
fff4548b 2851struct type *
90884b2b 2852i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2853{
1ba53b71
L
2854 if (i386_mmx_regnum_p (gdbarch, regnum))
2855 return i386_mmx_type (gdbarch);
c131fcee
L
2856 else if (i386_ymm_regnum_p (gdbarch, regnum))
2857 return i386_ymm_type (gdbarch);
1ba53b71
L
2858 else
2859 {
2860 const struct builtin_type *bt = builtin_type (gdbarch);
2861 if (i386_byte_regnum_p (gdbarch, regnum))
2862 return bt->builtin_int8;
2863 else if (i386_word_regnum_p (gdbarch, regnum))
2864 return bt->builtin_int16;
2865 else if (i386_dword_regnum_p (gdbarch, regnum))
2866 return bt->builtin_int32;
2867 }
2868
2869 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2870}
2871
28fc6740 2872/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2873 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2874
2875static int
c86c27af 2876i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2877{
5716833c
MK
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2879 int mmxreg, fpreg;
28fc6740
AC
2880 ULONGEST fstat;
2881 int tos;
c86c27af 2882
5716833c 2883 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2884 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2885 tos = (fstat >> 11) & 0x7;
5716833c
MK
2886 fpreg = (mmxreg + tos) % 8;
2887
20a6ec49 2888 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2889}
2890
3543a589
TT
2891/* A helper function for us by i386_pseudo_register_read_value and
2892 amd64_pseudo_register_read_value. It does all the work but reads
2893 the data into an already-allocated value. */
2894
2895void
2896i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2897 struct regcache *regcache,
2898 int regnum,
2899 struct value *result_value)
28fc6740 2900{
1ba53b71 2901 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2902 enum register_status status;
3543a589 2903 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 2904
5716833c 2905 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2906 {
c86c27af
MK
2907 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2908
28fc6740 2909 /* Extract (always little endian). */
05d1431c
PA
2910 status = regcache_raw_read (regcache, fpnum, raw_buf);
2911 if (status != REG_VALID)
3543a589
TT
2912 mark_value_bytes_unavailable (result_value, 0,
2913 TYPE_LENGTH (value_type (result_value)));
2914 else
2915 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2916 }
2917 else
1ba53b71
L
2918 {
2919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2920
c131fcee
L
2921 if (i386_ymm_regnum_p (gdbarch, regnum))
2922 {
2923 regnum -= tdep->ymm0_regnum;
2924
1777feb0 2925 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2926 status = regcache_raw_read (regcache,
2927 I387_XMM0_REGNUM (tdep) + regnum,
2928 raw_buf);
2929 if (status != REG_VALID)
3543a589
TT
2930 mark_value_bytes_unavailable (result_value, 0, 16);
2931 else
2932 memcpy (buf, raw_buf, 16);
c131fcee 2933 /* Read upper 128bits. */
05d1431c
PA
2934 status = regcache_raw_read (regcache,
2935 tdep->ymm0h_regnum + regnum,
2936 raw_buf);
2937 if (status != REG_VALID)
3543a589
TT
2938 mark_value_bytes_unavailable (result_value, 16, 32);
2939 else
2940 memcpy (buf + 16, raw_buf, 16);
c131fcee
L
2941 }
2942 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2943 {
2944 int gpnum = regnum - tdep->ax_regnum;
2945
2946 /* Extract (always little endian). */
05d1431c
PA
2947 status = regcache_raw_read (regcache, gpnum, raw_buf);
2948 if (status != REG_VALID)
3543a589
TT
2949 mark_value_bytes_unavailable (result_value, 0,
2950 TYPE_LENGTH (value_type (result_value)));
2951 else
2952 memcpy (buf, raw_buf, 2);
1ba53b71
L
2953 }
2954 else if (i386_byte_regnum_p (gdbarch, regnum))
2955 {
2956 /* Check byte pseudo registers last since this function will
2957 be called from amd64_pseudo_register_read, which handles
2958 byte pseudo registers differently. */
2959 int gpnum = regnum - tdep->al_regnum;
2960
2961 /* Extract (always little endian). We read both lower and
2962 upper registers. */
05d1431c
PA
2963 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2964 if (status != REG_VALID)
3543a589
TT
2965 mark_value_bytes_unavailable (result_value, 0,
2966 TYPE_LENGTH (value_type (result_value)));
2967 else if (gpnum >= 4)
1ba53b71
L
2968 memcpy (buf, raw_buf + 1, 1);
2969 else
2970 memcpy (buf, raw_buf, 1);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2974 }
3543a589
TT
2975}
2976
2977static struct value *
2978i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int regnum)
2981{
2982 struct value *result;
2983
2984 result = allocate_value (register_type (gdbarch, regnum));
2985 VALUE_LVAL (result) = lval_register;
2986 VALUE_REGNUM (result) = regnum;
2987
2988 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 2989
3543a589 2990 return result;
28fc6740
AC
2991}
2992
1ba53b71 2993void
28fc6740 2994i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2995 int regnum, const gdb_byte *buf)
28fc6740 2996{
1ba53b71
L
2997 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2998
5716833c 2999 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3000 {
c86c27af
MK
3001 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3002
28fc6740 3003 /* Read ... */
1ba53b71 3004 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3005 /* ... Modify ... (always little endian). */
1ba53b71 3006 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3007 /* ... Write. */
1ba53b71 3008 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3009 }
3010 else
1ba53b71
L
3011 {
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
c131fcee
L
3014 if (i386_ymm_regnum_p (gdbarch, regnum))
3015 {
3016 regnum -= tdep->ymm0_regnum;
3017
3018 /* ... Write lower 128bits. */
3019 regcache_raw_write (regcache,
3020 I387_XMM0_REGNUM (tdep) + regnum,
3021 buf);
3022 /* ... Write upper 128bits. */
3023 regcache_raw_write (regcache,
3024 tdep->ymm0h_regnum + regnum,
3025 buf + 16);
3026 }
3027 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3028 {
3029 int gpnum = regnum - tdep->ax_regnum;
3030
3031 /* Read ... */
3032 regcache_raw_read (regcache, gpnum, raw_buf);
3033 /* ... Modify ... (always little endian). */
3034 memcpy (raw_buf, buf, 2);
3035 /* ... Write. */
3036 regcache_raw_write (regcache, gpnum, raw_buf);
3037 }
3038 else if (i386_byte_regnum_p (gdbarch, regnum))
3039 {
3040 /* Check byte pseudo registers last since this function will
3041 be called from amd64_pseudo_register_read, which handles
3042 byte pseudo registers differently. */
3043 int gpnum = regnum - tdep->al_regnum;
3044
3045 /* Read ... We read both lower and upper registers. */
3046 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3047 /* ... Modify ... (always little endian). */
3048 if (gpnum >= 4)
3049 memcpy (raw_buf + 1, buf, 1);
3050 else
3051 memcpy (raw_buf, buf, 1);
3052 /* ... Write. */
3053 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3054 }
3055 else
3056 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3057 }
28fc6740 3058}
ff2e87ac
AC
3059\f
3060
ff2e87ac
AC
3061/* Return the register number of the register allocated by GCC after
3062 REGNUM, or -1 if there is no such register. */
3063
3064static int
3065i386_next_regnum (int regnum)
3066{
3067 /* GCC allocates the registers in the order:
3068
3069 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3070
3071 Since storing a variable in %esp doesn't make any sense we return
3072 -1 for %ebp and for %esp itself. */
3073 static int next_regnum[] =
3074 {
3075 I386_EDX_REGNUM, /* Slot for %eax. */
3076 I386_EBX_REGNUM, /* Slot for %ecx. */
3077 I386_ECX_REGNUM, /* Slot for %edx. */
3078 I386_ESI_REGNUM, /* Slot for %ebx. */
3079 -1, -1, /* Slots for %esp and %ebp. */
3080 I386_EDI_REGNUM, /* Slot for %esi. */
3081 I386_EBP_REGNUM /* Slot for %edi. */
3082 };
3083
de5b9bb9 3084 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3085 return next_regnum[regnum];
28fc6740 3086
ff2e87ac
AC
3087 return -1;
3088}
3089
3090/* Return nonzero if a value of type TYPE stored in register REGNUM
3091 needs any special handling. */
d7a0d72c 3092
3a1e71e3 3093static int
1777feb0
MS
3094i386_convert_register_p (struct gdbarch *gdbarch,
3095 int regnum, struct type *type)
d7a0d72c 3096{
de5b9bb9
MK
3097 int len = TYPE_LENGTH (type);
3098
ff2e87ac
AC
3099 /* Values may be spread across multiple registers. Most debugging
3100 formats aren't expressive enough to specify the locations, so
3101 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3102 have a length that is a multiple of the word size, since GCC
3103 doesn't seem to put any other types into registers. */
3104 if (len > 4 && len % 4 == 0)
3105 {
3106 int last_regnum = regnum;
3107
3108 while (len > 4)
3109 {
3110 last_regnum = i386_next_regnum (last_regnum);
3111 len -= 4;
3112 }
3113
3114 if (last_regnum != -1)
3115 return 1;
3116 }
ff2e87ac 3117
0abe36f5 3118 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3119}
3120
ff2e87ac
AC
3121/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3122 return its contents in TO. */
ac27f131 3123
8dccd430 3124static int
ff2e87ac 3125i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3126 struct type *type, gdb_byte *to,
3127 int *optimizedp, int *unavailablep)
ac27f131 3128{
20a6ec49 3129 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3130 int len = TYPE_LENGTH (type);
de5b9bb9 3131
20a6ec49 3132 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3133 return i387_register_to_value (frame, regnum, type, to,
3134 optimizedp, unavailablep);
ff2e87ac 3135
fd35795f 3136 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3137
3138 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3139
de5b9bb9
MK
3140 while (len > 0)
3141 {
3142 gdb_assert (regnum != -1);
20a6ec49 3143 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3144
8dccd430
PA
3145 if (!get_frame_register_bytes (frame, regnum, 0,
3146 register_size (gdbarch, regnum),
3147 to, optimizedp, unavailablep))
3148 return 0;
3149
de5b9bb9
MK
3150 regnum = i386_next_regnum (regnum);
3151 len -= 4;
42835c2b 3152 to += 4;
de5b9bb9 3153 }
8dccd430
PA
3154
3155 *optimizedp = *unavailablep = 0;
3156 return 1;
ac27f131
MK
3157}
3158
ff2e87ac
AC
3159/* Write the contents FROM of a value of type TYPE into register
3160 REGNUM in frame FRAME. */
ac27f131 3161
3a1e71e3 3162static void
ff2e87ac 3163i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3164 struct type *type, const gdb_byte *from)
ac27f131 3165{
de5b9bb9 3166 int len = TYPE_LENGTH (type);
de5b9bb9 3167
20a6ec49 3168 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3169 {
d532c08f
MK
3170 i387_value_to_register (frame, regnum, type, from);
3171 return;
3172 }
3d261580 3173
fd35795f 3174 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3175
3176 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3177
de5b9bb9
MK
3178 while (len > 0)
3179 {
3180 gdb_assert (regnum != -1);
875f8d0e 3181 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3182
42835c2b 3183 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3184 regnum = i386_next_regnum (regnum);
3185 len -= 4;
42835c2b 3186 from += 4;
de5b9bb9 3187 }
ac27f131 3188}
ff2e87ac 3189\f
7fdafb5a
MK
3190/* Supply register REGNUM from the buffer specified by GREGS and LEN
3191 in the general-purpose register set REGSET to register cache
3192 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3193
20187ed5 3194void
473f17b0
MK
3195i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3196 int regnum, const void *gregs, size_t len)
3197{
9ea75c57 3198 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3199 const gdb_byte *regs = gregs;
473f17b0
MK
3200 int i;
3201
3202 gdb_assert (len == tdep->sizeof_gregset);
3203
3204 for (i = 0; i < tdep->gregset_num_regs; i++)
3205 {
3206 if ((regnum == i || regnum == -1)
3207 && tdep->gregset_reg_offset[i] != -1)
3208 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3209 }
3210}
3211
7fdafb5a
MK
3212/* Collect register REGNUM from the register cache REGCACHE and store
3213 it in the buffer specified by GREGS and LEN as described by the
3214 general-purpose register set REGSET. If REGNUM is -1, do this for
3215 all registers in REGSET. */
3216
3217void
3218i386_collect_gregset (const struct regset *regset,
3219 const struct regcache *regcache,
3220 int regnum, void *gregs, size_t len)
3221{
3222 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3223 gdb_byte *regs = gregs;
7fdafb5a
MK
3224 int i;
3225
3226 gdb_assert (len == tdep->sizeof_gregset);
3227
3228 for (i = 0; i < tdep->gregset_num_regs; i++)
3229 {
3230 if ((regnum == i || regnum == -1)
3231 && tdep->gregset_reg_offset[i] != -1)
3232 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3233 }
3234}
3235
3236/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3237 in the floating-point register set REGSET to register cache
3238 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3239
3240static void
3241i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3242 int regnum, const void *fpregs, size_t len)
3243{
9ea75c57 3244 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3245
66a72d25
MK
3246 if (len == I387_SIZEOF_FXSAVE)
3247 {
3248 i387_supply_fxsave (regcache, regnum, fpregs);
3249 return;
3250 }
3251
473f17b0
MK
3252 gdb_assert (len == tdep->sizeof_fpregset);
3253 i387_supply_fsave (regcache, regnum, fpregs);
3254}
8446b36a 3255
2f305df1
MK
3256/* Collect register REGNUM from the register cache REGCACHE and store
3257 it in the buffer specified by FPREGS and LEN as described by the
3258 floating-point register set REGSET. If REGNUM is -1, do this for
3259 all registers in REGSET. */
7fdafb5a
MK
3260
3261static void
3262i386_collect_fpregset (const struct regset *regset,
3263 const struct regcache *regcache,
3264 int regnum, void *fpregs, size_t len)
3265{
3266 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3267
3268 if (len == I387_SIZEOF_FXSAVE)
3269 {
3270 i387_collect_fxsave (regcache, regnum, fpregs);
3271 return;
3272 }
3273
3274 gdb_assert (len == tdep->sizeof_fpregset);
3275 i387_collect_fsave (regcache, regnum, fpregs);
3276}
3277
c131fcee
L
3278/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3279
3280static void
3281i386_supply_xstateregset (const struct regset *regset,
3282 struct regcache *regcache, int regnum,
3283 const void *xstateregs, size_t len)
3284{
c131fcee
L
3285 i387_supply_xsave (regcache, regnum, xstateregs);
3286}
3287
3288/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3289
3290static void
3291i386_collect_xstateregset (const struct regset *regset,
3292 const struct regcache *regcache,
3293 int regnum, void *xstateregs, size_t len)
3294{
c131fcee
L
3295 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3296}
3297
8446b36a
MK
3298/* Return the appropriate register set for the core section identified
3299 by SECT_NAME and SECT_SIZE. */
3300
3301const struct regset *
3302i386_regset_from_core_section (struct gdbarch *gdbarch,
3303 const char *sect_name, size_t sect_size)
3304{
3305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3306
3307 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3308 {
3309 if (tdep->gregset == NULL)
7fdafb5a
MK
3310 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3311 i386_collect_gregset);
8446b36a
MK
3312 return tdep->gregset;
3313 }
3314
66a72d25
MK
3315 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3316 || (strcmp (sect_name, ".reg-xfp") == 0
3317 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3318 {
3319 if (tdep->fpregset == NULL)
7fdafb5a
MK
3320 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3321 i386_collect_fpregset);
8446b36a
MK
3322 return tdep->fpregset;
3323 }
3324
c131fcee
L
3325 if (strcmp (sect_name, ".reg-xstate") == 0)
3326 {
3327 if (tdep->xstateregset == NULL)
3328 tdep->xstateregset = regset_alloc (gdbarch,
3329 i386_supply_xstateregset,
3330 i386_collect_xstateregset);
3331
3332 return tdep->xstateregset;
3333 }
3334
8446b36a
MK
3335 return NULL;
3336}
473f17b0 3337\f
fc338970 3338
fc338970 3339/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3340
3341CORE_ADDR
e17a4113
UW
3342i386_pe_skip_trampoline_code (struct frame_info *frame,
3343 CORE_ADDR pc, char *name)
c906108c 3344{
e17a4113
UW
3345 struct gdbarch *gdbarch = get_frame_arch (frame);
3346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3347
3348 /* jmp *(dest) */
3349 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3350 {
e17a4113
UW
3351 unsigned long indirect =
3352 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3353 struct minimal_symbol *indsym =
fc338970 3354 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
0d5cff50 3355 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3356
c5aa993b 3357 if (symname)
c906108c 3358 {
c5aa993b
JM
3359 if (strncmp (symname, "__imp_", 6) == 0
3360 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3361 return name ? 1 :
3362 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3363 }
3364 }
fc338970 3365 return 0; /* Not a trampoline. */
c906108c 3366}
fc338970
MK
3367\f
3368
10458914
DJ
3369/* Return whether the THIS_FRAME corresponds to a sigtramp
3370 routine. */
8201327c 3371
4bd207ef 3372int
10458914 3373i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3374{
10458914 3375 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3376 const char *name;
911bc6ee
MK
3377
3378 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3379 return (name && strcmp ("_sigtramp", name) == 0);
3380}
3381\f
3382
fc338970
MK
3383/* We have two flavours of disassembly. The machinery on this page
3384 deals with switching between those. */
c906108c
SS
3385
3386static int
a89aa300 3387i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3388{
5e3397bb
MK
3389 gdb_assert (disassembly_flavor == att_flavor
3390 || disassembly_flavor == intel_flavor);
3391
3392 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3393 constified, cast to prevent a compiler warning. */
3394 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3395
3396 return print_insn_i386 (pc, info);
7a292a7a 3397}
fc338970 3398\f
3ce1502b 3399
8201327c
MK
3400/* There are a few i386 architecture variants that differ only
3401 slightly from the generic i386 target. For now, we don't give them
3402 their own source file, but include them here. As a consequence,
3403 they'll always be included. */
3ce1502b 3404
8201327c 3405/* System V Release 4 (SVR4). */
3ce1502b 3406
10458914
DJ
3407/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3408 routine. */
911bc6ee 3409
8201327c 3410static int
10458914 3411i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3412{
10458914 3413 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3414 const char *name;
911bc6ee 3415
05b4bd79 3416 /* The origin of these symbols is currently unknown. */
911bc6ee 3417 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3418 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3419 || strcmp ("sigvechandler", name) == 0));
3420}
d2a7c97a 3421
10458914
DJ
3422/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3423 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3424
3a1e71e3 3425static CORE_ADDR
10458914 3426i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3427{
e17a4113
UW
3428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3430 gdb_byte buf[4];
acd5c798 3431 CORE_ADDR sp;
3ce1502b 3432
10458914 3433 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3434 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3435
e17a4113 3436 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3437}
55aa24fb
SDJ
3438
3439\f
3440
3441/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3442 gdbarch.h. */
3443
3444int
3445i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3446{
3447 return (*s == '$' /* Literal number. */
3448 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3449 || (*s == '(' && s[1] == '%') /* Register indirection. */
3450 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3451}
3452
3453/* Implementation of `gdbarch_stap_parse_special_token', as defined in
3454 gdbarch.h. */
3455
3456int
3457i386_stap_parse_special_token (struct gdbarch *gdbarch,
3458 struct stap_parse_info *p)
3459{
55aa24fb
SDJ
3460 /* In order to parse special tokens, we use a state-machine that go
3461 through every known token and try to get a match. */
3462 enum
3463 {
3464 TRIPLET,
3465 THREE_ARG_DISPLACEMENT,
3466 DONE
3467 } current_state;
3468
3469 current_state = TRIPLET;
3470
3471 /* The special tokens to be parsed here are:
3472
3473 - `register base + (register index * size) + offset', as represented
3474 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3475
3476 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3477 `*(-8 + 3 - 1 + (void *) $eax)'. */
3478
3479 while (current_state != DONE)
3480 {
3481 const char *s = p->arg;
3482
3483 switch (current_state)
3484 {
3485 case TRIPLET:
3486 {
3487 if (isdigit (*s) || *s == '-' || *s == '+')
3488 {
3489 int got_minus[3];
3490 int i;
3491 long displacements[3];
3492 const char *start;
3493 char *regname;
3494 int len;
3495 struct stoken str;
3496
3497 got_minus[0] = 0;
3498 if (*s == '+')
3499 ++s;
3500 else if (*s == '-')
3501 {
3502 ++s;
3503 got_minus[0] = 1;
3504 }
3505
3506 displacements[0] = strtol (s, (char **) &s, 10);
3507
3508 if (*s != '+' && *s != '-')
3509 {
3510 /* We are not dealing with a triplet. */
3511 break;
3512 }
3513
3514 got_minus[1] = 0;
3515 if (*s == '+')
3516 ++s;
3517 else
3518 {
3519 ++s;
3520 got_minus[1] = 1;
3521 }
3522
3523 displacements[1] = strtol (s, (char **) &s, 10);
3524
3525 if (*s != '+' && *s != '-')
3526 {
3527 /* We are not dealing with a triplet. */
3528 break;
3529 }
3530
3531 got_minus[2] = 0;
3532 if (*s == '+')
3533 ++s;
3534 else
3535 {
3536 ++s;
3537 got_minus[2] = 1;
3538 }
3539
3540 displacements[2] = strtol (s, (char **) &s, 10);
3541
3542 if (*s != '(' || s[1] != '%')
3543 break;
3544
3545 s += 2;
3546 start = s;
3547
3548 while (isalnum (*s))
3549 ++s;
3550
3551 if (*s++ != ')')
3552 break;
3553
3554 len = s - start;
3555 regname = alloca (len + 1);
3556
3557 strncpy (regname, start, len);
3558 regname[len] = '\0';
3559
3560 if (user_reg_map_name_to_regnum (gdbarch,
3561 regname, len) == -1)
3562 error (_("Invalid register name `%s' "
3563 "on expression `%s'."),
3564 regname, p->saved_arg);
3565
3566 for (i = 0; i < 3; i++)
3567 {
3568 write_exp_elt_opcode (OP_LONG);
3569 write_exp_elt_type
3570 (builtin_type (gdbarch)->builtin_long);
3571 write_exp_elt_longcst (displacements[i]);
3572 write_exp_elt_opcode (OP_LONG);
3573 if (got_minus[i])
3574 write_exp_elt_opcode (UNOP_NEG);
3575 }
3576
3577 write_exp_elt_opcode (OP_REGISTER);
3578 str.ptr = regname;
3579 str.length = len;
3580 write_exp_string (str);
3581 write_exp_elt_opcode (OP_REGISTER);
3582
3583 write_exp_elt_opcode (UNOP_CAST);
3584 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3585 write_exp_elt_opcode (UNOP_CAST);
3586
3587 write_exp_elt_opcode (BINOP_ADD);
3588 write_exp_elt_opcode (BINOP_ADD);
3589 write_exp_elt_opcode (BINOP_ADD);
3590
3591 write_exp_elt_opcode (UNOP_CAST);
3592 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3593 write_exp_elt_opcode (UNOP_CAST);
3594
3595 write_exp_elt_opcode (UNOP_IND);
3596
3597 p->arg = s;
3598
3599 return 1;
3600 }
3601 break;
3602 }
3603 case THREE_ARG_DISPLACEMENT:
3604 {
3605 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3606 {
3607 int offset_minus = 0;
3608 long offset = 0;
3609 int size_minus = 0;
3610 long size = 0;
3611 const char *start;
3612 char *base;
3613 int len_base;
3614 char *index;
3615 int len_index;
3616 struct stoken base_token, index_token;
3617
3618 if (*s == '+')
3619 ++s;
3620 else if (*s == '-')
3621 {
3622 ++s;
3623 offset_minus = 1;
3624 }
3625
3626 if (offset_minus && !isdigit (*s))
3627 break;
3628
3629 if (isdigit (*s))
3630 offset = strtol (s, (char **) &s, 10);
3631
3632 if (*s != '(' || s[1] != '%')
3633 break;
3634
3635 s += 2;
3636 start = s;
3637
3638 while (isalnum (*s))
3639 ++s;
3640
3641 if (*s != ',' || s[1] != '%')
3642 break;
3643
3644 len_base = s - start;
3645 base = alloca (len_base + 1);
3646 strncpy (base, start, len_base);
3647 base[len_base] = '\0';
3648
3649 if (user_reg_map_name_to_regnum (gdbarch,
3650 base, len_base) == -1)
3651 error (_("Invalid register name `%s' "
3652 "on expression `%s'."),
3653 base, p->saved_arg);
3654
3655 s += 2;
3656 start = s;
3657
3658 while (isalnum (*s))
3659 ++s;
3660
3661 len_index = s - start;
3662 index = alloca (len_index + 1);
3663 strncpy (index, start, len_index);
3664 index[len_index] = '\0';
3665
3666 if (user_reg_map_name_to_regnum (gdbarch,
3667 index, len_index) == -1)
3668 error (_("Invalid register name `%s' "
3669 "on expression `%s'."),
3670 index, p->saved_arg);
3671
3672 if (*s != ',' && *s != ')')
3673 break;
3674
3675 if (*s == ',')
3676 {
3677 ++s;
3678 if (*s == '+')
3679 ++s;
3680 else if (*s == '-')
3681 {
3682 ++s;
3683 size_minus = 1;
3684 }
3685
3686 size = strtol (s, (char **) &s, 10);
3687
3688 if (*s != ')')
3689 break;
3690 }
3691
3692 ++s;
3693
3694 if (offset)
3695 {
3696 write_exp_elt_opcode (OP_LONG);
3697 write_exp_elt_type
3698 (builtin_type (gdbarch)->builtin_long);
3699 write_exp_elt_longcst (offset);
3700 write_exp_elt_opcode (OP_LONG);
3701 if (offset_minus)
3702 write_exp_elt_opcode (UNOP_NEG);
3703 }
3704
3705 write_exp_elt_opcode (OP_REGISTER);
3706 base_token.ptr = base;
3707 base_token.length = len_base;
3708 write_exp_string (base_token);
3709 write_exp_elt_opcode (OP_REGISTER);
3710
3711 if (offset)
3712 write_exp_elt_opcode (BINOP_ADD);
3713
3714 write_exp_elt_opcode (OP_REGISTER);
3715 index_token.ptr = index;
3716 index_token.length = len_index;
3717 write_exp_string (index_token);
3718 write_exp_elt_opcode (OP_REGISTER);
3719
3720 if (size)
3721 {
3722 write_exp_elt_opcode (OP_LONG);
3723 write_exp_elt_type
3724 (builtin_type (gdbarch)->builtin_long);
3725 write_exp_elt_longcst (size);
3726 write_exp_elt_opcode (OP_LONG);
3727 if (size_minus)
3728 write_exp_elt_opcode (UNOP_NEG);
3729 write_exp_elt_opcode (BINOP_MUL);
3730 }
3731
3732 write_exp_elt_opcode (BINOP_ADD);
3733
3734 write_exp_elt_opcode (UNOP_CAST);
3735 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3736 write_exp_elt_opcode (UNOP_CAST);
3737
3738 write_exp_elt_opcode (UNOP_IND);
3739
3740 p->arg = s;
3741
3742 return 1;
3743 }
3744 break;
3745 }
3746 }
3747
3748 /* Advancing to the next state. */
3749 ++current_state;
3750 }
3751
3752 return 0;
3753}
3754
8201327c 3755\f
3ce1502b 3756
8201327c 3757/* Generic ELF. */
d2a7c97a 3758
8201327c
MK
3759void
3760i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3761{
c4fc7f1b
MK
3762 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3763 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
3764
3765 /* Registering SystemTap handlers. */
3766 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3767 set_gdbarch_stap_register_prefix (gdbarch, "%");
3768 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3769 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3770 set_gdbarch_stap_is_single_operand (gdbarch,
3771 i386_stap_is_single_operand);
3772 set_gdbarch_stap_parse_special_token (gdbarch,
3773 i386_stap_parse_special_token);
8201327c 3774}
3ce1502b 3775
8201327c 3776/* System V Release 4 (SVR4). */
3ce1502b 3777
8201327c
MK
3778void
3779i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3780{
3781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3782
8201327c
MK
3783 /* System V Release 4 uses ELF. */
3784 i386_elf_init_abi (info, gdbarch);
3ce1502b 3785
dfe01d39 3786 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3787 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3788
911bc6ee 3789 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3790 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3791 tdep->sc_pc_offset = 36 + 14 * 4;
3792 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3793
8201327c 3794 tdep->jb_pc_offset = 20;
3ce1502b
MK
3795}
3796
8201327c 3797/* DJGPP. */
3ce1502b 3798
3a1e71e3 3799static void
8201327c 3800i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3801{
8201327c 3802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3803
911bc6ee
MK
3804 /* DJGPP doesn't have any special frames for signal handlers. */
3805 tdep->sigtramp_p = NULL;
3ce1502b 3806
8201327c 3807 tdep->jb_pc_offset = 36;
15430fc0
EZ
3808
3809 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3810 if (! tdesc_has_registers (info.target_desc))
3811 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3812
3813 /* Native compiler is GCC, which uses the SVR4 register numbering
3814 even in COFF and STABS. See the comment in i386_gdbarch_init,
3815 before the calls to set_gdbarch_stab_reg_to_regnum and
3816 set_gdbarch_sdb_reg_to_regnum. */
3817 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3818 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3819
3820 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3821}
8201327c 3822\f
2acceee2 3823
38c968cf
AC
3824/* i386 register groups. In addition to the normal groups, add "mmx"
3825 and "sse". */
3826
3827static struct reggroup *i386_sse_reggroup;
3828static struct reggroup *i386_mmx_reggroup;
3829
3830static void
3831i386_init_reggroups (void)
3832{
3833 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3834 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3835}
3836
3837static void
3838i386_add_reggroups (struct gdbarch *gdbarch)
3839{
3840 reggroup_add (gdbarch, i386_sse_reggroup);
3841 reggroup_add (gdbarch, i386_mmx_reggroup);
3842 reggroup_add (gdbarch, general_reggroup);
3843 reggroup_add (gdbarch, float_reggroup);
3844 reggroup_add (gdbarch, all_reggroup);
3845 reggroup_add (gdbarch, save_reggroup);
3846 reggroup_add (gdbarch, restore_reggroup);
3847 reggroup_add (gdbarch, vector_reggroup);
3848 reggroup_add (gdbarch, system_reggroup);
3849}
3850
3851int
3852i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3853 struct reggroup *group)
3854{
c131fcee
L
3855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3856 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3857 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3858
1ba53b71
L
3859 /* Don't include pseudo registers, except for MMX, in any register
3860 groups. */
c131fcee 3861 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3862 return 0;
3863
c131fcee 3864 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3865 return 0;
3866
c131fcee 3867 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3868 return 0;
3869
3870 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3871 if (group == i386_mmx_reggroup)
3872 return mmx_regnum_p;
1ba53b71 3873
c131fcee
L
3874 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3875 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3876 if (group == i386_sse_reggroup)
c131fcee
L
3877 return xmm_regnum_p || mxcsr_regnum_p;
3878
3879 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3880 if (group == vector_reggroup)
c131fcee
L
3881 return (mmx_regnum_p
3882 || ymm_regnum_p
3883 || mxcsr_regnum_p
3884 || (xmm_regnum_p
3885 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3886 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3887
3888 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3889 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3890 if (group == float_reggroup)
3891 return fp_regnum_p;
1ba53b71 3892
c131fcee
L
3893 /* For "info reg all", don't include upper YMM registers nor XMM
3894 registers when AVX is supported. */
3895 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3896 if (group == all_reggroup
3897 && ((xmm_regnum_p
3898 && (tdep->xcr0 & I386_XSTATE_AVX))
3899 || ymmh_regnum_p))
3900 return 0;
3901
38c968cf 3902 if (group == general_reggroup)
1ba53b71
L
3903 return (!fp_regnum_p
3904 && !mmx_regnum_p
c131fcee
L
3905 && !mxcsr_regnum_p
3906 && !xmm_regnum_p
3907 && !ymm_regnum_p
3908 && !ymmh_regnum_p);
acd5c798 3909
38c968cf
AC
3910 return default_register_reggroup_p (gdbarch, regnum, group);
3911}
38c968cf 3912\f
acd5c798 3913
f837910f
MK
3914/* Get the ARGIth function argument for the current function. */
3915
42c466d7 3916static CORE_ADDR
143985b7
AF
3917i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3918 struct type *type)
3919{
e17a4113
UW
3920 struct gdbarch *gdbarch = get_frame_arch (frame);
3921 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 3922 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3923 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3924}
3925
514f746b
AR
3926static void
3927i386_skip_permanent_breakpoint (struct regcache *regcache)
3928{
3929 CORE_ADDR current_pc = regcache_read_pc (regcache);
3930
3931 /* On i386, breakpoint is exactly 1 byte long, so we just
3932 adjust the PC in the regcache. */
3933 current_pc += 1;
3934 regcache_write_pc (regcache, current_pc);
3935}
3936
3937
7ad10968
HZ
3938#define PREFIX_REPZ 0x01
3939#define PREFIX_REPNZ 0x02
3940#define PREFIX_LOCK 0x04
3941#define PREFIX_DATA 0x08
3942#define PREFIX_ADDR 0x10
473f17b0 3943
7ad10968
HZ
3944/* operand size */
3945enum
3946{
3947 OT_BYTE = 0,
3948 OT_WORD,
3949 OT_LONG,
cf648174 3950 OT_QUAD,
a3c4230a 3951 OT_DQUAD,
7ad10968 3952};
473f17b0 3953
7ad10968
HZ
3954/* i386 arith/logic operations */
3955enum
3956{
3957 OP_ADDL,
3958 OP_ORL,
3959 OP_ADCL,
3960 OP_SBBL,
3961 OP_ANDL,
3962 OP_SUBL,
3963 OP_XORL,
3964 OP_CMPL,
3965};
5716833c 3966
7ad10968
HZ
3967struct i386_record_s
3968{
cf648174 3969 struct gdbarch *gdbarch;
7ad10968 3970 struct regcache *regcache;
df61f520 3971 CORE_ADDR orig_addr;
7ad10968
HZ
3972 CORE_ADDR addr;
3973 int aflag;
3974 int dflag;
3975 int override;
3976 uint8_t modrm;
3977 uint8_t mod, reg, rm;
3978 int ot;
cf648174
HZ
3979 uint8_t rex_x;
3980 uint8_t rex_b;
3981 int rip_offset;
3982 int popl_esp_hack;
3983 const int *regmap;
7ad10968 3984};
5716833c 3985
99c1624c
PA
3986/* Parse the "modrm" part of the memory address irp->addr points at.
3987 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 3988
7ad10968
HZ
3989static int
3990i386_record_modrm (struct i386_record_s *irp)
3991{
cf648174 3992 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3993
4ffa4fc7
PA
3994 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
3995 return -1;
3996
7ad10968
HZ
3997 irp->addr++;
3998 irp->mod = (irp->modrm >> 6) & 3;
3999 irp->reg = (irp->modrm >> 3) & 7;
4000 irp->rm = irp->modrm & 7;
5716833c 4001
7ad10968
HZ
4002 return 0;
4003}
d2a7c97a 4004
99c1624c
PA
4005/* Extract the memory address that the current instruction writes to,
4006 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4007
7ad10968 4008static int
cf648174 4009i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4010{
cf648174 4011 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4013 gdb_byte buf[4];
4014 ULONGEST offset64;
21d0e8a4 4015
7ad10968
HZ
4016 *addr = 0;
4017 if (irp->aflag)
4018 {
4019 /* 32 bits */
4020 int havesib = 0;
4021 uint8_t scale = 0;
648d0c8b 4022 uint8_t byte;
7ad10968
HZ
4023 uint8_t index = 0;
4024 uint8_t base = irp->rm;
896fb97d 4025
7ad10968
HZ
4026 if (base == 4)
4027 {
4028 havesib = 1;
4ffa4fc7
PA
4029 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4030 return -1;
7ad10968 4031 irp->addr++;
648d0c8b
MS
4032 scale = (byte >> 6) & 3;
4033 index = ((byte >> 3) & 7) | irp->rex_x;
4034 base = (byte & 7);
7ad10968 4035 }
cf648174 4036 base |= irp->rex_b;
21d0e8a4 4037
7ad10968
HZ
4038 switch (irp->mod)
4039 {
4040 case 0:
4041 if ((base & 7) == 5)
4042 {
4043 base = 0xff;
4ffa4fc7
PA
4044 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4045 return -1;
7ad10968 4046 irp->addr += 4;
60a1502a 4047 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4048 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4049 *addr += irp->addr + irp->rip_offset;
7ad10968 4050 }
7ad10968
HZ
4051 break;
4052 case 1:
4ffa4fc7
PA
4053 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4054 return -1;
7ad10968 4055 irp->addr++;
60a1502a 4056 *addr = (int8_t) buf[0];
7ad10968
HZ
4057 break;
4058 case 2:
4ffa4fc7
PA
4059 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4060 return -1;
60a1502a 4061 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4062 irp->addr += 4;
4063 break;
4064 }
356a6b3e 4065
60a1502a 4066 offset64 = 0;
7ad10968 4067 if (base != 0xff)
cf648174
HZ
4068 {
4069 if (base == 4 && irp->popl_esp_hack)
4070 *addr += irp->popl_esp_hack;
4071 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4072 &offset64);
7ad10968 4073 }
cf648174
HZ
4074 if (irp->aflag == 2)
4075 {
60a1502a 4076 *addr += offset64;
cf648174
HZ
4077 }
4078 else
60a1502a 4079 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4080
7ad10968
HZ
4081 if (havesib && (index != 4 || scale != 0))
4082 {
cf648174 4083 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4084 &offset64);
cf648174 4085 if (irp->aflag == 2)
60a1502a 4086 *addr += offset64 << scale;
cf648174 4087 else
60a1502a 4088 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
4089 }
4090 }
4091 else
4092 {
4093 /* 16 bits */
4094 switch (irp->mod)
4095 {
4096 case 0:
4097 if (irp->rm == 6)
4098 {
4ffa4fc7
PA
4099 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4100 return -1;
7ad10968 4101 irp->addr += 2;
60a1502a 4102 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4103 irp->rm = 0;
4104 goto no_rm;
4105 }
7ad10968
HZ
4106 break;
4107 case 1:
4ffa4fc7
PA
4108 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4109 return -1;
7ad10968 4110 irp->addr++;
60a1502a 4111 *addr = (int8_t) buf[0];
7ad10968
HZ
4112 break;
4113 case 2:
4ffa4fc7
PA
4114 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4115 return -1;
7ad10968 4116 irp->addr += 2;
60a1502a 4117 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4118 break;
4119 }
c4fc7f1b 4120
7ad10968
HZ
4121 switch (irp->rm)
4122 {
4123 case 0:
cf648174
HZ
4124 regcache_raw_read_unsigned (irp->regcache,
4125 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4126 &offset64);
4127 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4128 regcache_raw_read_unsigned (irp->regcache,
4129 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4130 &offset64);
4131 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4132 break;
4133 case 1:
cf648174
HZ
4134 regcache_raw_read_unsigned (irp->regcache,
4135 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4136 &offset64);
4137 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4138 regcache_raw_read_unsigned (irp->regcache,
4139 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4140 &offset64);
4141 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4142 break;
4143 case 2:
cf648174
HZ
4144 regcache_raw_read_unsigned (irp->regcache,
4145 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4146 &offset64);
4147 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4148 regcache_raw_read_unsigned (irp->regcache,
4149 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4150 &offset64);
4151 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4152 break;
4153 case 3:
cf648174
HZ
4154 regcache_raw_read_unsigned (irp->regcache,
4155 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4156 &offset64);
4157 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4158 regcache_raw_read_unsigned (irp->regcache,
4159 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4160 &offset64);
4161 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4162 break;
4163 case 4:
cf648174
HZ
4164 regcache_raw_read_unsigned (irp->regcache,
4165 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4166 &offset64);
4167 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4168 break;
4169 case 5:
cf648174
HZ
4170 regcache_raw_read_unsigned (irp->regcache,
4171 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4172 &offset64);
4173 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4174 break;
4175 case 6:
cf648174
HZ
4176 regcache_raw_read_unsigned (irp->regcache,
4177 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4178 &offset64);
4179 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4180 break;
4181 case 7:
cf648174
HZ
4182 regcache_raw_read_unsigned (irp->regcache,
4183 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4184 &offset64);
4185 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4186 break;
4187 }
4188 *addr &= 0xffff;
4189 }
c4fc7f1b 4190
01fe1b41 4191 no_rm:
7ad10968
HZ
4192 return 0;
4193}
c4fc7f1b 4194
99c1624c
PA
4195/* Record the address and contents of the memory that will be changed
4196 by the current instruction. Return -1 if something goes wrong, 0
4197 otherwise. */
356a6b3e 4198
7ad10968
HZ
4199static int
4200i386_record_lea_modrm (struct i386_record_s *irp)
4201{
cf648174
HZ
4202 struct gdbarch *gdbarch = irp->gdbarch;
4203 uint64_t addr;
356a6b3e 4204
d7877f7e 4205 if (irp->override >= 0)
7ad10968 4206 {
bb08c432
HZ
4207 if (record_memory_query)
4208 {
4209 int q;
4210
4211 target_terminal_ours ();
4212 q = yquery (_("\
4213Process record ignores the memory change of instruction at address %s\n\
4214because it can't get the value of the segment register.\n\
4215Do you want to stop the program?"),
4216 paddress (gdbarch, irp->orig_addr));
4217 target_terminal_inferior ();
4218 if (q)
4219 return -1;
4220 }
4221
7ad10968
HZ
4222 return 0;
4223 }
61113f8b 4224
7ad10968
HZ
4225 if (i386_record_lea_modrm_addr (irp, &addr))
4226 return -1;
96297dab 4227
7ad10968
HZ
4228 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4229 return -1;
a62cc96e 4230
7ad10968
HZ
4231 return 0;
4232}
b6197528 4233
99c1624c
PA
4234/* Record the effects of a push operation. Return -1 if something
4235 goes wrong, 0 otherwise. */
cf648174
HZ
4236
4237static int
4238i386_record_push (struct i386_record_s *irp, int size)
4239{
648d0c8b 4240 ULONGEST addr;
cf648174
HZ
4241
4242 if (record_arch_list_add_reg (irp->regcache,
4243 irp->regmap[X86_RECORD_RESP_REGNUM]))
4244 return -1;
4245 regcache_raw_read_unsigned (irp->regcache,
4246 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
4247 &addr);
4248 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4249 return -1;
4250
4251 return 0;
4252}
4253
0289bdd7
MS
4254
4255/* Defines contents to record. */
4256#define I386_SAVE_FPU_REGS 0xfffd
4257#define I386_SAVE_FPU_ENV 0xfffe
4258#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4259
99c1624c
PA
4260/* Record the values of the floating point registers which will be
4261 changed by the current instruction. Returns -1 if something is
4262 wrong, 0 otherwise. */
0289bdd7
MS
4263
4264static int i386_record_floats (struct gdbarch *gdbarch,
4265 struct i386_record_s *ir,
4266 uint32_t iregnum)
4267{
4268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4269 int i;
4270
4271 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4272 happen. Currently we store st0-st7 registers, but we need not store all
4273 registers all the time, in future we use ftag register and record only
4274 those who are not marked as an empty. */
4275
4276 if (I386_SAVE_FPU_REGS == iregnum)
4277 {
4278 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4279 {
4280 if (record_arch_list_add_reg (ir->regcache, i))
4281 return -1;
4282 }
4283 }
4284 else if (I386_SAVE_FPU_ENV == iregnum)
4285 {
4286 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4287 {
4288 if (record_arch_list_add_reg (ir->regcache, i))
4289 return -1;
4290 }
4291 }
4292 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4293 {
4294 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4295 {
4296 if (record_arch_list_add_reg (ir->regcache, i))
4297 return -1;
4298 }
4299 }
4300 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4301 (iregnum <= I387_FOP_REGNUM (tdep)))
4302 {
4303 if (record_arch_list_add_reg (ir->regcache,iregnum))
4304 return -1;
4305 }
4306 else
4307 {
4308 /* Parameter error. */
4309 return -1;
4310 }
4311 if(I386_SAVE_FPU_ENV != iregnum)
4312 {
4313 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4314 {
4315 if (record_arch_list_add_reg (ir->regcache, i))
4316 return -1;
4317 }
4318 }
4319 return 0;
4320}
4321
99c1624c
PA
4322/* Parse the current instruction, and record the values of the
4323 registers and memory that will be changed by the current
4324 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4325
cf648174
HZ
4326#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4327 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4328
a6b808b4 4329int
7ad10968 4330i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4331 CORE_ADDR input_addr)
7ad10968 4332{
60a1502a 4333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4334 int prefixes = 0;
580879fc 4335 int regnum = 0;
425b824a 4336 uint32_t opcode;
f4644a3f 4337 uint8_t opcode8;
648d0c8b 4338 ULONGEST addr;
60a1502a 4339 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4340 struct i386_record_s ir;
0289bdd7 4341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4342 int rex = 0;
4343 uint8_t rex_w = -1;
4344 uint8_t rex_r = 0;
7ad10968 4345
8408d274 4346 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4347 ir.regcache = regcache;
648d0c8b
MS
4348 ir.addr = input_addr;
4349 ir.orig_addr = input_addr;
7ad10968
HZ
4350 ir.aflag = 1;
4351 ir.dflag = 1;
cf648174
HZ
4352 ir.override = -1;
4353 ir.popl_esp_hack = 0;
a3c4230a 4354 ir.regmap = tdep->record_regmap;
cf648174 4355 ir.gdbarch = gdbarch;
7ad10968
HZ
4356
4357 if (record_debug > 1)
4358 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4359 "addr = %s\n",
4360 paddress (gdbarch, ir.addr));
7ad10968
HZ
4361
4362 /* prefixes */
4363 while (1)
4364 {
4ffa4fc7
PA
4365 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4366 return -1;
7ad10968 4367 ir.addr++;
425b824a 4368 switch (opcode8) /* Instruction prefixes */
7ad10968 4369 {
01fe1b41 4370 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4371 prefixes |= PREFIX_REPZ;
4372 break;
01fe1b41 4373 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4374 prefixes |= PREFIX_REPNZ;
4375 break;
01fe1b41 4376 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4377 prefixes |= PREFIX_LOCK;
4378 break;
01fe1b41 4379 case CS_PREFIX_OPCODE:
cf648174 4380 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4381 break;
01fe1b41 4382 case SS_PREFIX_OPCODE:
cf648174 4383 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4384 break;
01fe1b41 4385 case DS_PREFIX_OPCODE:
cf648174 4386 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4387 break;
01fe1b41 4388 case ES_PREFIX_OPCODE:
cf648174 4389 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4390 break;
01fe1b41 4391 case FS_PREFIX_OPCODE:
cf648174 4392 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4393 break;
01fe1b41 4394 case GS_PREFIX_OPCODE:
cf648174 4395 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4396 break;
01fe1b41 4397 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4398 prefixes |= PREFIX_DATA;
4399 break;
01fe1b41 4400 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4401 prefixes |= PREFIX_ADDR;
4402 break;
d691bec7
MS
4403 case 0x40: /* i386 inc %eax */
4404 case 0x41: /* i386 inc %ecx */
4405 case 0x42: /* i386 inc %edx */
4406 case 0x43: /* i386 inc %ebx */
4407 case 0x44: /* i386 inc %esp */
4408 case 0x45: /* i386 inc %ebp */
4409 case 0x46: /* i386 inc %esi */
4410 case 0x47: /* i386 inc %edi */
4411 case 0x48: /* i386 dec %eax */
4412 case 0x49: /* i386 dec %ecx */
4413 case 0x4a: /* i386 dec %edx */
4414 case 0x4b: /* i386 dec %ebx */
4415 case 0x4c: /* i386 dec %esp */
4416 case 0x4d: /* i386 dec %ebp */
4417 case 0x4e: /* i386 dec %esi */
4418 case 0x4f: /* i386 dec %edi */
4419 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
4420 {
4421 /* REX */
4422 rex = 1;
425b824a
MS
4423 rex_w = (opcode8 >> 3) & 1;
4424 rex_r = (opcode8 & 0x4) << 1;
4425 ir.rex_x = (opcode8 & 0x2) << 2;
4426 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 4427 }
d691bec7
MS
4428 else /* 32 bit target */
4429 goto out_prefixes;
cf648174 4430 break;
7ad10968
HZ
4431 default:
4432 goto out_prefixes;
4433 break;
4434 }
4435 }
01fe1b41 4436 out_prefixes:
cf648174
HZ
4437 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4438 {
4439 ir.dflag = 2;
4440 }
4441 else
4442 {
4443 if (prefixes & PREFIX_DATA)
4444 ir.dflag ^= 1;
4445 }
7ad10968
HZ
4446 if (prefixes & PREFIX_ADDR)
4447 ir.aflag ^= 1;
cf648174
HZ
4448 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4449 ir.aflag = 2;
7ad10968 4450
1777feb0 4451 /* Now check op code. */
425b824a 4452 opcode = (uint32_t) opcode8;
01fe1b41 4453 reswitch:
7ad10968
HZ
4454 switch (opcode)
4455 {
4456 case 0x0f:
4ffa4fc7
PA
4457 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4458 return -1;
7ad10968 4459 ir.addr++;
a3c4230a 4460 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
4461 goto reswitch;
4462 break;
93924b6b 4463
a38bba38 4464 case 0x00: /* arith & logic */
7ad10968
HZ
4465 case 0x01:
4466 case 0x02:
4467 case 0x03:
4468 case 0x04:
4469 case 0x05:
4470 case 0x08:
4471 case 0x09:
4472 case 0x0a:
4473 case 0x0b:
4474 case 0x0c:
4475 case 0x0d:
4476 case 0x10:
4477 case 0x11:
4478 case 0x12:
4479 case 0x13:
4480 case 0x14:
4481 case 0x15:
4482 case 0x18:
4483 case 0x19:
4484 case 0x1a:
4485 case 0x1b:
4486 case 0x1c:
4487 case 0x1d:
4488 case 0x20:
4489 case 0x21:
4490 case 0x22:
4491 case 0x23:
4492 case 0x24:
4493 case 0x25:
4494 case 0x28:
4495 case 0x29:
4496 case 0x2a:
4497 case 0x2b:
4498 case 0x2c:
4499 case 0x2d:
4500 case 0x30:
4501 case 0x31:
4502 case 0x32:
4503 case 0x33:
4504 case 0x34:
4505 case 0x35:
4506 case 0x38:
4507 case 0x39:
4508 case 0x3a:
4509 case 0x3b:
4510 case 0x3c:
4511 case 0x3d:
4512 if (((opcode >> 3) & 7) != OP_CMPL)
4513 {
4514 if ((opcode & 1) == 0)
4515 ir.ot = OT_BYTE;
4516 else
4517 ir.ot = ir.dflag + OT_WORD;
93924b6b 4518
7ad10968
HZ
4519 switch ((opcode >> 1) & 3)
4520 {
a38bba38 4521 case 0: /* OP Ev, Gv */
7ad10968
HZ
4522 if (i386_record_modrm (&ir))
4523 return -1;
4524 if (ir.mod != 3)
4525 {
4526 if (i386_record_lea_modrm (&ir))
4527 return -1;
4528 }
4529 else
4530 {
cf648174
HZ
4531 ir.rm |= ir.rex_b;
4532 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4533 ir.rm &= 0x3;
cf648174 4534 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4535 }
4536 break;
a38bba38 4537 case 1: /* OP Gv, Ev */
7ad10968
HZ
4538 if (i386_record_modrm (&ir))
4539 return -1;
cf648174
HZ
4540 ir.reg |= rex_r;
4541 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4542 ir.reg &= 0x3;
cf648174 4543 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4544 break;
a38bba38 4545 case 2: /* OP A, Iv */
cf648174 4546 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4547 break;
4548 }
4549 }
cf648174 4550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4551 break;
42fdc8df 4552
a38bba38 4553 case 0x80: /* GRP1 */
7ad10968
HZ
4554 case 0x81:
4555 case 0x82:
4556 case 0x83:
4557 if (i386_record_modrm (&ir))
4558 return -1;
8201327c 4559
7ad10968
HZ
4560 if (ir.reg != OP_CMPL)
4561 {
4562 if ((opcode & 1) == 0)
4563 ir.ot = OT_BYTE;
4564 else
4565 ir.ot = ir.dflag + OT_WORD;
28fc6740 4566
7ad10968
HZ
4567 if (ir.mod != 3)
4568 {
cf648174
HZ
4569 if (opcode == 0x83)
4570 ir.rip_offset = 1;
4571 else
4572 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4573 if (i386_record_lea_modrm (&ir))
4574 return -1;
4575 }
4576 else
cf648174 4577 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4578 }
cf648174 4579 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4580 break;
5e3397bb 4581
a38bba38 4582 case 0x40: /* inc */
7ad10968
HZ
4583 case 0x41:
4584 case 0x42:
4585 case 0x43:
4586 case 0x44:
4587 case 0x45:
4588 case 0x46:
4589 case 0x47:
a38bba38
MS
4590
4591 case 0x48: /* dec */
7ad10968
HZ
4592 case 0x49:
4593 case 0x4a:
4594 case 0x4b:
4595 case 0x4c:
4596 case 0x4d:
4597 case 0x4e:
4598 case 0x4f:
a38bba38 4599
cf648174
HZ
4600 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4601 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4602 break;
acd5c798 4603
a38bba38 4604 case 0xf6: /* GRP3 */
7ad10968
HZ
4605 case 0xf7:
4606 if ((opcode & 1) == 0)
4607 ir.ot = OT_BYTE;
4608 else
4609 ir.ot = ir.dflag + OT_WORD;
4610 if (i386_record_modrm (&ir))
4611 return -1;
acd5c798 4612
cf648174
HZ
4613 if (ir.mod != 3 && ir.reg == 0)
4614 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4615
7ad10968
HZ
4616 switch (ir.reg)
4617 {
a38bba38 4618 case 0: /* test */
cf648174 4619 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4620 break;
a38bba38
MS
4621 case 2: /* not */
4622 case 3: /* neg */
7ad10968
HZ
4623 if (ir.mod != 3)
4624 {
4625 if (i386_record_lea_modrm (&ir))
4626 return -1;
4627 }
4628 else
4629 {
cf648174
HZ
4630 ir.rm |= ir.rex_b;
4631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4632 ir.rm &= 0x3;
cf648174 4633 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4634 }
a38bba38 4635 if (ir.reg == 3) /* neg */
cf648174 4636 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4637 break;
a38bba38
MS
4638 case 4: /* mul */
4639 case 5: /* imul */
4640 case 6: /* div */
4641 case 7: /* idiv */
cf648174 4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4643 if (ir.ot != OT_BYTE)
cf648174
HZ
4644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4646 break;
4647 default:
4648 ir.addr -= 2;
4649 opcode = opcode << 8 | ir.modrm;
4650 goto no_support;
4651 break;
4652 }
4653 break;
4654
a38bba38
MS
4655 case 0xfe: /* GRP4 */
4656 case 0xff: /* GRP5 */
7ad10968
HZ
4657 if (i386_record_modrm (&ir))
4658 return -1;
4659 if (ir.reg >= 2 && opcode == 0xfe)
4660 {
4661 ir.addr -= 2;
4662 opcode = opcode << 8 | ir.modrm;
4663 goto no_support;
4664 }
7ad10968
HZ
4665 switch (ir.reg)
4666 {
a38bba38
MS
4667 case 0: /* inc */
4668 case 1: /* dec */
cf648174
HZ
4669 if ((opcode & 1) == 0)
4670 ir.ot = OT_BYTE;
4671 else
4672 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4673 if (ir.mod != 3)
4674 {
4675 if (i386_record_lea_modrm (&ir))
4676 return -1;
4677 }
4678 else
4679 {
cf648174
HZ
4680 ir.rm |= ir.rex_b;
4681 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4682 ir.rm &= 0x3;
cf648174 4683 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4684 }
cf648174 4685 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4686 break;
a38bba38 4687 case 2: /* call */
cf648174
HZ
4688 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4689 ir.dflag = 2;
4690 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4691 return -1;
cf648174 4692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4693 break;
a38bba38 4694 case 3: /* lcall */
cf648174
HZ
4695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4696 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4697 return -1;
cf648174 4698 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4699 break;
a38bba38
MS
4700 case 4: /* jmp */
4701 case 5: /* ljmp */
cf648174
HZ
4702 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4703 break;
a38bba38 4704 case 6: /* push */
cf648174
HZ
4705 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4706 ir.dflag = 2;
4707 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4708 return -1;
7ad10968
HZ
4709 break;
4710 default:
4711 ir.addr -= 2;
4712 opcode = opcode << 8 | ir.modrm;
4713 goto no_support;
4714 break;
4715 }
4716 break;
4717
a38bba38 4718 case 0x84: /* test */
7ad10968
HZ
4719 case 0x85:
4720 case 0xa8:
4721 case 0xa9:
cf648174 4722 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4723 break;
4724
a38bba38 4725 case 0x98: /* CWDE/CBW */
cf648174 4726 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4727 break;
4728
a38bba38 4729 case 0x99: /* CDQ/CWD */
cf648174
HZ
4730 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4731 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4732 break;
4733
a38bba38 4734 case 0x0faf: /* imul */
7ad10968
HZ
4735 case 0x69:
4736 case 0x6b:
4737 ir.ot = ir.dflag + OT_WORD;
4738 if (i386_record_modrm (&ir))
4739 return -1;
cf648174
HZ
4740 if (opcode == 0x69)
4741 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4742 else if (opcode == 0x6b)
4743 ir.rip_offset = 1;
4744 ir.reg |= rex_r;
4745 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4746 ir.reg &= 0x3;
cf648174
HZ
4747 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4748 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4749 break;
4750
a38bba38 4751 case 0x0fc0: /* xadd */
7ad10968
HZ
4752 case 0x0fc1:
4753 if ((opcode & 1) == 0)
4754 ir.ot = OT_BYTE;
4755 else
4756 ir.ot = ir.dflag + OT_WORD;
4757 if (i386_record_modrm (&ir))
4758 return -1;
cf648174 4759 ir.reg |= rex_r;
7ad10968
HZ
4760 if (ir.mod == 3)
4761 {
cf648174 4762 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4763 ir.reg &= 0x3;
cf648174
HZ
4764 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4765 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4766 ir.rm &= 0x3;
cf648174 4767 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4768 }
4769 else
4770 {
4771 if (i386_record_lea_modrm (&ir))
4772 return -1;
cf648174 4773 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4774 ir.reg &= 0x3;
cf648174 4775 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4776 }
cf648174 4777 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4778 break;
4779
a38bba38 4780 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4781 case 0x0fb1:
4782 if ((opcode & 1) == 0)
4783 ir.ot = OT_BYTE;
4784 else
4785 ir.ot = ir.dflag + OT_WORD;
4786 if (i386_record_modrm (&ir))
4787 return -1;
4788 if (ir.mod == 3)
4789 {
cf648174
HZ
4790 ir.reg |= rex_r;
4791 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4792 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4793 ir.reg &= 0x3;
cf648174 4794 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4795 }
4796 else
4797 {
cf648174 4798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4799 if (i386_record_lea_modrm (&ir))
4800 return -1;
4801 }
cf648174 4802 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4803 break;
4804
a38bba38 4805 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4806 if (i386_record_modrm (&ir))
4807 return -1;
4808 if (ir.mod == 3)
4809 {
4810 ir.addr -= 2;
4811 opcode = opcode << 8 | ir.modrm;
4812 goto no_support;
4813 }
cf648174
HZ
4814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4816 if (i386_record_lea_modrm (&ir))
4817 return -1;
cf648174 4818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4819 break;
4820
a38bba38 4821 case 0x50: /* push */
7ad10968
HZ
4822 case 0x51:
4823 case 0x52:
4824 case 0x53:
4825 case 0x54:
4826 case 0x55:
4827 case 0x56:
4828 case 0x57:
4829 case 0x68:
4830 case 0x6a:
cf648174
HZ
4831 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4832 ir.dflag = 2;
4833 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4834 return -1;
4835 break;
4836
a38bba38
MS
4837 case 0x06: /* push es */
4838 case 0x0e: /* push cs */
4839 case 0x16: /* push ss */
4840 case 0x1e: /* push ds */
cf648174
HZ
4841 if (ir.regmap[X86_RECORD_R8_REGNUM])
4842 {
4843 ir.addr -= 1;
4844 goto no_support;
4845 }
4846 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4847 return -1;
4848 break;
4849
a38bba38
MS
4850 case 0x0fa0: /* push fs */
4851 case 0x0fa8: /* push gs */
cf648174
HZ
4852 if (ir.regmap[X86_RECORD_R8_REGNUM])
4853 {
4854 ir.addr -= 2;
4855 goto no_support;
4856 }
4857 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4858 return -1;
cf648174
HZ
4859 break;
4860
a38bba38 4861 case 0x60: /* pusha */
cf648174
HZ
4862 if (ir.regmap[X86_RECORD_R8_REGNUM])
4863 {
4864 ir.addr -= 1;
4865 goto no_support;
4866 }
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4868 return -1;
4869 break;
4870
a38bba38 4871 case 0x58: /* pop */
7ad10968
HZ
4872 case 0x59:
4873 case 0x5a:
4874 case 0x5b:
4875 case 0x5c:
4876 case 0x5d:
4877 case 0x5e:
4878 case 0x5f:
cf648174
HZ
4879 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4880 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4881 break;
4882
a38bba38 4883 case 0x61: /* popa */
cf648174
HZ
4884 if (ir.regmap[X86_RECORD_R8_REGNUM])
4885 {
4886 ir.addr -= 1;
4887 goto no_support;
7ad10968 4888 }
425b824a
MS
4889 for (regnum = X86_RECORD_REAX_REGNUM;
4890 regnum <= X86_RECORD_REDI_REGNUM;
4891 regnum++)
4892 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4893 break;
4894
a38bba38 4895 case 0x8f: /* pop */
cf648174
HZ
4896 if (ir.regmap[X86_RECORD_R8_REGNUM])
4897 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4898 else
4899 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4900 if (i386_record_modrm (&ir))
4901 return -1;
4902 if (ir.mod == 3)
cf648174 4903 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4904 else
4905 {
cf648174 4906 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4907 if (i386_record_lea_modrm (&ir))
4908 return -1;
4909 }
cf648174 4910 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4911 break;
4912
a38bba38 4913 case 0xc8: /* enter */
cf648174
HZ
4914 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4915 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4916 ir.dflag = 2;
4917 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4918 return -1;
4919 break;
4920
a38bba38 4921 case 0xc9: /* leave */
cf648174
HZ
4922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4923 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4924 break;
4925
a38bba38 4926 case 0x07: /* pop es */
cf648174
HZ
4927 if (ir.regmap[X86_RECORD_R8_REGNUM])
4928 {
4929 ir.addr -= 1;
4930 goto no_support;
4931 }
4932 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4933 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4934 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4935 break;
4936
a38bba38 4937 case 0x17: /* pop ss */
cf648174
HZ
4938 if (ir.regmap[X86_RECORD_R8_REGNUM])
4939 {
4940 ir.addr -= 1;
4941 goto no_support;
4942 }
4943 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4944 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4945 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4946 break;
4947
a38bba38 4948 case 0x1f: /* pop ds */
cf648174
HZ
4949 if (ir.regmap[X86_RECORD_R8_REGNUM])
4950 {
4951 ir.addr -= 1;
4952 goto no_support;
4953 }
4954 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4955 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4957 break;
4958
a38bba38 4959 case 0x0fa1: /* pop fs */
cf648174
HZ
4960 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4961 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4962 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4963 break;
4964
a38bba38 4965 case 0x0fa9: /* pop gs */
cf648174
HZ
4966 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4967 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4968 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4969 break;
4970
a38bba38 4971 case 0x88: /* mov */
7ad10968
HZ
4972 case 0x89:
4973 case 0xc6:
4974 case 0xc7:
4975 if ((opcode & 1) == 0)
4976 ir.ot = OT_BYTE;
4977 else
4978 ir.ot = ir.dflag + OT_WORD;
4979
4980 if (i386_record_modrm (&ir))
4981 return -1;
4982
4983 if (ir.mod != 3)
4984 {
cf648174
HZ
4985 if (opcode == 0xc6 || opcode == 0xc7)
4986 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4987 if (i386_record_lea_modrm (&ir))
4988 return -1;
4989 }
4990 else
4991 {
cf648174
HZ
4992 if (opcode == 0xc6 || opcode == 0xc7)
4993 ir.rm |= ir.rex_b;
4994 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4995 ir.rm &= 0x3;
cf648174 4996 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4997 }
7ad10968 4998 break;
cf648174 4999
a38bba38 5000 case 0x8a: /* mov */
7ad10968
HZ
5001 case 0x8b:
5002 if ((opcode & 1) == 0)
5003 ir.ot = OT_BYTE;
5004 else
5005 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5006 if (i386_record_modrm (&ir))
5007 return -1;
cf648174
HZ
5008 ir.reg |= rex_r;
5009 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5010 ir.reg &= 0x3;
cf648174
HZ
5011 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5012 break;
7ad10968 5013
a38bba38 5014 case 0x8c: /* mov seg */
cf648174 5015 if (i386_record_modrm (&ir))
7ad10968 5016 return -1;
cf648174
HZ
5017 if (ir.reg > 5)
5018 {
5019 ir.addr -= 2;
5020 opcode = opcode << 8 | ir.modrm;
5021 goto no_support;
5022 }
5023
5024 if (ir.mod == 3)
5025 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5026 else
5027 {
5028 ir.ot = OT_WORD;
5029 if (i386_record_lea_modrm (&ir))
5030 return -1;
5031 }
7ad10968
HZ
5032 break;
5033
a38bba38 5034 case 0x8e: /* mov seg */
7ad10968
HZ
5035 if (i386_record_modrm (&ir))
5036 return -1;
7ad10968
HZ
5037 switch (ir.reg)
5038 {
5039 case 0:
425b824a 5040 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5041 break;
5042 case 2:
425b824a 5043 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5044 break;
5045 case 3:
425b824a 5046 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5047 break;
5048 case 4:
425b824a 5049 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5050 break;
5051 case 5:
425b824a 5052 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5053 break;
5054 default:
5055 ir.addr -= 2;
5056 opcode = opcode << 8 | ir.modrm;
5057 goto no_support;
5058 break;
5059 }
425b824a 5060 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 5061 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5062 break;
5063
a38bba38
MS
5064 case 0x0fb6: /* movzbS */
5065 case 0x0fb7: /* movzwS */
5066 case 0x0fbe: /* movsbS */
5067 case 0x0fbf: /* movswS */
7ad10968
HZ
5068 if (i386_record_modrm (&ir))
5069 return -1;
cf648174 5070 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5071 break;
5072
a38bba38 5073 case 0x8d: /* lea */
7ad10968
HZ
5074 if (i386_record_modrm (&ir))
5075 return -1;
5076 if (ir.mod == 3)
5077 {
5078 ir.addr -= 2;
5079 opcode = opcode << 8 | ir.modrm;
5080 goto no_support;
5081 }
7ad10968 5082 ir.ot = ir.dflag;
cf648174
HZ
5083 ir.reg |= rex_r;
5084 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5085 ir.reg &= 0x3;
cf648174 5086 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5087 break;
5088
a38bba38 5089 case 0xa0: /* mov EAX */
7ad10968 5090 case 0xa1:
a38bba38
MS
5091
5092 case 0xd7: /* xlat */
cf648174 5093 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5094 break;
5095
a38bba38 5096 case 0xa2: /* mov EAX */
7ad10968 5097 case 0xa3:
d7877f7e 5098 if (ir.override >= 0)
cf648174 5099 {
bb08c432
HZ
5100 if (record_memory_query)
5101 {
5102 int q;
5103
5104 target_terminal_ours ();
5105 q = yquery (_("\
5106Process record ignores the memory change of instruction at address %s\n\
5107because it can't get the value of the segment register.\n\
5108Do you want to stop the program?"),
5109 paddress (gdbarch, ir.orig_addr));
5110 target_terminal_inferior ();
5111 if (q)
5112 return -1;
5113 }
cf648174
HZ
5114 }
5115 else
5116 {
5117 if ((opcode & 1) == 0)
5118 ir.ot = OT_BYTE;
5119 else
5120 ir.ot = ir.dflag + OT_WORD;
5121 if (ir.aflag == 2)
5122 {
4ffa4fc7
PA
5123 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5124 return -1;
cf648174 5125 ir.addr += 8;
60a1502a 5126 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5127 }
5128 else if (ir.aflag)
5129 {
4ffa4fc7
PA
5130 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5131 return -1;
cf648174 5132 ir.addr += 4;
60a1502a 5133 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5134 }
5135 else
5136 {
4ffa4fc7
PA
5137 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5138 return -1;
cf648174 5139 ir.addr += 2;
60a1502a 5140 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5141 }
648d0c8b 5142 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5143 return -1;
5144 }
7ad10968
HZ
5145 break;
5146
a38bba38 5147 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5148 case 0xb1:
5149 case 0xb2:
5150 case 0xb3:
5151 case 0xb4:
5152 case 0xb5:
5153 case 0xb6:
5154 case 0xb7:
cf648174
HZ
5155 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5156 ? ((opcode & 0x7) | ir.rex_b)
5157 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5158 break;
5159
a38bba38 5160 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5161 case 0xb9:
5162 case 0xba:
5163 case 0xbb:
5164 case 0xbc:
5165 case 0xbd:
5166 case 0xbe:
5167 case 0xbf:
cf648174 5168 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5169 break;
5170
a38bba38 5171 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5172 case 0x92:
5173 case 0x93:
5174 case 0x94:
5175 case 0x95:
5176 case 0x96:
5177 case 0x97:
cf648174
HZ
5178 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5179 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5180 break;
5181
a38bba38 5182 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5183 case 0x87:
5184 if ((opcode & 1) == 0)
5185 ir.ot = OT_BYTE;
5186 else
5187 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5188 if (i386_record_modrm (&ir))
5189 return -1;
7ad10968
HZ
5190 if (ir.mod == 3)
5191 {
86839d38 5192 ir.rm |= ir.rex_b;
cf648174
HZ
5193 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5194 ir.rm &= 0x3;
5195 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5196 }
5197 else
5198 {
5199 if (i386_record_lea_modrm (&ir))
5200 return -1;
5201 }
cf648174
HZ
5202 ir.reg |= rex_r;
5203 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5204 ir.reg &= 0x3;
cf648174 5205 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5206 break;
5207
a38bba38
MS
5208 case 0xc4: /* les Gv */
5209 case 0xc5: /* lds Gv */
cf648174
HZ
5210 if (ir.regmap[X86_RECORD_R8_REGNUM])
5211 {
5212 ir.addr -= 1;
5213 goto no_support;
5214 }
d3f323f3 5215 /* FALLTHROUGH */
a38bba38
MS
5216 case 0x0fb2: /* lss Gv */
5217 case 0x0fb4: /* lfs Gv */
5218 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 if (ir.mod == 3)
5222 {
5223 if (opcode > 0xff)
5224 ir.addr -= 3;
5225 else
5226 ir.addr -= 2;
5227 opcode = opcode << 8 | ir.modrm;
5228 goto no_support;
5229 }
7ad10968
HZ
5230 switch (opcode)
5231 {
a38bba38 5232 case 0xc4: /* les Gv */
425b824a 5233 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5234 break;
a38bba38 5235 case 0xc5: /* lds Gv */
425b824a 5236 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5237 break;
a38bba38 5238 case 0x0fb2: /* lss Gv */
425b824a 5239 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5240 break;
a38bba38 5241 case 0x0fb4: /* lfs Gv */
425b824a 5242 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5243 break;
a38bba38 5244 case 0x0fb5: /* lgs Gv */
425b824a 5245 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5246 break;
5247 }
425b824a 5248 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
5249 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5250 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5251 break;
5252
a38bba38 5253 case 0xc0: /* shifts */
7ad10968
HZ
5254 case 0xc1:
5255 case 0xd0:
5256 case 0xd1:
5257 case 0xd2:
5258 case 0xd3:
5259 if ((opcode & 1) == 0)
5260 ir.ot = OT_BYTE;
5261 else
5262 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5263 if (i386_record_modrm (&ir))
5264 return -1;
7ad10968
HZ
5265 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5266 {
5267 if (i386_record_lea_modrm (&ir))
5268 return -1;
5269 }
5270 else
5271 {
cf648174
HZ
5272 ir.rm |= ir.rex_b;
5273 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5274 ir.rm &= 0x3;
cf648174 5275 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5276 }
cf648174 5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5278 break;
5279
5280 case 0x0fa4:
5281 case 0x0fa5:
5282 case 0x0fac:
5283 case 0x0fad:
5284 if (i386_record_modrm (&ir))
5285 return -1;
5286 if (ir.mod == 3)
5287 {
5288 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5289 return -1;
5290 }
5291 else
5292 {
5293 if (i386_record_lea_modrm (&ir))
5294 return -1;
5295 }
5296 break;
5297
a38bba38 5298 case 0xd8: /* Floats. */
7ad10968
HZ
5299 case 0xd9:
5300 case 0xda:
5301 case 0xdb:
5302 case 0xdc:
5303 case 0xdd:
5304 case 0xde:
5305 case 0xdf:
5306 if (i386_record_modrm (&ir))
5307 return -1;
5308 ir.reg |= ((opcode & 7) << 3);
5309 if (ir.mod != 3)
5310 {
1777feb0 5311 /* Memory. */
955db0c0 5312 uint64_t addr64;
7ad10968 5313
955db0c0 5314 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5315 return -1;
5316 switch (ir.reg)
5317 {
7ad10968 5318 case 0x02:
0289bdd7
MS
5319 case 0x12:
5320 case 0x22:
5321 case 0x32:
5322 /* For fcom, ficom nothing to do. */
5323 break;
7ad10968 5324 case 0x03:
0289bdd7
MS
5325 case 0x13:
5326 case 0x23:
5327 case 0x33:
5328 /* For fcomp, ficomp pop FPU stack, store all. */
5329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5330 return -1;
5331 break;
5332 case 0x00:
5333 case 0x01:
7ad10968
HZ
5334 case 0x04:
5335 case 0x05:
5336 case 0x06:
5337 case 0x07:
5338 case 0x10:
5339 case 0x11:
7ad10968
HZ
5340 case 0x14:
5341 case 0x15:
5342 case 0x16:
5343 case 0x17:
5344 case 0x20:
5345 case 0x21:
7ad10968
HZ
5346 case 0x24:
5347 case 0x25:
5348 case 0x26:
5349 case 0x27:
5350 case 0x30:
5351 case 0x31:
7ad10968
HZ
5352 case 0x34:
5353 case 0x35:
5354 case 0x36:
5355 case 0x37:
0289bdd7
MS
5356 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5357 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5358 of code, always affects st(0) register. */
5359 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5360 return -1;
7ad10968
HZ
5361 break;
5362 case 0x08:
5363 case 0x0a:
5364 case 0x0b:
5365 case 0x18:
5366 case 0x19:
5367 case 0x1a:
5368 case 0x1b:
0289bdd7 5369 case 0x1d:
7ad10968
HZ
5370 case 0x28:
5371 case 0x29:
5372 case 0x2a:
5373 case 0x2b:
5374 case 0x38:
5375 case 0x39:
5376 case 0x3a:
5377 case 0x3b:
0289bdd7
MS
5378 case 0x3c:
5379 case 0x3d:
7ad10968
HZ
5380 switch (ir.reg & 7)
5381 {
5382 case 0:
0289bdd7
MS
5383 /* Handling fld, fild. */
5384 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5385 return -1;
7ad10968
HZ
5386 break;
5387 case 1:
5388 switch (ir.reg >> 4)
5389 {
5390 case 0:
955db0c0 5391 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5392 return -1;
5393 break;
5394 case 2:
955db0c0 5395 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5396 return -1;
5397 break;
5398 case 3:
0289bdd7 5399 break;
7ad10968 5400 default:
955db0c0 5401 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5402 return -1;
5403 break;
5404 }
5405 break;
5406 default:
5407 switch (ir.reg >> 4)
5408 {
5409 case 0:
955db0c0 5410 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
5411 return -1;
5412 if (3 == (ir.reg & 7))
5413 {
5414 /* For fstp m32fp. */
5415 if (i386_record_floats (gdbarch, &ir,
5416 I386_SAVE_FPU_REGS))
5417 return -1;
5418 }
5419 break;
7ad10968 5420 case 1:
955db0c0 5421 if (record_arch_list_add_mem (addr64, 4))
7ad10968 5422 return -1;
0289bdd7
MS
5423 if ((3 == (ir.reg & 7))
5424 || (5 == (ir.reg & 7))
5425 || (7 == (ir.reg & 7)))
5426 {
5427 /* For fstp insn. */
5428 if (i386_record_floats (gdbarch, &ir,
5429 I386_SAVE_FPU_REGS))
5430 return -1;
5431 }
7ad10968
HZ
5432 break;
5433 case 2:
955db0c0 5434 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5435 return -1;
0289bdd7
MS
5436 if (3 == (ir.reg & 7))
5437 {
5438 /* For fstp m64fp. */
5439 if (i386_record_floats (gdbarch, &ir,
5440 I386_SAVE_FPU_REGS))
5441 return -1;
5442 }
7ad10968
HZ
5443 break;
5444 case 3:
0289bdd7
MS
5445 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5446 {
5447 /* For fistp, fbld, fild, fbstp. */
5448 if (i386_record_floats (gdbarch, &ir,
5449 I386_SAVE_FPU_REGS))
5450 return -1;
5451 }
5452 /* Fall through */
7ad10968 5453 default:
955db0c0 5454 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5455 return -1;
5456 break;
5457 }
5458 break;
5459 }
5460 break;
5461 case 0x0c:
0289bdd7
MS
5462 /* Insn fldenv. */
5463 if (i386_record_floats (gdbarch, &ir,
5464 I386_SAVE_FPU_ENV_REG_STACK))
5465 return -1;
5466 break;
7ad10968 5467 case 0x0d:
0289bdd7
MS
5468 /* Insn fldcw. */
5469 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5470 return -1;
5471 break;
7ad10968 5472 case 0x2c:
0289bdd7
MS
5473 /* Insn frstor. */
5474 if (i386_record_floats (gdbarch, &ir,
5475 I386_SAVE_FPU_ENV_REG_STACK))
5476 return -1;
7ad10968
HZ
5477 break;
5478 case 0x0e:
5479 if (ir.dflag)
5480 {
955db0c0 5481 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
5482 return -1;
5483 }
5484 else
5485 {
955db0c0 5486 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
5487 return -1;
5488 }
5489 break;
5490 case 0x0f:
5491 case 0x2f:
955db0c0 5492 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5493 return -1;
0289bdd7
MS
5494 /* Insn fstp, fbstp. */
5495 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5496 return -1;
7ad10968
HZ
5497 break;
5498 case 0x1f:
5499 case 0x3e:
955db0c0 5500 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
5501 return -1;
5502 break;
5503 case 0x2e:
5504 if (ir.dflag)
5505 {
955db0c0 5506 if (record_arch_list_add_mem (addr64, 28))
7ad10968 5507 return -1;
955db0c0 5508 addr64 += 28;
7ad10968
HZ
5509 }
5510 else
5511 {
955db0c0 5512 if (record_arch_list_add_mem (addr64, 14))
7ad10968 5513 return -1;
955db0c0 5514 addr64 += 14;
7ad10968 5515 }
955db0c0 5516 if (record_arch_list_add_mem (addr64, 80))
7ad10968 5517 return -1;
0289bdd7
MS
5518 /* Insn fsave. */
5519 if (i386_record_floats (gdbarch, &ir,
5520 I386_SAVE_FPU_ENV_REG_STACK))
5521 return -1;
7ad10968
HZ
5522 break;
5523 case 0x3f:
955db0c0 5524 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5525 return -1;
0289bdd7
MS
5526 /* Insn fistp. */
5527 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5528 return -1;
7ad10968
HZ
5529 break;
5530 default:
5531 ir.addr -= 2;
5532 opcode = opcode << 8 | ir.modrm;
5533 goto no_support;
5534 break;
5535 }
5536 }
0289bdd7
MS
5537 /* Opcode is an extension of modR/M byte. */
5538 else
5539 {
5540 switch (opcode)
5541 {
5542 case 0xd8:
5543 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5544 return -1;
5545 break;
5546 case 0xd9:
5547 if (0x0c == (ir.modrm >> 4))
5548 {
5549 if ((ir.modrm & 0x0f) <= 7)
5550 {
5551 if (i386_record_floats (gdbarch, &ir,
5552 I386_SAVE_FPU_REGS))
5553 return -1;
5554 }
5555 else
5556 {
5557 if (i386_record_floats (gdbarch, &ir,
5558 I387_ST0_REGNUM (tdep)))
5559 return -1;
5560 /* If only st(0) is changing, then we have already
5561 recorded. */
5562 if ((ir.modrm & 0x0f) - 0x08)
5563 {
5564 if (i386_record_floats (gdbarch, &ir,
5565 I387_ST0_REGNUM (tdep) +
5566 ((ir.modrm & 0x0f) - 0x08)))
5567 return -1;
5568 }
5569 }
5570 }
5571 else
5572 {
5573 switch (ir.modrm)
5574 {
5575 case 0xe0:
5576 case 0xe1:
5577 case 0xf0:
5578 case 0xf5:
5579 case 0xf8:
5580 case 0xfa:
5581 case 0xfc:
5582 case 0xfe:
5583 case 0xff:
5584 if (i386_record_floats (gdbarch, &ir,
5585 I387_ST0_REGNUM (tdep)))
5586 return -1;
5587 break;
5588 case 0xf1:
5589 case 0xf2:
5590 case 0xf3:
5591 case 0xf4:
5592 case 0xf6:
5593 case 0xf7:
5594 case 0xe8:
5595 case 0xe9:
5596 case 0xea:
5597 case 0xeb:
5598 case 0xec:
5599 case 0xed:
5600 case 0xee:
5601 case 0xf9:
5602 case 0xfb:
5603 if (i386_record_floats (gdbarch, &ir,
5604 I386_SAVE_FPU_REGS))
5605 return -1;
5606 break;
5607 case 0xfd:
5608 if (i386_record_floats (gdbarch, &ir,
5609 I387_ST0_REGNUM (tdep)))
5610 return -1;
5611 if (i386_record_floats (gdbarch, &ir,
5612 I387_ST0_REGNUM (tdep) + 1))
5613 return -1;
5614 break;
5615 }
5616 }
5617 break;
5618 case 0xda:
5619 if (0xe9 == ir.modrm)
5620 {
5621 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5622 return -1;
5623 }
5624 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5625 {
5626 if (i386_record_floats (gdbarch, &ir,
5627 I387_ST0_REGNUM (tdep)))
5628 return -1;
5629 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5630 {
5631 if (i386_record_floats (gdbarch, &ir,
5632 I387_ST0_REGNUM (tdep) +
5633 (ir.modrm & 0x0f)))
5634 return -1;
5635 }
5636 else if ((ir.modrm & 0x0f) - 0x08)
5637 {
5638 if (i386_record_floats (gdbarch, &ir,
5639 I387_ST0_REGNUM (tdep) +
5640 ((ir.modrm & 0x0f) - 0x08)))
5641 return -1;
5642 }
5643 }
5644 break;
5645 case 0xdb:
5646 if (0xe3 == ir.modrm)
5647 {
5648 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5649 return -1;
5650 }
5651 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5652 {
5653 if (i386_record_floats (gdbarch, &ir,
5654 I387_ST0_REGNUM (tdep)))
5655 return -1;
5656 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5657 {
5658 if (i386_record_floats (gdbarch, &ir,
5659 I387_ST0_REGNUM (tdep) +
5660 (ir.modrm & 0x0f)))
5661 return -1;
5662 }
5663 else if ((ir.modrm & 0x0f) - 0x08)
5664 {
5665 if (i386_record_floats (gdbarch, &ir,
5666 I387_ST0_REGNUM (tdep) +
5667 ((ir.modrm & 0x0f) - 0x08)))
5668 return -1;
5669 }
5670 }
5671 break;
5672 case 0xdc:
5673 if ((0x0c == ir.modrm >> 4)
5674 || (0x0d == ir.modrm >> 4)
5675 || (0x0f == ir.modrm >> 4))
5676 {
5677 if ((ir.modrm & 0x0f) <= 7)
5678 {
5679 if (i386_record_floats (gdbarch, &ir,
5680 I387_ST0_REGNUM (tdep) +
5681 (ir.modrm & 0x0f)))
5682 return -1;
5683 }
5684 else
5685 {
5686 if (i386_record_floats (gdbarch, &ir,
5687 I387_ST0_REGNUM (tdep) +
5688 ((ir.modrm & 0x0f) - 0x08)))
5689 return -1;
5690 }
5691 }
5692 break;
5693 case 0xdd:
5694 if (0x0c == ir.modrm >> 4)
5695 {
5696 if (i386_record_floats (gdbarch, &ir,
5697 I387_FTAG_REGNUM (tdep)))
5698 return -1;
5699 }
5700 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5701 {
5702 if ((ir.modrm & 0x0f) <= 7)
5703 {
5704 if (i386_record_floats (gdbarch, &ir,
5705 I387_ST0_REGNUM (tdep) +
5706 (ir.modrm & 0x0f)))
5707 return -1;
5708 }
5709 else
5710 {
5711 if (i386_record_floats (gdbarch, &ir,
5712 I386_SAVE_FPU_REGS))
5713 return -1;
5714 }
5715 }
5716 break;
5717 case 0xde:
5718 if ((0x0c == ir.modrm >> 4)
5719 || (0x0e == ir.modrm >> 4)
5720 || (0x0f == ir.modrm >> 4)
5721 || (0xd9 == ir.modrm))
5722 {
5723 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5724 return -1;
5725 }
5726 break;
5727 case 0xdf:
5728 if (0xe0 == ir.modrm)
5729 {
5730 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5731 return -1;
5732 }
5733 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5734 {
5735 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5736 return -1;
5737 }
5738 break;
5739 }
5740 }
7ad10968 5741 break;
7ad10968 5742 /* string ops */
a38bba38 5743 case 0xa4: /* movsS */
7ad10968 5744 case 0xa5:
a38bba38 5745 case 0xaa: /* stosS */
7ad10968 5746 case 0xab:
a38bba38 5747 case 0x6c: /* insS */
7ad10968 5748 case 0x6d:
cf648174 5749 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5750 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5751 &addr);
5752 if (addr)
cf648174 5753 {
77d7dc92
HZ
5754 ULONGEST es, ds;
5755
5756 if ((opcode & 1) == 0)
5757 ir.ot = OT_BYTE;
5758 else
5759 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5760 regcache_raw_read_unsigned (ir.regcache,
5761 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5762 &addr);
77d7dc92 5763
d7877f7e
HZ
5764 regcache_raw_read_unsigned (ir.regcache,
5765 ir.regmap[X86_RECORD_ES_REGNUM],
5766 &es);
5767 regcache_raw_read_unsigned (ir.regcache,
5768 ir.regmap[X86_RECORD_DS_REGNUM],
5769 &ds);
5770 if (ir.aflag && (es != ds))
77d7dc92
HZ
5771 {
5772 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5773 if (record_memory_query)
5774 {
5775 int q;
5776
5777 target_terminal_ours ();
5778 q = yquery (_("\
5779Process record ignores the memory change of instruction at address %s\n\
5780because it can't get the value of the segment register.\n\
5781Do you want to stop the program?"),
5782 paddress (gdbarch, ir.orig_addr));
5783 target_terminal_inferior ();
5784 if (q)
5785 return -1;
5786 }
df61f520
HZ
5787 }
5788 else
5789 {
648d0c8b 5790 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5791 return -1;
77d7dc92
HZ
5792 }
5793
5794 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5796 if (opcode == 0xa4 || opcode == 0xa5)
5797 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5798 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5800 }
cf648174 5801 break;
7ad10968 5802
a38bba38 5803 case 0xa6: /* cmpsS */
cf648174
HZ
5804 case 0xa7:
5805 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5806 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5807 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5808 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5809 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5810 break;
5811
a38bba38 5812 case 0xac: /* lodsS */
7ad10968 5813 case 0xad:
cf648174
HZ
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5816 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5817 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5818 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5819 break;
5820
a38bba38 5821 case 0xae: /* scasS */
7ad10968 5822 case 0xaf:
cf648174 5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5824 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5825 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5826 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5827 break;
5828
a38bba38 5829 case 0x6e: /* outsS */
cf648174
HZ
5830 case 0x6f:
5831 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5832 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5834 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5835 break;
5836
a38bba38 5837 case 0xe4: /* port I/O */
7ad10968
HZ
5838 case 0xe5:
5839 case 0xec:
5840 case 0xed:
cf648174
HZ
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5843 break;
5844
5845 case 0xe6:
5846 case 0xe7:
5847 case 0xee:
5848 case 0xef:
5849 break;
5850
5851 /* control */
a38bba38
MS
5852 case 0xc2: /* ret im */
5853 case 0xc3: /* ret */
cf648174
HZ
5854 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5855 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5856 break;
5857
a38bba38
MS
5858 case 0xca: /* lret im */
5859 case 0xcb: /* lret */
5860 case 0xcf: /* iret */
cf648174
HZ
5861 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5864 break;
5865
a38bba38 5866 case 0xe8: /* call im */
cf648174
HZ
5867 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5868 ir.dflag = 2;
5869 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5870 return -1;
7ad10968
HZ
5871 break;
5872
a38bba38 5873 case 0x9a: /* lcall im */
cf648174
HZ
5874 if (ir.regmap[X86_RECORD_R8_REGNUM])
5875 {
5876 ir.addr -= 1;
5877 goto no_support;
5878 }
5879 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5880 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5881 return -1;
7ad10968
HZ
5882 break;
5883
a38bba38
MS
5884 case 0xe9: /* jmp im */
5885 case 0xea: /* ljmp im */
5886 case 0xeb: /* jmp Jb */
5887 case 0x70: /* jcc Jb */
7ad10968
HZ
5888 case 0x71:
5889 case 0x72:
5890 case 0x73:
5891 case 0x74:
5892 case 0x75:
5893 case 0x76:
5894 case 0x77:
5895 case 0x78:
5896 case 0x79:
5897 case 0x7a:
5898 case 0x7b:
5899 case 0x7c:
5900 case 0x7d:
5901 case 0x7e:
5902 case 0x7f:
a38bba38 5903 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5904 case 0x0f81:
5905 case 0x0f82:
5906 case 0x0f83:
5907 case 0x0f84:
5908 case 0x0f85:
5909 case 0x0f86:
5910 case 0x0f87:
5911 case 0x0f88:
5912 case 0x0f89:
5913 case 0x0f8a:
5914 case 0x0f8b:
5915 case 0x0f8c:
5916 case 0x0f8d:
5917 case 0x0f8e:
5918 case 0x0f8f:
5919 break;
5920
a38bba38 5921 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5922 case 0x0f91:
5923 case 0x0f92:
5924 case 0x0f93:
5925 case 0x0f94:
5926 case 0x0f95:
5927 case 0x0f96:
5928 case 0x0f97:
5929 case 0x0f98:
5930 case 0x0f99:
5931 case 0x0f9a:
5932 case 0x0f9b:
5933 case 0x0f9c:
5934 case 0x0f9d:
5935 case 0x0f9e:
5936 case 0x0f9f:
cf648174 5937 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5938 ir.ot = OT_BYTE;
5939 if (i386_record_modrm (&ir))
5940 return -1;
5941 if (ir.mod == 3)
cf648174
HZ
5942 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5943 : (ir.rm & 0x3));
7ad10968
HZ
5944 else
5945 {
5946 if (i386_record_lea_modrm (&ir))
5947 return -1;
5948 }
5949 break;
5950
a38bba38 5951 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5952 case 0x0f41:
5953 case 0x0f42:
5954 case 0x0f43:
5955 case 0x0f44:
5956 case 0x0f45:
5957 case 0x0f46:
5958 case 0x0f47:
5959 case 0x0f48:
5960 case 0x0f49:
5961 case 0x0f4a:
5962 case 0x0f4b:
5963 case 0x0f4c:
5964 case 0x0f4d:
5965 case 0x0f4e:
5966 case 0x0f4f:
5967 if (i386_record_modrm (&ir))
5968 return -1;
cf648174 5969 ir.reg |= rex_r;
7ad10968
HZ
5970 if (ir.dflag == OT_BYTE)
5971 ir.reg &= 0x3;
cf648174 5972 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5973 break;
5974
5975 /* flags */
a38bba38 5976 case 0x9c: /* pushf */
cf648174
HZ
5977 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5978 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5979 ir.dflag = 2;
5980 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5981 return -1;
7ad10968
HZ
5982 break;
5983
a38bba38 5984 case 0x9d: /* popf */
cf648174
HZ
5985 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5986 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5987 break;
5988
a38bba38 5989 case 0x9e: /* sahf */
cf648174
HZ
5990 if (ir.regmap[X86_RECORD_R8_REGNUM])
5991 {
5992 ir.addr -= 1;
5993 goto no_support;
5994 }
d3f323f3 5995 /* FALLTHROUGH */
a38bba38
MS
5996 case 0xf5: /* cmc */
5997 case 0xf8: /* clc */
5998 case 0xf9: /* stc */
5999 case 0xfc: /* cld */
6000 case 0xfd: /* std */
cf648174 6001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6002 break;
6003
a38bba38 6004 case 0x9f: /* lahf */
cf648174
HZ
6005 if (ir.regmap[X86_RECORD_R8_REGNUM])
6006 {
6007 ir.addr -= 1;
6008 goto no_support;
6009 }
6010 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6012 break;
6013
6014 /* bit operations */
a38bba38 6015 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6016 ir.ot = ir.dflag + OT_WORD;
6017 if (i386_record_modrm (&ir))
6018 return -1;
6019 if (ir.reg < 4)
6020 {
cf648174 6021 ir.addr -= 2;
7ad10968
HZ
6022 opcode = opcode << 8 | ir.modrm;
6023 goto no_support;
6024 }
cf648174 6025 if (ir.reg != 4)
7ad10968 6026 {
cf648174
HZ
6027 if (ir.mod == 3)
6028 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6029 else
6030 {
cf648174 6031 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6032 return -1;
6033 }
6034 }
cf648174 6035 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6036 break;
6037
a38bba38 6038 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
6039 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6040 break;
6041
a38bba38
MS
6042 case 0x0fab: /* bts */
6043 case 0x0fb3: /* btr */
6044 case 0x0fbb: /* btc */
cf648174
HZ
6045 ir.ot = ir.dflag + OT_WORD;
6046 if (i386_record_modrm (&ir))
6047 return -1;
6048 if (ir.mod == 3)
6049 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6050 else
6051 {
955db0c0
MS
6052 uint64_t addr64;
6053 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6054 return -1;
6055 regcache_raw_read_unsigned (ir.regcache,
6056 ir.regmap[ir.reg | rex_r],
648d0c8b 6057 &addr);
cf648174
HZ
6058 switch (ir.dflag)
6059 {
6060 case 0:
648d0c8b 6061 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6062 break;
6063 case 1:
648d0c8b 6064 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6065 break;
6066 case 2:
648d0c8b 6067 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6068 break;
6069 }
955db0c0 6070 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6071 return -1;
6072 if (i386_record_lea_modrm (&ir))
6073 return -1;
6074 }
6075 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6076 break;
6077
a38bba38
MS
6078 case 0x0fbc: /* bsf */
6079 case 0x0fbd: /* bsr */
cf648174
HZ
6080 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6081 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6082 break;
6083
6084 /* bcd */
a38bba38
MS
6085 case 0x27: /* daa */
6086 case 0x2f: /* das */
6087 case 0x37: /* aaa */
6088 case 0x3f: /* aas */
6089 case 0xd4: /* aam */
6090 case 0xd5: /* aad */
cf648174
HZ
6091 if (ir.regmap[X86_RECORD_R8_REGNUM])
6092 {
6093 ir.addr -= 1;
6094 goto no_support;
6095 }
6096 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6097 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6098 break;
6099
6100 /* misc */
a38bba38 6101 case 0x90: /* nop */
7ad10968
HZ
6102 if (prefixes & PREFIX_LOCK)
6103 {
6104 ir.addr -= 1;
6105 goto no_support;
6106 }
6107 break;
6108
a38bba38 6109 case 0x9b: /* fwait */
4ffa4fc7
PA
6110 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6111 return -1;
425b824a 6112 opcode = (uint32_t) opcode8;
0289bdd7
MS
6113 ir.addr++;
6114 goto reswitch;
7ad10968
HZ
6115 break;
6116
7ad10968 6117 /* XXX */
a38bba38 6118 case 0xcc: /* int3 */
a3c4230a 6119 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6120 "int3.\n"));
6121 ir.addr -= 1;
6122 goto no_support;
6123 break;
6124
7ad10968 6125 /* XXX */
a38bba38 6126 case 0xcd: /* int */
7ad10968
HZ
6127 {
6128 int ret;
425b824a 6129 uint8_t interrupt;
4ffa4fc7
PA
6130 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6131 return -1;
7ad10968 6132 ir.addr++;
425b824a 6133 if (interrupt != 0x80
a3c4230a 6134 || tdep->i386_intx80_record == NULL)
7ad10968 6135 {
a3c4230a 6136 printf_unfiltered (_("Process record does not support "
7ad10968 6137 "instruction int 0x%02x.\n"),
425b824a 6138 interrupt);
7ad10968
HZ
6139 ir.addr -= 2;
6140 goto no_support;
6141 }
a3c4230a 6142 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6143 if (ret)
6144 return ret;
6145 }
6146 break;
6147
7ad10968 6148 /* XXX */
a38bba38 6149 case 0xce: /* into */
a3c4230a 6150 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6151 "instruction into.\n"));
6152 ir.addr -= 1;
6153 goto no_support;
6154 break;
6155
a38bba38
MS
6156 case 0xfa: /* cli */
6157 case 0xfb: /* sti */
7ad10968
HZ
6158 break;
6159
a38bba38 6160 case 0x62: /* bound */
a3c4230a 6161 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6162 "instruction bound.\n"));
6163 ir.addr -= 1;
6164 goto no_support;
6165 break;
6166
a38bba38 6167 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6168 case 0x0fc9:
6169 case 0x0fca:
6170 case 0x0fcb:
6171 case 0x0fcc:
6172 case 0x0fcd:
6173 case 0x0fce:
6174 case 0x0fcf:
cf648174 6175 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6176 break;
6177
a38bba38 6178 case 0xd6: /* salc */
cf648174
HZ
6179 if (ir.regmap[X86_RECORD_R8_REGNUM])
6180 {
6181 ir.addr -= 1;
6182 goto no_support;
6183 }
6184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6185 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6186 break;
6187
a38bba38
MS
6188 case 0xe0: /* loopnz */
6189 case 0xe1: /* loopz */
6190 case 0xe2: /* loop */
6191 case 0xe3: /* jecxz */
cf648174
HZ
6192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6194 break;
6195
a38bba38 6196 case 0x0f30: /* wrmsr */
a3c4230a 6197 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6198 "instruction wrmsr.\n"));
6199 ir.addr -= 2;
6200 goto no_support;
6201 break;
6202
a38bba38 6203 case 0x0f32: /* rdmsr */
a3c4230a 6204 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6205 "instruction rdmsr.\n"));
6206 ir.addr -= 2;
6207 goto no_support;
6208 break;
6209
a38bba38 6210 case 0x0f31: /* rdtsc */
f8c4f480
HZ
6211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6213 break;
6214
a38bba38 6215 case 0x0f34: /* sysenter */
7ad10968
HZ
6216 {
6217 int ret;
cf648174
HZ
6218 if (ir.regmap[X86_RECORD_R8_REGNUM])
6219 {
6220 ir.addr -= 2;
6221 goto no_support;
6222 }
a3c4230a 6223 if (tdep->i386_sysenter_record == NULL)
7ad10968 6224 {
a3c4230a 6225 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6226 "instruction sysenter.\n"));
6227 ir.addr -= 2;
6228 goto no_support;
6229 }
a3c4230a 6230 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6231 if (ret)
6232 return ret;
6233 }
6234 break;
6235
a38bba38 6236 case 0x0f35: /* sysexit */
a3c4230a 6237 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6238 "instruction sysexit.\n"));
6239 ir.addr -= 2;
6240 goto no_support;
6241 break;
6242
a38bba38 6243 case 0x0f05: /* syscall */
cf648174
HZ
6244 {
6245 int ret;
a3c4230a 6246 if (tdep->i386_syscall_record == NULL)
cf648174 6247 {
a3c4230a 6248 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6249 "instruction syscall.\n"));
6250 ir.addr -= 2;
6251 goto no_support;
6252 }
a3c4230a 6253 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6254 if (ret)
6255 return ret;
6256 }
6257 break;
6258
a38bba38 6259 case 0x0f07: /* sysret */
a3c4230a 6260 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6261 "instruction sysret.\n"));
6262 ir.addr -= 2;
6263 goto no_support;
6264 break;
6265
a38bba38 6266 case 0x0fa2: /* cpuid */
cf648174
HZ
6267 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6268 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6270 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6271 break;
6272
a38bba38 6273 case 0xf4: /* hlt */
a3c4230a 6274 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6275 "instruction hlt.\n"));
6276 ir.addr -= 1;
6277 goto no_support;
6278 break;
6279
6280 case 0x0f00:
6281 if (i386_record_modrm (&ir))
6282 return -1;
6283 switch (ir.reg)
6284 {
a38bba38
MS
6285 case 0: /* sldt */
6286 case 1: /* str */
7ad10968 6287 if (ir.mod == 3)
cf648174 6288 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6289 else
6290 {
6291 ir.ot = OT_WORD;
6292 if (i386_record_lea_modrm (&ir))
6293 return -1;
6294 }
6295 break;
a38bba38
MS
6296 case 2: /* lldt */
6297 case 3: /* ltr */
7ad10968 6298 break;
a38bba38
MS
6299 case 4: /* verr */
6300 case 5: /* verw */
cf648174 6301 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6302 break;
6303 default:
6304 ir.addr -= 3;
6305 opcode = opcode << 8 | ir.modrm;
6306 goto no_support;
6307 break;
6308 }
6309 break;
6310
6311 case 0x0f01:
6312 if (i386_record_modrm (&ir))
6313 return -1;
6314 switch (ir.reg)
6315 {
a38bba38 6316 case 0: /* sgdt */
7ad10968 6317 {
955db0c0 6318 uint64_t addr64;
7ad10968
HZ
6319
6320 if (ir.mod == 3)
6321 {
6322 ir.addr -= 3;
6323 opcode = opcode << 8 | ir.modrm;
6324 goto no_support;
6325 }
d7877f7e 6326 if (ir.override >= 0)
7ad10968 6327 {
bb08c432
HZ
6328 if (record_memory_query)
6329 {
6330 int q;
6331
6332 target_terminal_ours ();
6333 q = yquery (_("\
6334Process record ignores the memory change of instruction at address %s\n\
6335because it can't get the value of the segment register.\n\
6336Do you want to stop the program?"),
6337 paddress (gdbarch, ir.orig_addr));
6338 target_terminal_inferior ();
6339 if (q)
6340 return -1;
6341 }
7ad10968
HZ
6342 }
6343 else
6344 {
955db0c0 6345 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6346 return -1;
955db0c0 6347 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6348 return -1;
955db0c0 6349 addr64 += 2;
cf648174
HZ
6350 if (ir.regmap[X86_RECORD_R8_REGNUM])
6351 {
955db0c0 6352 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6353 return -1;
6354 }
6355 else
6356 {
955db0c0 6357 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6358 return -1;
6359 }
7ad10968
HZ
6360 }
6361 }
6362 break;
6363 case 1:
6364 if (ir.mod == 3)
6365 {
6366 switch (ir.rm)
6367 {
a38bba38 6368 case 0: /* monitor */
7ad10968 6369 break;
a38bba38 6370 case 1: /* mwait */
cf648174 6371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6372 break;
6373 default:
6374 ir.addr -= 3;
6375 opcode = opcode << 8 | ir.modrm;
6376 goto no_support;
6377 break;
6378 }
6379 }
6380 else
6381 {
6382 /* sidt */
d7877f7e 6383 if (ir.override >= 0)
7ad10968 6384 {
bb08c432
HZ
6385 if (record_memory_query)
6386 {
6387 int q;
6388
6389 target_terminal_ours ();
6390 q = yquery (_("\
6391Process record ignores the memory change of instruction at address %s\n\
6392because it can't get the value of the segment register.\n\
6393Do you want to stop the program?"),
6394 paddress (gdbarch, ir.orig_addr));
6395 target_terminal_inferior ();
6396 if (q)
6397 return -1;
6398 }
7ad10968
HZ
6399 }
6400 else
6401 {
955db0c0 6402 uint64_t addr64;
7ad10968 6403
955db0c0 6404 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6405 return -1;
955db0c0 6406 if (record_arch_list_add_mem (addr64, 2))
7ad10968 6407 return -1;
955db0c0 6408 addr64 += 2;
cf648174
HZ
6409 if (ir.regmap[X86_RECORD_R8_REGNUM])
6410 {
955db0c0 6411 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
6412 return -1;
6413 }
6414 else
6415 {
955db0c0 6416 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
6417 return -1;
6418 }
7ad10968
HZ
6419 }
6420 }
6421 break;
a38bba38 6422 case 2: /* lgdt */
3800e645
MS
6423 if (ir.mod == 3)
6424 {
6425 /* xgetbv */
6426 if (ir.rm == 0)
6427 {
6428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6430 break;
6431 }
6432 /* xsetbv */
6433 else if (ir.rm == 1)
6434 break;
6435 }
a38bba38 6436 case 3: /* lidt */
7ad10968
HZ
6437 if (ir.mod == 3)
6438 {
6439 ir.addr -= 3;
6440 opcode = opcode << 8 | ir.modrm;
6441 goto no_support;
6442 }
6443 break;
a38bba38 6444 case 4: /* smsw */
7ad10968
HZ
6445 if (ir.mod == 3)
6446 {
cf648174 6447 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
6448 return -1;
6449 }
6450 else
6451 {
6452 ir.ot = OT_WORD;
6453 if (i386_record_lea_modrm (&ir))
6454 return -1;
6455 }
cf648174 6456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6457 break;
a38bba38 6458 case 6: /* lmsw */
cf648174
HZ
6459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6460 break;
a38bba38 6461 case 7: /* invlpg */
cf648174
HZ
6462 if (ir.mod == 3)
6463 {
6464 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6466 else
6467 {
6468 ir.addr -= 3;
6469 opcode = opcode << 8 | ir.modrm;
6470 goto no_support;
6471 }
6472 }
6473 else
6474 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6475 break;
6476 default:
6477 ir.addr -= 3;
6478 opcode = opcode << 8 | ir.modrm;
6479 goto no_support;
7ad10968
HZ
6480 break;
6481 }
6482 break;
6483
a38bba38
MS
6484 case 0x0f08: /* invd */
6485 case 0x0f09: /* wbinvd */
7ad10968
HZ
6486 break;
6487
a38bba38 6488 case 0x63: /* arpl */
7ad10968
HZ
6489 if (i386_record_modrm (&ir))
6490 return -1;
cf648174
HZ
6491 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6492 {
6493 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6494 ? (ir.reg | rex_r) : ir.rm);
6495 }
7ad10968 6496 else
cf648174
HZ
6497 {
6498 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6499 if (i386_record_lea_modrm (&ir))
6500 return -1;
6501 }
6502 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6503 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6504 break;
6505
a38bba38
MS
6506 case 0x0f02: /* lar */
6507 case 0x0f03: /* lsl */
7ad10968
HZ
6508 if (i386_record_modrm (&ir))
6509 return -1;
cf648174
HZ
6510 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6511 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6512 break;
6513
6514 case 0x0f18:
cf648174
HZ
6515 if (i386_record_modrm (&ir))
6516 return -1;
6517 if (ir.mod == 3 && ir.reg == 3)
6518 {
6519 ir.addr -= 3;
6520 opcode = opcode << 8 | ir.modrm;
6521 goto no_support;
6522 }
7ad10968
HZ
6523 break;
6524
7ad10968
HZ
6525 case 0x0f19:
6526 case 0x0f1a:
6527 case 0x0f1b:
6528 case 0x0f1c:
6529 case 0x0f1d:
6530 case 0x0f1e:
6531 case 0x0f1f:
a38bba38 6532 /* nop (multi byte) */
7ad10968
HZ
6533 break;
6534
a38bba38
MS
6535 case 0x0f20: /* mov reg, crN */
6536 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6537 if (i386_record_modrm (&ir))
6538 return -1;
6539 if ((ir.modrm & 0xc0) != 0xc0)
6540 {
cf648174 6541 ir.addr -= 3;
7ad10968
HZ
6542 opcode = opcode << 8 | ir.modrm;
6543 goto no_support;
6544 }
6545 switch (ir.reg)
6546 {
6547 case 0:
6548 case 2:
6549 case 3:
6550 case 4:
6551 case 8:
6552 if (opcode & 2)
cf648174 6553 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6554 else
cf648174 6555 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6556 break;
6557 default:
cf648174 6558 ir.addr -= 3;
7ad10968
HZ
6559 opcode = opcode << 8 | ir.modrm;
6560 goto no_support;
6561 break;
6562 }
6563 break;
6564
a38bba38
MS
6565 case 0x0f21: /* mov reg, drN */
6566 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6567 if (i386_record_modrm (&ir))
6568 return -1;
6569 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6570 || ir.reg == 5 || ir.reg >= 8)
6571 {
cf648174 6572 ir.addr -= 3;
7ad10968
HZ
6573 opcode = opcode << 8 | ir.modrm;
6574 goto no_support;
6575 }
6576 if (opcode & 2)
cf648174 6577 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6578 else
cf648174 6579 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6580 break;
6581
a38bba38 6582 case 0x0f06: /* clts */
cf648174 6583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6584 break;
6585
a3c4230a
HZ
6586 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6587
6588 case 0x0f0d: /* 3DNow! prefetch */
6589 break;
6590
6591 case 0x0f0e: /* 3DNow! femms */
6592 case 0x0f77: /* emms */
6593 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6594 goto no_support;
6595 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6596 break;
6597
6598 case 0x0f0f: /* 3DNow! data */
6599 if (i386_record_modrm (&ir))
6600 return -1;
4ffa4fc7
PA
6601 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6602 return -1;
a3c4230a
HZ
6603 ir.addr++;
6604 switch (opcode8)
6605 {
6606 case 0x0c: /* 3DNow! pi2fw */
6607 case 0x0d: /* 3DNow! pi2fd */
6608 case 0x1c: /* 3DNow! pf2iw */
6609 case 0x1d: /* 3DNow! pf2id */
6610 case 0x8a: /* 3DNow! pfnacc */
6611 case 0x8e: /* 3DNow! pfpnacc */
6612 case 0x90: /* 3DNow! pfcmpge */
6613 case 0x94: /* 3DNow! pfmin */
6614 case 0x96: /* 3DNow! pfrcp */
6615 case 0x97: /* 3DNow! pfrsqrt */
6616 case 0x9a: /* 3DNow! pfsub */
6617 case 0x9e: /* 3DNow! pfadd */
6618 case 0xa0: /* 3DNow! pfcmpgt */
6619 case 0xa4: /* 3DNow! pfmax */
6620 case 0xa6: /* 3DNow! pfrcpit1 */
6621 case 0xa7: /* 3DNow! pfrsqit1 */
6622 case 0xaa: /* 3DNow! pfsubr */
6623 case 0xae: /* 3DNow! pfacc */
6624 case 0xb0: /* 3DNow! pfcmpeq */
6625 case 0xb4: /* 3DNow! pfmul */
6626 case 0xb6: /* 3DNow! pfrcpit2 */
6627 case 0xb7: /* 3DNow! pmulhrw */
6628 case 0xbb: /* 3DNow! pswapd */
6629 case 0xbf: /* 3DNow! pavgusb */
6630 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6631 goto no_support_3dnow_data;
6632 record_arch_list_add_reg (ir.regcache, ir.reg);
6633 break;
6634
6635 default:
6636no_support_3dnow_data:
6637 opcode = (opcode << 8) | opcode8;
6638 goto no_support;
6639 break;
6640 }
6641 break;
6642
6643 case 0x0faa: /* rsm */
6644 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6647 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6648 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6649 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6650 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6651 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6652 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6653 break;
6654
6655 case 0x0fae:
6656 if (i386_record_modrm (&ir))
6657 return -1;
6658 switch(ir.reg)
6659 {
6660 case 0: /* fxsave */
6661 {
6662 uint64_t tmpu64;
6663
6664 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6665 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6666 return -1;
6667 if (record_arch_list_add_mem (tmpu64, 512))
6668 return -1;
6669 }
6670 break;
6671
6672 case 1: /* fxrstor */
6673 {
6674 int i;
6675
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677
6678 for (i = I387_MM0_REGNUM (tdep);
6679 i386_mmx_regnum_p (gdbarch, i); i++)
6680 record_arch_list_add_reg (ir.regcache, i);
6681
6682 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6683 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6684 record_arch_list_add_reg (ir.regcache, i);
6685
6686 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6687 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6688
6689 for (i = I387_ST0_REGNUM (tdep);
6690 i386_fp_regnum_p (gdbarch, i); i++)
6691 record_arch_list_add_reg (ir.regcache, i);
6692
6693 for (i = I387_FCTRL_REGNUM (tdep);
6694 i386_fpc_regnum_p (gdbarch, i); i++)
6695 record_arch_list_add_reg (ir.regcache, i);
6696 }
6697 break;
6698
6699 case 2: /* ldmxcsr */
6700 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6701 goto no_support;
6702 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6703 break;
6704
6705 case 3: /* stmxcsr */
6706 ir.ot = OT_LONG;
6707 if (i386_record_lea_modrm (&ir))
6708 return -1;
6709 break;
6710
6711 case 5: /* lfence */
6712 case 6: /* mfence */
6713 case 7: /* sfence clflush */
6714 break;
6715
6716 default:
6717 opcode = (opcode << 8) | ir.modrm;
6718 goto no_support;
6719 break;
6720 }
6721 break;
6722
6723 case 0x0fc3: /* movnti */
6724 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6725 if (i386_record_modrm (&ir))
6726 return -1;
6727 if (ir.mod == 3)
6728 goto no_support;
6729 ir.reg |= rex_r;
6730 if (i386_record_lea_modrm (&ir))
6731 return -1;
6732 break;
6733
6734 /* Add prefix to opcode. */
6735 case 0x0f10:
6736 case 0x0f11:
6737 case 0x0f12:
6738 case 0x0f13:
6739 case 0x0f14:
6740 case 0x0f15:
6741 case 0x0f16:
6742 case 0x0f17:
6743 case 0x0f28:
6744 case 0x0f29:
6745 case 0x0f2a:
6746 case 0x0f2b:
6747 case 0x0f2c:
6748 case 0x0f2d:
6749 case 0x0f2e:
6750 case 0x0f2f:
6751 case 0x0f38:
6752 case 0x0f39:
6753 case 0x0f3a:
6754 case 0x0f50:
6755 case 0x0f51:
6756 case 0x0f52:
6757 case 0x0f53:
6758 case 0x0f54:
6759 case 0x0f55:
6760 case 0x0f56:
6761 case 0x0f57:
6762 case 0x0f58:
6763 case 0x0f59:
6764 case 0x0f5a:
6765 case 0x0f5b:
6766 case 0x0f5c:
6767 case 0x0f5d:
6768 case 0x0f5e:
6769 case 0x0f5f:
6770 case 0x0f60:
6771 case 0x0f61:
6772 case 0x0f62:
6773 case 0x0f63:
6774 case 0x0f64:
6775 case 0x0f65:
6776 case 0x0f66:
6777 case 0x0f67:
6778 case 0x0f68:
6779 case 0x0f69:
6780 case 0x0f6a:
6781 case 0x0f6b:
6782 case 0x0f6c:
6783 case 0x0f6d:
6784 case 0x0f6e:
6785 case 0x0f6f:
6786 case 0x0f70:
6787 case 0x0f71:
6788 case 0x0f72:
6789 case 0x0f73:
6790 case 0x0f74:
6791 case 0x0f75:
6792 case 0x0f76:
6793 case 0x0f7c:
6794 case 0x0f7d:
6795 case 0x0f7e:
6796 case 0x0f7f:
6797 case 0x0fb8:
6798 case 0x0fc2:
6799 case 0x0fc4:
6800 case 0x0fc5:
6801 case 0x0fc6:
6802 case 0x0fd0:
6803 case 0x0fd1:
6804 case 0x0fd2:
6805 case 0x0fd3:
6806 case 0x0fd4:
6807 case 0x0fd5:
6808 case 0x0fd6:
6809 case 0x0fd7:
6810 case 0x0fd8:
6811 case 0x0fd9:
6812 case 0x0fda:
6813 case 0x0fdb:
6814 case 0x0fdc:
6815 case 0x0fdd:
6816 case 0x0fde:
6817 case 0x0fdf:
6818 case 0x0fe0:
6819 case 0x0fe1:
6820 case 0x0fe2:
6821 case 0x0fe3:
6822 case 0x0fe4:
6823 case 0x0fe5:
6824 case 0x0fe6:
6825 case 0x0fe7:
6826 case 0x0fe8:
6827 case 0x0fe9:
6828 case 0x0fea:
6829 case 0x0feb:
6830 case 0x0fec:
6831 case 0x0fed:
6832 case 0x0fee:
6833 case 0x0fef:
6834 case 0x0ff0:
6835 case 0x0ff1:
6836 case 0x0ff2:
6837 case 0x0ff3:
6838 case 0x0ff4:
6839 case 0x0ff5:
6840 case 0x0ff6:
6841 case 0x0ff7:
6842 case 0x0ff8:
6843 case 0x0ff9:
6844 case 0x0ffa:
6845 case 0x0ffb:
6846 case 0x0ffc:
6847 case 0x0ffd:
6848 case 0x0ffe:
6849 switch (prefixes)
6850 {
6851 case PREFIX_REPNZ:
6852 opcode |= 0xf20000;
6853 break;
6854 case PREFIX_DATA:
6855 opcode |= 0x660000;
6856 break;
6857 case PREFIX_REPZ:
6858 opcode |= 0xf30000;
6859 break;
6860 }
6861reswitch_prefix_add:
6862 switch (opcode)
6863 {
6864 case 0x0f38:
6865 case 0x660f38:
6866 case 0xf20f38:
6867 case 0x0f3a:
6868 case 0x660f3a:
4ffa4fc7
PA
6869 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6870 return -1;
a3c4230a
HZ
6871 ir.addr++;
6872 opcode = (uint32_t) opcode8 | opcode << 8;
6873 goto reswitch_prefix_add;
6874 break;
6875
6876 case 0x0f10: /* movups */
6877 case 0x660f10: /* movupd */
6878 case 0xf30f10: /* movss */
6879 case 0xf20f10: /* movsd */
6880 case 0x0f12: /* movlps */
6881 case 0x660f12: /* movlpd */
6882 case 0xf30f12: /* movsldup */
6883 case 0xf20f12: /* movddup */
6884 case 0x0f14: /* unpcklps */
6885 case 0x660f14: /* unpcklpd */
6886 case 0x0f15: /* unpckhps */
6887 case 0x660f15: /* unpckhpd */
6888 case 0x0f16: /* movhps */
6889 case 0x660f16: /* movhpd */
6890 case 0xf30f16: /* movshdup */
6891 case 0x0f28: /* movaps */
6892 case 0x660f28: /* movapd */
6893 case 0x0f2a: /* cvtpi2ps */
6894 case 0x660f2a: /* cvtpi2pd */
6895 case 0xf30f2a: /* cvtsi2ss */
6896 case 0xf20f2a: /* cvtsi2sd */
6897 case 0x0f2c: /* cvttps2pi */
6898 case 0x660f2c: /* cvttpd2pi */
6899 case 0x0f2d: /* cvtps2pi */
6900 case 0x660f2d: /* cvtpd2pi */
6901 case 0x660f3800: /* pshufb */
6902 case 0x660f3801: /* phaddw */
6903 case 0x660f3802: /* phaddd */
6904 case 0x660f3803: /* phaddsw */
6905 case 0x660f3804: /* pmaddubsw */
6906 case 0x660f3805: /* phsubw */
6907 case 0x660f3806: /* phsubd */
4f7d61a8 6908 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6909 case 0x660f3808: /* psignb */
6910 case 0x660f3809: /* psignw */
6911 case 0x660f380a: /* psignd */
6912 case 0x660f380b: /* pmulhrsw */
6913 case 0x660f3810: /* pblendvb */
6914 case 0x660f3814: /* blendvps */
6915 case 0x660f3815: /* blendvpd */
6916 case 0x660f381c: /* pabsb */
6917 case 0x660f381d: /* pabsw */
6918 case 0x660f381e: /* pabsd */
6919 case 0x660f3820: /* pmovsxbw */
6920 case 0x660f3821: /* pmovsxbd */
6921 case 0x660f3822: /* pmovsxbq */
6922 case 0x660f3823: /* pmovsxwd */
6923 case 0x660f3824: /* pmovsxwq */
6924 case 0x660f3825: /* pmovsxdq */
6925 case 0x660f3828: /* pmuldq */
6926 case 0x660f3829: /* pcmpeqq */
6927 case 0x660f382a: /* movntdqa */
6928 case 0x660f3a08: /* roundps */
6929 case 0x660f3a09: /* roundpd */
6930 case 0x660f3a0a: /* roundss */
6931 case 0x660f3a0b: /* roundsd */
6932 case 0x660f3a0c: /* blendps */
6933 case 0x660f3a0d: /* blendpd */
6934 case 0x660f3a0e: /* pblendw */
6935 case 0x660f3a0f: /* palignr */
6936 case 0x660f3a20: /* pinsrb */
6937 case 0x660f3a21: /* insertps */
6938 case 0x660f3a22: /* pinsrd pinsrq */
6939 case 0x660f3a40: /* dpps */
6940 case 0x660f3a41: /* dppd */
6941 case 0x660f3a42: /* mpsadbw */
6942 case 0x660f3a60: /* pcmpestrm */
6943 case 0x660f3a61: /* pcmpestri */
6944 case 0x660f3a62: /* pcmpistrm */
6945 case 0x660f3a63: /* pcmpistri */
6946 case 0x0f51: /* sqrtps */
6947 case 0x660f51: /* sqrtpd */
6948 case 0xf20f51: /* sqrtsd */
6949 case 0xf30f51: /* sqrtss */
6950 case 0x0f52: /* rsqrtps */
6951 case 0xf30f52: /* rsqrtss */
6952 case 0x0f53: /* rcpps */
6953 case 0xf30f53: /* rcpss */
6954 case 0x0f54: /* andps */
6955 case 0x660f54: /* andpd */
6956 case 0x0f55: /* andnps */
6957 case 0x660f55: /* andnpd */
6958 case 0x0f56: /* orps */
6959 case 0x660f56: /* orpd */
6960 case 0x0f57: /* xorps */
6961 case 0x660f57: /* xorpd */
6962 case 0x0f58: /* addps */
6963 case 0x660f58: /* addpd */
6964 case 0xf20f58: /* addsd */
6965 case 0xf30f58: /* addss */
6966 case 0x0f59: /* mulps */
6967 case 0x660f59: /* mulpd */
6968 case 0xf20f59: /* mulsd */
6969 case 0xf30f59: /* mulss */
6970 case 0x0f5a: /* cvtps2pd */
6971 case 0x660f5a: /* cvtpd2ps */
6972 case 0xf20f5a: /* cvtsd2ss */
6973 case 0xf30f5a: /* cvtss2sd */
6974 case 0x0f5b: /* cvtdq2ps */
6975 case 0x660f5b: /* cvtps2dq */
6976 case 0xf30f5b: /* cvttps2dq */
6977 case 0x0f5c: /* subps */
6978 case 0x660f5c: /* subpd */
6979 case 0xf20f5c: /* subsd */
6980 case 0xf30f5c: /* subss */
6981 case 0x0f5d: /* minps */
6982 case 0x660f5d: /* minpd */
6983 case 0xf20f5d: /* minsd */
6984 case 0xf30f5d: /* minss */
6985 case 0x0f5e: /* divps */
6986 case 0x660f5e: /* divpd */
6987 case 0xf20f5e: /* divsd */
6988 case 0xf30f5e: /* divss */
6989 case 0x0f5f: /* maxps */
6990 case 0x660f5f: /* maxpd */
6991 case 0xf20f5f: /* maxsd */
6992 case 0xf30f5f: /* maxss */
6993 case 0x660f60: /* punpcklbw */
6994 case 0x660f61: /* punpcklwd */
6995 case 0x660f62: /* punpckldq */
6996 case 0x660f63: /* packsswb */
6997 case 0x660f64: /* pcmpgtb */
6998 case 0x660f65: /* pcmpgtw */
56d2815c 6999 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7000 case 0x660f67: /* packuswb */
7001 case 0x660f68: /* punpckhbw */
7002 case 0x660f69: /* punpckhwd */
7003 case 0x660f6a: /* punpckhdq */
7004 case 0x660f6b: /* packssdw */
7005 case 0x660f6c: /* punpcklqdq */
7006 case 0x660f6d: /* punpckhqdq */
7007 case 0x660f6e: /* movd */
7008 case 0x660f6f: /* movdqa */
7009 case 0xf30f6f: /* movdqu */
7010 case 0x660f70: /* pshufd */
7011 case 0xf20f70: /* pshuflw */
7012 case 0xf30f70: /* pshufhw */
7013 case 0x660f74: /* pcmpeqb */
7014 case 0x660f75: /* pcmpeqw */
56d2815c 7015 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7016 case 0x660f7c: /* haddpd */
7017 case 0xf20f7c: /* haddps */
7018 case 0x660f7d: /* hsubpd */
7019 case 0xf20f7d: /* hsubps */
7020 case 0xf30f7e: /* movq */
7021 case 0x0fc2: /* cmpps */
7022 case 0x660fc2: /* cmppd */
7023 case 0xf20fc2: /* cmpsd */
7024 case 0xf30fc2: /* cmpss */
7025 case 0x660fc4: /* pinsrw */
7026 case 0x0fc6: /* shufps */
7027 case 0x660fc6: /* shufpd */
7028 case 0x660fd0: /* addsubpd */
7029 case 0xf20fd0: /* addsubps */
7030 case 0x660fd1: /* psrlw */
7031 case 0x660fd2: /* psrld */
7032 case 0x660fd3: /* psrlq */
7033 case 0x660fd4: /* paddq */
7034 case 0x660fd5: /* pmullw */
7035 case 0xf30fd6: /* movq2dq */
7036 case 0x660fd8: /* psubusb */
7037 case 0x660fd9: /* psubusw */
7038 case 0x660fda: /* pminub */
7039 case 0x660fdb: /* pand */
7040 case 0x660fdc: /* paddusb */
7041 case 0x660fdd: /* paddusw */
7042 case 0x660fde: /* pmaxub */
7043 case 0x660fdf: /* pandn */
7044 case 0x660fe0: /* pavgb */
7045 case 0x660fe1: /* psraw */
7046 case 0x660fe2: /* psrad */
7047 case 0x660fe3: /* pavgw */
7048 case 0x660fe4: /* pmulhuw */
7049 case 0x660fe5: /* pmulhw */
7050 case 0x660fe6: /* cvttpd2dq */
7051 case 0xf20fe6: /* cvtpd2dq */
7052 case 0xf30fe6: /* cvtdq2pd */
7053 case 0x660fe8: /* psubsb */
7054 case 0x660fe9: /* psubsw */
7055 case 0x660fea: /* pminsw */
7056 case 0x660feb: /* por */
7057 case 0x660fec: /* paddsb */
7058 case 0x660fed: /* paddsw */
7059 case 0x660fee: /* pmaxsw */
7060 case 0x660fef: /* pxor */
4f7d61a8 7061 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7062 case 0x660ff1: /* psllw */
7063 case 0x660ff2: /* pslld */
7064 case 0x660ff3: /* psllq */
7065 case 0x660ff4: /* pmuludq */
7066 case 0x660ff5: /* pmaddwd */
7067 case 0x660ff6: /* psadbw */
7068 case 0x660ff8: /* psubb */
7069 case 0x660ff9: /* psubw */
56d2815c 7070 case 0x660ffa: /* psubd */
a3c4230a
HZ
7071 case 0x660ffb: /* psubq */
7072 case 0x660ffc: /* paddb */
7073 case 0x660ffd: /* paddw */
56d2815c 7074 case 0x660ffe: /* paddd */
a3c4230a
HZ
7075 if (i386_record_modrm (&ir))
7076 return -1;
7077 ir.reg |= rex_r;
c131fcee 7078 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
7079 goto no_support;
7080 record_arch_list_add_reg (ir.regcache,
7081 I387_XMM0_REGNUM (tdep) + ir.reg);
7082 if ((opcode & 0xfffffffc) == 0x660f3a60)
7083 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7084 break;
7085
7086 case 0x0f11: /* movups */
7087 case 0x660f11: /* movupd */
7088 case 0xf30f11: /* movss */
7089 case 0xf20f11: /* movsd */
7090 case 0x0f13: /* movlps */
7091 case 0x660f13: /* movlpd */
7092 case 0x0f17: /* movhps */
7093 case 0x660f17: /* movhpd */
7094 case 0x0f29: /* movaps */
7095 case 0x660f29: /* movapd */
7096 case 0x660f3a14: /* pextrb */
7097 case 0x660f3a15: /* pextrw */
7098 case 0x660f3a16: /* pextrd pextrq */
7099 case 0x660f3a17: /* extractps */
7100 case 0x660f7f: /* movdqa */
7101 case 0xf30f7f: /* movdqu */
7102 if (i386_record_modrm (&ir))
7103 return -1;
7104 if (ir.mod == 3)
7105 {
7106 if (opcode == 0x0f13 || opcode == 0x660f13
7107 || opcode == 0x0f17 || opcode == 0x660f17)
7108 goto no_support;
7109 ir.rm |= ir.rex_b;
1777feb0
MS
7110 if (!i386_xmm_regnum_p (gdbarch,
7111 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7112 goto no_support;
7113 record_arch_list_add_reg (ir.regcache,
7114 I387_XMM0_REGNUM (tdep) + ir.rm);
7115 }
7116 else
7117 {
7118 switch (opcode)
7119 {
7120 case 0x660f3a14:
7121 ir.ot = OT_BYTE;
7122 break;
7123 case 0x660f3a15:
7124 ir.ot = OT_WORD;
7125 break;
7126 case 0x660f3a16:
7127 ir.ot = OT_LONG;
7128 break;
7129 case 0x660f3a17:
7130 ir.ot = OT_QUAD;
7131 break;
7132 default:
7133 ir.ot = OT_DQUAD;
7134 break;
7135 }
7136 if (i386_record_lea_modrm (&ir))
7137 return -1;
7138 }
7139 break;
7140
7141 case 0x0f2b: /* movntps */
7142 case 0x660f2b: /* movntpd */
7143 case 0x0fe7: /* movntq */
7144 case 0x660fe7: /* movntdq */
7145 if (ir.mod == 3)
7146 goto no_support;
7147 if (opcode == 0x0fe7)
7148 ir.ot = OT_QUAD;
7149 else
7150 ir.ot = OT_DQUAD;
7151 if (i386_record_lea_modrm (&ir))
7152 return -1;
7153 break;
7154
7155 case 0xf30f2c: /* cvttss2si */
7156 case 0xf20f2c: /* cvttsd2si */
7157 case 0xf30f2d: /* cvtss2si */
7158 case 0xf20f2d: /* cvtsd2si */
7159 case 0xf20f38f0: /* crc32 */
7160 case 0xf20f38f1: /* crc32 */
7161 case 0x0f50: /* movmskps */
7162 case 0x660f50: /* movmskpd */
7163 case 0x0fc5: /* pextrw */
7164 case 0x660fc5: /* pextrw */
7165 case 0x0fd7: /* pmovmskb */
7166 case 0x660fd7: /* pmovmskb */
7167 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7168 break;
7169
7170 case 0x0f3800: /* pshufb */
7171 case 0x0f3801: /* phaddw */
7172 case 0x0f3802: /* phaddd */
7173 case 0x0f3803: /* phaddsw */
7174 case 0x0f3804: /* pmaddubsw */
7175 case 0x0f3805: /* phsubw */
7176 case 0x0f3806: /* phsubd */
4f7d61a8 7177 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7178 case 0x0f3808: /* psignb */
7179 case 0x0f3809: /* psignw */
7180 case 0x0f380a: /* psignd */
7181 case 0x0f380b: /* pmulhrsw */
7182 case 0x0f381c: /* pabsb */
7183 case 0x0f381d: /* pabsw */
7184 case 0x0f381e: /* pabsd */
7185 case 0x0f382b: /* packusdw */
7186 case 0x0f3830: /* pmovzxbw */
7187 case 0x0f3831: /* pmovzxbd */
7188 case 0x0f3832: /* pmovzxbq */
7189 case 0x0f3833: /* pmovzxwd */
7190 case 0x0f3834: /* pmovzxwq */
7191 case 0x0f3835: /* pmovzxdq */
7192 case 0x0f3837: /* pcmpgtq */
7193 case 0x0f3838: /* pminsb */
7194 case 0x0f3839: /* pminsd */
7195 case 0x0f383a: /* pminuw */
7196 case 0x0f383b: /* pminud */
7197 case 0x0f383c: /* pmaxsb */
7198 case 0x0f383d: /* pmaxsd */
7199 case 0x0f383e: /* pmaxuw */
7200 case 0x0f383f: /* pmaxud */
7201 case 0x0f3840: /* pmulld */
7202 case 0x0f3841: /* phminposuw */
7203 case 0x0f3a0f: /* palignr */
7204 case 0x0f60: /* punpcklbw */
7205 case 0x0f61: /* punpcklwd */
7206 case 0x0f62: /* punpckldq */
7207 case 0x0f63: /* packsswb */
7208 case 0x0f64: /* pcmpgtb */
7209 case 0x0f65: /* pcmpgtw */
56d2815c 7210 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7211 case 0x0f67: /* packuswb */
7212 case 0x0f68: /* punpckhbw */
7213 case 0x0f69: /* punpckhwd */
7214 case 0x0f6a: /* punpckhdq */
7215 case 0x0f6b: /* packssdw */
7216 case 0x0f6e: /* movd */
7217 case 0x0f6f: /* movq */
7218 case 0x0f70: /* pshufw */
7219 case 0x0f74: /* pcmpeqb */
7220 case 0x0f75: /* pcmpeqw */
56d2815c 7221 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7222 case 0x0fc4: /* pinsrw */
7223 case 0x0fd1: /* psrlw */
7224 case 0x0fd2: /* psrld */
7225 case 0x0fd3: /* psrlq */
7226 case 0x0fd4: /* paddq */
7227 case 0x0fd5: /* pmullw */
7228 case 0xf20fd6: /* movdq2q */
7229 case 0x0fd8: /* psubusb */
7230 case 0x0fd9: /* psubusw */
7231 case 0x0fda: /* pminub */
7232 case 0x0fdb: /* pand */
7233 case 0x0fdc: /* paddusb */
7234 case 0x0fdd: /* paddusw */
7235 case 0x0fde: /* pmaxub */
7236 case 0x0fdf: /* pandn */
7237 case 0x0fe0: /* pavgb */
7238 case 0x0fe1: /* psraw */
7239 case 0x0fe2: /* psrad */
7240 case 0x0fe3: /* pavgw */
7241 case 0x0fe4: /* pmulhuw */
7242 case 0x0fe5: /* pmulhw */
7243 case 0x0fe8: /* psubsb */
7244 case 0x0fe9: /* psubsw */
7245 case 0x0fea: /* pminsw */
7246 case 0x0feb: /* por */
7247 case 0x0fec: /* paddsb */
7248 case 0x0fed: /* paddsw */
7249 case 0x0fee: /* pmaxsw */
7250 case 0x0fef: /* pxor */
7251 case 0x0ff1: /* psllw */
7252 case 0x0ff2: /* pslld */
7253 case 0x0ff3: /* psllq */
7254 case 0x0ff4: /* pmuludq */
7255 case 0x0ff5: /* pmaddwd */
7256 case 0x0ff6: /* psadbw */
7257 case 0x0ff8: /* psubb */
7258 case 0x0ff9: /* psubw */
56d2815c 7259 case 0x0ffa: /* psubd */
a3c4230a
HZ
7260 case 0x0ffb: /* psubq */
7261 case 0x0ffc: /* paddb */
7262 case 0x0ffd: /* paddw */
56d2815c 7263 case 0x0ffe: /* paddd */
a3c4230a
HZ
7264 if (i386_record_modrm (&ir))
7265 return -1;
7266 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7267 goto no_support;
7268 record_arch_list_add_reg (ir.regcache,
7269 I387_MM0_REGNUM (tdep) + ir.reg);
7270 break;
7271
7272 case 0x0f71: /* psllw */
7273 case 0x0f72: /* pslld */
7274 case 0x0f73: /* psllq */
7275 if (i386_record_modrm (&ir))
7276 return -1;
7277 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7278 goto no_support;
7279 record_arch_list_add_reg (ir.regcache,
7280 I387_MM0_REGNUM (tdep) + ir.rm);
7281 break;
7282
7283 case 0x660f71: /* psllw */
7284 case 0x660f72: /* pslld */
7285 case 0x660f73: /* psllq */
7286 if (i386_record_modrm (&ir))
7287 return -1;
7288 ir.rm |= ir.rex_b;
c131fcee 7289 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7290 goto no_support;
7291 record_arch_list_add_reg (ir.regcache,
7292 I387_XMM0_REGNUM (tdep) + ir.rm);
7293 break;
7294
7295 case 0x0f7e: /* movd */
7296 case 0x660f7e: /* movd */
7297 if (i386_record_modrm (&ir))
7298 return -1;
7299 if (ir.mod == 3)
7300 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7301 else
7302 {
7303 if (ir.dflag == 2)
7304 ir.ot = OT_QUAD;
7305 else
7306 ir.ot = OT_LONG;
7307 if (i386_record_lea_modrm (&ir))
7308 return -1;
7309 }
7310 break;
7311
7312 case 0x0f7f: /* movq */
7313 if (i386_record_modrm (&ir))
7314 return -1;
7315 if (ir.mod == 3)
7316 {
7317 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7318 goto no_support;
7319 record_arch_list_add_reg (ir.regcache,
7320 I387_MM0_REGNUM (tdep) + ir.rm);
7321 }
7322 else
7323 {
7324 ir.ot = OT_QUAD;
7325 if (i386_record_lea_modrm (&ir))
7326 return -1;
7327 }
7328 break;
7329
7330 case 0xf30fb8: /* popcnt */
7331 if (i386_record_modrm (&ir))
7332 return -1;
7333 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7335 break;
7336
7337 case 0x660fd6: /* movq */
7338 if (i386_record_modrm (&ir))
7339 return -1;
7340 if (ir.mod == 3)
7341 {
7342 ir.rm |= ir.rex_b;
1777feb0
MS
7343 if (!i386_xmm_regnum_p (gdbarch,
7344 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
7345 goto no_support;
7346 record_arch_list_add_reg (ir.regcache,
7347 I387_XMM0_REGNUM (tdep) + ir.rm);
7348 }
7349 else
7350 {
7351 ir.ot = OT_QUAD;
7352 if (i386_record_lea_modrm (&ir))
7353 return -1;
7354 }
7355 break;
7356
7357 case 0x660f3817: /* ptest */
7358 case 0x0f2e: /* ucomiss */
7359 case 0x660f2e: /* ucomisd */
7360 case 0x0f2f: /* comiss */
7361 case 0x660f2f: /* comisd */
7362 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7363 break;
7364
7365 case 0x0ff7: /* maskmovq */
7366 regcache_raw_read_unsigned (ir.regcache,
7367 ir.regmap[X86_RECORD_REDI_REGNUM],
7368 &addr);
7369 if (record_arch_list_add_mem (addr, 64))
7370 return -1;
7371 break;
7372
7373 case 0x660ff7: /* maskmovdqu */
7374 regcache_raw_read_unsigned (ir.regcache,
7375 ir.regmap[X86_RECORD_REDI_REGNUM],
7376 &addr);
7377 if (record_arch_list_add_mem (addr, 128))
7378 return -1;
7379 break;
7380
7381 default:
7382 goto no_support;
7383 break;
7384 }
7385 break;
7ad10968
HZ
7386
7387 default:
7ad10968
HZ
7388 goto no_support;
7389 break;
7390 }
7391
cf648174
HZ
7392 /* In the future, maybe still need to deal with need_dasm. */
7393 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
7394 if (record_arch_list_add_end ())
7395 return -1;
7396
7397 return 0;
7398
01fe1b41 7399 no_support:
a3c4230a
HZ
7400 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7401 "at address %s.\n"),
7402 (unsigned int) (opcode),
7403 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
7404 return -1;
7405}
7406
cf648174
HZ
7407static const int i386_record_regmap[] =
7408{
7409 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7410 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7411 0, 0, 0, 0, 0, 0, 0, 0,
7412 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7413 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7414};
7415
7a697b8d 7416/* Check that the given address appears suitable for a fast
405f8e94 7417 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
7418 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7419 jump and not have to worry about program jumps to an address in the
405f8e94
SS
7420 middle of the tracepoint jump. On x86, it may be possible to use
7421 4-byte jumps with a 2-byte offset to a trampoline located in the
7422 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
7423 of instruction to replace, and 0 if not, plus an explanatory
7424 string. */
7425
7426static int
7427i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7428 CORE_ADDR addr, int *isize, char **msg)
7429{
7430 int len, jumplen;
7431 static struct ui_file *gdb_null = NULL;
7432
405f8e94
SS
7433 /* Ask the target for the minimum instruction length supported. */
7434 jumplen = target_get_min_fast_tracepoint_insn_len ();
7435
7436 if (jumplen < 0)
7437 {
7438 /* If the target does not support the get_min_fast_tracepoint_insn_len
7439 operation, assume that fast tracepoints will always be implemented
7440 using 4-byte relative jumps on both x86 and x86-64. */
7441 jumplen = 5;
7442 }
7443 else if (jumplen == 0)
7444 {
7445 /* If the target does support get_min_fast_tracepoint_insn_len but
7446 returns zero, then the IPA has not loaded yet. In this case,
7447 we optimistically assume that truncated 2-byte relative jumps
7448 will be available on x86, and compensate later if this assumption
7449 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7450 jumps will always be used. */
7451 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7452 }
7a697b8d
SS
7453
7454 /* Dummy file descriptor for the disassembler. */
7455 if (!gdb_null)
7456 gdb_null = ui_file_new ();
7457
7458 /* Check for fit. */
7459 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
7460 if (isize)
7461 *isize = len;
7462
7a697b8d
SS
7463 if (len < jumplen)
7464 {
7465 /* Return a bit of target-specific detail to add to the caller's
7466 generic failure message. */
7467 if (msg)
1777feb0
MS
7468 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7469 "need at least %d bytes for the jump"),
7a697b8d
SS
7470 len, jumplen);
7471 return 0;
7472 }
405f8e94
SS
7473 else
7474 {
7475 if (msg)
7476 *msg = NULL;
7477 return 1;
7478 }
7a697b8d
SS
7479}
7480
90884b2b
L
7481static int
7482i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7483 struct tdesc_arch_data *tdesc_data)
7484{
7485 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
7486 const struct tdesc_feature *feature_core;
7487 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
7488 int i, num_regs, valid_p;
7489
7490 if (! tdesc_has_registers (tdesc))
7491 return 0;
7492
7493 /* Get core registers. */
7494 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
7495 if (feature_core == NULL)
7496 return 0;
90884b2b
L
7497
7498 /* Get SSE registers. */
c131fcee 7499 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 7500
c131fcee
L
7501 /* Try AVX registers. */
7502 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7503
90884b2b
L
7504 valid_p = 1;
7505
c131fcee
L
7506 /* The XCR0 bits. */
7507 if (feature_avx)
7508 {
3a13a53b
L
7509 /* AVX register description requires SSE register description. */
7510 if (!feature_sse)
7511 return 0;
7512
c131fcee
L
7513 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7514
7515 /* It may have been set by OSABI initialization function. */
7516 if (tdep->num_ymm_regs == 0)
7517 {
7518 tdep->ymmh_register_names = i386_ymmh_names;
7519 tdep->num_ymm_regs = 8;
7520 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7521 }
7522
7523 for (i = 0; i < tdep->num_ymm_regs; i++)
7524 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7525 tdep->ymm0h_regnum + i,
7526 tdep->ymmh_register_names[i]);
7527 }
3a13a53b 7528 else if (feature_sse)
c131fcee 7529 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7530 else
7531 {
7532 tdep->xcr0 = I386_XSTATE_X87_MASK;
7533 tdep->num_xmm_regs = 0;
7534 }
c131fcee 7535
90884b2b
L
7536 num_regs = tdep->num_core_regs;
7537 for (i = 0; i < num_regs; i++)
7538 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7539 tdep->register_names[i]);
7540
3a13a53b
L
7541 if (feature_sse)
7542 {
7543 /* Need to include %mxcsr, so add one. */
7544 num_regs += tdep->num_xmm_regs + 1;
7545 for (; i < num_regs; i++)
7546 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7547 tdep->register_names[i]);
7548 }
90884b2b
L
7549
7550 return valid_p;
7551}
7552
7ad10968
HZ
7553\f
7554static struct gdbarch *
7555i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7556{
7557 struct gdbarch_tdep *tdep;
7558 struct gdbarch *gdbarch;
90884b2b
L
7559 struct tdesc_arch_data *tdesc_data;
7560 const struct target_desc *tdesc;
1ba53b71 7561 int mm0_regnum;
c131fcee 7562 int ymm0_regnum;
7ad10968
HZ
7563
7564 /* If there is already a candidate, use it. */
7565 arches = gdbarch_list_lookup_by_info (arches, &info);
7566 if (arches != NULL)
7567 return arches->gdbarch;
7568
7569 /* Allocate space for the new architecture. */
7570 tdep = XCALLOC (1, struct gdbarch_tdep);
7571 gdbarch = gdbarch_alloc (&info, tdep);
7572
7573 /* General-purpose registers. */
7574 tdep->gregset = NULL;
7575 tdep->gregset_reg_offset = NULL;
7576 tdep->gregset_num_regs = I386_NUM_GREGS;
7577 tdep->sizeof_gregset = 0;
7578
7579 /* Floating-point registers. */
7580 tdep->fpregset = NULL;
7581 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7582
c131fcee
L
7583 tdep->xstateregset = NULL;
7584
7ad10968
HZ
7585 /* The default settings include the FPU registers, the MMX registers
7586 and the SSE registers. This can be overridden for a specific ABI
7587 by adjusting the members `st0_regnum', `mm0_regnum' and
7588 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7589 will show up in the output of "info all-registers". */
7ad10968
HZ
7590
7591 tdep->st0_regnum = I386_ST0_REGNUM;
7592
7ad10968
HZ
7593 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7594 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7595
7596 tdep->jb_pc_offset = -1;
7597 tdep->struct_return = pcc_struct_return;
7598 tdep->sigtramp_start = 0;
7599 tdep->sigtramp_end = 0;
7600 tdep->sigtramp_p = i386_sigtramp_p;
7601 tdep->sigcontext_addr = NULL;
7602 tdep->sc_reg_offset = NULL;
7603 tdep->sc_pc_offset = -1;
7604 tdep->sc_sp_offset = -1;
7605
c131fcee
L
7606 tdep->xsave_xcr0_offset = -1;
7607
cf648174
HZ
7608 tdep->record_regmap = i386_record_regmap;
7609
205c306f
DM
7610 set_gdbarch_long_long_align_bit (gdbarch, 32);
7611
7ad10968
HZ
7612 /* The format used for `long double' on almost all i386 targets is
7613 the i387 extended floating-point format. In fact, of all targets
7614 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7615 on having a `long double' that's not `long' at all. */
7616 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7617
7618 /* Although the i387 extended floating-point has only 80 significant
7619 bits, a `long double' actually takes up 96, probably to enforce
7620 alignment. */
7621 set_gdbarch_long_double_bit (gdbarch, 96);
7622
7ad10968
HZ
7623 /* Register numbers of various important registers. */
7624 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7625 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7626 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7627 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7628
7629 /* NOTE: kettenis/20040418: GCC does have two possible register
7630 numbering schemes on the i386: dbx and SVR4. These schemes
7631 differ in how they number %ebp, %esp, %eflags, and the
7632 floating-point registers, and are implemented by the arrays
7633 dbx_register_map[] and svr4_dbx_register_map in
7634 gcc/config/i386.c. GCC also defines a third numbering scheme in
7635 gcc/config/i386.c, which it designates as the "default" register
7636 map used in 64bit mode. This last register numbering scheme is
7637 implemented in dbx64_register_map, and is used for AMD64; see
7638 amd64-tdep.c.
7639
7640 Currently, each GCC i386 target always uses the same register
7641 numbering scheme across all its supported debugging formats
7642 i.e. SDB (COFF), stabs and DWARF 2. This is because
7643 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7644 DBX_REGISTER_NUMBER macro which is defined by each target's
7645 respective config header in a manner independent of the requested
7646 output debugging format.
7647
7648 This does not match the arrangement below, which presumes that
7649 the SDB and stabs numbering schemes differ from the DWARF and
7650 DWARF 2 ones. The reason for this arrangement is that it is
7651 likely to get the numbering scheme for the target's
7652 default/native debug format right. For targets where GCC is the
7653 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7654 targets where the native toolchain uses a different numbering
7655 scheme for a particular debug format (stabs-in-ELF on Solaris)
7656 the defaults below will have to be overridden, like
7657 i386_elf_init_abi() does. */
7658
7659 /* Use the dbx register numbering scheme for stabs and COFF. */
7660 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7661 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7662
7663 /* Use the SVR4 register numbering scheme for DWARF 2. */
7664 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7665
7666 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7667 be in use on any of the supported i386 targets. */
7668
7669 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7670
7671 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7672
7673 /* Call dummy code. */
a9b8d892
JK
7674 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7675 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 7676 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 7677 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
7678
7679 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7680 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7681 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7682
7683 set_gdbarch_return_value (gdbarch, i386_return_value);
7684
7685 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7686
7687 /* Stack grows downward. */
7688 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7689
7690 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7691 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7692 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7693
7694 set_gdbarch_frame_args_skip (gdbarch, 8);
7695
7ad10968
HZ
7696 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7697
7698 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7699
7700 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7701
7702 /* Add the i386 register groups. */
7703 i386_add_reggroups (gdbarch);
90884b2b 7704 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7705
143985b7
AF
7706 /* Helper for function argument information. */
7707 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7708
06da04c6 7709 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
7710 appended to the list first, so that it supercedes the DWARF
7711 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
7712 currently fails). */
7713 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7714
7715 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 7716 to the list before the prologue-based unwinders, so that DWARF
06da04c6 7717 CFI info will be used if it is available. */
10458914 7718 dwarf2_append_unwinders (gdbarch);
6405b0a6 7719
acd5c798 7720 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7721
1ba53b71 7722 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
7723 set_gdbarch_pseudo_register_read_value (gdbarch,
7724 i386_pseudo_register_read_value);
90884b2b
L
7725 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7726
7727 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7728 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7729
c131fcee
L
7730 /* Override the normal target description method to make the AVX
7731 upper halves anonymous. */
7732 set_gdbarch_register_name (gdbarch, i386_register_name);
7733
7734 /* Even though the default ABI only includes general-purpose registers,
7735 floating-point registers and the SSE registers, we have to leave a
7736 gap for the upper AVX registers. */
7737 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7738
7739 /* Get the x86 target description from INFO. */
7740 tdesc = info.target_desc;
7741 if (! tdesc_has_registers (tdesc))
7742 tdesc = tdesc_i386;
7743 tdep->tdesc = tdesc;
7744
7745 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7746 tdep->register_names = i386_register_names;
7747
c131fcee
L
7748 /* No upper YMM registers. */
7749 tdep->ymmh_register_names = NULL;
7750 tdep->ymm0h_regnum = -1;
7751
1ba53b71
L
7752 tdep->num_byte_regs = 8;
7753 tdep->num_word_regs = 8;
7754 tdep->num_dword_regs = 0;
7755 tdep->num_mmx_regs = 8;
c131fcee 7756 tdep->num_ymm_regs = 0;
1ba53b71 7757
90884b2b
L
7758 tdesc_data = tdesc_data_alloc ();
7759
dde08ee1
PA
7760 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7761
6710bf39
SS
7762 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7763
3ce1502b 7764 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7765 info.tdep_info = (void *) tdesc_data;
4be87837 7766 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7767
c131fcee
L
7768 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7769 {
7770 tdesc_data_cleanup (tdesc_data);
7771 xfree (tdep);
7772 gdbarch_free (gdbarch);
7773 return NULL;
7774 }
7775
1ba53b71
L
7776 /* Wire in pseudo registers. Number of pseudo registers may be
7777 changed. */
7778 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7779 + tdep->num_word_regs
7780 + tdep->num_dword_regs
c131fcee
L
7781 + tdep->num_mmx_regs
7782 + tdep->num_ymm_regs));
1ba53b71 7783
90884b2b
L
7784 /* Target description may be changed. */
7785 tdesc = tdep->tdesc;
7786
90884b2b
L
7787 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7788
7789 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7790 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7791
1ba53b71
L
7792 /* Make %al the first pseudo-register. */
7793 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7794 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7795
c131fcee 7796 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7797 if (tdep->num_dword_regs)
7798 {
1c6272a6 7799 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7800 tdep->eax_regnum = ymm0_regnum;
7801 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7802 }
7803 else
7804 tdep->eax_regnum = -1;
7805
c131fcee
L
7806 mm0_regnum = ymm0_regnum;
7807 if (tdep->num_ymm_regs)
7808 {
1c6272a6 7809 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7810 tdep->ymm0_regnum = ymm0_regnum;
7811 mm0_regnum += tdep->num_ymm_regs;
7812 }
7813 else
7814 tdep->ymm0_regnum = -1;
7815
1ba53b71
L
7816 if (tdep->num_mmx_regs != 0)
7817 {
1c6272a6 7818 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7819 tdep->mm0_regnum = mm0_regnum;
7820 }
7821 else
7822 tdep->mm0_regnum = -1;
7823
06da04c6 7824 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 7825 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
7826 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7827 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7828
8446b36a
MK
7829 /* If we have a register mapping, enable the generic core file
7830 support, unless it has already been enabled. */
7831 if (tdep->gregset_reg_offset
7832 && !gdbarch_regset_from_core_section_p (gdbarch))
7833 set_gdbarch_regset_from_core_section (gdbarch,
7834 i386_regset_from_core_section);
7835
514f746b
AR
7836 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7837 i386_skip_permanent_breakpoint);
7838
7a697b8d
SS
7839 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7840 i386_fast_tracepoint_valid_at);
7841
a62cc96e
AC
7842 return gdbarch;
7843}
7844
8201327c
MK
7845static enum gdb_osabi
7846i386_coff_osabi_sniffer (bfd *abfd)
7847{
762c5349
MK
7848 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7849 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7850 return GDB_OSABI_GO32;
7851
7852 return GDB_OSABI_UNKNOWN;
7853}
8201327c
MK
7854\f
7855
28e9e0f0
MK
7856/* Provide a prototype to silence -Wmissing-prototypes. */
7857void _initialize_i386_tdep (void);
7858
c906108c 7859void
fba45db2 7860_initialize_i386_tdep (void)
c906108c 7861{
a62cc96e
AC
7862 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7863
fc338970 7864 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7865 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7866 &disassembly_flavor, _("\
7867Set the disassembly flavor."), _("\
7868Show the disassembly flavor."), _("\
7869The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7870 NULL,
7871 NULL, /* FIXME: i18n: */
7872 &setlist, &showlist);
8201327c
MK
7873
7874 /* Add the variable that controls the convention for returning
7875 structs. */
7ab04401
AC
7876 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7877 &struct_convention, _("\
7878Set the convention for returning small structs."), _("\
7879Show the convention for returning small structs."), _("\
7880Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7881is \"default\"."),
7882 NULL,
7883 NULL, /* FIXME: i18n: */
7884 &setlist, &showlist);
8201327c
MK
7885
7886 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7887 i386_coff_osabi_sniffer);
8201327c 7888
05816f70 7889 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7890 i386_svr4_init_abi);
05816f70 7891 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7892 i386_go32_init_abi);
38c968cf 7893
209bd28e 7894 /* Initialize the i386-specific register groups. */
38c968cf 7895 i386_init_reggroups ();
90884b2b
L
7896
7897 /* Initialize the standard target descriptions. */
7898 initialize_tdesc_i386 ();
3a13a53b 7899 initialize_tdesc_i386_mmx ();
c131fcee 7900 initialize_tdesc_i386_avx ();
c8d5aac9
L
7901
7902 /* Tell remote stub that we support XML target description. */
7903 register_remote_support_xml ("i386");
c906108c 7904}
This page took 1.50085 seconds and 4 git commands to generate.