reindent print_macro_definition
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
fd0407d6 42#include "value.h"
a89aa300 43#include "dis-asm.h"
7a697b8d 44#include "disasm.h"
c8d5aac9 45#include "remote.h"
8fbca658 46#include "exceptions.h"
3d261580 47#include "gdb_assert.h"
0e9f083f 48#include <string.h>
3d261580 49
d2a7c97a 50#include "i386-tdep.h"
61113f8b 51#include "i387-tdep.h"
c131fcee 52#include "i386-xstate.h"
d2a7c97a 53
7ad10968 54#include "record.h"
d02ed0bb 55#include "record-full.h"
7ad10968
HZ
56#include <stdint.h>
57
90884b2b 58#include "features/i386/i386.c"
c131fcee 59#include "features/i386/i386-avx.c"
1dbcd68c 60#include "features/i386/i386-mpx.c"
01f9f808 61#include "features/i386/i386-avx512.c"
3a13a53b 62#include "features/i386/i386-mmx.c"
90884b2b 63
6710bf39
SS
64#include "ax.h"
65#include "ax-gdb.h"
66
55aa24fb
SDJ
67#include "stap-probe.h"
68#include "user-regs.h"
69#include "cli/cli-utils.h"
70#include "expression.h"
71#include "parser-defs.h"
72#include <ctype.h>
73
c4fc7f1b 74/* Register names. */
c40e1eab 75
90884b2b 76static const char *i386_register_names[] =
fc633446
MK
77{
78 "eax", "ecx", "edx", "ebx",
79 "esp", "ebp", "esi", "edi",
80 "eip", "eflags", "cs", "ss",
81 "ds", "es", "fs", "gs",
82 "st0", "st1", "st2", "st3",
83 "st4", "st5", "st6", "st7",
84 "fctrl", "fstat", "ftag", "fiseg",
85 "fioff", "foseg", "fooff", "fop",
86 "xmm0", "xmm1", "xmm2", "xmm3",
87 "xmm4", "xmm5", "xmm6", "xmm7",
88 "mxcsr"
89};
90
01f9f808
MS
91static const char *i386_zmm_names[] =
92{
93 "zmm0", "zmm1", "zmm2", "zmm3",
94 "zmm4", "zmm5", "zmm6", "zmm7"
95};
96
97static const char *i386_zmmh_names[] =
98{
99 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
100 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
101};
102
103static const char *i386_k_names[] =
104{
105 "k0", "k1", "k2", "k3",
106 "k4", "k5", "k6", "k7"
107};
108
c131fcee
L
109static const char *i386_ymm_names[] =
110{
111 "ymm0", "ymm1", "ymm2", "ymm3",
112 "ymm4", "ymm5", "ymm6", "ymm7",
113};
114
115static const char *i386_ymmh_names[] =
116{
117 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
118 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
119};
120
1dbcd68c
WT
121static const char *i386_mpx_names[] =
122{
123 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
124};
125
126/* Register names for MPX pseudo-registers. */
127
128static const char *i386_bnd_names[] =
129{
130 "bnd0", "bnd1", "bnd2", "bnd3"
131};
132
c4fc7f1b 133/* Register names for MMX pseudo-registers. */
28fc6740 134
90884b2b 135static const char *i386_mmx_names[] =
28fc6740
AC
136{
137 "mm0", "mm1", "mm2", "mm3",
138 "mm4", "mm5", "mm6", "mm7"
139};
c40e1eab 140
1ba53b71
L
141/* Register names for byte pseudo-registers. */
142
143static const char *i386_byte_names[] =
144{
145 "al", "cl", "dl", "bl",
146 "ah", "ch", "dh", "bh"
147};
148
149/* Register names for word pseudo-registers. */
150
151static const char *i386_word_names[] =
152{
153 "ax", "cx", "dx", "bx",
9cad29ac 154 "", "bp", "si", "di"
1ba53b71
L
155};
156
01f9f808
MS
157/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
158 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
159 we have 16 upper ZMM regs that have to be handled differently. */
160
161const int num_lower_zmm_regs = 16;
162
1ba53b71 163/* MMX register? */
c40e1eab 164
28fc6740 165static int
5716833c 166i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 167{
1ba53b71
L
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
170
171 if (mm0_regnum < 0)
172 return 0;
173
1ba53b71
L
174 regnum -= mm0_regnum;
175 return regnum >= 0 && regnum < tdep->num_mmx_regs;
176}
177
178/* Byte register? */
179
180int
181i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
182{
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184
185 regnum -= tdep->al_regnum;
186 return regnum >= 0 && regnum < tdep->num_byte_regs;
187}
188
189/* Word register? */
190
191int
192i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
193{
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195
196 regnum -= tdep->ax_regnum;
197 return regnum >= 0 && regnum < tdep->num_word_regs;
198}
199
200/* Dword register? */
201
202int
203i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
204{
205 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
206 int eax_regnum = tdep->eax_regnum;
207
208 if (eax_regnum < 0)
209 return 0;
210
211 regnum -= eax_regnum;
212 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
213}
214
01f9f808
MS
215/* AVX512 register? */
216
217int
218i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
219{
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221 int zmm0h_regnum = tdep->zmm0h_regnum;
222
223 if (zmm0h_regnum < 0)
224 return 0;
225
226 regnum -= zmm0h_regnum;
227 return regnum >= 0 && regnum < tdep->num_zmm_regs;
228}
229
230int
231i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
232{
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234 int zmm0_regnum = tdep->zmm0_regnum;
235
236 if (zmm0_regnum < 0)
237 return 0;
238
239 regnum -= zmm0_regnum;
240 return regnum >= 0 && regnum < tdep->num_zmm_regs;
241}
242
243int
244i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
245{
246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
247 int k0_regnum = tdep->k0_regnum;
248
249 if (k0_regnum < 0)
250 return 0;
251
252 regnum -= k0_regnum;
253 return regnum >= 0 && regnum < I387_NUM_K_REGS;
254}
255
9191d390 256static int
c131fcee
L
257i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
258{
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 int ymm0h_regnum = tdep->ymm0h_regnum;
261
262 if (ymm0h_regnum < 0)
263 return 0;
264
265 regnum -= ymm0h_regnum;
266 return regnum >= 0 && regnum < tdep->num_ymm_regs;
267}
268
269/* AVX register? */
270
271int
272i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
273{
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 int ymm0_regnum = tdep->ymm0_regnum;
276
277 if (ymm0_regnum < 0)
278 return 0;
279
280 regnum -= ymm0_regnum;
281 return regnum >= 0 && regnum < tdep->num_ymm_regs;
282}
283
01f9f808
MS
284static int
285i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 int ymm16h_regnum = tdep->ymm16h_regnum;
289
290 if (ymm16h_regnum < 0)
291 return 0;
292
293 regnum -= ymm16h_regnum;
294 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
295}
296
297int
298i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
299{
300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
301 int ymm16_regnum = tdep->ymm16_regnum;
302
303 if (ymm16_regnum < 0)
304 return 0;
305
306 regnum -= ymm16_regnum;
307 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
308}
309
1dbcd68c
WT
310/* BND register? */
311
312int
313i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
314{
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 int bnd0_regnum = tdep->bnd0_regnum;
317
318 if (bnd0_regnum < 0)
319 return 0;
320
321 regnum -= bnd0_regnum;
322 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
323}
324
5716833c 325/* SSE register? */
23a34459 326
c131fcee
L
327int
328i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 329{
5716833c 330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 331 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 332
c131fcee 333 if (num_xmm_regs == 0)
5716833c
MK
334 return 0;
335
c131fcee
L
336 regnum -= I387_XMM0_REGNUM (tdep);
337 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
338}
339
01f9f808
MS
340/* XMM_512 register? */
341
342int
343i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
344{
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
347
348 if (num_xmm_avx512_regs == 0)
349 return 0;
350
351 regnum -= I387_XMM16_REGNUM (tdep);
352 return regnum >= 0 && regnum < num_xmm_avx512_regs;
353}
354
5716833c
MK
355static int
356i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 357{
5716833c
MK
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359
20a6ec49 360 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
361 return 0;
362
20a6ec49 363 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
364}
365
5716833c 366/* FP register? */
23a34459
AC
367
368int
20a6ec49 369i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 370{
20a6ec49
MD
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
374 return 0;
375
20a6ec49
MD
376 return (I387_ST0_REGNUM (tdep) <= regnum
377 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
378}
379
380int
20a6ec49 381i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 382{
20a6ec49
MD
383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
384
385 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
386 return 0;
387
20a6ec49
MD
388 return (I387_FCTRL_REGNUM (tdep) <= regnum
389 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
390}
391
1dbcd68c
WT
392/* BNDr (raw) register? */
393
394static int
395i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
396{
397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
398
399 if (I387_BND0R_REGNUM (tdep) < 0)
400 return 0;
401
402 regnum -= tdep->bnd0r_regnum;
403 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
404}
405
406/* BND control register? */
407
408static int
409i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
410{
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412
413 if (I387_BNDCFGU_REGNUM (tdep) < 0)
414 return 0;
415
416 regnum -= I387_BNDCFGU_REGNUM (tdep);
417 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
418}
419
c131fcee
L
420/* Return the name of register REGNUM, or the empty string if it is
421 an anonymous register. */
422
423static const char *
424i386_register_name (struct gdbarch *gdbarch, int regnum)
425{
426 /* Hide the upper YMM registers. */
427 if (i386_ymmh_regnum_p (gdbarch, regnum))
428 return "";
429
01f9f808
MS
430 /* Hide the upper YMM16-31 registers. */
431 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
432 return "";
433
434 /* Hide the upper ZMM registers. */
435 if (i386_zmmh_regnum_p (gdbarch, regnum))
436 return "";
437
c131fcee
L
438 return tdesc_register_name (gdbarch, regnum);
439}
440
30b0e2d8 441/* Return the name of register REGNUM. */
fc633446 442
1ba53b71 443const char *
90884b2b 444i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 445{
1ba53b71 446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
447 if (i386_bnd_regnum_p (gdbarch, regnum))
448 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
449 if (i386_mmx_regnum_p (gdbarch, regnum))
450 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
451 else if (i386_ymm_regnum_p (gdbarch, regnum))
452 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
453 else if (i386_zmm_regnum_p (gdbarch, regnum))
454 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
455 else if (i386_byte_regnum_p (gdbarch, regnum))
456 return i386_byte_names[regnum - tdep->al_regnum];
457 else if (i386_word_regnum_p (gdbarch, regnum))
458 return i386_word_names[regnum - tdep->ax_regnum];
459
460 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
461}
462
c4fc7f1b 463/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
464 number used by GDB. */
465
8201327c 466static int
d3f73121 467i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 468{
20a6ec49
MD
469 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
470
c4fc7f1b
MK
471 /* This implements what GCC calls the "default" register map
472 (dbx_register_map[]). */
473
85540d8c
MK
474 if (reg >= 0 && reg <= 7)
475 {
9872ad24
JB
476 /* General-purpose registers. The debug info calls %ebp
477 register 4, and %esp register 5. */
478 if (reg == 4)
479 return 5;
480 else if (reg == 5)
481 return 4;
482 else return reg;
85540d8c
MK
483 }
484 else if (reg >= 12 && reg <= 19)
485 {
486 /* Floating-point registers. */
20a6ec49 487 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
488 }
489 else if (reg >= 21 && reg <= 28)
490 {
491 /* SSE registers. */
c131fcee
L
492 int ymm0_regnum = tdep->ymm0_regnum;
493
494 if (ymm0_regnum >= 0
495 && i386_xmm_regnum_p (gdbarch, reg))
496 return reg - 21 + ymm0_regnum;
497 else
498 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
499 }
500 else if (reg >= 29 && reg <= 36)
501 {
502 /* MMX registers. */
20a6ec49 503 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
504 }
505
506 /* This will hopefully provoke a warning. */
d3f73121 507 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
508}
509
c4fc7f1b
MK
510/* Convert SVR4 register number REG to the appropriate register number
511 used by GDB. */
85540d8c 512
8201327c 513static int
d3f73121 514i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 515{
20a6ec49
MD
516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
517
c4fc7f1b
MK
518 /* This implements the GCC register map that tries to be compatible
519 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
520
521 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
522 numbers the floating point registers differently. */
523 if (reg >= 0 && reg <= 9)
524 {
acd5c798 525 /* General-purpose registers. */
85540d8c
MK
526 return reg;
527 }
528 else if (reg >= 11 && reg <= 18)
529 {
530 /* Floating-point registers. */
20a6ec49 531 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 532 }
c6f4c129 533 else if (reg >= 21 && reg <= 36)
85540d8c 534 {
c4fc7f1b 535 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 536 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
537 }
538
c6f4c129
JB
539 switch (reg)
540 {
20a6ec49
MD
541 case 37: return I387_FCTRL_REGNUM (tdep);
542 case 38: return I387_FSTAT_REGNUM (tdep);
543 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
544 case 40: return I386_ES_REGNUM;
545 case 41: return I386_CS_REGNUM;
546 case 42: return I386_SS_REGNUM;
547 case 43: return I386_DS_REGNUM;
548 case 44: return I386_FS_REGNUM;
549 case 45: return I386_GS_REGNUM;
550 }
551
85540d8c 552 /* This will hopefully provoke a warning. */
d3f73121 553 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 554}
5716833c 555
fc338970 556\f
917317f4 557
fc338970
MK
558/* This is the variable that is set with "set disassembly-flavor", and
559 its legitimate values. */
53904c9e
AC
560static const char att_flavor[] = "att";
561static const char intel_flavor[] = "intel";
40478521 562static const char *const valid_flavors[] =
c5aa993b 563{
c906108c
SS
564 att_flavor,
565 intel_flavor,
566 NULL
567};
53904c9e 568static const char *disassembly_flavor = att_flavor;
acd5c798 569\f
c906108c 570
acd5c798
MK
571/* Use the program counter to determine the contents and size of a
572 breakpoint instruction. Return a pointer to a string of bytes that
573 encode a breakpoint instruction, store the length of the string in
574 *LEN and optionally adjust *PC to point to the correct memory
575 location for inserting the breakpoint.
c906108c 576
acd5c798
MK
577 On the i386 we have a single breakpoint that fits in a single byte
578 and can be inserted anywhere.
c906108c 579
acd5c798 580 This function is 64-bit safe. */
63c0089f
MK
581
582static const gdb_byte *
67d57894 583i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 584{
63c0089f
MK
585 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
586
acd5c798
MK
587 *len = sizeof (break_insn);
588 return break_insn;
c906108c 589}
237fc4c9
PA
590\f
591/* Displaced instruction handling. */
592
1903f0e6
DE
593/* Skip the legacy instruction prefixes in INSN.
594 Not all prefixes are valid for any particular insn
595 but we needn't care, the insn will fault if it's invalid.
596 The result is a pointer to the first opcode byte,
597 or NULL if we run off the end of the buffer. */
598
599static gdb_byte *
600i386_skip_prefixes (gdb_byte *insn, size_t max_len)
601{
602 gdb_byte *end = insn + max_len;
603
604 while (insn < end)
605 {
606 switch (*insn)
607 {
608 case DATA_PREFIX_OPCODE:
609 case ADDR_PREFIX_OPCODE:
610 case CS_PREFIX_OPCODE:
611 case DS_PREFIX_OPCODE:
612 case ES_PREFIX_OPCODE:
613 case FS_PREFIX_OPCODE:
614 case GS_PREFIX_OPCODE:
615 case SS_PREFIX_OPCODE:
616 case LOCK_PREFIX_OPCODE:
617 case REPE_PREFIX_OPCODE:
618 case REPNE_PREFIX_OPCODE:
619 ++insn;
620 continue;
621 default:
622 return insn;
623 }
624 }
625
626 return NULL;
627}
237fc4c9
PA
628
629static int
1903f0e6 630i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 631{
1777feb0 632 /* jmp far (absolute address in operand). */
237fc4c9
PA
633 if (insn[0] == 0xea)
634 return 1;
635
636 if (insn[0] == 0xff)
637 {
1777feb0 638 /* jump near, absolute indirect (/4). */
237fc4c9
PA
639 if ((insn[1] & 0x38) == 0x20)
640 return 1;
641
1777feb0 642 /* jump far, absolute indirect (/5). */
237fc4c9
PA
643 if ((insn[1] & 0x38) == 0x28)
644 return 1;
645 }
646
647 return 0;
648}
649
c2170eef
MM
650/* Return non-zero if INSN is a jump, zero otherwise. */
651
652static int
653i386_jmp_p (const gdb_byte *insn)
654{
655 /* jump short, relative. */
656 if (insn[0] == 0xeb)
657 return 1;
658
659 /* jump near, relative. */
660 if (insn[0] == 0xe9)
661 return 1;
662
663 return i386_absolute_jmp_p (insn);
664}
665
237fc4c9 666static int
1903f0e6 667i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 668{
1777feb0 669 /* call far, absolute. */
237fc4c9
PA
670 if (insn[0] == 0x9a)
671 return 1;
672
673 if (insn[0] == 0xff)
674 {
1777feb0 675 /* Call near, absolute indirect (/2). */
237fc4c9
PA
676 if ((insn[1] & 0x38) == 0x10)
677 return 1;
678
1777feb0 679 /* Call far, absolute indirect (/3). */
237fc4c9
PA
680 if ((insn[1] & 0x38) == 0x18)
681 return 1;
682 }
683
684 return 0;
685}
686
687static int
1903f0e6 688i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
689{
690 switch (insn[0])
691 {
1777feb0 692 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 693 case 0xc3: /* ret near */
1777feb0 694 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
695 case 0xcb: /* ret far */
696 case 0xcf: /* iret */
697 return 1;
698
699 default:
700 return 0;
701 }
702}
703
704static int
1903f0e6 705i386_call_p (const gdb_byte *insn)
237fc4c9
PA
706{
707 if (i386_absolute_call_p (insn))
708 return 1;
709
1777feb0 710 /* call near, relative. */
237fc4c9
PA
711 if (insn[0] == 0xe8)
712 return 1;
713
714 return 0;
715}
716
237fc4c9
PA
717/* Return non-zero if INSN is a system call, and set *LENGTHP to its
718 length in bytes. Otherwise, return zero. */
1903f0e6 719
237fc4c9 720static int
b55078be 721i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 722{
9a7f938f
JK
723 /* Is it 'int $0x80'? */
724 if ((insn[0] == 0xcd && insn[1] == 0x80)
725 /* Or is it 'sysenter'? */
726 || (insn[0] == 0x0f && insn[1] == 0x34)
727 /* Or is it 'syscall'? */
728 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
729 {
730 *lengthp = 2;
731 return 1;
732 }
733
734 return 0;
735}
736
c2170eef
MM
737/* The gdbarch insn_is_call method. */
738
739static int
740i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
741{
742 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
743
744 read_code (addr, buf, I386_MAX_INSN_LEN);
745 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
746
747 return i386_call_p (insn);
748}
749
750/* The gdbarch insn_is_ret method. */
751
752static int
753i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
754{
755 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
756
757 read_code (addr, buf, I386_MAX_INSN_LEN);
758 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
759
760 return i386_ret_p (insn);
761}
762
763/* The gdbarch insn_is_jump method. */
764
765static int
766i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
767{
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_jmp_p (insn);
774}
775
b55078be
DE
776/* Some kernels may run one past a syscall insn, so we have to cope.
777 Otherwise this is just simple_displaced_step_copy_insn. */
778
779struct displaced_step_closure *
780i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
781 CORE_ADDR from, CORE_ADDR to,
782 struct regcache *regs)
783{
784 size_t len = gdbarch_max_insn_length (gdbarch);
785 gdb_byte *buf = xmalloc (len);
786
787 read_memory (from, buf, len);
788
789 /* GDB may get control back after the insn after the syscall.
790 Presumably this is a kernel bug.
791 If this is a syscall, make sure there's a nop afterwards. */
792 {
793 int syscall_length;
794 gdb_byte *insn;
795
796 insn = i386_skip_prefixes (buf, len);
797 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
798 insn[syscall_length] = NOP_OPCODE;
799 }
800
801 write_memory (to, buf, len);
802
803 if (debug_displaced)
804 {
805 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
806 paddress (gdbarch, from), paddress (gdbarch, to));
807 displaced_step_dump_bytes (gdb_stdlog, buf, len);
808 }
809
810 return (struct displaced_step_closure *) buf;
811}
812
237fc4c9
PA
813/* Fix up the state of registers and memory after having single-stepped
814 a displaced instruction. */
1903f0e6 815
237fc4c9
PA
816void
817i386_displaced_step_fixup (struct gdbarch *gdbarch,
818 struct displaced_step_closure *closure,
819 CORE_ADDR from, CORE_ADDR to,
820 struct regcache *regs)
821{
e17a4113
UW
822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
823
237fc4c9
PA
824 /* The offset we applied to the instruction's address.
825 This could well be negative (when viewed as a signed 32-bit
826 value), but ULONGEST won't reflect that, so take care when
827 applying it. */
828 ULONGEST insn_offset = to - from;
829
830 /* Since we use simple_displaced_step_copy_insn, our closure is a
831 copy of the instruction. */
832 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
833 /* The start of the insn, needed in case we see some prefixes. */
834 gdb_byte *insn_start = insn;
237fc4c9
PA
835
836 if (debug_displaced)
837 fprintf_unfiltered (gdb_stdlog,
5af949e3 838 "displaced: fixup (%s, %s), "
237fc4c9 839 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
840 paddress (gdbarch, from), paddress (gdbarch, to),
841 insn[0], insn[1]);
237fc4c9
PA
842
843 /* The list of issues to contend with here is taken from
844 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
845 Yay for Free Software! */
846
847 /* Relocate the %eip, if necessary. */
848
1903f0e6
DE
849 /* The instruction recognizers we use assume any leading prefixes
850 have been skipped. */
851 {
852 /* This is the size of the buffer in closure. */
853 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
854 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
855 /* If there are too many prefixes, just ignore the insn.
856 It will fault when run. */
857 if (opcode != NULL)
858 insn = opcode;
859 }
860
237fc4c9
PA
861 /* Except in the case of absolute or indirect jump or call
862 instructions, or a return instruction, the new eip is relative to
863 the displaced instruction; make it relative. Well, signal
864 handler returns don't need relocation either, but we use the
865 value of %eip to recognize those; see below. */
866 if (! i386_absolute_jmp_p (insn)
867 && ! i386_absolute_call_p (insn)
868 && ! i386_ret_p (insn))
869 {
870 ULONGEST orig_eip;
b55078be 871 int insn_len;
237fc4c9
PA
872
873 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
874
875 /* A signal trampoline system call changes the %eip, resuming
876 execution of the main program after the signal handler has
877 returned. That makes them like 'return' instructions; we
878 shouldn't relocate %eip.
879
880 But most system calls don't, and we do need to relocate %eip.
881
882 Our heuristic for distinguishing these cases: if stepping
883 over the system call instruction left control directly after
884 the instruction, the we relocate --- control almost certainly
885 doesn't belong in the displaced copy. Otherwise, we assume
886 the instruction has put control where it belongs, and leave
887 it unrelocated. Goodness help us if there are PC-relative
888 system calls. */
889 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
890 && orig_eip != to + (insn - insn_start) + insn_len
891 /* GDB can get control back after the insn after the syscall.
892 Presumably this is a kernel bug.
893 i386_displaced_step_copy_insn ensures its a nop,
894 we add one to the length for it. */
895 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
896 {
897 if (debug_displaced)
898 fprintf_unfiltered (gdb_stdlog,
899 "displaced: syscall changed %%eip; "
900 "not relocating\n");
901 }
902 else
903 {
904 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
905
1903f0e6
DE
906 /* If we just stepped over a breakpoint insn, we don't backup
907 the pc on purpose; this is to match behaviour without
908 stepping. */
237fc4c9
PA
909
910 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
911
912 if (debug_displaced)
913 fprintf_unfiltered (gdb_stdlog,
914 "displaced: "
5af949e3
UW
915 "relocated %%eip from %s to %s\n",
916 paddress (gdbarch, orig_eip),
917 paddress (gdbarch, eip));
237fc4c9
PA
918 }
919 }
920
921 /* If the instruction was PUSHFL, then the TF bit will be set in the
922 pushed value, and should be cleared. We'll leave this for later,
923 since GDB already messes up the TF flag when stepping over a
924 pushfl. */
925
926 /* If the instruction was a call, the return address now atop the
927 stack is the address following the copied instruction. We need
928 to make it the address following the original instruction. */
929 if (i386_call_p (insn))
930 {
931 ULONGEST esp;
932 ULONGEST retaddr;
933 const ULONGEST retaddr_len = 4;
934
935 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 936 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 937 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 938 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
939
940 if (debug_displaced)
941 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
942 "displaced: relocated return addr at %s to %s\n",
943 paddress (gdbarch, esp),
944 paddress (gdbarch, retaddr));
237fc4c9
PA
945 }
946}
dde08ee1
PA
947
948static void
949append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
950{
951 target_write_memory (*to, buf, len);
952 *to += len;
953}
954
955static void
956i386_relocate_instruction (struct gdbarch *gdbarch,
957 CORE_ADDR *to, CORE_ADDR oldloc)
958{
959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
960 gdb_byte buf[I386_MAX_INSN_LEN];
961 int offset = 0, rel32, newrel;
962 int insn_length;
963 gdb_byte *insn = buf;
964
965 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
966
967 insn_length = gdb_buffered_insn_length (gdbarch, insn,
968 I386_MAX_INSN_LEN, oldloc);
969
970 /* Get past the prefixes. */
971 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
972
973 /* Adjust calls with 32-bit relative addresses as push/jump, with
974 the address pushed being the location where the original call in
975 the user program would return to. */
976 if (insn[0] == 0xe8)
977 {
978 gdb_byte push_buf[16];
979 unsigned int ret_addr;
980
981 /* Where "ret" in the original code will return to. */
982 ret_addr = oldloc + insn_length;
1777feb0 983 push_buf[0] = 0x68; /* pushq $... */
144db827 984 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
985 /* Push the push. */
986 append_insns (to, 5, push_buf);
987
988 /* Convert the relative call to a relative jump. */
989 insn[0] = 0xe9;
990
991 /* Adjust the destination offset. */
992 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
993 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
994 store_signed_integer (insn + 1, 4, byte_order, newrel);
995
996 if (debug_displaced)
997 fprintf_unfiltered (gdb_stdlog,
998 "Adjusted insn rel32=%s at %s to"
999 " rel32=%s at %s\n",
1000 hex_string (rel32), paddress (gdbarch, oldloc),
1001 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1002
1003 /* Write the adjusted jump into its displaced location. */
1004 append_insns (to, 5, insn);
1005 return;
1006 }
1007
1008 /* Adjust jumps with 32-bit relative addresses. Calls are already
1009 handled above. */
1010 if (insn[0] == 0xe9)
1011 offset = 1;
1012 /* Adjust conditional jumps. */
1013 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1014 offset = 2;
1015
1016 if (offset)
1017 {
1018 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
f4a1794a 1020 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1021 if (debug_displaced)
1022 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1023 "Adjusted insn rel32=%s at %s to"
1024 " rel32=%s at %s\n",
dde08ee1
PA
1025 hex_string (rel32), paddress (gdbarch, oldloc),
1026 hex_string (newrel), paddress (gdbarch, *to));
1027 }
1028
1029 /* Write the adjusted instructions into their displaced
1030 location. */
1031 append_insns (to, insn_length, buf);
1032}
1033
fc338970 1034\f
acd5c798
MK
1035#ifdef I386_REGNO_TO_SYMMETRY
1036#error "The Sequent Symmetry is no longer supported."
1037#endif
c906108c 1038
acd5c798
MK
1039/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1040 and %esp "belong" to the calling function. Therefore these
1041 registers should be saved if they're going to be modified. */
c906108c 1042
acd5c798
MK
1043/* The maximum number of saved registers. This should include all
1044 registers mentioned above, and %eip. */
a3386186 1045#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1046
1047struct i386_frame_cache
c906108c 1048{
acd5c798
MK
1049 /* Base address. */
1050 CORE_ADDR base;
8fbca658 1051 int base_p;
772562f8 1052 LONGEST sp_offset;
acd5c798
MK
1053 CORE_ADDR pc;
1054
fd13a04a
AC
1055 /* Saved registers. */
1056 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1057 CORE_ADDR saved_sp;
e0c62198 1058 int saved_sp_reg;
acd5c798
MK
1059 int pc_in_eax;
1060
1061 /* Stack space reserved for local variables. */
1062 long locals;
1063};
1064
1065/* Allocate and initialize a frame cache. */
1066
1067static struct i386_frame_cache *
fd13a04a 1068i386_alloc_frame_cache (void)
acd5c798
MK
1069{
1070 struct i386_frame_cache *cache;
1071 int i;
1072
1073 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1074
1075 /* Base address. */
8fbca658 1076 cache->base_p = 0;
acd5c798
MK
1077 cache->base = 0;
1078 cache->sp_offset = -4;
1079 cache->pc = 0;
1080
fd13a04a
AC
1081 /* Saved registers. We initialize these to -1 since zero is a valid
1082 offset (that's where %ebp is supposed to be stored). */
1083 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1084 cache->saved_regs[i] = -1;
acd5c798 1085 cache->saved_sp = 0;
e0c62198 1086 cache->saved_sp_reg = -1;
acd5c798
MK
1087 cache->pc_in_eax = 0;
1088
1089 /* Frameless until proven otherwise. */
1090 cache->locals = -1;
1091
1092 return cache;
1093}
c906108c 1094
acd5c798
MK
1095/* If the instruction at PC is a jump, return the address of its
1096 target. Otherwise, return PC. */
c906108c 1097
acd5c798 1098static CORE_ADDR
e17a4113 1099i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1100{
e17a4113 1101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1102 gdb_byte op;
acd5c798
MK
1103 long delta = 0;
1104 int data16 = 0;
c906108c 1105
0865b04a 1106 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1107 return pc;
1108
acd5c798 1109 if (op == 0x66)
c906108c 1110 {
c906108c 1111 data16 = 1;
0865b04a
YQ
1112
1113 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1114 }
1115
acd5c798 1116 switch (op)
c906108c
SS
1117 {
1118 case 0xe9:
fc338970 1119 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1120 if (data16)
1121 {
e17a4113 1122 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1123
fc338970
MK
1124 /* Include the size of the jmp instruction (including the
1125 0x66 prefix). */
acd5c798 1126 delta += 4;
c906108c
SS
1127 }
1128 else
1129 {
e17a4113 1130 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1131
acd5c798
MK
1132 /* Include the size of the jmp instruction. */
1133 delta += 5;
c906108c
SS
1134 }
1135 break;
1136 case 0xeb:
fc338970 1137 /* Relative jump, disp8 (ignore data16). */
e17a4113 1138 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1139
acd5c798 1140 delta += data16 + 2;
c906108c
SS
1141 break;
1142 }
c906108c 1143
acd5c798
MK
1144 return pc + delta;
1145}
fc338970 1146
acd5c798
MK
1147/* Check whether PC points at a prologue for a function returning a
1148 structure or union. If so, it updates CACHE and returns the
1149 address of the first instruction after the code sequence that
1150 removes the "hidden" argument from the stack or CURRENT_PC,
1151 whichever is smaller. Otherwise, return PC. */
c906108c 1152
acd5c798
MK
1153static CORE_ADDR
1154i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1155 struct i386_frame_cache *cache)
c906108c 1156{
acd5c798
MK
1157 /* Functions that return a structure or union start with:
1158
1159 popl %eax 0x58
1160 xchgl %eax, (%esp) 0x87 0x04 0x24
1161 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1162
1163 (the System V compiler puts out the second `xchg' instruction,
1164 and the assembler doesn't try to optimize it, so the 'sib' form
1165 gets generated). This sequence is used to get the address of the
1166 return buffer for a function that returns a structure. */
63c0089f
MK
1167 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1168 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1169 gdb_byte buf[4];
1170 gdb_byte op;
c906108c 1171
acd5c798
MK
1172 if (current_pc <= pc)
1173 return pc;
1174
0865b04a 1175 if (target_read_code (pc, &op, 1))
3dcabaa8 1176 return pc;
c906108c 1177
acd5c798
MK
1178 if (op != 0x58) /* popl %eax */
1179 return pc;
c906108c 1180
0865b04a 1181 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1182 return pc;
1183
acd5c798
MK
1184 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1185 return pc;
c906108c 1186
acd5c798 1187 if (current_pc == pc)
c906108c 1188 {
acd5c798
MK
1189 cache->sp_offset += 4;
1190 return current_pc;
c906108c
SS
1191 }
1192
acd5c798 1193 if (current_pc == pc + 1)
c906108c 1194 {
acd5c798
MK
1195 cache->pc_in_eax = 1;
1196 return current_pc;
1197 }
1198
1199 if (buf[1] == proto1[1])
1200 return pc + 4;
1201 else
1202 return pc + 5;
1203}
1204
1205static CORE_ADDR
1206i386_skip_probe (CORE_ADDR pc)
1207{
1208 /* A function may start with
fc338970 1209
acd5c798
MK
1210 pushl constant
1211 call _probe
1212 addl $4, %esp
fc338970 1213
acd5c798
MK
1214 followed by
1215
1216 pushl %ebp
fc338970 1217
acd5c798 1218 etc. */
63c0089f
MK
1219 gdb_byte buf[8];
1220 gdb_byte op;
fc338970 1221
0865b04a 1222 if (target_read_code (pc, &op, 1))
3dcabaa8 1223 return pc;
acd5c798
MK
1224
1225 if (op == 0x68 || op == 0x6a)
1226 {
1227 int delta;
c906108c 1228
acd5c798
MK
1229 /* Skip past the `pushl' instruction; it has either a one-byte or a
1230 four-byte operand, depending on the opcode. */
c906108c 1231 if (op == 0x68)
acd5c798 1232 delta = 5;
c906108c 1233 else
acd5c798 1234 delta = 2;
c906108c 1235
acd5c798
MK
1236 /* Read the following 8 bytes, which should be `call _probe' (6
1237 bytes) followed by `addl $4,%esp' (2 bytes). */
1238 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1239 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1240 pc += delta + sizeof (buf);
c906108c
SS
1241 }
1242
acd5c798
MK
1243 return pc;
1244}
1245
92dd43fa
MK
1246/* GCC 4.1 and later, can put code in the prologue to realign the
1247 stack pointer. Check whether PC points to such code, and update
1248 CACHE accordingly. Return the first instruction after the code
1249 sequence or CURRENT_PC, whichever is smaller. If we don't
1250 recognize the code, return PC. */
1251
1252static CORE_ADDR
1253i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1254 struct i386_frame_cache *cache)
1255{
e0c62198
L
1256 /* There are 2 code sequences to re-align stack before the frame
1257 gets set up:
1258
1259 1. Use a caller-saved saved register:
1260
1261 leal 4(%esp), %reg
1262 andl $-XXX, %esp
1263 pushl -4(%reg)
1264
1265 2. Use a callee-saved saved register:
1266
1267 pushl %reg
1268 leal 8(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1273
1274 0x83 0xe4 0xf0 andl $-16, %esp
1275 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1276 */
1277
1278 gdb_byte buf[14];
1279 int reg;
1280 int offset, offset_and;
1281 static int regnums[8] = {
1282 I386_EAX_REGNUM, /* %eax */
1283 I386_ECX_REGNUM, /* %ecx */
1284 I386_EDX_REGNUM, /* %edx */
1285 I386_EBX_REGNUM, /* %ebx */
1286 I386_ESP_REGNUM, /* %esp */
1287 I386_EBP_REGNUM, /* %ebp */
1288 I386_ESI_REGNUM, /* %esi */
1289 I386_EDI_REGNUM /* %edi */
92dd43fa 1290 };
92dd43fa 1291
0865b04a 1292 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1293 return pc;
1294
1295 /* Check caller-saved saved register. The first instruction has
1296 to be "leal 4(%esp), %reg". */
1297 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1298 {
1299 /* MOD must be binary 10 and R/M must be binary 100. */
1300 if ((buf[1] & 0xc7) != 0x44)
1301 return pc;
1302
1303 /* REG has register number. */
1304 reg = (buf[1] >> 3) & 7;
1305 offset = 4;
1306 }
1307 else
1308 {
1309 /* Check callee-saved saved register. The first instruction
1310 has to be "pushl %reg". */
1311 if ((buf[0] & 0xf8) != 0x50)
1312 return pc;
1313
1314 /* Get register. */
1315 reg = buf[0] & 0x7;
1316
1317 /* The next instruction has to be "leal 8(%esp), %reg". */
1318 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1319 return pc;
1320
1321 /* MOD must be binary 10 and R/M must be binary 100. */
1322 if ((buf[2] & 0xc7) != 0x44)
1323 return pc;
1324
1325 /* REG has register number. Registers in pushl and leal have to
1326 be the same. */
1327 if (reg != ((buf[2] >> 3) & 7))
1328 return pc;
1329
1330 offset = 5;
1331 }
1332
1333 /* Rigister can't be %esp nor %ebp. */
1334 if (reg == 4 || reg == 5)
1335 return pc;
1336
1337 /* The next instruction has to be "andl $-XXX, %esp". */
1338 if (buf[offset + 1] != 0xe4
1339 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1340 return pc;
1341
1342 offset_and = offset;
1343 offset += buf[offset] == 0x81 ? 6 : 3;
1344
1345 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1346 0xfc. REG must be binary 110 and MOD must be binary 01. */
1347 if (buf[offset] != 0xff
1348 || buf[offset + 2] != 0xfc
1349 || (buf[offset + 1] & 0xf8) != 0x70)
1350 return pc;
1351
1352 /* R/M has register. Registers in leal and pushl have to be the
1353 same. */
1354 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1355 return pc;
1356
e0c62198
L
1357 if (current_pc > pc + offset_and)
1358 cache->saved_sp_reg = regnums[reg];
92dd43fa 1359
e0c62198 1360 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1361}
1362
37bdc87e 1363/* Maximum instruction length we need to handle. */
237fc4c9 1364#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1365
1366/* Instruction description. */
1367struct i386_insn
1368{
1369 size_t len;
237fc4c9
PA
1370 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1371 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1372};
1373
a3fcb948 1374/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1375
a3fcb948
JG
1376static int
1377i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1378{
63c0089f 1379 gdb_byte op;
37bdc87e 1380
0865b04a 1381 if (target_read_code (pc, &op, 1))
a3fcb948 1382 return 0;
37bdc87e 1383
a3fcb948 1384 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1385 {
a3fcb948
JG
1386 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1387 int insn_matched = 1;
1388 size_t i;
37bdc87e 1389
a3fcb948
JG
1390 gdb_assert (pattern.len > 1);
1391 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1392
0865b04a 1393 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1394 return 0;
613e8135 1395
a3fcb948
JG
1396 for (i = 1; i < pattern.len; i++)
1397 {
1398 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1399 insn_matched = 0;
37bdc87e 1400 }
a3fcb948
JG
1401 return insn_matched;
1402 }
1403 return 0;
1404}
1405
1406/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1407 the first instruction description that matches. Otherwise, return
1408 NULL. */
1409
1410static struct i386_insn *
1411i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1412{
1413 struct i386_insn *pattern;
1414
1415 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1416 {
1417 if (i386_match_pattern (pc, *pattern))
1418 return pattern;
37bdc87e
MK
1419 }
1420
1421 return NULL;
1422}
1423
a3fcb948
JG
1424/* Return whether PC points inside a sequence of instructions that
1425 matches INSN_PATTERNS. */
1426
1427static int
1428i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1429{
1430 CORE_ADDR current_pc;
1431 int ix, i;
a3fcb948
JG
1432 struct i386_insn *insn;
1433
1434 insn = i386_match_insn (pc, insn_patterns);
1435 if (insn == NULL)
1436 return 0;
1437
8bbdd3f4 1438 current_pc = pc;
a3fcb948
JG
1439 ix = insn - insn_patterns;
1440 for (i = ix - 1; i >= 0; i--)
1441 {
8bbdd3f4
MK
1442 current_pc -= insn_patterns[i].len;
1443
a3fcb948
JG
1444 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1445 return 0;
a3fcb948
JG
1446 }
1447
1448 current_pc = pc + insn->len;
1449 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1450 {
1451 if (!i386_match_pattern (current_pc, *insn))
1452 return 0;
1453
1454 current_pc += insn->len;
1455 }
1456
1457 return 1;
1458}
1459
37bdc87e
MK
1460/* Some special instructions that might be migrated by GCC into the
1461 part of the prologue that sets up the new stack frame. Because the
1462 stack frame hasn't been setup yet, no registers have been saved
1463 yet, and only the scratch registers %eax, %ecx and %edx can be
1464 touched. */
1465
1466struct i386_insn i386_frame_setup_skip_insns[] =
1467{
1777feb0 1468 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1469
1470 ??? Should we handle 16-bit operand-sizes here? */
1471
1472 /* `movb imm8, %al' and `movb imm8, %ah' */
1473 /* `movb imm8, %cl' and `movb imm8, %ch' */
1474 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1475 /* `movb imm8, %dl' and `movb imm8, %dh' */
1476 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1477 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1478 { 5, { 0xb8 }, { 0xfe } },
1479 /* `movl imm32, %edx' */
1480 { 5, { 0xba }, { 0xff } },
1481
1482 /* Check for `mov imm32, r32'. Note that there is an alternative
1483 encoding for `mov m32, %eax'.
1484
1485 ??? Should we handle SIB adressing here?
1486 ??? Should we handle 16-bit operand-sizes here? */
1487
1488 /* `movl m32, %eax' */
1489 { 5, { 0xa1 }, { 0xff } },
1490 /* `movl m32, %eax' and `mov; m32, %ecx' */
1491 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1492 /* `movl m32, %edx' */
1493 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1494
1495 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1496 Because of the symmetry, there are actually two ways to encode
1497 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1498 opcode bytes 0x31 and 0x33 for `xorl'. */
1499
1500 /* `subl %eax, %eax' */
1501 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1502 /* `subl %ecx, %ecx' */
1503 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1504 /* `subl %edx, %edx' */
1505 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1506 /* `xorl %eax, %eax' */
1507 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1508 /* `xorl %ecx, %ecx' */
1509 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1510 /* `xorl %edx, %edx' */
1511 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1512 { 0 }
1513};
1514
e11481da
PM
1515
1516/* Check whether PC points to a no-op instruction. */
1517static CORE_ADDR
1518i386_skip_noop (CORE_ADDR pc)
1519{
1520 gdb_byte op;
1521 int check = 1;
1522
0865b04a 1523 if (target_read_code (pc, &op, 1))
3dcabaa8 1524 return pc;
e11481da
PM
1525
1526 while (check)
1527 {
1528 check = 0;
1529 /* Ignore `nop' instruction. */
1530 if (op == 0x90)
1531 {
1532 pc += 1;
0865b04a 1533 if (target_read_code (pc, &op, 1))
3dcabaa8 1534 return pc;
e11481da
PM
1535 check = 1;
1536 }
1537 /* Ignore no-op instruction `mov %edi, %edi'.
1538 Microsoft system dlls often start with
1539 a `mov %edi,%edi' instruction.
1540 The 5 bytes before the function start are
1541 filled with `nop' instructions.
1542 This pattern can be used for hot-patching:
1543 The `mov %edi, %edi' instruction can be replaced by a
1544 near jump to the location of the 5 `nop' instructions
1545 which can be replaced by a 32-bit jump to anywhere
1546 in the 32-bit address space. */
1547
1548 else if (op == 0x8b)
1549 {
0865b04a 1550 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1551 return pc;
1552
e11481da
PM
1553 if (op == 0xff)
1554 {
1555 pc += 2;
0865b04a 1556 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1557 return pc;
1558
e11481da
PM
1559 check = 1;
1560 }
1561 }
1562 }
1563 return pc;
1564}
1565
acd5c798
MK
1566/* Check whether PC points at a code that sets up a new stack frame.
1567 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1568 instruction after the sequence that sets up the frame or LIMIT,
1569 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1570
1571static CORE_ADDR
e17a4113
UW
1572i386_analyze_frame_setup (struct gdbarch *gdbarch,
1573 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1574 struct i386_frame_cache *cache)
1575{
e17a4113 1576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1577 struct i386_insn *insn;
63c0089f 1578 gdb_byte op;
26604a34 1579 int skip = 0;
acd5c798 1580
37bdc87e
MK
1581 if (limit <= pc)
1582 return limit;
acd5c798 1583
0865b04a 1584 if (target_read_code (pc, &op, 1))
3dcabaa8 1585 return pc;
acd5c798 1586
c906108c 1587 if (op == 0x55) /* pushl %ebp */
c5aa993b 1588 {
acd5c798
MK
1589 /* Take into account that we've executed the `pushl %ebp' that
1590 starts this instruction sequence. */
fd13a04a 1591 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1592 cache->sp_offset += 4;
37bdc87e 1593 pc++;
acd5c798
MK
1594
1595 /* If that's all, return now. */
37bdc87e
MK
1596 if (limit <= pc)
1597 return limit;
26604a34 1598
b4632131 1599 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1600 GCC into the prologue and skip them. At this point in the
1601 prologue, code should only touch the scratch registers %eax,
1602 %ecx and %edx, so while the number of posibilities is sheer,
1603 it is limited.
5daa5b4e 1604
26604a34
MK
1605 Make sure we only skip these instructions if we later see the
1606 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1607 while (pc + skip < limit)
26604a34 1608 {
37bdc87e
MK
1609 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1610 if (insn == NULL)
1611 break;
b4632131 1612
37bdc87e 1613 skip += insn->len;
26604a34
MK
1614 }
1615
37bdc87e
MK
1616 /* If that's all, return now. */
1617 if (limit <= pc + skip)
1618 return limit;
1619
0865b04a 1620 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1621 return pc + skip;
37bdc87e 1622
30f8135b
YQ
1623 /* The i386 prologue looks like
1624
1625 push %ebp
1626 mov %esp,%ebp
1627 sub $0x10,%esp
1628
1629 and a different prologue can be generated for atom.
1630
1631 push %ebp
1632 lea (%esp),%ebp
1633 lea -0x10(%esp),%esp
1634
1635 We handle both of them here. */
1636
acd5c798 1637 switch (op)
c906108c 1638 {
30f8135b 1639 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1640 case 0x8b:
0865b04a 1641 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1642 != 0xec)
37bdc87e 1643 return pc;
30f8135b 1644 pc += (skip + 2);
c906108c
SS
1645 break;
1646 case 0x89:
0865b04a 1647 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1648 != 0xe5)
37bdc87e 1649 return pc;
30f8135b
YQ
1650 pc += (skip + 2);
1651 break;
1652 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1653 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1654 != 0x242c)
1655 return pc;
1656 pc += (skip + 3);
c906108c
SS
1657 break;
1658 default:
37bdc87e 1659 return pc;
c906108c 1660 }
acd5c798 1661
26604a34
MK
1662 /* OK, we actually have a frame. We just don't know how large
1663 it is yet. Set its size to zero. We'll adjust it if
1664 necessary. We also now commit to skipping the special
1665 instructions mentioned before. */
acd5c798
MK
1666 cache->locals = 0;
1667
1668 /* If that's all, return now. */
37bdc87e
MK
1669 if (limit <= pc)
1670 return limit;
acd5c798 1671
fc338970
MK
1672 /* Check for stack adjustment
1673
acd5c798 1674 subl $XXX, %esp
30f8135b
YQ
1675 or
1676 lea -XXX(%esp),%esp
fc338970 1677
fd35795f 1678 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1679 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1680 if (target_read_code (pc, &op, 1))
3dcabaa8 1681 return pc;
c906108c
SS
1682 if (op == 0x83)
1683 {
fd35795f 1684 /* `subl' with 8-bit immediate. */
0865b04a 1685 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1686 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1687 return pc;
acd5c798 1688
37bdc87e
MK
1689 /* `subl' with signed 8-bit immediate (though it wouldn't
1690 make sense to be negative). */
0865b04a 1691 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1692 return pc + 3;
c906108c
SS
1693 }
1694 else if (op == 0x81)
1695 {
fd35795f 1696 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1697 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1698 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1699 return pc;
acd5c798 1700
fd35795f 1701 /* It is `subl' with a 32-bit immediate. */
0865b04a 1702 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1703 return pc + 6;
c906108c 1704 }
30f8135b
YQ
1705 else if (op == 0x8d)
1706 {
1707 /* The ModR/M byte is 0x64. */
0865b04a 1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1709 return pc;
1710 /* 'lea' with 8-bit displacement. */
0865b04a 1711 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1712 return pc + 4;
1713 }
c906108c
SS
1714 else
1715 {
30f8135b 1716 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1717 return pc;
c906108c
SS
1718 }
1719 }
37bdc87e 1720 else if (op == 0xc8) /* enter */
c906108c 1721 {
0865b04a 1722 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1723 return pc + 4;
c906108c 1724 }
21d0e8a4 1725
acd5c798 1726 return pc;
21d0e8a4
MK
1727}
1728
acd5c798
MK
1729/* Check whether PC points at code that saves registers on the stack.
1730 If so, it updates CACHE and returns the address of the first
1731 instruction after the register saves or CURRENT_PC, whichever is
1732 smaller. Otherwise, return PC. */
6bff26de
MK
1733
1734static CORE_ADDR
acd5c798
MK
1735i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1736 struct i386_frame_cache *cache)
6bff26de 1737{
99ab4326 1738 CORE_ADDR offset = 0;
63c0089f 1739 gdb_byte op;
99ab4326 1740 int i;
c0d1d883 1741
99ab4326
MK
1742 if (cache->locals > 0)
1743 offset -= cache->locals;
1744 for (i = 0; i < 8 && pc < current_pc; i++)
1745 {
0865b04a 1746 if (target_read_code (pc, &op, 1))
3dcabaa8 1747 return pc;
99ab4326
MK
1748 if (op < 0x50 || op > 0x57)
1749 break;
0d17c81d 1750
99ab4326
MK
1751 offset -= 4;
1752 cache->saved_regs[op - 0x50] = offset;
1753 cache->sp_offset += 4;
1754 pc++;
6bff26de
MK
1755 }
1756
acd5c798 1757 return pc;
22797942
AC
1758}
1759
acd5c798
MK
1760/* Do a full analysis of the prologue at PC and update CACHE
1761 accordingly. Bail out early if CURRENT_PC is reached. Return the
1762 address where the analysis stopped.
ed84f6c1 1763
fc338970
MK
1764 We handle these cases:
1765
1766 The startup sequence can be at the start of the function, or the
1767 function can start with a branch to startup code at the end.
1768
1769 %ebp can be set up with either the 'enter' instruction, or "pushl
1770 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1771 once used in the System V compiler).
1772
1773 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1774 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1775 16-bit unsigned argument for space to allocate, and the 'addl'
1776 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1777
1778 Next, the registers used by this function are pushed. With the
1779 System V compiler they will always be in the order: %edi, %esi,
1780 %ebx (and sometimes a harmless bug causes it to also save but not
1781 restore %eax); however, the code below is willing to see the pushes
1782 in any order, and will handle up to 8 of them.
1783
1784 If the setup sequence is at the end of the function, then the next
1785 instruction will be a branch back to the start. */
c906108c 1786
acd5c798 1787static CORE_ADDR
e17a4113
UW
1788i386_analyze_prologue (struct gdbarch *gdbarch,
1789 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1790 struct i386_frame_cache *cache)
c906108c 1791{
e11481da 1792 pc = i386_skip_noop (pc);
e17a4113 1793 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1794 pc = i386_analyze_struct_return (pc, current_pc, cache);
1795 pc = i386_skip_probe (pc);
92dd43fa 1796 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1797 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1798 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1799}
1800
fc338970 1801/* Return PC of first real instruction. */
c906108c 1802
3a1e71e3 1803static CORE_ADDR
6093d2eb 1804i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1805{
e17a4113
UW
1806 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1807
63c0089f 1808 static gdb_byte pic_pat[6] =
acd5c798
MK
1809 {
1810 0xe8, 0, 0, 0, 0, /* call 0x0 */
1811 0x5b, /* popl %ebx */
c5aa993b 1812 };
acd5c798
MK
1813 struct i386_frame_cache cache;
1814 CORE_ADDR pc;
63c0089f 1815 gdb_byte op;
acd5c798 1816 int i;
56bf0743 1817 CORE_ADDR func_addr;
4e879fc2 1818
56bf0743
KB
1819 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1820 {
1821 CORE_ADDR post_prologue_pc
1822 = skip_prologue_using_sal (gdbarch, func_addr);
1823 struct symtab *s = find_pc_symtab (func_addr);
1824
1825 /* Clang always emits a line note before the prologue and another
1826 one after. We trust clang to emit usable line notes. */
1827 if (post_prologue_pc
1828 && (s != NULL
1829 && s->producer != NULL
1830 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1831 return max (start_pc, post_prologue_pc);
1832 }
1833
e0f33b1f 1834 cache.locals = -1;
e17a4113 1835 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1836 if (cache.locals < 0)
1837 return start_pc;
c5aa993b 1838
acd5c798 1839 /* Found valid frame setup. */
c906108c 1840
fc338970
MK
1841 /* The native cc on SVR4 in -K PIC mode inserts the following code
1842 to get the address of the global offset table (GOT) into register
acd5c798
MK
1843 %ebx:
1844
fc338970
MK
1845 call 0x0
1846 popl %ebx
1847 movl %ebx,x(%ebp) (optional)
1848 addl y,%ebx
1849
c906108c
SS
1850 This code is with the rest of the prologue (at the end of the
1851 function), so we have to skip it to get to the first real
1852 instruction at the start of the function. */
c5aa993b 1853
c906108c
SS
1854 for (i = 0; i < 6; i++)
1855 {
0865b04a 1856 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1857 return pc;
1858
c5aa993b 1859 if (pic_pat[i] != op)
c906108c
SS
1860 break;
1861 }
1862 if (i == 6)
1863 {
acd5c798
MK
1864 int delta = 6;
1865
0865b04a 1866 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1867 return pc;
c906108c 1868
c5aa993b 1869 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1870 {
0865b04a 1871 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1872
fc338970 1873 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1874 delta += 3;
fc338970 1875 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1876 delta += 6;
fc338970 1877 else /* Unexpected instruction. */
acd5c798
MK
1878 delta = 0;
1879
0865b04a 1880 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1881 return pc;
c906108c 1882 }
acd5c798 1883
c5aa993b 1884 /* addl y,%ebx */
acd5c798 1885 if (delta > 0 && op == 0x81
0865b04a 1886 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1887 == 0xc3)
c906108c 1888 {
acd5c798 1889 pc += delta + 6;
c906108c
SS
1890 }
1891 }
c5aa993b 1892
e63bbc88
MK
1893 /* If the function starts with a branch (to startup code at the end)
1894 the last instruction should bring us back to the first
1895 instruction of the real code. */
e17a4113
UW
1896 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1897 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1898
1899 return pc;
c906108c
SS
1900}
1901
4309257c
PM
1902/* Check that the code pointed to by PC corresponds to a call to
1903 __main, skip it if so. Return PC otherwise. */
1904
1905CORE_ADDR
1906i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1907{
e17a4113 1908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1909 gdb_byte op;
1910
0865b04a 1911 if (target_read_code (pc, &op, 1))
3dcabaa8 1912 return pc;
4309257c
PM
1913 if (op == 0xe8)
1914 {
1915 gdb_byte buf[4];
1916
0865b04a 1917 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1918 {
1919 /* Make sure address is computed correctly as a 32bit
1920 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1921 struct bound_minimal_symbol s;
e17a4113 1922 CORE_ADDR call_dest;
4309257c 1923
e17a4113 1924 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1925 call_dest = call_dest & 0xffffffffU;
1926 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1927 if (s.minsym != NULL
efd66ac6
TT
1928 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1929 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1930 pc += 5;
1931 }
1932 }
1933
1934 return pc;
1935}
1936
acd5c798 1937/* This function is 64-bit safe. */
93924b6b 1938
acd5c798
MK
1939static CORE_ADDR
1940i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1941{
63c0089f 1942 gdb_byte buf[8];
acd5c798 1943
875f8d0e 1944 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1945 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1946}
acd5c798 1947\f
93924b6b 1948
acd5c798 1949/* Normal frames. */
c5aa993b 1950
8fbca658
PA
1951static void
1952i386_frame_cache_1 (struct frame_info *this_frame,
1953 struct i386_frame_cache *cache)
a7769679 1954{
e17a4113
UW
1955 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1957 gdb_byte buf[4];
acd5c798
MK
1958 int i;
1959
8fbca658 1960 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1961
1962 /* In principle, for normal frames, %ebp holds the frame pointer,
1963 which holds the base address for the current stack frame.
1964 However, for functions that don't need it, the frame pointer is
1965 optional. For these "frameless" functions the frame pointer is
1966 actually the frame pointer of the calling frame. Signal
1967 trampolines are just a special case of a "frameless" function.
1968 They (usually) share their frame pointer with the frame that was
1969 in progress when the signal occurred. */
1970
10458914 1971 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1972 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1973 if (cache->base == 0)
620fa63a
PA
1974 {
1975 cache->base_p = 1;
1976 return;
1977 }
acd5c798
MK
1978
1979 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1980 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1981
acd5c798 1982 if (cache->pc != 0)
e17a4113
UW
1983 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1984 cache);
acd5c798
MK
1985
1986 if (cache->locals < 0)
1987 {
1988 /* We didn't find a valid frame, which means that CACHE->base
1989 currently holds the frame pointer for our calling frame. If
1990 we're at the start of a function, or somewhere half-way its
1991 prologue, the function's frame probably hasn't been fully
1992 setup yet. Try to reconstruct the base address for the stack
1993 frame by looking at the stack pointer. For truly "frameless"
1994 functions this might work too. */
1995
e0c62198 1996 if (cache->saved_sp_reg != -1)
92dd43fa 1997 {
8fbca658
PA
1998 /* Saved stack pointer has been saved. */
1999 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2000 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2001
92dd43fa
MK
2002 /* We're halfway aligning the stack. */
2003 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2004 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2005
2006 /* This will be added back below. */
2007 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2008 }
7618e12b 2009 else if (cache->pc != 0
0865b04a 2010 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2011 {
7618e12b
DJ
2012 /* We're in a known function, but did not find a frame
2013 setup. Assume that the function does not use %ebp.
2014 Alternatively, we may have jumped to an invalid
2015 address; in that case there is definitely no new
2016 frame in %ebp. */
10458914 2017 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2018 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2019 + cache->sp_offset;
92dd43fa 2020 }
7618e12b
DJ
2021 else
2022 /* We're in an unknown function. We could not find the start
2023 of the function to analyze the prologue; our best option is
2024 to assume a typical frame layout with the caller's %ebp
2025 saved. */
2026 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2027 }
2028
8fbca658
PA
2029 if (cache->saved_sp_reg != -1)
2030 {
2031 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2032 register may be unavailable). */
2033 if (cache->saved_sp == 0
ca9d61b9
JB
2034 && deprecated_frame_register_read (this_frame,
2035 cache->saved_sp_reg, buf))
8fbca658
PA
2036 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2037 }
acd5c798
MK
2038 /* Now that we have the base address for the stack frame we can
2039 calculate the value of %esp in the calling frame. */
8fbca658 2040 else if (cache->saved_sp == 0)
92dd43fa 2041 cache->saved_sp = cache->base + 8;
a7769679 2042
acd5c798
MK
2043 /* Adjust all the saved registers such that they contain addresses
2044 instead of offsets. */
2045 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2046 if (cache->saved_regs[i] != -1)
2047 cache->saved_regs[i] += cache->base;
acd5c798 2048
8fbca658
PA
2049 cache->base_p = 1;
2050}
2051
2052static struct i386_frame_cache *
2053i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2054{
2055 volatile struct gdb_exception ex;
2056 struct i386_frame_cache *cache;
2057
2058 if (*this_cache)
2059 return *this_cache;
2060
2061 cache = i386_alloc_frame_cache ();
2062 *this_cache = cache;
2063
2064 TRY_CATCH (ex, RETURN_MASK_ERROR)
2065 {
2066 i386_frame_cache_1 (this_frame, cache);
2067 }
2068 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2069 throw_exception (ex);
2070
acd5c798 2071 return cache;
a7769679
MK
2072}
2073
3a1e71e3 2074static void
10458914 2075i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2076 struct frame_id *this_id)
c906108c 2077{
10458914 2078 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2079
5ce0145d
PA
2080 if (!cache->base_p)
2081 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2082 else if (cache->base == 0)
2083 {
2084 /* This marks the outermost frame. */
2085 }
2086 else
2087 {
2088 /* See the end of i386_push_dummy_call. */
2089 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2090 }
acd5c798
MK
2091}
2092
8fbca658
PA
2093static enum unwind_stop_reason
2094i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2095 void **this_cache)
2096{
2097 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2098
2099 if (!cache->base_p)
2100 return UNWIND_UNAVAILABLE;
2101
2102 /* This marks the outermost frame. */
2103 if (cache->base == 0)
2104 return UNWIND_OUTERMOST;
2105
2106 return UNWIND_NO_REASON;
2107}
2108
10458914
DJ
2109static struct value *
2110i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2111 int regnum)
acd5c798 2112{
10458914 2113 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2114
2115 gdb_assert (regnum >= 0);
2116
2117 /* The System V ABI says that:
2118
2119 "The flags register contains the system flags, such as the
2120 direction flag and the carry flag. The direction flag must be
2121 set to the forward (that is, zero) direction before entry and
2122 upon exit from a function. Other user flags have no specified
2123 role in the standard calling sequence and are not preserved."
2124
2125 To guarantee the "upon exit" part of that statement we fake a
2126 saved flags register that has its direction flag cleared.
2127
2128 Note that GCC doesn't seem to rely on the fact that the direction
2129 flag is cleared after a function return; it always explicitly
2130 clears the flag before operations where it matters.
2131
2132 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2133 right thing to do. The way we fake the flags register here makes
2134 it impossible to change it. */
2135
2136 if (regnum == I386_EFLAGS_REGNUM)
2137 {
10458914 2138 ULONGEST val;
c5aa993b 2139
10458914
DJ
2140 val = get_frame_register_unsigned (this_frame, regnum);
2141 val &= ~(1 << 10);
2142 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2143 }
1211c4e4 2144
acd5c798 2145 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2146 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2147
fcf250e2
UW
2148 if (regnum == I386_ESP_REGNUM
2149 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2150 {
2151 /* If the SP has been saved, but we don't know where, then this
2152 means that SAVED_SP_REG register was found unavailable back
2153 when we built the cache. */
fcf250e2 2154 if (cache->saved_sp == 0)
8fbca658
PA
2155 return frame_unwind_got_register (this_frame, regnum,
2156 cache->saved_sp_reg);
2157 else
2158 return frame_unwind_got_constant (this_frame, regnum,
2159 cache->saved_sp);
2160 }
acd5c798 2161
fd13a04a 2162 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2163 return frame_unwind_got_memory (this_frame, regnum,
2164 cache->saved_regs[regnum]);
fd13a04a 2165
10458914 2166 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2167}
2168
2169static const struct frame_unwind i386_frame_unwind =
2170{
2171 NORMAL_FRAME,
8fbca658 2172 i386_frame_unwind_stop_reason,
acd5c798 2173 i386_frame_this_id,
10458914
DJ
2174 i386_frame_prev_register,
2175 NULL,
2176 default_frame_sniffer
acd5c798 2177};
06da04c6
MS
2178
2179/* Normal frames, but in a function epilogue. */
2180
2181/* The epilogue is defined here as the 'ret' instruction, which will
2182 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2183 the function's stack frame. */
2184
2185static int
2186i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2187{
2188 gdb_byte insn;
e0d00bc7
JK
2189 struct symtab *symtab;
2190
2191 symtab = find_pc_symtab (pc);
2192 if (symtab && symtab->epilogue_unwind_valid)
2193 return 0;
06da04c6
MS
2194
2195 if (target_read_memory (pc, &insn, 1))
2196 return 0; /* Can't read memory at pc. */
2197
2198 if (insn != 0xc3) /* 'ret' instruction. */
2199 return 0;
2200
2201 return 1;
2202}
2203
2204static int
2205i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2206 struct frame_info *this_frame,
2207 void **this_prologue_cache)
2208{
2209 if (frame_relative_level (this_frame) == 0)
2210 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2211 get_frame_pc (this_frame));
2212 else
2213 return 0;
2214}
2215
2216static struct i386_frame_cache *
2217i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2218{
8fbca658 2219 volatile struct gdb_exception ex;
06da04c6 2220 struct i386_frame_cache *cache;
0d6c2135 2221 CORE_ADDR sp;
06da04c6
MS
2222
2223 if (*this_cache)
2224 return *this_cache;
2225
2226 cache = i386_alloc_frame_cache ();
2227 *this_cache = cache;
2228
8fbca658
PA
2229 TRY_CATCH (ex, RETURN_MASK_ERROR)
2230 {
0d6c2135 2231 cache->pc = get_frame_func (this_frame);
06da04c6 2232
0d6c2135
MK
2233 /* At this point the stack looks as if we just entered the
2234 function, with the return address at the top of the
2235 stack. */
2236 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2237 cache->base = sp + cache->sp_offset;
8fbca658 2238 cache->saved_sp = cache->base + 8;
8fbca658 2239 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2240
8fbca658
PA
2241 cache->base_p = 1;
2242 }
2243 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2244 throw_exception (ex);
06da04c6
MS
2245
2246 return cache;
2247}
2248
8fbca658
PA
2249static enum unwind_stop_reason
2250i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2251 void **this_cache)
2252{
0d6c2135
MK
2253 struct i386_frame_cache *cache =
2254 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2255
2256 if (!cache->base_p)
2257 return UNWIND_UNAVAILABLE;
2258
2259 return UNWIND_NO_REASON;
2260}
2261
06da04c6
MS
2262static void
2263i386_epilogue_frame_this_id (struct frame_info *this_frame,
2264 void **this_cache,
2265 struct frame_id *this_id)
2266{
0d6c2135
MK
2267 struct i386_frame_cache *cache =
2268 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2269
8fbca658 2270 if (!cache->base_p)
5ce0145d
PA
2271 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2272 else
2273 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2274}
2275
0d6c2135
MK
2276static struct value *
2277i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2278 void **this_cache, int regnum)
2279{
2280 /* Make sure we've initialized the cache. */
2281 i386_epilogue_frame_cache (this_frame, this_cache);
2282
2283 return i386_frame_prev_register (this_frame, this_cache, regnum);
2284}
2285
06da04c6
MS
2286static const struct frame_unwind i386_epilogue_frame_unwind =
2287{
2288 NORMAL_FRAME,
8fbca658 2289 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2290 i386_epilogue_frame_this_id,
0d6c2135 2291 i386_epilogue_frame_prev_register,
06da04c6
MS
2292 NULL,
2293 i386_epilogue_frame_sniffer
2294};
acd5c798
MK
2295\f
2296
a3fcb948
JG
2297/* Stack-based trampolines. */
2298
2299/* These trampolines are used on cross x86 targets, when taking the
2300 address of a nested function. When executing these trampolines,
2301 no stack frame is set up, so we are in a similar situation as in
2302 epilogues and i386_epilogue_frame_this_id can be re-used. */
2303
2304/* Static chain passed in register. */
2305
2306struct i386_insn i386_tramp_chain_in_reg_insns[] =
2307{
2308 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2309 { 5, { 0xb8 }, { 0xfe } },
2310
2311 /* `jmp imm32' */
2312 { 5, { 0xe9 }, { 0xff } },
2313
2314 {0}
2315};
2316
2317/* Static chain passed on stack (when regparm=3). */
2318
2319struct i386_insn i386_tramp_chain_on_stack_insns[] =
2320{
2321 /* `push imm32' */
2322 { 5, { 0x68 }, { 0xff } },
2323
2324 /* `jmp imm32' */
2325 { 5, { 0xe9 }, { 0xff } },
2326
2327 {0}
2328};
2329
2330/* Return whether PC points inside a stack trampoline. */
2331
2332static int
6df81a63 2333i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2334{
2335 gdb_byte insn;
2c02bd72 2336 const char *name;
a3fcb948
JG
2337
2338 /* A stack trampoline is detected if no name is associated
2339 to the current pc and if it points inside a trampoline
2340 sequence. */
2341
2342 find_pc_partial_function (pc, &name, NULL, NULL);
2343 if (name)
2344 return 0;
2345
2346 if (target_read_memory (pc, &insn, 1))
2347 return 0;
2348
2349 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2350 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2351 return 0;
2352
2353 return 1;
2354}
2355
2356static int
2357i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2358 struct frame_info *this_frame,
2359 void **this_cache)
a3fcb948
JG
2360{
2361 if (frame_relative_level (this_frame) == 0)
6df81a63 2362 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2363 else
2364 return 0;
2365}
2366
2367static const struct frame_unwind i386_stack_tramp_frame_unwind =
2368{
2369 NORMAL_FRAME,
2370 i386_epilogue_frame_unwind_stop_reason,
2371 i386_epilogue_frame_this_id,
0d6c2135 2372 i386_epilogue_frame_prev_register,
a3fcb948
JG
2373 NULL,
2374 i386_stack_tramp_frame_sniffer
2375};
2376\f
6710bf39
SS
2377/* Generate a bytecode expression to get the value of the saved PC. */
2378
2379static void
2380i386_gen_return_address (struct gdbarch *gdbarch,
2381 struct agent_expr *ax, struct axs_value *value,
2382 CORE_ADDR scope)
2383{
2384 /* The following sequence assumes the traditional use of the base
2385 register. */
2386 ax_reg (ax, I386_EBP_REGNUM);
2387 ax_const_l (ax, 4);
2388 ax_simple (ax, aop_add);
2389 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2390 value->kind = axs_lvalue_memory;
2391}
2392\f
a3fcb948 2393
acd5c798
MK
2394/* Signal trampolines. */
2395
2396static struct i386_frame_cache *
10458914 2397i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2398{
e17a4113
UW
2399 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2401 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2402 volatile struct gdb_exception ex;
acd5c798 2403 struct i386_frame_cache *cache;
acd5c798 2404 CORE_ADDR addr;
63c0089f 2405 gdb_byte buf[4];
acd5c798
MK
2406
2407 if (*this_cache)
2408 return *this_cache;
2409
fd13a04a 2410 cache = i386_alloc_frame_cache ();
acd5c798 2411
8fbca658 2412 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2413 {
8fbca658
PA
2414 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2415 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2416
8fbca658
PA
2417 addr = tdep->sigcontext_addr (this_frame);
2418 if (tdep->sc_reg_offset)
2419 {
2420 int i;
a3386186 2421
8fbca658
PA
2422 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2423
2424 for (i = 0; i < tdep->sc_num_regs; i++)
2425 if (tdep->sc_reg_offset[i] != -1)
2426 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2427 }
2428 else
2429 {
2430 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2431 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2432 }
2433
2434 cache->base_p = 1;
a3386186 2435 }
8fbca658
PA
2436 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2437 throw_exception (ex);
acd5c798
MK
2438
2439 *this_cache = cache;
2440 return cache;
2441}
2442
8fbca658
PA
2443static enum unwind_stop_reason
2444i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2445 void **this_cache)
2446{
2447 struct i386_frame_cache *cache =
2448 i386_sigtramp_frame_cache (this_frame, this_cache);
2449
2450 if (!cache->base_p)
2451 return UNWIND_UNAVAILABLE;
2452
2453 return UNWIND_NO_REASON;
2454}
2455
acd5c798 2456static void
10458914 2457i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2458 struct frame_id *this_id)
2459{
2460 struct i386_frame_cache *cache =
10458914 2461 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2462
8fbca658 2463 if (!cache->base_p)
5ce0145d
PA
2464 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2465 else
2466 {
2467 /* See the end of i386_push_dummy_call. */
2468 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2469 }
acd5c798
MK
2470}
2471
10458914
DJ
2472static struct value *
2473i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2474 void **this_cache, int regnum)
acd5c798
MK
2475{
2476 /* Make sure we've initialized the cache. */
10458914 2477 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2478
10458914 2479 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2480}
c0d1d883 2481
10458914
DJ
2482static int
2483i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2484 struct frame_info *this_frame,
2485 void **this_prologue_cache)
acd5c798 2486{
10458914 2487 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2488
911bc6ee
MK
2489 /* We shouldn't even bother if we don't have a sigcontext_addr
2490 handler. */
2491 if (tdep->sigcontext_addr == NULL)
10458914 2492 return 0;
1c3545ae 2493
911bc6ee
MK
2494 if (tdep->sigtramp_p != NULL)
2495 {
10458914
DJ
2496 if (tdep->sigtramp_p (this_frame))
2497 return 1;
911bc6ee
MK
2498 }
2499
2500 if (tdep->sigtramp_start != 0)
2501 {
10458914 2502 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2503
2504 gdb_assert (tdep->sigtramp_end != 0);
2505 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2506 return 1;
911bc6ee 2507 }
acd5c798 2508
10458914 2509 return 0;
acd5c798 2510}
10458914
DJ
2511
2512static const struct frame_unwind i386_sigtramp_frame_unwind =
2513{
2514 SIGTRAMP_FRAME,
8fbca658 2515 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2516 i386_sigtramp_frame_this_id,
2517 i386_sigtramp_frame_prev_register,
2518 NULL,
2519 i386_sigtramp_frame_sniffer
2520};
acd5c798
MK
2521\f
2522
2523static CORE_ADDR
10458914 2524i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2525{
10458914 2526 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2527
2528 return cache->base;
2529}
2530
2531static const struct frame_base i386_frame_base =
2532{
2533 &i386_frame_unwind,
2534 i386_frame_base_address,
2535 i386_frame_base_address,
2536 i386_frame_base_address
2537};
2538
acd5c798 2539static struct frame_id
10458914 2540i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2541{
acd5c798
MK
2542 CORE_ADDR fp;
2543
10458914 2544 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2545
3e210248 2546 /* See the end of i386_push_dummy_call. */
10458914 2547 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2548}
e04e5beb
JM
2549
2550/* _Decimal128 function return values need 16-byte alignment on the
2551 stack. */
2552
2553static CORE_ADDR
2554i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2555{
2556 return sp & -(CORE_ADDR)16;
2557}
fc338970 2558\f
c906108c 2559
fc338970
MK
2560/* Figure out where the longjmp will land. Slurp the args out of the
2561 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2562 structure from which we extract the address that we will land at.
28bcfd30 2563 This address is copied into PC. This routine returns non-zero on
436675d3 2564 success. */
c906108c 2565
8201327c 2566static int
60ade65d 2567i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2568{
436675d3 2569 gdb_byte buf[4];
c906108c 2570 CORE_ADDR sp, jb_addr;
20a6ec49 2571 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2573 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2574
8201327c
MK
2575 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2576 longjmp will land. */
2577 if (jb_pc_offset == -1)
c906108c
SS
2578 return 0;
2579
436675d3 2580 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2581 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2582 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2583 return 0;
2584
e17a4113 2585 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2586 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2587 return 0;
c906108c 2588
e17a4113 2589 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2590 return 1;
2591}
fc338970 2592\f
c906108c 2593
7ccc1c74
JM
2594/* Check whether TYPE must be 16-byte-aligned when passed as a
2595 function argument. 16-byte vectors, _Decimal128 and structures or
2596 unions containing such types must be 16-byte-aligned; other
2597 arguments are 4-byte-aligned. */
2598
2599static int
2600i386_16_byte_align_p (struct type *type)
2601{
2602 type = check_typedef (type);
2603 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2604 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2605 && TYPE_LENGTH (type) == 16)
2606 return 1;
2607 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2608 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2609 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2610 || TYPE_CODE (type) == TYPE_CODE_UNION)
2611 {
2612 int i;
2613 for (i = 0; i < TYPE_NFIELDS (type); i++)
2614 {
2615 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2616 return 1;
2617 }
2618 }
2619 return 0;
2620}
2621
a9b8d892
JK
2622/* Implementation for set_gdbarch_push_dummy_code. */
2623
2624static CORE_ADDR
2625i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2626 struct value **args, int nargs, struct type *value_type,
2627 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2628 struct regcache *regcache)
2629{
2630 /* Use 0xcc breakpoint - 1 byte. */
2631 *bp_addr = sp - 1;
2632 *real_pc = funaddr;
2633
2634 /* Keep the stack aligned. */
2635 return sp - 16;
2636}
2637
3a1e71e3 2638static CORE_ADDR
7d9b040b 2639i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2640 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2641 struct value **args, CORE_ADDR sp, int struct_return,
2642 CORE_ADDR struct_addr)
22f8ba57 2643{
e17a4113 2644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2645 gdb_byte buf[4];
acd5c798 2646 int i;
7ccc1c74
JM
2647 int write_pass;
2648 int args_space = 0;
acd5c798 2649
7ccc1c74
JM
2650 /* Determine the total space required for arguments and struct
2651 return address in a first pass (allowing for 16-byte-aligned
2652 arguments), then push arguments in a second pass. */
2653
2654 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2655 {
7ccc1c74 2656 int args_space_used = 0;
7ccc1c74
JM
2657
2658 if (struct_return)
2659 {
2660 if (write_pass)
2661 {
2662 /* Push value address. */
e17a4113 2663 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2664 write_memory (sp, buf, 4);
2665 args_space_used += 4;
2666 }
2667 else
2668 args_space += 4;
2669 }
2670
2671 for (i = 0; i < nargs; i++)
2672 {
2673 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2674
7ccc1c74
JM
2675 if (write_pass)
2676 {
2677 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2678 args_space_used = align_up (args_space_used, 16);
acd5c798 2679
7ccc1c74
JM
2680 write_memory (sp + args_space_used,
2681 value_contents_all (args[i]), len);
2682 /* The System V ABI says that:
acd5c798 2683
7ccc1c74
JM
2684 "An argument's size is increased, if necessary, to make it a
2685 multiple of [32-bit] words. This may require tail padding,
2686 depending on the size of the argument."
22f8ba57 2687
7ccc1c74
JM
2688 This makes sure the stack stays word-aligned. */
2689 args_space_used += align_up (len, 4);
2690 }
2691 else
2692 {
2693 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2694 args_space = align_up (args_space, 16);
7ccc1c74
JM
2695 args_space += align_up (len, 4);
2696 }
2697 }
2698
2699 if (!write_pass)
2700 {
7ccc1c74 2701 sp -= args_space;
284c5a60
MK
2702
2703 /* The original System V ABI only requires word alignment,
2704 but modern incarnations need 16-byte alignment in order
2705 to support SSE. Since wasting a few bytes here isn't
2706 harmful we unconditionally enforce 16-byte alignment. */
2707 sp &= ~0xf;
7ccc1c74 2708 }
22f8ba57
MK
2709 }
2710
acd5c798
MK
2711 /* Store return address. */
2712 sp -= 4;
e17a4113 2713 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2714 write_memory (sp, buf, 4);
2715
2716 /* Finally, update the stack pointer... */
e17a4113 2717 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2718 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2719
2720 /* ...and fake a frame pointer. */
2721 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2722
3e210248
AC
2723 /* MarkK wrote: This "+ 8" is all over the place:
2724 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2725 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2726 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2727 definition of the stack address of a frame. Otherwise frame id
2728 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2729 stack address *before* the function call as a frame's CFA. On
2730 the i386, when %ebp is used as a frame pointer, the offset
2731 between the contents %ebp and the CFA as defined by GCC. */
2732 return sp + 8;
22f8ba57
MK
2733}
2734
1a309862
MK
2735/* These registers are used for returning integers (and on some
2736 targets also for returning `struct' and `union' values when their
ef9dff19 2737 size and alignment match an integer type). */
acd5c798
MK
2738#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2739#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2740
c5e656c1
MK
2741/* Read, for architecture GDBARCH, a function return value of TYPE
2742 from REGCACHE, and copy that into VALBUF. */
1a309862 2743
3a1e71e3 2744static void
c5e656c1 2745i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2746 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2747{
c5e656c1 2748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2749 int len = TYPE_LENGTH (type);
63c0089f 2750 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2751
1e8d0a7b 2752 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2753 {
5716833c 2754 if (tdep->st0_regnum < 0)
1a309862 2755 {
8a3fe4f8 2756 warning (_("Cannot find floating-point return value."));
1a309862 2757 memset (valbuf, 0, len);
ef9dff19 2758 return;
1a309862
MK
2759 }
2760
c6ba6f0d
MK
2761 /* Floating-point return values can be found in %st(0). Convert
2762 its contents to the desired type. This is probably not
2763 exactly how it would happen on the target itself, but it is
2764 the best we can do. */
acd5c798 2765 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2766 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2767 }
2768 else
c5aa993b 2769 {
875f8d0e
UW
2770 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2771 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2772
2773 if (len <= low_size)
00f8375e 2774 {
0818c12a 2775 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2776 memcpy (valbuf, buf, len);
2777 }
d4f3574e
SS
2778 else if (len <= (low_size + high_size))
2779 {
0818c12a 2780 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2781 memcpy (valbuf, buf, low_size);
0818c12a 2782 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2783 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2784 }
2785 else
8e65ff28 2786 internal_error (__FILE__, __LINE__,
1777feb0
MS
2787 _("Cannot extract return value of %d bytes long."),
2788 len);
c906108c
SS
2789 }
2790}
2791
c5e656c1
MK
2792/* Write, for architecture GDBARCH, a function return value of TYPE
2793 from VALBUF into REGCACHE. */
ef9dff19 2794
3a1e71e3 2795static void
c5e656c1 2796i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2797 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2798{
c5e656c1 2799 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2800 int len = TYPE_LENGTH (type);
2801
1e8d0a7b 2802 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2803 {
3d7f4f49 2804 ULONGEST fstat;
63c0089f 2805 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2806
5716833c 2807 if (tdep->st0_regnum < 0)
ef9dff19 2808 {
8a3fe4f8 2809 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2810 return;
2811 }
2812
635b0cc1
MK
2813 /* Returning floating-point values is a bit tricky. Apart from
2814 storing the return value in %st(0), we have to simulate the
2815 state of the FPU at function return point. */
2816
c6ba6f0d
MK
2817 /* Convert the value found in VALBUF to the extended
2818 floating-point format used by the FPU. This is probably
2819 not exactly how it would happen on the target itself, but
2820 it is the best we can do. */
27067745 2821 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2822 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2823
635b0cc1
MK
2824 /* Set the top of the floating-point register stack to 7. The
2825 actual value doesn't really matter, but 7 is what a normal
2826 function return would end up with if the program started out
2827 with a freshly initialized FPU. */
20a6ec49 2828 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2829 fstat |= (7 << 11);
20a6ec49 2830 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2831
635b0cc1
MK
2832 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2833 the floating-point register stack to 7, the appropriate value
2834 for the tag word is 0x3fff. */
20a6ec49 2835 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2836 }
2837 else
2838 {
875f8d0e
UW
2839 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2840 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2841
2842 if (len <= low_size)
3d7f4f49 2843 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2844 else if (len <= (low_size + high_size))
2845 {
3d7f4f49
MK
2846 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2847 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2848 len - low_size, valbuf + low_size);
ef9dff19
MK
2849 }
2850 else
8e65ff28 2851 internal_error (__FILE__, __LINE__,
e2e0b3e5 2852 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2853 }
2854}
fc338970 2855\f
ef9dff19 2856
8201327c
MK
2857/* This is the variable that is set with "set struct-convention", and
2858 its legitimate values. */
2859static const char default_struct_convention[] = "default";
2860static const char pcc_struct_convention[] = "pcc";
2861static const char reg_struct_convention[] = "reg";
40478521 2862static const char *const valid_conventions[] =
8201327c
MK
2863{
2864 default_struct_convention,
2865 pcc_struct_convention,
2866 reg_struct_convention,
2867 NULL
2868};
2869static const char *struct_convention = default_struct_convention;
2870
0e4377e1
JB
2871/* Return non-zero if TYPE, which is assumed to be a structure,
2872 a union type, or an array type, should be returned in registers
2873 for architecture GDBARCH. */
c5e656c1 2874
8201327c 2875static int
c5e656c1 2876i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2877{
c5e656c1
MK
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879 enum type_code code = TYPE_CODE (type);
2880 int len = TYPE_LENGTH (type);
8201327c 2881
0e4377e1
JB
2882 gdb_assert (code == TYPE_CODE_STRUCT
2883 || code == TYPE_CODE_UNION
2884 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2885
2886 if (struct_convention == pcc_struct_convention
2887 || (struct_convention == default_struct_convention
2888 && tdep->struct_return == pcc_struct_return))
2889 return 0;
2890
9edde48e
MK
2891 /* Structures consisting of a single `float', `double' or 'long
2892 double' member are returned in %st(0). */
2893 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2894 {
2895 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2896 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2897 return (len == 4 || len == 8 || len == 12);
2898 }
2899
c5e656c1
MK
2900 return (len == 1 || len == 2 || len == 4 || len == 8);
2901}
2902
2903/* Determine, for architecture GDBARCH, how a return value of TYPE
2904 should be returned. If it is supposed to be returned in registers,
2905 and READBUF is non-zero, read the appropriate value from REGCACHE,
2906 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2907 from WRITEBUF into REGCACHE. */
2908
2909static enum return_value_convention
6a3a010b 2910i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2911 struct type *type, struct regcache *regcache,
2912 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2913{
2914 enum type_code code = TYPE_CODE (type);
2915
5daa78cc
TJB
2916 if (((code == TYPE_CODE_STRUCT
2917 || code == TYPE_CODE_UNION
2918 || code == TYPE_CODE_ARRAY)
2919 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2920 /* Complex double and long double uses the struct return covention. */
2921 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2922 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2923 /* 128-bit decimal float uses the struct return convention. */
2924 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2925 {
2926 /* The System V ABI says that:
2927
2928 "A function that returns a structure or union also sets %eax
2929 to the value of the original address of the caller's area
2930 before it returns. Thus when the caller receives control
2931 again, the address of the returned object resides in register
2932 %eax and can be used to access the object."
2933
2934 So the ABI guarantees that we can always find the return
2935 value just after the function has returned. */
2936
0e4377e1
JB
2937 /* Note that the ABI doesn't mention functions returning arrays,
2938 which is something possible in certain languages such as Ada.
2939 In this case, the value is returned as if it was wrapped in
2940 a record, so the convention applied to records also applies
2941 to arrays. */
2942
31db7b6c
MK
2943 if (readbuf)
2944 {
2945 ULONGEST addr;
2946
2947 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2948 read_memory (addr, readbuf, TYPE_LENGTH (type));
2949 }
2950
2951 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2952 }
c5e656c1
MK
2953
2954 /* This special case is for structures consisting of a single
9edde48e
MK
2955 `float', `double' or 'long double' member. These structures are
2956 returned in %st(0). For these structures, we call ourselves
2957 recursively, changing TYPE into the type of the first member of
2958 the structure. Since that should work for all structures that
2959 have only one member, we don't bother to check the member's type
2960 here. */
c5e656c1
MK
2961 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2962 {
2963 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2964 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2965 readbuf, writebuf);
c5e656c1
MK
2966 }
2967
2968 if (readbuf)
2969 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2970 if (writebuf)
2971 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2972
c5e656c1 2973 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2974}
2975\f
2976
27067745
UW
2977struct type *
2978i387_ext_type (struct gdbarch *gdbarch)
2979{
2980 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2981
2982 if (!tdep->i387_ext_type)
90884b2b
L
2983 {
2984 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2985 gdb_assert (tdep->i387_ext_type != NULL);
2986 }
27067745
UW
2987
2988 return tdep->i387_ext_type;
2989}
2990
1dbcd68c
WT
2991/* Construct type for pseudo BND registers. We can't use
2992 tdesc_find_type since a complement of one value has to be used
2993 to describe the upper bound. */
2994
2995static struct type *
2996i386_bnd_type (struct gdbarch *gdbarch)
2997{
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999
3000
3001 if (!tdep->i386_bnd_type)
3002 {
3003 struct type *t, *bound_t;
3004 const struct builtin_type *bt = builtin_type (gdbarch);
3005
3006 /* The type we're building is described bellow: */
3007#if 0
3008 struct __bound128
3009 {
3010 void *lbound;
3011 void *ubound; /* One complement of raw ubound field. */
3012 };
3013#endif
3014
3015 t = arch_composite_type (gdbarch,
3016 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3017
3018 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3019 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3020
3021 TYPE_NAME (t) = "builtin_type_bound128";
3022 tdep->i386_bnd_type = t;
3023 }
3024
3025 return tdep->i386_bnd_type;
3026}
3027
01f9f808
MS
3028/* Construct vector type for pseudo ZMM registers. We can't use
3029 tdesc_find_type since ZMM isn't described in target description. */
3030
3031static struct type *
3032i386_zmm_type (struct gdbarch *gdbarch)
3033{
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3035
3036 if (!tdep->i386_zmm_type)
3037 {
3038 const struct builtin_type *bt = builtin_type (gdbarch);
3039
3040 /* The type we're building is this: */
3041#if 0
3042 union __gdb_builtin_type_vec512i
3043 {
3044 int128_t uint128[4];
3045 int64_t v4_int64[8];
3046 int32_t v8_int32[16];
3047 int16_t v16_int16[32];
3048 int8_t v32_int8[64];
3049 double v4_double[8];
3050 float v8_float[16];
3051 };
3052#endif
3053
3054 struct type *t;
3055
3056 t = arch_composite_type (gdbarch,
3057 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3058 append_composite_type_field (t, "v16_float",
3059 init_vector_type (bt->builtin_float, 16));
3060 append_composite_type_field (t, "v8_double",
3061 init_vector_type (bt->builtin_double, 8));
3062 append_composite_type_field (t, "v64_int8",
3063 init_vector_type (bt->builtin_int8, 64));
3064 append_composite_type_field (t, "v32_int16",
3065 init_vector_type (bt->builtin_int16, 32));
3066 append_composite_type_field (t, "v16_int32",
3067 init_vector_type (bt->builtin_int32, 16));
3068 append_composite_type_field (t, "v8_int64",
3069 init_vector_type (bt->builtin_int64, 8));
3070 append_composite_type_field (t, "v4_int128",
3071 init_vector_type (bt->builtin_int128, 4));
3072
3073 TYPE_VECTOR (t) = 1;
3074 TYPE_NAME (t) = "builtin_type_vec512i";
3075 tdep->i386_zmm_type = t;
3076 }
3077
3078 return tdep->i386_zmm_type;
3079}
3080
c131fcee
L
3081/* Construct vector type for pseudo YMM registers. We can't use
3082 tdesc_find_type since YMM isn't described in target description. */
3083
3084static struct type *
3085i386_ymm_type (struct gdbarch *gdbarch)
3086{
3087 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3088
3089 if (!tdep->i386_ymm_type)
3090 {
3091 const struct builtin_type *bt = builtin_type (gdbarch);
3092
3093 /* The type we're building is this: */
3094#if 0
3095 union __gdb_builtin_type_vec256i
3096 {
3097 int128_t uint128[2];
3098 int64_t v2_int64[4];
3099 int32_t v4_int32[8];
3100 int16_t v8_int16[16];
3101 int8_t v16_int8[32];
3102 double v2_double[4];
3103 float v4_float[8];
3104 };
3105#endif
3106
3107 struct type *t;
3108
3109 t = arch_composite_type (gdbarch,
3110 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3111 append_composite_type_field (t, "v8_float",
3112 init_vector_type (bt->builtin_float, 8));
3113 append_composite_type_field (t, "v4_double",
3114 init_vector_type (bt->builtin_double, 4));
3115 append_composite_type_field (t, "v32_int8",
3116 init_vector_type (bt->builtin_int8, 32));
3117 append_composite_type_field (t, "v16_int16",
3118 init_vector_type (bt->builtin_int16, 16));
3119 append_composite_type_field (t, "v8_int32",
3120 init_vector_type (bt->builtin_int32, 8));
3121 append_composite_type_field (t, "v4_int64",
3122 init_vector_type (bt->builtin_int64, 4));
3123 append_composite_type_field (t, "v2_int128",
3124 init_vector_type (bt->builtin_int128, 2));
3125
3126 TYPE_VECTOR (t) = 1;
0c5acf93 3127 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3128 tdep->i386_ymm_type = t;
3129 }
3130
3131 return tdep->i386_ymm_type;
3132}
3133
794ac428 3134/* Construct vector type for MMX registers. */
90884b2b 3135static struct type *
794ac428
UW
3136i386_mmx_type (struct gdbarch *gdbarch)
3137{
3138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3139
3140 if (!tdep->i386_mmx_type)
3141 {
df4df182
UW
3142 const struct builtin_type *bt = builtin_type (gdbarch);
3143
794ac428
UW
3144 /* The type we're building is this: */
3145#if 0
3146 union __gdb_builtin_type_vec64i
3147 {
3148 int64_t uint64;
3149 int32_t v2_int32[2];
3150 int16_t v4_int16[4];
3151 int8_t v8_int8[8];
3152 };
3153#endif
3154
3155 struct type *t;
3156
e9bb382b
UW
3157 t = arch_composite_type (gdbarch,
3158 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3159
3160 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3161 append_composite_type_field (t, "v2_int32",
df4df182 3162 init_vector_type (bt->builtin_int32, 2));
794ac428 3163 append_composite_type_field (t, "v4_int16",
df4df182 3164 init_vector_type (bt->builtin_int16, 4));
794ac428 3165 append_composite_type_field (t, "v8_int8",
df4df182 3166 init_vector_type (bt->builtin_int8, 8));
794ac428 3167
876cecd0 3168 TYPE_VECTOR (t) = 1;
794ac428
UW
3169 TYPE_NAME (t) = "builtin_type_vec64i";
3170 tdep->i386_mmx_type = t;
3171 }
3172
3173 return tdep->i386_mmx_type;
3174}
3175
d7a0d72c 3176/* Return the GDB type object for the "standard" data type of data in
1777feb0 3177 register REGNUM. */
d7a0d72c 3178
fff4548b 3179struct type *
90884b2b 3180i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3181{
1dbcd68c
WT
3182 if (i386_bnd_regnum_p (gdbarch, regnum))
3183 return i386_bnd_type (gdbarch);
1ba53b71
L
3184 if (i386_mmx_regnum_p (gdbarch, regnum))
3185 return i386_mmx_type (gdbarch);
c131fcee
L
3186 else if (i386_ymm_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
01f9f808
MS
3188 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3189 return i386_ymm_type (gdbarch);
3190 else if (i386_zmm_regnum_p (gdbarch, regnum))
3191 return i386_zmm_type (gdbarch);
1ba53b71
L
3192 else
3193 {
3194 const struct builtin_type *bt = builtin_type (gdbarch);
3195 if (i386_byte_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int8;
3197 else if (i386_word_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int16;
3199 else if (i386_dword_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int32;
01f9f808
MS
3201 else if (i386_k_regnum_p (gdbarch, regnum))
3202 return bt->builtin_int64;
1ba53b71
L
3203 }
3204
3205 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3206}
3207
28fc6740 3208/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3209 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3210
3211static int
c86c27af 3212i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3213{
5716833c
MK
3214 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3215 int mmxreg, fpreg;
28fc6740
AC
3216 ULONGEST fstat;
3217 int tos;
c86c27af 3218
5716833c 3219 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3220 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3221 tos = (fstat >> 11) & 0x7;
5716833c
MK
3222 fpreg = (mmxreg + tos) % 8;
3223
20a6ec49 3224 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3225}
3226
3543a589
TT
3227/* A helper function for us by i386_pseudo_register_read_value and
3228 amd64_pseudo_register_read_value. It does all the work but reads
3229 the data into an already-allocated value. */
3230
3231void
3232i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3233 struct regcache *regcache,
3234 int regnum,
3235 struct value *result_value)
28fc6740 3236{
1ba53b71 3237 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3238 enum register_status status;
3543a589 3239 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3240
5716833c 3241 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3242 {
c86c27af
MK
3243 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3244
28fc6740 3245 /* Extract (always little endian). */
05d1431c
PA
3246 status = regcache_raw_read (regcache, fpnum, raw_buf);
3247 if (status != REG_VALID)
3543a589
TT
3248 mark_value_bytes_unavailable (result_value, 0,
3249 TYPE_LENGTH (value_type (result_value)));
3250 else
3251 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3252 }
3253 else
1ba53b71
L
3254 {
3255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3256 if (i386_bnd_regnum_p (gdbarch, regnum))
3257 {
3258 regnum -= tdep->bnd0_regnum;
1ba53b71 3259
1dbcd68c
WT
3260 /* Extract (always little endian). Read lower 128bits. */
3261 status = regcache_raw_read (regcache,
3262 I387_BND0R_REGNUM (tdep) + regnum,
3263 raw_buf);
3264 if (status != REG_VALID)
3265 mark_value_bytes_unavailable (result_value, 0, 16);
3266 else
3267 {
3268 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3269 LONGEST upper, lower;
3270 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3271
3272 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3273 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3274 upper = ~upper;
3275
3276 memcpy (buf, &lower, size);
3277 memcpy (buf + size, &upper, size);
3278 }
3279 }
01f9f808
MS
3280 else if (i386_k_regnum_p (gdbarch, regnum))
3281 {
3282 regnum -= tdep->k0_regnum;
3283
3284 /* Extract (always little endian). */
3285 status = regcache_raw_read (regcache,
3286 tdep->k0_regnum + regnum,
3287 raw_buf);
3288 if (status != REG_VALID)
3289 mark_value_bytes_unavailable (result_value, 0, 8);
3290 else
3291 memcpy (buf, raw_buf, 8);
3292 }
3293 else if (i386_zmm_regnum_p (gdbarch, regnum))
3294 {
3295 regnum -= tdep->zmm0_regnum;
3296
3297 if (regnum < num_lower_zmm_regs)
3298 {
3299 /* Extract (always little endian). Read lower 128bits. */
3300 status = regcache_raw_read (regcache,
3301 I387_XMM0_REGNUM (tdep) + regnum,
3302 raw_buf);
3303 if (status != REG_VALID)
3304 mark_value_bytes_unavailable (result_value, 0, 16);
3305 else
3306 memcpy (buf, raw_buf, 16);
3307
3308 /* Extract (always little endian). Read upper 128bits. */
3309 status = regcache_raw_read (regcache,
3310 tdep->ymm0h_regnum + regnum,
3311 raw_buf);
3312 if (status != REG_VALID)
3313 mark_value_bytes_unavailable (result_value, 16, 16);
3314 else
3315 memcpy (buf + 16, raw_buf, 16);
3316 }
3317 else
3318 {
3319 /* Extract (always little endian). Read lower 128bits. */
3320 status = regcache_raw_read (regcache,
3321 I387_XMM16_REGNUM (tdep) + regnum
3322 - num_lower_zmm_regs,
3323 raw_buf);
3324 if (status != REG_VALID)
3325 mark_value_bytes_unavailable (result_value, 0, 16);
3326 else
3327 memcpy (buf, raw_buf, 16);
3328
3329 /* Extract (always little endian). Read upper 128bits. */
3330 status = regcache_raw_read (regcache,
3331 I387_YMM16H_REGNUM (tdep) + regnum
3332 - num_lower_zmm_regs,
3333 raw_buf);
3334 if (status != REG_VALID)
3335 mark_value_bytes_unavailable (result_value, 16, 16);
3336 else
3337 memcpy (buf + 16, raw_buf, 16);
3338 }
3339
3340 /* Read upper 256bits. */
3341 status = regcache_raw_read (regcache,
3342 tdep->zmm0h_regnum + regnum,
3343 raw_buf);
3344 if (status != REG_VALID)
3345 mark_value_bytes_unavailable (result_value, 32, 32);
3346 else
3347 memcpy (buf + 32, raw_buf, 32);
3348 }
1dbcd68c 3349 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3350 {
3351 regnum -= tdep->ymm0_regnum;
3352
1777feb0 3353 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3354 status = regcache_raw_read (regcache,
3355 I387_XMM0_REGNUM (tdep) + regnum,
3356 raw_buf);
3357 if (status != REG_VALID)
3543a589
TT
3358 mark_value_bytes_unavailable (result_value, 0, 16);
3359 else
3360 memcpy (buf, raw_buf, 16);
c131fcee 3361 /* Read upper 128bits. */
05d1431c
PA
3362 status = regcache_raw_read (regcache,
3363 tdep->ymm0h_regnum + regnum,
3364 raw_buf);
3365 if (status != REG_VALID)
3543a589
TT
3366 mark_value_bytes_unavailable (result_value, 16, 32);
3367 else
3368 memcpy (buf + 16, raw_buf, 16);
c131fcee 3369 }
01f9f808
MS
3370 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3371 {
3372 regnum -= tdep->ymm16_regnum;
3373 /* Extract (always little endian). Read lower 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_XMM16_REGNUM (tdep) + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 0, 16);
3379 else
3380 memcpy (buf, raw_buf, 16);
3381 /* Read upper 128bits. */
3382 status = regcache_raw_read (regcache,
3383 tdep->ymm16h_regnum + regnum,
3384 raw_buf);
3385 if (status != REG_VALID)
3386 mark_value_bytes_unavailable (result_value, 16, 16);
3387 else
3388 memcpy (buf + 16, raw_buf, 16);
3389 }
c131fcee 3390 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3391 {
3392 int gpnum = regnum - tdep->ax_regnum;
3393
3394 /* Extract (always little endian). */
05d1431c
PA
3395 status = regcache_raw_read (regcache, gpnum, raw_buf);
3396 if (status != REG_VALID)
3543a589
TT
3397 mark_value_bytes_unavailable (result_value, 0,
3398 TYPE_LENGTH (value_type (result_value)));
3399 else
3400 memcpy (buf, raw_buf, 2);
1ba53b71
L
3401 }
3402 else if (i386_byte_regnum_p (gdbarch, regnum))
3403 {
3404 /* Check byte pseudo registers last since this function will
3405 be called from amd64_pseudo_register_read, which handles
3406 byte pseudo registers differently. */
3407 int gpnum = regnum - tdep->al_regnum;
3408
3409 /* Extract (always little endian). We read both lower and
3410 upper registers. */
05d1431c
PA
3411 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3412 if (status != REG_VALID)
3543a589
TT
3413 mark_value_bytes_unavailable (result_value, 0,
3414 TYPE_LENGTH (value_type (result_value)));
3415 else if (gpnum >= 4)
1ba53b71
L
3416 memcpy (buf, raw_buf + 1, 1);
3417 else
3418 memcpy (buf, raw_buf, 1);
3419 }
3420 else
3421 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3422 }
3543a589
TT
3423}
3424
3425static struct value *
3426i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3427 struct regcache *regcache,
3428 int regnum)
3429{
3430 struct value *result;
3431
3432 result = allocate_value (register_type (gdbarch, regnum));
3433 VALUE_LVAL (result) = lval_register;
3434 VALUE_REGNUM (result) = regnum;
3435
3436 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3437
3543a589 3438 return result;
28fc6740
AC
3439}
3440
1ba53b71 3441void
28fc6740 3442i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3443 int regnum, const gdb_byte *buf)
28fc6740 3444{
1ba53b71
L
3445 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3446
5716833c 3447 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3448 {
c86c27af
MK
3449 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3450
28fc6740 3451 /* Read ... */
1ba53b71 3452 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3453 /* ... Modify ... (always little endian). */
1ba53b71 3454 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3455 /* ... Write. */
1ba53b71 3456 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3457 }
3458 else
1ba53b71
L
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
1dbcd68c
WT
3462 if (i386_bnd_regnum_p (gdbarch, regnum))
3463 {
3464 ULONGEST upper, lower;
3465 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3466 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3467
3468 /* New values from input value. */
3469 regnum -= tdep->bnd0_regnum;
3470 lower = extract_unsigned_integer (buf, size, byte_order);
3471 upper = extract_unsigned_integer (buf + size, size, byte_order);
3472
3473 /* Fetching register buffer. */
3474 regcache_raw_read (regcache,
3475 I387_BND0R_REGNUM (tdep) + regnum,
3476 raw_buf);
3477
3478 upper = ~upper;
3479
3480 /* Set register bits. */
3481 memcpy (raw_buf, &lower, 8);
3482 memcpy (raw_buf + 8, &upper, 8);
3483
3484
3485 regcache_raw_write (regcache,
3486 I387_BND0R_REGNUM (tdep) + regnum,
3487 raw_buf);
3488 }
01f9f808
MS
3489 else if (i386_k_regnum_p (gdbarch, regnum))
3490 {
3491 regnum -= tdep->k0_regnum;
3492
3493 regcache_raw_write (regcache,
3494 tdep->k0_regnum + regnum,
3495 buf);
3496 }
3497 else if (i386_zmm_regnum_p (gdbarch, regnum))
3498 {
3499 regnum -= tdep->zmm0_regnum;
3500
3501 if (regnum < num_lower_zmm_regs)
3502 {
3503 /* Write lower 128bits. */
3504 regcache_raw_write (regcache,
3505 I387_XMM0_REGNUM (tdep) + regnum,
3506 buf);
3507 /* Write upper 128bits. */
3508 regcache_raw_write (regcache,
3509 I387_YMM0_REGNUM (tdep) + regnum,
3510 buf + 16);
3511 }
3512 else
3513 {
3514 /* Write lower 128bits. */
3515 regcache_raw_write (regcache,
3516 I387_XMM16_REGNUM (tdep) + regnum
3517 - num_lower_zmm_regs,
3518 buf);
3519 /* Write upper 128bits. */
3520 regcache_raw_write (regcache,
3521 I387_YMM16H_REGNUM (tdep) + regnum
3522 - num_lower_zmm_regs,
3523 buf + 16);
3524 }
3525 /* Write upper 256bits. */
3526 regcache_raw_write (regcache,
3527 tdep->zmm0h_regnum + regnum,
3528 buf + 32);
3529 }
1dbcd68c 3530 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3531 {
3532 regnum -= tdep->ymm0_regnum;
3533
3534 /* ... Write lower 128bits. */
3535 regcache_raw_write (regcache,
3536 I387_XMM0_REGNUM (tdep) + regnum,
3537 buf);
3538 /* ... Write upper 128bits. */
3539 regcache_raw_write (regcache,
3540 tdep->ymm0h_regnum + regnum,
3541 buf + 16);
3542 }
01f9f808
MS
3543 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3544 {
3545 regnum -= tdep->ymm16_regnum;
3546
3547 /* ... Write lower 128bits. */
3548 regcache_raw_write (regcache,
3549 I387_XMM16_REGNUM (tdep) + regnum,
3550 buf);
3551 /* ... Write upper 128bits. */
3552 regcache_raw_write (regcache,
3553 tdep->ymm16h_regnum + regnum,
3554 buf + 16);
3555 }
c131fcee 3556 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3557 {
3558 int gpnum = regnum - tdep->ax_regnum;
3559
3560 /* Read ... */
3561 regcache_raw_read (regcache, gpnum, raw_buf);
3562 /* ... Modify ... (always little endian). */
3563 memcpy (raw_buf, buf, 2);
3564 /* ... Write. */
3565 regcache_raw_write (regcache, gpnum, raw_buf);
3566 }
3567 else if (i386_byte_regnum_p (gdbarch, regnum))
3568 {
3569 /* Check byte pseudo registers last since this function will
3570 be called from amd64_pseudo_register_read, which handles
3571 byte pseudo registers differently. */
3572 int gpnum = regnum - tdep->al_regnum;
3573
3574 /* Read ... We read both lower and upper registers. */
3575 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3576 /* ... Modify ... (always little endian). */
3577 if (gpnum >= 4)
3578 memcpy (raw_buf + 1, buf, 1);
3579 else
3580 memcpy (raw_buf, buf, 1);
3581 /* ... Write. */
3582 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3583 }
3584 else
3585 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3586 }
28fc6740 3587}
ff2e87ac
AC
3588\f
3589
ff2e87ac
AC
3590/* Return the register number of the register allocated by GCC after
3591 REGNUM, or -1 if there is no such register. */
3592
3593static int
3594i386_next_regnum (int regnum)
3595{
3596 /* GCC allocates the registers in the order:
3597
3598 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3599
3600 Since storing a variable in %esp doesn't make any sense we return
3601 -1 for %ebp and for %esp itself. */
3602 static int next_regnum[] =
3603 {
3604 I386_EDX_REGNUM, /* Slot for %eax. */
3605 I386_EBX_REGNUM, /* Slot for %ecx. */
3606 I386_ECX_REGNUM, /* Slot for %edx. */
3607 I386_ESI_REGNUM, /* Slot for %ebx. */
3608 -1, -1, /* Slots for %esp and %ebp. */
3609 I386_EDI_REGNUM, /* Slot for %esi. */
3610 I386_EBP_REGNUM /* Slot for %edi. */
3611 };
3612
de5b9bb9 3613 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3614 return next_regnum[regnum];
28fc6740 3615
ff2e87ac
AC
3616 return -1;
3617}
3618
3619/* Return nonzero if a value of type TYPE stored in register REGNUM
3620 needs any special handling. */
d7a0d72c 3621
3a1e71e3 3622static int
1777feb0
MS
3623i386_convert_register_p (struct gdbarch *gdbarch,
3624 int regnum, struct type *type)
d7a0d72c 3625{
de5b9bb9
MK
3626 int len = TYPE_LENGTH (type);
3627
ff2e87ac
AC
3628 /* Values may be spread across multiple registers. Most debugging
3629 formats aren't expressive enough to specify the locations, so
3630 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3631 have a length that is a multiple of the word size, since GCC
3632 doesn't seem to put any other types into registers. */
3633 if (len > 4 && len % 4 == 0)
3634 {
3635 int last_regnum = regnum;
3636
3637 while (len > 4)
3638 {
3639 last_regnum = i386_next_regnum (last_regnum);
3640 len -= 4;
3641 }
3642
3643 if (last_regnum != -1)
3644 return 1;
3645 }
ff2e87ac 3646
0abe36f5 3647 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3648}
3649
ff2e87ac
AC
3650/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3651 return its contents in TO. */
ac27f131 3652
8dccd430 3653static int
ff2e87ac 3654i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3655 struct type *type, gdb_byte *to,
3656 int *optimizedp, int *unavailablep)
ac27f131 3657{
20a6ec49 3658 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3659 int len = TYPE_LENGTH (type);
de5b9bb9 3660
20a6ec49 3661 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3662 return i387_register_to_value (frame, regnum, type, to,
3663 optimizedp, unavailablep);
ff2e87ac 3664
fd35795f 3665 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3666
3667 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3668
de5b9bb9
MK
3669 while (len > 0)
3670 {
3671 gdb_assert (regnum != -1);
20a6ec49 3672 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3673
8dccd430
PA
3674 if (!get_frame_register_bytes (frame, regnum, 0,
3675 register_size (gdbarch, regnum),
3676 to, optimizedp, unavailablep))
3677 return 0;
3678
de5b9bb9
MK
3679 regnum = i386_next_regnum (regnum);
3680 len -= 4;
42835c2b 3681 to += 4;
de5b9bb9 3682 }
8dccd430
PA
3683
3684 *optimizedp = *unavailablep = 0;
3685 return 1;
ac27f131
MK
3686}
3687
ff2e87ac
AC
3688/* Write the contents FROM of a value of type TYPE into register
3689 REGNUM in frame FRAME. */
ac27f131 3690
3a1e71e3 3691static void
ff2e87ac 3692i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3693 struct type *type, const gdb_byte *from)
ac27f131 3694{
de5b9bb9 3695 int len = TYPE_LENGTH (type);
de5b9bb9 3696
20a6ec49 3697 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3698 {
d532c08f
MK
3699 i387_value_to_register (frame, regnum, type, from);
3700 return;
3701 }
3d261580 3702
fd35795f 3703 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3704
3705 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3706
de5b9bb9
MK
3707 while (len > 0)
3708 {
3709 gdb_assert (regnum != -1);
875f8d0e 3710 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3711
42835c2b 3712 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3713 regnum = i386_next_regnum (regnum);
3714 len -= 4;
42835c2b 3715 from += 4;
de5b9bb9 3716 }
ac27f131 3717}
ff2e87ac 3718\f
7fdafb5a
MK
3719/* Supply register REGNUM from the buffer specified by GREGS and LEN
3720 in the general-purpose register set REGSET to register cache
3721 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3722
20187ed5 3723void
473f17b0
MK
3724i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3725 int regnum, const void *gregs, size_t len)
3726{
9ea75c57 3727 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3728 const gdb_byte *regs = gregs;
473f17b0
MK
3729 int i;
3730
3731 gdb_assert (len == tdep->sizeof_gregset);
3732
3733 for (i = 0; i < tdep->gregset_num_regs; i++)
3734 {
3735 if ((regnum == i || regnum == -1)
3736 && tdep->gregset_reg_offset[i] != -1)
3737 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3738 }
3739}
3740
7fdafb5a
MK
3741/* Collect register REGNUM from the register cache REGCACHE and store
3742 it in the buffer specified by GREGS and LEN as described by the
3743 general-purpose register set REGSET. If REGNUM is -1, do this for
3744 all registers in REGSET. */
3745
3746void
3747i386_collect_gregset (const struct regset *regset,
3748 const struct regcache *regcache,
3749 int regnum, void *gregs, size_t len)
3750{
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
9ea75c57 3773 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 3774
66a72d25
MK
3775 if (len == I387_SIZEOF_FXSAVE)
3776 {
3777 i387_supply_fxsave (regcache, regnum, fpregs);
3778 return;
3779 }
3780
473f17b0
MK
3781 gdb_assert (len == tdep->sizeof_fpregset);
3782 i387_supply_fsave (regcache, regnum, fpregs);
3783}
8446b36a 3784
2f305df1
MK
3785/* Collect register REGNUM from the register cache REGCACHE and store
3786 it in the buffer specified by FPREGS and LEN as described by the
3787 floating-point register set REGSET. If REGNUM is -1, do this for
3788 all registers in REGSET. */
7fdafb5a
MK
3789
3790static void
3791i386_collect_fpregset (const struct regset *regset,
3792 const struct regcache *regcache,
3793 int regnum, void *fpregs, size_t len)
3794{
3795 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3796
3797 if (len == I387_SIZEOF_FXSAVE)
3798 {
3799 i387_collect_fxsave (regcache, regnum, fpregs);
3800 return;
3801 }
3802
3803 gdb_assert (len == tdep->sizeof_fpregset);
3804 i387_collect_fsave (regcache, regnum, fpregs);
3805}
3806
c131fcee
L
3807/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3808
3809static void
3810i386_supply_xstateregset (const struct regset *regset,
3811 struct regcache *regcache, int regnum,
3812 const void *xstateregs, size_t len)
3813{
c131fcee
L
3814 i387_supply_xsave (regcache, regnum, xstateregs);
3815}
3816
3817/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3818
3819static void
3820i386_collect_xstateregset (const struct regset *regset,
3821 const struct regcache *regcache,
3822 int regnum, void *xstateregs, size_t len)
3823{
c131fcee
L
3824 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3825}
3826
8446b36a
MK
3827/* Return the appropriate register set for the core section identified
3828 by SECT_NAME and SECT_SIZE. */
3829
3830const struct regset *
3831i386_regset_from_core_section (struct gdbarch *gdbarch,
3832 const char *sect_name, size_t sect_size)
3833{
3834 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3835
3836 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3837 {
3838 if (tdep->gregset == NULL)
7fdafb5a
MK
3839 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3840 i386_collect_gregset);
8446b36a
MK
3841 return tdep->gregset;
3842 }
3843
66a72d25
MK
3844 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3845 || (strcmp (sect_name, ".reg-xfp") == 0
3846 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3847 {
3848 if (tdep->fpregset == NULL)
7fdafb5a
MK
3849 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3850 i386_collect_fpregset);
8446b36a
MK
3851 return tdep->fpregset;
3852 }
3853
c131fcee
L
3854 if (strcmp (sect_name, ".reg-xstate") == 0)
3855 {
3856 if (tdep->xstateregset == NULL)
3857 tdep->xstateregset = regset_alloc (gdbarch,
3858 i386_supply_xstateregset,
3859 i386_collect_xstateregset);
3860
3861 return tdep->xstateregset;
3862 }
3863
8446b36a
MK
3864 return NULL;
3865}
473f17b0 3866\f
fc338970 3867
fc338970 3868/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3869
3870CORE_ADDR
e17a4113
UW
3871i386_pe_skip_trampoline_code (struct frame_info *frame,
3872 CORE_ADDR pc, char *name)
c906108c 3873{
e17a4113
UW
3874 struct gdbarch *gdbarch = get_frame_arch (frame);
3875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3876
3877 /* jmp *(dest) */
3878 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3879 {
e17a4113
UW
3880 unsigned long indirect =
3881 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3882 struct minimal_symbol *indsym =
7cbd4a93 3883 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3884 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3885
c5aa993b 3886 if (symname)
c906108c 3887 {
c5aa993b
JM
3888 if (strncmp (symname, "__imp_", 6) == 0
3889 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3890 return name ? 1 :
3891 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3892 }
3893 }
fc338970 3894 return 0; /* Not a trampoline. */
c906108c 3895}
fc338970
MK
3896\f
3897
10458914
DJ
3898/* Return whether the THIS_FRAME corresponds to a sigtramp
3899 routine. */
8201327c 3900
4bd207ef 3901int
10458914 3902i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3903{
10458914 3904 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3905 const char *name;
911bc6ee
MK
3906
3907 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3908 return (name && strcmp ("_sigtramp", name) == 0);
3909}
3910\f
3911
fc338970
MK
3912/* We have two flavours of disassembly. The machinery on this page
3913 deals with switching between those. */
c906108c
SS
3914
3915static int
a89aa300 3916i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3917{
5e3397bb
MK
3918 gdb_assert (disassembly_flavor == att_flavor
3919 || disassembly_flavor == intel_flavor);
3920
3921 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3922 constified, cast to prevent a compiler warning. */
3923 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3924
3925 return print_insn_i386 (pc, info);
7a292a7a 3926}
fc338970 3927\f
3ce1502b 3928
8201327c
MK
3929/* There are a few i386 architecture variants that differ only
3930 slightly from the generic i386 target. For now, we don't give them
3931 their own source file, but include them here. As a consequence,
3932 they'll always be included. */
3ce1502b 3933
8201327c 3934/* System V Release 4 (SVR4). */
3ce1502b 3935
10458914
DJ
3936/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3937 routine. */
911bc6ee 3938
8201327c 3939static int
10458914 3940i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3941{
10458914 3942 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3943 const char *name;
911bc6ee 3944
05b4bd79 3945 /* The origin of these symbols is currently unknown. */
911bc6ee 3946 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3947 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3948 || strcmp ("sigvechandler", name) == 0));
3949}
d2a7c97a 3950
10458914
DJ
3951/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3952 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3953
3a1e71e3 3954static CORE_ADDR
10458914 3955i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3956{
e17a4113
UW
3957 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3959 gdb_byte buf[4];
acd5c798 3960 CORE_ADDR sp;
3ce1502b 3961
10458914 3962 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3963 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3964
e17a4113 3965 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3966}
55aa24fb
SDJ
3967
3968\f
3969
3970/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3971 gdbarch.h. */
3972
3973int
3974i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3975{
3976 return (*s == '$' /* Literal number. */
3977 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3978 || (*s == '(' && s[1] == '%') /* Register indirection. */
3979 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3980}
3981
5acfdbae
SDJ
3982/* Helper function for i386_stap_parse_special_token.
3983
3984 This function parses operands of the form `-8+3+1(%rbp)', which
3985 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3986
3987 Return 1 if the operand was parsed successfully, zero
3988 otherwise. */
3989
3990static int
3991i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3992 struct stap_parse_info *p)
3993{
3994 const char *s = p->arg;
3995
3996 if (isdigit (*s) || *s == '-' || *s == '+')
3997 {
3998 int got_minus[3];
3999 int i;
4000 long displacements[3];
4001 const char *start;
4002 char *regname;
4003 int len;
4004 struct stoken str;
4005 char *endp;
4006
4007 got_minus[0] = 0;
4008 if (*s == '+')
4009 ++s;
4010 else if (*s == '-')
4011 {
4012 ++s;
4013 got_minus[0] = 1;
4014 }
4015
d7b30f67
SDJ
4016 if (!isdigit ((unsigned char) *s))
4017 return 0;
4018
5acfdbae
SDJ
4019 displacements[0] = strtol (s, &endp, 10);
4020 s = endp;
4021
4022 if (*s != '+' && *s != '-')
4023 {
4024 /* We are not dealing with a triplet. */
4025 return 0;
4026 }
4027
4028 got_minus[1] = 0;
4029 if (*s == '+')
4030 ++s;
4031 else
4032 {
4033 ++s;
4034 got_minus[1] = 1;
4035 }
4036
d7b30f67
SDJ
4037 if (!isdigit ((unsigned char) *s))
4038 return 0;
4039
5acfdbae
SDJ
4040 displacements[1] = strtol (s, &endp, 10);
4041 s = endp;
4042
4043 if (*s != '+' && *s != '-')
4044 {
4045 /* We are not dealing with a triplet. */
4046 return 0;
4047 }
4048
4049 got_minus[2] = 0;
4050 if (*s == '+')
4051 ++s;
4052 else
4053 {
4054 ++s;
4055 got_minus[2] = 1;
4056 }
4057
d7b30f67
SDJ
4058 if (!isdigit ((unsigned char) *s))
4059 return 0;
4060
5acfdbae
SDJ
4061 displacements[2] = strtol (s, &endp, 10);
4062 s = endp;
4063
4064 if (*s != '(' || s[1] != '%')
4065 return 0;
4066
4067 s += 2;
4068 start = s;
4069
4070 while (isalnum (*s))
4071 ++s;
4072
4073 if (*s++ != ')')
4074 return 0;
4075
d7b30f67 4076 len = s - start - 1;
5acfdbae
SDJ
4077 regname = alloca (len + 1);
4078
4079 strncpy (regname, start, len);
4080 regname[len] = '\0';
4081
4082 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4083 error (_("Invalid register name `%s' on expression `%s'."),
4084 regname, p->saved_arg);
4085
4086 for (i = 0; i < 3; i++)
4087 {
410a0ff2
SDJ
4088 write_exp_elt_opcode (&p->pstate, OP_LONG);
4089 write_exp_elt_type
4090 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4091 write_exp_elt_longcst (&p->pstate, displacements[i]);
4092 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4093 if (got_minus[i])
410a0ff2 4094 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4095 }
4096
410a0ff2 4097 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4098 str.ptr = regname;
4099 str.length = len;
410a0ff2
SDJ
4100 write_exp_string (&p->pstate, str);
4101 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4102
410a0ff2
SDJ
4103 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4104 write_exp_elt_type (&p->pstate,
4105 builtin_type (gdbarch)->builtin_data_ptr);
4106 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4107
410a0ff2
SDJ
4108 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4109 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4110 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4111
410a0ff2
SDJ
4112 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4113 write_exp_elt_type (&p->pstate,
4114 lookup_pointer_type (p->arg_type));
4115 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4116
410a0ff2 4117 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4118
4119 p->arg = s;
4120
4121 return 1;
4122 }
4123
4124 return 0;
4125}
4126
4127/* Helper function for i386_stap_parse_special_token.
4128
4129 This function parses operands of the form `register base +
4130 (register index * size) + offset', as represented in
4131 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4132
4133 Return 1 if the operand was parsed successfully, zero
4134 otherwise. */
4135
4136static int
4137i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4138 struct stap_parse_info *p)
4139{
4140 const char *s = p->arg;
4141
4142 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4143 {
4144 int offset_minus = 0;
4145 long offset = 0;
4146 int size_minus = 0;
4147 long size = 0;
4148 const char *start;
4149 char *base;
4150 int len_base;
4151 char *index;
4152 int len_index;
4153 struct stoken base_token, index_token;
4154
4155 if (*s == '+')
4156 ++s;
4157 else if (*s == '-')
4158 {
4159 ++s;
4160 offset_minus = 1;
4161 }
4162
4163 if (offset_minus && !isdigit (*s))
4164 return 0;
4165
4166 if (isdigit (*s))
4167 {
4168 char *endp;
4169
4170 offset = strtol (s, &endp, 10);
4171 s = endp;
4172 }
4173
4174 if (*s != '(' || s[1] != '%')
4175 return 0;
4176
4177 s += 2;
4178 start = s;
4179
4180 while (isalnum (*s))
4181 ++s;
4182
4183 if (*s != ',' || s[1] != '%')
4184 return 0;
4185
4186 len_base = s - start;
4187 base = alloca (len_base + 1);
4188 strncpy (base, start, len_base);
4189 base[len_base] = '\0';
4190
4191 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4192 error (_("Invalid register name `%s' on expression `%s'."),
4193 base, p->saved_arg);
4194
4195 s += 2;
4196 start = s;
4197
4198 while (isalnum (*s))
4199 ++s;
4200
4201 len_index = s - start;
4202 index = alloca (len_index + 1);
4203 strncpy (index, start, len_index);
4204 index[len_index] = '\0';
4205
4206 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4207 error (_("Invalid register name `%s' on expression `%s'."),
4208 index, p->saved_arg);
4209
4210 if (*s != ',' && *s != ')')
4211 return 0;
4212
4213 if (*s == ',')
4214 {
4215 char *endp;
4216
4217 ++s;
4218 if (*s == '+')
4219 ++s;
4220 else if (*s == '-')
4221 {
4222 ++s;
4223 size_minus = 1;
4224 }
4225
4226 size = strtol (s, &endp, 10);
4227 s = endp;
4228
4229 if (*s != ')')
4230 return 0;
4231 }
4232
4233 ++s;
4234
4235 if (offset)
4236 {
410a0ff2
SDJ
4237 write_exp_elt_opcode (&p->pstate, OP_LONG);
4238 write_exp_elt_type (&p->pstate,
4239 builtin_type (gdbarch)->builtin_long);
4240 write_exp_elt_longcst (&p->pstate, offset);
4241 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4242 if (offset_minus)
410a0ff2 4243 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4244 }
4245
410a0ff2 4246 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4247 base_token.ptr = base;
4248 base_token.length = len_base;
410a0ff2
SDJ
4249 write_exp_string (&p->pstate, base_token);
4250 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4251
4252 if (offset)
410a0ff2 4253 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4254
410a0ff2 4255 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4256 index_token.ptr = index;
4257 index_token.length = len_index;
410a0ff2
SDJ
4258 write_exp_string (&p->pstate, index_token);
4259 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4260
4261 if (size)
4262 {
410a0ff2
SDJ
4263 write_exp_elt_opcode (&p->pstate, OP_LONG);
4264 write_exp_elt_type (&p->pstate,
4265 builtin_type (gdbarch)->builtin_long);
4266 write_exp_elt_longcst (&p->pstate, size);
4267 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4268 if (size_minus)
410a0ff2
SDJ
4269 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4270 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4271 }
4272
410a0ff2 4273 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4274
410a0ff2
SDJ
4275 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4276 write_exp_elt_type (&p->pstate,
4277 lookup_pointer_type (p->arg_type));
4278 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4279
410a0ff2 4280 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4281
4282 p->arg = s;
4283
4284 return 1;
4285 }
4286
4287 return 0;
4288}
4289
55aa24fb
SDJ
4290/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4291 gdbarch.h. */
4292
4293int
4294i386_stap_parse_special_token (struct gdbarch *gdbarch,
4295 struct stap_parse_info *p)
4296{
55aa24fb
SDJ
4297 /* In order to parse special tokens, we use a state-machine that go
4298 through every known token and try to get a match. */
4299 enum
4300 {
4301 TRIPLET,
4302 THREE_ARG_DISPLACEMENT,
4303 DONE
4304 } current_state;
4305
4306 current_state = TRIPLET;
4307
4308 /* The special tokens to be parsed here are:
4309
4310 - `register base + (register index * size) + offset', as represented
4311 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4312
4313 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4314 `*(-8 + 3 - 1 + (void *) $eax)'. */
4315
4316 while (current_state != DONE)
4317 {
55aa24fb
SDJ
4318 switch (current_state)
4319 {
4320 case TRIPLET:
5acfdbae
SDJ
4321 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4322 return 1;
4323 break;
4324
55aa24fb 4325 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4326 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4327 return 1;
4328 break;
55aa24fb
SDJ
4329 }
4330
4331 /* Advancing to the next state. */
4332 ++current_state;
4333 }
4334
4335 return 0;
4336}
4337
8201327c 4338\f
3ce1502b 4339
8201327c 4340/* Generic ELF. */
d2a7c97a 4341
8201327c
MK
4342void
4343i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4344{
05c0465e
SDJ
4345 static const char *const stap_integer_prefixes[] = { "$", NULL };
4346 static const char *const stap_register_prefixes[] = { "%", NULL };
4347 static const char *const stap_register_indirection_prefixes[] = { "(",
4348 NULL };
4349 static const char *const stap_register_indirection_suffixes[] = { ")",
4350 NULL };
4351
c4fc7f1b
MK
4352 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4354
4355 /* Registering SystemTap handlers. */
05c0465e
SDJ
4356 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4357 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4358 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4359 stap_register_indirection_prefixes);
4360 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4361 stap_register_indirection_suffixes);
55aa24fb
SDJ
4362 set_gdbarch_stap_is_single_operand (gdbarch,
4363 i386_stap_is_single_operand);
4364 set_gdbarch_stap_parse_special_token (gdbarch,
4365 i386_stap_parse_special_token);
8201327c 4366}
3ce1502b 4367
8201327c 4368/* System V Release 4 (SVR4). */
3ce1502b 4369
8201327c
MK
4370void
4371i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4372{
4373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4374
8201327c
MK
4375 /* System V Release 4 uses ELF. */
4376 i386_elf_init_abi (info, gdbarch);
3ce1502b 4377
dfe01d39 4378 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4379 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4380
911bc6ee 4381 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4382 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4383 tdep->sc_pc_offset = 36 + 14 * 4;
4384 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4385
8201327c 4386 tdep->jb_pc_offset = 20;
3ce1502b
MK
4387}
4388
8201327c 4389/* DJGPP. */
3ce1502b 4390
3a1e71e3 4391static void
8201327c 4392i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4393{
8201327c 4394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4395
911bc6ee
MK
4396 /* DJGPP doesn't have any special frames for signal handlers. */
4397 tdep->sigtramp_p = NULL;
3ce1502b 4398
8201327c 4399 tdep->jb_pc_offset = 36;
15430fc0
EZ
4400
4401 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4402 if (! tdesc_has_registers (info.target_desc))
4403 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4404
4405 /* Native compiler is GCC, which uses the SVR4 register numbering
4406 even in COFF and STABS. See the comment in i386_gdbarch_init,
4407 before the calls to set_gdbarch_stab_reg_to_regnum and
4408 set_gdbarch_sdb_reg_to_regnum. */
4409 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4410 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4411
4412 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4413}
8201327c 4414\f
2acceee2 4415
38c968cf
AC
4416/* i386 register groups. In addition to the normal groups, add "mmx"
4417 and "sse". */
4418
4419static struct reggroup *i386_sse_reggroup;
4420static struct reggroup *i386_mmx_reggroup;
4421
4422static void
4423i386_init_reggroups (void)
4424{
4425 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4426 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4427}
4428
4429static void
4430i386_add_reggroups (struct gdbarch *gdbarch)
4431{
4432 reggroup_add (gdbarch, i386_sse_reggroup);
4433 reggroup_add (gdbarch, i386_mmx_reggroup);
4434 reggroup_add (gdbarch, general_reggroup);
4435 reggroup_add (gdbarch, float_reggroup);
4436 reggroup_add (gdbarch, all_reggroup);
4437 reggroup_add (gdbarch, save_reggroup);
4438 reggroup_add (gdbarch, restore_reggroup);
4439 reggroup_add (gdbarch, vector_reggroup);
4440 reggroup_add (gdbarch, system_reggroup);
4441}
4442
4443int
4444i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4445 struct reggroup *group)
4446{
c131fcee
L
4447 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4448 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4449 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4450 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4451 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4452 avx512_p, avx_p, sse_p;
acd5c798 4453
1ba53b71
L
4454 /* Don't include pseudo registers, except for MMX, in any register
4455 groups. */
c131fcee 4456 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4457 return 0;
4458
c131fcee 4459 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4460 return 0;
4461
c131fcee 4462 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4463 return 0;
4464
4465 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4466 if (group == i386_mmx_reggroup)
4467 return mmx_regnum_p;
1ba53b71 4468
c131fcee 4469 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4470 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4471 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4472 if (group == i386_sse_reggroup)
01f9f808 4473 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4474
4475 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4476 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4477 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4478
4479 avx512_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4480 == I386_XSTATE_AVX512_MASK);
4481 avx_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4482 == I386_XSTATE_AVX_MASK) && !avx512_p;
4483 sse_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4484 == I386_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4485
38c968cf 4486 if (group == vector_reggroup)
c131fcee 4487 return (mmx_regnum_p
01f9f808
MS
4488 || (zmm_regnum_p && avx512_p)
4489 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4490 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4491 || mxcsr_regnum_p);
1ba53b71
L
4492
4493 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4494 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4495 if (group == float_reggroup)
4496 return fp_regnum_p;
1ba53b71 4497
c131fcee
L
4498 /* For "info reg all", don't include upper YMM registers nor XMM
4499 registers when AVX is supported. */
4500 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4501 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4502 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4503 if (group == all_reggroup
01f9f808
MS
4504 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4505 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4506 || ymmh_regnum_p
4507 || ymmh_avx512_regnum_p
4508 || zmmh_regnum_p))
c131fcee
L
4509 return 0;
4510
1dbcd68c
WT
4511 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4512 if (group == all_reggroup
4513 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4514 return bnd_regnum_p;
4515
4516 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4517 if (group == all_reggroup
4518 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4519 return 0;
4520
4521 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4522 if (group == all_reggroup
4523 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4524 return mpx_ctrl_regnum_p;
4525
38c968cf 4526 if (group == general_reggroup)
1ba53b71
L
4527 return (!fp_regnum_p
4528 && !mmx_regnum_p
c131fcee
L
4529 && !mxcsr_regnum_p
4530 && !xmm_regnum_p
01f9f808 4531 && !xmm_avx512_regnum_p
c131fcee 4532 && !ymm_regnum_p
1dbcd68c 4533 && !ymmh_regnum_p
01f9f808
MS
4534 && !ymm_avx512_regnum_p
4535 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4536 && !bndr_regnum_p
4537 && !bnd_regnum_p
01f9f808
MS
4538 && !mpx_ctrl_regnum_p
4539 && !zmm_regnum_p
4540 && !zmmh_regnum_p);
acd5c798 4541
38c968cf
AC
4542 return default_register_reggroup_p (gdbarch, regnum, group);
4543}
38c968cf 4544\f
acd5c798 4545
f837910f
MK
4546/* Get the ARGIth function argument for the current function. */
4547
42c466d7 4548static CORE_ADDR
143985b7
AF
4549i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4550 struct type *type)
4551{
e17a4113
UW
4552 struct gdbarch *gdbarch = get_frame_arch (frame);
4553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4554 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4555 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4556}
4557
514f746b
AR
4558static void
4559i386_skip_permanent_breakpoint (struct regcache *regcache)
4560{
4561 CORE_ADDR current_pc = regcache_read_pc (regcache);
4562
4563 /* On i386, breakpoint is exactly 1 byte long, so we just
4564 adjust the PC in the regcache. */
4565 current_pc += 1;
4566 regcache_write_pc (regcache, current_pc);
4567}
4568
4569
7ad10968
HZ
4570#define PREFIX_REPZ 0x01
4571#define PREFIX_REPNZ 0x02
4572#define PREFIX_LOCK 0x04
4573#define PREFIX_DATA 0x08
4574#define PREFIX_ADDR 0x10
473f17b0 4575
7ad10968
HZ
4576/* operand size */
4577enum
4578{
4579 OT_BYTE = 0,
4580 OT_WORD,
4581 OT_LONG,
cf648174 4582 OT_QUAD,
a3c4230a 4583 OT_DQUAD,
7ad10968 4584};
473f17b0 4585
7ad10968
HZ
4586/* i386 arith/logic operations */
4587enum
4588{
4589 OP_ADDL,
4590 OP_ORL,
4591 OP_ADCL,
4592 OP_SBBL,
4593 OP_ANDL,
4594 OP_SUBL,
4595 OP_XORL,
4596 OP_CMPL,
4597};
5716833c 4598
7ad10968
HZ
4599struct i386_record_s
4600{
cf648174 4601 struct gdbarch *gdbarch;
7ad10968 4602 struct regcache *regcache;
df61f520 4603 CORE_ADDR orig_addr;
7ad10968
HZ
4604 CORE_ADDR addr;
4605 int aflag;
4606 int dflag;
4607 int override;
4608 uint8_t modrm;
4609 uint8_t mod, reg, rm;
4610 int ot;
cf648174
HZ
4611 uint8_t rex_x;
4612 uint8_t rex_b;
4613 int rip_offset;
4614 int popl_esp_hack;
4615 const int *regmap;
7ad10968 4616};
5716833c 4617
99c1624c
PA
4618/* Parse the "modrm" part of the memory address irp->addr points at.
4619 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4620
7ad10968
HZ
4621static int
4622i386_record_modrm (struct i386_record_s *irp)
4623{
cf648174 4624 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4625
4ffa4fc7
PA
4626 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4627 return -1;
4628
7ad10968
HZ
4629 irp->addr++;
4630 irp->mod = (irp->modrm >> 6) & 3;
4631 irp->reg = (irp->modrm >> 3) & 7;
4632 irp->rm = irp->modrm & 7;
5716833c 4633
7ad10968
HZ
4634 return 0;
4635}
d2a7c97a 4636
99c1624c
PA
4637/* Extract the memory address that the current instruction writes to,
4638 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4639
7ad10968 4640static int
cf648174 4641i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4642{
cf648174 4643 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4645 gdb_byte buf[4];
4646 ULONGEST offset64;
21d0e8a4 4647
7ad10968 4648 *addr = 0;
1e87984a 4649 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4650 {
1e87984a 4651 /* 32/64 bits */
7ad10968
HZ
4652 int havesib = 0;
4653 uint8_t scale = 0;
648d0c8b 4654 uint8_t byte;
7ad10968
HZ
4655 uint8_t index = 0;
4656 uint8_t base = irp->rm;
896fb97d 4657
7ad10968
HZ
4658 if (base == 4)
4659 {
4660 havesib = 1;
4ffa4fc7
PA
4661 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4662 return -1;
7ad10968 4663 irp->addr++;
648d0c8b
MS
4664 scale = (byte >> 6) & 3;
4665 index = ((byte >> 3) & 7) | irp->rex_x;
4666 base = (byte & 7);
7ad10968 4667 }
cf648174 4668 base |= irp->rex_b;
21d0e8a4 4669
7ad10968
HZ
4670 switch (irp->mod)
4671 {
4672 case 0:
4673 if ((base & 7) == 5)
4674 {
4675 base = 0xff;
4ffa4fc7
PA
4676 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4677 return -1;
7ad10968 4678 irp->addr += 4;
60a1502a 4679 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4680 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4681 *addr += irp->addr + irp->rip_offset;
7ad10968 4682 }
7ad10968
HZ
4683 break;
4684 case 1:
4ffa4fc7
PA
4685 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4686 return -1;
7ad10968 4687 irp->addr++;
60a1502a 4688 *addr = (int8_t) buf[0];
7ad10968
HZ
4689 break;
4690 case 2:
4ffa4fc7
PA
4691 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4692 return -1;
60a1502a 4693 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4694 irp->addr += 4;
4695 break;
4696 }
356a6b3e 4697
60a1502a 4698 offset64 = 0;
7ad10968 4699 if (base != 0xff)
cf648174
HZ
4700 {
4701 if (base == 4 && irp->popl_esp_hack)
4702 *addr += irp->popl_esp_hack;
4703 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4704 &offset64);
7ad10968 4705 }
cf648174
HZ
4706 if (irp->aflag == 2)
4707 {
60a1502a 4708 *addr += offset64;
cf648174
HZ
4709 }
4710 else
60a1502a 4711 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4712
7ad10968
HZ
4713 if (havesib && (index != 4 || scale != 0))
4714 {
cf648174 4715 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4716 &offset64);
cf648174 4717 if (irp->aflag == 2)
60a1502a 4718 *addr += offset64 << scale;
cf648174 4719 else
60a1502a 4720 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4721 }
e85596e0
L
4722
4723 if (!irp->aflag)
4724 {
4725 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4726 address from 32-bit to 64-bit. */
4727 *addr = (uint32_t) *addr;
4728 }
7ad10968
HZ
4729 }
4730 else
4731 {
4732 /* 16 bits */
4733 switch (irp->mod)
4734 {
4735 case 0:
4736 if (irp->rm == 6)
4737 {
4ffa4fc7
PA
4738 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4739 return -1;
7ad10968 4740 irp->addr += 2;
60a1502a 4741 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4742 irp->rm = 0;
4743 goto no_rm;
4744 }
7ad10968
HZ
4745 break;
4746 case 1:
4ffa4fc7
PA
4747 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4748 return -1;
7ad10968 4749 irp->addr++;
60a1502a 4750 *addr = (int8_t) buf[0];
7ad10968
HZ
4751 break;
4752 case 2:
4ffa4fc7
PA
4753 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4754 return -1;
7ad10968 4755 irp->addr += 2;
60a1502a 4756 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4757 break;
4758 }
c4fc7f1b 4759
7ad10968
HZ
4760 switch (irp->rm)
4761 {
4762 case 0:
cf648174
HZ
4763 regcache_raw_read_unsigned (irp->regcache,
4764 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4765 &offset64);
4766 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4767 regcache_raw_read_unsigned (irp->regcache,
4768 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4769 &offset64);
4770 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4771 break;
4772 case 1:
cf648174
HZ
4773 regcache_raw_read_unsigned (irp->regcache,
4774 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4775 &offset64);
4776 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4777 regcache_raw_read_unsigned (irp->regcache,
4778 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4779 &offset64);
4780 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4781 break;
4782 case 2:
cf648174
HZ
4783 regcache_raw_read_unsigned (irp->regcache,
4784 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4785 &offset64);
4786 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4787 regcache_raw_read_unsigned (irp->regcache,
4788 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4789 &offset64);
4790 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4791 break;
4792 case 3:
cf648174
HZ
4793 regcache_raw_read_unsigned (irp->regcache,
4794 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4795 &offset64);
4796 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4797 regcache_raw_read_unsigned (irp->regcache,
4798 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4799 &offset64);
4800 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4801 break;
4802 case 4:
cf648174
HZ
4803 regcache_raw_read_unsigned (irp->regcache,
4804 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4805 &offset64);
4806 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4807 break;
4808 case 5:
cf648174
HZ
4809 regcache_raw_read_unsigned (irp->regcache,
4810 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4811 &offset64);
4812 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4813 break;
4814 case 6:
cf648174
HZ
4815 regcache_raw_read_unsigned (irp->regcache,
4816 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4817 &offset64);
4818 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4819 break;
4820 case 7:
cf648174
HZ
4821 regcache_raw_read_unsigned (irp->regcache,
4822 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4823 &offset64);
4824 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4825 break;
4826 }
4827 *addr &= 0xffff;
4828 }
c4fc7f1b 4829
01fe1b41 4830 no_rm:
7ad10968
HZ
4831 return 0;
4832}
c4fc7f1b 4833
99c1624c
PA
4834/* Record the address and contents of the memory that will be changed
4835 by the current instruction. Return -1 if something goes wrong, 0
4836 otherwise. */
356a6b3e 4837
7ad10968
HZ
4838static int
4839i386_record_lea_modrm (struct i386_record_s *irp)
4840{
cf648174
HZ
4841 struct gdbarch *gdbarch = irp->gdbarch;
4842 uint64_t addr;
356a6b3e 4843
d7877f7e 4844 if (irp->override >= 0)
7ad10968 4845 {
25ea693b 4846 if (record_full_memory_query)
bb08c432
HZ
4847 {
4848 int q;
4849
4850 target_terminal_ours ();
4851 q = yquery (_("\
4852Process record ignores the memory change of instruction at address %s\n\
4853because it can't get the value of the segment register.\n\
4854Do you want to stop the program?"),
4855 paddress (gdbarch, irp->orig_addr));
4856 target_terminal_inferior ();
4857 if (q)
4858 return -1;
4859 }
4860
7ad10968
HZ
4861 return 0;
4862 }
61113f8b 4863
7ad10968
HZ
4864 if (i386_record_lea_modrm_addr (irp, &addr))
4865 return -1;
96297dab 4866
25ea693b 4867 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4868 return -1;
a62cc96e 4869
7ad10968
HZ
4870 return 0;
4871}
b6197528 4872
99c1624c
PA
4873/* Record the effects of a push operation. Return -1 if something
4874 goes wrong, 0 otherwise. */
cf648174
HZ
4875
4876static int
4877i386_record_push (struct i386_record_s *irp, int size)
4878{
648d0c8b 4879 ULONGEST addr;
cf648174 4880
25ea693b
MM
4881 if (record_full_arch_list_add_reg (irp->regcache,
4882 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4883 return -1;
4884 regcache_raw_read_unsigned (irp->regcache,
4885 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4886 &addr);
25ea693b 4887 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4888 return -1;
4889
4890 return 0;
4891}
4892
0289bdd7
MS
4893
4894/* Defines contents to record. */
4895#define I386_SAVE_FPU_REGS 0xfffd
4896#define I386_SAVE_FPU_ENV 0xfffe
4897#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4898
99c1624c
PA
4899/* Record the values of the floating point registers which will be
4900 changed by the current instruction. Returns -1 if something is
4901 wrong, 0 otherwise. */
0289bdd7
MS
4902
4903static int i386_record_floats (struct gdbarch *gdbarch,
4904 struct i386_record_s *ir,
4905 uint32_t iregnum)
4906{
4907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4908 int i;
4909
4910 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4911 happen. Currently we store st0-st7 registers, but we need not store all
4912 registers all the time, in future we use ftag register and record only
4913 those who are not marked as an empty. */
4914
4915 if (I386_SAVE_FPU_REGS == iregnum)
4916 {
4917 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4918 {
25ea693b 4919 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4920 return -1;
4921 }
4922 }
4923 else if (I386_SAVE_FPU_ENV == iregnum)
4924 {
4925 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4926 {
25ea693b 4927 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4928 return -1;
4929 }
4930 }
4931 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4932 {
4933 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4934 {
25ea693b 4935 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4936 return -1;
4937 }
4938 }
4939 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4940 (iregnum <= I387_FOP_REGNUM (tdep)))
4941 {
25ea693b 4942 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4943 return -1;
4944 }
4945 else
4946 {
4947 /* Parameter error. */
4948 return -1;
4949 }
4950 if(I386_SAVE_FPU_ENV != iregnum)
4951 {
4952 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4953 {
25ea693b 4954 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4955 return -1;
4956 }
4957 }
4958 return 0;
4959}
4960
99c1624c
PA
4961/* Parse the current instruction, and record the values of the
4962 registers and memory that will be changed by the current
4963 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4964
25ea693b
MM
4965#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4966 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4967
a6b808b4 4968int
7ad10968 4969i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4970 CORE_ADDR input_addr)
7ad10968 4971{
60a1502a 4972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4973 int prefixes = 0;
580879fc 4974 int regnum = 0;
425b824a 4975 uint32_t opcode;
f4644a3f 4976 uint8_t opcode8;
648d0c8b 4977 ULONGEST addr;
60a1502a 4978 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4979 struct i386_record_s ir;
0289bdd7 4980 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4981 uint8_t rex_w = -1;
4982 uint8_t rex_r = 0;
7ad10968 4983
8408d274 4984 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4985 ir.regcache = regcache;
648d0c8b
MS
4986 ir.addr = input_addr;
4987 ir.orig_addr = input_addr;
7ad10968
HZ
4988 ir.aflag = 1;
4989 ir.dflag = 1;
cf648174
HZ
4990 ir.override = -1;
4991 ir.popl_esp_hack = 0;
a3c4230a 4992 ir.regmap = tdep->record_regmap;
cf648174 4993 ir.gdbarch = gdbarch;
7ad10968
HZ
4994
4995 if (record_debug > 1)
4996 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4997 "addr = %s\n",
4998 paddress (gdbarch, ir.addr));
7ad10968
HZ
4999
5000 /* prefixes */
5001 while (1)
5002 {
4ffa4fc7
PA
5003 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5004 return -1;
7ad10968 5005 ir.addr++;
425b824a 5006 switch (opcode8) /* Instruction prefixes */
7ad10968 5007 {
01fe1b41 5008 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5009 prefixes |= PREFIX_REPZ;
5010 break;
01fe1b41 5011 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5012 prefixes |= PREFIX_REPNZ;
5013 break;
01fe1b41 5014 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5015 prefixes |= PREFIX_LOCK;
5016 break;
01fe1b41 5017 case CS_PREFIX_OPCODE:
cf648174 5018 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5019 break;
01fe1b41 5020 case SS_PREFIX_OPCODE:
cf648174 5021 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5022 break;
01fe1b41 5023 case DS_PREFIX_OPCODE:
cf648174 5024 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5025 break;
01fe1b41 5026 case ES_PREFIX_OPCODE:
cf648174 5027 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5028 break;
01fe1b41 5029 case FS_PREFIX_OPCODE:
cf648174 5030 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5031 break;
01fe1b41 5032 case GS_PREFIX_OPCODE:
cf648174 5033 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5034 break;
01fe1b41 5035 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5036 prefixes |= PREFIX_DATA;
5037 break;
01fe1b41 5038 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5039 prefixes |= PREFIX_ADDR;
5040 break;
d691bec7
MS
5041 case 0x40: /* i386 inc %eax */
5042 case 0x41: /* i386 inc %ecx */
5043 case 0x42: /* i386 inc %edx */
5044 case 0x43: /* i386 inc %ebx */
5045 case 0x44: /* i386 inc %esp */
5046 case 0x45: /* i386 inc %ebp */
5047 case 0x46: /* i386 inc %esi */
5048 case 0x47: /* i386 inc %edi */
5049 case 0x48: /* i386 dec %eax */
5050 case 0x49: /* i386 dec %ecx */
5051 case 0x4a: /* i386 dec %edx */
5052 case 0x4b: /* i386 dec %ebx */
5053 case 0x4c: /* i386 dec %esp */
5054 case 0x4d: /* i386 dec %ebp */
5055 case 0x4e: /* i386 dec %esi */
5056 case 0x4f: /* i386 dec %edi */
5057 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5058 {
5059 /* REX */
425b824a
MS
5060 rex_w = (opcode8 >> 3) & 1;
5061 rex_r = (opcode8 & 0x4) << 1;
5062 ir.rex_x = (opcode8 & 0x2) << 2;
5063 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5064 }
d691bec7
MS
5065 else /* 32 bit target */
5066 goto out_prefixes;
cf648174 5067 break;
7ad10968
HZ
5068 default:
5069 goto out_prefixes;
5070 break;
5071 }
5072 }
01fe1b41 5073 out_prefixes:
cf648174
HZ
5074 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5075 {
5076 ir.dflag = 2;
5077 }
5078 else
5079 {
5080 if (prefixes & PREFIX_DATA)
5081 ir.dflag ^= 1;
5082 }
7ad10968
HZ
5083 if (prefixes & PREFIX_ADDR)
5084 ir.aflag ^= 1;
cf648174
HZ
5085 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5086 ir.aflag = 2;
7ad10968 5087
1777feb0 5088 /* Now check op code. */
425b824a 5089 opcode = (uint32_t) opcode8;
01fe1b41 5090 reswitch:
7ad10968
HZ
5091 switch (opcode)
5092 {
5093 case 0x0f:
4ffa4fc7
PA
5094 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5095 return -1;
7ad10968 5096 ir.addr++;
a3c4230a 5097 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5098 goto reswitch;
5099 break;
93924b6b 5100
a38bba38 5101 case 0x00: /* arith & logic */
7ad10968
HZ
5102 case 0x01:
5103 case 0x02:
5104 case 0x03:
5105 case 0x04:
5106 case 0x05:
5107 case 0x08:
5108 case 0x09:
5109 case 0x0a:
5110 case 0x0b:
5111 case 0x0c:
5112 case 0x0d:
5113 case 0x10:
5114 case 0x11:
5115 case 0x12:
5116 case 0x13:
5117 case 0x14:
5118 case 0x15:
5119 case 0x18:
5120 case 0x19:
5121 case 0x1a:
5122 case 0x1b:
5123 case 0x1c:
5124 case 0x1d:
5125 case 0x20:
5126 case 0x21:
5127 case 0x22:
5128 case 0x23:
5129 case 0x24:
5130 case 0x25:
5131 case 0x28:
5132 case 0x29:
5133 case 0x2a:
5134 case 0x2b:
5135 case 0x2c:
5136 case 0x2d:
5137 case 0x30:
5138 case 0x31:
5139 case 0x32:
5140 case 0x33:
5141 case 0x34:
5142 case 0x35:
5143 case 0x38:
5144 case 0x39:
5145 case 0x3a:
5146 case 0x3b:
5147 case 0x3c:
5148 case 0x3d:
5149 if (((opcode >> 3) & 7) != OP_CMPL)
5150 {
5151 if ((opcode & 1) == 0)
5152 ir.ot = OT_BYTE;
5153 else
5154 ir.ot = ir.dflag + OT_WORD;
93924b6b 5155
7ad10968
HZ
5156 switch ((opcode >> 1) & 3)
5157 {
a38bba38 5158 case 0: /* OP Ev, Gv */
7ad10968
HZ
5159 if (i386_record_modrm (&ir))
5160 return -1;
5161 if (ir.mod != 3)
5162 {
5163 if (i386_record_lea_modrm (&ir))
5164 return -1;
5165 }
5166 else
5167 {
cf648174
HZ
5168 ir.rm |= ir.rex_b;
5169 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5170 ir.rm &= 0x3;
25ea693b 5171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5172 }
5173 break;
a38bba38 5174 case 1: /* OP Gv, Ev */
7ad10968
HZ
5175 if (i386_record_modrm (&ir))
5176 return -1;
cf648174
HZ
5177 ir.reg |= rex_r;
5178 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5179 ir.reg &= 0x3;
25ea693b 5180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5181 break;
a38bba38 5182 case 2: /* OP A, Iv */
25ea693b 5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5184 break;
5185 }
5186 }
25ea693b 5187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5188 break;
42fdc8df 5189
a38bba38 5190 case 0x80: /* GRP1 */
7ad10968
HZ
5191 case 0x81:
5192 case 0x82:
5193 case 0x83:
5194 if (i386_record_modrm (&ir))
5195 return -1;
8201327c 5196
7ad10968
HZ
5197 if (ir.reg != OP_CMPL)
5198 {
5199 if ((opcode & 1) == 0)
5200 ir.ot = OT_BYTE;
5201 else
5202 ir.ot = ir.dflag + OT_WORD;
28fc6740 5203
7ad10968
HZ
5204 if (ir.mod != 3)
5205 {
cf648174
HZ
5206 if (opcode == 0x83)
5207 ir.rip_offset = 1;
5208 else
5209 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5210 if (i386_record_lea_modrm (&ir))
5211 return -1;
5212 }
5213 else
25ea693b 5214 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5215 }
25ea693b 5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5217 break;
5e3397bb 5218
a38bba38 5219 case 0x40: /* inc */
7ad10968
HZ
5220 case 0x41:
5221 case 0x42:
5222 case 0x43:
5223 case 0x44:
5224 case 0x45:
5225 case 0x46:
5226 case 0x47:
a38bba38
MS
5227
5228 case 0x48: /* dec */
7ad10968
HZ
5229 case 0x49:
5230 case 0x4a:
5231 case 0x4b:
5232 case 0x4c:
5233 case 0x4d:
5234 case 0x4e:
5235 case 0x4f:
a38bba38 5236
25ea693b
MM
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5239 break;
acd5c798 5240
a38bba38 5241 case 0xf6: /* GRP3 */
7ad10968
HZ
5242 case 0xf7:
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247 if (i386_record_modrm (&ir))
5248 return -1;
acd5c798 5249
cf648174
HZ
5250 if (ir.mod != 3 && ir.reg == 0)
5251 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5252
7ad10968
HZ
5253 switch (ir.reg)
5254 {
a38bba38 5255 case 0: /* test */
25ea693b 5256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5257 break;
a38bba38
MS
5258 case 2: /* not */
5259 case 3: /* neg */
7ad10968
HZ
5260 if (ir.mod != 3)
5261 {
5262 if (i386_record_lea_modrm (&ir))
5263 return -1;
5264 }
5265 else
5266 {
cf648174
HZ
5267 ir.rm |= ir.rex_b;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5269 ir.rm &= 0x3;
25ea693b 5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5271 }
a38bba38 5272 if (ir.reg == 3) /* neg */
25ea693b 5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5274 break;
a38bba38
MS
5275 case 4: /* mul */
5276 case 5: /* imul */
5277 case 6: /* div */
5278 case 7: /* idiv */
25ea693b 5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5280 if (ir.ot != OT_BYTE)
25ea693b
MM
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5283 break;
5284 default:
5285 ir.addr -= 2;
5286 opcode = opcode << 8 | ir.modrm;
5287 goto no_support;
5288 break;
5289 }
5290 break;
5291
a38bba38
MS
5292 case 0xfe: /* GRP4 */
5293 case 0xff: /* GRP5 */
7ad10968
HZ
5294 if (i386_record_modrm (&ir))
5295 return -1;
5296 if (ir.reg >= 2 && opcode == 0xfe)
5297 {
5298 ir.addr -= 2;
5299 opcode = opcode << 8 | ir.modrm;
5300 goto no_support;
5301 }
7ad10968
HZ
5302 switch (ir.reg)
5303 {
a38bba38
MS
5304 case 0: /* inc */
5305 case 1: /* dec */
cf648174
HZ
5306 if ((opcode & 1) == 0)
5307 ir.ot = OT_BYTE;
5308 else
5309 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5310 if (ir.mod != 3)
5311 {
5312 if (i386_record_lea_modrm (&ir))
5313 return -1;
5314 }
5315 else
5316 {
cf648174
HZ
5317 ir.rm |= ir.rex_b;
5318 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5319 ir.rm &= 0x3;
25ea693b 5320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5321 }
25ea693b 5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5323 break;
a38bba38 5324 case 2: /* call */
cf648174
HZ
5325 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5326 ir.dflag = 2;
5327 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5328 return -1;
25ea693b 5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5330 break;
a38bba38 5331 case 3: /* lcall */
25ea693b 5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5333 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5334 return -1;
25ea693b 5335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5336 break;
a38bba38
MS
5337 case 4: /* jmp */
5338 case 5: /* ljmp */
25ea693b 5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5340 break;
a38bba38 5341 case 6: /* push */
cf648174
HZ
5342 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5343 ir.dflag = 2;
5344 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5345 return -1;
7ad10968
HZ
5346 break;
5347 default:
5348 ir.addr -= 2;
5349 opcode = opcode << 8 | ir.modrm;
5350 goto no_support;
5351 break;
5352 }
5353 break;
5354
a38bba38 5355 case 0x84: /* test */
7ad10968
HZ
5356 case 0x85:
5357 case 0xa8:
5358 case 0xa9:
25ea693b 5359 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5360 break;
5361
a38bba38 5362 case 0x98: /* CWDE/CBW */
25ea693b 5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5364 break;
5365
a38bba38 5366 case 0x99: /* CDQ/CWD */
25ea693b
MM
5367 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5369 break;
5370
a38bba38 5371 case 0x0faf: /* imul */
7ad10968
HZ
5372 case 0x69:
5373 case 0x6b:
5374 ir.ot = ir.dflag + OT_WORD;
5375 if (i386_record_modrm (&ir))
5376 return -1;
cf648174
HZ
5377 if (opcode == 0x69)
5378 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5379 else if (opcode == 0x6b)
5380 ir.rip_offset = 1;
5381 ir.reg |= rex_r;
5382 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5383 ir.reg &= 0x3;
25ea693b
MM
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5385 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5386 break;
5387
a38bba38 5388 case 0x0fc0: /* xadd */
7ad10968
HZ
5389 case 0x0fc1:
5390 if ((opcode & 1) == 0)
5391 ir.ot = OT_BYTE;
5392 else
5393 ir.ot = ir.dflag + OT_WORD;
5394 if (i386_record_modrm (&ir))
5395 return -1;
cf648174 5396 ir.reg |= rex_r;
7ad10968
HZ
5397 if (ir.mod == 3)
5398 {
cf648174 5399 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5400 ir.reg &= 0x3;
25ea693b 5401 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5402 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5403 ir.rm &= 0x3;
25ea693b 5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5405 }
5406 else
5407 {
5408 if (i386_record_lea_modrm (&ir))
5409 return -1;
cf648174 5410 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5411 ir.reg &= 0x3;
25ea693b 5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5413 }
25ea693b 5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5415 break;
5416
a38bba38 5417 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5418 case 0x0fb1:
5419 if ((opcode & 1) == 0)
5420 ir.ot = OT_BYTE;
5421 else
5422 ir.ot = ir.dflag + OT_WORD;
5423 if (i386_record_modrm (&ir))
5424 return -1;
5425 if (ir.mod == 3)
5426 {
cf648174 5427 ir.reg |= rex_r;
25ea693b 5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5429 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5430 ir.reg &= 0x3;
25ea693b 5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5432 }
5433 else
5434 {
25ea693b 5435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5436 if (i386_record_lea_modrm (&ir))
5437 return -1;
5438 }
25ea693b 5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5440 break;
5441
a38bba38 5442 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5443 if (i386_record_modrm (&ir))
5444 return -1;
5445 if (ir.mod == 3)
5446 {
5447 ir.addr -= 2;
5448 opcode = opcode << 8 | ir.modrm;
5449 goto no_support;
5450 }
25ea693b
MM
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5453 if (i386_record_lea_modrm (&ir))
5454 return -1;
25ea693b 5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5456 break;
5457
a38bba38 5458 case 0x50: /* push */
7ad10968
HZ
5459 case 0x51:
5460 case 0x52:
5461 case 0x53:
5462 case 0x54:
5463 case 0x55:
5464 case 0x56:
5465 case 0x57:
5466 case 0x68:
5467 case 0x6a:
cf648174
HZ
5468 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5469 ir.dflag = 2;
5470 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5471 return -1;
5472 break;
5473
a38bba38
MS
5474 case 0x06: /* push es */
5475 case 0x0e: /* push cs */
5476 case 0x16: /* push ss */
5477 case 0x1e: /* push ds */
cf648174
HZ
5478 if (ir.regmap[X86_RECORD_R8_REGNUM])
5479 {
5480 ir.addr -= 1;
5481 goto no_support;
5482 }
5483 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5484 return -1;
5485 break;
5486
a38bba38
MS
5487 case 0x0fa0: /* push fs */
5488 case 0x0fa8: /* push gs */
cf648174
HZ
5489 if (ir.regmap[X86_RECORD_R8_REGNUM])
5490 {
5491 ir.addr -= 2;
5492 goto no_support;
5493 }
5494 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5495 return -1;
cf648174
HZ
5496 break;
5497
a38bba38 5498 case 0x60: /* pusha */
cf648174
HZ
5499 if (ir.regmap[X86_RECORD_R8_REGNUM])
5500 {
5501 ir.addr -= 1;
5502 goto no_support;
5503 }
5504 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5505 return -1;
5506 break;
5507
a38bba38 5508 case 0x58: /* pop */
7ad10968
HZ
5509 case 0x59:
5510 case 0x5a:
5511 case 0x5b:
5512 case 0x5c:
5513 case 0x5d:
5514 case 0x5e:
5515 case 0x5f:
25ea693b
MM
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5518 break;
5519
a38bba38 5520 case 0x61: /* popa */
cf648174
HZ
5521 if (ir.regmap[X86_RECORD_R8_REGNUM])
5522 {
5523 ir.addr -= 1;
5524 goto no_support;
7ad10968 5525 }
425b824a
MS
5526 for (regnum = X86_RECORD_REAX_REGNUM;
5527 regnum <= X86_RECORD_REDI_REGNUM;
5528 regnum++)
25ea693b 5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5530 break;
5531
a38bba38 5532 case 0x8f: /* pop */
cf648174
HZ
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5534 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5535 else
5536 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5537 if (i386_record_modrm (&ir))
5538 return -1;
5539 if (ir.mod == 3)
25ea693b 5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5541 else
5542 {
cf648174 5543 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5544 if (i386_record_lea_modrm (&ir))
5545 return -1;
5546 }
25ea693b 5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5548 break;
5549
a38bba38 5550 case 0xc8: /* enter */
25ea693b 5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5552 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5553 ir.dflag = 2;
5554 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5555 return -1;
5556 break;
5557
a38bba38 5558 case 0xc9: /* leave */
25ea693b
MM
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5561 break;
5562
a38bba38 5563 case 0x07: /* pop es */
cf648174
HZ
5564 if (ir.regmap[X86_RECORD_R8_REGNUM])
5565 {
5566 ir.addr -= 1;
5567 goto no_support;
5568 }
25ea693b
MM
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5570 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5572 break;
5573
a38bba38 5574 case 0x17: /* pop ss */
cf648174
HZ
5575 if (ir.regmap[X86_RECORD_R8_REGNUM])
5576 {
5577 ir.addr -= 1;
5578 goto no_support;
5579 }
25ea693b
MM
5580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5583 break;
5584
a38bba38 5585 case 0x1f: /* pop ds */
cf648174
HZ
5586 if (ir.regmap[X86_RECORD_R8_REGNUM])
5587 {
5588 ir.addr -= 1;
5589 goto no_support;
5590 }
25ea693b
MM
5591 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5594 break;
5595
a38bba38 5596 case 0x0fa1: /* pop fs */
25ea693b
MM
5597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5598 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5600 break;
5601
a38bba38 5602 case 0x0fa9: /* pop gs */
25ea693b
MM
5603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5606 break;
5607
a38bba38 5608 case 0x88: /* mov */
7ad10968
HZ
5609 case 0x89:
5610 case 0xc6:
5611 case 0xc7:
5612 if ((opcode & 1) == 0)
5613 ir.ot = OT_BYTE;
5614 else
5615 ir.ot = ir.dflag + OT_WORD;
5616
5617 if (i386_record_modrm (&ir))
5618 return -1;
5619
5620 if (ir.mod != 3)
5621 {
cf648174
HZ
5622 if (opcode == 0xc6 || opcode == 0xc7)
5623 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5624 if (i386_record_lea_modrm (&ir))
5625 return -1;
5626 }
5627 else
5628 {
cf648174
HZ
5629 if (opcode == 0xc6 || opcode == 0xc7)
5630 ir.rm |= ir.rex_b;
5631 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5632 ir.rm &= 0x3;
25ea693b 5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5634 }
7ad10968 5635 break;
cf648174 5636
a38bba38 5637 case 0x8a: /* mov */
7ad10968
HZ
5638 case 0x8b:
5639 if ((opcode & 1) == 0)
5640 ir.ot = OT_BYTE;
5641 else
5642 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5643 if (i386_record_modrm (&ir))
5644 return -1;
cf648174
HZ
5645 ir.reg |= rex_r;
5646 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5647 ir.reg &= 0x3;
25ea693b 5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5649 break;
7ad10968 5650
a38bba38 5651 case 0x8c: /* mov seg */
cf648174 5652 if (i386_record_modrm (&ir))
7ad10968 5653 return -1;
cf648174
HZ
5654 if (ir.reg > 5)
5655 {
5656 ir.addr -= 2;
5657 opcode = opcode << 8 | ir.modrm;
5658 goto no_support;
5659 }
5660
5661 if (ir.mod == 3)
25ea693b 5662 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5663 else
5664 {
5665 ir.ot = OT_WORD;
5666 if (i386_record_lea_modrm (&ir))
5667 return -1;
5668 }
7ad10968
HZ
5669 break;
5670
a38bba38 5671 case 0x8e: /* mov seg */
7ad10968
HZ
5672 if (i386_record_modrm (&ir))
5673 return -1;
7ad10968
HZ
5674 switch (ir.reg)
5675 {
5676 case 0:
425b824a 5677 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5678 break;
5679 case 2:
425b824a 5680 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5681 break;
5682 case 3:
425b824a 5683 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5684 break;
5685 case 4:
425b824a 5686 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5687 break;
5688 case 5:
425b824a 5689 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5690 break;
5691 default:
5692 ir.addr -= 2;
5693 opcode = opcode << 8 | ir.modrm;
5694 goto no_support;
5695 break;
5696 }
25ea693b
MM
5697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5698 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5699 break;
5700
a38bba38
MS
5701 case 0x0fb6: /* movzbS */
5702 case 0x0fb7: /* movzwS */
5703 case 0x0fbe: /* movsbS */
5704 case 0x0fbf: /* movswS */
7ad10968
HZ
5705 if (i386_record_modrm (&ir))
5706 return -1;
25ea693b 5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5708 break;
5709
a38bba38 5710 case 0x8d: /* lea */
7ad10968
HZ
5711 if (i386_record_modrm (&ir))
5712 return -1;
5713 if (ir.mod == 3)
5714 {
5715 ir.addr -= 2;
5716 opcode = opcode << 8 | ir.modrm;
5717 goto no_support;
5718 }
7ad10968 5719 ir.ot = ir.dflag;
cf648174
HZ
5720 ir.reg |= rex_r;
5721 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5722 ir.reg &= 0x3;
25ea693b 5723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5724 break;
5725
a38bba38 5726 case 0xa0: /* mov EAX */
7ad10968 5727 case 0xa1:
a38bba38
MS
5728
5729 case 0xd7: /* xlat */
25ea693b 5730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5731 break;
5732
a38bba38 5733 case 0xa2: /* mov EAX */
7ad10968 5734 case 0xa3:
d7877f7e 5735 if (ir.override >= 0)
cf648174 5736 {
25ea693b 5737 if (record_full_memory_query)
bb08c432
HZ
5738 {
5739 int q;
5740
5741 target_terminal_ours ();
5742 q = yquery (_("\
5743Process record ignores the memory change of instruction at address %s\n\
5744because it can't get the value of the segment register.\n\
5745Do you want to stop the program?"),
5746 paddress (gdbarch, ir.orig_addr));
5747 target_terminal_inferior ();
5748 if (q)
5749 return -1;
5750 }
cf648174
HZ
5751 }
5752 else
5753 {
5754 if ((opcode & 1) == 0)
5755 ir.ot = OT_BYTE;
5756 else
5757 ir.ot = ir.dflag + OT_WORD;
5758 if (ir.aflag == 2)
5759 {
4ffa4fc7
PA
5760 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5761 return -1;
cf648174 5762 ir.addr += 8;
60a1502a 5763 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5764 }
5765 else if (ir.aflag)
5766 {
4ffa4fc7
PA
5767 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5768 return -1;
cf648174 5769 ir.addr += 4;
60a1502a 5770 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5771 }
5772 else
5773 {
4ffa4fc7
PA
5774 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5775 return -1;
cf648174 5776 ir.addr += 2;
60a1502a 5777 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5778 }
25ea693b 5779 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5780 return -1;
5781 }
7ad10968
HZ
5782 break;
5783
a38bba38 5784 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5785 case 0xb1:
5786 case 0xb2:
5787 case 0xb3:
5788 case 0xb4:
5789 case 0xb5:
5790 case 0xb6:
5791 case 0xb7:
25ea693b
MM
5792 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5793 ? ((opcode & 0x7) | ir.rex_b)
5794 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5795 break;
5796
a38bba38 5797 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5798 case 0xb9:
5799 case 0xba:
5800 case 0xbb:
5801 case 0xbc:
5802 case 0xbd:
5803 case 0xbe:
5804 case 0xbf:
25ea693b 5805 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5806 break;
5807
a38bba38 5808 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5809 case 0x92:
5810 case 0x93:
5811 case 0x94:
5812 case 0x95:
5813 case 0x96:
5814 case 0x97:
25ea693b
MM
5815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5817 break;
5818
a38bba38 5819 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5820 case 0x87:
5821 if ((opcode & 1) == 0)
5822 ir.ot = OT_BYTE;
5823 else
5824 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5825 if (i386_record_modrm (&ir))
5826 return -1;
7ad10968
HZ
5827 if (ir.mod == 3)
5828 {
86839d38 5829 ir.rm |= ir.rex_b;
cf648174
HZ
5830 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5831 ir.rm &= 0x3;
25ea693b 5832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5833 }
5834 else
5835 {
5836 if (i386_record_lea_modrm (&ir))
5837 return -1;
5838 }
cf648174
HZ
5839 ir.reg |= rex_r;
5840 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5841 ir.reg &= 0x3;
25ea693b 5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5843 break;
5844
a38bba38
MS
5845 case 0xc4: /* les Gv */
5846 case 0xc5: /* lds Gv */
cf648174
HZ
5847 if (ir.regmap[X86_RECORD_R8_REGNUM])
5848 {
5849 ir.addr -= 1;
5850 goto no_support;
5851 }
d3f323f3 5852 /* FALLTHROUGH */
a38bba38
MS
5853 case 0x0fb2: /* lss Gv */
5854 case 0x0fb4: /* lfs Gv */
5855 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5856 if (i386_record_modrm (&ir))
5857 return -1;
5858 if (ir.mod == 3)
5859 {
5860 if (opcode > 0xff)
5861 ir.addr -= 3;
5862 else
5863 ir.addr -= 2;
5864 opcode = opcode << 8 | ir.modrm;
5865 goto no_support;
5866 }
7ad10968
HZ
5867 switch (opcode)
5868 {
a38bba38 5869 case 0xc4: /* les Gv */
425b824a 5870 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5871 break;
a38bba38 5872 case 0xc5: /* lds Gv */
425b824a 5873 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5874 break;
a38bba38 5875 case 0x0fb2: /* lss Gv */
425b824a 5876 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5877 break;
a38bba38 5878 case 0x0fb4: /* lfs Gv */
425b824a 5879 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5880 break;
a38bba38 5881 case 0x0fb5: /* lgs Gv */
425b824a 5882 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5883 break;
5884 }
25ea693b
MM
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5888 break;
5889
a38bba38 5890 case 0xc0: /* shifts */
7ad10968
HZ
5891 case 0xc1:
5892 case 0xd0:
5893 case 0xd1:
5894 case 0xd2:
5895 case 0xd3:
5896 if ((opcode & 1) == 0)
5897 ir.ot = OT_BYTE;
5898 else
5899 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5900 if (i386_record_modrm (&ir))
5901 return -1;
7ad10968
HZ
5902 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5903 {
5904 if (i386_record_lea_modrm (&ir))
5905 return -1;
5906 }
5907 else
5908 {
cf648174
HZ
5909 ir.rm |= ir.rex_b;
5910 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5911 ir.rm &= 0x3;
25ea693b 5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5913 }
25ea693b 5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5915 break;
5916
5917 case 0x0fa4:
5918 case 0x0fa5:
5919 case 0x0fac:
5920 case 0x0fad:
5921 if (i386_record_modrm (&ir))
5922 return -1;
5923 if (ir.mod == 3)
5924 {
25ea693b 5925 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5926 return -1;
5927 }
5928 else
5929 {
5930 if (i386_record_lea_modrm (&ir))
5931 return -1;
5932 }
5933 break;
5934
a38bba38 5935 case 0xd8: /* Floats. */
7ad10968
HZ
5936 case 0xd9:
5937 case 0xda:
5938 case 0xdb:
5939 case 0xdc:
5940 case 0xdd:
5941 case 0xde:
5942 case 0xdf:
5943 if (i386_record_modrm (&ir))
5944 return -1;
5945 ir.reg |= ((opcode & 7) << 3);
5946 if (ir.mod != 3)
5947 {
1777feb0 5948 /* Memory. */
955db0c0 5949 uint64_t addr64;
7ad10968 5950
955db0c0 5951 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5952 return -1;
5953 switch (ir.reg)
5954 {
7ad10968 5955 case 0x02:
0289bdd7
MS
5956 case 0x12:
5957 case 0x22:
5958 case 0x32:
5959 /* For fcom, ficom nothing to do. */
5960 break;
7ad10968 5961 case 0x03:
0289bdd7
MS
5962 case 0x13:
5963 case 0x23:
5964 case 0x33:
5965 /* For fcomp, ficomp pop FPU stack, store all. */
5966 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5967 return -1;
5968 break;
5969 case 0x00:
5970 case 0x01:
7ad10968
HZ
5971 case 0x04:
5972 case 0x05:
5973 case 0x06:
5974 case 0x07:
5975 case 0x10:
5976 case 0x11:
7ad10968
HZ
5977 case 0x14:
5978 case 0x15:
5979 case 0x16:
5980 case 0x17:
5981 case 0x20:
5982 case 0x21:
7ad10968
HZ
5983 case 0x24:
5984 case 0x25:
5985 case 0x26:
5986 case 0x27:
5987 case 0x30:
5988 case 0x31:
7ad10968
HZ
5989 case 0x34:
5990 case 0x35:
5991 case 0x36:
5992 case 0x37:
0289bdd7
MS
5993 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5994 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5995 of code, always affects st(0) register. */
5996 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5997 return -1;
7ad10968
HZ
5998 break;
5999 case 0x08:
6000 case 0x0a:
6001 case 0x0b:
6002 case 0x18:
6003 case 0x19:
6004 case 0x1a:
6005 case 0x1b:
0289bdd7 6006 case 0x1d:
7ad10968
HZ
6007 case 0x28:
6008 case 0x29:
6009 case 0x2a:
6010 case 0x2b:
6011 case 0x38:
6012 case 0x39:
6013 case 0x3a:
6014 case 0x3b:
0289bdd7
MS
6015 case 0x3c:
6016 case 0x3d:
7ad10968
HZ
6017 switch (ir.reg & 7)
6018 {
6019 case 0:
0289bdd7
MS
6020 /* Handling fld, fild. */
6021 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6022 return -1;
7ad10968
HZ
6023 break;
6024 case 1:
6025 switch (ir.reg >> 4)
6026 {
6027 case 0:
25ea693b 6028 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6029 return -1;
6030 break;
6031 case 2:
25ea693b 6032 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6033 return -1;
6034 break;
6035 case 3:
0289bdd7 6036 break;
7ad10968 6037 default:
25ea693b 6038 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6039 return -1;
6040 break;
6041 }
6042 break;
6043 default:
6044 switch (ir.reg >> 4)
6045 {
6046 case 0:
25ea693b 6047 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6048 return -1;
6049 if (3 == (ir.reg & 7))
6050 {
6051 /* For fstp m32fp. */
6052 if (i386_record_floats (gdbarch, &ir,
6053 I386_SAVE_FPU_REGS))
6054 return -1;
6055 }
6056 break;
7ad10968 6057 case 1:
25ea693b 6058 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6059 return -1;
0289bdd7
MS
6060 if ((3 == (ir.reg & 7))
6061 || (5 == (ir.reg & 7))
6062 || (7 == (ir.reg & 7)))
6063 {
6064 /* For fstp insn. */
6065 if (i386_record_floats (gdbarch, &ir,
6066 I386_SAVE_FPU_REGS))
6067 return -1;
6068 }
7ad10968
HZ
6069 break;
6070 case 2:
25ea693b 6071 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6072 return -1;
0289bdd7
MS
6073 if (3 == (ir.reg & 7))
6074 {
6075 /* For fstp m64fp. */
6076 if (i386_record_floats (gdbarch, &ir,
6077 I386_SAVE_FPU_REGS))
6078 return -1;
6079 }
7ad10968
HZ
6080 break;
6081 case 3:
0289bdd7
MS
6082 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6083 {
6084 /* For fistp, fbld, fild, fbstp. */
6085 if (i386_record_floats (gdbarch, &ir,
6086 I386_SAVE_FPU_REGS))
6087 return -1;
6088 }
6089 /* Fall through */
7ad10968 6090 default:
25ea693b 6091 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6092 return -1;
6093 break;
6094 }
6095 break;
6096 }
6097 break;
6098 case 0x0c:
0289bdd7
MS
6099 /* Insn fldenv. */
6100 if (i386_record_floats (gdbarch, &ir,
6101 I386_SAVE_FPU_ENV_REG_STACK))
6102 return -1;
6103 break;
7ad10968 6104 case 0x0d:
0289bdd7
MS
6105 /* Insn fldcw. */
6106 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6107 return -1;
6108 break;
7ad10968 6109 case 0x2c:
0289bdd7
MS
6110 /* Insn frstor. */
6111 if (i386_record_floats (gdbarch, &ir,
6112 I386_SAVE_FPU_ENV_REG_STACK))
6113 return -1;
7ad10968
HZ
6114 break;
6115 case 0x0e:
6116 if (ir.dflag)
6117 {
25ea693b 6118 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6119 return -1;
6120 }
6121 else
6122 {
25ea693b 6123 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6124 return -1;
6125 }
6126 break;
6127 case 0x0f:
6128 case 0x2f:
25ea693b 6129 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6130 return -1;
0289bdd7
MS
6131 /* Insn fstp, fbstp. */
6132 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6133 return -1;
7ad10968
HZ
6134 break;
6135 case 0x1f:
6136 case 0x3e:
25ea693b 6137 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6138 return -1;
6139 break;
6140 case 0x2e:
6141 if (ir.dflag)
6142 {
25ea693b 6143 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6144 return -1;
955db0c0 6145 addr64 += 28;
7ad10968
HZ
6146 }
6147 else
6148 {
25ea693b 6149 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6150 return -1;
955db0c0 6151 addr64 += 14;
7ad10968 6152 }
25ea693b 6153 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6154 return -1;
0289bdd7
MS
6155 /* Insn fsave. */
6156 if (i386_record_floats (gdbarch, &ir,
6157 I386_SAVE_FPU_ENV_REG_STACK))
6158 return -1;
7ad10968
HZ
6159 break;
6160 case 0x3f:
25ea693b 6161 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6162 return -1;
0289bdd7
MS
6163 /* Insn fistp. */
6164 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6165 return -1;
7ad10968
HZ
6166 break;
6167 default:
6168 ir.addr -= 2;
6169 opcode = opcode << 8 | ir.modrm;
6170 goto no_support;
6171 break;
6172 }
6173 }
0289bdd7
MS
6174 /* Opcode is an extension of modR/M byte. */
6175 else
6176 {
6177 switch (opcode)
6178 {
6179 case 0xd8:
6180 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6181 return -1;
6182 break;
6183 case 0xd9:
6184 if (0x0c == (ir.modrm >> 4))
6185 {
6186 if ((ir.modrm & 0x0f) <= 7)
6187 {
6188 if (i386_record_floats (gdbarch, &ir,
6189 I386_SAVE_FPU_REGS))
6190 return -1;
6191 }
6192 else
6193 {
6194 if (i386_record_floats (gdbarch, &ir,
6195 I387_ST0_REGNUM (tdep)))
6196 return -1;
6197 /* If only st(0) is changing, then we have already
6198 recorded. */
6199 if ((ir.modrm & 0x0f) - 0x08)
6200 {
6201 if (i386_record_floats (gdbarch, &ir,
6202 I387_ST0_REGNUM (tdep) +
6203 ((ir.modrm & 0x0f) - 0x08)))
6204 return -1;
6205 }
6206 }
6207 }
6208 else
6209 {
6210 switch (ir.modrm)
6211 {
6212 case 0xe0:
6213 case 0xe1:
6214 case 0xf0:
6215 case 0xf5:
6216 case 0xf8:
6217 case 0xfa:
6218 case 0xfc:
6219 case 0xfe:
6220 case 0xff:
6221 if (i386_record_floats (gdbarch, &ir,
6222 I387_ST0_REGNUM (tdep)))
6223 return -1;
6224 break;
6225 case 0xf1:
6226 case 0xf2:
6227 case 0xf3:
6228 case 0xf4:
6229 case 0xf6:
6230 case 0xf7:
6231 case 0xe8:
6232 case 0xe9:
6233 case 0xea:
6234 case 0xeb:
6235 case 0xec:
6236 case 0xed:
6237 case 0xee:
6238 case 0xf9:
6239 case 0xfb:
6240 if (i386_record_floats (gdbarch, &ir,
6241 I386_SAVE_FPU_REGS))
6242 return -1;
6243 break;
6244 case 0xfd:
6245 if (i386_record_floats (gdbarch, &ir,
6246 I387_ST0_REGNUM (tdep)))
6247 return -1;
6248 if (i386_record_floats (gdbarch, &ir,
6249 I387_ST0_REGNUM (tdep) + 1))
6250 return -1;
6251 break;
6252 }
6253 }
6254 break;
6255 case 0xda:
6256 if (0xe9 == ir.modrm)
6257 {
6258 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6259 return -1;
6260 }
6261 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6267 {
6268 if (i386_record_floats (gdbarch, &ir,
6269 I387_ST0_REGNUM (tdep) +
6270 (ir.modrm & 0x0f)))
6271 return -1;
6272 }
6273 else if ((ir.modrm & 0x0f) - 0x08)
6274 {
6275 if (i386_record_floats (gdbarch, &ir,
6276 I387_ST0_REGNUM (tdep) +
6277 ((ir.modrm & 0x0f) - 0x08)))
6278 return -1;
6279 }
6280 }
6281 break;
6282 case 0xdb:
6283 if (0xe3 == ir.modrm)
6284 {
6285 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6286 return -1;
6287 }
6288 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6289 {
6290 if (i386_record_floats (gdbarch, &ir,
6291 I387_ST0_REGNUM (tdep)))
6292 return -1;
6293 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I387_ST0_REGNUM (tdep) +
6297 (ir.modrm & 0x0f)))
6298 return -1;
6299 }
6300 else if ((ir.modrm & 0x0f) - 0x08)
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep) +
6304 ((ir.modrm & 0x0f) - 0x08)))
6305 return -1;
6306 }
6307 }
6308 break;
6309 case 0xdc:
6310 if ((0x0c == ir.modrm >> 4)
6311 || (0x0d == ir.modrm >> 4)
6312 || (0x0f == ir.modrm >> 4))
6313 {
6314 if ((ir.modrm & 0x0f) <= 7)
6315 {
6316 if (i386_record_floats (gdbarch, &ir,
6317 I387_ST0_REGNUM (tdep) +
6318 (ir.modrm & 0x0f)))
6319 return -1;
6320 }
6321 else
6322 {
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep) +
6325 ((ir.modrm & 0x0f) - 0x08)))
6326 return -1;
6327 }
6328 }
6329 break;
6330 case 0xdd:
6331 if (0x0c == ir.modrm >> 4)
6332 {
6333 if (i386_record_floats (gdbarch, &ir,
6334 I387_FTAG_REGNUM (tdep)))
6335 return -1;
6336 }
6337 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6338 {
6339 if ((ir.modrm & 0x0f) <= 7)
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep) +
6343 (ir.modrm & 0x0f)))
6344 return -1;
6345 }
6346 else
6347 {
6348 if (i386_record_floats (gdbarch, &ir,
6349 I386_SAVE_FPU_REGS))
6350 return -1;
6351 }
6352 }
6353 break;
6354 case 0xde:
6355 if ((0x0c == ir.modrm >> 4)
6356 || (0x0e == ir.modrm >> 4)
6357 || (0x0f == ir.modrm >> 4)
6358 || (0xd9 == ir.modrm))
6359 {
6360 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6361 return -1;
6362 }
6363 break;
6364 case 0xdf:
6365 if (0xe0 == ir.modrm)
6366 {
25ea693b
MM
6367 if (record_full_arch_list_add_reg (ir.regcache,
6368 I386_EAX_REGNUM))
0289bdd7
MS
6369 return -1;
6370 }
6371 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6372 {
6373 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6374 return -1;
6375 }
6376 break;
6377 }
6378 }
7ad10968 6379 break;
7ad10968 6380 /* string ops */
a38bba38 6381 case 0xa4: /* movsS */
7ad10968 6382 case 0xa5:
a38bba38 6383 case 0xaa: /* stosS */
7ad10968 6384 case 0xab:
a38bba38 6385 case 0x6c: /* insS */
7ad10968 6386 case 0x6d:
cf648174 6387 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6388 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6389 &addr);
6390 if (addr)
cf648174 6391 {
77d7dc92
HZ
6392 ULONGEST es, ds;
6393
6394 if ((opcode & 1) == 0)
6395 ir.ot = OT_BYTE;
6396 else
6397 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6398 regcache_raw_read_unsigned (ir.regcache,
6399 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6400 &addr);
77d7dc92 6401
d7877f7e
HZ
6402 regcache_raw_read_unsigned (ir.regcache,
6403 ir.regmap[X86_RECORD_ES_REGNUM],
6404 &es);
6405 regcache_raw_read_unsigned (ir.regcache,
6406 ir.regmap[X86_RECORD_DS_REGNUM],
6407 &ds);
6408 if (ir.aflag && (es != ds))
77d7dc92
HZ
6409 {
6410 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6411 if (record_full_memory_query)
bb08c432
HZ
6412 {
6413 int q;
6414
6415 target_terminal_ours ();
6416 q = yquery (_("\
6417Process record ignores the memory change of instruction at address %s\n\
6418because it can't get the value of the segment register.\n\
6419Do you want to stop the program?"),
6420 paddress (gdbarch, ir.orig_addr));
6421 target_terminal_inferior ();
6422 if (q)
6423 return -1;
6424 }
df61f520
HZ
6425 }
6426 else
6427 {
25ea693b 6428 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6429 return -1;
77d7dc92
HZ
6430 }
6431
6432 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6434 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6438 }
cf648174 6439 break;
7ad10968 6440
a38bba38 6441 case 0xa6: /* cmpsS */
cf648174 6442 case 0xa7:
25ea693b
MM
6443 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6444 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6445 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6448 break;
6449
a38bba38 6450 case 0xac: /* lodsS */
7ad10968 6451 case 0xad:
25ea693b
MM
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6454 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6457 break;
6458
a38bba38 6459 case 0xae: /* scasS */
7ad10968 6460 case 0xaf:
25ea693b 6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6462 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6465 break;
6466
a38bba38 6467 case 0x6e: /* outsS */
cf648174 6468 case 0x6f:
25ea693b 6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6470 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6473 break;
6474
a38bba38 6475 case 0xe4: /* port I/O */
7ad10968
HZ
6476 case 0xe5:
6477 case 0xec:
6478 case 0xed:
25ea693b
MM
6479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6481 break;
6482
6483 case 0xe6:
6484 case 0xe7:
6485 case 0xee:
6486 case 0xef:
6487 break;
6488
6489 /* control */
a38bba38
MS
6490 case 0xc2: /* ret im */
6491 case 0xc3: /* ret */
25ea693b
MM
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6494 break;
6495
a38bba38
MS
6496 case 0xca: /* lret im */
6497 case 0xcb: /* lret */
6498 case 0xcf: /* iret */
25ea693b
MM
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6502 break;
6503
a38bba38 6504 case 0xe8: /* call im */
cf648174
HZ
6505 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6506 ir.dflag = 2;
6507 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6508 return -1;
7ad10968
HZ
6509 break;
6510
a38bba38 6511 case 0x9a: /* lcall im */
cf648174
HZ
6512 if (ir.regmap[X86_RECORD_R8_REGNUM])
6513 {
6514 ir.addr -= 1;
6515 goto no_support;
6516 }
25ea693b 6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6518 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6519 return -1;
7ad10968
HZ
6520 break;
6521
a38bba38
MS
6522 case 0xe9: /* jmp im */
6523 case 0xea: /* ljmp im */
6524 case 0xeb: /* jmp Jb */
6525 case 0x70: /* jcc Jb */
7ad10968
HZ
6526 case 0x71:
6527 case 0x72:
6528 case 0x73:
6529 case 0x74:
6530 case 0x75:
6531 case 0x76:
6532 case 0x77:
6533 case 0x78:
6534 case 0x79:
6535 case 0x7a:
6536 case 0x7b:
6537 case 0x7c:
6538 case 0x7d:
6539 case 0x7e:
6540 case 0x7f:
a38bba38 6541 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6542 case 0x0f81:
6543 case 0x0f82:
6544 case 0x0f83:
6545 case 0x0f84:
6546 case 0x0f85:
6547 case 0x0f86:
6548 case 0x0f87:
6549 case 0x0f88:
6550 case 0x0f89:
6551 case 0x0f8a:
6552 case 0x0f8b:
6553 case 0x0f8c:
6554 case 0x0f8d:
6555 case 0x0f8e:
6556 case 0x0f8f:
6557 break;
6558
a38bba38 6559 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6560 case 0x0f91:
6561 case 0x0f92:
6562 case 0x0f93:
6563 case 0x0f94:
6564 case 0x0f95:
6565 case 0x0f96:
6566 case 0x0f97:
6567 case 0x0f98:
6568 case 0x0f99:
6569 case 0x0f9a:
6570 case 0x0f9b:
6571 case 0x0f9c:
6572 case 0x0f9d:
6573 case 0x0f9e:
6574 case 0x0f9f:
25ea693b 6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6576 ir.ot = OT_BYTE;
6577 if (i386_record_modrm (&ir))
6578 return -1;
6579 if (ir.mod == 3)
25ea693b
MM
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6581 : (ir.rm & 0x3));
7ad10968
HZ
6582 else
6583 {
6584 if (i386_record_lea_modrm (&ir))
6585 return -1;
6586 }
6587 break;
6588
a38bba38 6589 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6590 case 0x0f41:
6591 case 0x0f42:
6592 case 0x0f43:
6593 case 0x0f44:
6594 case 0x0f45:
6595 case 0x0f46:
6596 case 0x0f47:
6597 case 0x0f48:
6598 case 0x0f49:
6599 case 0x0f4a:
6600 case 0x0f4b:
6601 case 0x0f4c:
6602 case 0x0f4d:
6603 case 0x0f4e:
6604 case 0x0f4f:
6605 if (i386_record_modrm (&ir))
6606 return -1;
cf648174 6607 ir.reg |= rex_r;
7ad10968
HZ
6608 if (ir.dflag == OT_BYTE)
6609 ir.reg &= 0x3;
25ea693b 6610 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6611 break;
6612
6613 /* flags */
a38bba38 6614 case 0x9c: /* pushf */
25ea693b 6615 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6616 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6617 ir.dflag = 2;
6618 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6619 return -1;
7ad10968
HZ
6620 break;
6621
a38bba38 6622 case 0x9d: /* popf */
25ea693b
MM
6623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6625 break;
6626
a38bba38 6627 case 0x9e: /* sahf */
cf648174
HZ
6628 if (ir.regmap[X86_RECORD_R8_REGNUM])
6629 {
6630 ir.addr -= 1;
6631 goto no_support;
6632 }
d3f323f3 6633 /* FALLTHROUGH */
a38bba38
MS
6634 case 0xf5: /* cmc */
6635 case 0xf8: /* clc */
6636 case 0xf9: /* stc */
6637 case 0xfc: /* cld */
6638 case 0xfd: /* std */
25ea693b 6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6640 break;
6641
a38bba38 6642 case 0x9f: /* lahf */
cf648174
HZ
6643 if (ir.regmap[X86_RECORD_R8_REGNUM])
6644 {
6645 ir.addr -= 1;
6646 goto no_support;
6647 }
25ea693b
MM
6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6649 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6650 break;
6651
6652 /* bit operations */
a38bba38 6653 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6654 ir.ot = ir.dflag + OT_WORD;
6655 if (i386_record_modrm (&ir))
6656 return -1;
6657 if (ir.reg < 4)
6658 {
cf648174 6659 ir.addr -= 2;
7ad10968
HZ
6660 opcode = opcode << 8 | ir.modrm;
6661 goto no_support;
6662 }
cf648174 6663 if (ir.reg != 4)
7ad10968 6664 {
cf648174 6665 if (ir.mod == 3)
25ea693b 6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6667 else
6668 {
cf648174 6669 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6670 return -1;
6671 }
6672 }
25ea693b 6673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6674 break;
6675
a38bba38 6676 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6678 break;
6679
a38bba38
MS
6680 case 0x0fab: /* bts */
6681 case 0x0fb3: /* btr */
6682 case 0x0fbb: /* btc */
cf648174
HZ
6683 ir.ot = ir.dflag + OT_WORD;
6684 if (i386_record_modrm (&ir))
6685 return -1;
6686 if (ir.mod == 3)
25ea693b 6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6688 else
6689 {
955db0c0
MS
6690 uint64_t addr64;
6691 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6692 return -1;
6693 regcache_raw_read_unsigned (ir.regcache,
6694 ir.regmap[ir.reg | rex_r],
648d0c8b 6695 &addr);
cf648174
HZ
6696 switch (ir.dflag)
6697 {
6698 case 0:
648d0c8b 6699 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6700 break;
6701 case 1:
648d0c8b 6702 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6703 break;
6704 case 2:
648d0c8b 6705 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6706 break;
6707 }
25ea693b 6708 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6709 return -1;
6710 if (i386_record_lea_modrm (&ir))
6711 return -1;
6712 }
25ea693b 6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6714 break;
6715
a38bba38
MS
6716 case 0x0fbc: /* bsf */
6717 case 0x0fbd: /* bsr */
25ea693b
MM
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6720 break;
6721
6722 /* bcd */
a38bba38
MS
6723 case 0x27: /* daa */
6724 case 0x2f: /* das */
6725 case 0x37: /* aaa */
6726 case 0x3f: /* aas */
6727 case 0xd4: /* aam */
6728 case 0xd5: /* aad */
cf648174
HZ
6729 if (ir.regmap[X86_RECORD_R8_REGNUM])
6730 {
6731 ir.addr -= 1;
6732 goto no_support;
6733 }
25ea693b
MM
6734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6735 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6736 break;
6737
6738 /* misc */
a38bba38 6739 case 0x90: /* nop */
7ad10968
HZ
6740 if (prefixes & PREFIX_LOCK)
6741 {
6742 ir.addr -= 1;
6743 goto no_support;
6744 }
6745 break;
6746
a38bba38 6747 case 0x9b: /* fwait */
4ffa4fc7
PA
6748 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6749 return -1;
425b824a 6750 opcode = (uint32_t) opcode8;
0289bdd7
MS
6751 ir.addr++;
6752 goto reswitch;
7ad10968
HZ
6753 break;
6754
7ad10968 6755 /* XXX */
a38bba38 6756 case 0xcc: /* int3 */
a3c4230a 6757 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6758 "int3.\n"));
6759 ir.addr -= 1;
6760 goto no_support;
6761 break;
6762
7ad10968 6763 /* XXX */
a38bba38 6764 case 0xcd: /* int */
7ad10968
HZ
6765 {
6766 int ret;
425b824a 6767 uint8_t interrupt;
4ffa4fc7
PA
6768 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6769 return -1;
7ad10968 6770 ir.addr++;
425b824a 6771 if (interrupt != 0x80
a3c4230a 6772 || tdep->i386_intx80_record == NULL)
7ad10968 6773 {
a3c4230a 6774 printf_unfiltered (_("Process record does not support "
7ad10968 6775 "instruction int 0x%02x.\n"),
425b824a 6776 interrupt);
7ad10968
HZ
6777 ir.addr -= 2;
6778 goto no_support;
6779 }
a3c4230a 6780 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6781 if (ret)
6782 return ret;
6783 }
6784 break;
6785
7ad10968 6786 /* XXX */
a38bba38 6787 case 0xce: /* into */
a3c4230a 6788 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6789 "instruction into.\n"));
6790 ir.addr -= 1;
6791 goto no_support;
6792 break;
6793
a38bba38
MS
6794 case 0xfa: /* cli */
6795 case 0xfb: /* sti */
7ad10968
HZ
6796 break;
6797
a38bba38 6798 case 0x62: /* bound */
a3c4230a 6799 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6800 "instruction bound.\n"));
6801 ir.addr -= 1;
6802 goto no_support;
6803 break;
6804
a38bba38 6805 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6806 case 0x0fc9:
6807 case 0x0fca:
6808 case 0x0fcb:
6809 case 0x0fcc:
6810 case 0x0fcd:
6811 case 0x0fce:
6812 case 0x0fcf:
25ea693b 6813 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6814 break;
6815
a38bba38 6816 case 0xd6: /* salc */
cf648174
HZ
6817 if (ir.regmap[X86_RECORD_R8_REGNUM])
6818 {
6819 ir.addr -= 1;
6820 goto no_support;
6821 }
25ea693b
MM
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6824 break;
6825
a38bba38
MS
6826 case 0xe0: /* loopnz */
6827 case 0xe1: /* loopz */
6828 case 0xe2: /* loop */
6829 case 0xe3: /* jecxz */
25ea693b
MM
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6832 break;
6833
a38bba38 6834 case 0x0f30: /* wrmsr */
a3c4230a 6835 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6836 "instruction wrmsr.\n"));
6837 ir.addr -= 2;
6838 goto no_support;
6839 break;
6840
a38bba38 6841 case 0x0f32: /* rdmsr */
a3c4230a 6842 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6843 "instruction rdmsr.\n"));
6844 ir.addr -= 2;
6845 goto no_support;
6846 break;
6847
a38bba38 6848 case 0x0f31: /* rdtsc */
25ea693b
MM
6849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6850 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6851 break;
6852
a38bba38 6853 case 0x0f34: /* sysenter */
7ad10968
HZ
6854 {
6855 int ret;
cf648174
HZ
6856 if (ir.regmap[X86_RECORD_R8_REGNUM])
6857 {
6858 ir.addr -= 2;
6859 goto no_support;
6860 }
a3c4230a 6861 if (tdep->i386_sysenter_record == NULL)
7ad10968 6862 {
a3c4230a 6863 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6864 "instruction sysenter.\n"));
6865 ir.addr -= 2;
6866 goto no_support;
6867 }
a3c4230a 6868 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6869 if (ret)
6870 return ret;
6871 }
6872 break;
6873
a38bba38 6874 case 0x0f35: /* sysexit */
a3c4230a 6875 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6876 "instruction sysexit.\n"));
6877 ir.addr -= 2;
6878 goto no_support;
6879 break;
6880
a38bba38 6881 case 0x0f05: /* syscall */
cf648174
HZ
6882 {
6883 int ret;
a3c4230a 6884 if (tdep->i386_syscall_record == NULL)
cf648174 6885 {
a3c4230a 6886 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6887 "instruction syscall.\n"));
6888 ir.addr -= 2;
6889 goto no_support;
6890 }
a3c4230a 6891 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6892 if (ret)
6893 return ret;
6894 }
6895 break;
6896
a38bba38 6897 case 0x0f07: /* sysret */
a3c4230a 6898 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6899 "instruction sysret.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
a38bba38 6904 case 0x0fa2: /* cpuid */
25ea693b
MM
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6909 break;
6910
a38bba38 6911 case 0xf4: /* hlt */
a3c4230a 6912 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6913 "instruction hlt.\n"));
6914 ir.addr -= 1;
6915 goto no_support;
6916 break;
6917
6918 case 0x0f00:
6919 if (i386_record_modrm (&ir))
6920 return -1;
6921 switch (ir.reg)
6922 {
a38bba38
MS
6923 case 0: /* sldt */
6924 case 1: /* str */
7ad10968 6925 if (ir.mod == 3)
25ea693b 6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6927 else
6928 {
6929 ir.ot = OT_WORD;
6930 if (i386_record_lea_modrm (&ir))
6931 return -1;
6932 }
6933 break;
a38bba38
MS
6934 case 2: /* lldt */
6935 case 3: /* ltr */
7ad10968 6936 break;
a38bba38
MS
6937 case 4: /* verr */
6938 case 5: /* verw */
25ea693b 6939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6940 break;
6941 default:
6942 ir.addr -= 3;
6943 opcode = opcode << 8 | ir.modrm;
6944 goto no_support;
6945 break;
6946 }
6947 break;
6948
6949 case 0x0f01:
6950 if (i386_record_modrm (&ir))
6951 return -1;
6952 switch (ir.reg)
6953 {
a38bba38 6954 case 0: /* sgdt */
7ad10968 6955 {
955db0c0 6956 uint64_t addr64;
7ad10968
HZ
6957
6958 if (ir.mod == 3)
6959 {
6960 ir.addr -= 3;
6961 opcode = opcode << 8 | ir.modrm;
6962 goto no_support;
6963 }
d7877f7e 6964 if (ir.override >= 0)
7ad10968 6965 {
25ea693b 6966 if (record_full_memory_query)
bb08c432
HZ
6967 {
6968 int q;
6969
6970 target_terminal_ours ();
6971 q = yquery (_("\
6972Process record ignores the memory change of instruction at address %s\n\
6973because it can't get the value of the segment register.\n\
6974Do you want to stop the program?"),
6975 paddress (gdbarch, ir.orig_addr));
6976 target_terminal_inferior ();
6977 if (q)
6978 return -1;
6979 }
7ad10968
HZ
6980 }
6981 else
6982 {
955db0c0 6983 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6984 return -1;
25ea693b 6985 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6986 return -1;
955db0c0 6987 addr64 += 2;
cf648174
HZ
6988 if (ir.regmap[X86_RECORD_R8_REGNUM])
6989 {
25ea693b 6990 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6991 return -1;
6992 }
6993 else
6994 {
25ea693b 6995 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6996 return -1;
6997 }
7ad10968
HZ
6998 }
6999 }
7000 break;
7001 case 1:
7002 if (ir.mod == 3)
7003 {
7004 switch (ir.rm)
7005 {
a38bba38 7006 case 0: /* monitor */
7ad10968 7007 break;
a38bba38 7008 case 1: /* mwait */
25ea693b 7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7010 break;
7011 default:
7012 ir.addr -= 3;
7013 opcode = opcode << 8 | ir.modrm;
7014 goto no_support;
7015 break;
7016 }
7017 }
7018 else
7019 {
7020 /* sidt */
d7877f7e 7021 if (ir.override >= 0)
7ad10968 7022 {
25ea693b 7023 if (record_full_memory_query)
bb08c432
HZ
7024 {
7025 int q;
7026
7027 target_terminal_ours ();
7028 q = yquery (_("\
7029Process record ignores the memory change of instruction at address %s\n\
7030because it can't get the value of the segment register.\n\
7031Do you want to stop the program?"),
7032 paddress (gdbarch, ir.orig_addr));
7033 target_terminal_inferior ();
7034 if (q)
7035 return -1;
7036 }
7ad10968
HZ
7037 }
7038 else
7039 {
955db0c0 7040 uint64_t addr64;
7ad10968 7041
955db0c0 7042 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7043 return -1;
25ea693b 7044 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7045 return -1;
955db0c0 7046 addr64 += 2;
cf648174
HZ
7047 if (ir.regmap[X86_RECORD_R8_REGNUM])
7048 {
25ea693b 7049 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7050 return -1;
7051 }
7052 else
7053 {
25ea693b 7054 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7055 return -1;
7056 }
7ad10968
HZ
7057 }
7058 }
7059 break;
a38bba38 7060 case 2: /* lgdt */
3800e645
MS
7061 if (ir.mod == 3)
7062 {
7063 /* xgetbv */
7064 if (ir.rm == 0)
7065 {
25ea693b
MM
7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7068 break;
7069 }
7070 /* xsetbv */
7071 else if (ir.rm == 1)
7072 break;
7073 }
a38bba38 7074 case 3: /* lidt */
7ad10968
HZ
7075 if (ir.mod == 3)
7076 {
7077 ir.addr -= 3;
7078 opcode = opcode << 8 | ir.modrm;
7079 goto no_support;
7080 }
7081 break;
a38bba38 7082 case 4: /* smsw */
7ad10968
HZ
7083 if (ir.mod == 3)
7084 {
25ea693b 7085 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7086 return -1;
7087 }
7088 else
7089 {
7090 ir.ot = OT_WORD;
7091 if (i386_record_lea_modrm (&ir))
7092 return -1;
7093 }
25ea693b 7094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7095 break;
a38bba38 7096 case 6: /* lmsw */
25ea693b 7097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7098 break;
a38bba38 7099 case 7: /* invlpg */
cf648174
HZ
7100 if (ir.mod == 3)
7101 {
7102 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7103 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7104 else
7105 {
7106 ir.addr -= 3;
7107 opcode = opcode << 8 | ir.modrm;
7108 goto no_support;
7109 }
7110 }
7111 else
25ea693b 7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7113 break;
7114 default:
7115 ir.addr -= 3;
7116 opcode = opcode << 8 | ir.modrm;
7117 goto no_support;
7ad10968
HZ
7118 break;
7119 }
7120 break;
7121
a38bba38
MS
7122 case 0x0f08: /* invd */
7123 case 0x0f09: /* wbinvd */
7ad10968
HZ
7124 break;
7125
a38bba38 7126 case 0x63: /* arpl */
7ad10968
HZ
7127 if (i386_record_modrm (&ir))
7128 return -1;
cf648174
HZ
7129 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7130 {
25ea693b
MM
7131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7132 ? (ir.reg | rex_r) : ir.rm);
cf648174 7133 }
7ad10968 7134 else
cf648174
HZ
7135 {
7136 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7137 if (i386_record_lea_modrm (&ir))
7138 return -1;
7139 }
7140 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7142 break;
7143
a38bba38
MS
7144 case 0x0f02: /* lar */
7145 case 0x0f03: /* lsl */
7ad10968
HZ
7146 if (i386_record_modrm (&ir))
7147 return -1;
25ea693b
MM
7148 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7150 break;
7151
7152 case 0x0f18:
cf648174
HZ
7153 if (i386_record_modrm (&ir))
7154 return -1;
7155 if (ir.mod == 3 && ir.reg == 3)
7156 {
7157 ir.addr -= 3;
7158 opcode = opcode << 8 | ir.modrm;
7159 goto no_support;
7160 }
7ad10968
HZ
7161 break;
7162
7ad10968
HZ
7163 case 0x0f19:
7164 case 0x0f1a:
7165 case 0x0f1b:
7166 case 0x0f1c:
7167 case 0x0f1d:
7168 case 0x0f1e:
7169 case 0x0f1f:
a38bba38 7170 /* nop (multi byte) */
7ad10968
HZ
7171 break;
7172
a38bba38
MS
7173 case 0x0f20: /* mov reg, crN */
7174 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7175 if (i386_record_modrm (&ir))
7176 return -1;
7177 if ((ir.modrm & 0xc0) != 0xc0)
7178 {
cf648174 7179 ir.addr -= 3;
7ad10968
HZ
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 }
7183 switch (ir.reg)
7184 {
7185 case 0:
7186 case 2:
7187 case 3:
7188 case 4:
7189 case 8:
7190 if (opcode & 2)
25ea693b 7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7192 else
25ea693b 7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7194 break;
7195 default:
cf648174 7196 ir.addr -= 3;
7ad10968
HZ
7197 opcode = opcode << 8 | ir.modrm;
7198 goto no_support;
7199 break;
7200 }
7201 break;
7202
a38bba38
MS
7203 case 0x0f21: /* mov reg, drN */
7204 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7205 if (i386_record_modrm (&ir))
7206 return -1;
7207 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7208 || ir.reg == 5 || ir.reg >= 8)
7209 {
cf648174 7210 ir.addr -= 3;
7ad10968
HZ
7211 opcode = opcode << 8 | ir.modrm;
7212 goto no_support;
7213 }
7214 if (opcode & 2)
25ea693b 7215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7216 else
25ea693b 7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7218 break;
7219
a38bba38 7220 case 0x0f06: /* clts */
25ea693b 7221 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7222 break;
7223
a3c4230a
HZ
7224 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7225
7226 case 0x0f0d: /* 3DNow! prefetch */
7227 break;
7228
7229 case 0x0f0e: /* 3DNow! femms */
7230 case 0x0f77: /* emms */
7231 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7232 goto no_support;
25ea693b 7233 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7234 break;
7235
7236 case 0x0f0f: /* 3DNow! data */
7237 if (i386_record_modrm (&ir))
7238 return -1;
4ffa4fc7
PA
7239 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7240 return -1;
a3c4230a
HZ
7241 ir.addr++;
7242 switch (opcode8)
7243 {
7244 case 0x0c: /* 3DNow! pi2fw */
7245 case 0x0d: /* 3DNow! pi2fd */
7246 case 0x1c: /* 3DNow! pf2iw */
7247 case 0x1d: /* 3DNow! pf2id */
7248 case 0x8a: /* 3DNow! pfnacc */
7249 case 0x8e: /* 3DNow! pfpnacc */
7250 case 0x90: /* 3DNow! pfcmpge */
7251 case 0x94: /* 3DNow! pfmin */
7252 case 0x96: /* 3DNow! pfrcp */
7253 case 0x97: /* 3DNow! pfrsqrt */
7254 case 0x9a: /* 3DNow! pfsub */
7255 case 0x9e: /* 3DNow! pfadd */
7256 case 0xa0: /* 3DNow! pfcmpgt */
7257 case 0xa4: /* 3DNow! pfmax */
7258 case 0xa6: /* 3DNow! pfrcpit1 */
7259 case 0xa7: /* 3DNow! pfrsqit1 */
7260 case 0xaa: /* 3DNow! pfsubr */
7261 case 0xae: /* 3DNow! pfacc */
7262 case 0xb0: /* 3DNow! pfcmpeq */
7263 case 0xb4: /* 3DNow! pfmul */
7264 case 0xb6: /* 3DNow! pfrcpit2 */
7265 case 0xb7: /* 3DNow! pmulhrw */
7266 case 0xbb: /* 3DNow! pswapd */
7267 case 0xbf: /* 3DNow! pavgusb */
7268 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7269 goto no_support_3dnow_data;
25ea693b 7270 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7271 break;
7272
7273 default:
7274no_support_3dnow_data:
7275 opcode = (opcode << 8) | opcode8;
7276 goto no_support;
7277 break;
7278 }
7279 break;
7280
7281 case 0x0faa: /* rsm */
25ea693b
MM
7282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7291 break;
7292
7293 case 0x0fae:
7294 if (i386_record_modrm (&ir))
7295 return -1;
7296 switch(ir.reg)
7297 {
7298 case 0: /* fxsave */
7299 {
7300 uint64_t tmpu64;
7301
25ea693b 7302 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7303 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7304 return -1;
25ea693b 7305 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7306 return -1;
7307 }
7308 break;
7309
7310 case 1: /* fxrstor */
7311 {
7312 int i;
7313
25ea693b 7314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7315
7316 for (i = I387_MM0_REGNUM (tdep);
7317 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7318 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7319
7320 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7321 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7322 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7323
7324 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7325 record_full_arch_list_add_reg (ir.regcache,
7326 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7327
7328 for (i = I387_ST0_REGNUM (tdep);
7329 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7330 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7331
7332 for (i = I387_FCTRL_REGNUM (tdep);
7333 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7334 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7335 }
7336 break;
7337
7338 case 2: /* ldmxcsr */
7339 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7340 goto no_support;
25ea693b 7341 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7342 break;
7343
7344 case 3: /* stmxcsr */
7345 ir.ot = OT_LONG;
7346 if (i386_record_lea_modrm (&ir))
7347 return -1;
7348 break;
7349
7350 case 5: /* lfence */
7351 case 6: /* mfence */
7352 case 7: /* sfence clflush */
7353 break;
7354
7355 default:
7356 opcode = (opcode << 8) | ir.modrm;
7357 goto no_support;
7358 break;
7359 }
7360 break;
7361
7362 case 0x0fc3: /* movnti */
7363 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7364 if (i386_record_modrm (&ir))
7365 return -1;
7366 if (ir.mod == 3)
7367 goto no_support;
7368 ir.reg |= rex_r;
7369 if (i386_record_lea_modrm (&ir))
7370 return -1;
7371 break;
7372
7373 /* Add prefix to opcode. */
7374 case 0x0f10:
7375 case 0x0f11:
7376 case 0x0f12:
7377 case 0x0f13:
7378 case 0x0f14:
7379 case 0x0f15:
7380 case 0x0f16:
7381 case 0x0f17:
7382 case 0x0f28:
7383 case 0x0f29:
7384 case 0x0f2a:
7385 case 0x0f2b:
7386 case 0x0f2c:
7387 case 0x0f2d:
7388 case 0x0f2e:
7389 case 0x0f2f:
7390 case 0x0f38:
7391 case 0x0f39:
7392 case 0x0f3a:
7393 case 0x0f50:
7394 case 0x0f51:
7395 case 0x0f52:
7396 case 0x0f53:
7397 case 0x0f54:
7398 case 0x0f55:
7399 case 0x0f56:
7400 case 0x0f57:
7401 case 0x0f58:
7402 case 0x0f59:
7403 case 0x0f5a:
7404 case 0x0f5b:
7405 case 0x0f5c:
7406 case 0x0f5d:
7407 case 0x0f5e:
7408 case 0x0f5f:
7409 case 0x0f60:
7410 case 0x0f61:
7411 case 0x0f62:
7412 case 0x0f63:
7413 case 0x0f64:
7414 case 0x0f65:
7415 case 0x0f66:
7416 case 0x0f67:
7417 case 0x0f68:
7418 case 0x0f69:
7419 case 0x0f6a:
7420 case 0x0f6b:
7421 case 0x0f6c:
7422 case 0x0f6d:
7423 case 0x0f6e:
7424 case 0x0f6f:
7425 case 0x0f70:
7426 case 0x0f71:
7427 case 0x0f72:
7428 case 0x0f73:
7429 case 0x0f74:
7430 case 0x0f75:
7431 case 0x0f76:
7432 case 0x0f7c:
7433 case 0x0f7d:
7434 case 0x0f7e:
7435 case 0x0f7f:
7436 case 0x0fb8:
7437 case 0x0fc2:
7438 case 0x0fc4:
7439 case 0x0fc5:
7440 case 0x0fc6:
7441 case 0x0fd0:
7442 case 0x0fd1:
7443 case 0x0fd2:
7444 case 0x0fd3:
7445 case 0x0fd4:
7446 case 0x0fd5:
7447 case 0x0fd6:
7448 case 0x0fd7:
7449 case 0x0fd8:
7450 case 0x0fd9:
7451 case 0x0fda:
7452 case 0x0fdb:
7453 case 0x0fdc:
7454 case 0x0fdd:
7455 case 0x0fde:
7456 case 0x0fdf:
7457 case 0x0fe0:
7458 case 0x0fe1:
7459 case 0x0fe2:
7460 case 0x0fe3:
7461 case 0x0fe4:
7462 case 0x0fe5:
7463 case 0x0fe6:
7464 case 0x0fe7:
7465 case 0x0fe8:
7466 case 0x0fe9:
7467 case 0x0fea:
7468 case 0x0feb:
7469 case 0x0fec:
7470 case 0x0fed:
7471 case 0x0fee:
7472 case 0x0fef:
7473 case 0x0ff0:
7474 case 0x0ff1:
7475 case 0x0ff2:
7476 case 0x0ff3:
7477 case 0x0ff4:
7478 case 0x0ff5:
7479 case 0x0ff6:
7480 case 0x0ff7:
7481 case 0x0ff8:
7482 case 0x0ff9:
7483 case 0x0ffa:
7484 case 0x0ffb:
7485 case 0x0ffc:
7486 case 0x0ffd:
7487 case 0x0ffe:
f9fda3f5
L
7488 /* Mask out PREFIX_ADDR. */
7489 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7490 {
7491 case PREFIX_REPNZ:
7492 opcode |= 0xf20000;
7493 break;
7494 case PREFIX_DATA:
7495 opcode |= 0x660000;
7496 break;
7497 case PREFIX_REPZ:
7498 opcode |= 0xf30000;
7499 break;
7500 }
7501reswitch_prefix_add:
7502 switch (opcode)
7503 {
7504 case 0x0f38:
7505 case 0x660f38:
7506 case 0xf20f38:
7507 case 0x0f3a:
7508 case 0x660f3a:
4ffa4fc7
PA
7509 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7510 return -1;
a3c4230a
HZ
7511 ir.addr++;
7512 opcode = (uint32_t) opcode8 | opcode << 8;
7513 goto reswitch_prefix_add;
7514 break;
7515
7516 case 0x0f10: /* movups */
7517 case 0x660f10: /* movupd */
7518 case 0xf30f10: /* movss */
7519 case 0xf20f10: /* movsd */
7520 case 0x0f12: /* movlps */
7521 case 0x660f12: /* movlpd */
7522 case 0xf30f12: /* movsldup */
7523 case 0xf20f12: /* movddup */
7524 case 0x0f14: /* unpcklps */
7525 case 0x660f14: /* unpcklpd */
7526 case 0x0f15: /* unpckhps */
7527 case 0x660f15: /* unpckhpd */
7528 case 0x0f16: /* movhps */
7529 case 0x660f16: /* movhpd */
7530 case 0xf30f16: /* movshdup */
7531 case 0x0f28: /* movaps */
7532 case 0x660f28: /* movapd */
7533 case 0x0f2a: /* cvtpi2ps */
7534 case 0x660f2a: /* cvtpi2pd */
7535 case 0xf30f2a: /* cvtsi2ss */
7536 case 0xf20f2a: /* cvtsi2sd */
7537 case 0x0f2c: /* cvttps2pi */
7538 case 0x660f2c: /* cvttpd2pi */
7539 case 0x0f2d: /* cvtps2pi */
7540 case 0x660f2d: /* cvtpd2pi */
7541 case 0x660f3800: /* pshufb */
7542 case 0x660f3801: /* phaddw */
7543 case 0x660f3802: /* phaddd */
7544 case 0x660f3803: /* phaddsw */
7545 case 0x660f3804: /* pmaddubsw */
7546 case 0x660f3805: /* phsubw */
7547 case 0x660f3806: /* phsubd */
4f7d61a8 7548 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7549 case 0x660f3808: /* psignb */
7550 case 0x660f3809: /* psignw */
7551 case 0x660f380a: /* psignd */
7552 case 0x660f380b: /* pmulhrsw */
7553 case 0x660f3810: /* pblendvb */
7554 case 0x660f3814: /* blendvps */
7555 case 0x660f3815: /* blendvpd */
7556 case 0x660f381c: /* pabsb */
7557 case 0x660f381d: /* pabsw */
7558 case 0x660f381e: /* pabsd */
7559 case 0x660f3820: /* pmovsxbw */
7560 case 0x660f3821: /* pmovsxbd */
7561 case 0x660f3822: /* pmovsxbq */
7562 case 0x660f3823: /* pmovsxwd */
7563 case 0x660f3824: /* pmovsxwq */
7564 case 0x660f3825: /* pmovsxdq */
7565 case 0x660f3828: /* pmuldq */
7566 case 0x660f3829: /* pcmpeqq */
7567 case 0x660f382a: /* movntdqa */
7568 case 0x660f3a08: /* roundps */
7569 case 0x660f3a09: /* roundpd */
7570 case 0x660f3a0a: /* roundss */
7571 case 0x660f3a0b: /* roundsd */
7572 case 0x660f3a0c: /* blendps */
7573 case 0x660f3a0d: /* blendpd */
7574 case 0x660f3a0e: /* pblendw */
7575 case 0x660f3a0f: /* palignr */
7576 case 0x660f3a20: /* pinsrb */
7577 case 0x660f3a21: /* insertps */
7578 case 0x660f3a22: /* pinsrd pinsrq */
7579 case 0x660f3a40: /* dpps */
7580 case 0x660f3a41: /* dppd */
7581 case 0x660f3a42: /* mpsadbw */
7582 case 0x660f3a60: /* pcmpestrm */
7583 case 0x660f3a61: /* pcmpestri */
7584 case 0x660f3a62: /* pcmpistrm */
7585 case 0x660f3a63: /* pcmpistri */
7586 case 0x0f51: /* sqrtps */
7587 case 0x660f51: /* sqrtpd */
7588 case 0xf20f51: /* sqrtsd */
7589 case 0xf30f51: /* sqrtss */
7590 case 0x0f52: /* rsqrtps */
7591 case 0xf30f52: /* rsqrtss */
7592 case 0x0f53: /* rcpps */
7593 case 0xf30f53: /* rcpss */
7594 case 0x0f54: /* andps */
7595 case 0x660f54: /* andpd */
7596 case 0x0f55: /* andnps */
7597 case 0x660f55: /* andnpd */
7598 case 0x0f56: /* orps */
7599 case 0x660f56: /* orpd */
7600 case 0x0f57: /* xorps */
7601 case 0x660f57: /* xorpd */
7602 case 0x0f58: /* addps */
7603 case 0x660f58: /* addpd */
7604 case 0xf20f58: /* addsd */
7605 case 0xf30f58: /* addss */
7606 case 0x0f59: /* mulps */
7607 case 0x660f59: /* mulpd */
7608 case 0xf20f59: /* mulsd */
7609 case 0xf30f59: /* mulss */
7610 case 0x0f5a: /* cvtps2pd */
7611 case 0x660f5a: /* cvtpd2ps */
7612 case 0xf20f5a: /* cvtsd2ss */
7613 case 0xf30f5a: /* cvtss2sd */
7614 case 0x0f5b: /* cvtdq2ps */
7615 case 0x660f5b: /* cvtps2dq */
7616 case 0xf30f5b: /* cvttps2dq */
7617 case 0x0f5c: /* subps */
7618 case 0x660f5c: /* subpd */
7619 case 0xf20f5c: /* subsd */
7620 case 0xf30f5c: /* subss */
7621 case 0x0f5d: /* minps */
7622 case 0x660f5d: /* minpd */
7623 case 0xf20f5d: /* minsd */
7624 case 0xf30f5d: /* minss */
7625 case 0x0f5e: /* divps */
7626 case 0x660f5e: /* divpd */
7627 case 0xf20f5e: /* divsd */
7628 case 0xf30f5e: /* divss */
7629 case 0x0f5f: /* maxps */
7630 case 0x660f5f: /* maxpd */
7631 case 0xf20f5f: /* maxsd */
7632 case 0xf30f5f: /* maxss */
7633 case 0x660f60: /* punpcklbw */
7634 case 0x660f61: /* punpcklwd */
7635 case 0x660f62: /* punpckldq */
7636 case 0x660f63: /* packsswb */
7637 case 0x660f64: /* pcmpgtb */
7638 case 0x660f65: /* pcmpgtw */
56d2815c 7639 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7640 case 0x660f67: /* packuswb */
7641 case 0x660f68: /* punpckhbw */
7642 case 0x660f69: /* punpckhwd */
7643 case 0x660f6a: /* punpckhdq */
7644 case 0x660f6b: /* packssdw */
7645 case 0x660f6c: /* punpcklqdq */
7646 case 0x660f6d: /* punpckhqdq */
7647 case 0x660f6e: /* movd */
7648 case 0x660f6f: /* movdqa */
7649 case 0xf30f6f: /* movdqu */
7650 case 0x660f70: /* pshufd */
7651 case 0xf20f70: /* pshuflw */
7652 case 0xf30f70: /* pshufhw */
7653 case 0x660f74: /* pcmpeqb */
7654 case 0x660f75: /* pcmpeqw */
56d2815c 7655 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7656 case 0x660f7c: /* haddpd */
7657 case 0xf20f7c: /* haddps */
7658 case 0x660f7d: /* hsubpd */
7659 case 0xf20f7d: /* hsubps */
7660 case 0xf30f7e: /* movq */
7661 case 0x0fc2: /* cmpps */
7662 case 0x660fc2: /* cmppd */
7663 case 0xf20fc2: /* cmpsd */
7664 case 0xf30fc2: /* cmpss */
7665 case 0x660fc4: /* pinsrw */
7666 case 0x0fc6: /* shufps */
7667 case 0x660fc6: /* shufpd */
7668 case 0x660fd0: /* addsubpd */
7669 case 0xf20fd0: /* addsubps */
7670 case 0x660fd1: /* psrlw */
7671 case 0x660fd2: /* psrld */
7672 case 0x660fd3: /* psrlq */
7673 case 0x660fd4: /* paddq */
7674 case 0x660fd5: /* pmullw */
7675 case 0xf30fd6: /* movq2dq */
7676 case 0x660fd8: /* psubusb */
7677 case 0x660fd9: /* psubusw */
7678 case 0x660fda: /* pminub */
7679 case 0x660fdb: /* pand */
7680 case 0x660fdc: /* paddusb */
7681 case 0x660fdd: /* paddusw */
7682 case 0x660fde: /* pmaxub */
7683 case 0x660fdf: /* pandn */
7684 case 0x660fe0: /* pavgb */
7685 case 0x660fe1: /* psraw */
7686 case 0x660fe2: /* psrad */
7687 case 0x660fe3: /* pavgw */
7688 case 0x660fe4: /* pmulhuw */
7689 case 0x660fe5: /* pmulhw */
7690 case 0x660fe6: /* cvttpd2dq */
7691 case 0xf20fe6: /* cvtpd2dq */
7692 case 0xf30fe6: /* cvtdq2pd */
7693 case 0x660fe8: /* psubsb */
7694 case 0x660fe9: /* psubsw */
7695 case 0x660fea: /* pminsw */
7696 case 0x660feb: /* por */
7697 case 0x660fec: /* paddsb */
7698 case 0x660fed: /* paddsw */
7699 case 0x660fee: /* pmaxsw */
7700 case 0x660fef: /* pxor */
4f7d61a8 7701 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7702 case 0x660ff1: /* psllw */
7703 case 0x660ff2: /* pslld */
7704 case 0x660ff3: /* psllq */
7705 case 0x660ff4: /* pmuludq */
7706 case 0x660ff5: /* pmaddwd */
7707 case 0x660ff6: /* psadbw */
7708 case 0x660ff8: /* psubb */
7709 case 0x660ff9: /* psubw */
56d2815c 7710 case 0x660ffa: /* psubd */
a3c4230a
HZ
7711 case 0x660ffb: /* psubq */
7712 case 0x660ffc: /* paddb */
7713 case 0x660ffd: /* paddw */
56d2815c 7714 case 0x660ffe: /* paddd */
a3c4230a
HZ
7715 if (i386_record_modrm (&ir))
7716 return -1;
7717 ir.reg |= rex_r;
c131fcee 7718 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7719 goto no_support;
25ea693b
MM
7720 record_full_arch_list_add_reg (ir.regcache,
7721 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7722 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7724 break;
7725
7726 case 0x0f11: /* movups */
7727 case 0x660f11: /* movupd */
7728 case 0xf30f11: /* movss */
7729 case 0xf20f11: /* movsd */
7730 case 0x0f13: /* movlps */
7731 case 0x660f13: /* movlpd */
7732 case 0x0f17: /* movhps */
7733 case 0x660f17: /* movhpd */
7734 case 0x0f29: /* movaps */
7735 case 0x660f29: /* movapd */
7736 case 0x660f3a14: /* pextrb */
7737 case 0x660f3a15: /* pextrw */
7738 case 0x660f3a16: /* pextrd pextrq */
7739 case 0x660f3a17: /* extractps */
7740 case 0x660f7f: /* movdqa */
7741 case 0xf30f7f: /* movdqu */
7742 if (i386_record_modrm (&ir))
7743 return -1;
7744 if (ir.mod == 3)
7745 {
7746 if (opcode == 0x0f13 || opcode == 0x660f13
7747 || opcode == 0x0f17 || opcode == 0x660f17)
7748 goto no_support;
7749 ir.rm |= ir.rex_b;
1777feb0
MS
7750 if (!i386_xmm_regnum_p (gdbarch,
7751 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7752 goto no_support;
25ea693b
MM
7753 record_full_arch_list_add_reg (ir.regcache,
7754 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7755 }
7756 else
7757 {
7758 switch (opcode)
7759 {
7760 case 0x660f3a14:
7761 ir.ot = OT_BYTE;
7762 break;
7763 case 0x660f3a15:
7764 ir.ot = OT_WORD;
7765 break;
7766 case 0x660f3a16:
7767 ir.ot = OT_LONG;
7768 break;
7769 case 0x660f3a17:
7770 ir.ot = OT_QUAD;
7771 break;
7772 default:
7773 ir.ot = OT_DQUAD;
7774 break;
7775 }
7776 if (i386_record_lea_modrm (&ir))
7777 return -1;
7778 }
7779 break;
7780
7781 case 0x0f2b: /* movntps */
7782 case 0x660f2b: /* movntpd */
7783 case 0x0fe7: /* movntq */
7784 case 0x660fe7: /* movntdq */
7785 if (ir.mod == 3)
7786 goto no_support;
7787 if (opcode == 0x0fe7)
7788 ir.ot = OT_QUAD;
7789 else
7790 ir.ot = OT_DQUAD;
7791 if (i386_record_lea_modrm (&ir))
7792 return -1;
7793 break;
7794
7795 case 0xf30f2c: /* cvttss2si */
7796 case 0xf20f2c: /* cvttsd2si */
7797 case 0xf30f2d: /* cvtss2si */
7798 case 0xf20f2d: /* cvtsd2si */
7799 case 0xf20f38f0: /* crc32 */
7800 case 0xf20f38f1: /* crc32 */
7801 case 0x0f50: /* movmskps */
7802 case 0x660f50: /* movmskpd */
7803 case 0x0fc5: /* pextrw */
7804 case 0x660fc5: /* pextrw */
7805 case 0x0fd7: /* pmovmskb */
7806 case 0x660fd7: /* pmovmskb */
25ea693b 7807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7808 break;
7809
7810 case 0x0f3800: /* pshufb */
7811 case 0x0f3801: /* phaddw */
7812 case 0x0f3802: /* phaddd */
7813 case 0x0f3803: /* phaddsw */
7814 case 0x0f3804: /* pmaddubsw */
7815 case 0x0f3805: /* phsubw */
7816 case 0x0f3806: /* phsubd */
4f7d61a8 7817 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7818 case 0x0f3808: /* psignb */
7819 case 0x0f3809: /* psignw */
7820 case 0x0f380a: /* psignd */
7821 case 0x0f380b: /* pmulhrsw */
7822 case 0x0f381c: /* pabsb */
7823 case 0x0f381d: /* pabsw */
7824 case 0x0f381e: /* pabsd */
7825 case 0x0f382b: /* packusdw */
7826 case 0x0f3830: /* pmovzxbw */
7827 case 0x0f3831: /* pmovzxbd */
7828 case 0x0f3832: /* pmovzxbq */
7829 case 0x0f3833: /* pmovzxwd */
7830 case 0x0f3834: /* pmovzxwq */
7831 case 0x0f3835: /* pmovzxdq */
7832 case 0x0f3837: /* pcmpgtq */
7833 case 0x0f3838: /* pminsb */
7834 case 0x0f3839: /* pminsd */
7835 case 0x0f383a: /* pminuw */
7836 case 0x0f383b: /* pminud */
7837 case 0x0f383c: /* pmaxsb */
7838 case 0x0f383d: /* pmaxsd */
7839 case 0x0f383e: /* pmaxuw */
7840 case 0x0f383f: /* pmaxud */
7841 case 0x0f3840: /* pmulld */
7842 case 0x0f3841: /* phminposuw */
7843 case 0x0f3a0f: /* palignr */
7844 case 0x0f60: /* punpcklbw */
7845 case 0x0f61: /* punpcklwd */
7846 case 0x0f62: /* punpckldq */
7847 case 0x0f63: /* packsswb */
7848 case 0x0f64: /* pcmpgtb */
7849 case 0x0f65: /* pcmpgtw */
56d2815c 7850 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7851 case 0x0f67: /* packuswb */
7852 case 0x0f68: /* punpckhbw */
7853 case 0x0f69: /* punpckhwd */
7854 case 0x0f6a: /* punpckhdq */
7855 case 0x0f6b: /* packssdw */
7856 case 0x0f6e: /* movd */
7857 case 0x0f6f: /* movq */
7858 case 0x0f70: /* pshufw */
7859 case 0x0f74: /* pcmpeqb */
7860 case 0x0f75: /* pcmpeqw */
56d2815c 7861 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7862 case 0x0fc4: /* pinsrw */
7863 case 0x0fd1: /* psrlw */
7864 case 0x0fd2: /* psrld */
7865 case 0x0fd3: /* psrlq */
7866 case 0x0fd4: /* paddq */
7867 case 0x0fd5: /* pmullw */
7868 case 0xf20fd6: /* movdq2q */
7869 case 0x0fd8: /* psubusb */
7870 case 0x0fd9: /* psubusw */
7871 case 0x0fda: /* pminub */
7872 case 0x0fdb: /* pand */
7873 case 0x0fdc: /* paddusb */
7874 case 0x0fdd: /* paddusw */
7875 case 0x0fde: /* pmaxub */
7876 case 0x0fdf: /* pandn */
7877 case 0x0fe0: /* pavgb */
7878 case 0x0fe1: /* psraw */
7879 case 0x0fe2: /* psrad */
7880 case 0x0fe3: /* pavgw */
7881 case 0x0fe4: /* pmulhuw */
7882 case 0x0fe5: /* pmulhw */
7883 case 0x0fe8: /* psubsb */
7884 case 0x0fe9: /* psubsw */
7885 case 0x0fea: /* pminsw */
7886 case 0x0feb: /* por */
7887 case 0x0fec: /* paddsb */
7888 case 0x0fed: /* paddsw */
7889 case 0x0fee: /* pmaxsw */
7890 case 0x0fef: /* pxor */
7891 case 0x0ff1: /* psllw */
7892 case 0x0ff2: /* pslld */
7893 case 0x0ff3: /* psllq */
7894 case 0x0ff4: /* pmuludq */
7895 case 0x0ff5: /* pmaddwd */
7896 case 0x0ff6: /* psadbw */
7897 case 0x0ff8: /* psubb */
7898 case 0x0ff9: /* psubw */
56d2815c 7899 case 0x0ffa: /* psubd */
a3c4230a
HZ
7900 case 0x0ffb: /* psubq */
7901 case 0x0ffc: /* paddb */
7902 case 0x0ffd: /* paddw */
56d2815c 7903 case 0x0ffe: /* paddd */
a3c4230a
HZ
7904 if (i386_record_modrm (&ir))
7905 return -1;
7906 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7907 goto no_support;
25ea693b
MM
7908 record_full_arch_list_add_reg (ir.regcache,
7909 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7910 break;
7911
7912 case 0x0f71: /* psllw */
7913 case 0x0f72: /* pslld */
7914 case 0x0f73: /* psllq */
7915 if (i386_record_modrm (&ir))
7916 return -1;
7917 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7918 goto no_support;
25ea693b
MM
7919 record_full_arch_list_add_reg (ir.regcache,
7920 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7921 break;
7922
7923 case 0x660f71: /* psllw */
7924 case 0x660f72: /* pslld */
7925 case 0x660f73: /* psllq */
7926 if (i386_record_modrm (&ir))
7927 return -1;
7928 ir.rm |= ir.rex_b;
c131fcee 7929 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7930 goto no_support;
25ea693b
MM
7931 record_full_arch_list_add_reg (ir.regcache,
7932 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7933 break;
7934
7935 case 0x0f7e: /* movd */
7936 case 0x660f7e: /* movd */
7937 if (i386_record_modrm (&ir))
7938 return -1;
7939 if (ir.mod == 3)
25ea693b 7940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7941 else
7942 {
7943 if (ir.dflag == 2)
7944 ir.ot = OT_QUAD;
7945 else
7946 ir.ot = OT_LONG;
7947 if (i386_record_lea_modrm (&ir))
7948 return -1;
7949 }
7950 break;
7951
7952 case 0x0f7f: /* movq */
7953 if (i386_record_modrm (&ir))
7954 return -1;
7955 if (ir.mod == 3)
7956 {
7957 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7958 goto no_support;
25ea693b
MM
7959 record_full_arch_list_add_reg (ir.regcache,
7960 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7961 }
7962 else
7963 {
7964 ir.ot = OT_QUAD;
7965 if (i386_record_lea_modrm (&ir))
7966 return -1;
7967 }
7968 break;
7969
7970 case 0xf30fb8: /* popcnt */
7971 if (i386_record_modrm (&ir))
7972 return -1;
25ea693b
MM
7973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7975 break;
7976
7977 case 0x660fd6: /* movq */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (ir.mod == 3)
7981 {
7982 ir.rm |= ir.rex_b;
1777feb0
MS
7983 if (!i386_xmm_regnum_p (gdbarch,
7984 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7985 goto no_support;
25ea693b
MM
7986 record_full_arch_list_add_reg (ir.regcache,
7987 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7988 }
7989 else
7990 {
7991 ir.ot = OT_QUAD;
7992 if (i386_record_lea_modrm (&ir))
7993 return -1;
7994 }
7995 break;
7996
7997 case 0x660f3817: /* ptest */
7998 case 0x0f2e: /* ucomiss */
7999 case 0x660f2e: /* ucomisd */
8000 case 0x0f2f: /* comiss */
8001 case 0x660f2f: /* comisd */
25ea693b 8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8003 break;
8004
8005 case 0x0ff7: /* maskmovq */
8006 regcache_raw_read_unsigned (ir.regcache,
8007 ir.regmap[X86_RECORD_REDI_REGNUM],
8008 &addr);
25ea693b 8009 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8010 return -1;
8011 break;
8012
8013 case 0x660ff7: /* maskmovdqu */
8014 regcache_raw_read_unsigned (ir.regcache,
8015 ir.regmap[X86_RECORD_REDI_REGNUM],
8016 &addr);
25ea693b 8017 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8018 return -1;
8019 break;
8020
8021 default:
8022 goto no_support;
8023 break;
8024 }
8025 break;
7ad10968
HZ
8026
8027 default:
7ad10968
HZ
8028 goto no_support;
8029 break;
8030 }
8031
cf648174 8032 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8034 if (record_full_arch_list_add_end ())
7ad10968
HZ
8035 return -1;
8036
8037 return 0;
8038
01fe1b41 8039 no_support:
a3c4230a
HZ
8040 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8041 "at address %s.\n"),
8042 (unsigned int) (opcode),
8043 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8044 return -1;
8045}
8046
cf648174
HZ
8047static const int i386_record_regmap[] =
8048{
8049 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8050 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8051 0, 0, 0, 0, 0, 0, 0, 0,
8052 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8053 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8054};
8055
7a697b8d 8056/* Check that the given address appears suitable for a fast
405f8e94 8057 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8058 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8059 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8060 middle of the tracepoint jump. On x86, it may be possible to use
8061 4-byte jumps with a 2-byte offset to a trampoline located in the
8062 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8063 of instruction to replace, and 0 if not, plus an explanatory
8064 string. */
8065
8066static int
8067i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8068 CORE_ADDR addr, int *isize, char **msg)
8069{
8070 int len, jumplen;
8071 static struct ui_file *gdb_null = NULL;
8072
405f8e94
SS
8073 /* Ask the target for the minimum instruction length supported. */
8074 jumplen = target_get_min_fast_tracepoint_insn_len ();
8075
8076 if (jumplen < 0)
8077 {
8078 /* If the target does not support the get_min_fast_tracepoint_insn_len
8079 operation, assume that fast tracepoints will always be implemented
8080 using 4-byte relative jumps on both x86 and x86-64. */
8081 jumplen = 5;
8082 }
8083 else if (jumplen == 0)
8084 {
8085 /* If the target does support get_min_fast_tracepoint_insn_len but
8086 returns zero, then the IPA has not loaded yet. In this case,
8087 we optimistically assume that truncated 2-byte relative jumps
8088 will be available on x86, and compensate later if this assumption
8089 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8090 jumps will always be used. */
8091 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8092 }
7a697b8d
SS
8093
8094 /* Dummy file descriptor for the disassembler. */
8095 if (!gdb_null)
8096 gdb_null = ui_file_new ();
8097
8098 /* Check for fit. */
8099 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8100 if (isize)
8101 *isize = len;
8102
7a697b8d
SS
8103 if (len < jumplen)
8104 {
8105 /* Return a bit of target-specific detail to add to the caller's
8106 generic failure message. */
8107 if (msg)
1777feb0
MS
8108 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8109 "need at least %d bytes for the jump"),
7a697b8d
SS
8110 len, jumplen);
8111 return 0;
8112 }
405f8e94
SS
8113 else
8114 {
8115 if (msg)
8116 *msg = NULL;
8117 return 1;
8118 }
7a697b8d
SS
8119}
8120
90884b2b
L
8121static int
8122i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8123 struct tdesc_arch_data *tdesc_data)
8124{
8125 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8126 const struct tdesc_feature *feature_core;
01f9f808
MS
8127
8128 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8129 *feature_avx512;
90884b2b
L
8130 int i, num_regs, valid_p;
8131
8132 if (! tdesc_has_registers (tdesc))
8133 return 0;
8134
8135 /* Get core registers. */
8136 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8137 if (feature_core == NULL)
8138 return 0;
90884b2b
L
8139
8140 /* Get SSE registers. */
c131fcee 8141 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8142
c131fcee
L
8143 /* Try AVX registers. */
8144 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8145
1dbcd68c
WT
8146 /* Try MPX registers. */
8147 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8148
01f9f808
MS
8149 /* Try AVX512 registers. */
8150 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8151
90884b2b
L
8152 valid_p = 1;
8153
c131fcee 8154 /* The XCR0 bits. */
01f9f808
MS
8155 if (feature_avx512)
8156 {
8157 /* AVX512 register description requires AVX register description. */
8158 if (!feature_avx)
8159 return 0;
8160
8161 tdep->xcr0 = I386_XSTATE_MPX_AVX512_MASK;
8162
8163 /* It may have been set by OSABI initialization function. */
8164 if (tdep->k0_regnum < 0)
8165 {
8166 tdep->k_register_names = i386_k_names;
8167 tdep->k0_regnum = I386_K0_REGNUM;
8168 }
8169
8170 for (i = 0; i < I387_NUM_K_REGS; i++)
8171 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8172 tdep->k0_regnum + i,
8173 i386_k_names[i]);
8174
8175 if (tdep->num_zmm_regs == 0)
8176 {
8177 tdep->zmmh_register_names = i386_zmmh_names;
8178 tdep->num_zmm_regs = 8;
8179 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8180 }
8181
8182 for (i = 0; i < tdep->num_zmm_regs; i++)
8183 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8184 tdep->zmm0h_regnum + i,
8185 tdep->zmmh_register_names[i]);
8186
8187 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8188 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8189 tdep->xmm16_regnum + i,
8190 tdep->xmm_avx512_register_names[i]);
8191
8192 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8193 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8194 tdep->ymm16h_regnum + i,
8195 tdep->ymm16h_register_names[i]);
8196 }
c131fcee
L
8197 if (feature_avx)
8198 {
3a13a53b
L
8199 /* AVX register description requires SSE register description. */
8200 if (!feature_sse)
8201 return 0;
8202
01f9f808
MS
8203 if (!feature_avx512)
8204 tdep->xcr0 = I386_XSTATE_AVX_MASK;
c131fcee
L
8205
8206 /* It may have been set by OSABI initialization function. */
8207 if (tdep->num_ymm_regs == 0)
8208 {
8209 tdep->ymmh_register_names = i386_ymmh_names;
8210 tdep->num_ymm_regs = 8;
8211 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8212 }
8213
8214 for (i = 0; i < tdep->num_ymm_regs; i++)
8215 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8216 tdep->ymm0h_regnum + i,
8217 tdep->ymmh_register_names[i]);
8218 }
3a13a53b 8219 else if (feature_sse)
c131fcee 8220 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
8221 else
8222 {
8223 tdep->xcr0 = I386_XSTATE_X87_MASK;
8224 tdep->num_xmm_regs = 0;
8225 }
c131fcee 8226
90884b2b
L
8227 num_regs = tdep->num_core_regs;
8228 for (i = 0; i < num_regs; i++)
8229 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8230 tdep->register_names[i]);
8231
3a13a53b
L
8232 if (feature_sse)
8233 {
8234 /* Need to include %mxcsr, so add one. */
8235 num_regs += tdep->num_xmm_regs + 1;
8236 for (; i < num_regs; i++)
8237 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8238 tdep->register_names[i]);
8239 }
90884b2b 8240
1dbcd68c
WT
8241 if (feature_mpx)
8242 {
01f9f808 8243 tdep->xcr0 |= I386_XSTATE_MPX_MASK;
1dbcd68c
WT
8244
8245 if (tdep->bnd0r_regnum < 0)
8246 {
8247 tdep->mpx_register_names = i386_mpx_names;
8248 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8249 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8250 }
8251
8252 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8253 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8254 I387_BND0R_REGNUM (tdep) + i,
8255 tdep->mpx_register_names[i]);
8256 }
8257
90884b2b
L
8258 return valid_p;
8259}
8260
7ad10968
HZ
8261\f
8262static struct gdbarch *
8263i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8264{
8265 struct gdbarch_tdep *tdep;
8266 struct gdbarch *gdbarch;
90884b2b
L
8267 struct tdesc_arch_data *tdesc_data;
8268 const struct target_desc *tdesc;
1ba53b71 8269 int mm0_regnum;
c131fcee 8270 int ymm0_regnum;
1dbcd68c
WT
8271 int bnd0_regnum;
8272 int num_bnd_cooked;
01f9f808
MS
8273 int k0_regnum;
8274 int zmm0_regnum;
7ad10968
HZ
8275
8276 /* If there is already a candidate, use it. */
8277 arches = gdbarch_list_lookup_by_info (arches, &info);
8278 if (arches != NULL)
8279 return arches->gdbarch;
8280
8281 /* Allocate space for the new architecture. */
fc270c35 8282 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8283 gdbarch = gdbarch_alloc (&info, tdep);
8284
8285 /* General-purpose registers. */
8286 tdep->gregset = NULL;
8287 tdep->gregset_reg_offset = NULL;
8288 tdep->gregset_num_regs = I386_NUM_GREGS;
8289 tdep->sizeof_gregset = 0;
8290
8291 /* Floating-point registers. */
8292 tdep->fpregset = NULL;
8293 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8294
c131fcee
L
8295 tdep->xstateregset = NULL;
8296
7ad10968
HZ
8297 /* The default settings include the FPU registers, the MMX registers
8298 and the SSE registers. This can be overridden for a specific ABI
8299 by adjusting the members `st0_regnum', `mm0_regnum' and
8300 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8301 will show up in the output of "info all-registers". */
7ad10968
HZ
8302
8303 tdep->st0_regnum = I386_ST0_REGNUM;
8304
7ad10968
HZ
8305 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8306 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8307
8308 tdep->jb_pc_offset = -1;
8309 tdep->struct_return = pcc_struct_return;
8310 tdep->sigtramp_start = 0;
8311 tdep->sigtramp_end = 0;
8312 tdep->sigtramp_p = i386_sigtramp_p;
8313 tdep->sigcontext_addr = NULL;
8314 tdep->sc_reg_offset = NULL;
8315 tdep->sc_pc_offset = -1;
8316 tdep->sc_sp_offset = -1;
8317
c131fcee
L
8318 tdep->xsave_xcr0_offset = -1;
8319
cf648174
HZ
8320 tdep->record_regmap = i386_record_regmap;
8321
205c306f
DM
8322 set_gdbarch_long_long_align_bit (gdbarch, 32);
8323
7ad10968
HZ
8324 /* The format used for `long double' on almost all i386 targets is
8325 the i387 extended floating-point format. In fact, of all targets
8326 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8327 on having a `long double' that's not `long' at all. */
8328 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8329
8330 /* Although the i387 extended floating-point has only 80 significant
8331 bits, a `long double' actually takes up 96, probably to enforce
8332 alignment. */
8333 set_gdbarch_long_double_bit (gdbarch, 96);
8334
7ad10968
HZ
8335 /* Register numbers of various important registers. */
8336 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8337 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8338 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8339 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8340
8341 /* NOTE: kettenis/20040418: GCC does have two possible register
8342 numbering schemes on the i386: dbx and SVR4. These schemes
8343 differ in how they number %ebp, %esp, %eflags, and the
8344 floating-point registers, and are implemented by the arrays
8345 dbx_register_map[] and svr4_dbx_register_map in
8346 gcc/config/i386.c. GCC also defines a third numbering scheme in
8347 gcc/config/i386.c, which it designates as the "default" register
8348 map used in 64bit mode. This last register numbering scheme is
8349 implemented in dbx64_register_map, and is used for AMD64; see
8350 amd64-tdep.c.
8351
8352 Currently, each GCC i386 target always uses the same register
8353 numbering scheme across all its supported debugging formats
8354 i.e. SDB (COFF), stabs and DWARF 2. This is because
8355 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8356 DBX_REGISTER_NUMBER macro which is defined by each target's
8357 respective config header in a manner independent of the requested
8358 output debugging format.
8359
8360 This does not match the arrangement below, which presumes that
8361 the SDB and stabs numbering schemes differ from the DWARF and
8362 DWARF 2 ones. The reason for this arrangement is that it is
8363 likely to get the numbering scheme for the target's
8364 default/native debug format right. For targets where GCC is the
8365 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8366 targets where the native toolchain uses a different numbering
8367 scheme for a particular debug format (stabs-in-ELF on Solaris)
8368 the defaults below will have to be overridden, like
8369 i386_elf_init_abi() does. */
8370
8371 /* Use the dbx register numbering scheme for stabs and COFF. */
8372 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8373 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8374
8375 /* Use the SVR4 register numbering scheme for DWARF 2. */
8376 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8377
8378 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8379 be in use on any of the supported i386 targets. */
8380
8381 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8382
8383 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8384
8385 /* Call dummy code. */
a9b8d892
JK
8386 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8387 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8388 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8389 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8390
8391 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8392 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8393 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8394
8395 set_gdbarch_return_value (gdbarch, i386_return_value);
8396
8397 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8398
8399 /* Stack grows downward. */
8400 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8401
8402 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8403 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8404 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8405
8406 set_gdbarch_frame_args_skip (gdbarch, 8);
8407
7ad10968
HZ
8408 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8409
8410 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8411
8412 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8413
8414 /* Add the i386 register groups. */
8415 i386_add_reggroups (gdbarch);
90884b2b 8416 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8417
143985b7
AF
8418 /* Helper for function argument information. */
8419 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8420
06da04c6 8421 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8422 appended to the list first, so that it supercedes the DWARF
8423 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8424 currently fails). */
8425 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8426
8427 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8428 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8429 CFI info will be used if it is available. */
10458914 8430 dwarf2_append_unwinders (gdbarch);
6405b0a6 8431
acd5c798 8432 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8433
1ba53b71 8434 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8435 set_gdbarch_pseudo_register_read_value (gdbarch,
8436 i386_pseudo_register_read_value);
90884b2b
L
8437 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8438
8439 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8440 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8441
c131fcee
L
8442 /* Override the normal target description method to make the AVX
8443 upper halves anonymous. */
8444 set_gdbarch_register_name (gdbarch, i386_register_name);
8445
8446 /* Even though the default ABI only includes general-purpose registers,
8447 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8448 gap for the upper AVX, MPX and AVX512 registers. */
8449 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b
L
8450
8451 /* Get the x86 target description from INFO. */
8452 tdesc = info.target_desc;
8453 if (! tdesc_has_registers (tdesc))
8454 tdesc = tdesc_i386;
8455 tdep->tdesc = tdesc;
8456
8457 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8458 tdep->register_names = i386_register_names;
8459
c131fcee
L
8460 /* No upper YMM registers. */
8461 tdep->ymmh_register_names = NULL;
8462 tdep->ymm0h_regnum = -1;
8463
01f9f808
MS
8464 /* No upper ZMM registers. */
8465 tdep->zmmh_register_names = NULL;
8466 tdep->zmm0h_regnum = -1;
8467
8468 /* No high XMM registers. */
8469 tdep->xmm_avx512_register_names = NULL;
8470 tdep->xmm16_regnum = -1;
8471
8472 /* No upper YMM16-31 registers. */
8473 tdep->ymm16h_register_names = NULL;
8474 tdep->ymm16h_regnum = -1;
8475
1ba53b71
L
8476 tdep->num_byte_regs = 8;
8477 tdep->num_word_regs = 8;
8478 tdep->num_dword_regs = 0;
8479 tdep->num_mmx_regs = 8;
c131fcee 8480 tdep->num_ymm_regs = 0;
1ba53b71 8481
1dbcd68c
WT
8482 /* No MPX registers. */
8483 tdep->bnd0r_regnum = -1;
8484 tdep->bndcfgu_regnum = -1;
8485
01f9f808
MS
8486 /* No AVX512 registers. */
8487 tdep->k0_regnum = -1;
8488 tdep->num_zmm_regs = 0;
8489 tdep->num_ymm_avx512_regs = 0;
8490 tdep->num_xmm_avx512_regs = 0;
8491
90884b2b
L
8492 tdesc_data = tdesc_data_alloc ();
8493
dde08ee1
PA
8494 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8495
6710bf39
SS
8496 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8497
c2170eef
MM
8498 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8499 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8500 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8501
3ce1502b 8502 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8503 info.tdep_info = (void *) tdesc_data;
4be87837 8504 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8505
c131fcee
L
8506 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8507 {
8508 tdesc_data_cleanup (tdesc_data);
8509 xfree (tdep);
8510 gdbarch_free (gdbarch);
8511 return NULL;
8512 }
8513
1dbcd68c
WT
8514 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8515
1ba53b71
L
8516 /* Wire in pseudo registers. Number of pseudo registers may be
8517 changed. */
8518 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8519 + tdep->num_word_regs
8520 + tdep->num_dword_regs
c131fcee 8521 + tdep->num_mmx_regs
1dbcd68c 8522 + tdep->num_ymm_regs
01f9f808
MS
8523 + num_bnd_cooked
8524 + tdep->num_ymm_avx512_regs
8525 + tdep->num_zmm_regs));
1ba53b71 8526
90884b2b
L
8527 /* Target description may be changed. */
8528 tdesc = tdep->tdesc;
8529
90884b2b
L
8530 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8531
8532 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8533 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8534
1ba53b71
L
8535 /* Make %al the first pseudo-register. */
8536 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8537 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8538
c131fcee 8539 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8540 if (tdep->num_dword_regs)
8541 {
1c6272a6 8542 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8543 tdep->eax_regnum = ymm0_regnum;
8544 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8545 }
8546 else
8547 tdep->eax_regnum = -1;
8548
c131fcee
L
8549 mm0_regnum = ymm0_regnum;
8550 if (tdep->num_ymm_regs)
8551 {
1c6272a6 8552 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8553 tdep->ymm0_regnum = ymm0_regnum;
8554 mm0_regnum += tdep->num_ymm_regs;
8555 }
8556 else
8557 tdep->ymm0_regnum = -1;
8558
01f9f808
MS
8559 if (tdep->num_ymm_avx512_regs)
8560 {
8561 /* Support YMM16-31 pseudo registers if available. */
8562 tdep->ymm16_regnum = mm0_regnum;
8563 mm0_regnum += tdep->num_ymm_avx512_regs;
8564 }
8565 else
8566 tdep->ymm16_regnum = -1;
8567
8568 if (tdep->num_zmm_regs)
8569 {
8570 /* Support ZMM pseudo-register if it is available. */
8571 tdep->zmm0_regnum = mm0_regnum;
8572 mm0_regnum += tdep->num_zmm_regs;
8573 }
8574 else
8575 tdep->zmm0_regnum = -1;
8576
1dbcd68c 8577 bnd0_regnum = mm0_regnum;
1ba53b71
L
8578 if (tdep->num_mmx_regs != 0)
8579 {
1c6272a6 8580 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8581 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8582 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8583 }
8584 else
8585 tdep->mm0_regnum = -1;
8586
1dbcd68c
WT
8587 if (tdep->bnd0r_regnum > 0)
8588 tdep->bnd0_regnum = bnd0_regnum;
8589 else
8590 tdep-> bnd0_regnum = -1;
8591
06da04c6 8592 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8593 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8594 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8595 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8596
8446b36a
MK
8597 /* If we have a register mapping, enable the generic core file
8598 support, unless it has already been enabled. */
8599 if (tdep->gregset_reg_offset
8600 && !gdbarch_regset_from_core_section_p (gdbarch))
8601 set_gdbarch_regset_from_core_section (gdbarch,
8602 i386_regset_from_core_section);
8603
514f746b
AR
8604 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8605 i386_skip_permanent_breakpoint);
8606
7a697b8d
SS
8607 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8608 i386_fast_tracepoint_valid_at);
8609
a62cc96e
AC
8610 return gdbarch;
8611}
8612
8201327c
MK
8613static enum gdb_osabi
8614i386_coff_osabi_sniffer (bfd *abfd)
8615{
762c5349
MK
8616 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8617 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8618 return GDB_OSABI_GO32;
8619
8620 return GDB_OSABI_UNKNOWN;
8621}
8201327c
MK
8622\f
8623
28e9e0f0
MK
8624/* Provide a prototype to silence -Wmissing-prototypes. */
8625void _initialize_i386_tdep (void);
8626
c906108c 8627void
fba45db2 8628_initialize_i386_tdep (void)
c906108c 8629{
a62cc96e
AC
8630 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8631
fc338970 8632 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8633 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8634 &disassembly_flavor, _("\
8635Set the disassembly flavor."), _("\
8636Show the disassembly flavor."), _("\
8637The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8638 NULL,
8639 NULL, /* FIXME: i18n: */
8640 &setlist, &showlist);
8201327c
MK
8641
8642 /* Add the variable that controls the convention for returning
8643 structs. */
7ab04401
AC
8644 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8645 &struct_convention, _("\
8646Set the convention for returning small structs."), _("\
8647Show the convention for returning small structs."), _("\
8648Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8649is \"default\"."),
8650 NULL,
8651 NULL, /* FIXME: i18n: */
8652 &setlist, &showlist);
8201327c
MK
8653
8654 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8655 i386_coff_osabi_sniffer);
8201327c 8656
05816f70 8657 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8658 i386_svr4_init_abi);
05816f70 8659 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8660 i386_go32_init_abi);
38c968cf 8661
209bd28e 8662 /* Initialize the i386-specific register groups. */
38c968cf 8663 i386_init_reggroups ();
90884b2b
L
8664
8665 /* Initialize the standard target descriptions. */
8666 initialize_tdesc_i386 ();
3a13a53b 8667 initialize_tdesc_i386_mmx ();
c131fcee 8668 initialize_tdesc_i386_avx ();
1dbcd68c 8669 initialize_tdesc_i386_mpx ();
01f9f808 8670 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8671
8672 /* Tell remote stub that we support XML target description. */
8673 register_remote_support_xml ("i386");
c906108c 8674}
This page took 1.670124 seconds and 4 git commands to generate.