X86: Migrate from 'regset_from_core_section' to 'iterate_over_regset_sections'
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
8fbca658 47#include "exceptions.h"
d2a7c97a 48#include "i386-tdep.h"
61113f8b 49#include "i387-tdep.h"
df7e5265 50#include "x86-xstate.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
7ad10968
HZ
54#include <stdint.h>
55
90884b2b 56#include "features/i386/i386.c"
c131fcee 57#include "features/i386/i386-avx.c"
1dbcd68c 58#include "features/i386/i386-mpx.c"
01f9f808 59#include "features/i386/i386-avx512.c"
3a13a53b 60#include "features/i386/i386-mmx.c"
90884b2b 61
6710bf39
SS
62#include "ax.h"
63#include "ax-gdb.h"
64
55aa24fb
SDJ
65#include "stap-probe.h"
66#include "user-regs.h"
67#include "cli/cli-utils.h"
68#include "expression.h"
69#include "parser-defs.h"
70#include <ctype.h>
71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
01f9f808
MS
89static const char *i386_zmm_names[] =
90{
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93};
94
95static const char *i386_zmmh_names[] =
96{
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99};
100
101static const char *i386_k_names[] =
102{
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105};
106
c131fcee
L
107static const char *i386_ymm_names[] =
108{
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111};
112
113static const char *i386_ymmh_names[] =
114{
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117};
118
1dbcd68c
WT
119static const char *i386_mpx_names[] =
120{
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122};
123
124/* Register names for MPX pseudo-registers. */
125
126static const char *i386_bnd_names[] =
127{
128 "bnd0", "bnd1", "bnd2", "bnd3"
129};
130
c4fc7f1b 131/* Register names for MMX pseudo-registers. */
28fc6740 132
90884b2b 133static const char *i386_mmx_names[] =
28fc6740
AC
134{
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137};
c40e1eab 138
1ba53b71
L
139/* Register names for byte pseudo-registers. */
140
141static const char *i386_byte_names[] =
142{
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145};
146
147/* Register names for word pseudo-registers. */
148
149static const char *i386_word_names[] =
150{
151 "ax", "cx", "dx", "bx",
9cad29ac 152 "", "bp", "si", "di"
1ba53b71
L
153};
154
01f9f808
MS
155/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159const int num_lower_zmm_regs = 16;
160
1ba53b71 161/* MMX register? */
c40e1eab 162
28fc6740 163static int
5716833c 164i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 165{
1ba53b71
L
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
168
169 if (mm0_regnum < 0)
170 return 0;
171
1ba53b71
L
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174}
175
176/* Byte register? */
177
178int
179i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180{
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185}
186
187/* Word register? */
188
189int
190i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191{
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196}
197
198/* Dword register? */
199
200int
201i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202{
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
211}
212
01f9f808
MS
213/* AVX512 register? */
214
215int
216i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217{
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226}
227
228int
229i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230{
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239}
240
241int
242i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243{
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252}
253
9191d390 254static int
c131fcee
L
255i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256{
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265}
266
267/* AVX register? */
268
269int
270i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271{
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280}
281
01f9f808
MS
282static int
283i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284{
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293}
294
295int
296i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297{
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306}
307
1dbcd68c
WT
308/* BND register? */
309
310int
311i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312{
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321}
322
5716833c 323/* SSE register? */
23a34459 324
c131fcee
L
325int
326i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 327{
5716833c 328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 330
c131fcee 331 if (num_xmm_regs == 0)
5716833c
MK
332 return 0;
333
c131fcee
L
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
336}
337
01f9f808
MS
338/* XMM_512 register? */
339
340int
341i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342{
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351}
352
5716833c
MK
353static int
354i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 355{
5716833c
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
20a6ec49 358 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
359 return 0;
360
20a6ec49 361 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
362}
363
5716833c 364/* FP register? */
23a34459
AC
365
366int
20a6ec49 367i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 368{
20a6ec49
MD
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
372 return 0;
373
20a6ec49
MD
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
376}
377
378int
20a6ec49 379i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 380{
20a6ec49
MD
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
384 return 0;
385
20a6ec49
MD
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
388}
389
1dbcd68c
WT
390/* BNDr (raw) register? */
391
392static int
393i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394{
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402}
403
404/* BND control register? */
405
406static int
407i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408{
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416}
417
c131fcee
L
418/* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421static const char *
422i386_register_name (struct gdbarch *gdbarch, int regnum)
423{
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
01f9f808
MS
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
c131fcee
L
436 return tdesc_register_name (gdbarch, regnum);
437}
438
30b0e2d8 439/* Return the name of register REGNUM. */
fc633446 440
1ba53b71 441const char *
90884b2b 442i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 443{
1ba53b71 444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
459}
460
c4fc7f1b 461/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
462 number used by GDB. */
463
8201327c 464static int
d3f73121 465i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 466{
20a6ec49
MD
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
c4fc7f1b
MK
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
85540d8c
MK
472 if (reg >= 0 && reg <= 7)
473 {
9872ad24
JB
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
85540d8c
MK
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
20a6ec49 485 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
c131fcee
L
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
20a6ec49 501 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
502 }
503
504 /* This will hopefully provoke a warning. */
d3f73121 505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
506}
507
c4fc7f1b
MK
508/* Convert SVR4 register number REG to the appropriate register number
509 used by GDB. */
85540d8c 510
8201327c 511static int
d3f73121 512i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 513{
20a6ec49
MD
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
c4fc7f1b
MK
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
acd5c798 523 /* General-purpose registers. */
85540d8c
MK
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
20a6ec49 529 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 530 }
c6f4c129 531 else if (reg >= 21 && reg <= 36)
85540d8c 532 {
c4fc7f1b 533 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 534 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
535 }
536
c6f4c129
JB
537 switch (reg)
538 {
20a6ec49
MD
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
85540d8c 550 /* This will hopefully provoke a warning. */
d3f73121 551 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 552}
5716833c 553
fc338970 554\f
917317f4 555
fc338970
MK
556/* This is the variable that is set with "set disassembly-flavor", and
557 its legitimate values. */
53904c9e
AC
558static const char att_flavor[] = "att";
559static const char intel_flavor[] = "intel";
40478521 560static const char *const valid_flavors[] =
c5aa993b 561{
c906108c
SS
562 att_flavor,
563 intel_flavor,
564 NULL
565};
53904c9e 566static const char *disassembly_flavor = att_flavor;
acd5c798 567\f
c906108c 568
acd5c798
MK
569/* Use the program counter to determine the contents and size of a
570 breakpoint instruction. Return a pointer to a string of bytes that
571 encode a breakpoint instruction, store the length of the string in
572 *LEN and optionally adjust *PC to point to the correct memory
573 location for inserting the breakpoint.
c906108c 574
acd5c798
MK
575 On the i386 we have a single breakpoint that fits in a single byte
576 and can be inserted anywhere.
c906108c 577
acd5c798 578 This function is 64-bit safe. */
63c0089f
MK
579
580static const gdb_byte *
67d57894 581i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 582{
63c0089f
MK
583 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
584
acd5c798
MK
585 *len = sizeof (break_insn);
586 return break_insn;
c906108c 587}
237fc4c9
PA
588\f
589/* Displaced instruction handling. */
590
1903f0e6
DE
591/* Skip the legacy instruction prefixes in INSN.
592 Not all prefixes are valid for any particular insn
593 but we needn't care, the insn will fault if it's invalid.
594 The result is a pointer to the first opcode byte,
595 or NULL if we run off the end of the buffer. */
596
597static gdb_byte *
598i386_skip_prefixes (gdb_byte *insn, size_t max_len)
599{
600 gdb_byte *end = insn + max_len;
601
602 while (insn < end)
603 {
604 switch (*insn)
605 {
606 case DATA_PREFIX_OPCODE:
607 case ADDR_PREFIX_OPCODE:
608 case CS_PREFIX_OPCODE:
609 case DS_PREFIX_OPCODE:
610 case ES_PREFIX_OPCODE:
611 case FS_PREFIX_OPCODE:
612 case GS_PREFIX_OPCODE:
613 case SS_PREFIX_OPCODE:
614 case LOCK_PREFIX_OPCODE:
615 case REPE_PREFIX_OPCODE:
616 case REPNE_PREFIX_OPCODE:
617 ++insn;
618 continue;
619 default:
620 return insn;
621 }
622 }
623
624 return NULL;
625}
237fc4c9
PA
626
627static int
1903f0e6 628i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 629{
1777feb0 630 /* jmp far (absolute address in operand). */
237fc4c9
PA
631 if (insn[0] == 0xea)
632 return 1;
633
634 if (insn[0] == 0xff)
635 {
1777feb0 636 /* jump near, absolute indirect (/4). */
237fc4c9
PA
637 if ((insn[1] & 0x38) == 0x20)
638 return 1;
639
1777feb0 640 /* jump far, absolute indirect (/5). */
237fc4c9
PA
641 if ((insn[1] & 0x38) == 0x28)
642 return 1;
643 }
644
645 return 0;
646}
647
c2170eef
MM
648/* Return non-zero if INSN is a jump, zero otherwise. */
649
650static int
651i386_jmp_p (const gdb_byte *insn)
652{
653 /* jump short, relative. */
654 if (insn[0] == 0xeb)
655 return 1;
656
657 /* jump near, relative. */
658 if (insn[0] == 0xe9)
659 return 1;
660
661 return i386_absolute_jmp_p (insn);
662}
663
237fc4c9 664static int
1903f0e6 665i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 666{
1777feb0 667 /* call far, absolute. */
237fc4c9
PA
668 if (insn[0] == 0x9a)
669 return 1;
670
671 if (insn[0] == 0xff)
672 {
1777feb0 673 /* Call near, absolute indirect (/2). */
237fc4c9
PA
674 if ((insn[1] & 0x38) == 0x10)
675 return 1;
676
1777feb0 677 /* Call far, absolute indirect (/3). */
237fc4c9
PA
678 if ((insn[1] & 0x38) == 0x18)
679 return 1;
680 }
681
682 return 0;
683}
684
685static int
1903f0e6 686i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
687{
688 switch (insn[0])
689 {
1777feb0 690 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 691 case 0xc3: /* ret near */
1777feb0 692 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
693 case 0xcb: /* ret far */
694 case 0xcf: /* iret */
695 return 1;
696
697 default:
698 return 0;
699 }
700}
701
702static int
1903f0e6 703i386_call_p (const gdb_byte *insn)
237fc4c9
PA
704{
705 if (i386_absolute_call_p (insn))
706 return 1;
707
1777feb0 708 /* call near, relative. */
237fc4c9
PA
709 if (insn[0] == 0xe8)
710 return 1;
711
712 return 0;
713}
714
237fc4c9
PA
715/* Return non-zero if INSN is a system call, and set *LENGTHP to its
716 length in bytes. Otherwise, return zero. */
1903f0e6 717
237fc4c9 718static int
b55078be 719i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 720{
9a7f938f
JK
721 /* Is it 'int $0x80'? */
722 if ((insn[0] == 0xcd && insn[1] == 0x80)
723 /* Or is it 'sysenter'? */
724 || (insn[0] == 0x0f && insn[1] == 0x34)
725 /* Or is it 'syscall'? */
726 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
727 {
728 *lengthp = 2;
729 return 1;
730 }
731
732 return 0;
733}
734
c2170eef
MM
735/* The gdbarch insn_is_call method. */
736
737static int
738i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
739{
740 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
741
742 read_code (addr, buf, I386_MAX_INSN_LEN);
743 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
744
745 return i386_call_p (insn);
746}
747
748/* The gdbarch insn_is_ret method. */
749
750static int
751i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
752{
753 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
754
755 read_code (addr, buf, I386_MAX_INSN_LEN);
756 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
757
758 return i386_ret_p (insn);
759}
760
761/* The gdbarch insn_is_jump method. */
762
763static int
764i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
765{
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_jmp_p (insn);
772}
773
b55078be
DE
774/* Some kernels may run one past a syscall insn, so we have to cope.
775 Otherwise this is just simple_displaced_step_copy_insn. */
776
777struct displaced_step_closure *
778i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
779 CORE_ADDR from, CORE_ADDR to,
780 struct regcache *regs)
781{
782 size_t len = gdbarch_max_insn_length (gdbarch);
783 gdb_byte *buf = xmalloc (len);
784
785 read_memory (from, buf, len);
786
787 /* GDB may get control back after the insn after the syscall.
788 Presumably this is a kernel bug.
789 If this is a syscall, make sure there's a nop afterwards. */
790 {
791 int syscall_length;
792 gdb_byte *insn;
793
794 insn = i386_skip_prefixes (buf, len);
795 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
796 insn[syscall_length] = NOP_OPCODE;
797 }
798
799 write_memory (to, buf, len);
800
801 if (debug_displaced)
802 {
803 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
804 paddress (gdbarch, from), paddress (gdbarch, to));
805 displaced_step_dump_bytes (gdb_stdlog, buf, len);
806 }
807
808 return (struct displaced_step_closure *) buf;
809}
810
237fc4c9
PA
811/* Fix up the state of registers and memory after having single-stepped
812 a displaced instruction. */
1903f0e6 813
237fc4c9
PA
814void
815i386_displaced_step_fixup (struct gdbarch *gdbarch,
816 struct displaced_step_closure *closure,
817 CORE_ADDR from, CORE_ADDR to,
818 struct regcache *regs)
819{
e17a4113
UW
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821
237fc4c9
PA
822 /* The offset we applied to the instruction's address.
823 This could well be negative (when viewed as a signed 32-bit
824 value), but ULONGEST won't reflect that, so take care when
825 applying it. */
826 ULONGEST insn_offset = to - from;
827
828 /* Since we use simple_displaced_step_copy_insn, our closure is a
829 copy of the instruction. */
830 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
831 /* The start of the insn, needed in case we see some prefixes. */
832 gdb_byte *insn_start = insn;
237fc4c9
PA
833
834 if (debug_displaced)
835 fprintf_unfiltered (gdb_stdlog,
5af949e3 836 "displaced: fixup (%s, %s), "
237fc4c9 837 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
838 paddress (gdbarch, from), paddress (gdbarch, to),
839 insn[0], insn[1]);
237fc4c9
PA
840
841 /* The list of issues to contend with here is taken from
842 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
843 Yay for Free Software! */
844
845 /* Relocate the %eip, if necessary. */
846
1903f0e6
DE
847 /* The instruction recognizers we use assume any leading prefixes
848 have been skipped. */
849 {
850 /* This is the size of the buffer in closure. */
851 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
852 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
853 /* If there are too many prefixes, just ignore the insn.
854 It will fault when run. */
855 if (opcode != NULL)
856 insn = opcode;
857 }
858
237fc4c9
PA
859 /* Except in the case of absolute or indirect jump or call
860 instructions, or a return instruction, the new eip is relative to
861 the displaced instruction; make it relative. Well, signal
862 handler returns don't need relocation either, but we use the
863 value of %eip to recognize those; see below. */
864 if (! i386_absolute_jmp_p (insn)
865 && ! i386_absolute_call_p (insn)
866 && ! i386_ret_p (insn))
867 {
868 ULONGEST orig_eip;
b55078be 869 int insn_len;
237fc4c9
PA
870
871 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
872
873 /* A signal trampoline system call changes the %eip, resuming
874 execution of the main program after the signal handler has
875 returned. That makes them like 'return' instructions; we
876 shouldn't relocate %eip.
877
878 But most system calls don't, and we do need to relocate %eip.
879
880 Our heuristic for distinguishing these cases: if stepping
881 over the system call instruction left control directly after
882 the instruction, the we relocate --- control almost certainly
883 doesn't belong in the displaced copy. Otherwise, we assume
884 the instruction has put control where it belongs, and leave
885 it unrelocated. Goodness help us if there are PC-relative
886 system calls. */
887 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
888 && orig_eip != to + (insn - insn_start) + insn_len
889 /* GDB can get control back after the insn after the syscall.
890 Presumably this is a kernel bug.
891 i386_displaced_step_copy_insn ensures its a nop,
892 we add one to the length for it. */
893 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
894 {
895 if (debug_displaced)
896 fprintf_unfiltered (gdb_stdlog,
897 "displaced: syscall changed %%eip; "
898 "not relocating\n");
899 }
900 else
901 {
902 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
903
1903f0e6
DE
904 /* If we just stepped over a breakpoint insn, we don't backup
905 the pc on purpose; this is to match behaviour without
906 stepping. */
237fc4c9
PA
907
908 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
909
910 if (debug_displaced)
911 fprintf_unfiltered (gdb_stdlog,
912 "displaced: "
5af949e3
UW
913 "relocated %%eip from %s to %s\n",
914 paddress (gdbarch, orig_eip),
915 paddress (gdbarch, eip));
237fc4c9
PA
916 }
917 }
918
919 /* If the instruction was PUSHFL, then the TF bit will be set in the
920 pushed value, and should be cleared. We'll leave this for later,
921 since GDB already messes up the TF flag when stepping over a
922 pushfl. */
923
924 /* If the instruction was a call, the return address now atop the
925 stack is the address following the copied instruction. We need
926 to make it the address following the original instruction. */
927 if (i386_call_p (insn))
928 {
929 ULONGEST esp;
930 ULONGEST retaddr;
931 const ULONGEST retaddr_len = 4;
932
933 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 934 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 935 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 936 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
940 "displaced: relocated return addr at %s to %s\n",
941 paddress (gdbarch, esp),
942 paddress (gdbarch, retaddr));
237fc4c9
PA
943 }
944}
dde08ee1
PA
945
946static void
947append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
948{
949 target_write_memory (*to, buf, len);
950 *to += len;
951}
952
953static void
954i386_relocate_instruction (struct gdbarch *gdbarch,
955 CORE_ADDR *to, CORE_ADDR oldloc)
956{
957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
958 gdb_byte buf[I386_MAX_INSN_LEN];
959 int offset = 0, rel32, newrel;
960 int insn_length;
961 gdb_byte *insn = buf;
962
963 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
964
965 insn_length = gdb_buffered_insn_length (gdbarch, insn,
966 I386_MAX_INSN_LEN, oldloc);
967
968 /* Get past the prefixes. */
969 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
970
971 /* Adjust calls with 32-bit relative addresses as push/jump, with
972 the address pushed being the location where the original call in
973 the user program would return to. */
974 if (insn[0] == 0xe8)
975 {
976 gdb_byte push_buf[16];
977 unsigned int ret_addr;
978
979 /* Where "ret" in the original code will return to. */
980 ret_addr = oldloc + insn_length;
1777feb0 981 push_buf[0] = 0x68; /* pushq $... */
144db827 982 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
983 /* Push the push. */
984 append_insns (to, 5, push_buf);
985
986 /* Convert the relative call to a relative jump. */
987 insn[0] = 0xe9;
988
989 /* Adjust the destination offset. */
990 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
991 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
992 store_signed_integer (insn + 1, 4, byte_order, newrel);
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog,
996 "Adjusted insn rel32=%s at %s to"
997 " rel32=%s at %s\n",
998 hex_string (rel32), paddress (gdbarch, oldloc),
999 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1000
1001 /* Write the adjusted jump into its displaced location. */
1002 append_insns (to, 5, insn);
1003 return;
1004 }
1005
1006 /* Adjust jumps with 32-bit relative addresses. Calls are already
1007 handled above. */
1008 if (insn[0] == 0xe9)
1009 offset = 1;
1010 /* Adjust conditional jumps. */
1011 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1012 offset = 2;
1013
1014 if (offset)
1015 {
1016 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
f4a1794a 1018 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
dde08ee1
PA
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025 }
1026
1027 /* Write the adjusted instructions into their displaced
1028 location. */
1029 append_insns (to, insn_length, buf);
1030}
1031
fc338970 1032\f
acd5c798
MK
1033#ifdef I386_REGNO_TO_SYMMETRY
1034#error "The Sequent Symmetry is no longer supported."
1035#endif
c906108c 1036
acd5c798
MK
1037/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1038 and %esp "belong" to the calling function. Therefore these
1039 registers should be saved if they're going to be modified. */
c906108c 1040
acd5c798
MK
1041/* The maximum number of saved registers. This should include all
1042 registers mentioned above, and %eip. */
a3386186 1043#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1044
1045struct i386_frame_cache
c906108c 1046{
acd5c798
MK
1047 /* Base address. */
1048 CORE_ADDR base;
8fbca658 1049 int base_p;
772562f8 1050 LONGEST sp_offset;
acd5c798
MK
1051 CORE_ADDR pc;
1052
fd13a04a
AC
1053 /* Saved registers. */
1054 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1055 CORE_ADDR saved_sp;
e0c62198 1056 int saved_sp_reg;
acd5c798
MK
1057 int pc_in_eax;
1058
1059 /* Stack space reserved for local variables. */
1060 long locals;
1061};
1062
1063/* Allocate and initialize a frame cache. */
1064
1065static struct i386_frame_cache *
fd13a04a 1066i386_alloc_frame_cache (void)
acd5c798
MK
1067{
1068 struct i386_frame_cache *cache;
1069 int i;
1070
1071 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1072
1073 /* Base address. */
8fbca658 1074 cache->base_p = 0;
acd5c798
MK
1075 cache->base = 0;
1076 cache->sp_offset = -4;
1077 cache->pc = 0;
1078
fd13a04a
AC
1079 /* Saved registers. We initialize these to -1 since zero is a valid
1080 offset (that's where %ebp is supposed to be stored). */
1081 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1082 cache->saved_regs[i] = -1;
acd5c798 1083 cache->saved_sp = 0;
e0c62198 1084 cache->saved_sp_reg = -1;
acd5c798
MK
1085 cache->pc_in_eax = 0;
1086
1087 /* Frameless until proven otherwise. */
1088 cache->locals = -1;
1089
1090 return cache;
1091}
c906108c 1092
acd5c798
MK
1093/* If the instruction at PC is a jump, return the address of its
1094 target. Otherwise, return PC. */
c906108c 1095
acd5c798 1096static CORE_ADDR
e17a4113 1097i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1098{
e17a4113 1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1100 gdb_byte op;
acd5c798
MK
1101 long delta = 0;
1102 int data16 = 0;
c906108c 1103
0865b04a 1104 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1105 return pc;
1106
acd5c798 1107 if (op == 0x66)
c906108c 1108 {
c906108c 1109 data16 = 1;
0865b04a
YQ
1110
1111 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1112 }
1113
acd5c798 1114 switch (op)
c906108c
SS
1115 {
1116 case 0xe9:
fc338970 1117 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1118 if (data16)
1119 {
e17a4113 1120 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1121
fc338970
MK
1122 /* Include the size of the jmp instruction (including the
1123 0x66 prefix). */
acd5c798 1124 delta += 4;
c906108c
SS
1125 }
1126 else
1127 {
e17a4113 1128 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1129
acd5c798
MK
1130 /* Include the size of the jmp instruction. */
1131 delta += 5;
c906108c
SS
1132 }
1133 break;
1134 case 0xeb:
fc338970 1135 /* Relative jump, disp8 (ignore data16). */
e17a4113 1136 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1137
acd5c798 1138 delta += data16 + 2;
c906108c
SS
1139 break;
1140 }
c906108c 1141
acd5c798
MK
1142 return pc + delta;
1143}
fc338970 1144
acd5c798
MK
1145/* Check whether PC points at a prologue for a function returning a
1146 structure or union. If so, it updates CACHE and returns the
1147 address of the first instruction after the code sequence that
1148 removes the "hidden" argument from the stack or CURRENT_PC,
1149 whichever is smaller. Otherwise, return PC. */
c906108c 1150
acd5c798
MK
1151static CORE_ADDR
1152i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1153 struct i386_frame_cache *cache)
c906108c 1154{
acd5c798
MK
1155 /* Functions that return a structure or union start with:
1156
1157 popl %eax 0x58
1158 xchgl %eax, (%esp) 0x87 0x04 0x24
1159 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1160
1161 (the System V compiler puts out the second `xchg' instruction,
1162 and the assembler doesn't try to optimize it, so the 'sib' form
1163 gets generated). This sequence is used to get the address of the
1164 return buffer for a function that returns a structure. */
63c0089f
MK
1165 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1166 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1167 gdb_byte buf[4];
1168 gdb_byte op;
c906108c 1169
acd5c798
MK
1170 if (current_pc <= pc)
1171 return pc;
1172
0865b04a 1173 if (target_read_code (pc, &op, 1))
3dcabaa8 1174 return pc;
c906108c 1175
acd5c798
MK
1176 if (op != 0x58) /* popl %eax */
1177 return pc;
c906108c 1178
0865b04a 1179 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1180 return pc;
1181
acd5c798
MK
1182 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1183 return pc;
c906108c 1184
acd5c798 1185 if (current_pc == pc)
c906108c 1186 {
acd5c798
MK
1187 cache->sp_offset += 4;
1188 return current_pc;
c906108c
SS
1189 }
1190
acd5c798 1191 if (current_pc == pc + 1)
c906108c 1192 {
acd5c798
MK
1193 cache->pc_in_eax = 1;
1194 return current_pc;
1195 }
1196
1197 if (buf[1] == proto1[1])
1198 return pc + 4;
1199 else
1200 return pc + 5;
1201}
1202
1203static CORE_ADDR
1204i386_skip_probe (CORE_ADDR pc)
1205{
1206 /* A function may start with
fc338970 1207
acd5c798
MK
1208 pushl constant
1209 call _probe
1210 addl $4, %esp
fc338970 1211
acd5c798
MK
1212 followed by
1213
1214 pushl %ebp
fc338970 1215
acd5c798 1216 etc. */
63c0089f
MK
1217 gdb_byte buf[8];
1218 gdb_byte op;
fc338970 1219
0865b04a 1220 if (target_read_code (pc, &op, 1))
3dcabaa8 1221 return pc;
acd5c798
MK
1222
1223 if (op == 0x68 || op == 0x6a)
1224 {
1225 int delta;
c906108c 1226
acd5c798
MK
1227 /* Skip past the `pushl' instruction; it has either a one-byte or a
1228 four-byte operand, depending on the opcode. */
c906108c 1229 if (op == 0x68)
acd5c798 1230 delta = 5;
c906108c 1231 else
acd5c798 1232 delta = 2;
c906108c 1233
acd5c798
MK
1234 /* Read the following 8 bytes, which should be `call _probe' (6
1235 bytes) followed by `addl $4,%esp' (2 bytes). */
1236 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1237 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1238 pc += delta + sizeof (buf);
c906108c
SS
1239 }
1240
acd5c798
MK
1241 return pc;
1242}
1243
92dd43fa
MK
1244/* GCC 4.1 and later, can put code in the prologue to realign the
1245 stack pointer. Check whether PC points to such code, and update
1246 CACHE accordingly. Return the first instruction after the code
1247 sequence or CURRENT_PC, whichever is smaller. If we don't
1248 recognize the code, return PC. */
1249
1250static CORE_ADDR
1251i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253{
e0c62198
L
1254 /* There are 2 code sequences to re-align stack before the frame
1255 gets set up:
1256
1257 1. Use a caller-saved saved register:
1258
1259 leal 4(%esp), %reg
1260 andl $-XXX, %esp
1261 pushl -4(%reg)
1262
1263 2. Use a callee-saved saved register:
1264
1265 pushl %reg
1266 leal 8(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1271
1272 0x83 0xe4 0xf0 andl $-16, %esp
1273 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1274 */
1275
1276 gdb_byte buf[14];
1277 int reg;
1278 int offset, offset_and;
1279 static int regnums[8] = {
1280 I386_EAX_REGNUM, /* %eax */
1281 I386_ECX_REGNUM, /* %ecx */
1282 I386_EDX_REGNUM, /* %edx */
1283 I386_EBX_REGNUM, /* %ebx */
1284 I386_ESP_REGNUM, /* %esp */
1285 I386_EBP_REGNUM, /* %ebp */
1286 I386_ESI_REGNUM, /* %esi */
1287 I386_EDI_REGNUM /* %edi */
92dd43fa 1288 };
92dd43fa 1289
0865b04a 1290 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1291 return pc;
1292
1293 /* Check caller-saved saved register. The first instruction has
1294 to be "leal 4(%esp), %reg". */
1295 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1296 {
1297 /* MOD must be binary 10 and R/M must be binary 100. */
1298 if ((buf[1] & 0xc7) != 0x44)
1299 return pc;
1300
1301 /* REG has register number. */
1302 reg = (buf[1] >> 3) & 7;
1303 offset = 4;
1304 }
1305 else
1306 {
1307 /* Check callee-saved saved register. The first instruction
1308 has to be "pushl %reg". */
1309 if ((buf[0] & 0xf8) != 0x50)
1310 return pc;
1311
1312 /* Get register. */
1313 reg = buf[0] & 0x7;
1314
1315 /* The next instruction has to be "leal 8(%esp), %reg". */
1316 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1317 return pc;
1318
1319 /* MOD must be binary 10 and R/M must be binary 100. */
1320 if ((buf[2] & 0xc7) != 0x44)
1321 return pc;
1322
1323 /* REG has register number. Registers in pushl and leal have to
1324 be the same. */
1325 if (reg != ((buf[2] >> 3) & 7))
1326 return pc;
1327
1328 offset = 5;
1329 }
1330
1331 /* Rigister can't be %esp nor %ebp. */
1332 if (reg == 4 || reg == 5)
1333 return pc;
1334
1335 /* The next instruction has to be "andl $-XXX, %esp". */
1336 if (buf[offset + 1] != 0xe4
1337 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1338 return pc;
1339
1340 offset_and = offset;
1341 offset += buf[offset] == 0x81 ? 6 : 3;
1342
1343 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1344 0xfc. REG must be binary 110 and MOD must be binary 01. */
1345 if (buf[offset] != 0xff
1346 || buf[offset + 2] != 0xfc
1347 || (buf[offset + 1] & 0xf8) != 0x70)
1348 return pc;
1349
1350 /* R/M has register. Registers in leal and pushl have to be the
1351 same. */
1352 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1353 return pc;
1354
e0c62198
L
1355 if (current_pc > pc + offset_and)
1356 cache->saved_sp_reg = regnums[reg];
92dd43fa 1357
e0c62198 1358 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1359}
1360
37bdc87e 1361/* Maximum instruction length we need to handle. */
237fc4c9 1362#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1363
1364/* Instruction description. */
1365struct i386_insn
1366{
1367 size_t len;
237fc4c9
PA
1368 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1369 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1370};
1371
a3fcb948 1372/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1373
a3fcb948
JG
1374static int
1375i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1376{
63c0089f 1377 gdb_byte op;
37bdc87e 1378
0865b04a 1379 if (target_read_code (pc, &op, 1))
a3fcb948 1380 return 0;
37bdc87e 1381
a3fcb948 1382 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1383 {
a3fcb948
JG
1384 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1385 int insn_matched = 1;
1386 size_t i;
37bdc87e 1387
a3fcb948
JG
1388 gdb_assert (pattern.len > 1);
1389 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1390
0865b04a 1391 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1392 return 0;
613e8135 1393
a3fcb948
JG
1394 for (i = 1; i < pattern.len; i++)
1395 {
1396 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1397 insn_matched = 0;
37bdc87e 1398 }
a3fcb948
JG
1399 return insn_matched;
1400 }
1401 return 0;
1402}
1403
1404/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1405 the first instruction description that matches. Otherwise, return
1406 NULL. */
1407
1408static struct i386_insn *
1409i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1410{
1411 struct i386_insn *pattern;
1412
1413 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1414 {
1415 if (i386_match_pattern (pc, *pattern))
1416 return pattern;
37bdc87e
MK
1417 }
1418
1419 return NULL;
1420}
1421
a3fcb948
JG
1422/* Return whether PC points inside a sequence of instructions that
1423 matches INSN_PATTERNS. */
1424
1425static int
1426i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1427{
1428 CORE_ADDR current_pc;
1429 int ix, i;
a3fcb948
JG
1430 struct i386_insn *insn;
1431
1432 insn = i386_match_insn (pc, insn_patterns);
1433 if (insn == NULL)
1434 return 0;
1435
8bbdd3f4 1436 current_pc = pc;
a3fcb948
JG
1437 ix = insn - insn_patterns;
1438 for (i = ix - 1; i >= 0; i--)
1439 {
8bbdd3f4
MK
1440 current_pc -= insn_patterns[i].len;
1441
a3fcb948
JG
1442 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1443 return 0;
a3fcb948
JG
1444 }
1445
1446 current_pc = pc + insn->len;
1447 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1448 {
1449 if (!i386_match_pattern (current_pc, *insn))
1450 return 0;
1451
1452 current_pc += insn->len;
1453 }
1454
1455 return 1;
1456}
1457
37bdc87e
MK
1458/* Some special instructions that might be migrated by GCC into the
1459 part of the prologue that sets up the new stack frame. Because the
1460 stack frame hasn't been setup yet, no registers have been saved
1461 yet, and only the scratch registers %eax, %ecx and %edx can be
1462 touched. */
1463
1464struct i386_insn i386_frame_setup_skip_insns[] =
1465{
1777feb0 1466 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1467
1468 ??? Should we handle 16-bit operand-sizes here? */
1469
1470 /* `movb imm8, %al' and `movb imm8, %ah' */
1471 /* `movb imm8, %cl' and `movb imm8, %ch' */
1472 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1473 /* `movb imm8, %dl' and `movb imm8, %dh' */
1474 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1475 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1476 { 5, { 0xb8 }, { 0xfe } },
1477 /* `movl imm32, %edx' */
1478 { 5, { 0xba }, { 0xff } },
1479
1480 /* Check for `mov imm32, r32'. Note that there is an alternative
1481 encoding for `mov m32, %eax'.
1482
1483 ??? Should we handle SIB adressing here?
1484 ??? Should we handle 16-bit operand-sizes here? */
1485
1486 /* `movl m32, %eax' */
1487 { 5, { 0xa1 }, { 0xff } },
1488 /* `movl m32, %eax' and `mov; m32, %ecx' */
1489 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1490 /* `movl m32, %edx' */
1491 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1492
1493 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1494 Because of the symmetry, there are actually two ways to encode
1495 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1496 opcode bytes 0x31 and 0x33 for `xorl'. */
1497
1498 /* `subl %eax, %eax' */
1499 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1500 /* `subl %ecx, %ecx' */
1501 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1502 /* `subl %edx, %edx' */
1503 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1504 /* `xorl %eax, %eax' */
1505 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1506 /* `xorl %ecx, %ecx' */
1507 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1508 /* `xorl %edx, %edx' */
1509 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1510 { 0 }
1511};
1512
e11481da
PM
1513
1514/* Check whether PC points to a no-op instruction. */
1515static CORE_ADDR
1516i386_skip_noop (CORE_ADDR pc)
1517{
1518 gdb_byte op;
1519 int check = 1;
1520
0865b04a 1521 if (target_read_code (pc, &op, 1))
3dcabaa8 1522 return pc;
e11481da
PM
1523
1524 while (check)
1525 {
1526 check = 0;
1527 /* Ignore `nop' instruction. */
1528 if (op == 0x90)
1529 {
1530 pc += 1;
0865b04a 1531 if (target_read_code (pc, &op, 1))
3dcabaa8 1532 return pc;
e11481da
PM
1533 check = 1;
1534 }
1535 /* Ignore no-op instruction `mov %edi, %edi'.
1536 Microsoft system dlls often start with
1537 a `mov %edi,%edi' instruction.
1538 The 5 bytes before the function start are
1539 filled with `nop' instructions.
1540 This pattern can be used for hot-patching:
1541 The `mov %edi, %edi' instruction can be replaced by a
1542 near jump to the location of the 5 `nop' instructions
1543 which can be replaced by a 32-bit jump to anywhere
1544 in the 32-bit address space. */
1545
1546 else if (op == 0x8b)
1547 {
0865b04a 1548 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1549 return pc;
1550
e11481da
PM
1551 if (op == 0xff)
1552 {
1553 pc += 2;
0865b04a 1554 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1555 return pc;
1556
e11481da
PM
1557 check = 1;
1558 }
1559 }
1560 }
1561 return pc;
1562}
1563
acd5c798
MK
1564/* Check whether PC points at a code that sets up a new stack frame.
1565 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1566 instruction after the sequence that sets up the frame or LIMIT,
1567 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1568
1569static CORE_ADDR
e17a4113
UW
1570i386_analyze_frame_setup (struct gdbarch *gdbarch,
1571 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1572 struct i386_frame_cache *cache)
1573{
e17a4113 1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1575 struct i386_insn *insn;
63c0089f 1576 gdb_byte op;
26604a34 1577 int skip = 0;
acd5c798 1578
37bdc87e
MK
1579 if (limit <= pc)
1580 return limit;
acd5c798 1581
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8 1583 return pc;
acd5c798 1584
c906108c 1585 if (op == 0x55) /* pushl %ebp */
c5aa993b 1586 {
acd5c798
MK
1587 /* Take into account that we've executed the `pushl %ebp' that
1588 starts this instruction sequence. */
fd13a04a 1589 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1590 cache->sp_offset += 4;
37bdc87e 1591 pc++;
acd5c798
MK
1592
1593 /* If that's all, return now. */
37bdc87e
MK
1594 if (limit <= pc)
1595 return limit;
26604a34 1596
b4632131 1597 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1598 GCC into the prologue and skip them. At this point in the
1599 prologue, code should only touch the scratch registers %eax,
1600 %ecx and %edx, so while the number of posibilities is sheer,
1601 it is limited.
5daa5b4e 1602
26604a34
MK
1603 Make sure we only skip these instructions if we later see the
1604 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1605 while (pc + skip < limit)
26604a34 1606 {
37bdc87e
MK
1607 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1608 if (insn == NULL)
1609 break;
b4632131 1610
37bdc87e 1611 skip += insn->len;
26604a34
MK
1612 }
1613
37bdc87e
MK
1614 /* If that's all, return now. */
1615 if (limit <= pc + skip)
1616 return limit;
1617
0865b04a 1618 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1619 return pc + skip;
37bdc87e 1620
30f8135b
YQ
1621 /* The i386 prologue looks like
1622
1623 push %ebp
1624 mov %esp,%ebp
1625 sub $0x10,%esp
1626
1627 and a different prologue can be generated for atom.
1628
1629 push %ebp
1630 lea (%esp),%ebp
1631 lea -0x10(%esp),%esp
1632
1633 We handle both of them here. */
1634
acd5c798 1635 switch (op)
c906108c 1636 {
30f8135b 1637 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1638 case 0x8b:
0865b04a 1639 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1640 != 0xec)
37bdc87e 1641 return pc;
30f8135b 1642 pc += (skip + 2);
c906108c
SS
1643 break;
1644 case 0x89:
0865b04a 1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1646 != 0xe5)
37bdc87e 1647 return pc;
30f8135b
YQ
1648 pc += (skip + 2);
1649 break;
1650 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1651 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1652 != 0x242c)
1653 return pc;
1654 pc += (skip + 3);
c906108c
SS
1655 break;
1656 default:
37bdc87e 1657 return pc;
c906108c 1658 }
acd5c798 1659
26604a34
MK
1660 /* OK, we actually have a frame. We just don't know how large
1661 it is yet. Set its size to zero. We'll adjust it if
1662 necessary. We also now commit to skipping the special
1663 instructions mentioned before. */
acd5c798
MK
1664 cache->locals = 0;
1665
1666 /* If that's all, return now. */
37bdc87e
MK
1667 if (limit <= pc)
1668 return limit;
acd5c798 1669
fc338970
MK
1670 /* Check for stack adjustment
1671
acd5c798 1672 subl $XXX, %esp
30f8135b
YQ
1673 or
1674 lea -XXX(%esp),%esp
fc338970 1675
fd35795f 1676 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1677 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1678 if (target_read_code (pc, &op, 1))
3dcabaa8 1679 return pc;
c906108c
SS
1680 if (op == 0x83)
1681 {
fd35795f 1682 /* `subl' with 8-bit immediate. */
0865b04a 1683 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1684 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1685 return pc;
acd5c798 1686
37bdc87e
MK
1687 /* `subl' with signed 8-bit immediate (though it wouldn't
1688 make sense to be negative). */
0865b04a 1689 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1690 return pc + 3;
c906108c
SS
1691 }
1692 else if (op == 0x81)
1693 {
fd35795f 1694 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1695 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1696 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1697 return pc;
acd5c798 1698
fd35795f 1699 /* It is `subl' with a 32-bit immediate. */
0865b04a 1700 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1701 return pc + 6;
c906108c 1702 }
30f8135b
YQ
1703 else if (op == 0x8d)
1704 {
1705 /* The ModR/M byte is 0x64. */
0865b04a 1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1707 return pc;
1708 /* 'lea' with 8-bit displacement. */
0865b04a 1709 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1710 return pc + 4;
1711 }
c906108c
SS
1712 else
1713 {
30f8135b 1714 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1715 return pc;
c906108c
SS
1716 }
1717 }
37bdc87e 1718 else if (op == 0xc8) /* enter */
c906108c 1719 {
0865b04a 1720 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1721 return pc + 4;
c906108c 1722 }
21d0e8a4 1723
acd5c798 1724 return pc;
21d0e8a4
MK
1725}
1726
acd5c798
MK
1727/* Check whether PC points at code that saves registers on the stack.
1728 If so, it updates CACHE and returns the address of the first
1729 instruction after the register saves or CURRENT_PC, whichever is
1730 smaller. Otherwise, return PC. */
6bff26de
MK
1731
1732static CORE_ADDR
acd5c798
MK
1733i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1734 struct i386_frame_cache *cache)
6bff26de 1735{
99ab4326 1736 CORE_ADDR offset = 0;
63c0089f 1737 gdb_byte op;
99ab4326 1738 int i;
c0d1d883 1739
99ab4326
MK
1740 if (cache->locals > 0)
1741 offset -= cache->locals;
1742 for (i = 0; i < 8 && pc < current_pc; i++)
1743 {
0865b04a 1744 if (target_read_code (pc, &op, 1))
3dcabaa8 1745 return pc;
99ab4326
MK
1746 if (op < 0x50 || op > 0x57)
1747 break;
0d17c81d 1748
99ab4326
MK
1749 offset -= 4;
1750 cache->saved_regs[op - 0x50] = offset;
1751 cache->sp_offset += 4;
1752 pc++;
6bff26de
MK
1753 }
1754
acd5c798 1755 return pc;
22797942
AC
1756}
1757
acd5c798
MK
1758/* Do a full analysis of the prologue at PC and update CACHE
1759 accordingly. Bail out early if CURRENT_PC is reached. Return the
1760 address where the analysis stopped.
ed84f6c1 1761
fc338970
MK
1762 We handle these cases:
1763
1764 The startup sequence can be at the start of the function, or the
1765 function can start with a branch to startup code at the end.
1766
1767 %ebp can be set up with either the 'enter' instruction, or "pushl
1768 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1769 once used in the System V compiler).
1770
1771 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1772 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1773 16-bit unsigned argument for space to allocate, and the 'addl'
1774 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1775
1776 Next, the registers used by this function are pushed. With the
1777 System V compiler they will always be in the order: %edi, %esi,
1778 %ebx (and sometimes a harmless bug causes it to also save but not
1779 restore %eax); however, the code below is willing to see the pushes
1780 in any order, and will handle up to 8 of them.
1781
1782 If the setup sequence is at the end of the function, then the next
1783 instruction will be a branch back to the start. */
c906108c 1784
acd5c798 1785static CORE_ADDR
e17a4113
UW
1786i386_analyze_prologue (struct gdbarch *gdbarch,
1787 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1788 struct i386_frame_cache *cache)
c906108c 1789{
e11481da 1790 pc = i386_skip_noop (pc);
e17a4113 1791 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1792 pc = i386_analyze_struct_return (pc, current_pc, cache);
1793 pc = i386_skip_probe (pc);
92dd43fa 1794 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1795 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1796 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1797}
1798
fc338970 1799/* Return PC of first real instruction. */
c906108c 1800
3a1e71e3 1801static CORE_ADDR
6093d2eb 1802i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1803{
e17a4113
UW
1804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1805
63c0089f 1806 static gdb_byte pic_pat[6] =
acd5c798
MK
1807 {
1808 0xe8, 0, 0, 0, 0, /* call 0x0 */
1809 0x5b, /* popl %ebx */
c5aa993b 1810 };
acd5c798
MK
1811 struct i386_frame_cache cache;
1812 CORE_ADDR pc;
63c0089f 1813 gdb_byte op;
acd5c798 1814 int i;
56bf0743 1815 CORE_ADDR func_addr;
4e879fc2 1816
56bf0743
KB
1817 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1818 {
1819 CORE_ADDR post_prologue_pc
1820 = skip_prologue_using_sal (gdbarch, func_addr);
1821 struct symtab *s = find_pc_symtab (func_addr);
1822
1823 /* Clang always emits a line note before the prologue and another
1824 one after. We trust clang to emit usable line notes. */
1825 if (post_prologue_pc
1826 && (s != NULL
1827 && s->producer != NULL
1828 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
e0f33b1f 1832 cache.locals = -1;
e17a4113 1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1834 if (cache.locals < 0)
1835 return start_pc;
c5aa993b 1836
acd5c798 1837 /* Found valid frame setup. */
c906108c 1838
fc338970
MK
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
acd5c798
MK
1841 %ebx:
1842
fc338970
MK
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
c906108c
SS
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
c5aa993b 1851
c906108c
SS
1852 for (i = 0; i < 6; i++)
1853 {
0865b04a 1854 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1855 return pc;
1856
c5aa993b 1857 if (pic_pat[i] != op)
c906108c
SS
1858 break;
1859 }
1860 if (i == 6)
1861 {
acd5c798
MK
1862 int delta = 6;
1863
0865b04a 1864 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1865 return pc;
c906108c 1866
c5aa993b 1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1868 {
0865b04a 1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1870
fc338970 1871 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1872 delta += 3;
fc338970 1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1874 delta += 6;
fc338970 1875 else /* Unexpected instruction. */
acd5c798
MK
1876 delta = 0;
1877
0865b04a 1878 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1879 return pc;
c906108c 1880 }
acd5c798 1881
c5aa993b 1882 /* addl y,%ebx */
acd5c798 1883 if (delta > 0 && op == 0x81
0865b04a 1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1885 == 0xc3)
c906108c 1886 {
acd5c798 1887 pc += delta + 6;
c906108c
SS
1888 }
1889 }
c5aa993b 1890
e63bbc88
MK
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
e17a4113
UW
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1896
1897 return pc;
c906108c
SS
1898}
1899
4309257c
PM
1900/* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903CORE_ADDR
1904i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905{
e17a4113 1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1907 gdb_byte op;
1908
0865b04a 1909 if (target_read_code (pc, &op, 1))
3dcabaa8 1910 return pc;
4309257c
PM
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
0865b04a 1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1919 struct bound_minimal_symbol s;
e17a4113 1920 CORE_ADDR call_dest;
4309257c 1921
e17a4113 1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1925 if (s.minsym != NULL
efd66ac6
TT
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933}
1934
acd5c798 1935/* This function is 64-bit safe. */
93924b6b 1936
acd5c798
MK
1937static CORE_ADDR
1938i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1939{
63c0089f 1940 gdb_byte buf[8];
acd5c798 1941
875f8d0e 1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1944}
acd5c798 1945\f
93924b6b 1946
acd5c798 1947/* Normal frames. */
c5aa993b 1948
8fbca658
PA
1949static void
1950i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
a7769679 1952{
e17a4113
UW
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1955 gdb_byte buf[4];
acd5c798
MK
1956 int i;
1957
8fbca658 1958 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
10458914 1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1971 if (cache->base == 0)
620fa63a
PA
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
acd5c798
MK
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1979
acd5c798 1980 if (cache->pc != 0)
e17a4113
UW
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
acd5c798
MK
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
e0c62198 1994 if (cache->saved_sp_reg != -1)
92dd43fa 1995 {
8fbca658
PA
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
92dd43fa
MK
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
7618e12b 2007 else if (cache->pc != 0
0865b04a 2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2009 {
7618e12b
DJ
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
10458914 2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
92dd43fa 2018 }
7618e12b
DJ
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2025 }
2026
8fbca658
PA
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
ca9d61b9
JB
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
8fbca658
PA
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
acd5c798
MK
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
8fbca658 2038 else if (cache->saved_sp == 0)
92dd43fa 2039 cache->saved_sp = cache->base + 8;
a7769679 2040
acd5c798
MK
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
acd5c798 2046
8fbca658
PA
2047 cache->base_p = 1;
2048}
2049
2050static struct i386_frame_cache *
2051i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052{
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
2179/* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183static int
2184i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185{
2186 gdb_byte insn;
e0d00bc7
JK
2187 struct symtab *symtab;
2188
2189 symtab = find_pc_symtab (pc);
2190 if (symtab && symtab->epilogue_unwind_valid)
2191 return 0;
06da04c6
MS
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200}
2201
2202static int
2203i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206{
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212}
2213
2214static struct i386_frame_cache *
2215i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216{
8fbca658 2217 volatile struct gdb_exception ex;
06da04c6 2218 struct i386_frame_cache *cache;
0d6c2135 2219 CORE_ADDR sp;
06da04c6
MS
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
8fbca658
PA
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
0d6c2135 2229 cache->pc = get_frame_func (this_frame);
06da04c6 2230
0d6c2135
MK
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
8fbca658 2236 cache->saved_sp = cache->base + 8;
8fbca658 2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2238
8fbca658
PA
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
06da04c6
MS
2243
2244 return cache;
2245}
2246
8fbca658
PA
2247static enum unwind_stop_reason
2248i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250{
0d6c2135
MK
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258}
2259
06da04c6
MS
2260static void
2261i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264{
0d6c2135
MK
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2267
8fbca658 2268 if (!cache->base_p)
5ce0145d
PA
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2272}
2273
0d6c2135
MK
2274static struct value *
2275i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277{
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282}
2283
06da04c6
MS
2284static const struct frame_unwind i386_epilogue_frame_unwind =
2285{
2286 NORMAL_FRAME,
8fbca658 2287 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2288 i386_epilogue_frame_this_id,
0d6c2135 2289 i386_epilogue_frame_prev_register,
06da04c6
MS
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292};
acd5c798
MK
2293\f
2294
a3fcb948
JG
2295/* Stack-based trampolines. */
2296
2297/* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302/* Static chain passed in register. */
2303
2304struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305{
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313};
2314
2315/* Static chain passed on stack (when regparm=3). */
2316
2317struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318{
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326};
2327
2328/* Return whether PC points inside a stack trampoline. */
2329
2330static int
6df81a63 2331i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2332{
2333 gdb_byte insn;
2c02bd72 2334 const char *name;
a3fcb948
JG
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352}
2353
2354static int
2355i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2356 struct frame_info *this_frame,
2357 void **this_cache)
a3fcb948
JG
2358{
2359 if (frame_relative_level (this_frame) == 0)
6df81a63 2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2361 else
2362 return 0;
2363}
2364
2365static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366{
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
0d6c2135 2370 i386_epilogue_frame_prev_register,
a3fcb948
JG
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373};
2374\f
6710bf39
SS
2375/* Generate a bytecode expression to get the value of the saved PC. */
2376
2377static void
2378i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381{
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389}
2390\f
a3fcb948 2391
acd5c798
MK
2392/* Signal trampolines. */
2393
2394static struct i386_frame_cache *
10458914 2395i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2396{
e17a4113
UW
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2400 volatile struct gdb_exception ex;
acd5c798 2401 struct i386_frame_cache *cache;
acd5c798 2402 CORE_ADDR addr;
63c0089f 2403 gdb_byte buf[4];
acd5c798
MK
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
fd13a04a 2408 cache = i386_alloc_frame_cache ();
acd5c798 2409
8fbca658 2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2411 {
8fbca658
PA
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2414
8fbca658
PA
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
a3386186 2419
8fbca658
PA
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
a3386186 2433 }
8fbca658
PA
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
acd5c798
MK
2436
2437 *this_cache = cache;
2438 return cache;
2439}
2440
8fbca658
PA
2441static enum unwind_stop_reason
2442i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444{
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452}
2453
acd5c798 2454static void
10458914 2455i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2456 struct frame_id *this_id)
2457{
2458 struct i386_frame_cache *cache =
10458914 2459 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2460
8fbca658 2461 if (!cache->base_p)
5ce0145d
PA
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
acd5c798
MK
2468}
2469
10458914
DJ
2470static struct value *
2471i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
acd5c798
MK
2473{
2474 /* Make sure we've initialized the cache. */
10458914 2475 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2476
10458914 2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2478}
c0d1d883 2479
10458914
DJ
2480static int
2481i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
acd5c798 2484{
10458914 2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2486
911bc6ee
MK
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
10458914 2490 return 0;
1c3545ae 2491
911bc6ee
MK
2492 if (tdep->sigtramp_p != NULL)
2493 {
10458914
DJ
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
911bc6ee
MK
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
10458914 2500 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2504 return 1;
911bc6ee 2505 }
acd5c798 2506
10458914 2507 return 0;
acd5c798 2508}
10458914
DJ
2509
2510static const struct frame_unwind i386_sigtramp_frame_unwind =
2511{
2512 SIGTRAMP_FRAME,
8fbca658 2513 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518};
acd5c798
MK
2519\f
2520
2521static CORE_ADDR
10458914 2522i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2523{
10458914 2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2525
2526 return cache->base;
2527}
2528
2529static const struct frame_base i386_frame_base =
2530{
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535};
2536
acd5c798 2537static struct frame_id
10458914 2538i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2539{
acd5c798
MK
2540 CORE_ADDR fp;
2541
10458914 2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2543
3e210248 2544 /* See the end of i386_push_dummy_call. */
10458914 2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2546}
e04e5beb
JM
2547
2548/* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551static CORE_ADDR
2552i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553{
2554 return sp & -(CORE_ADDR)16;
2555}
fc338970 2556\f
c906108c 2557
fc338970
MK
2558/* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2560 structure from which we extract the address that we will land at.
28bcfd30 2561 This address is copied into PC. This routine returns non-zero on
436675d3 2562 success. */
c906108c 2563
8201327c 2564static int
60ade65d 2565i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2566{
436675d3 2567 gdb_byte buf[4];
c906108c 2568 CORE_ADDR sp, jb_addr;
20a6ec49 2569 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2572
8201327c
MK
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
c906108c
SS
2576 return 0;
2577
436675d3 2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2579 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2580 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2581 return 0;
2582
e17a4113 2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2585 return 0;
c906108c 2586
e17a4113 2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2588 return 1;
2589}
fc338970 2590\f
c906108c 2591
7ccc1c74
JM
2592/* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597static int
2598i386_16_byte_align_p (struct type *type)
2599{
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618}
2619
a9b8d892
JK
2620/* Implementation for set_gdbarch_push_dummy_code. */
2621
2622static CORE_ADDR
2623i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627{
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634}
2635
3a1e71e3 2636static CORE_ADDR
7d9b040b 2637i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
22f8ba57 2641{
e17a4113 2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2643 gdb_byte buf[4];
acd5c798 2644 int i;
7ccc1c74
JM
2645 int write_pass;
2646 int args_space = 0;
acd5c798 2647
7ccc1c74
JM
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2653 {
7ccc1c74 2654 int args_space_used = 0;
7ccc1c74
JM
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
e17a4113 2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2672
7ccc1c74
JM
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
acd5c798 2677
7ccc1c74
JM
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
acd5c798 2681
7ccc1c74
JM
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
22f8ba57 2685
7ccc1c74
JM
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2692 args_space = align_up (args_space, 16);
7ccc1c74
JM
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
7ccc1c74 2699 sp -= args_space;
284c5a60
MK
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
7ccc1c74 2706 }
22f8ba57
MK
2707 }
2708
acd5c798
MK
2709 /* Store return address. */
2710 sp -= 4;
e17a4113 2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
e17a4113 2715 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
3e210248
AC
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2723 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2724 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
22f8ba57
MK
2731}
2732
1a309862
MK
2733/* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
ef9dff19 2735 size and alignment match an integer type). */
acd5c798
MK
2736#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2738
c5e656c1
MK
2739/* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
1a309862 2741
3a1e71e3 2742static void
c5e656c1 2743i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2744 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2745{
c5e656c1 2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2747 int len = TYPE_LENGTH (type);
63c0089f 2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2749
1e8d0a7b 2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2751 {
5716833c 2752 if (tdep->st0_regnum < 0)
1a309862 2753 {
8a3fe4f8 2754 warning (_("Cannot find floating-point return value."));
1a309862 2755 memset (valbuf, 0, len);
ef9dff19 2756 return;
1a309862
MK
2757 }
2758
c6ba6f0d
MK
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
acd5c798 2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2765 }
2766 else
c5aa993b 2767 {
875f8d0e
UW
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2770
2771 if (len <= low_size)
00f8375e 2772 {
0818c12a 2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2774 memcpy (valbuf, buf, len);
2775 }
d4f3574e
SS
2776 else if (len <= (low_size + high_size))
2777 {
0818c12a 2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2779 memcpy (valbuf, buf, low_size);
0818c12a 2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2781 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2782 }
2783 else
8e65ff28 2784 internal_error (__FILE__, __LINE__,
1777feb0
MS
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
c906108c
SS
2787 }
2788}
2789
c5e656c1
MK
2790/* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
ef9dff19 2792
3a1e71e3 2793static void
c5e656c1 2794i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2795 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2796{
c5e656c1 2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2798 int len = TYPE_LENGTH (type);
2799
1e8d0a7b 2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2801 {
3d7f4f49 2802 ULONGEST fstat;
63c0089f 2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2804
5716833c 2805 if (tdep->st0_regnum < 0)
ef9dff19 2806 {
8a3fe4f8 2807 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2808 return;
2809 }
2810
635b0cc1
MK
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
c6ba6f0d
MK
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
27067745 2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2821
635b0cc1
MK
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
20a6ec49 2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2827 fstat |= (7 << 11);
20a6ec49 2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2829
635b0cc1
MK
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
20a6ec49 2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2834 }
2835 else
2836 {
875f8d0e
UW
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2839
2840 if (len <= low_size)
3d7f4f49 2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2842 else if (len <= (low_size + high_size))
2843 {
3d7f4f49
MK
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2846 len - low_size, valbuf + low_size);
ef9dff19
MK
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
e2e0b3e5 2850 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2851 }
2852}
fc338970 2853\f
ef9dff19 2854
8201327c
MK
2855/* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857static const char default_struct_convention[] = "default";
2858static const char pcc_struct_convention[] = "pcc";
2859static const char reg_struct_convention[] = "reg";
40478521 2860static const char *const valid_conventions[] =
8201327c
MK
2861{
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866};
2867static const char *struct_convention = default_struct_convention;
2868
0e4377e1
JB
2869/* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
c5e656c1 2872
8201327c 2873static int
c5e656c1 2874i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2875{
c5e656c1
MK
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
8201327c 2879
0e4377e1
JB
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
9edde48e
MK
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
c5e656c1
MK
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899}
2900
2901/* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907static enum return_value_convention
6a3a010b 2908i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2911{
2912 enum type_code code = TYPE_CODE (type);
2913
5daa78cc
TJB
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
0e4377e1
JB
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
31db7b6c
MK
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
c5e656c1
MK
2951
2952 /* This special case is for structures consisting of a single
9edde48e
MK
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
c5e656c1
MK
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2962 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2963 readbuf, writebuf);
c5e656c1
MK
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2970
c5e656c1 2971 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2972}
2973\f
2974
27067745
UW
2975struct type *
2976i387_ext_type (struct gdbarch *gdbarch)
2977{
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
90884b2b
L
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
27067745
UW
2985
2986 return tdep->i387_ext_type;
2987}
2988
1dbcd68c
WT
2989/* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993static struct type *
2994i386_bnd_type (struct gdbarch *gdbarch)
2995{
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005#if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011#endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024}
3025
01f9f808
MS
3026/* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029static struct type *
3030i386_zmm_type (struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039#if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050#endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077}
3078
c131fcee
L
3079/* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082static struct type *
3083i386_ymm_type (struct gdbarch *gdbarch)
3084{
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092#if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103#endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
0c5acf93 3125 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130}
3131
794ac428 3132/* Construct vector type for MMX registers. */
90884b2b 3133static struct type *
794ac428
UW
3134i386_mmx_type (struct gdbarch *gdbarch)
3135{
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
df4df182
UW
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
794ac428
UW
3142 /* The type we're building is this: */
3143#if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151#endif
3152
3153 struct type *t;
3154
e9bb382b
UW
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3159 append_composite_type_field (t, "v2_int32",
df4df182 3160 init_vector_type (bt->builtin_int32, 2));
794ac428 3161 append_composite_type_field (t, "v4_int16",
df4df182 3162 init_vector_type (bt->builtin_int16, 4));
794ac428 3163 append_composite_type_field (t, "v8_int8",
df4df182 3164 init_vector_type (bt->builtin_int8, 8));
794ac428 3165
876cecd0 3166 TYPE_VECTOR (t) = 1;
794ac428
UW
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172}
3173
d7a0d72c 3174/* Return the GDB type object for the "standard" data type of data in
1777feb0 3175 register REGNUM. */
d7a0d72c 3176
fff4548b 3177struct type *
90884b2b 3178i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3179{
1dbcd68c
WT
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
1ba53b71
L
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
c131fcee
L
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
01f9f808
MS
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
1ba53b71
L
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
01f9f808
MS
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
1ba53b71
L
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3204}
3205
28fc6740 3206/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3207 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3208
3209static int
c86c27af 3210i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3211{
5716833c
MK
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
28fc6740
AC
3214 ULONGEST fstat;
3215 int tos;
c86c27af 3216
5716833c 3217 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3219 tos = (fstat >> 11) & 0x7;
5716833c
MK
3220 fpreg = (mmxreg + tos) % 8;
3221
20a6ec49 3222 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3223}
3224
3543a589
TT
3225/* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229void
3230i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
28fc6740 3234{
1ba53b71 3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3236 enum register_status status;
3543a589 3237 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3238
5716833c 3239 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3240 {
c86c27af
MK
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
28fc6740 3243 /* Extract (always little endian). */
05d1431c
PA
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3543a589
TT
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3250 }
3251 else
1ba53b71
L
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
1ba53b71 3257
1dbcd68c
WT
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
01f9f808
MS
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
1dbcd68c 3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
1777feb0 3351 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3543a589
TT
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
c131fcee 3359 /* Read upper 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
c131fcee 3367 }
01f9f808
MS
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
c131fcee 3388 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
05d1431c
PA
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
1ba53b71
L
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
05d1431c
PA
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
1ba53b71
L
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3543a589
TT
3421}
3422
3423static struct value *
3424i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427{
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3435
3543a589 3436 return result;
28fc6740
AC
3437}
3438
1ba53b71 3439void
28fc6740 3440i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3441 int regnum, const gdb_byte *buf)
28fc6740 3442{
1ba53b71
L
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
5716833c 3445 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3446 {
c86c27af
MK
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
28fc6740 3449 /* Read ... */
1ba53b71 3450 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3451 /* ... Modify ... (always little endian). */
1ba53b71 3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3453 /* ... Write. */
1ba53b71 3454 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3455 }
3456 else
1ba53b71
L
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
1dbcd68c
WT
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
01f9f808
MS
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
1dbcd68c 3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
01f9f808
MS
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
c131fcee 3554 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
28fc6740 3585}
ff2e87ac
AC
3586\f
3587
ff2e87ac
AC
3588/* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591static int
3592i386_next_regnum (int regnum)
3593{
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
de5b9bb9 3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3612 return next_regnum[regnum];
28fc6740 3613
ff2e87ac
AC
3614 return -1;
3615}
3616
3617/* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
d7a0d72c 3619
3a1e71e3 3620static int
1777feb0
MS
3621i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
d7a0d72c 3623{
de5b9bb9
MK
3624 int len = TYPE_LENGTH (type);
3625
ff2e87ac
AC
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
ff2e87ac 3644
0abe36f5 3645 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3646}
3647
ff2e87ac
AC
3648/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
ac27f131 3650
8dccd430 3651static int
ff2e87ac 3652i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
ac27f131 3655{
20a6ec49 3656 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3657 int len = TYPE_LENGTH (type);
de5b9bb9 3658
20a6ec49 3659 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
ff2e87ac 3662
fd35795f 3663 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3666
de5b9bb9
MK
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
20a6ec49 3670 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3671
8dccd430
PA
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
de5b9bb9
MK
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
42835c2b 3679 to += 4;
de5b9bb9 3680 }
8dccd430
PA
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
ac27f131
MK
3684}
3685
ff2e87ac
AC
3686/* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
ac27f131 3688
3a1e71e3 3689static void
ff2e87ac 3690i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3691 struct type *type, const gdb_byte *from)
ac27f131 3692{
de5b9bb9 3693 int len = TYPE_LENGTH (type);
de5b9bb9 3694
20a6ec49 3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3696 {
d532c08f
MK
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3d261580 3700
fd35795f 3701 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3704
de5b9bb9
MK
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
875f8d0e 3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3709
42835c2b 3710 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
42835c2b 3713 from += 4;
de5b9bb9 3714 }
ac27f131 3715}
ff2e87ac 3716\f
7fdafb5a
MK
3717/* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3720
20187ed5 3721void
473f17b0
MK
3722i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724{
09424cff
AA
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3727 const gdb_byte *regs = gregs;
473f17b0
MK
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738}
3739
7fdafb5a
MK
3740/* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
ecc37a5a 3745static void
7fdafb5a
MK
3746i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749{
09424cff
AA
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
09424cff
AA
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3775
66a72d25
MK
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
473f17b0
MK
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784}
8446b36a 3785
2f305df1
MK
3786/* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
7fdafb5a
MK
3790
3791static void
3792i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795{
09424cff
AA
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807}
3808
ecc37a5a
AA
3809/* Register set definitions. */
3810
3811const struct regset i386_gregset =
3812 {
3813 NULL, i386_supply_gregset, i386_collect_gregset
3814 };
3815
8f0435f7 3816const struct regset i386_fpregset =
ecc37a5a
AA
3817 {
3818 NULL, i386_supply_fpregset, i386_collect_fpregset
3819 };
3820
490496c3 3821/* Default iterator over core file register note sections. */
8446b36a 3822
490496c3
AA
3823void
3824i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3825 iterate_over_regset_sections_cb *cb,
3826 void *cb_data,
3827 const struct regcache *regcache)
8446b36a
MK
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
490496c3
AA
3831 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3832 if (tdep->sizeof_fpregset)
3833 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3834}
473f17b0 3835\f
fc338970 3836
fc338970 3837/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3838
3839CORE_ADDR
e17a4113
UW
3840i386_pe_skip_trampoline_code (struct frame_info *frame,
3841 CORE_ADDR pc, char *name)
c906108c 3842{
e17a4113
UW
3843 struct gdbarch *gdbarch = get_frame_arch (frame);
3844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3845
3846 /* jmp *(dest) */
3847 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3848 {
e17a4113
UW
3849 unsigned long indirect =
3850 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3851 struct minimal_symbol *indsym =
7cbd4a93 3852 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3853 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3854
c5aa993b 3855 if (symname)
c906108c 3856 {
c5aa993b
JM
3857 if (strncmp (symname, "__imp_", 6) == 0
3858 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3859 return name ? 1 :
3860 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3861 }
3862 }
fc338970 3863 return 0; /* Not a trampoline. */
c906108c 3864}
fc338970
MK
3865\f
3866
10458914
DJ
3867/* Return whether the THIS_FRAME corresponds to a sigtramp
3868 routine. */
8201327c 3869
4bd207ef 3870int
10458914 3871i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3872{
10458914 3873 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3874 const char *name;
911bc6ee
MK
3875
3876 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3877 return (name && strcmp ("_sigtramp", name) == 0);
3878}
3879\f
3880
fc338970
MK
3881/* We have two flavours of disassembly. The machinery on this page
3882 deals with switching between those. */
c906108c
SS
3883
3884static int
a89aa300 3885i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3886{
5e3397bb
MK
3887 gdb_assert (disassembly_flavor == att_flavor
3888 || disassembly_flavor == intel_flavor);
3889
3890 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3891 constified, cast to prevent a compiler warning. */
3892 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3893
3894 return print_insn_i386 (pc, info);
7a292a7a 3895}
fc338970 3896\f
3ce1502b 3897
8201327c
MK
3898/* There are a few i386 architecture variants that differ only
3899 slightly from the generic i386 target. For now, we don't give them
3900 their own source file, but include them here. As a consequence,
3901 they'll always be included. */
3ce1502b 3902
8201327c 3903/* System V Release 4 (SVR4). */
3ce1502b 3904
10458914
DJ
3905/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3906 routine. */
911bc6ee 3907
8201327c 3908static int
10458914 3909i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3910{
10458914 3911 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3912 const char *name;
911bc6ee 3913
05b4bd79 3914 /* The origin of these symbols is currently unknown. */
911bc6ee 3915 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3916 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3917 || strcmp ("sigvechandler", name) == 0));
3918}
d2a7c97a 3919
10458914
DJ
3920/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3921 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3922
3a1e71e3 3923static CORE_ADDR
10458914 3924i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3925{
e17a4113
UW
3926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3928 gdb_byte buf[4];
acd5c798 3929 CORE_ADDR sp;
3ce1502b 3930
10458914 3931 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3932 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3933
e17a4113 3934 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3935}
55aa24fb
SDJ
3936
3937\f
3938
3939/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3940 gdbarch.h. */
3941
3942int
3943i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3944{
3945 return (*s == '$' /* Literal number. */
3946 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3947 || (*s == '(' && s[1] == '%') /* Register indirection. */
3948 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3949}
3950
5acfdbae
SDJ
3951/* Helper function for i386_stap_parse_special_token.
3952
3953 This function parses operands of the form `-8+3+1(%rbp)', which
3954 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3955
3956 Return 1 if the operand was parsed successfully, zero
3957 otherwise. */
3958
3959static int
3960i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3961 struct stap_parse_info *p)
3962{
3963 const char *s = p->arg;
3964
3965 if (isdigit (*s) || *s == '-' || *s == '+')
3966 {
3967 int got_minus[3];
3968 int i;
3969 long displacements[3];
3970 const char *start;
3971 char *regname;
3972 int len;
3973 struct stoken str;
3974 char *endp;
3975
3976 got_minus[0] = 0;
3977 if (*s == '+')
3978 ++s;
3979 else if (*s == '-')
3980 {
3981 ++s;
3982 got_minus[0] = 1;
3983 }
3984
d7b30f67
SDJ
3985 if (!isdigit ((unsigned char) *s))
3986 return 0;
3987
5acfdbae
SDJ
3988 displacements[0] = strtol (s, &endp, 10);
3989 s = endp;
3990
3991 if (*s != '+' && *s != '-')
3992 {
3993 /* We are not dealing with a triplet. */
3994 return 0;
3995 }
3996
3997 got_minus[1] = 0;
3998 if (*s == '+')
3999 ++s;
4000 else
4001 {
4002 ++s;
4003 got_minus[1] = 1;
4004 }
4005
d7b30f67
SDJ
4006 if (!isdigit ((unsigned char) *s))
4007 return 0;
4008
5acfdbae
SDJ
4009 displacements[1] = strtol (s, &endp, 10);
4010 s = endp;
4011
4012 if (*s != '+' && *s != '-')
4013 {
4014 /* We are not dealing with a triplet. */
4015 return 0;
4016 }
4017
4018 got_minus[2] = 0;
4019 if (*s == '+')
4020 ++s;
4021 else
4022 {
4023 ++s;
4024 got_minus[2] = 1;
4025 }
4026
d7b30f67
SDJ
4027 if (!isdigit ((unsigned char) *s))
4028 return 0;
4029
5acfdbae
SDJ
4030 displacements[2] = strtol (s, &endp, 10);
4031 s = endp;
4032
4033 if (*s != '(' || s[1] != '%')
4034 return 0;
4035
4036 s += 2;
4037 start = s;
4038
4039 while (isalnum (*s))
4040 ++s;
4041
4042 if (*s++ != ')')
4043 return 0;
4044
d7b30f67 4045 len = s - start - 1;
5acfdbae
SDJ
4046 regname = alloca (len + 1);
4047
4048 strncpy (regname, start, len);
4049 regname[len] = '\0';
4050
4051 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4052 error (_("Invalid register name `%s' on expression `%s'."),
4053 regname, p->saved_arg);
4054
4055 for (i = 0; i < 3; i++)
4056 {
410a0ff2
SDJ
4057 write_exp_elt_opcode (&p->pstate, OP_LONG);
4058 write_exp_elt_type
4059 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4060 write_exp_elt_longcst (&p->pstate, displacements[i]);
4061 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4062 if (got_minus[i])
410a0ff2 4063 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4064 }
4065
410a0ff2 4066 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4067 str.ptr = regname;
4068 str.length = len;
410a0ff2
SDJ
4069 write_exp_string (&p->pstate, str);
4070 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4071
410a0ff2
SDJ
4072 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4073 write_exp_elt_type (&p->pstate,
4074 builtin_type (gdbarch)->builtin_data_ptr);
4075 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4076
410a0ff2
SDJ
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4079 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4080
410a0ff2
SDJ
4081 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4082 write_exp_elt_type (&p->pstate,
4083 lookup_pointer_type (p->arg_type));
4084 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4085
410a0ff2 4086 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4087
4088 p->arg = s;
4089
4090 return 1;
4091 }
4092
4093 return 0;
4094}
4095
4096/* Helper function for i386_stap_parse_special_token.
4097
4098 This function parses operands of the form `register base +
4099 (register index * size) + offset', as represented in
4100 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4101
4102 Return 1 if the operand was parsed successfully, zero
4103 otherwise. */
4104
4105static int
4106i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4107 struct stap_parse_info *p)
4108{
4109 const char *s = p->arg;
4110
4111 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4112 {
4113 int offset_minus = 0;
4114 long offset = 0;
4115 int size_minus = 0;
4116 long size = 0;
4117 const char *start;
4118 char *base;
4119 int len_base;
4120 char *index;
4121 int len_index;
4122 struct stoken base_token, index_token;
4123
4124 if (*s == '+')
4125 ++s;
4126 else if (*s == '-')
4127 {
4128 ++s;
4129 offset_minus = 1;
4130 }
4131
4132 if (offset_minus && !isdigit (*s))
4133 return 0;
4134
4135 if (isdigit (*s))
4136 {
4137 char *endp;
4138
4139 offset = strtol (s, &endp, 10);
4140 s = endp;
4141 }
4142
4143 if (*s != '(' || s[1] != '%')
4144 return 0;
4145
4146 s += 2;
4147 start = s;
4148
4149 while (isalnum (*s))
4150 ++s;
4151
4152 if (*s != ',' || s[1] != '%')
4153 return 0;
4154
4155 len_base = s - start;
4156 base = alloca (len_base + 1);
4157 strncpy (base, start, len_base);
4158 base[len_base] = '\0';
4159
4160 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4161 error (_("Invalid register name `%s' on expression `%s'."),
4162 base, p->saved_arg);
4163
4164 s += 2;
4165 start = s;
4166
4167 while (isalnum (*s))
4168 ++s;
4169
4170 len_index = s - start;
4171 index = alloca (len_index + 1);
4172 strncpy (index, start, len_index);
4173 index[len_index] = '\0';
4174
4175 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4176 error (_("Invalid register name `%s' on expression `%s'."),
4177 index, p->saved_arg);
4178
4179 if (*s != ',' && *s != ')')
4180 return 0;
4181
4182 if (*s == ',')
4183 {
4184 char *endp;
4185
4186 ++s;
4187 if (*s == '+')
4188 ++s;
4189 else if (*s == '-')
4190 {
4191 ++s;
4192 size_minus = 1;
4193 }
4194
4195 size = strtol (s, &endp, 10);
4196 s = endp;
4197
4198 if (*s != ')')
4199 return 0;
4200 }
4201
4202 ++s;
4203
4204 if (offset)
4205 {
410a0ff2
SDJ
4206 write_exp_elt_opcode (&p->pstate, OP_LONG);
4207 write_exp_elt_type (&p->pstate,
4208 builtin_type (gdbarch)->builtin_long);
4209 write_exp_elt_longcst (&p->pstate, offset);
4210 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4211 if (offset_minus)
410a0ff2 4212 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4213 }
4214
410a0ff2 4215 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4216 base_token.ptr = base;
4217 base_token.length = len_base;
410a0ff2
SDJ
4218 write_exp_string (&p->pstate, base_token);
4219 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4220
4221 if (offset)
410a0ff2 4222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4223
410a0ff2 4224 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4225 index_token.ptr = index;
4226 index_token.length = len_index;
410a0ff2
SDJ
4227 write_exp_string (&p->pstate, index_token);
4228 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4229
4230 if (size)
4231 {
410a0ff2
SDJ
4232 write_exp_elt_opcode (&p->pstate, OP_LONG);
4233 write_exp_elt_type (&p->pstate,
4234 builtin_type (gdbarch)->builtin_long);
4235 write_exp_elt_longcst (&p->pstate, size);
4236 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4237 if (size_minus)
410a0ff2
SDJ
4238 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4239 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4240 }
4241
410a0ff2 4242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4243
410a0ff2
SDJ
4244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4245 write_exp_elt_type (&p->pstate,
4246 lookup_pointer_type (p->arg_type));
4247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4248
410a0ff2 4249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4250
4251 p->arg = s;
4252
4253 return 1;
4254 }
4255
4256 return 0;
4257}
4258
55aa24fb
SDJ
4259/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4260 gdbarch.h. */
4261
4262int
4263i386_stap_parse_special_token (struct gdbarch *gdbarch,
4264 struct stap_parse_info *p)
4265{
55aa24fb
SDJ
4266 /* In order to parse special tokens, we use a state-machine that go
4267 through every known token and try to get a match. */
4268 enum
4269 {
4270 TRIPLET,
4271 THREE_ARG_DISPLACEMENT,
4272 DONE
4273 } current_state;
4274
4275 current_state = TRIPLET;
4276
4277 /* The special tokens to be parsed here are:
4278
4279 - `register base + (register index * size) + offset', as represented
4280 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4281
4282 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4283 `*(-8 + 3 - 1 + (void *) $eax)'. */
4284
4285 while (current_state != DONE)
4286 {
55aa24fb
SDJ
4287 switch (current_state)
4288 {
4289 case TRIPLET:
5acfdbae
SDJ
4290 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4291 return 1;
4292 break;
4293
55aa24fb 4294 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4295 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4296 return 1;
4297 break;
55aa24fb
SDJ
4298 }
4299
4300 /* Advancing to the next state. */
4301 ++current_state;
4302 }
4303
4304 return 0;
4305}
4306
8201327c 4307\f
3ce1502b 4308
8201327c 4309/* Generic ELF. */
d2a7c97a 4310
8201327c
MK
4311void
4312i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4313{
05c0465e
SDJ
4314 static const char *const stap_integer_prefixes[] = { "$", NULL };
4315 static const char *const stap_register_prefixes[] = { "%", NULL };
4316 static const char *const stap_register_indirection_prefixes[] = { "(",
4317 NULL };
4318 static const char *const stap_register_indirection_suffixes[] = { ")",
4319 NULL };
4320
c4fc7f1b
MK
4321 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4322 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4323
4324 /* Registering SystemTap handlers. */
05c0465e
SDJ
4325 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4326 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4327 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4328 stap_register_indirection_prefixes);
4329 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4330 stap_register_indirection_suffixes);
55aa24fb
SDJ
4331 set_gdbarch_stap_is_single_operand (gdbarch,
4332 i386_stap_is_single_operand);
4333 set_gdbarch_stap_parse_special_token (gdbarch,
4334 i386_stap_parse_special_token);
8201327c 4335}
3ce1502b 4336
8201327c 4337/* System V Release 4 (SVR4). */
3ce1502b 4338
8201327c
MK
4339void
4340i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4341{
4342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4343
8201327c
MK
4344 /* System V Release 4 uses ELF. */
4345 i386_elf_init_abi (info, gdbarch);
3ce1502b 4346
dfe01d39 4347 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4348 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4349
911bc6ee 4350 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4351 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4352 tdep->sc_pc_offset = 36 + 14 * 4;
4353 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4354
8201327c 4355 tdep->jb_pc_offset = 20;
3ce1502b
MK
4356}
4357
8201327c 4358/* DJGPP. */
3ce1502b 4359
3a1e71e3 4360static void
8201327c 4361i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4362{
8201327c 4363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4364
911bc6ee
MK
4365 /* DJGPP doesn't have any special frames for signal handlers. */
4366 tdep->sigtramp_p = NULL;
3ce1502b 4367
8201327c 4368 tdep->jb_pc_offset = 36;
15430fc0
EZ
4369
4370 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4371 if (! tdesc_has_registers (info.target_desc))
4372 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4373
4374 /* Native compiler is GCC, which uses the SVR4 register numbering
4375 even in COFF and STABS. See the comment in i386_gdbarch_init,
4376 before the calls to set_gdbarch_stab_reg_to_regnum and
4377 set_gdbarch_sdb_reg_to_regnum. */
4378 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4379 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4380
4381 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4382}
8201327c 4383\f
2acceee2 4384
38c968cf
AC
4385/* i386 register groups. In addition to the normal groups, add "mmx"
4386 and "sse". */
4387
4388static struct reggroup *i386_sse_reggroup;
4389static struct reggroup *i386_mmx_reggroup;
4390
4391static void
4392i386_init_reggroups (void)
4393{
4394 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4395 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4396}
4397
4398static void
4399i386_add_reggroups (struct gdbarch *gdbarch)
4400{
4401 reggroup_add (gdbarch, i386_sse_reggroup);
4402 reggroup_add (gdbarch, i386_mmx_reggroup);
4403 reggroup_add (gdbarch, general_reggroup);
4404 reggroup_add (gdbarch, float_reggroup);
4405 reggroup_add (gdbarch, all_reggroup);
4406 reggroup_add (gdbarch, save_reggroup);
4407 reggroup_add (gdbarch, restore_reggroup);
4408 reggroup_add (gdbarch, vector_reggroup);
4409 reggroup_add (gdbarch, system_reggroup);
4410}
4411
4412int
4413i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4414 struct reggroup *group)
4415{
c131fcee
L
4416 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4417 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4418 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4419 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4420 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4421 avx512_p, avx_p, sse_p;
acd5c798 4422
1ba53b71
L
4423 /* Don't include pseudo registers, except for MMX, in any register
4424 groups. */
c131fcee 4425 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4426 return 0;
4427
c131fcee 4428 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4429 return 0;
4430
c131fcee 4431 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4432 return 0;
4433
4434 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4435 if (group == i386_mmx_reggroup)
4436 return mmx_regnum_p;
1ba53b71 4437
c131fcee 4438 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4439 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4440 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4441 if (group == i386_sse_reggroup)
01f9f808 4442 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4443
4444 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4445 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4446 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4447
df7e5265
GB
4448 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4449 == X86_XSTATE_AVX512_MASK);
4450 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4451 == X86_XSTATE_AVX_MASK) && !avx512_p;
4452 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4453 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4454
38c968cf 4455 if (group == vector_reggroup)
c131fcee 4456 return (mmx_regnum_p
01f9f808
MS
4457 || (zmm_regnum_p && avx512_p)
4458 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4459 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4460 || mxcsr_regnum_p);
1ba53b71
L
4461
4462 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4463 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4464 if (group == float_reggroup)
4465 return fp_regnum_p;
1ba53b71 4466
c131fcee
L
4467 /* For "info reg all", don't include upper YMM registers nor XMM
4468 registers when AVX is supported. */
4469 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4470 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4471 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4472 if (group == all_reggroup
01f9f808
MS
4473 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4474 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4475 || ymmh_regnum_p
4476 || ymmh_avx512_regnum_p
4477 || zmmh_regnum_p))
c131fcee
L
4478 return 0;
4479
1dbcd68c
WT
4480 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4481 if (group == all_reggroup
df7e5265 4482 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4483 return bnd_regnum_p;
4484
4485 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4486 if (group == all_reggroup
df7e5265 4487 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4488 return 0;
4489
4490 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4491 if (group == all_reggroup
df7e5265 4492 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4493 return mpx_ctrl_regnum_p;
4494
38c968cf 4495 if (group == general_reggroup)
1ba53b71
L
4496 return (!fp_regnum_p
4497 && !mmx_regnum_p
c131fcee
L
4498 && !mxcsr_regnum_p
4499 && !xmm_regnum_p
01f9f808 4500 && !xmm_avx512_regnum_p
c131fcee 4501 && !ymm_regnum_p
1dbcd68c 4502 && !ymmh_regnum_p
01f9f808
MS
4503 && !ymm_avx512_regnum_p
4504 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4505 && !bndr_regnum_p
4506 && !bnd_regnum_p
01f9f808
MS
4507 && !mpx_ctrl_regnum_p
4508 && !zmm_regnum_p
4509 && !zmmh_regnum_p);
acd5c798 4510
38c968cf
AC
4511 return default_register_reggroup_p (gdbarch, regnum, group);
4512}
38c968cf 4513\f
acd5c798 4514
f837910f
MK
4515/* Get the ARGIth function argument for the current function. */
4516
42c466d7 4517static CORE_ADDR
143985b7
AF
4518i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4519 struct type *type)
4520{
e17a4113
UW
4521 struct gdbarch *gdbarch = get_frame_arch (frame);
4522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4523 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4524 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4525}
4526
514f746b
AR
4527static void
4528i386_skip_permanent_breakpoint (struct regcache *regcache)
4529{
4530 CORE_ADDR current_pc = regcache_read_pc (regcache);
4531
4532 /* On i386, breakpoint is exactly 1 byte long, so we just
4533 adjust the PC in the regcache. */
4534 current_pc += 1;
4535 regcache_write_pc (regcache, current_pc);
4536}
4537
4538
7ad10968
HZ
4539#define PREFIX_REPZ 0x01
4540#define PREFIX_REPNZ 0x02
4541#define PREFIX_LOCK 0x04
4542#define PREFIX_DATA 0x08
4543#define PREFIX_ADDR 0x10
473f17b0 4544
7ad10968
HZ
4545/* operand size */
4546enum
4547{
4548 OT_BYTE = 0,
4549 OT_WORD,
4550 OT_LONG,
cf648174 4551 OT_QUAD,
a3c4230a 4552 OT_DQUAD,
7ad10968 4553};
473f17b0 4554
7ad10968
HZ
4555/* i386 arith/logic operations */
4556enum
4557{
4558 OP_ADDL,
4559 OP_ORL,
4560 OP_ADCL,
4561 OP_SBBL,
4562 OP_ANDL,
4563 OP_SUBL,
4564 OP_XORL,
4565 OP_CMPL,
4566};
5716833c 4567
7ad10968
HZ
4568struct i386_record_s
4569{
cf648174 4570 struct gdbarch *gdbarch;
7ad10968 4571 struct regcache *regcache;
df61f520 4572 CORE_ADDR orig_addr;
7ad10968
HZ
4573 CORE_ADDR addr;
4574 int aflag;
4575 int dflag;
4576 int override;
4577 uint8_t modrm;
4578 uint8_t mod, reg, rm;
4579 int ot;
cf648174
HZ
4580 uint8_t rex_x;
4581 uint8_t rex_b;
4582 int rip_offset;
4583 int popl_esp_hack;
4584 const int *regmap;
7ad10968 4585};
5716833c 4586
99c1624c
PA
4587/* Parse the "modrm" part of the memory address irp->addr points at.
4588 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4589
7ad10968
HZ
4590static int
4591i386_record_modrm (struct i386_record_s *irp)
4592{
cf648174 4593 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4594
4ffa4fc7
PA
4595 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4596 return -1;
4597
7ad10968
HZ
4598 irp->addr++;
4599 irp->mod = (irp->modrm >> 6) & 3;
4600 irp->reg = (irp->modrm >> 3) & 7;
4601 irp->rm = irp->modrm & 7;
5716833c 4602
7ad10968
HZ
4603 return 0;
4604}
d2a7c97a 4605
99c1624c
PA
4606/* Extract the memory address that the current instruction writes to,
4607 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4608
7ad10968 4609static int
cf648174 4610i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4611{
cf648174 4612 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4614 gdb_byte buf[4];
4615 ULONGEST offset64;
21d0e8a4 4616
7ad10968 4617 *addr = 0;
1e87984a 4618 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4619 {
1e87984a 4620 /* 32/64 bits */
7ad10968
HZ
4621 int havesib = 0;
4622 uint8_t scale = 0;
648d0c8b 4623 uint8_t byte;
7ad10968
HZ
4624 uint8_t index = 0;
4625 uint8_t base = irp->rm;
896fb97d 4626
7ad10968
HZ
4627 if (base == 4)
4628 {
4629 havesib = 1;
4ffa4fc7
PA
4630 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4631 return -1;
7ad10968 4632 irp->addr++;
648d0c8b
MS
4633 scale = (byte >> 6) & 3;
4634 index = ((byte >> 3) & 7) | irp->rex_x;
4635 base = (byte & 7);
7ad10968 4636 }
cf648174 4637 base |= irp->rex_b;
21d0e8a4 4638
7ad10968
HZ
4639 switch (irp->mod)
4640 {
4641 case 0:
4642 if ((base & 7) == 5)
4643 {
4644 base = 0xff;
4ffa4fc7
PA
4645 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4646 return -1;
7ad10968 4647 irp->addr += 4;
60a1502a 4648 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4649 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4650 *addr += irp->addr + irp->rip_offset;
7ad10968 4651 }
7ad10968
HZ
4652 break;
4653 case 1:
4ffa4fc7
PA
4654 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4655 return -1;
7ad10968 4656 irp->addr++;
60a1502a 4657 *addr = (int8_t) buf[0];
7ad10968
HZ
4658 break;
4659 case 2:
4ffa4fc7
PA
4660 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4661 return -1;
60a1502a 4662 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4663 irp->addr += 4;
4664 break;
4665 }
356a6b3e 4666
60a1502a 4667 offset64 = 0;
7ad10968 4668 if (base != 0xff)
cf648174
HZ
4669 {
4670 if (base == 4 && irp->popl_esp_hack)
4671 *addr += irp->popl_esp_hack;
4672 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4673 &offset64);
7ad10968 4674 }
cf648174
HZ
4675 if (irp->aflag == 2)
4676 {
60a1502a 4677 *addr += offset64;
cf648174
HZ
4678 }
4679 else
60a1502a 4680 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4681
7ad10968
HZ
4682 if (havesib && (index != 4 || scale != 0))
4683 {
cf648174 4684 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4685 &offset64);
cf648174 4686 if (irp->aflag == 2)
60a1502a 4687 *addr += offset64 << scale;
cf648174 4688 else
60a1502a 4689 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4690 }
e85596e0
L
4691
4692 if (!irp->aflag)
4693 {
4694 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4695 address from 32-bit to 64-bit. */
4696 *addr = (uint32_t) *addr;
4697 }
7ad10968
HZ
4698 }
4699 else
4700 {
4701 /* 16 bits */
4702 switch (irp->mod)
4703 {
4704 case 0:
4705 if (irp->rm == 6)
4706 {
4ffa4fc7
PA
4707 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4708 return -1;
7ad10968 4709 irp->addr += 2;
60a1502a 4710 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4711 irp->rm = 0;
4712 goto no_rm;
4713 }
7ad10968
HZ
4714 break;
4715 case 1:
4ffa4fc7
PA
4716 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4717 return -1;
7ad10968 4718 irp->addr++;
60a1502a 4719 *addr = (int8_t) buf[0];
7ad10968
HZ
4720 break;
4721 case 2:
4ffa4fc7
PA
4722 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4723 return -1;
7ad10968 4724 irp->addr += 2;
60a1502a 4725 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4726 break;
4727 }
c4fc7f1b 4728
7ad10968
HZ
4729 switch (irp->rm)
4730 {
4731 case 0:
cf648174
HZ
4732 regcache_raw_read_unsigned (irp->regcache,
4733 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4734 &offset64);
4735 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4736 regcache_raw_read_unsigned (irp->regcache,
4737 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4738 &offset64);
4739 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4740 break;
4741 case 1:
cf648174
HZ
4742 regcache_raw_read_unsigned (irp->regcache,
4743 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4744 &offset64);
4745 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4746 regcache_raw_read_unsigned (irp->regcache,
4747 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4748 &offset64);
4749 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4750 break;
4751 case 2:
cf648174
HZ
4752 regcache_raw_read_unsigned (irp->regcache,
4753 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4754 &offset64);
4755 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4756 regcache_raw_read_unsigned (irp->regcache,
4757 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4758 &offset64);
4759 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4760 break;
4761 case 3:
cf648174
HZ
4762 regcache_raw_read_unsigned (irp->regcache,
4763 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4764 &offset64);
4765 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4766 regcache_raw_read_unsigned (irp->regcache,
4767 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4768 &offset64);
4769 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4770 break;
4771 case 4:
cf648174
HZ
4772 regcache_raw_read_unsigned (irp->regcache,
4773 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4774 &offset64);
4775 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4776 break;
4777 case 5:
cf648174
HZ
4778 regcache_raw_read_unsigned (irp->regcache,
4779 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4780 &offset64);
4781 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4782 break;
4783 case 6:
cf648174
HZ
4784 regcache_raw_read_unsigned (irp->regcache,
4785 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4786 &offset64);
4787 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4788 break;
4789 case 7:
cf648174
HZ
4790 regcache_raw_read_unsigned (irp->regcache,
4791 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4792 &offset64);
4793 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4794 break;
4795 }
4796 *addr &= 0xffff;
4797 }
c4fc7f1b 4798
01fe1b41 4799 no_rm:
7ad10968
HZ
4800 return 0;
4801}
c4fc7f1b 4802
99c1624c
PA
4803/* Record the address and contents of the memory that will be changed
4804 by the current instruction. Return -1 if something goes wrong, 0
4805 otherwise. */
356a6b3e 4806
7ad10968
HZ
4807static int
4808i386_record_lea_modrm (struct i386_record_s *irp)
4809{
cf648174
HZ
4810 struct gdbarch *gdbarch = irp->gdbarch;
4811 uint64_t addr;
356a6b3e 4812
d7877f7e 4813 if (irp->override >= 0)
7ad10968 4814 {
25ea693b 4815 if (record_full_memory_query)
bb08c432
HZ
4816 {
4817 int q;
4818
4819 target_terminal_ours ();
4820 q = yquery (_("\
4821Process record ignores the memory change of instruction at address %s\n\
4822because it can't get the value of the segment register.\n\
4823Do you want to stop the program?"),
4824 paddress (gdbarch, irp->orig_addr));
4825 target_terminal_inferior ();
4826 if (q)
4827 return -1;
4828 }
4829
7ad10968
HZ
4830 return 0;
4831 }
61113f8b 4832
7ad10968
HZ
4833 if (i386_record_lea_modrm_addr (irp, &addr))
4834 return -1;
96297dab 4835
25ea693b 4836 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4837 return -1;
a62cc96e 4838
7ad10968
HZ
4839 return 0;
4840}
b6197528 4841
99c1624c
PA
4842/* Record the effects of a push operation. Return -1 if something
4843 goes wrong, 0 otherwise. */
cf648174
HZ
4844
4845static int
4846i386_record_push (struct i386_record_s *irp, int size)
4847{
648d0c8b 4848 ULONGEST addr;
cf648174 4849
25ea693b
MM
4850 if (record_full_arch_list_add_reg (irp->regcache,
4851 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4852 return -1;
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4855 &addr);
25ea693b 4856 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4857 return -1;
4858
4859 return 0;
4860}
4861
0289bdd7
MS
4862
4863/* Defines contents to record. */
4864#define I386_SAVE_FPU_REGS 0xfffd
4865#define I386_SAVE_FPU_ENV 0xfffe
4866#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4867
99c1624c
PA
4868/* Record the values of the floating point registers which will be
4869 changed by the current instruction. Returns -1 if something is
4870 wrong, 0 otherwise. */
0289bdd7
MS
4871
4872static int i386_record_floats (struct gdbarch *gdbarch,
4873 struct i386_record_s *ir,
4874 uint32_t iregnum)
4875{
4876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4877 int i;
4878
4879 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4880 happen. Currently we store st0-st7 registers, but we need not store all
4881 registers all the time, in future we use ftag register and record only
4882 those who are not marked as an empty. */
4883
4884 if (I386_SAVE_FPU_REGS == iregnum)
4885 {
4886 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4887 {
25ea693b 4888 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4889 return -1;
4890 }
4891 }
4892 else if (I386_SAVE_FPU_ENV == iregnum)
4893 {
4894 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4895 {
25ea693b 4896 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4897 return -1;
4898 }
4899 }
4900 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4901 {
4902 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4903 {
25ea693b 4904 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4905 return -1;
4906 }
4907 }
4908 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4909 (iregnum <= I387_FOP_REGNUM (tdep)))
4910 {
25ea693b 4911 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4912 return -1;
4913 }
4914 else
4915 {
4916 /* Parameter error. */
4917 return -1;
4918 }
4919 if(I386_SAVE_FPU_ENV != iregnum)
4920 {
4921 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4922 {
25ea693b 4923 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4924 return -1;
4925 }
4926 }
4927 return 0;
4928}
4929
99c1624c
PA
4930/* Parse the current instruction, and record the values of the
4931 registers and memory that will be changed by the current
4932 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4933
25ea693b
MM
4934#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4935 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4936
a6b808b4 4937int
7ad10968 4938i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4939 CORE_ADDR input_addr)
7ad10968 4940{
60a1502a 4941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4942 int prefixes = 0;
580879fc 4943 int regnum = 0;
425b824a 4944 uint32_t opcode;
f4644a3f 4945 uint8_t opcode8;
648d0c8b 4946 ULONGEST addr;
60a1502a 4947 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4948 struct i386_record_s ir;
0289bdd7 4949 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4950 uint8_t rex_w = -1;
4951 uint8_t rex_r = 0;
7ad10968 4952
8408d274 4953 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4954 ir.regcache = regcache;
648d0c8b
MS
4955 ir.addr = input_addr;
4956 ir.orig_addr = input_addr;
7ad10968
HZ
4957 ir.aflag = 1;
4958 ir.dflag = 1;
cf648174
HZ
4959 ir.override = -1;
4960 ir.popl_esp_hack = 0;
a3c4230a 4961 ir.regmap = tdep->record_regmap;
cf648174 4962 ir.gdbarch = gdbarch;
7ad10968
HZ
4963
4964 if (record_debug > 1)
4965 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4966 "addr = %s\n",
4967 paddress (gdbarch, ir.addr));
7ad10968
HZ
4968
4969 /* prefixes */
4970 while (1)
4971 {
4ffa4fc7
PA
4972 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4973 return -1;
7ad10968 4974 ir.addr++;
425b824a 4975 switch (opcode8) /* Instruction prefixes */
7ad10968 4976 {
01fe1b41 4977 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4978 prefixes |= PREFIX_REPZ;
4979 break;
01fe1b41 4980 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4981 prefixes |= PREFIX_REPNZ;
4982 break;
01fe1b41 4983 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4984 prefixes |= PREFIX_LOCK;
4985 break;
01fe1b41 4986 case CS_PREFIX_OPCODE:
cf648174 4987 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4988 break;
01fe1b41 4989 case SS_PREFIX_OPCODE:
cf648174 4990 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4991 break;
01fe1b41 4992 case DS_PREFIX_OPCODE:
cf648174 4993 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4994 break;
01fe1b41 4995 case ES_PREFIX_OPCODE:
cf648174 4996 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4997 break;
01fe1b41 4998 case FS_PREFIX_OPCODE:
cf648174 4999 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5000 break;
01fe1b41 5001 case GS_PREFIX_OPCODE:
cf648174 5002 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5003 break;
01fe1b41 5004 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5005 prefixes |= PREFIX_DATA;
5006 break;
01fe1b41 5007 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5008 prefixes |= PREFIX_ADDR;
5009 break;
d691bec7
MS
5010 case 0x40: /* i386 inc %eax */
5011 case 0x41: /* i386 inc %ecx */
5012 case 0x42: /* i386 inc %edx */
5013 case 0x43: /* i386 inc %ebx */
5014 case 0x44: /* i386 inc %esp */
5015 case 0x45: /* i386 inc %ebp */
5016 case 0x46: /* i386 inc %esi */
5017 case 0x47: /* i386 inc %edi */
5018 case 0x48: /* i386 dec %eax */
5019 case 0x49: /* i386 dec %ecx */
5020 case 0x4a: /* i386 dec %edx */
5021 case 0x4b: /* i386 dec %ebx */
5022 case 0x4c: /* i386 dec %esp */
5023 case 0x4d: /* i386 dec %ebp */
5024 case 0x4e: /* i386 dec %esi */
5025 case 0x4f: /* i386 dec %edi */
5026 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5027 {
5028 /* REX */
425b824a
MS
5029 rex_w = (opcode8 >> 3) & 1;
5030 rex_r = (opcode8 & 0x4) << 1;
5031 ir.rex_x = (opcode8 & 0x2) << 2;
5032 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5033 }
d691bec7
MS
5034 else /* 32 bit target */
5035 goto out_prefixes;
cf648174 5036 break;
7ad10968
HZ
5037 default:
5038 goto out_prefixes;
5039 break;
5040 }
5041 }
01fe1b41 5042 out_prefixes:
cf648174
HZ
5043 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5044 {
5045 ir.dflag = 2;
5046 }
5047 else
5048 {
5049 if (prefixes & PREFIX_DATA)
5050 ir.dflag ^= 1;
5051 }
7ad10968
HZ
5052 if (prefixes & PREFIX_ADDR)
5053 ir.aflag ^= 1;
cf648174
HZ
5054 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5055 ir.aflag = 2;
7ad10968 5056
1777feb0 5057 /* Now check op code. */
425b824a 5058 opcode = (uint32_t) opcode8;
01fe1b41 5059 reswitch:
7ad10968
HZ
5060 switch (opcode)
5061 {
5062 case 0x0f:
4ffa4fc7
PA
5063 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5064 return -1;
7ad10968 5065 ir.addr++;
a3c4230a 5066 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5067 goto reswitch;
5068 break;
93924b6b 5069
a38bba38 5070 case 0x00: /* arith & logic */
7ad10968
HZ
5071 case 0x01:
5072 case 0x02:
5073 case 0x03:
5074 case 0x04:
5075 case 0x05:
5076 case 0x08:
5077 case 0x09:
5078 case 0x0a:
5079 case 0x0b:
5080 case 0x0c:
5081 case 0x0d:
5082 case 0x10:
5083 case 0x11:
5084 case 0x12:
5085 case 0x13:
5086 case 0x14:
5087 case 0x15:
5088 case 0x18:
5089 case 0x19:
5090 case 0x1a:
5091 case 0x1b:
5092 case 0x1c:
5093 case 0x1d:
5094 case 0x20:
5095 case 0x21:
5096 case 0x22:
5097 case 0x23:
5098 case 0x24:
5099 case 0x25:
5100 case 0x28:
5101 case 0x29:
5102 case 0x2a:
5103 case 0x2b:
5104 case 0x2c:
5105 case 0x2d:
5106 case 0x30:
5107 case 0x31:
5108 case 0x32:
5109 case 0x33:
5110 case 0x34:
5111 case 0x35:
5112 case 0x38:
5113 case 0x39:
5114 case 0x3a:
5115 case 0x3b:
5116 case 0x3c:
5117 case 0x3d:
5118 if (((opcode >> 3) & 7) != OP_CMPL)
5119 {
5120 if ((opcode & 1) == 0)
5121 ir.ot = OT_BYTE;
5122 else
5123 ir.ot = ir.dflag + OT_WORD;
93924b6b 5124
7ad10968
HZ
5125 switch ((opcode >> 1) & 3)
5126 {
a38bba38 5127 case 0: /* OP Ev, Gv */
7ad10968
HZ
5128 if (i386_record_modrm (&ir))
5129 return -1;
5130 if (ir.mod != 3)
5131 {
5132 if (i386_record_lea_modrm (&ir))
5133 return -1;
5134 }
5135 else
5136 {
cf648174
HZ
5137 ir.rm |= ir.rex_b;
5138 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5139 ir.rm &= 0x3;
25ea693b 5140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5141 }
5142 break;
a38bba38 5143 case 1: /* OP Gv, Ev */
7ad10968
HZ
5144 if (i386_record_modrm (&ir))
5145 return -1;
cf648174
HZ
5146 ir.reg |= rex_r;
5147 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5148 ir.reg &= 0x3;
25ea693b 5149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5150 break;
a38bba38 5151 case 2: /* OP A, Iv */
25ea693b 5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5153 break;
5154 }
5155 }
25ea693b 5156 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5157 break;
42fdc8df 5158
a38bba38 5159 case 0x80: /* GRP1 */
7ad10968
HZ
5160 case 0x81:
5161 case 0x82:
5162 case 0x83:
5163 if (i386_record_modrm (&ir))
5164 return -1;
8201327c 5165
7ad10968
HZ
5166 if (ir.reg != OP_CMPL)
5167 {
5168 if ((opcode & 1) == 0)
5169 ir.ot = OT_BYTE;
5170 else
5171 ir.ot = ir.dflag + OT_WORD;
28fc6740 5172
7ad10968
HZ
5173 if (ir.mod != 3)
5174 {
cf648174
HZ
5175 if (opcode == 0x83)
5176 ir.rip_offset = 1;
5177 else
5178 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5179 if (i386_record_lea_modrm (&ir))
5180 return -1;
5181 }
5182 else
25ea693b 5183 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5184 }
25ea693b 5185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5186 break;
5e3397bb 5187
a38bba38 5188 case 0x40: /* inc */
7ad10968
HZ
5189 case 0x41:
5190 case 0x42:
5191 case 0x43:
5192 case 0x44:
5193 case 0x45:
5194 case 0x46:
5195 case 0x47:
a38bba38
MS
5196
5197 case 0x48: /* dec */
7ad10968
HZ
5198 case 0x49:
5199 case 0x4a:
5200 case 0x4b:
5201 case 0x4c:
5202 case 0x4d:
5203 case 0x4e:
5204 case 0x4f:
a38bba38 5205
25ea693b
MM
5206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5208 break;
acd5c798 5209
a38bba38 5210 case 0xf6: /* GRP3 */
7ad10968
HZ
5211 case 0xf7:
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
5216 if (i386_record_modrm (&ir))
5217 return -1;
acd5c798 5218
cf648174
HZ
5219 if (ir.mod != 3 && ir.reg == 0)
5220 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5221
7ad10968
HZ
5222 switch (ir.reg)
5223 {
a38bba38 5224 case 0: /* test */
25ea693b 5225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5226 break;
a38bba38
MS
5227 case 2: /* not */
5228 case 3: /* neg */
7ad10968
HZ
5229 if (ir.mod != 3)
5230 {
5231 if (i386_record_lea_modrm (&ir))
5232 return -1;
5233 }
5234 else
5235 {
cf648174
HZ
5236 ir.rm |= ir.rex_b;
5237 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5238 ir.rm &= 0x3;
25ea693b 5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5240 }
a38bba38 5241 if (ir.reg == 3) /* neg */
25ea693b 5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5243 break;
a38bba38
MS
5244 case 4: /* mul */
5245 case 5: /* imul */
5246 case 6: /* div */
5247 case 7: /* idiv */
25ea693b 5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5249 if (ir.ot != OT_BYTE)
25ea693b
MM
5250 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5252 break;
5253 default:
5254 ir.addr -= 2;
5255 opcode = opcode << 8 | ir.modrm;
5256 goto no_support;
5257 break;
5258 }
5259 break;
5260
a38bba38
MS
5261 case 0xfe: /* GRP4 */
5262 case 0xff: /* GRP5 */
7ad10968
HZ
5263 if (i386_record_modrm (&ir))
5264 return -1;
5265 if (ir.reg >= 2 && opcode == 0xfe)
5266 {
5267 ir.addr -= 2;
5268 opcode = opcode << 8 | ir.modrm;
5269 goto no_support;
5270 }
7ad10968
HZ
5271 switch (ir.reg)
5272 {
a38bba38
MS
5273 case 0: /* inc */
5274 case 1: /* dec */
cf648174
HZ
5275 if ((opcode & 1) == 0)
5276 ir.ot = OT_BYTE;
5277 else
5278 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5279 if (ir.mod != 3)
5280 {
5281 if (i386_record_lea_modrm (&ir))
5282 return -1;
5283 }
5284 else
5285 {
cf648174
HZ
5286 ir.rm |= ir.rex_b;
5287 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5288 ir.rm &= 0x3;
25ea693b 5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5290 }
25ea693b 5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5292 break;
a38bba38 5293 case 2: /* call */
cf648174
HZ
5294 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5295 ir.dflag = 2;
5296 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5297 return -1;
25ea693b 5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5299 break;
a38bba38 5300 case 3: /* lcall */
25ea693b 5301 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5302 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5303 return -1;
25ea693b 5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5305 break;
a38bba38
MS
5306 case 4: /* jmp */
5307 case 5: /* ljmp */
25ea693b 5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5309 break;
a38bba38 5310 case 6: /* push */
cf648174
HZ
5311 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5312 ir.dflag = 2;
5313 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5314 return -1;
7ad10968
HZ
5315 break;
5316 default:
5317 ir.addr -= 2;
5318 opcode = opcode << 8 | ir.modrm;
5319 goto no_support;
5320 break;
5321 }
5322 break;
5323
a38bba38 5324 case 0x84: /* test */
7ad10968
HZ
5325 case 0x85:
5326 case 0xa8:
5327 case 0xa9:
25ea693b 5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5329 break;
5330
a38bba38 5331 case 0x98: /* CWDE/CBW */
25ea693b 5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5333 break;
5334
a38bba38 5335 case 0x99: /* CDQ/CWD */
25ea693b
MM
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5338 break;
5339
a38bba38 5340 case 0x0faf: /* imul */
7ad10968
HZ
5341 case 0x69:
5342 case 0x6b:
5343 ir.ot = ir.dflag + OT_WORD;
5344 if (i386_record_modrm (&ir))
5345 return -1;
cf648174
HZ
5346 if (opcode == 0x69)
5347 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5348 else if (opcode == 0x6b)
5349 ir.rip_offset = 1;
5350 ir.reg |= rex_r;
5351 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5352 ir.reg &= 0x3;
25ea693b
MM
5353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5354 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5355 break;
5356
a38bba38 5357 case 0x0fc0: /* xadd */
7ad10968
HZ
5358 case 0x0fc1:
5359 if ((opcode & 1) == 0)
5360 ir.ot = OT_BYTE;
5361 else
5362 ir.ot = ir.dflag + OT_WORD;
5363 if (i386_record_modrm (&ir))
5364 return -1;
cf648174 5365 ir.reg |= rex_r;
7ad10968
HZ
5366 if (ir.mod == 3)
5367 {
cf648174 5368 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5369 ir.reg &= 0x3;
25ea693b 5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5371 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5372 ir.rm &= 0x3;
25ea693b 5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5374 }
5375 else
5376 {
5377 if (i386_record_lea_modrm (&ir))
5378 return -1;
cf648174 5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5380 ir.reg &= 0x3;
25ea693b 5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5382 }
25ea693b 5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5384 break;
5385
a38bba38 5386 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5387 case 0x0fb1:
5388 if ((opcode & 1) == 0)
5389 ir.ot = OT_BYTE;
5390 else
5391 ir.ot = ir.dflag + OT_WORD;
5392 if (i386_record_modrm (&ir))
5393 return -1;
5394 if (ir.mod == 3)
5395 {
cf648174 5396 ir.reg |= rex_r;
25ea693b 5397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5398 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5399 ir.reg &= 0x3;
25ea693b 5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5401 }
5402 else
5403 {
25ea693b 5404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5405 if (i386_record_lea_modrm (&ir))
5406 return -1;
5407 }
25ea693b 5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5409 break;
5410
a38bba38 5411 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5412 if (i386_record_modrm (&ir))
5413 return -1;
5414 if (ir.mod == 3)
5415 {
5416 ir.addr -= 2;
5417 opcode = opcode << 8 | ir.modrm;
5418 goto no_support;
5419 }
25ea693b
MM
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5422 if (i386_record_lea_modrm (&ir))
5423 return -1;
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5425 break;
5426
a38bba38 5427 case 0x50: /* push */
7ad10968
HZ
5428 case 0x51:
5429 case 0x52:
5430 case 0x53:
5431 case 0x54:
5432 case 0x55:
5433 case 0x56:
5434 case 0x57:
5435 case 0x68:
5436 case 0x6a:
cf648174
HZ
5437 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5438 ir.dflag = 2;
5439 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5440 return -1;
5441 break;
5442
a38bba38
MS
5443 case 0x06: /* push es */
5444 case 0x0e: /* push cs */
5445 case 0x16: /* push ss */
5446 case 0x1e: /* push ds */
cf648174
HZ
5447 if (ir.regmap[X86_RECORD_R8_REGNUM])
5448 {
5449 ir.addr -= 1;
5450 goto no_support;
5451 }
5452 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5453 return -1;
5454 break;
5455
a38bba38
MS
5456 case 0x0fa0: /* push fs */
5457 case 0x0fa8: /* push gs */
cf648174
HZ
5458 if (ir.regmap[X86_RECORD_R8_REGNUM])
5459 {
5460 ir.addr -= 2;
5461 goto no_support;
5462 }
5463 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5464 return -1;
cf648174
HZ
5465 break;
5466
a38bba38 5467 case 0x60: /* pusha */
cf648174
HZ
5468 if (ir.regmap[X86_RECORD_R8_REGNUM])
5469 {
5470 ir.addr -= 1;
5471 goto no_support;
5472 }
5473 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5474 return -1;
5475 break;
5476
a38bba38 5477 case 0x58: /* pop */
7ad10968
HZ
5478 case 0x59:
5479 case 0x5a:
5480 case 0x5b:
5481 case 0x5c:
5482 case 0x5d:
5483 case 0x5e:
5484 case 0x5f:
25ea693b
MM
5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5487 break;
5488
a38bba38 5489 case 0x61: /* popa */
cf648174
HZ
5490 if (ir.regmap[X86_RECORD_R8_REGNUM])
5491 {
5492 ir.addr -= 1;
5493 goto no_support;
7ad10968 5494 }
425b824a
MS
5495 for (regnum = X86_RECORD_REAX_REGNUM;
5496 regnum <= X86_RECORD_REDI_REGNUM;
5497 regnum++)
25ea693b 5498 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5499 break;
5500
a38bba38 5501 case 0x8f: /* pop */
cf648174
HZ
5502 if (ir.regmap[X86_RECORD_R8_REGNUM])
5503 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5504 else
5505 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5506 if (i386_record_modrm (&ir))
5507 return -1;
5508 if (ir.mod == 3)
25ea693b 5509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5510 else
5511 {
cf648174 5512 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5513 if (i386_record_lea_modrm (&ir))
5514 return -1;
5515 }
25ea693b 5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5517 break;
5518
a38bba38 5519 case 0xc8: /* enter */
25ea693b 5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5521 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5522 ir.dflag = 2;
5523 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5524 return -1;
5525 break;
5526
a38bba38 5527 case 0xc9: /* leave */
25ea693b
MM
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5530 break;
5531
a38bba38 5532 case 0x07: /* pop es */
cf648174
HZ
5533 if (ir.regmap[X86_RECORD_R8_REGNUM])
5534 {
5535 ir.addr -= 1;
5536 goto no_support;
5537 }
25ea693b
MM
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5541 break;
5542
a38bba38 5543 case 0x17: /* pop ss */
cf648174
HZ
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
25ea693b
MM
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5552 break;
5553
a38bba38 5554 case 0x1f: /* pop ds */
cf648174
HZ
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 1;
5558 goto no_support;
5559 }
25ea693b
MM
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5563 break;
5564
a38bba38 5565 case 0x0fa1: /* pop fs */
25ea693b
MM
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5569 break;
5570
a38bba38 5571 case 0x0fa9: /* pop gs */
25ea693b
MM
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5575 break;
5576
a38bba38 5577 case 0x88: /* mov */
7ad10968
HZ
5578 case 0x89:
5579 case 0xc6:
5580 case 0xc7:
5581 if ((opcode & 1) == 0)
5582 ir.ot = OT_BYTE;
5583 else
5584 ir.ot = ir.dflag + OT_WORD;
5585
5586 if (i386_record_modrm (&ir))
5587 return -1;
5588
5589 if (ir.mod != 3)
5590 {
cf648174
HZ
5591 if (opcode == 0xc6 || opcode == 0xc7)
5592 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5593 if (i386_record_lea_modrm (&ir))
5594 return -1;
5595 }
5596 else
5597 {
cf648174
HZ
5598 if (opcode == 0xc6 || opcode == 0xc7)
5599 ir.rm |= ir.rex_b;
5600 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5601 ir.rm &= 0x3;
25ea693b 5602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5603 }
7ad10968 5604 break;
cf648174 5605
a38bba38 5606 case 0x8a: /* mov */
7ad10968
HZ
5607 case 0x8b:
5608 if ((opcode & 1) == 0)
5609 ir.ot = OT_BYTE;
5610 else
5611 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5612 if (i386_record_modrm (&ir))
5613 return -1;
cf648174
HZ
5614 ir.reg |= rex_r;
5615 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5616 ir.reg &= 0x3;
25ea693b 5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5618 break;
7ad10968 5619
a38bba38 5620 case 0x8c: /* mov seg */
cf648174 5621 if (i386_record_modrm (&ir))
7ad10968 5622 return -1;
cf648174
HZ
5623 if (ir.reg > 5)
5624 {
5625 ir.addr -= 2;
5626 opcode = opcode << 8 | ir.modrm;
5627 goto no_support;
5628 }
5629
5630 if (ir.mod == 3)
25ea693b 5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5632 else
5633 {
5634 ir.ot = OT_WORD;
5635 if (i386_record_lea_modrm (&ir))
5636 return -1;
5637 }
7ad10968
HZ
5638 break;
5639
a38bba38 5640 case 0x8e: /* mov seg */
7ad10968
HZ
5641 if (i386_record_modrm (&ir))
5642 return -1;
7ad10968
HZ
5643 switch (ir.reg)
5644 {
5645 case 0:
425b824a 5646 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5647 break;
5648 case 2:
425b824a 5649 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5650 break;
5651 case 3:
425b824a 5652 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5653 break;
5654 case 4:
425b824a 5655 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5656 break;
5657 case 5:
425b824a 5658 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5659 break;
5660 default:
5661 ir.addr -= 2;
5662 opcode = opcode << 8 | ir.modrm;
5663 goto no_support;
5664 break;
5665 }
25ea693b
MM
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5668 break;
5669
a38bba38
MS
5670 case 0x0fb6: /* movzbS */
5671 case 0x0fb7: /* movzwS */
5672 case 0x0fbe: /* movsbS */
5673 case 0x0fbf: /* movswS */
7ad10968
HZ
5674 if (i386_record_modrm (&ir))
5675 return -1;
25ea693b 5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5677 break;
5678
a38bba38 5679 case 0x8d: /* lea */
7ad10968
HZ
5680 if (i386_record_modrm (&ir))
5681 return -1;
5682 if (ir.mod == 3)
5683 {
5684 ir.addr -= 2;
5685 opcode = opcode << 8 | ir.modrm;
5686 goto no_support;
5687 }
7ad10968 5688 ir.ot = ir.dflag;
cf648174
HZ
5689 ir.reg |= rex_r;
5690 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5691 ir.reg &= 0x3;
25ea693b 5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5693 break;
5694
a38bba38 5695 case 0xa0: /* mov EAX */
7ad10968 5696 case 0xa1:
a38bba38
MS
5697
5698 case 0xd7: /* xlat */
25ea693b 5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5700 break;
5701
a38bba38 5702 case 0xa2: /* mov EAX */
7ad10968 5703 case 0xa3:
d7877f7e 5704 if (ir.override >= 0)
cf648174 5705 {
25ea693b 5706 if (record_full_memory_query)
bb08c432
HZ
5707 {
5708 int q;
5709
5710 target_terminal_ours ();
5711 q = yquery (_("\
5712Process record ignores the memory change of instruction at address %s\n\
5713because it can't get the value of the segment register.\n\
5714Do you want to stop the program?"),
5715 paddress (gdbarch, ir.orig_addr));
5716 target_terminal_inferior ();
5717 if (q)
5718 return -1;
5719 }
cf648174
HZ
5720 }
5721 else
5722 {
5723 if ((opcode & 1) == 0)
5724 ir.ot = OT_BYTE;
5725 else
5726 ir.ot = ir.dflag + OT_WORD;
5727 if (ir.aflag == 2)
5728 {
4ffa4fc7
PA
5729 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5730 return -1;
cf648174 5731 ir.addr += 8;
60a1502a 5732 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5733 }
5734 else if (ir.aflag)
5735 {
4ffa4fc7
PA
5736 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5737 return -1;
cf648174 5738 ir.addr += 4;
60a1502a 5739 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5740 }
5741 else
5742 {
4ffa4fc7
PA
5743 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5744 return -1;
cf648174 5745 ir.addr += 2;
60a1502a 5746 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5747 }
25ea693b 5748 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5749 return -1;
5750 }
7ad10968
HZ
5751 break;
5752
a38bba38 5753 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5754 case 0xb1:
5755 case 0xb2:
5756 case 0xb3:
5757 case 0xb4:
5758 case 0xb5:
5759 case 0xb6:
5760 case 0xb7:
25ea693b
MM
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5762 ? ((opcode & 0x7) | ir.rex_b)
5763 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5764 break;
5765
a38bba38 5766 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5767 case 0xb9:
5768 case 0xba:
5769 case 0xbb:
5770 case 0xbc:
5771 case 0xbd:
5772 case 0xbe:
5773 case 0xbf:
25ea693b 5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5775 break;
5776
a38bba38 5777 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5778 case 0x92:
5779 case 0x93:
5780 case 0x94:
5781 case 0x95:
5782 case 0x96:
5783 case 0x97:
25ea693b
MM
5784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5786 break;
5787
a38bba38 5788 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5789 case 0x87:
5790 if ((opcode & 1) == 0)
5791 ir.ot = OT_BYTE;
5792 else
5793 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5794 if (i386_record_modrm (&ir))
5795 return -1;
7ad10968
HZ
5796 if (ir.mod == 3)
5797 {
86839d38 5798 ir.rm |= ir.rex_b;
cf648174
HZ
5799 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5800 ir.rm &= 0x3;
25ea693b 5801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5802 }
5803 else
5804 {
5805 if (i386_record_lea_modrm (&ir))
5806 return -1;
5807 }
cf648174
HZ
5808 ir.reg |= rex_r;
5809 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5810 ir.reg &= 0x3;
25ea693b 5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5812 break;
5813
a38bba38
MS
5814 case 0xc4: /* les Gv */
5815 case 0xc5: /* lds Gv */
cf648174
HZ
5816 if (ir.regmap[X86_RECORD_R8_REGNUM])
5817 {
5818 ir.addr -= 1;
5819 goto no_support;
5820 }
d3f323f3 5821 /* FALLTHROUGH */
a38bba38
MS
5822 case 0x0fb2: /* lss Gv */
5823 case 0x0fb4: /* lfs Gv */
5824 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5825 if (i386_record_modrm (&ir))
5826 return -1;
5827 if (ir.mod == 3)
5828 {
5829 if (opcode > 0xff)
5830 ir.addr -= 3;
5831 else
5832 ir.addr -= 2;
5833 opcode = opcode << 8 | ir.modrm;
5834 goto no_support;
5835 }
7ad10968
HZ
5836 switch (opcode)
5837 {
a38bba38 5838 case 0xc4: /* les Gv */
425b824a 5839 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5840 break;
a38bba38 5841 case 0xc5: /* lds Gv */
425b824a 5842 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5843 break;
a38bba38 5844 case 0x0fb2: /* lss Gv */
425b824a 5845 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5846 break;
a38bba38 5847 case 0x0fb4: /* lfs Gv */
425b824a 5848 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5849 break;
a38bba38 5850 case 0x0fb5: /* lgs Gv */
425b824a 5851 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5852 break;
5853 }
25ea693b
MM
5854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5855 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5856 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5857 break;
5858
a38bba38 5859 case 0xc0: /* shifts */
7ad10968
HZ
5860 case 0xc1:
5861 case 0xd0:
5862 case 0xd1:
5863 case 0xd2:
5864 case 0xd3:
5865 if ((opcode & 1) == 0)
5866 ir.ot = OT_BYTE;
5867 else
5868 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5869 if (i386_record_modrm (&ir))
5870 return -1;
7ad10968
HZ
5871 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5872 {
5873 if (i386_record_lea_modrm (&ir))
5874 return -1;
5875 }
5876 else
5877 {
cf648174
HZ
5878 ir.rm |= ir.rex_b;
5879 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5880 ir.rm &= 0x3;
25ea693b 5881 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5882 }
25ea693b 5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5884 break;
5885
5886 case 0x0fa4:
5887 case 0x0fa5:
5888 case 0x0fac:
5889 case 0x0fad:
5890 if (i386_record_modrm (&ir))
5891 return -1;
5892 if (ir.mod == 3)
5893 {
25ea693b 5894 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5895 return -1;
5896 }
5897 else
5898 {
5899 if (i386_record_lea_modrm (&ir))
5900 return -1;
5901 }
5902 break;
5903
a38bba38 5904 case 0xd8: /* Floats. */
7ad10968
HZ
5905 case 0xd9:
5906 case 0xda:
5907 case 0xdb:
5908 case 0xdc:
5909 case 0xdd:
5910 case 0xde:
5911 case 0xdf:
5912 if (i386_record_modrm (&ir))
5913 return -1;
5914 ir.reg |= ((opcode & 7) << 3);
5915 if (ir.mod != 3)
5916 {
1777feb0 5917 /* Memory. */
955db0c0 5918 uint64_t addr64;
7ad10968 5919
955db0c0 5920 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5921 return -1;
5922 switch (ir.reg)
5923 {
7ad10968 5924 case 0x02:
0289bdd7
MS
5925 case 0x12:
5926 case 0x22:
5927 case 0x32:
5928 /* For fcom, ficom nothing to do. */
5929 break;
7ad10968 5930 case 0x03:
0289bdd7
MS
5931 case 0x13:
5932 case 0x23:
5933 case 0x33:
5934 /* For fcomp, ficomp pop FPU stack, store all. */
5935 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5936 return -1;
5937 break;
5938 case 0x00:
5939 case 0x01:
7ad10968
HZ
5940 case 0x04:
5941 case 0x05:
5942 case 0x06:
5943 case 0x07:
5944 case 0x10:
5945 case 0x11:
7ad10968
HZ
5946 case 0x14:
5947 case 0x15:
5948 case 0x16:
5949 case 0x17:
5950 case 0x20:
5951 case 0x21:
7ad10968
HZ
5952 case 0x24:
5953 case 0x25:
5954 case 0x26:
5955 case 0x27:
5956 case 0x30:
5957 case 0x31:
7ad10968
HZ
5958 case 0x34:
5959 case 0x35:
5960 case 0x36:
5961 case 0x37:
0289bdd7
MS
5962 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5963 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5964 of code, always affects st(0) register. */
5965 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5966 return -1;
7ad10968
HZ
5967 break;
5968 case 0x08:
5969 case 0x0a:
5970 case 0x0b:
5971 case 0x18:
5972 case 0x19:
5973 case 0x1a:
5974 case 0x1b:
0289bdd7 5975 case 0x1d:
7ad10968
HZ
5976 case 0x28:
5977 case 0x29:
5978 case 0x2a:
5979 case 0x2b:
5980 case 0x38:
5981 case 0x39:
5982 case 0x3a:
5983 case 0x3b:
0289bdd7
MS
5984 case 0x3c:
5985 case 0x3d:
7ad10968
HZ
5986 switch (ir.reg & 7)
5987 {
5988 case 0:
0289bdd7
MS
5989 /* Handling fld, fild. */
5990 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5991 return -1;
7ad10968
HZ
5992 break;
5993 case 1:
5994 switch (ir.reg >> 4)
5995 {
5996 case 0:
25ea693b 5997 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5998 return -1;
5999 break;
6000 case 2:
25ea693b 6001 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6002 return -1;
6003 break;
6004 case 3:
0289bdd7 6005 break;
7ad10968 6006 default:
25ea693b 6007 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6008 return -1;
6009 break;
6010 }
6011 break;
6012 default:
6013 switch (ir.reg >> 4)
6014 {
6015 case 0:
25ea693b 6016 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6017 return -1;
6018 if (3 == (ir.reg & 7))
6019 {
6020 /* For fstp m32fp. */
6021 if (i386_record_floats (gdbarch, &ir,
6022 I386_SAVE_FPU_REGS))
6023 return -1;
6024 }
6025 break;
7ad10968 6026 case 1:
25ea693b 6027 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6028 return -1;
0289bdd7
MS
6029 if ((3 == (ir.reg & 7))
6030 || (5 == (ir.reg & 7))
6031 || (7 == (ir.reg & 7)))
6032 {
6033 /* For fstp insn. */
6034 if (i386_record_floats (gdbarch, &ir,
6035 I386_SAVE_FPU_REGS))
6036 return -1;
6037 }
7ad10968
HZ
6038 break;
6039 case 2:
25ea693b 6040 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6041 return -1;
0289bdd7
MS
6042 if (3 == (ir.reg & 7))
6043 {
6044 /* For fstp m64fp. */
6045 if (i386_record_floats (gdbarch, &ir,
6046 I386_SAVE_FPU_REGS))
6047 return -1;
6048 }
7ad10968
HZ
6049 break;
6050 case 3:
0289bdd7
MS
6051 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6052 {
6053 /* For fistp, fbld, fild, fbstp. */
6054 if (i386_record_floats (gdbarch, &ir,
6055 I386_SAVE_FPU_REGS))
6056 return -1;
6057 }
6058 /* Fall through */
7ad10968 6059 default:
25ea693b 6060 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6061 return -1;
6062 break;
6063 }
6064 break;
6065 }
6066 break;
6067 case 0x0c:
0289bdd7
MS
6068 /* Insn fldenv. */
6069 if (i386_record_floats (gdbarch, &ir,
6070 I386_SAVE_FPU_ENV_REG_STACK))
6071 return -1;
6072 break;
7ad10968 6073 case 0x0d:
0289bdd7
MS
6074 /* Insn fldcw. */
6075 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6076 return -1;
6077 break;
7ad10968 6078 case 0x2c:
0289bdd7
MS
6079 /* Insn frstor. */
6080 if (i386_record_floats (gdbarch, &ir,
6081 I386_SAVE_FPU_ENV_REG_STACK))
6082 return -1;
7ad10968
HZ
6083 break;
6084 case 0x0e:
6085 if (ir.dflag)
6086 {
25ea693b 6087 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6088 return -1;
6089 }
6090 else
6091 {
25ea693b 6092 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6093 return -1;
6094 }
6095 break;
6096 case 0x0f:
6097 case 0x2f:
25ea693b 6098 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6099 return -1;
0289bdd7
MS
6100 /* Insn fstp, fbstp. */
6101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6102 return -1;
7ad10968
HZ
6103 break;
6104 case 0x1f:
6105 case 0x3e:
25ea693b 6106 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6107 return -1;
6108 break;
6109 case 0x2e:
6110 if (ir.dflag)
6111 {
25ea693b 6112 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6113 return -1;
955db0c0 6114 addr64 += 28;
7ad10968
HZ
6115 }
6116 else
6117 {
25ea693b 6118 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6119 return -1;
955db0c0 6120 addr64 += 14;
7ad10968 6121 }
25ea693b 6122 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6123 return -1;
0289bdd7
MS
6124 /* Insn fsave. */
6125 if (i386_record_floats (gdbarch, &ir,
6126 I386_SAVE_FPU_ENV_REG_STACK))
6127 return -1;
7ad10968
HZ
6128 break;
6129 case 0x3f:
25ea693b 6130 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6131 return -1;
0289bdd7
MS
6132 /* Insn fistp. */
6133 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6134 return -1;
7ad10968
HZ
6135 break;
6136 default:
6137 ir.addr -= 2;
6138 opcode = opcode << 8 | ir.modrm;
6139 goto no_support;
6140 break;
6141 }
6142 }
0289bdd7
MS
6143 /* Opcode is an extension of modR/M byte. */
6144 else
6145 {
6146 switch (opcode)
6147 {
6148 case 0xd8:
6149 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6150 return -1;
6151 break;
6152 case 0xd9:
6153 if (0x0c == (ir.modrm >> 4))
6154 {
6155 if ((ir.modrm & 0x0f) <= 7)
6156 {
6157 if (i386_record_floats (gdbarch, &ir,
6158 I386_SAVE_FPU_REGS))
6159 return -1;
6160 }
6161 else
6162 {
6163 if (i386_record_floats (gdbarch, &ir,
6164 I387_ST0_REGNUM (tdep)))
6165 return -1;
6166 /* If only st(0) is changing, then we have already
6167 recorded. */
6168 if ((ir.modrm & 0x0f) - 0x08)
6169 {
6170 if (i386_record_floats (gdbarch, &ir,
6171 I387_ST0_REGNUM (tdep) +
6172 ((ir.modrm & 0x0f) - 0x08)))
6173 return -1;
6174 }
6175 }
6176 }
6177 else
6178 {
6179 switch (ir.modrm)
6180 {
6181 case 0xe0:
6182 case 0xe1:
6183 case 0xf0:
6184 case 0xf5:
6185 case 0xf8:
6186 case 0xfa:
6187 case 0xfc:
6188 case 0xfe:
6189 case 0xff:
6190 if (i386_record_floats (gdbarch, &ir,
6191 I387_ST0_REGNUM (tdep)))
6192 return -1;
6193 break;
6194 case 0xf1:
6195 case 0xf2:
6196 case 0xf3:
6197 case 0xf4:
6198 case 0xf6:
6199 case 0xf7:
6200 case 0xe8:
6201 case 0xe9:
6202 case 0xea:
6203 case 0xeb:
6204 case 0xec:
6205 case 0xed:
6206 case 0xee:
6207 case 0xf9:
6208 case 0xfb:
6209 if (i386_record_floats (gdbarch, &ir,
6210 I386_SAVE_FPU_REGS))
6211 return -1;
6212 break;
6213 case 0xfd:
6214 if (i386_record_floats (gdbarch, &ir,
6215 I387_ST0_REGNUM (tdep)))
6216 return -1;
6217 if (i386_record_floats (gdbarch, &ir,
6218 I387_ST0_REGNUM (tdep) + 1))
6219 return -1;
6220 break;
6221 }
6222 }
6223 break;
6224 case 0xda:
6225 if (0xe9 == ir.modrm)
6226 {
6227 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6228 return -1;
6229 }
6230 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6231 {
6232 if (i386_record_floats (gdbarch, &ir,
6233 I387_ST0_REGNUM (tdep)))
6234 return -1;
6235 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6236 {
6237 if (i386_record_floats (gdbarch, &ir,
6238 I387_ST0_REGNUM (tdep) +
6239 (ir.modrm & 0x0f)))
6240 return -1;
6241 }
6242 else if ((ir.modrm & 0x0f) - 0x08)
6243 {
6244 if (i386_record_floats (gdbarch, &ir,
6245 I387_ST0_REGNUM (tdep) +
6246 ((ir.modrm & 0x0f) - 0x08)))
6247 return -1;
6248 }
6249 }
6250 break;
6251 case 0xdb:
6252 if (0xe3 == ir.modrm)
6253 {
6254 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6255 return -1;
6256 }
6257 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6258 {
6259 if (i386_record_floats (gdbarch, &ir,
6260 I387_ST0_REGNUM (tdep)))
6261 return -1;
6262 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6263 {
6264 if (i386_record_floats (gdbarch, &ir,
6265 I387_ST0_REGNUM (tdep) +
6266 (ir.modrm & 0x0f)))
6267 return -1;
6268 }
6269 else if ((ir.modrm & 0x0f) - 0x08)
6270 {
6271 if (i386_record_floats (gdbarch, &ir,
6272 I387_ST0_REGNUM (tdep) +
6273 ((ir.modrm & 0x0f) - 0x08)))
6274 return -1;
6275 }
6276 }
6277 break;
6278 case 0xdc:
6279 if ((0x0c == ir.modrm >> 4)
6280 || (0x0d == ir.modrm >> 4)
6281 || (0x0f == ir.modrm >> 4))
6282 {
6283 if ((ir.modrm & 0x0f) <= 7)
6284 {
6285 if (i386_record_floats (gdbarch, &ir,
6286 I387_ST0_REGNUM (tdep) +
6287 (ir.modrm & 0x0f)))
6288 return -1;
6289 }
6290 else
6291 {
6292 if (i386_record_floats (gdbarch, &ir,
6293 I387_ST0_REGNUM (tdep) +
6294 ((ir.modrm & 0x0f) - 0x08)))
6295 return -1;
6296 }
6297 }
6298 break;
6299 case 0xdd:
6300 if (0x0c == ir.modrm >> 4)
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_FTAG_REGNUM (tdep)))
6304 return -1;
6305 }
6306 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6307 {
6308 if ((ir.modrm & 0x0f) <= 7)
6309 {
6310 if (i386_record_floats (gdbarch, &ir,
6311 I387_ST0_REGNUM (tdep) +
6312 (ir.modrm & 0x0f)))
6313 return -1;
6314 }
6315 else
6316 {
6317 if (i386_record_floats (gdbarch, &ir,
6318 I386_SAVE_FPU_REGS))
6319 return -1;
6320 }
6321 }
6322 break;
6323 case 0xde:
6324 if ((0x0c == ir.modrm >> 4)
6325 || (0x0e == ir.modrm >> 4)
6326 || (0x0f == ir.modrm >> 4)
6327 || (0xd9 == ir.modrm))
6328 {
6329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6330 return -1;
6331 }
6332 break;
6333 case 0xdf:
6334 if (0xe0 == ir.modrm)
6335 {
25ea693b
MM
6336 if (record_full_arch_list_add_reg (ir.regcache,
6337 I386_EAX_REGNUM))
0289bdd7
MS
6338 return -1;
6339 }
6340 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6341 {
6342 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6343 return -1;
6344 }
6345 break;
6346 }
6347 }
7ad10968 6348 break;
7ad10968 6349 /* string ops */
a38bba38 6350 case 0xa4: /* movsS */
7ad10968 6351 case 0xa5:
a38bba38 6352 case 0xaa: /* stosS */
7ad10968 6353 case 0xab:
a38bba38 6354 case 0x6c: /* insS */
7ad10968 6355 case 0x6d:
cf648174 6356 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6357 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6358 &addr);
6359 if (addr)
cf648174 6360 {
77d7dc92
HZ
6361 ULONGEST es, ds;
6362
6363 if ((opcode & 1) == 0)
6364 ir.ot = OT_BYTE;
6365 else
6366 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6367 regcache_raw_read_unsigned (ir.regcache,
6368 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6369 &addr);
77d7dc92 6370
d7877f7e
HZ
6371 regcache_raw_read_unsigned (ir.regcache,
6372 ir.regmap[X86_RECORD_ES_REGNUM],
6373 &es);
6374 regcache_raw_read_unsigned (ir.regcache,
6375 ir.regmap[X86_RECORD_DS_REGNUM],
6376 &ds);
6377 if (ir.aflag && (es != ds))
77d7dc92
HZ
6378 {
6379 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6380 if (record_full_memory_query)
bb08c432
HZ
6381 {
6382 int q;
6383
6384 target_terminal_ours ();
6385 q = yquery (_("\
6386Process record ignores the memory change of instruction at address %s\n\
6387because it can't get the value of the segment register.\n\
6388Do you want to stop the program?"),
6389 paddress (gdbarch, ir.orig_addr));
6390 target_terminal_inferior ();
6391 if (q)
6392 return -1;
6393 }
df61f520
HZ
6394 }
6395 else
6396 {
25ea693b 6397 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6398 return -1;
77d7dc92
HZ
6399 }
6400
6401 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6403 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6404 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6405 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6407 }
cf648174 6408 break;
7ad10968 6409
a38bba38 6410 case 0xa6: /* cmpsS */
cf648174 6411 case 0xa7:
25ea693b
MM
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6414 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6417 break;
6418
a38bba38 6419 case 0xac: /* lodsS */
7ad10968 6420 case 0xad:
25ea693b
MM
6421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6423 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6426 break;
6427
a38bba38 6428 case 0xae: /* scasS */
7ad10968 6429 case 0xaf:
25ea693b 6430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6431 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6434 break;
6435
a38bba38 6436 case 0x6e: /* outsS */
cf648174 6437 case 0x6f:
25ea693b 6438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6439 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6442 break;
6443
a38bba38 6444 case 0xe4: /* port I/O */
7ad10968
HZ
6445 case 0xe5:
6446 case 0xec:
6447 case 0xed:
25ea693b
MM
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6450 break;
6451
6452 case 0xe6:
6453 case 0xe7:
6454 case 0xee:
6455 case 0xef:
6456 break;
6457
6458 /* control */
a38bba38
MS
6459 case 0xc2: /* ret im */
6460 case 0xc3: /* ret */
25ea693b
MM
6461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6463 break;
6464
a38bba38
MS
6465 case 0xca: /* lret im */
6466 case 0xcb: /* lret */
6467 case 0xcf: /* iret */
25ea693b
MM
6468 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6470 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6471 break;
6472
a38bba38 6473 case 0xe8: /* call im */
cf648174
HZ
6474 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6475 ir.dflag = 2;
6476 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6477 return -1;
7ad10968
HZ
6478 break;
6479
a38bba38 6480 case 0x9a: /* lcall im */
cf648174
HZ
6481 if (ir.regmap[X86_RECORD_R8_REGNUM])
6482 {
6483 ir.addr -= 1;
6484 goto no_support;
6485 }
25ea693b 6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6487 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6488 return -1;
7ad10968
HZ
6489 break;
6490
a38bba38
MS
6491 case 0xe9: /* jmp im */
6492 case 0xea: /* ljmp im */
6493 case 0xeb: /* jmp Jb */
6494 case 0x70: /* jcc Jb */
7ad10968
HZ
6495 case 0x71:
6496 case 0x72:
6497 case 0x73:
6498 case 0x74:
6499 case 0x75:
6500 case 0x76:
6501 case 0x77:
6502 case 0x78:
6503 case 0x79:
6504 case 0x7a:
6505 case 0x7b:
6506 case 0x7c:
6507 case 0x7d:
6508 case 0x7e:
6509 case 0x7f:
a38bba38 6510 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6511 case 0x0f81:
6512 case 0x0f82:
6513 case 0x0f83:
6514 case 0x0f84:
6515 case 0x0f85:
6516 case 0x0f86:
6517 case 0x0f87:
6518 case 0x0f88:
6519 case 0x0f89:
6520 case 0x0f8a:
6521 case 0x0f8b:
6522 case 0x0f8c:
6523 case 0x0f8d:
6524 case 0x0f8e:
6525 case 0x0f8f:
6526 break;
6527
a38bba38 6528 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6529 case 0x0f91:
6530 case 0x0f92:
6531 case 0x0f93:
6532 case 0x0f94:
6533 case 0x0f95:
6534 case 0x0f96:
6535 case 0x0f97:
6536 case 0x0f98:
6537 case 0x0f99:
6538 case 0x0f9a:
6539 case 0x0f9b:
6540 case 0x0f9c:
6541 case 0x0f9d:
6542 case 0x0f9e:
6543 case 0x0f9f:
25ea693b 6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6545 ir.ot = OT_BYTE;
6546 if (i386_record_modrm (&ir))
6547 return -1;
6548 if (ir.mod == 3)
25ea693b
MM
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6550 : (ir.rm & 0x3));
7ad10968
HZ
6551 else
6552 {
6553 if (i386_record_lea_modrm (&ir))
6554 return -1;
6555 }
6556 break;
6557
a38bba38 6558 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6559 case 0x0f41:
6560 case 0x0f42:
6561 case 0x0f43:
6562 case 0x0f44:
6563 case 0x0f45:
6564 case 0x0f46:
6565 case 0x0f47:
6566 case 0x0f48:
6567 case 0x0f49:
6568 case 0x0f4a:
6569 case 0x0f4b:
6570 case 0x0f4c:
6571 case 0x0f4d:
6572 case 0x0f4e:
6573 case 0x0f4f:
6574 if (i386_record_modrm (&ir))
6575 return -1;
cf648174 6576 ir.reg |= rex_r;
7ad10968
HZ
6577 if (ir.dflag == OT_BYTE)
6578 ir.reg &= 0x3;
25ea693b 6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6580 break;
6581
6582 /* flags */
a38bba38 6583 case 0x9c: /* pushf */
25ea693b 6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6585 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6586 ir.dflag = 2;
6587 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6588 return -1;
7ad10968
HZ
6589 break;
6590
a38bba38 6591 case 0x9d: /* popf */
25ea693b
MM
6592 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6594 break;
6595
a38bba38 6596 case 0x9e: /* sahf */
cf648174
HZ
6597 if (ir.regmap[X86_RECORD_R8_REGNUM])
6598 {
6599 ir.addr -= 1;
6600 goto no_support;
6601 }
d3f323f3 6602 /* FALLTHROUGH */
a38bba38
MS
6603 case 0xf5: /* cmc */
6604 case 0xf8: /* clc */
6605 case 0xf9: /* stc */
6606 case 0xfc: /* cld */
6607 case 0xfd: /* std */
25ea693b 6608 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6609 break;
6610
a38bba38 6611 case 0x9f: /* lahf */
cf648174
HZ
6612 if (ir.regmap[X86_RECORD_R8_REGNUM])
6613 {
6614 ir.addr -= 1;
6615 goto no_support;
6616 }
25ea693b
MM
6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6619 break;
6620
6621 /* bit operations */
a38bba38 6622 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6623 ir.ot = ir.dflag + OT_WORD;
6624 if (i386_record_modrm (&ir))
6625 return -1;
6626 if (ir.reg < 4)
6627 {
cf648174 6628 ir.addr -= 2;
7ad10968
HZ
6629 opcode = opcode << 8 | ir.modrm;
6630 goto no_support;
6631 }
cf648174 6632 if (ir.reg != 4)
7ad10968 6633 {
cf648174 6634 if (ir.mod == 3)
25ea693b 6635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6636 else
6637 {
cf648174 6638 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6639 return -1;
6640 }
6641 }
25ea693b 6642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6643 break;
6644
a38bba38 6645 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6647 break;
6648
a38bba38
MS
6649 case 0x0fab: /* bts */
6650 case 0x0fb3: /* btr */
6651 case 0x0fbb: /* btc */
cf648174
HZ
6652 ir.ot = ir.dflag + OT_WORD;
6653 if (i386_record_modrm (&ir))
6654 return -1;
6655 if (ir.mod == 3)
25ea693b 6656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6657 else
6658 {
955db0c0
MS
6659 uint64_t addr64;
6660 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6661 return -1;
6662 regcache_raw_read_unsigned (ir.regcache,
6663 ir.regmap[ir.reg | rex_r],
648d0c8b 6664 &addr);
cf648174
HZ
6665 switch (ir.dflag)
6666 {
6667 case 0:
648d0c8b 6668 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6669 break;
6670 case 1:
648d0c8b 6671 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6672 break;
6673 case 2:
648d0c8b 6674 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6675 break;
6676 }
25ea693b 6677 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6678 return -1;
6679 if (i386_record_lea_modrm (&ir))
6680 return -1;
6681 }
25ea693b 6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6683 break;
6684
a38bba38
MS
6685 case 0x0fbc: /* bsf */
6686 case 0x0fbd: /* bsr */
25ea693b
MM
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6689 break;
6690
6691 /* bcd */
a38bba38
MS
6692 case 0x27: /* daa */
6693 case 0x2f: /* das */
6694 case 0x37: /* aaa */
6695 case 0x3f: /* aas */
6696 case 0xd4: /* aam */
6697 case 0xd5: /* aad */
cf648174
HZ
6698 if (ir.regmap[X86_RECORD_R8_REGNUM])
6699 {
6700 ir.addr -= 1;
6701 goto no_support;
6702 }
25ea693b
MM
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6705 break;
6706
6707 /* misc */
a38bba38 6708 case 0x90: /* nop */
7ad10968
HZ
6709 if (prefixes & PREFIX_LOCK)
6710 {
6711 ir.addr -= 1;
6712 goto no_support;
6713 }
6714 break;
6715
a38bba38 6716 case 0x9b: /* fwait */
4ffa4fc7
PA
6717 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6718 return -1;
425b824a 6719 opcode = (uint32_t) opcode8;
0289bdd7
MS
6720 ir.addr++;
6721 goto reswitch;
7ad10968
HZ
6722 break;
6723
7ad10968 6724 /* XXX */
a38bba38 6725 case 0xcc: /* int3 */
a3c4230a 6726 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6727 "int3.\n"));
6728 ir.addr -= 1;
6729 goto no_support;
6730 break;
6731
7ad10968 6732 /* XXX */
a38bba38 6733 case 0xcd: /* int */
7ad10968
HZ
6734 {
6735 int ret;
425b824a 6736 uint8_t interrupt;
4ffa4fc7
PA
6737 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6738 return -1;
7ad10968 6739 ir.addr++;
425b824a 6740 if (interrupt != 0x80
a3c4230a 6741 || tdep->i386_intx80_record == NULL)
7ad10968 6742 {
a3c4230a 6743 printf_unfiltered (_("Process record does not support "
7ad10968 6744 "instruction int 0x%02x.\n"),
425b824a 6745 interrupt);
7ad10968
HZ
6746 ir.addr -= 2;
6747 goto no_support;
6748 }
a3c4230a 6749 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6750 if (ret)
6751 return ret;
6752 }
6753 break;
6754
7ad10968 6755 /* XXX */
a38bba38 6756 case 0xce: /* into */
a3c4230a 6757 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6758 "instruction into.\n"));
6759 ir.addr -= 1;
6760 goto no_support;
6761 break;
6762
a38bba38
MS
6763 case 0xfa: /* cli */
6764 case 0xfb: /* sti */
7ad10968
HZ
6765 break;
6766
a38bba38 6767 case 0x62: /* bound */
a3c4230a 6768 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6769 "instruction bound.\n"));
6770 ir.addr -= 1;
6771 goto no_support;
6772 break;
6773
a38bba38 6774 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6775 case 0x0fc9:
6776 case 0x0fca:
6777 case 0x0fcb:
6778 case 0x0fcc:
6779 case 0x0fcd:
6780 case 0x0fce:
6781 case 0x0fcf:
25ea693b 6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6783 break;
6784
a38bba38 6785 case 0xd6: /* salc */
cf648174
HZ
6786 if (ir.regmap[X86_RECORD_R8_REGNUM])
6787 {
6788 ir.addr -= 1;
6789 goto no_support;
6790 }
25ea693b
MM
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6793 break;
6794
a38bba38
MS
6795 case 0xe0: /* loopnz */
6796 case 0xe1: /* loopz */
6797 case 0xe2: /* loop */
6798 case 0xe3: /* jecxz */
25ea693b
MM
6799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6801 break;
6802
a38bba38 6803 case 0x0f30: /* wrmsr */
a3c4230a 6804 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6805 "instruction wrmsr.\n"));
6806 ir.addr -= 2;
6807 goto no_support;
6808 break;
6809
a38bba38 6810 case 0x0f32: /* rdmsr */
a3c4230a 6811 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6812 "instruction rdmsr.\n"));
6813 ir.addr -= 2;
6814 goto no_support;
6815 break;
6816
a38bba38 6817 case 0x0f31: /* rdtsc */
25ea693b
MM
6818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6820 break;
6821
a38bba38 6822 case 0x0f34: /* sysenter */
7ad10968
HZ
6823 {
6824 int ret;
cf648174
HZ
6825 if (ir.regmap[X86_RECORD_R8_REGNUM])
6826 {
6827 ir.addr -= 2;
6828 goto no_support;
6829 }
a3c4230a 6830 if (tdep->i386_sysenter_record == NULL)
7ad10968 6831 {
a3c4230a 6832 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6833 "instruction sysenter.\n"));
6834 ir.addr -= 2;
6835 goto no_support;
6836 }
a3c4230a 6837 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6838 if (ret)
6839 return ret;
6840 }
6841 break;
6842
a38bba38 6843 case 0x0f35: /* sysexit */
a3c4230a 6844 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6845 "instruction sysexit.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 break;
6849
a38bba38 6850 case 0x0f05: /* syscall */
cf648174
HZ
6851 {
6852 int ret;
a3c4230a 6853 if (tdep->i386_syscall_record == NULL)
cf648174 6854 {
a3c4230a 6855 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6856 "instruction syscall.\n"));
6857 ir.addr -= 2;
6858 goto no_support;
6859 }
a3c4230a 6860 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6861 if (ret)
6862 return ret;
6863 }
6864 break;
6865
a38bba38 6866 case 0x0f07: /* sysret */
a3c4230a 6867 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6868 "instruction sysret.\n"));
6869 ir.addr -= 2;
6870 goto no_support;
6871 break;
6872
a38bba38 6873 case 0x0fa2: /* cpuid */
25ea693b
MM
6874 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6878 break;
6879
a38bba38 6880 case 0xf4: /* hlt */
a3c4230a 6881 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6882 "instruction hlt.\n"));
6883 ir.addr -= 1;
6884 goto no_support;
6885 break;
6886
6887 case 0x0f00:
6888 if (i386_record_modrm (&ir))
6889 return -1;
6890 switch (ir.reg)
6891 {
a38bba38
MS
6892 case 0: /* sldt */
6893 case 1: /* str */
7ad10968 6894 if (ir.mod == 3)
25ea693b 6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6896 else
6897 {
6898 ir.ot = OT_WORD;
6899 if (i386_record_lea_modrm (&ir))
6900 return -1;
6901 }
6902 break;
a38bba38
MS
6903 case 2: /* lldt */
6904 case 3: /* ltr */
7ad10968 6905 break;
a38bba38
MS
6906 case 4: /* verr */
6907 case 5: /* verw */
25ea693b 6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6909 break;
6910 default:
6911 ir.addr -= 3;
6912 opcode = opcode << 8 | ir.modrm;
6913 goto no_support;
6914 break;
6915 }
6916 break;
6917
6918 case 0x0f01:
6919 if (i386_record_modrm (&ir))
6920 return -1;
6921 switch (ir.reg)
6922 {
a38bba38 6923 case 0: /* sgdt */
7ad10968 6924 {
955db0c0 6925 uint64_t addr64;
7ad10968
HZ
6926
6927 if (ir.mod == 3)
6928 {
6929 ir.addr -= 3;
6930 opcode = opcode << 8 | ir.modrm;
6931 goto no_support;
6932 }
d7877f7e 6933 if (ir.override >= 0)
7ad10968 6934 {
25ea693b 6935 if (record_full_memory_query)
bb08c432
HZ
6936 {
6937 int q;
6938
6939 target_terminal_ours ();
6940 q = yquery (_("\
6941Process record ignores the memory change of instruction at address %s\n\
6942because it can't get the value of the segment register.\n\
6943Do you want to stop the program?"),
6944 paddress (gdbarch, ir.orig_addr));
6945 target_terminal_inferior ();
6946 if (q)
6947 return -1;
6948 }
7ad10968
HZ
6949 }
6950 else
6951 {
955db0c0 6952 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6953 return -1;
25ea693b 6954 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6955 return -1;
955db0c0 6956 addr64 += 2;
cf648174
HZ
6957 if (ir.regmap[X86_RECORD_R8_REGNUM])
6958 {
25ea693b 6959 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6960 return -1;
6961 }
6962 else
6963 {
25ea693b 6964 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6965 return -1;
6966 }
7ad10968
HZ
6967 }
6968 }
6969 break;
6970 case 1:
6971 if (ir.mod == 3)
6972 {
6973 switch (ir.rm)
6974 {
a38bba38 6975 case 0: /* monitor */
7ad10968 6976 break;
a38bba38 6977 case 1: /* mwait */
25ea693b 6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6979 break;
6980 default:
6981 ir.addr -= 3;
6982 opcode = opcode << 8 | ir.modrm;
6983 goto no_support;
6984 break;
6985 }
6986 }
6987 else
6988 {
6989 /* sidt */
d7877f7e 6990 if (ir.override >= 0)
7ad10968 6991 {
25ea693b 6992 if (record_full_memory_query)
bb08c432
HZ
6993 {
6994 int q;
6995
6996 target_terminal_ours ();
6997 q = yquery (_("\
6998Process record ignores the memory change of instruction at address %s\n\
6999because it can't get the value of the segment register.\n\
7000Do you want to stop the program?"),
7001 paddress (gdbarch, ir.orig_addr));
7002 target_terminal_inferior ();
7003 if (q)
7004 return -1;
7005 }
7ad10968
HZ
7006 }
7007 else
7008 {
955db0c0 7009 uint64_t addr64;
7ad10968 7010
955db0c0 7011 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7012 return -1;
25ea693b 7013 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7014 return -1;
955db0c0 7015 addr64 += 2;
cf648174
HZ
7016 if (ir.regmap[X86_RECORD_R8_REGNUM])
7017 {
25ea693b 7018 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7019 return -1;
7020 }
7021 else
7022 {
25ea693b 7023 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7024 return -1;
7025 }
7ad10968
HZ
7026 }
7027 }
7028 break;
a38bba38 7029 case 2: /* lgdt */
3800e645
MS
7030 if (ir.mod == 3)
7031 {
7032 /* xgetbv */
7033 if (ir.rm == 0)
7034 {
25ea693b
MM
7035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7037 break;
7038 }
7039 /* xsetbv */
7040 else if (ir.rm == 1)
7041 break;
7042 }
a38bba38 7043 case 3: /* lidt */
7ad10968
HZ
7044 if (ir.mod == 3)
7045 {
7046 ir.addr -= 3;
7047 opcode = opcode << 8 | ir.modrm;
7048 goto no_support;
7049 }
7050 break;
a38bba38 7051 case 4: /* smsw */
7ad10968
HZ
7052 if (ir.mod == 3)
7053 {
25ea693b 7054 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7055 return -1;
7056 }
7057 else
7058 {
7059 ir.ot = OT_WORD;
7060 if (i386_record_lea_modrm (&ir))
7061 return -1;
7062 }
25ea693b 7063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7064 break;
a38bba38 7065 case 6: /* lmsw */
25ea693b 7066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7067 break;
a38bba38 7068 case 7: /* invlpg */
cf648174
HZ
7069 if (ir.mod == 3)
7070 {
7071 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7072 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7073 else
7074 {
7075 ir.addr -= 3;
7076 opcode = opcode << 8 | ir.modrm;
7077 goto no_support;
7078 }
7079 }
7080 else
25ea693b 7081 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7082 break;
7083 default:
7084 ir.addr -= 3;
7085 opcode = opcode << 8 | ir.modrm;
7086 goto no_support;
7ad10968
HZ
7087 break;
7088 }
7089 break;
7090
a38bba38
MS
7091 case 0x0f08: /* invd */
7092 case 0x0f09: /* wbinvd */
7ad10968
HZ
7093 break;
7094
a38bba38 7095 case 0x63: /* arpl */
7ad10968
HZ
7096 if (i386_record_modrm (&ir))
7097 return -1;
cf648174
HZ
7098 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7099 {
25ea693b
MM
7100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7101 ? (ir.reg | rex_r) : ir.rm);
cf648174 7102 }
7ad10968 7103 else
cf648174
HZ
7104 {
7105 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7106 if (i386_record_lea_modrm (&ir))
7107 return -1;
7108 }
7109 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7111 break;
7112
a38bba38
MS
7113 case 0x0f02: /* lar */
7114 case 0x0f03: /* lsl */
7ad10968
HZ
7115 if (i386_record_modrm (&ir))
7116 return -1;
25ea693b
MM
7117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7119 break;
7120
7121 case 0x0f18:
cf648174
HZ
7122 if (i386_record_modrm (&ir))
7123 return -1;
7124 if (ir.mod == 3 && ir.reg == 3)
7125 {
7126 ir.addr -= 3;
7127 opcode = opcode << 8 | ir.modrm;
7128 goto no_support;
7129 }
7ad10968
HZ
7130 break;
7131
7ad10968
HZ
7132 case 0x0f19:
7133 case 0x0f1a:
7134 case 0x0f1b:
7135 case 0x0f1c:
7136 case 0x0f1d:
7137 case 0x0f1e:
7138 case 0x0f1f:
a38bba38 7139 /* nop (multi byte) */
7ad10968
HZ
7140 break;
7141
a38bba38
MS
7142 case 0x0f20: /* mov reg, crN */
7143 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7144 if (i386_record_modrm (&ir))
7145 return -1;
7146 if ((ir.modrm & 0xc0) != 0xc0)
7147 {
cf648174 7148 ir.addr -= 3;
7ad10968
HZ
7149 opcode = opcode << 8 | ir.modrm;
7150 goto no_support;
7151 }
7152 switch (ir.reg)
7153 {
7154 case 0:
7155 case 2:
7156 case 3:
7157 case 4:
7158 case 8:
7159 if (opcode & 2)
25ea693b 7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7161 else
25ea693b 7162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7163 break;
7164 default:
cf648174 7165 ir.addr -= 3;
7ad10968
HZ
7166 opcode = opcode << 8 | ir.modrm;
7167 goto no_support;
7168 break;
7169 }
7170 break;
7171
a38bba38
MS
7172 case 0x0f21: /* mov reg, drN */
7173 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7174 if (i386_record_modrm (&ir))
7175 return -1;
7176 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7177 || ir.reg == 5 || ir.reg >= 8)
7178 {
cf648174 7179 ir.addr -= 3;
7ad10968
HZ
7180 opcode = opcode << 8 | ir.modrm;
7181 goto no_support;
7182 }
7183 if (opcode & 2)
25ea693b 7184 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7185 else
25ea693b 7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7187 break;
7188
a38bba38 7189 case 0x0f06: /* clts */
25ea693b 7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7191 break;
7192
a3c4230a
HZ
7193 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7194
7195 case 0x0f0d: /* 3DNow! prefetch */
7196 break;
7197
7198 case 0x0f0e: /* 3DNow! femms */
7199 case 0x0f77: /* emms */
7200 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7201 goto no_support;
25ea693b 7202 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7203 break;
7204
7205 case 0x0f0f: /* 3DNow! data */
7206 if (i386_record_modrm (&ir))
7207 return -1;
4ffa4fc7
PA
7208 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7209 return -1;
a3c4230a
HZ
7210 ir.addr++;
7211 switch (opcode8)
7212 {
7213 case 0x0c: /* 3DNow! pi2fw */
7214 case 0x0d: /* 3DNow! pi2fd */
7215 case 0x1c: /* 3DNow! pf2iw */
7216 case 0x1d: /* 3DNow! pf2id */
7217 case 0x8a: /* 3DNow! pfnacc */
7218 case 0x8e: /* 3DNow! pfpnacc */
7219 case 0x90: /* 3DNow! pfcmpge */
7220 case 0x94: /* 3DNow! pfmin */
7221 case 0x96: /* 3DNow! pfrcp */
7222 case 0x97: /* 3DNow! pfrsqrt */
7223 case 0x9a: /* 3DNow! pfsub */
7224 case 0x9e: /* 3DNow! pfadd */
7225 case 0xa0: /* 3DNow! pfcmpgt */
7226 case 0xa4: /* 3DNow! pfmax */
7227 case 0xa6: /* 3DNow! pfrcpit1 */
7228 case 0xa7: /* 3DNow! pfrsqit1 */
7229 case 0xaa: /* 3DNow! pfsubr */
7230 case 0xae: /* 3DNow! pfacc */
7231 case 0xb0: /* 3DNow! pfcmpeq */
7232 case 0xb4: /* 3DNow! pfmul */
7233 case 0xb6: /* 3DNow! pfrcpit2 */
7234 case 0xb7: /* 3DNow! pmulhrw */
7235 case 0xbb: /* 3DNow! pswapd */
7236 case 0xbf: /* 3DNow! pavgusb */
7237 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7238 goto no_support_3dnow_data;
25ea693b 7239 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7240 break;
7241
7242 default:
7243no_support_3dnow_data:
7244 opcode = (opcode << 8) | opcode8;
7245 goto no_support;
7246 break;
7247 }
7248 break;
7249
7250 case 0x0faa: /* rsm */
25ea693b
MM
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7257 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7260 break;
7261
7262 case 0x0fae:
7263 if (i386_record_modrm (&ir))
7264 return -1;
7265 switch(ir.reg)
7266 {
7267 case 0: /* fxsave */
7268 {
7269 uint64_t tmpu64;
7270
25ea693b 7271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7272 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7273 return -1;
25ea693b 7274 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7275 return -1;
7276 }
7277 break;
7278
7279 case 1: /* fxrstor */
7280 {
7281 int i;
7282
25ea693b 7283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7284
7285 for (i = I387_MM0_REGNUM (tdep);
7286 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7287 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7288
7289 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7290 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7291 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7292
7293 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7294 record_full_arch_list_add_reg (ir.regcache,
7295 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7296
7297 for (i = I387_ST0_REGNUM (tdep);
7298 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7299 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7300
7301 for (i = I387_FCTRL_REGNUM (tdep);
7302 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7303 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7304 }
7305 break;
7306
7307 case 2: /* ldmxcsr */
7308 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7309 goto no_support;
25ea693b 7310 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7311 break;
7312
7313 case 3: /* stmxcsr */
7314 ir.ot = OT_LONG;
7315 if (i386_record_lea_modrm (&ir))
7316 return -1;
7317 break;
7318
7319 case 5: /* lfence */
7320 case 6: /* mfence */
7321 case 7: /* sfence clflush */
7322 break;
7323
7324 default:
7325 opcode = (opcode << 8) | ir.modrm;
7326 goto no_support;
7327 break;
7328 }
7329 break;
7330
7331 case 0x0fc3: /* movnti */
7332 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7333 if (i386_record_modrm (&ir))
7334 return -1;
7335 if (ir.mod == 3)
7336 goto no_support;
7337 ir.reg |= rex_r;
7338 if (i386_record_lea_modrm (&ir))
7339 return -1;
7340 break;
7341
7342 /* Add prefix to opcode. */
7343 case 0x0f10:
7344 case 0x0f11:
7345 case 0x0f12:
7346 case 0x0f13:
7347 case 0x0f14:
7348 case 0x0f15:
7349 case 0x0f16:
7350 case 0x0f17:
7351 case 0x0f28:
7352 case 0x0f29:
7353 case 0x0f2a:
7354 case 0x0f2b:
7355 case 0x0f2c:
7356 case 0x0f2d:
7357 case 0x0f2e:
7358 case 0x0f2f:
7359 case 0x0f38:
7360 case 0x0f39:
7361 case 0x0f3a:
7362 case 0x0f50:
7363 case 0x0f51:
7364 case 0x0f52:
7365 case 0x0f53:
7366 case 0x0f54:
7367 case 0x0f55:
7368 case 0x0f56:
7369 case 0x0f57:
7370 case 0x0f58:
7371 case 0x0f59:
7372 case 0x0f5a:
7373 case 0x0f5b:
7374 case 0x0f5c:
7375 case 0x0f5d:
7376 case 0x0f5e:
7377 case 0x0f5f:
7378 case 0x0f60:
7379 case 0x0f61:
7380 case 0x0f62:
7381 case 0x0f63:
7382 case 0x0f64:
7383 case 0x0f65:
7384 case 0x0f66:
7385 case 0x0f67:
7386 case 0x0f68:
7387 case 0x0f69:
7388 case 0x0f6a:
7389 case 0x0f6b:
7390 case 0x0f6c:
7391 case 0x0f6d:
7392 case 0x0f6e:
7393 case 0x0f6f:
7394 case 0x0f70:
7395 case 0x0f71:
7396 case 0x0f72:
7397 case 0x0f73:
7398 case 0x0f74:
7399 case 0x0f75:
7400 case 0x0f76:
7401 case 0x0f7c:
7402 case 0x0f7d:
7403 case 0x0f7e:
7404 case 0x0f7f:
7405 case 0x0fb8:
7406 case 0x0fc2:
7407 case 0x0fc4:
7408 case 0x0fc5:
7409 case 0x0fc6:
7410 case 0x0fd0:
7411 case 0x0fd1:
7412 case 0x0fd2:
7413 case 0x0fd3:
7414 case 0x0fd4:
7415 case 0x0fd5:
7416 case 0x0fd6:
7417 case 0x0fd7:
7418 case 0x0fd8:
7419 case 0x0fd9:
7420 case 0x0fda:
7421 case 0x0fdb:
7422 case 0x0fdc:
7423 case 0x0fdd:
7424 case 0x0fde:
7425 case 0x0fdf:
7426 case 0x0fe0:
7427 case 0x0fe1:
7428 case 0x0fe2:
7429 case 0x0fe3:
7430 case 0x0fe4:
7431 case 0x0fe5:
7432 case 0x0fe6:
7433 case 0x0fe7:
7434 case 0x0fe8:
7435 case 0x0fe9:
7436 case 0x0fea:
7437 case 0x0feb:
7438 case 0x0fec:
7439 case 0x0fed:
7440 case 0x0fee:
7441 case 0x0fef:
7442 case 0x0ff0:
7443 case 0x0ff1:
7444 case 0x0ff2:
7445 case 0x0ff3:
7446 case 0x0ff4:
7447 case 0x0ff5:
7448 case 0x0ff6:
7449 case 0x0ff7:
7450 case 0x0ff8:
7451 case 0x0ff9:
7452 case 0x0ffa:
7453 case 0x0ffb:
7454 case 0x0ffc:
7455 case 0x0ffd:
7456 case 0x0ffe:
f9fda3f5
L
7457 /* Mask out PREFIX_ADDR. */
7458 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7459 {
7460 case PREFIX_REPNZ:
7461 opcode |= 0xf20000;
7462 break;
7463 case PREFIX_DATA:
7464 opcode |= 0x660000;
7465 break;
7466 case PREFIX_REPZ:
7467 opcode |= 0xf30000;
7468 break;
7469 }
7470reswitch_prefix_add:
7471 switch (opcode)
7472 {
7473 case 0x0f38:
7474 case 0x660f38:
7475 case 0xf20f38:
7476 case 0x0f3a:
7477 case 0x660f3a:
4ffa4fc7
PA
7478 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7479 return -1;
a3c4230a
HZ
7480 ir.addr++;
7481 opcode = (uint32_t) opcode8 | opcode << 8;
7482 goto reswitch_prefix_add;
7483 break;
7484
7485 case 0x0f10: /* movups */
7486 case 0x660f10: /* movupd */
7487 case 0xf30f10: /* movss */
7488 case 0xf20f10: /* movsd */
7489 case 0x0f12: /* movlps */
7490 case 0x660f12: /* movlpd */
7491 case 0xf30f12: /* movsldup */
7492 case 0xf20f12: /* movddup */
7493 case 0x0f14: /* unpcklps */
7494 case 0x660f14: /* unpcklpd */
7495 case 0x0f15: /* unpckhps */
7496 case 0x660f15: /* unpckhpd */
7497 case 0x0f16: /* movhps */
7498 case 0x660f16: /* movhpd */
7499 case 0xf30f16: /* movshdup */
7500 case 0x0f28: /* movaps */
7501 case 0x660f28: /* movapd */
7502 case 0x0f2a: /* cvtpi2ps */
7503 case 0x660f2a: /* cvtpi2pd */
7504 case 0xf30f2a: /* cvtsi2ss */
7505 case 0xf20f2a: /* cvtsi2sd */
7506 case 0x0f2c: /* cvttps2pi */
7507 case 0x660f2c: /* cvttpd2pi */
7508 case 0x0f2d: /* cvtps2pi */
7509 case 0x660f2d: /* cvtpd2pi */
7510 case 0x660f3800: /* pshufb */
7511 case 0x660f3801: /* phaddw */
7512 case 0x660f3802: /* phaddd */
7513 case 0x660f3803: /* phaddsw */
7514 case 0x660f3804: /* pmaddubsw */
7515 case 0x660f3805: /* phsubw */
7516 case 0x660f3806: /* phsubd */
4f7d61a8 7517 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7518 case 0x660f3808: /* psignb */
7519 case 0x660f3809: /* psignw */
7520 case 0x660f380a: /* psignd */
7521 case 0x660f380b: /* pmulhrsw */
7522 case 0x660f3810: /* pblendvb */
7523 case 0x660f3814: /* blendvps */
7524 case 0x660f3815: /* blendvpd */
7525 case 0x660f381c: /* pabsb */
7526 case 0x660f381d: /* pabsw */
7527 case 0x660f381e: /* pabsd */
7528 case 0x660f3820: /* pmovsxbw */
7529 case 0x660f3821: /* pmovsxbd */
7530 case 0x660f3822: /* pmovsxbq */
7531 case 0x660f3823: /* pmovsxwd */
7532 case 0x660f3824: /* pmovsxwq */
7533 case 0x660f3825: /* pmovsxdq */
7534 case 0x660f3828: /* pmuldq */
7535 case 0x660f3829: /* pcmpeqq */
7536 case 0x660f382a: /* movntdqa */
7537 case 0x660f3a08: /* roundps */
7538 case 0x660f3a09: /* roundpd */
7539 case 0x660f3a0a: /* roundss */
7540 case 0x660f3a0b: /* roundsd */
7541 case 0x660f3a0c: /* blendps */
7542 case 0x660f3a0d: /* blendpd */
7543 case 0x660f3a0e: /* pblendw */
7544 case 0x660f3a0f: /* palignr */
7545 case 0x660f3a20: /* pinsrb */
7546 case 0x660f3a21: /* insertps */
7547 case 0x660f3a22: /* pinsrd pinsrq */
7548 case 0x660f3a40: /* dpps */
7549 case 0x660f3a41: /* dppd */
7550 case 0x660f3a42: /* mpsadbw */
7551 case 0x660f3a60: /* pcmpestrm */
7552 case 0x660f3a61: /* pcmpestri */
7553 case 0x660f3a62: /* pcmpistrm */
7554 case 0x660f3a63: /* pcmpistri */
7555 case 0x0f51: /* sqrtps */
7556 case 0x660f51: /* sqrtpd */
7557 case 0xf20f51: /* sqrtsd */
7558 case 0xf30f51: /* sqrtss */
7559 case 0x0f52: /* rsqrtps */
7560 case 0xf30f52: /* rsqrtss */
7561 case 0x0f53: /* rcpps */
7562 case 0xf30f53: /* rcpss */
7563 case 0x0f54: /* andps */
7564 case 0x660f54: /* andpd */
7565 case 0x0f55: /* andnps */
7566 case 0x660f55: /* andnpd */
7567 case 0x0f56: /* orps */
7568 case 0x660f56: /* orpd */
7569 case 0x0f57: /* xorps */
7570 case 0x660f57: /* xorpd */
7571 case 0x0f58: /* addps */
7572 case 0x660f58: /* addpd */
7573 case 0xf20f58: /* addsd */
7574 case 0xf30f58: /* addss */
7575 case 0x0f59: /* mulps */
7576 case 0x660f59: /* mulpd */
7577 case 0xf20f59: /* mulsd */
7578 case 0xf30f59: /* mulss */
7579 case 0x0f5a: /* cvtps2pd */
7580 case 0x660f5a: /* cvtpd2ps */
7581 case 0xf20f5a: /* cvtsd2ss */
7582 case 0xf30f5a: /* cvtss2sd */
7583 case 0x0f5b: /* cvtdq2ps */
7584 case 0x660f5b: /* cvtps2dq */
7585 case 0xf30f5b: /* cvttps2dq */
7586 case 0x0f5c: /* subps */
7587 case 0x660f5c: /* subpd */
7588 case 0xf20f5c: /* subsd */
7589 case 0xf30f5c: /* subss */
7590 case 0x0f5d: /* minps */
7591 case 0x660f5d: /* minpd */
7592 case 0xf20f5d: /* minsd */
7593 case 0xf30f5d: /* minss */
7594 case 0x0f5e: /* divps */
7595 case 0x660f5e: /* divpd */
7596 case 0xf20f5e: /* divsd */
7597 case 0xf30f5e: /* divss */
7598 case 0x0f5f: /* maxps */
7599 case 0x660f5f: /* maxpd */
7600 case 0xf20f5f: /* maxsd */
7601 case 0xf30f5f: /* maxss */
7602 case 0x660f60: /* punpcklbw */
7603 case 0x660f61: /* punpcklwd */
7604 case 0x660f62: /* punpckldq */
7605 case 0x660f63: /* packsswb */
7606 case 0x660f64: /* pcmpgtb */
7607 case 0x660f65: /* pcmpgtw */
56d2815c 7608 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7609 case 0x660f67: /* packuswb */
7610 case 0x660f68: /* punpckhbw */
7611 case 0x660f69: /* punpckhwd */
7612 case 0x660f6a: /* punpckhdq */
7613 case 0x660f6b: /* packssdw */
7614 case 0x660f6c: /* punpcklqdq */
7615 case 0x660f6d: /* punpckhqdq */
7616 case 0x660f6e: /* movd */
7617 case 0x660f6f: /* movdqa */
7618 case 0xf30f6f: /* movdqu */
7619 case 0x660f70: /* pshufd */
7620 case 0xf20f70: /* pshuflw */
7621 case 0xf30f70: /* pshufhw */
7622 case 0x660f74: /* pcmpeqb */
7623 case 0x660f75: /* pcmpeqw */
56d2815c 7624 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7625 case 0x660f7c: /* haddpd */
7626 case 0xf20f7c: /* haddps */
7627 case 0x660f7d: /* hsubpd */
7628 case 0xf20f7d: /* hsubps */
7629 case 0xf30f7e: /* movq */
7630 case 0x0fc2: /* cmpps */
7631 case 0x660fc2: /* cmppd */
7632 case 0xf20fc2: /* cmpsd */
7633 case 0xf30fc2: /* cmpss */
7634 case 0x660fc4: /* pinsrw */
7635 case 0x0fc6: /* shufps */
7636 case 0x660fc6: /* shufpd */
7637 case 0x660fd0: /* addsubpd */
7638 case 0xf20fd0: /* addsubps */
7639 case 0x660fd1: /* psrlw */
7640 case 0x660fd2: /* psrld */
7641 case 0x660fd3: /* psrlq */
7642 case 0x660fd4: /* paddq */
7643 case 0x660fd5: /* pmullw */
7644 case 0xf30fd6: /* movq2dq */
7645 case 0x660fd8: /* psubusb */
7646 case 0x660fd9: /* psubusw */
7647 case 0x660fda: /* pminub */
7648 case 0x660fdb: /* pand */
7649 case 0x660fdc: /* paddusb */
7650 case 0x660fdd: /* paddusw */
7651 case 0x660fde: /* pmaxub */
7652 case 0x660fdf: /* pandn */
7653 case 0x660fe0: /* pavgb */
7654 case 0x660fe1: /* psraw */
7655 case 0x660fe2: /* psrad */
7656 case 0x660fe3: /* pavgw */
7657 case 0x660fe4: /* pmulhuw */
7658 case 0x660fe5: /* pmulhw */
7659 case 0x660fe6: /* cvttpd2dq */
7660 case 0xf20fe6: /* cvtpd2dq */
7661 case 0xf30fe6: /* cvtdq2pd */
7662 case 0x660fe8: /* psubsb */
7663 case 0x660fe9: /* psubsw */
7664 case 0x660fea: /* pminsw */
7665 case 0x660feb: /* por */
7666 case 0x660fec: /* paddsb */
7667 case 0x660fed: /* paddsw */
7668 case 0x660fee: /* pmaxsw */
7669 case 0x660fef: /* pxor */
4f7d61a8 7670 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7671 case 0x660ff1: /* psllw */
7672 case 0x660ff2: /* pslld */
7673 case 0x660ff3: /* psllq */
7674 case 0x660ff4: /* pmuludq */
7675 case 0x660ff5: /* pmaddwd */
7676 case 0x660ff6: /* psadbw */
7677 case 0x660ff8: /* psubb */
7678 case 0x660ff9: /* psubw */
56d2815c 7679 case 0x660ffa: /* psubd */
a3c4230a
HZ
7680 case 0x660ffb: /* psubq */
7681 case 0x660ffc: /* paddb */
7682 case 0x660ffd: /* paddw */
56d2815c 7683 case 0x660ffe: /* paddd */
a3c4230a
HZ
7684 if (i386_record_modrm (&ir))
7685 return -1;
7686 ir.reg |= rex_r;
c131fcee 7687 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7688 goto no_support;
25ea693b
MM
7689 record_full_arch_list_add_reg (ir.regcache,
7690 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7691 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7693 break;
7694
7695 case 0x0f11: /* movups */
7696 case 0x660f11: /* movupd */
7697 case 0xf30f11: /* movss */
7698 case 0xf20f11: /* movsd */
7699 case 0x0f13: /* movlps */
7700 case 0x660f13: /* movlpd */
7701 case 0x0f17: /* movhps */
7702 case 0x660f17: /* movhpd */
7703 case 0x0f29: /* movaps */
7704 case 0x660f29: /* movapd */
7705 case 0x660f3a14: /* pextrb */
7706 case 0x660f3a15: /* pextrw */
7707 case 0x660f3a16: /* pextrd pextrq */
7708 case 0x660f3a17: /* extractps */
7709 case 0x660f7f: /* movdqa */
7710 case 0xf30f7f: /* movdqu */
7711 if (i386_record_modrm (&ir))
7712 return -1;
7713 if (ir.mod == 3)
7714 {
7715 if (opcode == 0x0f13 || opcode == 0x660f13
7716 || opcode == 0x0f17 || opcode == 0x660f17)
7717 goto no_support;
7718 ir.rm |= ir.rex_b;
1777feb0
MS
7719 if (!i386_xmm_regnum_p (gdbarch,
7720 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7721 goto no_support;
25ea693b
MM
7722 record_full_arch_list_add_reg (ir.regcache,
7723 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7724 }
7725 else
7726 {
7727 switch (opcode)
7728 {
7729 case 0x660f3a14:
7730 ir.ot = OT_BYTE;
7731 break;
7732 case 0x660f3a15:
7733 ir.ot = OT_WORD;
7734 break;
7735 case 0x660f3a16:
7736 ir.ot = OT_LONG;
7737 break;
7738 case 0x660f3a17:
7739 ir.ot = OT_QUAD;
7740 break;
7741 default:
7742 ir.ot = OT_DQUAD;
7743 break;
7744 }
7745 if (i386_record_lea_modrm (&ir))
7746 return -1;
7747 }
7748 break;
7749
7750 case 0x0f2b: /* movntps */
7751 case 0x660f2b: /* movntpd */
7752 case 0x0fe7: /* movntq */
7753 case 0x660fe7: /* movntdq */
7754 if (ir.mod == 3)
7755 goto no_support;
7756 if (opcode == 0x0fe7)
7757 ir.ot = OT_QUAD;
7758 else
7759 ir.ot = OT_DQUAD;
7760 if (i386_record_lea_modrm (&ir))
7761 return -1;
7762 break;
7763
7764 case 0xf30f2c: /* cvttss2si */
7765 case 0xf20f2c: /* cvttsd2si */
7766 case 0xf30f2d: /* cvtss2si */
7767 case 0xf20f2d: /* cvtsd2si */
7768 case 0xf20f38f0: /* crc32 */
7769 case 0xf20f38f1: /* crc32 */
7770 case 0x0f50: /* movmskps */
7771 case 0x660f50: /* movmskpd */
7772 case 0x0fc5: /* pextrw */
7773 case 0x660fc5: /* pextrw */
7774 case 0x0fd7: /* pmovmskb */
7775 case 0x660fd7: /* pmovmskb */
25ea693b 7776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7777 break;
7778
7779 case 0x0f3800: /* pshufb */
7780 case 0x0f3801: /* phaddw */
7781 case 0x0f3802: /* phaddd */
7782 case 0x0f3803: /* phaddsw */
7783 case 0x0f3804: /* pmaddubsw */
7784 case 0x0f3805: /* phsubw */
7785 case 0x0f3806: /* phsubd */
4f7d61a8 7786 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7787 case 0x0f3808: /* psignb */
7788 case 0x0f3809: /* psignw */
7789 case 0x0f380a: /* psignd */
7790 case 0x0f380b: /* pmulhrsw */
7791 case 0x0f381c: /* pabsb */
7792 case 0x0f381d: /* pabsw */
7793 case 0x0f381e: /* pabsd */
7794 case 0x0f382b: /* packusdw */
7795 case 0x0f3830: /* pmovzxbw */
7796 case 0x0f3831: /* pmovzxbd */
7797 case 0x0f3832: /* pmovzxbq */
7798 case 0x0f3833: /* pmovzxwd */
7799 case 0x0f3834: /* pmovzxwq */
7800 case 0x0f3835: /* pmovzxdq */
7801 case 0x0f3837: /* pcmpgtq */
7802 case 0x0f3838: /* pminsb */
7803 case 0x0f3839: /* pminsd */
7804 case 0x0f383a: /* pminuw */
7805 case 0x0f383b: /* pminud */
7806 case 0x0f383c: /* pmaxsb */
7807 case 0x0f383d: /* pmaxsd */
7808 case 0x0f383e: /* pmaxuw */
7809 case 0x0f383f: /* pmaxud */
7810 case 0x0f3840: /* pmulld */
7811 case 0x0f3841: /* phminposuw */
7812 case 0x0f3a0f: /* palignr */
7813 case 0x0f60: /* punpcklbw */
7814 case 0x0f61: /* punpcklwd */
7815 case 0x0f62: /* punpckldq */
7816 case 0x0f63: /* packsswb */
7817 case 0x0f64: /* pcmpgtb */
7818 case 0x0f65: /* pcmpgtw */
56d2815c 7819 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7820 case 0x0f67: /* packuswb */
7821 case 0x0f68: /* punpckhbw */
7822 case 0x0f69: /* punpckhwd */
7823 case 0x0f6a: /* punpckhdq */
7824 case 0x0f6b: /* packssdw */
7825 case 0x0f6e: /* movd */
7826 case 0x0f6f: /* movq */
7827 case 0x0f70: /* pshufw */
7828 case 0x0f74: /* pcmpeqb */
7829 case 0x0f75: /* pcmpeqw */
56d2815c 7830 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7831 case 0x0fc4: /* pinsrw */
7832 case 0x0fd1: /* psrlw */
7833 case 0x0fd2: /* psrld */
7834 case 0x0fd3: /* psrlq */
7835 case 0x0fd4: /* paddq */
7836 case 0x0fd5: /* pmullw */
7837 case 0xf20fd6: /* movdq2q */
7838 case 0x0fd8: /* psubusb */
7839 case 0x0fd9: /* psubusw */
7840 case 0x0fda: /* pminub */
7841 case 0x0fdb: /* pand */
7842 case 0x0fdc: /* paddusb */
7843 case 0x0fdd: /* paddusw */
7844 case 0x0fde: /* pmaxub */
7845 case 0x0fdf: /* pandn */
7846 case 0x0fe0: /* pavgb */
7847 case 0x0fe1: /* psraw */
7848 case 0x0fe2: /* psrad */
7849 case 0x0fe3: /* pavgw */
7850 case 0x0fe4: /* pmulhuw */
7851 case 0x0fe5: /* pmulhw */
7852 case 0x0fe8: /* psubsb */
7853 case 0x0fe9: /* psubsw */
7854 case 0x0fea: /* pminsw */
7855 case 0x0feb: /* por */
7856 case 0x0fec: /* paddsb */
7857 case 0x0fed: /* paddsw */
7858 case 0x0fee: /* pmaxsw */
7859 case 0x0fef: /* pxor */
7860 case 0x0ff1: /* psllw */
7861 case 0x0ff2: /* pslld */
7862 case 0x0ff3: /* psllq */
7863 case 0x0ff4: /* pmuludq */
7864 case 0x0ff5: /* pmaddwd */
7865 case 0x0ff6: /* psadbw */
7866 case 0x0ff8: /* psubb */
7867 case 0x0ff9: /* psubw */
56d2815c 7868 case 0x0ffa: /* psubd */
a3c4230a
HZ
7869 case 0x0ffb: /* psubq */
7870 case 0x0ffc: /* paddb */
7871 case 0x0ffd: /* paddw */
56d2815c 7872 case 0x0ffe: /* paddd */
a3c4230a
HZ
7873 if (i386_record_modrm (&ir))
7874 return -1;
7875 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7876 goto no_support;
25ea693b
MM
7877 record_full_arch_list_add_reg (ir.regcache,
7878 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7879 break;
7880
7881 case 0x0f71: /* psllw */
7882 case 0x0f72: /* pslld */
7883 case 0x0f73: /* psllq */
7884 if (i386_record_modrm (&ir))
7885 return -1;
7886 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7887 goto no_support;
25ea693b
MM
7888 record_full_arch_list_add_reg (ir.regcache,
7889 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7890 break;
7891
7892 case 0x660f71: /* psllw */
7893 case 0x660f72: /* pslld */
7894 case 0x660f73: /* psllq */
7895 if (i386_record_modrm (&ir))
7896 return -1;
7897 ir.rm |= ir.rex_b;
c131fcee 7898 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7899 goto no_support;
25ea693b
MM
7900 record_full_arch_list_add_reg (ir.regcache,
7901 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7902 break;
7903
7904 case 0x0f7e: /* movd */
7905 case 0x660f7e: /* movd */
7906 if (i386_record_modrm (&ir))
7907 return -1;
7908 if (ir.mod == 3)
25ea693b 7909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7910 else
7911 {
7912 if (ir.dflag == 2)
7913 ir.ot = OT_QUAD;
7914 else
7915 ir.ot = OT_LONG;
7916 if (i386_record_lea_modrm (&ir))
7917 return -1;
7918 }
7919 break;
7920
7921 case 0x0f7f: /* movq */
7922 if (i386_record_modrm (&ir))
7923 return -1;
7924 if (ir.mod == 3)
7925 {
7926 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7927 goto no_support;
25ea693b
MM
7928 record_full_arch_list_add_reg (ir.regcache,
7929 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7930 }
7931 else
7932 {
7933 ir.ot = OT_QUAD;
7934 if (i386_record_lea_modrm (&ir))
7935 return -1;
7936 }
7937 break;
7938
7939 case 0xf30fb8: /* popcnt */
7940 if (i386_record_modrm (&ir))
7941 return -1;
25ea693b
MM
7942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7943 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7944 break;
7945
7946 case 0x660fd6: /* movq */
7947 if (i386_record_modrm (&ir))
7948 return -1;
7949 if (ir.mod == 3)
7950 {
7951 ir.rm |= ir.rex_b;
1777feb0
MS
7952 if (!i386_xmm_regnum_p (gdbarch,
7953 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7954 goto no_support;
25ea693b
MM
7955 record_full_arch_list_add_reg (ir.regcache,
7956 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7957 }
7958 else
7959 {
7960 ir.ot = OT_QUAD;
7961 if (i386_record_lea_modrm (&ir))
7962 return -1;
7963 }
7964 break;
7965
7966 case 0x660f3817: /* ptest */
7967 case 0x0f2e: /* ucomiss */
7968 case 0x660f2e: /* ucomisd */
7969 case 0x0f2f: /* comiss */
7970 case 0x660f2f: /* comisd */
25ea693b 7971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7972 break;
7973
7974 case 0x0ff7: /* maskmovq */
7975 regcache_raw_read_unsigned (ir.regcache,
7976 ir.regmap[X86_RECORD_REDI_REGNUM],
7977 &addr);
25ea693b 7978 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7979 return -1;
7980 break;
7981
7982 case 0x660ff7: /* maskmovdqu */
7983 regcache_raw_read_unsigned (ir.regcache,
7984 ir.regmap[X86_RECORD_REDI_REGNUM],
7985 &addr);
25ea693b 7986 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7987 return -1;
7988 break;
7989
7990 default:
7991 goto no_support;
7992 break;
7993 }
7994 break;
7ad10968
HZ
7995
7996 default:
7ad10968
HZ
7997 goto no_support;
7998 break;
7999 }
8000
cf648174 8001 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8003 if (record_full_arch_list_add_end ())
7ad10968
HZ
8004 return -1;
8005
8006 return 0;
8007
01fe1b41 8008 no_support:
a3c4230a
HZ
8009 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8010 "at address %s.\n"),
8011 (unsigned int) (opcode),
8012 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8013 return -1;
8014}
8015
cf648174
HZ
8016static const int i386_record_regmap[] =
8017{
8018 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8019 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8020 0, 0, 0, 0, 0, 0, 0, 0,
8021 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8022 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8023};
8024
7a697b8d 8025/* Check that the given address appears suitable for a fast
405f8e94 8026 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8027 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8028 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8029 middle of the tracepoint jump. On x86, it may be possible to use
8030 4-byte jumps with a 2-byte offset to a trampoline located in the
8031 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8032 of instruction to replace, and 0 if not, plus an explanatory
8033 string. */
8034
8035static int
8036i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8037 CORE_ADDR addr, int *isize, char **msg)
8038{
8039 int len, jumplen;
8040 static struct ui_file *gdb_null = NULL;
8041
405f8e94
SS
8042 /* Ask the target for the minimum instruction length supported. */
8043 jumplen = target_get_min_fast_tracepoint_insn_len ();
8044
8045 if (jumplen < 0)
8046 {
8047 /* If the target does not support the get_min_fast_tracepoint_insn_len
8048 operation, assume that fast tracepoints will always be implemented
8049 using 4-byte relative jumps on both x86 and x86-64. */
8050 jumplen = 5;
8051 }
8052 else if (jumplen == 0)
8053 {
8054 /* If the target does support get_min_fast_tracepoint_insn_len but
8055 returns zero, then the IPA has not loaded yet. In this case,
8056 we optimistically assume that truncated 2-byte relative jumps
8057 will be available on x86, and compensate later if this assumption
8058 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8059 jumps will always be used. */
8060 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8061 }
7a697b8d
SS
8062
8063 /* Dummy file descriptor for the disassembler. */
8064 if (!gdb_null)
8065 gdb_null = ui_file_new ();
8066
8067 /* Check for fit. */
8068 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8069 if (isize)
8070 *isize = len;
8071
7a697b8d
SS
8072 if (len < jumplen)
8073 {
8074 /* Return a bit of target-specific detail to add to the caller's
8075 generic failure message. */
8076 if (msg)
1777feb0
MS
8077 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8078 "need at least %d bytes for the jump"),
7a697b8d
SS
8079 len, jumplen);
8080 return 0;
8081 }
405f8e94
SS
8082 else
8083 {
8084 if (msg)
8085 *msg = NULL;
8086 return 1;
8087 }
7a697b8d
SS
8088}
8089
90884b2b
L
8090static int
8091i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8092 struct tdesc_arch_data *tdesc_data)
8093{
8094 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8095 const struct tdesc_feature *feature_core;
01f9f808
MS
8096
8097 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8098 *feature_avx512;
90884b2b
L
8099 int i, num_regs, valid_p;
8100
8101 if (! tdesc_has_registers (tdesc))
8102 return 0;
8103
8104 /* Get core registers. */
8105 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8106 if (feature_core == NULL)
8107 return 0;
90884b2b
L
8108
8109 /* Get SSE registers. */
c131fcee 8110 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8111
c131fcee
L
8112 /* Try AVX registers. */
8113 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8114
1dbcd68c
WT
8115 /* Try MPX registers. */
8116 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8117
01f9f808
MS
8118 /* Try AVX512 registers. */
8119 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8120
90884b2b
L
8121 valid_p = 1;
8122
c131fcee 8123 /* The XCR0 bits. */
01f9f808
MS
8124 if (feature_avx512)
8125 {
8126 /* AVX512 register description requires AVX register description. */
8127 if (!feature_avx)
8128 return 0;
8129
df7e5265 8130 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8131
8132 /* It may have been set by OSABI initialization function. */
8133 if (tdep->k0_regnum < 0)
8134 {
8135 tdep->k_register_names = i386_k_names;
8136 tdep->k0_regnum = I386_K0_REGNUM;
8137 }
8138
8139 for (i = 0; i < I387_NUM_K_REGS; i++)
8140 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8141 tdep->k0_regnum + i,
8142 i386_k_names[i]);
8143
8144 if (tdep->num_zmm_regs == 0)
8145 {
8146 tdep->zmmh_register_names = i386_zmmh_names;
8147 tdep->num_zmm_regs = 8;
8148 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8149 }
8150
8151 for (i = 0; i < tdep->num_zmm_regs; i++)
8152 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8153 tdep->zmm0h_regnum + i,
8154 tdep->zmmh_register_names[i]);
8155
8156 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8157 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8158 tdep->xmm16_regnum + i,
8159 tdep->xmm_avx512_register_names[i]);
8160
8161 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8162 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8163 tdep->ymm16h_regnum + i,
8164 tdep->ymm16h_register_names[i]);
8165 }
c131fcee
L
8166 if (feature_avx)
8167 {
3a13a53b
L
8168 /* AVX register description requires SSE register description. */
8169 if (!feature_sse)
8170 return 0;
8171
01f9f808 8172 if (!feature_avx512)
df7e5265 8173 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8174
8175 /* It may have been set by OSABI initialization function. */
8176 if (tdep->num_ymm_regs == 0)
8177 {
8178 tdep->ymmh_register_names = i386_ymmh_names;
8179 tdep->num_ymm_regs = 8;
8180 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8181 }
8182
8183 for (i = 0; i < tdep->num_ymm_regs; i++)
8184 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8185 tdep->ymm0h_regnum + i,
8186 tdep->ymmh_register_names[i]);
8187 }
3a13a53b 8188 else if (feature_sse)
df7e5265 8189 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8190 else
8191 {
df7e5265 8192 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8193 tdep->num_xmm_regs = 0;
8194 }
c131fcee 8195
90884b2b
L
8196 num_regs = tdep->num_core_regs;
8197 for (i = 0; i < num_regs; i++)
8198 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8199 tdep->register_names[i]);
8200
3a13a53b
L
8201 if (feature_sse)
8202 {
8203 /* Need to include %mxcsr, so add one. */
8204 num_regs += tdep->num_xmm_regs + 1;
8205 for (; i < num_regs; i++)
8206 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8207 tdep->register_names[i]);
8208 }
90884b2b 8209
1dbcd68c
WT
8210 if (feature_mpx)
8211 {
df7e5265 8212 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8213
8214 if (tdep->bnd0r_regnum < 0)
8215 {
8216 tdep->mpx_register_names = i386_mpx_names;
8217 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8218 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8219 }
8220
8221 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8222 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8223 I387_BND0R_REGNUM (tdep) + i,
8224 tdep->mpx_register_names[i]);
8225 }
8226
90884b2b
L
8227 return valid_p;
8228}
8229
7ad10968
HZ
8230\f
8231static struct gdbarch *
8232i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8233{
8234 struct gdbarch_tdep *tdep;
8235 struct gdbarch *gdbarch;
90884b2b
L
8236 struct tdesc_arch_data *tdesc_data;
8237 const struct target_desc *tdesc;
1ba53b71 8238 int mm0_regnum;
c131fcee 8239 int ymm0_regnum;
1dbcd68c
WT
8240 int bnd0_regnum;
8241 int num_bnd_cooked;
01f9f808
MS
8242 int k0_regnum;
8243 int zmm0_regnum;
7ad10968
HZ
8244
8245 /* If there is already a candidate, use it. */
8246 arches = gdbarch_list_lookup_by_info (arches, &info);
8247 if (arches != NULL)
8248 return arches->gdbarch;
8249
8250 /* Allocate space for the new architecture. */
fc270c35 8251 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8252 gdbarch = gdbarch_alloc (&info, tdep);
8253
8254 /* General-purpose registers. */
7ad10968
HZ
8255 tdep->gregset_reg_offset = NULL;
8256 tdep->gregset_num_regs = I386_NUM_GREGS;
8257 tdep->sizeof_gregset = 0;
8258
8259 /* Floating-point registers. */
7ad10968 8260 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8261 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8262
8263 /* The default settings include the FPU registers, the MMX registers
8264 and the SSE registers. This can be overridden for a specific ABI
8265 by adjusting the members `st0_regnum', `mm0_regnum' and
8266 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8267 will show up in the output of "info all-registers". */
7ad10968
HZ
8268
8269 tdep->st0_regnum = I386_ST0_REGNUM;
8270
7ad10968
HZ
8271 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8272 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8273
8274 tdep->jb_pc_offset = -1;
8275 tdep->struct_return = pcc_struct_return;
8276 tdep->sigtramp_start = 0;
8277 tdep->sigtramp_end = 0;
8278 tdep->sigtramp_p = i386_sigtramp_p;
8279 tdep->sigcontext_addr = NULL;
8280 tdep->sc_reg_offset = NULL;
8281 tdep->sc_pc_offset = -1;
8282 tdep->sc_sp_offset = -1;
8283
c131fcee
L
8284 tdep->xsave_xcr0_offset = -1;
8285
cf648174
HZ
8286 tdep->record_regmap = i386_record_regmap;
8287
205c306f
DM
8288 set_gdbarch_long_long_align_bit (gdbarch, 32);
8289
7ad10968
HZ
8290 /* The format used for `long double' on almost all i386 targets is
8291 the i387 extended floating-point format. In fact, of all targets
8292 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8293 on having a `long double' that's not `long' at all. */
8294 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8295
8296 /* Although the i387 extended floating-point has only 80 significant
8297 bits, a `long double' actually takes up 96, probably to enforce
8298 alignment. */
8299 set_gdbarch_long_double_bit (gdbarch, 96);
8300
7ad10968
HZ
8301 /* Register numbers of various important registers. */
8302 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8303 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8304 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8305 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8306
8307 /* NOTE: kettenis/20040418: GCC does have two possible register
8308 numbering schemes on the i386: dbx and SVR4. These schemes
8309 differ in how they number %ebp, %esp, %eflags, and the
8310 floating-point registers, and are implemented by the arrays
8311 dbx_register_map[] and svr4_dbx_register_map in
8312 gcc/config/i386.c. GCC also defines a third numbering scheme in
8313 gcc/config/i386.c, which it designates as the "default" register
8314 map used in 64bit mode. This last register numbering scheme is
8315 implemented in dbx64_register_map, and is used for AMD64; see
8316 amd64-tdep.c.
8317
8318 Currently, each GCC i386 target always uses the same register
8319 numbering scheme across all its supported debugging formats
8320 i.e. SDB (COFF), stabs and DWARF 2. This is because
8321 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8322 DBX_REGISTER_NUMBER macro which is defined by each target's
8323 respective config header in a manner independent of the requested
8324 output debugging format.
8325
8326 This does not match the arrangement below, which presumes that
8327 the SDB and stabs numbering schemes differ from the DWARF and
8328 DWARF 2 ones. The reason for this arrangement is that it is
8329 likely to get the numbering scheme for the target's
8330 default/native debug format right. For targets where GCC is the
8331 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8332 targets where the native toolchain uses a different numbering
8333 scheme for a particular debug format (stabs-in-ELF on Solaris)
8334 the defaults below will have to be overridden, like
8335 i386_elf_init_abi() does. */
8336
8337 /* Use the dbx register numbering scheme for stabs and COFF. */
8338 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8339 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8340
8341 /* Use the SVR4 register numbering scheme for DWARF 2. */
8342 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8343
8344 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8345 be in use on any of the supported i386 targets. */
8346
8347 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8348
8349 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8350
8351 /* Call dummy code. */
a9b8d892
JK
8352 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8353 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8354 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8355 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8356
8357 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8358 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8359 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8360
8361 set_gdbarch_return_value (gdbarch, i386_return_value);
8362
8363 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8364
8365 /* Stack grows downward. */
8366 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8367
8368 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8369 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8370 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8371
8372 set_gdbarch_frame_args_skip (gdbarch, 8);
8373
7ad10968
HZ
8374 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8375
8376 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8377
8378 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8379
8380 /* Add the i386 register groups. */
8381 i386_add_reggroups (gdbarch);
90884b2b 8382 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8383
143985b7
AF
8384 /* Helper for function argument information. */
8385 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8386
06da04c6 8387 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8388 appended to the list first, so that it supercedes the DWARF
8389 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8390 currently fails). */
8391 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8392
8393 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8394 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8395 CFI info will be used if it is available. */
10458914 8396 dwarf2_append_unwinders (gdbarch);
6405b0a6 8397
acd5c798 8398 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8399
1ba53b71 8400 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8401 set_gdbarch_pseudo_register_read_value (gdbarch,
8402 i386_pseudo_register_read_value);
90884b2b
L
8403 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8404
8405 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8406 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8407
c131fcee
L
8408 /* Override the normal target description method to make the AVX
8409 upper halves anonymous. */
8410 set_gdbarch_register_name (gdbarch, i386_register_name);
8411
8412 /* Even though the default ABI only includes general-purpose registers,
8413 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8414 gap for the upper AVX, MPX and AVX512 registers. */
8415 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b
L
8416
8417 /* Get the x86 target description from INFO. */
8418 tdesc = info.target_desc;
8419 if (! tdesc_has_registers (tdesc))
8420 tdesc = tdesc_i386;
8421 tdep->tdesc = tdesc;
8422
8423 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8424 tdep->register_names = i386_register_names;
8425
c131fcee
L
8426 /* No upper YMM registers. */
8427 tdep->ymmh_register_names = NULL;
8428 tdep->ymm0h_regnum = -1;
8429
01f9f808
MS
8430 /* No upper ZMM registers. */
8431 tdep->zmmh_register_names = NULL;
8432 tdep->zmm0h_regnum = -1;
8433
8434 /* No high XMM registers. */
8435 tdep->xmm_avx512_register_names = NULL;
8436 tdep->xmm16_regnum = -1;
8437
8438 /* No upper YMM16-31 registers. */
8439 tdep->ymm16h_register_names = NULL;
8440 tdep->ymm16h_regnum = -1;
8441
1ba53b71
L
8442 tdep->num_byte_regs = 8;
8443 tdep->num_word_regs = 8;
8444 tdep->num_dword_regs = 0;
8445 tdep->num_mmx_regs = 8;
c131fcee 8446 tdep->num_ymm_regs = 0;
1ba53b71 8447
1dbcd68c
WT
8448 /* No MPX registers. */
8449 tdep->bnd0r_regnum = -1;
8450 tdep->bndcfgu_regnum = -1;
8451
01f9f808
MS
8452 /* No AVX512 registers. */
8453 tdep->k0_regnum = -1;
8454 tdep->num_zmm_regs = 0;
8455 tdep->num_ymm_avx512_regs = 0;
8456 tdep->num_xmm_avx512_regs = 0;
8457
90884b2b
L
8458 tdesc_data = tdesc_data_alloc ();
8459
dde08ee1
PA
8460 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8461
6710bf39
SS
8462 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8463
c2170eef
MM
8464 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8465 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8466 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8467
3ce1502b 8468 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8469 info.tdep_info = (void *) tdesc_data;
4be87837 8470 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8471
c131fcee
L
8472 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8473 {
8474 tdesc_data_cleanup (tdesc_data);
8475 xfree (tdep);
8476 gdbarch_free (gdbarch);
8477 return NULL;
8478 }
8479
1dbcd68c
WT
8480 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8481
1ba53b71
L
8482 /* Wire in pseudo registers. Number of pseudo registers may be
8483 changed. */
8484 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8485 + tdep->num_word_regs
8486 + tdep->num_dword_regs
c131fcee 8487 + tdep->num_mmx_regs
1dbcd68c 8488 + tdep->num_ymm_regs
01f9f808
MS
8489 + num_bnd_cooked
8490 + tdep->num_ymm_avx512_regs
8491 + tdep->num_zmm_regs));
1ba53b71 8492
90884b2b
L
8493 /* Target description may be changed. */
8494 tdesc = tdep->tdesc;
8495
90884b2b
L
8496 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8497
8498 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8499 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8500
1ba53b71
L
8501 /* Make %al the first pseudo-register. */
8502 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8503 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8504
c131fcee 8505 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8506 if (tdep->num_dword_regs)
8507 {
1c6272a6 8508 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8509 tdep->eax_regnum = ymm0_regnum;
8510 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8511 }
8512 else
8513 tdep->eax_regnum = -1;
8514
c131fcee
L
8515 mm0_regnum = ymm0_regnum;
8516 if (tdep->num_ymm_regs)
8517 {
1c6272a6 8518 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8519 tdep->ymm0_regnum = ymm0_regnum;
8520 mm0_regnum += tdep->num_ymm_regs;
8521 }
8522 else
8523 tdep->ymm0_regnum = -1;
8524
01f9f808
MS
8525 if (tdep->num_ymm_avx512_regs)
8526 {
8527 /* Support YMM16-31 pseudo registers if available. */
8528 tdep->ymm16_regnum = mm0_regnum;
8529 mm0_regnum += tdep->num_ymm_avx512_regs;
8530 }
8531 else
8532 tdep->ymm16_regnum = -1;
8533
8534 if (tdep->num_zmm_regs)
8535 {
8536 /* Support ZMM pseudo-register if it is available. */
8537 tdep->zmm0_regnum = mm0_regnum;
8538 mm0_regnum += tdep->num_zmm_regs;
8539 }
8540 else
8541 tdep->zmm0_regnum = -1;
8542
1dbcd68c 8543 bnd0_regnum = mm0_regnum;
1ba53b71
L
8544 if (tdep->num_mmx_regs != 0)
8545 {
1c6272a6 8546 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8547 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8548 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8549 }
8550 else
8551 tdep->mm0_regnum = -1;
8552
1dbcd68c
WT
8553 if (tdep->bnd0r_regnum > 0)
8554 tdep->bnd0_regnum = bnd0_regnum;
8555 else
8556 tdep-> bnd0_regnum = -1;
8557
06da04c6 8558 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8559 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8560 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8561 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8562
8446b36a
MK
8563 /* If we have a register mapping, enable the generic core file
8564 support, unless it has already been enabled. */
8565 if (tdep->gregset_reg_offset
8f0435f7 8566 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8567 set_gdbarch_iterate_over_regset_sections
8568 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8569
514f746b
AR
8570 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8571 i386_skip_permanent_breakpoint);
8572
7a697b8d
SS
8573 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8574 i386_fast_tracepoint_valid_at);
8575
a62cc96e
AC
8576 return gdbarch;
8577}
8578
8201327c
MK
8579static enum gdb_osabi
8580i386_coff_osabi_sniffer (bfd *abfd)
8581{
762c5349
MK
8582 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8583 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8584 return GDB_OSABI_GO32;
8585
8586 return GDB_OSABI_UNKNOWN;
8587}
8201327c
MK
8588\f
8589
28e9e0f0
MK
8590/* Provide a prototype to silence -Wmissing-prototypes. */
8591void _initialize_i386_tdep (void);
8592
c906108c 8593void
fba45db2 8594_initialize_i386_tdep (void)
c906108c 8595{
a62cc96e
AC
8596 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8597
fc338970 8598 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8599 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8600 &disassembly_flavor, _("\
8601Set the disassembly flavor."), _("\
8602Show the disassembly flavor."), _("\
8603The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8604 NULL,
8605 NULL, /* FIXME: i18n: */
8606 &setlist, &showlist);
8201327c
MK
8607
8608 /* Add the variable that controls the convention for returning
8609 structs. */
7ab04401
AC
8610 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8611 &struct_convention, _("\
8612Set the convention for returning small structs."), _("\
8613Show the convention for returning small structs."), _("\
8614Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8615is \"default\"."),
8616 NULL,
8617 NULL, /* FIXME: i18n: */
8618 &setlist, &showlist);
8201327c
MK
8619
8620 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8621 i386_coff_osabi_sniffer);
8201327c 8622
05816f70 8623 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8624 i386_svr4_init_abi);
05816f70 8625 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8626 i386_go32_init_abi);
38c968cf 8627
209bd28e 8628 /* Initialize the i386-specific register groups. */
38c968cf 8629 i386_init_reggroups ();
90884b2b
L
8630
8631 /* Initialize the standard target descriptions. */
8632 initialize_tdesc_i386 ();
3a13a53b 8633 initialize_tdesc_i386_mmx ();
c131fcee 8634 initialize_tdesc_i386_avx ();
1dbcd68c 8635 initialize_tdesc_i386_mpx ();
01f9f808 8636 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8637
8638 /* Tell remote stub that we support XML target description. */
8639 register_remote_support_xml ("i386");
c906108c 8640}
This page took 1.699048 seconds and 4 git commands to generate.