gdb/remote.c: address conflicting enum and method name
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
3666a048 3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
22916b07
YQ
54#include "target-descriptions.h"
55#include "arch/i386.h"
90884b2b 56
6710bf39
SS
57#include "ax.h"
58#include "ax-gdb.h"
59
55aa24fb
SDJ
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
325fac50 66#include <algorithm>
7d7571f0 67#include <unordered_set>
c2fd7fae 68#include "producer.h"
55aa24fb 69
c4fc7f1b 70/* Register names. */
c40e1eab 71
27087b7f 72static const char * const i386_register_names[] =
fc633446
MK
73{
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85};
86
27087b7f 87static const char * const i386_zmm_names[] =
01f9f808
MS
88{
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91};
92
27087b7f 93static const char * const i386_zmmh_names[] =
01f9f808
MS
94{
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97};
98
27087b7f 99static const char * const i386_k_names[] =
01f9f808
MS
100{
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103};
104
27087b7f 105static const char * const i386_ymm_names[] =
c131fcee
L
106{
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109};
110
27087b7f 111static const char * const i386_ymmh_names[] =
c131fcee
L
112{
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115};
116
27087b7f 117static const char * const i386_mpx_names[] =
1dbcd68c
WT
118{
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120};
121
27087b7f 122static const char * const i386_pkeys_names[] =
51547df6
MS
123{
124 "pkru"
125};
126
1dbcd68c
WT
127/* Register names for MPX pseudo-registers. */
128
27087b7f 129static const char * const i386_bnd_names[] =
1dbcd68c
WT
130{
131 "bnd0", "bnd1", "bnd2", "bnd3"
132};
133
c4fc7f1b 134/* Register names for MMX pseudo-registers. */
28fc6740 135
27087b7f 136static const char * const i386_mmx_names[] =
28fc6740
AC
137{
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140};
c40e1eab 141
1ba53b71
L
142/* Register names for byte pseudo-registers. */
143
27087b7f 144static const char * const i386_byte_names[] =
1ba53b71
L
145{
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148};
149
150/* Register names for word pseudo-registers. */
151
27087b7f 152static const char * const i386_word_names[] =
1ba53b71
L
153{
154 "ax", "cx", "dx", "bx",
9cad29ac 155 "", "bp", "si", "di"
1ba53b71
L
156};
157
01f9f808
MS
158/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162const int num_lower_zmm_regs = 16;
163
1ba53b71 164/* MMX register? */
c40e1eab 165
28fc6740 166static int
5716833c 167i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 168{
1ba53b71
L
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
171
172 if (mm0_regnum < 0)
173 return 0;
174
1ba53b71
L
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177}
178
179/* Byte register? */
180
181int
182i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183{
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188}
189
190/* Word register? */
191
192int
193i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194{
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199}
200
201/* Dword register? */
202
203int
204i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
214}
215
01f9f808
MS
216/* AVX512 register? */
217
218int
219i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229}
230
231int
232i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233{
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242}
243
244int
245i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246{
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255}
256
9191d390 257static int
c131fcee
L
258i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259{
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268}
269
270/* AVX register? */
271
272int
273i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274{
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283}
284
01f9f808
MS
285static int
286i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287{
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296}
297
298int
299i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300{
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309}
310
1dbcd68c
WT
311/* BND register? */
312
313int
314i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315{
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324}
325
5716833c 326/* SSE register? */
23a34459 327
c131fcee
L
328int
329i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 330{
5716833c 331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 333
c131fcee 334 if (num_xmm_regs == 0)
5716833c
MK
335 return 0;
336
c131fcee
L
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
339}
340
01f9f808
MS
341/* XMM_512 register? */
342
343int
344i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345{
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354}
355
5716833c
MK
356static int
357i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 358{
5716833c
MK
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
20a6ec49 361 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
362 return 0;
363
20a6ec49 364 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
365}
366
5716833c 367/* FP register? */
23a34459
AC
368
369int
20a6ec49 370i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 371{
20a6ec49
MD
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
375 return 0;
376
20a6ec49
MD
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
379}
380
381int
20a6ec49 382i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 383{
20a6ec49
MD
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
387 return 0;
388
20a6ec49
MD
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
391}
392
1dbcd68c
WT
393/* BNDr (raw) register? */
394
395static int
396i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397{
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405}
406
407/* BND control register? */
408
409static int
410i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411{
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419}
420
51547df6
MS
421/* PKRU register? */
422
423bool
424i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425{
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434}
435
c131fcee
L
436/* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439static const char *
440i386_register_name (struct gdbarch *gdbarch, int regnum)
441{
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
01f9f808
MS
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
c131fcee
L
454 return tdesc_register_name (gdbarch, regnum);
455}
456
30b0e2d8 457/* Return the name of register REGNUM. */
fc633446 458
1ba53b71 459const char *
90884b2b 460i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 461{
1ba53b71 462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
477}
478
c4fc7f1b 479/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
480 number used by GDB. */
481
8201327c 482static int
d3f73121 483i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 484{
20a6ec49
MD
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
c4fc7f1b
MK
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
85540d8c
MK
490 if (reg >= 0 && reg <= 7)
491 {
9872ad24 492 /* General-purpose registers. The debug info calls %ebp
dda83cd7 493 register 4, and %esp register 5. */
9872ad24 494 if (reg == 4)
dda83cd7 495 return 5;
9872ad24 496 else if (reg == 5)
dda83cd7 497 return 4;
9872ad24 498 else return reg;
85540d8c
MK
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
20a6ec49 503 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
c131fcee
L
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
20a6ec49 519 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
520 }
521
522 /* This will hopefully provoke a warning. */
f6efe3f8 523 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
524}
525
0fde2c53 526/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 527 used by GDB. */
85540d8c 528
8201327c 529static int
0fde2c53 530i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 531{
20a6ec49
MD
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
c4fc7f1b
MK
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
acd5c798 541 /* General-purpose registers. */
85540d8c
MK
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
20a6ec49 547 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 548 }
c6f4c129 549 else if (reg >= 21 && reg <= 36)
85540d8c 550 {
c4fc7f1b 551 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 552 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
553 }
554
c6f4c129
JB
555 switch (reg)
556 {
20a6ec49
MD
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
0fde2c53
DE
568 return -1;
569}
570
571/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
8f10c932 574int
0fde2c53
DE
575i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576{
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
f6efe3f8 580 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 581 return regnum;
85540d8c 582}
5716833c 583
fc338970 584\f
917317f4 585
fc338970
MK
586/* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
53904c9e
AC
588static const char att_flavor[] = "att";
589static const char intel_flavor[] = "intel";
40478521 590static const char *const valid_flavors[] =
c5aa993b 591{
c906108c
SS
592 att_flavor,
593 intel_flavor,
594 NULL
595};
53904c9e 596static const char *disassembly_flavor = att_flavor;
acd5c798 597\f
c906108c 598
acd5c798
MK
599/* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
c906108c 604
acd5c798
MK
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
c906108c 607
acd5c798 608 This function is 64-bit safe. */
63c0089f 609
04180708
YQ
610constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 613
237fc4c9
PA
614\f
615/* Displaced instruction handling. */
616
1903f0e6
DE
617/* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623static gdb_byte *
624i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625{
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651}
237fc4c9
PA
652
653static int
1903f0e6 654i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 655{
1777feb0 656 /* jmp far (absolute address in operand). */
237fc4c9
PA
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
1777feb0 662 /* jump near, absolute indirect (/4). */
237fc4c9 663 if ((insn[1] & 0x38) == 0x20)
dda83cd7 664 return 1;
237fc4c9 665
1777feb0 666 /* jump far, absolute indirect (/5). */
237fc4c9 667 if ((insn[1] & 0x38) == 0x28)
dda83cd7 668 return 1;
237fc4c9
PA
669 }
670
671 return 0;
672}
673
c2170eef
MM
674/* Return non-zero if INSN is a jump, zero otherwise. */
675
676static int
677i386_jmp_p (const gdb_byte *insn)
678{
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688}
689
237fc4c9 690static int
1903f0e6 691i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 692{
1777feb0 693 /* call far, absolute. */
237fc4c9
PA
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
1777feb0 699 /* Call near, absolute indirect (/2). */
237fc4c9 700 if ((insn[1] & 0x38) == 0x10)
dda83cd7 701 return 1;
237fc4c9 702
1777feb0 703 /* Call far, absolute indirect (/3). */
237fc4c9 704 if ((insn[1] & 0x38) == 0x18)
dda83cd7 705 return 1;
237fc4c9
PA
706 }
707
708 return 0;
709}
710
711static int
1903f0e6 712i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
713{
714 switch (insn[0])
715 {
1777feb0 716 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 717 case 0xc3: /* ret near */
1777feb0 718 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726}
727
728static int
1903f0e6 729i386_call_p (const gdb_byte *insn)
237fc4c9
PA
730{
731 if (i386_absolute_call_p (insn))
732 return 1;
733
1777feb0 734 /* call near, relative. */
237fc4c9
PA
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739}
740
237fc4c9
PA
741/* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
1903f0e6 743
237fc4c9 744static int
b55078be 745i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 746{
9a7f938f
JK
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759}
760
c2170eef
MM
761/* The gdbarch insn_is_call method. */
762
763static int
764i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765{
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772}
773
774/* The gdbarch insn_is_ret method. */
775
776static int
777i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778{
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785}
786
787/* The gdbarch insn_is_jump method. */
788
789static int
790i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791{
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798}
799
c2508e90 800/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 801
1152d984 802displaced_step_copy_insn_closure_up
b55078be
DE
803i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806{
807 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
808 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
809 (new i386_displaced_step_copy_insn_closure (len));
cfba9872 810 gdb_byte *buf = closure->buf.data ();
b55078be
DE
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
136821d9 828 displaced_debug_printf ("%s->%s: %s",
dda83cd7 829 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 830 displaced_step_dump_bytes (buf, len).c_str ());
b55078be 831
6d0cf446 832 /* This is a work around for a problem with g++ 4.8. */
1152d984 833 return displaced_step_copy_insn_closure_up (closure.release ());
b55078be
DE
834}
835
237fc4c9
PA
836/* Fix up the state of registers and memory after having single-stepped
837 a displaced instruction. */
1903f0e6 838
237fc4c9
PA
839void
840i386_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 841 struct displaced_step_copy_insn_closure *closure_,
dda83cd7
SM
842 CORE_ADDR from, CORE_ADDR to,
843 struct regcache *regs)
237fc4c9 844{
e17a4113
UW
845 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
846
237fc4c9
PA
847 /* The offset we applied to the instruction's address.
848 This could well be negative (when viewed as a signed 32-bit
849 value), but ULONGEST won't reflect that, so take care when
850 applying it. */
851 ULONGEST insn_offset = to - from;
852
1152d984
SM
853 i386_displaced_step_copy_insn_closure *closure
854 = (i386_displaced_step_copy_insn_closure *) closure_;
cfba9872 855 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
856 /* The start of the insn, needed in case we see some prefixes. */
857 gdb_byte *insn_start = insn;
237fc4c9 858
136821d9
SM
859 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
860 paddress (gdbarch, from), paddress (gdbarch, to),
861 insn[0], insn[1]);
237fc4c9
PA
862
863 /* The list of issues to contend with here is taken from
864 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
865 Yay for Free Software! */
866
867 /* Relocate the %eip, if necessary. */
868
1903f0e6
DE
869 /* The instruction recognizers we use assume any leading prefixes
870 have been skipped. */
871 {
872 /* This is the size of the buffer in closure. */
873 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
874 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
875 /* If there are too many prefixes, just ignore the insn.
876 It will fault when run. */
877 if (opcode != NULL)
878 insn = opcode;
879 }
880
237fc4c9
PA
881 /* Except in the case of absolute or indirect jump or call
882 instructions, or a return instruction, the new eip is relative to
883 the displaced instruction; make it relative. Well, signal
884 handler returns don't need relocation either, but we use the
885 value of %eip to recognize those; see below. */
886 if (! i386_absolute_jmp_p (insn)
887 && ! i386_absolute_call_p (insn)
888 && ! i386_ret_p (insn))
889 {
890 ULONGEST orig_eip;
b55078be 891 int insn_len;
237fc4c9
PA
892
893 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
894
895 /* A signal trampoline system call changes the %eip, resuming
dda83cd7
SM
896 execution of the main program after the signal handler has
897 returned. That makes them like 'return' instructions; we
898 shouldn't relocate %eip.
899
900 But most system calls don't, and we do need to relocate %eip.
901
902 Our heuristic for distinguishing these cases: if stepping
903 over the system call instruction left control directly after
904 the instruction, the we relocate --- control almost certainly
905 doesn't belong in the displaced copy. Otherwise, we assume
906 the instruction has put control where it belongs, and leave
907 it unrelocated. Goodness help us if there are PC-relative
908 system calls. */
237fc4c9 909 if (i386_syscall_p (insn, &insn_len)
dda83cd7 910 && orig_eip != to + (insn - insn_start) + insn_len
b55078be
DE
911 /* GDB can get control back after the insn after the syscall.
912 Presumably this is a kernel bug.
913 i386_displaced_step_copy_insn ensures its a nop,
914 we add one to the length for it. */
136821d9
SM
915 && orig_eip != to + (insn - insn_start) + insn_len + 1)
916 displaced_debug_printf ("syscall changed %%eip; not relocating");
237fc4c9 917 else
dda83cd7
SM
918 {
919 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
237fc4c9 920
1903f0e6
DE
921 /* If we just stepped over a breakpoint insn, we don't backup
922 the pc on purpose; this is to match behaviour without
923 stepping. */
237fc4c9 924
dda83cd7 925 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
237fc4c9 926
136821d9
SM
927 displaced_debug_printf ("relocated %%eip from %s to %s",
928 paddress (gdbarch, orig_eip),
929 paddress (gdbarch, eip));
dda83cd7 930 }
237fc4c9
PA
931 }
932
933 /* If the instruction was PUSHFL, then the TF bit will be set in the
934 pushed value, and should be cleared. We'll leave this for later,
935 since GDB already messes up the TF flag when stepping over a
936 pushfl. */
937
938 /* If the instruction was a call, the return address now atop the
939 stack is the address following the copied instruction. We need
940 to make it the address following the original instruction. */
941 if (i386_call_p (insn))
942 {
943 ULONGEST esp;
944 ULONGEST retaddr;
945 const ULONGEST retaddr_len = 4;
946
947 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 948 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 949 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 950 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9 951
136821d9
SM
952 displaced_debug_printf ("relocated return addr at %s to %s",
953 paddress (gdbarch, esp),
954 paddress (gdbarch, retaddr));
237fc4c9
PA
955 }
956}
dde08ee1
PA
957
958static void
959append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
960{
961 target_write_memory (*to, buf, len);
962 *to += len;
963}
964
965static void
966i386_relocate_instruction (struct gdbarch *gdbarch,
967 CORE_ADDR *to, CORE_ADDR oldloc)
968{
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[I386_MAX_INSN_LEN];
971 int offset = 0, rel32, newrel;
972 int insn_length;
973 gdb_byte *insn = buf;
974
975 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
976
977 insn_length = gdb_buffered_insn_length (gdbarch, insn,
978 I386_MAX_INSN_LEN, oldloc);
979
980 /* Get past the prefixes. */
981 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
982
983 /* Adjust calls with 32-bit relative addresses as push/jump, with
984 the address pushed being the location where the original call in
985 the user program would return to. */
986 if (insn[0] == 0xe8)
987 {
988 gdb_byte push_buf[16];
989 unsigned int ret_addr;
990
991 /* Where "ret" in the original code will return to. */
992 ret_addr = oldloc + insn_length;
1777feb0 993 push_buf[0] = 0x68; /* pushq $... */
144db827 994 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
995 /* Push the push. */
996 append_insns (to, 5, push_buf);
997
998 /* Convert the relative call to a relative jump. */
999 insn[0] = 0xe9;
1000
1001 /* Adjust the destination offset. */
1002 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1003 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1004 store_signed_integer (insn + 1, 4, byte_order, newrel);
1005
136821d9
SM
1006 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1007 hex_string (rel32), paddress (gdbarch, oldloc),
1008 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1009
1010 /* Write the adjusted jump into its displaced location. */
1011 append_insns (to, 5, insn);
1012 return;
1013 }
1014
1015 /* Adjust jumps with 32-bit relative addresses. Calls are already
1016 handled above. */
1017 if (insn[0] == 0xe9)
1018 offset = 1;
1019 /* Adjust conditional jumps. */
1020 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1021 offset = 2;
1022
1023 if (offset)
1024 {
1025 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1026 newrel = (oldloc - *to) + rel32;
f4a1794a 1027 store_signed_integer (insn + offset, 4, byte_order, newrel);
136821d9
SM
1028 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1029 hex_string (rel32), paddress (gdbarch, oldloc),
1030 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1031 }
1032
1033 /* Write the adjusted instructions into their displaced
1034 location. */
1035 append_insns (to, insn_length, buf);
1036}
1037
fc338970 1038\f
acd5c798
MK
1039#ifdef I386_REGNO_TO_SYMMETRY
1040#error "The Sequent Symmetry is no longer supported."
1041#endif
c906108c 1042
acd5c798
MK
1043/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1044 and %esp "belong" to the calling function. Therefore these
1045 registers should be saved if they're going to be modified. */
c906108c 1046
acd5c798
MK
1047/* The maximum number of saved registers. This should include all
1048 registers mentioned above, and %eip. */
a3386186 1049#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1050
1051struct i386_frame_cache
c906108c 1052{
acd5c798
MK
1053 /* Base address. */
1054 CORE_ADDR base;
8fbca658 1055 int base_p;
772562f8 1056 LONGEST sp_offset;
acd5c798
MK
1057 CORE_ADDR pc;
1058
fd13a04a
AC
1059 /* Saved registers. */
1060 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1061 CORE_ADDR saved_sp;
e0c62198 1062 int saved_sp_reg;
acd5c798
MK
1063 int pc_in_eax;
1064
1065 /* Stack space reserved for local variables. */
1066 long locals;
1067};
1068
1069/* Allocate and initialize a frame cache. */
1070
1071static struct i386_frame_cache *
fd13a04a 1072i386_alloc_frame_cache (void)
acd5c798
MK
1073{
1074 struct i386_frame_cache *cache;
1075 int i;
1076
1077 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1078
1079 /* Base address. */
8fbca658 1080 cache->base_p = 0;
acd5c798
MK
1081 cache->base = 0;
1082 cache->sp_offset = -4;
1083 cache->pc = 0;
1084
fd13a04a
AC
1085 /* Saved registers. We initialize these to -1 since zero is a valid
1086 offset (that's where %ebp is supposed to be stored). */
1087 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1088 cache->saved_regs[i] = -1;
acd5c798 1089 cache->saved_sp = 0;
e0c62198 1090 cache->saved_sp_reg = -1;
acd5c798
MK
1091 cache->pc_in_eax = 0;
1092
1093 /* Frameless until proven otherwise. */
1094 cache->locals = -1;
1095
1096 return cache;
1097}
c906108c 1098
acd5c798
MK
1099/* If the instruction at PC is a jump, return the address of its
1100 target. Otherwise, return PC. */
c906108c 1101
acd5c798 1102static CORE_ADDR
e17a4113 1103i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1104{
e17a4113 1105 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1106 gdb_byte op;
acd5c798
MK
1107 long delta = 0;
1108 int data16 = 0;
c906108c 1109
0865b04a 1110 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1111 return pc;
1112
acd5c798 1113 if (op == 0x66)
c906108c 1114 {
c906108c 1115 data16 = 1;
0865b04a
YQ
1116
1117 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1118 }
1119
acd5c798 1120 switch (op)
c906108c
SS
1121 {
1122 case 0xe9:
fc338970 1123 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1124 if (data16)
1125 {
e17a4113 1126 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1127
fc338970 1128 /* Include the size of the jmp instruction (including the
dda83cd7 1129 0x66 prefix). */
acd5c798 1130 delta += 4;
c906108c
SS
1131 }
1132 else
1133 {
e17a4113 1134 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1135
acd5c798
MK
1136 /* Include the size of the jmp instruction. */
1137 delta += 5;
c906108c
SS
1138 }
1139 break;
1140 case 0xeb:
fc338970 1141 /* Relative jump, disp8 (ignore data16). */
e17a4113 1142 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1143
acd5c798 1144 delta += data16 + 2;
c906108c
SS
1145 break;
1146 }
c906108c 1147
acd5c798
MK
1148 return pc + delta;
1149}
fc338970 1150
acd5c798
MK
1151/* Check whether PC points at a prologue for a function returning a
1152 structure or union. If so, it updates CACHE and returns the
1153 address of the first instruction after the code sequence that
1154 removes the "hidden" argument from the stack or CURRENT_PC,
1155 whichever is smaller. Otherwise, return PC. */
c906108c 1156
acd5c798
MK
1157static CORE_ADDR
1158i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1159 struct i386_frame_cache *cache)
c906108c 1160{
acd5c798
MK
1161 /* Functions that return a structure or union start with:
1162
dda83cd7
SM
1163 popl %eax 0x58
1164 xchgl %eax, (%esp) 0x87 0x04 0x24
acd5c798
MK
1165 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1166
1167 (the System V compiler puts out the second `xchg' instruction,
1168 and the assembler doesn't try to optimize it, so the 'sib' form
1169 gets generated). This sequence is used to get the address of the
1170 return buffer for a function that returns a structure. */
63c0089f
MK
1171 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1172 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1173 gdb_byte buf[4];
1174 gdb_byte op;
c906108c 1175
acd5c798
MK
1176 if (current_pc <= pc)
1177 return pc;
1178
0865b04a 1179 if (target_read_code (pc, &op, 1))
3dcabaa8 1180 return pc;
c906108c 1181
acd5c798
MK
1182 if (op != 0x58) /* popl %eax */
1183 return pc;
c906108c 1184
0865b04a 1185 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1186 return pc;
1187
acd5c798
MK
1188 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1189 return pc;
c906108c 1190
acd5c798 1191 if (current_pc == pc)
c906108c 1192 {
acd5c798
MK
1193 cache->sp_offset += 4;
1194 return current_pc;
c906108c
SS
1195 }
1196
acd5c798 1197 if (current_pc == pc + 1)
c906108c 1198 {
acd5c798
MK
1199 cache->pc_in_eax = 1;
1200 return current_pc;
1201 }
1202
1203 if (buf[1] == proto1[1])
1204 return pc + 4;
1205 else
1206 return pc + 5;
1207}
1208
1209static CORE_ADDR
1210i386_skip_probe (CORE_ADDR pc)
1211{
1212 /* A function may start with
fc338970 1213
dda83cd7
SM
1214 pushl constant
1215 call _probe
acd5c798 1216 addl $4, %esp
fc338970 1217
acd5c798
MK
1218 followed by
1219
dda83cd7 1220 pushl %ebp
fc338970 1221
acd5c798 1222 etc. */
63c0089f
MK
1223 gdb_byte buf[8];
1224 gdb_byte op;
fc338970 1225
0865b04a 1226 if (target_read_code (pc, &op, 1))
3dcabaa8 1227 return pc;
acd5c798
MK
1228
1229 if (op == 0x68 || op == 0x6a)
1230 {
1231 int delta;
c906108c 1232
acd5c798
MK
1233 /* Skip past the `pushl' instruction; it has either a one-byte or a
1234 four-byte operand, depending on the opcode. */
c906108c 1235 if (op == 0x68)
acd5c798 1236 delta = 5;
c906108c 1237 else
acd5c798 1238 delta = 2;
c906108c 1239
acd5c798
MK
1240 /* Read the following 8 bytes, which should be `call _probe' (6
1241 bytes) followed by `addl $4,%esp' (2 bytes). */
1242 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1243 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1244 pc += delta + sizeof (buf);
c906108c
SS
1245 }
1246
acd5c798
MK
1247 return pc;
1248}
1249
92dd43fa
MK
1250/* GCC 4.1 and later, can put code in the prologue to realign the
1251 stack pointer. Check whether PC points to such code, and update
1252 CACHE accordingly. Return the first instruction after the code
1253 sequence or CURRENT_PC, whichever is smaller. If we don't
1254 recognize the code, return PC. */
1255
1256static CORE_ADDR
1257i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1258 struct i386_frame_cache *cache)
1259{
e0c62198
L
1260 /* There are 2 code sequences to re-align stack before the frame
1261 gets set up:
1262
1263 1. Use a caller-saved saved register:
1264
1265 leal 4(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 2. Use a callee-saved saved register:
1270
1271 pushl %reg
1272 leal 8(%esp), %reg
1273 andl $-XXX, %esp
1274 pushl -4(%reg)
1275
1276 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1277
1278 0x83 0xe4 0xf0 andl $-16, %esp
1279 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1280 */
1281
1282 gdb_byte buf[14];
1283 int reg;
1284 int offset, offset_and;
1285 static int regnums[8] = {
1286 I386_EAX_REGNUM, /* %eax */
1287 I386_ECX_REGNUM, /* %ecx */
1288 I386_EDX_REGNUM, /* %edx */
1289 I386_EBX_REGNUM, /* %ebx */
1290 I386_ESP_REGNUM, /* %esp */
1291 I386_EBP_REGNUM, /* %ebp */
1292 I386_ESI_REGNUM, /* %esi */
1293 I386_EDI_REGNUM /* %edi */
92dd43fa 1294 };
92dd43fa 1295
0865b04a 1296 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1297 return pc;
1298
1299 /* Check caller-saved saved register. The first instruction has
1300 to be "leal 4(%esp), %reg". */
1301 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1302 {
1303 /* MOD must be binary 10 and R/M must be binary 100. */
1304 if ((buf[1] & 0xc7) != 0x44)
1305 return pc;
1306
1307 /* REG has register number. */
1308 reg = (buf[1] >> 3) & 7;
1309 offset = 4;
1310 }
1311 else
1312 {
1313 /* Check callee-saved saved register. The first instruction
1314 has to be "pushl %reg". */
1315 if ((buf[0] & 0xf8) != 0x50)
1316 return pc;
1317
1318 /* Get register. */
1319 reg = buf[0] & 0x7;
1320
1321 /* The next instruction has to be "leal 8(%esp), %reg". */
1322 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1323 return pc;
1324
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[2] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. Registers in pushl and leal have to
1330 be the same. */
1331 if (reg != ((buf[2] >> 3) & 7))
1332 return pc;
1333
1334 offset = 5;
1335 }
1336
1337 /* Rigister can't be %esp nor %ebp. */
1338 if (reg == 4 || reg == 5)
1339 return pc;
1340
1341 /* The next instruction has to be "andl $-XXX, %esp". */
1342 if (buf[offset + 1] != 0xe4
1343 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1344 return pc;
1345
1346 offset_and = offset;
1347 offset += buf[offset] == 0x81 ? 6 : 3;
1348
1349 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1350 0xfc. REG must be binary 110 and MOD must be binary 01. */
1351 if (buf[offset] != 0xff
1352 || buf[offset + 2] != 0xfc
1353 || (buf[offset + 1] & 0xf8) != 0x70)
1354 return pc;
1355
1356 /* R/M has register. Registers in leal and pushl have to be the
1357 same. */
1358 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1359 return pc;
1360
e0c62198
L
1361 if (current_pc > pc + offset_and)
1362 cache->saved_sp_reg = regnums[reg];
92dd43fa 1363
325fac50 1364 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1365}
1366
37bdc87e 1367/* Maximum instruction length we need to handle. */
237fc4c9 1368#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1369
1370/* Instruction description. */
1371struct i386_insn
1372{
1373 size_t len;
237fc4c9
PA
1374 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1375 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1376};
1377
a3fcb948 1378/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1379
a3fcb948
JG
1380static int
1381i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1382{
63c0089f 1383 gdb_byte op;
37bdc87e 1384
0865b04a 1385 if (target_read_code (pc, &op, 1))
a3fcb948 1386 return 0;
37bdc87e 1387
a3fcb948 1388 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1389 {
a3fcb948
JG
1390 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1391 int insn_matched = 1;
1392 size_t i;
37bdc87e 1393
a3fcb948
JG
1394 gdb_assert (pattern.len > 1);
1395 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1396
0865b04a 1397 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1398 return 0;
613e8135 1399
a3fcb948
JG
1400 for (i = 1; i < pattern.len; i++)
1401 {
1402 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1403 insn_matched = 0;
37bdc87e 1404 }
a3fcb948
JG
1405 return insn_matched;
1406 }
1407 return 0;
1408}
1409
1410/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1411 the first instruction description that matches. Otherwise, return
1412 NULL. */
1413
1414static struct i386_insn *
1415i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1416{
1417 struct i386_insn *pattern;
1418
1419 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1420 {
1421 if (i386_match_pattern (pc, *pattern))
1422 return pattern;
37bdc87e
MK
1423 }
1424
1425 return NULL;
1426}
1427
a3fcb948
JG
1428/* Return whether PC points inside a sequence of instructions that
1429 matches INSN_PATTERNS. */
1430
1431static int
1432i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1433{
1434 CORE_ADDR current_pc;
1435 int ix, i;
a3fcb948
JG
1436 struct i386_insn *insn;
1437
1438 insn = i386_match_insn (pc, insn_patterns);
1439 if (insn == NULL)
1440 return 0;
1441
8bbdd3f4 1442 current_pc = pc;
a3fcb948
JG
1443 ix = insn - insn_patterns;
1444 for (i = ix - 1; i >= 0; i--)
1445 {
8bbdd3f4
MK
1446 current_pc -= insn_patterns[i].len;
1447
a3fcb948
JG
1448 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1449 return 0;
a3fcb948
JG
1450 }
1451
1452 current_pc = pc + insn->len;
1453 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1454 {
1455 if (!i386_match_pattern (current_pc, *insn))
1456 return 0;
1457
1458 current_pc += insn->len;
1459 }
1460
1461 return 1;
1462}
1463
37bdc87e
MK
1464/* Some special instructions that might be migrated by GCC into the
1465 part of the prologue that sets up the new stack frame. Because the
1466 stack frame hasn't been setup yet, no registers have been saved
1467 yet, and only the scratch registers %eax, %ecx and %edx can be
1468 touched. */
1469
1470struct i386_insn i386_frame_setup_skip_insns[] =
1471{
1777feb0 1472 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1473
1474 ??? Should we handle 16-bit operand-sizes here? */
1475
1476 /* `movb imm8, %al' and `movb imm8, %ah' */
1477 /* `movb imm8, %cl' and `movb imm8, %ch' */
1478 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1479 /* `movb imm8, %dl' and `movb imm8, %dh' */
1480 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1481 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1482 { 5, { 0xb8 }, { 0xfe } },
1483 /* `movl imm32, %edx' */
1484 { 5, { 0xba }, { 0xff } },
1485
1486 /* Check for `mov imm32, r32'. Note that there is an alternative
1487 encoding for `mov m32, %eax'.
1488
85102364 1489 ??? Should we handle SIB addressing here?
37bdc87e
MK
1490 ??? Should we handle 16-bit operand-sizes here? */
1491
1492 /* `movl m32, %eax' */
1493 { 5, { 0xa1 }, { 0xff } },
1494 /* `movl m32, %eax' and `mov; m32, %ecx' */
1495 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1496 /* `movl m32, %edx' */
1497 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1498
1499 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1500 Because of the symmetry, there are actually two ways to encode
1501 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1502 opcode bytes 0x31 and 0x33 for `xorl'. */
1503
1504 /* `subl %eax, %eax' */
1505 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1506 /* `subl %ecx, %ecx' */
1507 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1508 /* `subl %edx, %edx' */
1509 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1510 /* `xorl %eax, %eax' */
1511 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1512 /* `xorl %ecx, %ecx' */
1513 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1514 /* `xorl %edx, %edx' */
1515 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1516 { 0 }
1517};
1518
14f9473c
VC
1519/* Check whether PC points to an endbr32 instruction. */
1520static CORE_ADDR
1521i386_skip_endbr (CORE_ADDR pc)
1522{
1523 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1524
1525 gdb_byte buf[sizeof (endbr32)];
1526
1527 /* Stop there if we can't read the code */
1528 if (target_read_code (pc, buf, sizeof (endbr32)))
1529 return pc;
1530
1531 /* If the instruction isn't an endbr32, stop */
1532 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1533 return pc;
1534
1535 return pc + sizeof (endbr32);
1536}
e11481da
PM
1537
1538/* Check whether PC points to a no-op instruction. */
1539static CORE_ADDR
1540i386_skip_noop (CORE_ADDR pc)
1541{
1542 gdb_byte op;
1543 int check = 1;
1544
0865b04a 1545 if (target_read_code (pc, &op, 1))
3dcabaa8 1546 return pc;
e11481da
PM
1547
1548 while (check)
1549 {
1550 check = 0;
1551 /* Ignore `nop' instruction. */
1552 if (op == 0x90)
1553 {
1554 pc += 1;
0865b04a 1555 if (target_read_code (pc, &op, 1))
3dcabaa8 1556 return pc;
e11481da
PM
1557 check = 1;
1558 }
1559 /* Ignore no-op instruction `mov %edi, %edi'.
1560 Microsoft system dlls often start with
1561 a `mov %edi,%edi' instruction.
1562 The 5 bytes before the function start are
1563 filled with `nop' instructions.
1564 This pattern can be used for hot-patching:
1565 The `mov %edi, %edi' instruction can be replaced by a
1566 near jump to the location of the 5 `nop' instructions
1567 which can be replaced by a 32-bit jump to anywhere
1568 in the 32-bit address space. */
1569
1570 else if (op == 0x8b)
1571 {
0865b04a 1572 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1573 return pc;
1574
e11481da
PM
1575 if (op == 0xff)
1576 {
1577 pc += 2;
0865b04a 1578 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1579 return pc;
1580
e11481da
PM
1581 check = 1;
1582 }
1583 }
1584 }
1585 return pc;
1586}
1587
acd5c798
MK
1588/* Check whether PC points at a code that sets up a new stack frame.
1589 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1590 instruction after the sequence that sets up the frame or LIMIT,
1591 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1592
1593static CORE_ADDR
e17a4113
UW
1594i386_analyze_frame_setup (struct gdbarch *gdbarch,
1595 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1596 struct i386_frame_cache *cache)
1597{
e17a4113 1598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1599 struct i386_insn *insn;
63c0089f 1600 gdb_byte op;
26604a34 1601 int skip = 0;
acd5c798 1602
37bdc87e
MK
1603 if (limit <= pc)
1604 return limit;
acd5c798 1605
0865b04a 1606 if (target_read_code (pc, &op, 1))
3dcabaa8 1607 return pc;
acd5c798 1608
c906108c 1609 if (op == 0x55) /* pushl %ebp */
c5aa993b 1610 {
acd5c798
MK
1611 /* Take into account that we've executed the `pushl %ebp' that
1612 starts this instruction sequence. */
fd13a04a 1613 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1614 cache->sp_offset += 4;
37bdc87e 1615 pc++;
acd5c798
MK
1616
1617 /* If that's all, return now. */
37bdc87e
MK
1618 if (limit <= pc)
1619 return limit;
26604a34 1620
b4632131 1621 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1622 GCC into the prologue and skip them. At this point in the
1623 prologue, code should only touch the scratch registers %eax,
30baf67b 1624 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1625 it is limited.
5daa5b4e 1626
26604a34
MK
1627 Make sure we only skip these instructions if we later see the
1628 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1629 while (pc + skip < limit)
26604a34 1630 {
37bdc87e
MK
1631 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1632 if (insn == NULL)
1633 break;
b4632131 1634
37bdc87e 1635 skip += insn->len;
26604a34
MK
1636 }
1637
37bdc87e
MK
1638 /* If that's all, return now. */
1639 if (limit <= pc + skip)
1640 return limit;
1641
0865b04a 1642 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1643 return pc + skip;
37bdc87e 1644
30f8135b
YQ
1645 /* The i386 prologue looks like
1646
1647 push %ebp
1648 mov %esp,%ebp
1649 sub $0x10,%esp
1650
1651 and a different prologue can be generated for atom.
1652
1653 push %ebp
1654 lea (%esp),%ebp
1655 lea -0x10(%esp),%esp
1656
1657 We handle both of them here. */
1658
acd5c798 1659 switch (op)
c906108c 1660 {
30f8135b 1661 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1662 case 0x8b:
0865b04a 1663 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1664 != 0xec)
37bdc87e 1665 return pc;
30f8135b 1666 pc += (skip + 2);
c906108c
SS
1667 break;
1668 case 0x89:
0865b04a 1669 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1670 != 0xe5)
37bdc87e 1671 return pc;
30f8135b
YQ
1672 pc += (skip + 2);
1673 break;
1674 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1675 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1676 != 0x242c)
1677 return pc;
1678 pc += (skip + 3);
c906108c
SS
1679 break;
1680 default:
37bdc87e 1681 return pc;
c906108c 1682 }
acd5c798 1683
26604a34
MK
1684 /* OK, we actually have a frame. We just don't know how large
1685 it is yet. Set its size to zero. We'll adjust it if
1686 necessary. We also now commit to skipping the special
1687 instructions mentioned before. */
acd5c798
MK
1688 cache->locals = 0;
1689
1690 /* If that's all, return now. */
37bdc87e
MK
1691 if (limit <= pc)
1692 return limit;
acd5c798 1693
fc338970
MK
1694 /* Check for stack adjustment
1695
acd5c798 1696 subl $XXX, %esp
30f8135b
YQ
1697 or
1698 lea -XXX(%esp),%esp
fc338970 1699
fd35795f 1700 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1701 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1702 if (target_read_code (pc, &op, 1))
3dcabaa8 1703 return pc;
c906108c
SS
1704 if (op == 0x83)
1705 {
fd35795f 1706 /* `subl' with 8-bit immediate. */
0865b04a 1707 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1708 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1709 return pc;
acd5c798 1710
37bdc87e
MK
1711 /* `subl' with signed 8-bit immediate (though it wouldn't
1712 make sense to be negative). */
0865b04a 1713 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1714 return pc + 3;
c906108c
SS
1715 }
1716 else if (op == 0x81)
1717 {
fd35795f 1718 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1719 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1720 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1721 return pc;
acd5c798 1722
fd35795f 1723 /* It is `subl' with a 32-bit immediate. */
0865b04a 1724 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1725 return pc + 6;
c906108c 1726 }
30f8135b
YQ
1727 else if (op == 0x8d)
1728 {
1729 /* The ModR/M byte is 0x64. */
0865b04a 1730 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1731 return pc;
1732 /* 'lea' with 8-bit displacement. */
0865b04a 1733 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1734 return pc + 4;
1735 }
c906108c
SS
1736 else
1737 {
30f8135b 1738 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1739 return pc;
c906108c
SS
1740 }
1741 }
37bdc87e 1742 else if (op == 0xc8) /* enter */
c906108c 1743 {
0865b04a 1744 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1745 return pc + 4;
c906108c 1746 }
21d0e8a4 1747
acd5c798 1748 return pc;
21d0e8a4
MK
1749}
1750
acd5c798
MK
1751/* Check whether PC points at code that saves registers on the stack.
1752 If so, it updates CACHE and returns the address of the first
1753 instruction after the register saves or CURRENT_PC, whichever is
1754 smaller. Otherwise, return PC. */
6bff26de
MK
1755
1756static CORE_ADDR
acd5c798
MK
1757i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1758 struct i386_frame_cache *cache)
6bff26de 1759{
99ab4326 1760 CORE_ADDR offset = 0;
63c0089f 1761 gdb_byte op;
99ab4326 1762 int i;
c0d1d883 1763
99ab4326
MK
1764 if (cache->locals > 0)
1765 offset -= cache->locals;
1766 for (i = 0; i < 8 && pc < current_pc; i++)
1767 {
0865b04a 1768 if (target_read_code (pc, &op, 1))
3dcabaa8 1769 return pc;
99ab4326
MK
1770 if (op < 0x50 || op > 0x57)
1771 break;
0d17c81d 1772
99ab4326
MK
1773 offset -= 4;
1774 cache->saved_regs[op - 0x50] = offset;
1775 cache->sp_offset += 4;
1776 pc++;
6bff26de
MK
1777 }
1778
acd5c798 1779 return pc;
22797942
AC
1780}
1781
acd5c798
MK
1782/* Do a full analysis of the prologue at PC and update CACHE
1783 accordingly. Bail out early if CURRENT_PC is reached. Return the
1784 address where the analysis stopped.
ed84f6c1 1785
fc338970
MK
1786 We handle these cases:
1787
1788 The startup sequence can be at the start of the function, or the
1789 function can start with a branch to startup code at the end.
1790
1791 %ebp can be set up with either the 'enter' instruction, or "pushl
1792 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1793 once used in the System V compiler).
1794
1795 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1796 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1797 16-bit unsigned argument for space to allocate, and the 'addl'
1798 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1799
1800 Next, the registers used by this function are pushed. With the
1801 System V compiler they will always be in the order: %edi, %esi,
1802 %ebx (and sometimes a harmless bug causes it to also save but not
1803 restore %eax); however, the code below is willing to see the pushes
1804 in any order, and will handle up to 8 of them.
1805
1806 If the setup sequence is at the end of the function, then the next
1807 instruction will be a branch back to the start. */
c906108c 1808
acd5c798 1809static CORE_ADDR
e17a4113
UW
1810i386_analyze_prologue (struct gdbarch *gdbarch,
1811 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1812 struct i386_frame_cache *cache)
c906108c 1813{
14f9473c 1814 pc = i386_skip_endbr (pc);
e11481da 1815 pc = i386_skip_noop (pc);
e17a4113 1816 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1817 pc = i386_analyze_struct_return (pc, current_pc, cache);
1818 pc = i386_skip_probe (pc);
92dd43fa 1819 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1820 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1821 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1822}
1823
fc338970 1824/* Return PC of first real instruction. */
c906108c 1825
3a1e71e3 1826static CORE_ADDR
6093d2eb 1827i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1828{
e17a4113
UW
1829 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1830
63c0089f 1831 static gdb_byte pic_pat[6] =
acd5c798
MK
1832 {
1833 0xe8, 0, 0, 0, 0, /* call 0x0 */
1834 0x5b, /* popl %ebx */
c5aa993b 1835 };
acd5c798
MK
1836 struct i386_frame_cache cache;
1837 CORE_ADDR pc;
63c0089f 1838 gdb_byte op;
acd5c798 1839 int i;
56bf0743 1840 CORE_ADDR func_addr;
4e879fc2 1841
56bf0743
KB
1842 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1843 {
1844 CORE_ADDR post_prologue_pc
1845 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1846 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 1847
c2fd7fae 1848 /* LLVM backend (Clang/Flang) always emits a line note before the
dda83cd7
SM
1849 prologue and another one after. We trust clang to emit usable
1850 line notes. */
56bf0743 1851 if (post_prologue_pc
43f3e411
DE
1852 && (cust != NULL
1853 && COMPUNIT_PRODUCER (cust) != NULL
c2fd7fae 1854 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
dda83cd7 1855 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1856 }
1857
e0f33b1f 1858 cache.locals = -1;
e17a4113 1859 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1860 if (cache.locals < 0)
1861 return start_pc;
c5aa993b 1862
acd5c798 1863 /* Found valid frame setup. */
c906108c 1864
fc338970
MK
1865 /* The native cc on SVR4 in -K PIC mode inserts the following code
1866 to get the address of the global offset table (GOT) into register
acd5c798
MK
1867 %ebx:
1868
dda83cd7 1869 call 0x0
fc338970 1870 popl %ebx
dda83cd7
SM
1871 movl %ebx,x(%ebp) (optional)
1872 addl y,%ebx
fc338970 1873
c906108c
SS
1874 This code is with the rest of the prologue (at the end of the
1875 function), so we have to skip it to get to the first real
1876 instruction at the start of the function. */
c5aa993b 1877
c906108c
SS
1878 for (i = 0; i < 6; i++)
1879 {
0865b04a 1880 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1881 return pc;
1882
c5aa993b 1883 if (pic_pat[i] != op)
c906108c
SS
1884 break;
1885 }
1886 if (i == 6)
1887 {
acd5c798
MK
1888 int delta = 6;
1889
0865b04a 1890 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1891 return pc;
c906108c 1892
c5aa993b 1893 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1894 {
0865b04a 1895 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1896
fc338970 1897 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1898 delta += 3;
fc338970 1899 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1900 delta += 6;
fc338970 1901 else /* Unexpected instruction. */
acd5c798
MK
1902 delta = 0;
1903
dda83cd7 1904 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1905 return pc;
c906108c 1906 }
acd5c798 1907
c5aa993b 1908 /* addl y,%ebx */
acd5c798 1909 if (delta > 0 && op == 0x81
0865b04a 1910 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1911 == 0xc3)
c906108c 1912 {
acd5c798 1913 pc += delta + 6;
c906108c
SS
1914 }
1915 }
c5aa993b 1916
e63bbc88
MK
1917 /* If the function starts with a branch (to startup code at the end)
1918 the last instruction should bring us back to the first
1919 instruction of the real code. */
e17a4113
UW
1920 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1921 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1922
1923 return pc;
c906108c
SS
1924}
1925
4309257c
PM
1926/* Check that the code pointed to by PC corresponds to a call to
1927 __main, skip it if so. Return PC otherwise. */
1928
1929CORE_ADDR
1930i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1931{
e17a4113 1932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1933 gdb_byte op;
1934
0865b04a 1935 if (target_read_code (pc, &op, 1))
3dcabaa8 1936 return pc;
4309257c
PM
1937 if (op == 0xe8)
1938 {
1939 gdb_byte buf[4];
1940
0865b04a 1941 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1942 {
1943 /* Make sure address is computed correctly as a 32bit
1944 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1945 struct bound_minimal_symbol s;
e17a4113 1946 CORE_ADDR call_dest;
4309257c 1947
e17a4113 1948 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1949 call_dest = call_dest & 0xffffffffU;
1950 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1951 if (s.minsym != NULL
c9d95fa3
CB
1952 && s.minsym->linkage_name () != NULL
1953 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1954 pc += 5;
1955 }
1956 }
1957
1958 return pc;
1959}
1960
acd5c798 1961/* This function is 64-bit safe. */
93924b6b 1962
acd5c798
MK
1963static CORE_ADDR
1964i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1965{
63c0089f 1966 gdb_byte buf[8];
acd5c798 1967
875f8d0e 1968 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1969 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1970}
acd5c798 1971\f
93924b6b 1972
acd5c798 1973/* Normal frames. */
c5aa993b 1974
8fbca658
PA
1975static void
1976i386_frame_cache_1 (struct frame_info *this_frame,
1977 struct i386_frame_cache *cache)
a7769679 1978{
e17a4113
UW
1979 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1980 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1981 gdb_byte buf[4];
acd5c798
MK
1982 int i;
1983
8fbca658 1984 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1985
1986 /* In principle, for normal frames, %ebp holds the frame pointer,
1987 which holds the base address for the current stack frame.
1988 However, for functions that don't need it, the frame pointer is
1989 optional. For these "frameless" functions the frame pointer is
1990 actually the frame pointer of the calling frame. Signal
1991 trampolines are just a special case of a "frameless" function.
1992 They (usually) share their frame pointer with the frame that was
1993 in progress when the signal occurred. */
1994
10458914 1995 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1996 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1997 if (cache->base == 0)
620fa63a
PA
1998 {
1999 cache->base_p = 1;
2000 return;
2001 }
acd5c798
MK
2002
2003 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2004 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2005
acd5c798 2006 if (cache->pc != 0)
e17a4113
UW
2007 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2008 cache);
acd5c798
MK
2009
2010 if (cache->locals < 0)
2011 {
2012 /* We didn't find a valid frame, which means that CACHE->base
2013 currently holds the frame pointer for our calling frame. If
2014 we're at the start of a function, or somewhere half-way its
2015 prologue, the function's frame probably hasn't been fully
2016 setup yet. Try to reconstruct the base address for the stack
2017 frame by looking at the stack pointer. For truly "frameless"
2018 functions this might work too. */
2019
e0c62198 2020 if (cache->saved_sp_reg != -1)
92dd43fa 2021 {
8fbca658
PA
2022 /* Saved stack pointer has been saved. */
2023 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2024 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2025
92dd43fa
MK
2026 /* We're halfway aligning the stack. */
2027 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2028 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2029
2030 /* This will be added back below. */
2031 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2032 }
7618e12b 2033 else if (cache->pc != 0
0865b04a 2034 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2035 {
7618e12b
DJ
2036 /* We're in a known function, but did not find a frame
2037 setup. Assume that the function does not use %ebp.
2038 Alternatively, we may have jumped to an invalid
2039 address; in that case there is definitely no new
2040 frame in %ebp. */
10458914 2041 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2042 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2043 + cache->sp_offset;
92dd43fa 2044 }
7618e12b
DJ
2045 else
2046 /* We're in an unknown function. We could not find the start
2047 of the function to analyze the prologue; our best option is
2048 to assume a typical frame layout with the caller's %ebp
2049 saved. */
2050 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2051 }
2052
8fbca658
PA
2053 if (cache->saved_sp_reg != -1)
2054 {
2055 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2056 register may be unavailable). */
2057 if (cache->saved_sp == 0
ca9d61b9
JB
2058 && deprecated_frame_register_read (this_frame,
2059 cache->saved_sp_reg, buf))
8fbca658
PA
2060 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2061 }
acd5c798
MK
2062 /* Now that we have the base address for the stack frame we can
2063 calculate the value of %esp in the calling frame. */
8fbca658 2064 else if (cache->saved_sp == 0)
92dd43fa 2065 cache->saved_sp = cache->base + 8;
a7769679 2066
acd5c798
MK
2067 /* Adjust all the saved registers such that they contain addresses
2068 instead of offsets. */
2069 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2070 if (cache->saved_regs[i] != -1)
2071 cache->saved_regs[i] += cache->base;
acd5c798 2072
8fbca658
PA
2073 cache->base_p = 1;
2074}
2075
2076static struct i386_frame_cache *
2077i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2078{
8fbca658
PA
2079 struct i386_frame_cache *cache;
2080
2081 if (*this_cache)
9a3c8263 2082 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2083
2084 cache = i386_alloc_frame_cache ();
2085 *this_cache = cache;
2086
a70b8144 2087 try
8fbca658
PA
2088 {
2089 i386_frame_cache_1 (this_frame, cache);
2090 }
230d2906 2091 catch (const gdb_exception_error &ex)
7556d4a4
PA
2092 {
2093 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2094 throw;
7556d4a4 2095 }
8fbca658 2096
acd5c798 2097 return cache;
a7769679
MK
2098}
2099
3a1e71e3 2100static void
10458914 2101i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2102 struct frame_id *this_id)
c906108c 2103{
10458914 2104 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2105
5ce0145d
PA
2106 if (!cache->base_p)
2107 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2108 else if (cache->base == 0)
2109 {
2110 /* This marks the outermost frame. */
2111 }
2112 else
2113 {
2114 /* See the end of i386_push_dummy_call. */
2115 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2116 }
acd5c798
MK
2117}
2118
8fbca658
PA
2119static enum unwind_stop_reason
2120i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2121 void **this_cache)
2122{
2123 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 /* This marks the outermost frame. */
2129 if (cache->base == 0)
2130 return UNWIND_OUTERMOST;
2131
2132 return UNWIND_NO_REASON;
2133}
2134
10458914
DJ
2135static struct value *
2136i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2137 int regnum)
acd5c798 2138{
10458914 2139 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2140
2141 gdb_assert (regnum >= 0);
2142
2143 /* The System V ABI says that:
2144
2145 "The flags register contains the system flags, such as the
2146 direction flag and the carry flag. The direction flag must be
2147 set to the forward (that is, zero) direction before entry and
2148 upon exit from a function. Other user flags have no specified
2149 role in the standard calling sequence and are not preserved."
2150
2151 To guarantee the "upon exit" part of that statement we fake a
2152 saved flags register that has its direction flag cleared.
2153
2154 Note that GCC doesn't seem to rely on the fact that the direction
2155 flag is cleared after a function return; it always explicitly
2156 clears the flag before operations where it matters.
2157
2158 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2159 right thing to do. The way we fake the flags register here makes
2160 it impossible to change it. */
2161
2162 if (regnum == I386_EFLAGS_REGNUM)
2163 {
10458914 2164 ULONGEST val;
c5aa993b 2165
10458914
DJ
2166 val = get_frame_register_unsigned (this_frame, regnum);
2167 val &= ~(1 << 10);
2168 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2169 }
1211c4e4 2170
acd5c798 2171 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2172 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2173
fcf250e2
UW
2174 if (regnum == I386_ESP_REGNUM
2175 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2176 {
2177 /* If the SP has been saved, but we don't know where, then this
2178 means that SAVED_SP_REG register was found unavailable back
2179 when we built the cache. */
fcf250e2 2180 if (cache->saved_sp == 0)
8fbca658
PA
2181 return frame_unwind_got_register (this_frame, regnum,
2182 cache->saved_sp_reg);
2183 else
2184 return frame_unwind_got_constant (this_frame, regnum,
2185 cache->saved_sp);
2186 }
acd5c798 2187
fd13a04a 2188 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2189 return frame_unwind_got_memory (this_frame, regnum,
2190 cache->saved_regs[regnum]);
fd13a04a 2191
10458914 2192 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2193}
2194
2195static const struct frame_unwind i386_frame_unwind =
2196{
2197 NORMAL_FRAME,
8fbca658 2198 i386_frame_unwind_stop_reason,
acd5c798 2199 i386_frame_this_id,
10458914
DJ
2200 i386_frame_prev_register,
2201 NULL,
2202 default_frame_sniffer
acd5c798 2203};
06da04c6
MS
2204
2205/* Normal frames, but in a function epilogue. */
2206
c9cf6e20
MG
2207/* Implement the stack_frame_destroyed_p gdbarch method.
2208
2209 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2210 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2211 the function's stack frame. */
2212
2213static int
c9cf6e20 2214i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2215{
2216 gdb_byte insn;
43f3e411 2217 struct compunit_symtab *cust;
e0d00bc7 2218
43f3e411
DE
2219 cust = find_pc_compunit_symtab (pc);
2220 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2221 return 0;
06da04c6
MS
2222
2223 if (target_read_memory (pc, &insn, 1))
2224 return 0; /* Can't read memory at pc. */
2225
2226 if (insn != 0xc3) /* 'ret' instruction. */
2227 return 0;
2228
2229 return 1;
2230}
2231
2232static int
2233i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2234 struct frame_info *this_frame,
2235 void **this_prologue_cache)
2236{
2237 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2238 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2239 get_frame_pc (this_frame));
06da04c6
MS
2240 else
2241 return 0;
2242}
2243
2244static struct i386_frame_cache *
2245i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2246{
06da04c6 2247 struct i386_frame_cache *cache;
0d6c2135 2248 CORE_ADDR sp;
06da04c6
MS
2249
2250 if (*this_cache)
9a3c8263 2251 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2252
2253 cache = i386_alloc_frame_cache ();
2254 *this_cache = cache;
2255
a70b8144 2256 try
8fbca658 2257 {
0d6c2135 2258 cache->pc = get_frame_func (this_frame);
06da04c6 2259
0d6c2135
MK
2260 /* At this point the stack looks as if we just entered the
2261 function, with the return address at the top of the
2262 stack. */
2263 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2264 cache->base = sp + cache->sp_offset;
8fbca658 2265 cache->saved_sp = cache->base + 8;
8fbca658 2266 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2267
8fbca658
PA
2268 cache->base_p = 1;
2269 }
230d2906 2270 catch (const gdb_exception_error &ex)
7556d4a4
PA
2271 {
2272 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2273 throw;
7556d4a4 2274 }
06da04c6
MS
2275
2276 return cache;
2277}
2278
8fbca658
PA
2279static enum unwind_stop_reason
2280i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2281 void **this_cache)
2282{
0d6c2135
MK
2283 struct i386_frame_cache *cache =
2284 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2285
2286 if (!cache->base_p)
2287 return UNWIND_UNAVAILABLE;
2288
2289 return UNWIND_NO_REASON;
2290}
2291
06da04c6
MS
2292static void
2293i386_epilogue_frame_this_id (struct frame_info *this_frame,
2294 void **this_cache,
2295 struct frame_id *this_id)
2296{
0d6c2135
MK
2297 struct i386_frame_cache *cache =
2298 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2299
8fbca658 2300 if (!cache->base_p)
5ce0145d
PA
2301 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2302 else
2303 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2304}
2305
0d6c2135
MK
2306static struct value *
2307i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2308 void **this_cache, int regnum)
2309{
2310 /* Make sure we've initialized the cache. */
2311 i386_epilogue_frame_cache (this_frame, this_cache);
2312
2313 return i386_frame_prev_register (this_frame, this_cache, regnum);
2314}
2315
06da04c6
MS
2316static const struct frame_unwind i386_epilogue_frame_unwind =
2317{
2318 NORMAL_FRAME,
8fbca658 2319 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2320 i386_epilogue_frame_this_id,
0d6c2135 2321 i386_epilogue_frame_prev_register,
06da04c6
MS
2322 NULL,
2323 i386_epilogue_frame_sniffer
2324};
acd5c798
MK
2325\f
2326
a3fcb948
JG
2327/* Stack-based trampolines. */
2328
2329/* These trampolines are used on cross x86 targets, when taking the
2330 address of a nested function. When executing these trampolines,
2331 no stack frame is set up, so we are in a similar situation as in
2332 epilogues and i386_epilogue_frame_this_id can be re-used. */
2333
2334/* Static chain passed in register. */
2335
2336struct i386_insn i386_tramp_chain_in_reg_insns[] =
2337{
2338 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2339 { 5, { 0xb8 }, { 0xfe } },
2340
2341 /* `jmp imm32' */
2342 { 5, { 0xe9 }, { 0xff } },
2343
2344 {0}
2345};
2346
2347/* Static chain passed on stack (when regparm=3). */
2348
2349struct i386_insn i386_tramp_chain_on_stack_insns[] =
2350{
2351 /* `push imm32' */
2352 { 5, { 0x68 }, { 0xff } },
2353
2354 /* `jmp imm32' */
2355 { 5, { 0xe9 }, { 0xff } },
2356
2357 {0}
2358};
2359
2360/* Return whether PC points inside a stack trampoline. */
2361
2362static int
6df81a63 2363i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2364{
2365 gdb_byte insn;
2c02bd72 2366 const char *name;
a3fcb948
JG
2367
2368 /* A stack trampoline is detected if no name is associated
2369 to the current pc and if it points inside a trampoline
2370 sequence. */
2371
2372 find_pc_partial_function (pc, &name, NULL, NULL);
2373 if (name)
2374 return 0;
2375
2376 if (target_read_memory (pc, &insn, 1))
2377 return 0;
2378
2379 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2380 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2381 return 0;
2382
2383 return 1;
2384}
2385
2386static int
2387i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2388 struct frame_info *this_frame,
2389 void **this_cache)
a3fcb948
JG
2390{
2391 if (frame_relative_level (this_frame) == 0)
6df81a63 2392 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2393 else
2394 return 0;
2395}
2396
2397static const struct frame_unwind i386_stack_tramp_frame_unwind =
2398{
2399 NORMAL_FRAME,
2400 i386_epilogue_frame_unwind_stop_reason,
2401 i386_epilogue_frame_this_id,
0d6c2135 2402 i386_epilogue_frame_prev_register,
a3fcb948
JG
2403 NULL,
2404 i386_stack_tramp_frame_sniffer
2405};
2406\f
6710bf39
SS
2407/* Generate a bytecode expression to get the value of the saved PC. */
2408
2409static void
2410i386_gen_return_address (struct gdbarch *gdbarch,
2411 struct agent_expr *ax, struct axs_value *value,
2412 CORE_ADDR scope)
2413{
2414 /* The following sequence assumes the traditional use of the base
2415 register. */
2416 ax_reg (ax, I386_EBP_REGNUM);
2417 ax_const_l (ax, 4);
2418 ax_simple (ax, aop_add);
2419 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2420 value->kind = axs_lvalue_memory;
2421}
2422\f
a3fcb948 2423
acd5c798
MK
2424/* Signal trampolines. */
2425
2426static struct i386_frame_cache *
10458914 2427i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2428{
e17a4113
UW
2429 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2431 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2432 struct i386_frame_cache *cache;
acd5c798 2433 CORE_ADDR addr;
63c0089f 2434 gdb_byte buf[4];
acd5c798
MK
2435
2436 if (*this_cache)
9a3c8263 2437 return (struct i386_frame_cache *) *this_cache;
acd5c798 2438
fd13a04a 2439 cache = i386_alloc_frame_cache ();
acd5c798 2440
a70b8144 2441 try
a3386186 2442 {
8fbca658
PA
2443 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2445
8fbca658
PA
2446 addr = tdep->sigcontext_addr (this_frame);
2447 if (tdep->sc_reg_offset)
2448 {
2449 int i;
a3386186 2450
8fbca658
PA
2451 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2452
2453 for (i = 0; i < tdep->sc_num_regs; i++)
2454 if (tdep->sc_reg_offset[i] != -1)
2455 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2456 }
2457 else
2458 {
2459 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2460 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2461 }
2462
2463 cache->base_p = 1;
a3386186 2464 }
230d2906 2465 catch (const gdb_exception_error &ex)
7556d4a4
PA
2466 {
2467 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2468 throw;
7556d4a4 2469 }
acd5c798
MK
2470
2471 *this_cache = cache;
2472 return cache;
2473}
2474
8fbca658
PA
2475static enum unwind_stop_reason
2476i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478{
2479 struct i386_frame_cache *cache =
2480 i386_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486}
2487
acd5c798 2488static void
10458914 2489i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2490 struct frame_id *this_id)
2491{
2492 struct i386_frame_cache *cache =
10458914 2493 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2494
8fbca658 2495 if (!cache->base_p)
5ce0145d
PA
2496 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2497 else
2498 {
2499 /* See the end of i386_push_dummy_call. */
2500 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2501 }
acd5c798
MK
2502}
2503
10458914
DJ
2504static struct value *
2505i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2506 void **this_cache, int regnum)
acd5c798
MK
2507{
2508 /* Make sure we've initialized the cache. */
10458914 2509 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2510
10458914 2511 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2512}
c0d1d883 2513
10458914
DJ
2514static int
2515i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2516 struct frame_info *this_frame,
2517 void **this_prologue_cache)
acd5c798 2518{
10458914 2519 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2520
911bc6ee
MK
2521 /* We shouldn't even bother if we don't have a sigcontext_addr
2522 handler. */
2523 if (tdep->sigcontext_addr == NULL)
10458914 2524 return 0;
1c3545ae 2525
911bc6ee
MK
2526 if (tdep->sigtramp_p != NULL)
2527 {
10458914
DJ
2528 if (tdep->sigtramp_p (this_frame))
2529 return 1;
911bc6ee
MK
2530 }
2531
2532 if (tdep->sigtramp_start != 0)
2533 {
10458914 2534 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2535
2536 gdb_assert (tdep->sigtramp_end != 0);
2537 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2538 return 1;
911bc6ee 2539 }
acd5c798 2540
10458914 2541 return 0;
acd5c798 2542}
10458914
DJ
2543
2544static const struct frame_unwind i386_sigtramp_frame_unwind =
2545{
2546 SIGTRAMP_FRAME,
8fbca658 2547 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2548 i386_sigtramp_frame_this_id,
2549 i386_sigtramp_frame_prev_register,
2550 NULL,
2551 i386_sigtramp_frame_sniffer
2552};
acd5c798
MK
2553\f
2554
2555static CORE_ADDR
10458914 2556i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2557{
10458914 2558 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2559
2560 return cache->base;
2561}
2562
2563static const struct frame_base i386_frame_base =
2564{
2565 &i386_frame_unwind,
2566 i386_frame_base_address,
2567 i386_frame_base_address,
2568 i386_frame_base_address
2569};
2570
acd5c798 2571static struct frame_id
10458914 2572i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2573{
acd5c798
MK
2574 CORE_ADDR fp;
2575
10458914 2576 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2577
3e210248 2578 /* See the end of i386_push_dummy_call. */
10458914 2579 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2580}
e04e5beb
JM
2581
2582/* _Decimal128 function return values need 16-byte alignment on the
2583 stack. */
2584
2585static CORE_ADDR
2586i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2587{
2588 return sp & -(CORE_ADDR)16;
2589}
fc338970 2590\f
c906108c 2591
fc338970
MK
2592/* Figure out where the longjmp will land. Slurp the args out of the
2593 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2594 structure from which we extract the address that we will land at.
28bcfd30 2595 This address is copied into PC. This routine returns non-zero on
436675d3 2596 success. */
c906108c 2597
8201327c 2598static int
60ade65d 2599i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2600{
436675d3 2601 gdb_byte buf[4];
c906108c 2602 CORE_ADDR sp, jb_addr;
20a6ec49 2603 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2605 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2606
8201327c
MK
2607 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2608 longjmp will land. */
2609 if (jb_pc_offset == -1)
c906108c
SS
2610 return 0;
2611
436675d3 2612 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2613 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2614 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2615 return 0;
2616
e17a4113 2617 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2618 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2619 return 0;
c906108c 2620
e17a4113 2621 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2622 return 1;
2623}
fc338970 2624\f
c906108c 2625
7ccc1c74
JM
2626/* Check whether TYPE must be 16-byte-aligned when passed as a
2627 function argument. 16-byte vectors, _Decimal128 and structures or
2628 unions containing such types must be 16-byte-aligned; other
2629 arguments are 4-byte-aligned. */
2630
2631static int
2632i386_16_byte_align_p (struct type *type)
2633{
2634 type = check_typedef (type);
78134374 2635 if ((type->code () == TYPE_CODE_DECFLOAT
bd63c870 2636 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
7ccc1c74
JM
2637 && TYPE_LENGTH (type) == 16)
2638 return 1;
78134374 2639 if (type->code () == TYPE_CODE_ARRAY)
7ccc1c74 2640 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
78134374
SM
2641 if (type->code () == TYPE_CODE_STRUCT
2642 || type->code () == TYPE_CODE_UNION)
7ccc1c74
JM
2643 {
2644 int i;
1f704f76 2645 for (i = 0; i < type->num_fields (); i++)
7ccc1c74 2646 {
b6a6aa07
TV
2647 if (field_is_static (&type->field (i)))
2648 continue;
940da03e 2649 if (i386_16_byte_align_p (type->field (i).type ()))
7ccc1c74
JM
2650 return 1;
2651 }
2652 }
2653 return 0;
2654}
2655
a9b8d892
JK
2656/* Implementation for set_gdbarch_push_dummy_code. */
2657
2658static CORE_ADDR
2659i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2660 struct value **args, int nargs, struct type *value_type,
2661 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2662 struct regcache *regcache)
2663{
2664 /* Use 0xcc breakpoint - 1 byte. */
2665 *bp_addr = sp - 1;
2666 *real_pc = funaddr;
2667
2668 /* Keep the stack aligned. */
2669 return sp - 16;
2670}
2671
627c7fb8
HD
2672/* The "push_dummy_call" gdbarch method, optionally with the thiscall
2673 calling convention. */
2674
2675CORE_ADDR
2676i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2677 struct regcache *regcache, CORE_ADDR bp_addr,
2678 int nargs, struct value **args, CORE_ADDR sp,
2679 function_call_return_method return_method,
2680 CORE_ADDR struct_addr, bool thiscall)
22f8ba57 2681{
e17a4113 2682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2683 gdb_byte buf[4];
acd5c798 2684 int i;
7ccc1c74
JM
2685 int write_pass;
2686 int args_space = 0;
acd5c798 2687
4a612d6f
WT
2688 /* BND registers can be in arbitrary values at the moment of the
2689 inferior call. This can cause boundary violations that are not
2690 due to a real bug or even desired by the user. The best to be done
2691 is set the BND registers to allow access to the whole memory, INIT
2692 state, before pushing the inferior call. */
2693 i387_reset_bnd_regs (gdbarch, regcache);
2694
7ccc1c74
JM
2695 /* Determine the total space required for arguments and struct
2696 return address in a first pass (allowing for 16-byte-aligned
2697 arguments), then push arguments in a second pass. */
2698
2699 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2700 {
7ccc1c74 2701 int args_space_used = 0;
7ccc1c74 2702
cf84fa6b 2703 if (return_method == return_method_struct)
7ccc1c74
JM
2704 {
2705 if (write_pass)
2706 {
2707 /* Push value address. */
e17a4113 2708 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2709 write_memory (sp, buf, 4);
2710 args_space_used += 4;
2711 }
2712 else
2713 args_space += 4;
2714 }
2715
627c7fb8 2716 for (i = thiscall ? 1 : 0; i < nargs; i++)
7ccc1c74
JM
2717 {
2718 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2719
7ccc1c74
JM
2720 if (write_pass)
2721 {
2722 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2723 args_space_used = align_up (args_space_used, 16);
acd5c798 2724
7ccc1c74
JM
2725 write_memory (sp + args_space_used,
2726 value_contents_all (args[i]), len);
2727 /* The System V ABI says that:
acd5c798 2728
7ccc1c74
JM
2729 "An argument's size is increased, if necessary, to make it a
2730 multiple of [32-bit] words. This may require tail padding,
2731 depending on the size of the argument."
22f8ba57 2732
7ccc1c74
JM
2733 This makes sure the stack stays word-aligned. */
2734 args_space_used += align_up (len, 4);
2735 }
2736 else
2737 {
2738 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2739 args_space = align_up (args_space, 16);
7ccc1c74
JM
2740 args_space += align_up (len, 4);
2741 }
2742 }
2743
2744 if (!write_pass)
2745 {
7ccc1c74 2746 sp -= args_space;
284c5a60
MK
2747
2748 /* The original System V ABI only requires word alignment,
2749 but modern incarnations need 16-byte alignment in order
2750 to support SSE. Since wasting a few bytes here isn't
2751 harmful we unconditionally enforce 16-byte alignment. */
2752 sp &= ~0xf;
7ccc1c74 2753 }
22f8ba57
MK
2754 }
2755
acd5c798
MK
2756 /* Store return address. */
2757 sp -= 4;
e17a4113 2758 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2759 write_memory (sp, buf, 4);
2760
2761 /* Finally, update the stack pointer... */
e17a4113 2762 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2763 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2764
2765 /* ...and fake a frame pointer. */
b66f5587 2766 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2767
627c7fb8
HD
2768 /* The 'this' pointer needs to be in ECX. */
2769 if (thiscall)
2770 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2771
3e210248
AC
2772 /* MarkK wrote: This "+ 8" is all over the place:
2773 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2774 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2775 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2776 definition of the stack address of a frame. Otherwise frame id
2777 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2778 stack address *before* the function call as a frame's CFA. On
2779 the i386, when %ebp is used as a frame pointer, the offset
2780 between the contents %ebp and the CFA as defined by GCC. */
2781 return sp + 8;
22f8ba57
MK
2782}
2783
627c7fb8
HD
2784/* Implement the "push_dummy_call" gdbarch method. */
2785
2786static CORE_ADDR
2787i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2788 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2789 struct value **args, CORE_ADDR sp,
2790 function_call_return_method return_method,
2791 CORE_ADDR struct_addr)
2792{
2793 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2794 nargs, args, sp, return_method,
2795 struct_addr, false);
2796}
2797
1a309862
MK
2798/* These registers are used for returning integers (and on some
2799 targets also for returning `struct' and `union' values when their
ef9dff19 2800 size and alignment match an integer type). */
acd5c798
MK
2801#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2802#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2803
c5e656c1
MK
2804/* Read, for architecture GDBARCH, a function return value of TYPE
2805 from REGCACHE, and copy that into VALBUF. */
1a309862 2806
3a1e71e3 2807static void
c5e656c1 2808i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2809 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2810{
c5e656c1 2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2812 int len = TYPE_LENGTH (type);
63c0089f 2813 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2814
78134374 2815 if (type->code () == TYPE_CODE_FLT)
c906108c 2816 {
5716833c 2817 if (tdep->st0_regnum < 0)
1a309862 2818 {
8a3fe4f8 2819 warning (_("Cannot find floating-point return value."));
1a309862 2820 memset (valbuf, 0, len);
ef9dff19 2821 return;
1a309862
MK
2822 }
2823
c6ba6f0d
MK
2824 /* Floating-point return values can be found in %st(0). Convert
2825 its contents to the desired type. This is probably not
2826 exactly how it would happen on the target itself, but it is
2827 the best we can do. */
0b883586 2828 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2829 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2830 }
2831 else
c5aa993b 2832 {
875f8d0e
UW
2833 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2834 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2835
2836 if (len <= low_size)
00f8375e 2837 {
0b883586 2838 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2839 memcpy (valbuf, buf, len);
2840 }
d4f3574e
SS
2841 else if (len <= (low_size + high_size))
2842 {
0b883586 2843 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2844 memcpy (valbuf, buf, low_size);
0b883586 2845 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2846 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
1777feb0
MS
2850 _("Cannot extract return value of %d bytes long."),
2851 len);
c906108c
SS
2852 }
2853}
2854
c5e656c1
MK
2855/* Write, for architecture GDBARCH, a function return value of TYPE
2856 from VALBUF into REGCACHE. */
ef9dff19 2857
3a1e71e3 2858static void
c5e656c1 2859i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2860 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2861{
c5e656c1 2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2863 int len = TYPE_LENGTH (type);
2864
78134374 2865 if (type->code () == TYPE_CODE_FLT)
ef9dff19 2866 {
3d7f4f49 2867 ULONGEST fstat;
63c0089f 2868 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2869
5716833c 2870 if (tdep->st0_regnum < 0)
ef9dff19 2871 {
8a3fe4f8 2872 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2873 return;
2874 }
2875
635b0cc1 2876 /* Returning floating-point values is a bit tricky. Apart from
dda83cd7
SM
2877 storing the return value in %st(0), we have to simulate the
2878 state of the FPU at function return point. */
635b0cc1 2879
c6ba6f0d
MK
2880 /* Convert the value found in VALBUF to the extended
2881 floating-point format used by the FPU. This is probably
2882 not exactly how it would happen on the target itself, but
2883 it is the best we can do. */
3b2ca824 2884 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2885 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2886
635b0cc1 2887 /* Set the top of the floating-point register stack to 7. The
dda83cd7
SM
2888 actual value doesn't really matter, but 7 is what a normal
2889 function return would end up with if the program started out
2890 with a freshly initialized FPU. */
20a6ec49 2891 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2892 fstat |= (7 << 11);
20a6ec49 2893 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2894
635b0cc1 2895 /* Mark %st(1) through %st(7) as empty. Since we set the top of
dda83cd7
SM
2896 the floating-point register stack to 7, the appropriate value
2897 for the tag word is 0x3fff. */
20a6ec49 2898 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2899 }
2900 else
2901 {
875f8d0e
UW
2902 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2903 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2904
2905 if (len <= low_size)
4f0420fd 2906 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2907 else if (len <= (low_size + high_size))
2908 {
10eaee5f 2909 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2910 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2911 valbuf + low_size);
ef9dff19
MK
2912 }
2913 else
8e65ff28 2914 internal_error (__FILE__, __LINE__,
e2e0b3e5 2915 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2916 }
2917}
fc338970 2918\f
ef9dff19 2919
8201327c
MK
2920/* This is the variable that is set with "set struct-convention", and
2921 its legitimate values. */
2922static const char default_struct_convention[] = "default";
2923static const char pcc_struct_convention[] = "pcc";
2924static const char reg_struct_convention[] = "reg";
40478521 2925static const char *const valid_conventions[] =
8201327c
MK
2926{
2927 default_struct_convention,
2928 pcc_struct_convention,
2929 reg_struct_convention,
2930 NULL
2931};
2932static const char *struct_convention = default_struct_convention;
2933
0e4377e1
JB
2934/* Return non-zero if TYPE, which is assumed to be a structure,
2935 a union type, or an array type, should be returned in registers
2936 for architecture GDBARCH. */
c5e656c1 2937
8201327c 2938static int
c5e656c1 2939i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2940{
c5e656c1 2941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78134374 2942 enum type_code code = type->code ();
c5e656c1 2943 int len = TYPE_LENGTH (type);
8201327c 2944
0e4377e1 2945 gdb_assert (code == TYPE_CODE_STRUCT
dda83cd7
SM
2946 || code == TYPE_CODE_UNION
2947 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2948
2949 if (struct_convention == pcc_struct_convention
2950 || (struct_convention == default_struct_convention
2951 && tdep->struct_return == pcc_struct_return))
2952 return 0;
2953
9edde48e
MK
2954 /* Structures consisting of a single `float', `double' or 'long
2955 double' member are returned in %st(0). */
1f704f76 2956 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
9edde48e 2957 {
940da03e 2958 type = check_typedef (type->field (0).type ());
78134374 2959 if (type->code () == TYPE_CODE_FLT)
9edde48e
MK
2960 return (len == 4 || len == 8 || len == 12);
2961 }
2962
c5e656c1
MK
2963 return (len == 1 || len == 2 || len == 4 || len == 8);
2964}
2965
2966/* Determine, for architecture GDBARCH, how a return value of TYPE
2967 should be returned. If it is supposed to be returned in registers,
2968 and READBUF is non-zero, read the appropriate value from REGCACHE,
2969 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2970 from WRITEBUF into REGCACHE. */
2971
2972static enum return_value_convention
6a3a010b 2973i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2974 struct type *type, struct regcache *regcache,
2975 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1 2976{
78134374 2977 enum type_code code = type->code ();
c5e656c1 2978
5daa78cc
TJB
2979 if (((code == TYPE_CODE_STRUCT
2980 || code == TYPE_CODE_UNION
2981 || code == TYPE_CODE_ARRAY)
2982 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2983 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2984 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2986 /* 128-bit decimal float uses the struct return convention. */
2987 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2988 {
2989 /* The System V ABI says that:
2990
2991 "A function that returns a structure or union also sets %eax
2992 to the value of the original address of the caller's area
2993 before it returns. Thus when the caller receives control
2994 again, the address of the returned object resides in register
2995 %eax and can be used to access the object."
2996
2997 So the ABI guarantees that we can always find the return
2998 value just after the function has returned. */
2999
0e4377e1 3000 /* Note that the ABI doesn't mention functions returning arrays,
dda83cd7
SM
3001 which is something possible in certain languages such as Ada.
3002 In this case, the value is returned as if it was wrapped in
3003 a record, so the convention applied to records also applies
3004 to arrays. */
0e4377e1 3005
31db7b6c
MK
3006 if (readbuf)
3007 {
3008 ULONGEST addr;
3009
3010 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3011 read_memory (addr, readbuf, TYPE_LENGTH (type));
3012 }
3013
3014 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3015 }
c5e656c1
MK
3016
3017 /* This special case is for structures consisting of a single
9edde48e
MK
3018 `float', `double' or 'long double' member. These structures are
3019 returned in %st(0). For these structures, we call ourselves
3020 recursively, changing TYPE into the type of the first member of
3021 the structure. Since that should work for all structures that
3022 have only one member, we don't bother to check the member's type
3023 here. */
1f704f76 3024 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
c5e656c1 3025 {
940da03e 3026 type = check_typedef (type->field (0).type ());
6a3a010b 3027 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3028 readbuf, writebuf);
c5e656c1
MK
3029 }
3030
3031 if (readbuf)
3032 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3033 if (writebuf)
3034 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3035
c5e656c1 3036 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3037}
3038\f
3039
27067745
UW
3040struct type *
3041i387_ext_type (struct gdbarch *gdbarch)
3042{
3043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3044
3045 if (!tdep->i387_ext_type)
90884b2b
L
3046 {
3047 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3048 gdb_assert (tdep->i387_ext_type != NULL);
3049 }
27067745
UW
3050
3051 return tdep->i387_ext_type;
3052}
3053
1dbcd68c
WT
3054/* Construct type for pseudo BND registers. We can't use
3055 tdesc_find_type since a complement of one value has to be used
3056 to describe the upper bound. */
3057
3058static struct type *
3059i386_bnd_type (struct gdbarch *gdbarch)
3060{
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062
3063
3064 if (!tdep->i386_bnd_type)
3065 {
870f88f7 3066 struct type *t;
1dbcd68c
WT
3067 const struct builtin_type *bt = builtin_type (gdbarch);
3068
3069 /* The type we're building is described bellow: */
3070#if 0
3071 struct __bound128
3072 {
3073 void *lbound;
3074 void *ubound; /* One complement of raw ubound field. */
3075 };
3076#endif
3077
3078 t = arch_composite_type (gdbarch,
3079 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3080
3081 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3082 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3083
d0e39ea2 3084 t->set_name ("builtin_type_bound128");
1dbcd68c
WT
3085 tdep->i386_bnd_type = t;
3086 }
3087
3088 return tdep->i386_bnd_type;
3089}
3090
01f9f808
MS
3091/* Construct vector type for pseudo ZMM registers. We can't use
3092 tdesc_find_type since ZMM isn't described in target description. */
3093
3094static struct type *
3095i386_zmm_type (struct gdbarch *gdbarch)
3096{
3097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098
3099 if (!tdep->i386_zmm_type)
3100 {
3101 const struct builtin_type *bt = builtin_type (gdbarch);
3102
3103 /* The type we're building is this: */
3104#if 0
3105 union __gdb_builtin_type_vec512i
3106 {
1347d111
FW
3107 int128_t v4_int128[4];
3108 int64_t v8_int64[8];
3109 int32_t v16_int32[16];
3110 int16_t v32_int16[32];
3111 int8_t v64_int8[64];
3112 double v8_double[8];
3113 float v16_float[16];
2a67f09d 3114 bfloat16_t v32_bfloat16[32];
01f9f808
MS
3115 };
3116#endif
3117
3118 struct type *t;
3119
3120 t = arch_composite_type (gdbarch,
3121 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
2a67f09d
FW
3122 append_composite_type_field (t, "v32_bfloat16",
3123 init_vector_type (bt->builtin_bfloat16, 32));
01f9f808
MS
3124 append_composite_type_field (t, "v16_float",
3125 init_vector_type (bt->builtin_float, 16));
3126 append_composite_type_field (t, "v8_double",
3127 init_vector_type (bt->builtin_double, 8));
3128 append_composite_type_field (t, "v64_int8",
3129 init_vector_type (bt->builtin_int8, 64));
3130 append_composite_type_field (t, "v32_int16",
3131 init_vector_type (bt->builtin_int16, 32));
3132 append_composite_type_field (t, "v16_int32",
3133 init_vector_type (bt->builtin_int32, 16));
3134 append_composite_type_field (t, "v8_int64",
3135 init_vector_type (bt->builtin_int64, 8));
3136 append_composite_type_field (t, "v4_int128",
3137 init_vector_type (bt->builtin_int128, 4));
3138
2062087b 3139 t->set_is_vector (true);
d0e39ea2 3140 t->set_name ("builtin_type_vec512i");
01f9f808
MS
3141 tdep->i386_zmm_type = t;
3142 }
3143
3144 return tdep->i386_zmm_type;
3145}
3146
c131fcee
L
3147/* Construct vector type for pseudo YMM registers. We can't use
3148 tdesc_find_type since YMM isn't described in target description. */
3149
3150static struct type *
3151i386_ymm_type (struct gdbarch *gdbarch)
3152{
3153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3154
3155 if (!tdep->i386_ymm_type)
3156 {
3157 const struct builtin_type *bt = builtin_type (gdbarch);
3158
3159 /* The type we're building is this: */
3160#if 0
3161 union __gdb_builtin_type_vec256i
3162 {
dda83cd7
SM
3163 int128_t v2_int128[2];
3164 int64_t v4_int64[4];
3165 int32_t v8_int32[8];
3166 int16_t v16_int16[16];
3167 int8_t v32_int8[32];
3168 double v4_double[4];
3169 float v8_float[8];
3170 bfloat16_t v16_bfloat16[16];
c131fcee
L
3171 };
3172#endif
3173
3174 struct type *t;
3175
3176 t = arch_composite_type (gdbarch,
3177 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2a67f09d
FW
3178 append_composite_type_field (t, "v16_bfloat16",
3179 init_vector_type (bt->builtin_bfloat16, 16));
c131fcee
L
3180 append_composite_type_field (t, "v8_float",
3181 init_vector_type (bt->builtin_float, 8));
3182 append_composite_type_field (t, "v4_double",
3183 init_vector_type (bt->builtin_double, 4));
3184 append_composite_type_field (t, "v32_int8",
3185 init_vector_type (bt->builtin_int8, 32));
3186 append_composite_type_field (t, "v16_int16",
3187 init_vector_type (bt->builtin_int16, 16));
3188 append_composite_type_field (t, "v8_int32",
3189 init_vector_type (bt->builtin_int32, 8));
3190 append_composite_type_field (t, "v4_int64",
3191 init_vector_type (bt->builtin_int64, 4));
3192 append_composite_type_field (t, "v2_int128",
3193 init_vector_type (bt->builtin_int128, 2));
3194
2062087b 3195 t->set_is_vector (true);
d0e39ea2 3196 t->set_name ("builtin_type_vec256i");
c131fcee
L
3197 tdep->i386_ymm_type = t;
3198 }
3199
3200 return tdep->i386_ymm_type;
3201}
3202
794ac428 3203/* Construct vector type for MMX registers. */
90884b2b 3204static struct type *
794ac428
UW
3205i386_mmx_type (struct gdbarch *gdbarch)
3206{
3207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3208
3209 if (!tdep->i386_mmx_type)
3210 {
df4df182
UW
3211 const struct builtin_type *bt = builtin_type (gdbarch);
3212
794ac428
UW
3213 /* The type we're building is this: */
3214#if 0
3215 union __gdb_builtin_type_vec64i
3216 {
dda83cd7
SM
3217 int64_t uint64;
3218 int32_t v2_int32[2];
3219 int16_t v4_int16[4];
3220 int8_t v8_int8[8];
794ac428
UW
3221 };
3222#endif
3223
3224 struct type *t;
3225
e9bb382b
UW
3226 t = arch_composite_type (gdbarch,
3227 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3228
3229 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3230 append_composite_type_field (t, "v2_int32",
df4df182 3231 init_vector_type (bt->builtin_int32, 2));
794ac428 3232 append_composite_type_field (t, "v4_int16",
df4df182 3233 init_vector_type (bt->builtin_int16, 4));
794ac428 3234 append_composite_type_field (t, "v8_int8",
df4df182 3235 init_vector_type (bt->builtin_int8, 8));
794ac428 3236
2062087b 3237 t->set_is_vector (true);
d0e39ea2 3238 t->set_name ("builtin_type_vec64i");
794ac428
UW
3239 tdep->i386_mmx_type = t;
3240 }
3241
3242 return tdep->i386_mmx_type;
3243}
3244
d7a0d72c 3245/* Return the GDB type object for the "standard" data type of data in
1777feb0 3246 register REGNUM. */
d7a0d72c 3247
fff4548b 3248struct type *
90884b2b 3249i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3250{
1dbcd68c
WT
3251 if (i386_bnd_regnum_p (gdbarch, regnum))
3252 return i386_bnd_type (gdbarch);
1ba53b71
L
3253 if (i386_mmx_regnum_p (gdbarch, regnum))
3254 return i386_mmx_type (gdbarch);
c131fcee
L
3255 else if (i386_ymm_regnum_p (gdbarch, regnum))
3256 return i386_ymm_type (gdbarch);
01f9f808
MS
3257 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3258 return i386_ymm_type (gdbarch);
3259 else if (i386_zmm_regnum_p (gdbarch, regnum))
3260 return i386_zmm_type (gdbarch);
1ba53b71
L
3261 else
3262 {
3263 const struct builtin_type *bt = builtin_type (gdbarch);
3264 if (i386_byte_regnum_p (gdbarch, regnum))
3265 return bt->builtin_int8;
3266 else if (i386_word_regnum_p (gdbarch, regnum))
3267 return bt->builtin_int16;
3268 else if (i386_dword_regnum_p (gdbarch, regnum))
3269 return bt->builtin_int32;
01f9f808
MS
3270 else if (i386_k_regnum_p (gdbarch, regnum))
3271 return bt->builtin_int64;
1ba53b71
L
3272 }
3273
3274 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3275}
3276
28fc6740 3277/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3278 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3279
3280static int
849d0ba8 3281i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3282{
ac7936df 3283 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3284 int mmxreg, fpreg;
28fc6740
AC
3285 ULONGEST fstat;
3286 int tos;
c86c27af 3287
5716833c 3288 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3289 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3290 tos = (fstat >> 11) & 0x7;
5716833c
MK
3291 fpreg = (mmxreg + tos) % 8;
3292
20a6ec49 3293 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3294}
3295
3543a589
TT
3296/* A helper function for us by i386_pseudo_register_read_value and
3297 amd64_pseudo_register_read_value. It does all the work but reads
3298 the data into an already-allocated value. */
3299
3300void
3301i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3302 readable_regcache *regcache,
3543a589
TT
3303 int regnum,
3304 struct value *result_value)
28fc6740 3305{
975c21ab 3306 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3307 enum register_status status;
3543a589 3308 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3309
5716833c 3310 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3311 {
c86c27af
MK
3312 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3313
28fc6740 3314 /* Extract (always little endian). */
03f50fc8 3315 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3316 if (status != REG_VALID)
3543a589
TT
3317 mark_value_bytes_unavailable (result_value, 0,
3318 TYPE_LENGTH (value_type (result_value)));
3319 else
3320 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3321 }
3322 else
1ba53b71
L
3323 {
3324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3325 if (i386_bnd_regnum_p (gdbarch, regnum))
3326 {
3327 regnum -= tdep->bnd0_regnum;
1ba53b71 3328
1dbcd68c 3329 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3330 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3331 raw_buf);
1dbcd68c
WT
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 16);
3334 else
3335 {
3336 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3337 LONGEST upper, lower;
3338 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3339
3340 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3341 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3342 upper = ~upper;
3343
3344 memcpy (buf, &lower, size);
3345 memcpy (buf + size, &upper, size);
3346 }
3347 }
01f9f808
MS
3348 else if (i386_k_regnum_p (gdbarch, regnum))
3349 {
3350 regnum -= tdep->k0_regnum;
3351
3352 /* Extract (always little endian). */
03f50fc8 3353 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3354 if (status != REG_VALID)
3355 mark_value_bytes_unavailable (result_value, 0, 8);
3356 else
3357 memcpy (buf, raw_buf, 8);
3358 }
3359 else if (i386_zmm_regnum_p (gdbarch, regnum))
3360 {
3361 regnum -= tdep->zmm0_regnum;
3362
3363 if (regnum < num_lower_zmm_regs)
3364 {
3365 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3366 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3367 raw_buf);
01f9f808
MS
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3374 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3375 raw_buf);
01f9f808
MS
3376 if (status != REG_VALID)
3377 mark_value_bytes_unavailable (result_value, 16, 16);
3378 else
3379 memcpy (buf + 16, raw_buf, 16);
3380 }
3381 else
3382 {
3383 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3384 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3385 - num_lower_zmm_regs,
3386 raw_buf);
01f9f808
MS
3387 if (status != REG_VALID)
3388 mark_value_bytes_unavailable (result_value, 0, 16);
3389 else
3390 memcpy (buf, raw_buf, 16);
3391
3392 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3393 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3394 - num_lower_zmm_regs,
3395 raw_buf);
01f9f808
MS
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 16);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401
3402 /* Read upper 256bits. */
03f50fc8
YQ
3403 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3404 raw_buf);
01f9f808
MS
3405 if (status != REG_VALID)
3406 mark_value_bytes_unavailable (result_value, 32, 32);
3407 else
3408 memcpy (buf + 32, raw_buf, 32);
3409 }
1dbcd68c 3410 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3411 {
3412 regnum -= tdep->ymm0_regnum;
3413
1777feb0 3414 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3415 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3416 raw_buf);
05d1431c 3417 if (status != REG_VALID)
3543a589
TT
3418 mark_value_bytes_unavailable (result_value, 0, 16);
3419 else
3420 memcpy (buf, raw_buf, 16);
c131fcee 3421 /* Read upper 128bits. */
03f50fc8
YQ
3422 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3423 raw_buf);
05d1431c 3424 if (status != REG_VALID)
3543a589
TT
3425 mark_value_bytes_unavailable (result_value, 16, 32);
3426 else
3427 memcpy (buf + 16, raw_buf, 16);
c131fcee 3428 }
01f9f808
MS
3429 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3430 {
3431 regnum -= tdep->ymm16_regnum;
3432 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3433 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3434 raw_buf);
01f9f808
MS
3435 if (status != REG_VALID)
3436 mark_value_bytes_unavailable (result_value, 0, 16);
3437 else
3438 memcpy (buf, raw_buf, 16);
3439 /* Read upper 128bits. */
03f50fc8
YQ
3440 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3441 raw_buf);
01f9f808
MS
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
c131fcee 3447 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3448 {
3449 int gpnum = regnum - tdep->ax_regnum;
3450
3451 /* Extract (always little endian). */
03f50fc8 3452 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3453 if (status != REG_VALID)
3543a589
TT
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else
3457 memcpy (buf, raw_buf, 2);
1ba53b71
L
3458 }
3459 else if (i386_byte_regnum_p (gdbarch, regnum))
3460 {
1ba53b71
L
3461 int gpnum = regnum - tdep->al_regnum;
3462
3463 /* Extract (always little endian). We read both lower and
3464 upper registers. */
03f50fc8 3465 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3466 if (status != REG_VALID)
3543a589
TT
3467 mark_value_bytes_unavailable (result_value, 0,
3468 TYPE_LENGTH (value_type (result_value)));
3469 else if (gpnum >= 4)
1ba53b71
L
3470 memcpy (buf, raw_buf + 1, 1);
3471 else
3472 memcpy (buf, raw_buf, 1);
3473 }
3474 else
3475 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3476 }
3543a589
TT
3477}
3478
3479static struct value *
3480i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3481 readable_regcache *regcache,
3543a589
TT
3482 int regnum)
3483{
3484 struct value *result;
3485
3486 result = allocate_value (register_type (gdbarch, regnum));
3487 VALUE_LVAL (result) = lval_register;
3488 VALUE_REGNUM (result) = regnum;
3489
3490 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3491
3543a589 3492 return result;
28fc6740
AC
3493}
3494
1ba53b71 3495void
28fc6740 3496i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3497 int regnum, const gdb_byte *buf)
28fc6740 3498{
975c21ab 3499 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3500
5716833c 3501 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3502 {
c86c27af
MK
3503 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3504
28fc6740 3505 /* Read ... */
0b883586 3506 regcache->raw_read (fpnum, raw_buf);
28fc6740 3507 /* ... Modify ... (always little endian). */
1ba53b71 3508 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3509 /* ... Write. */
10eaee5f 3510 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3511 }
3512 else
1ba53b71
L
3513 {
3514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3515
1dbcd68c
WT
3516 if (i386_bnd_regnum_p (gdbarch, regnum))
3517 {
3518 ULONGEST upper, lower;
3519 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3520 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3521
3522 /* New values from input value. */
3523 regnum -= tdep->bnd0_regnum;
3524 lower = extract_unsigned_integer (buf, size, byte_order);
3525 upper = extract_unsigned_integer (buf + size, size, byte_order);
3526
3527 /* Fetching register buffer. */
0b883586
SM
3528 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3529 raw_buf);
1dbcd68c
WT
3530
3531 upper = ~upper;
3532
3533 /* Set register bits. */
3534 memcpy (raw_buf, &lower, 8);
3535 memcpy (raw_buf + 8, &upper, 8);
3536
10eaee5f 3537 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3538 }
01f9f808
MS
3539 else if (i386_k_regnum_p (gdbarch, regnum))
3540 {
3541 regnum -= tdep->k0_regnum;
3542
10eaee5f 3543 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3544 }
3545 else if (i386_zmm_regnum_p (gdbarch, regnum))
3546 {
3547 regnum -= tdep->zmm0_regnum;
3548
3549 if (regnum < num_lower_zmm_regs)
3550 {
3551 /* Write lower 128bits. */
10eaee5f 3552 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3553 /* Write upper 128bits. */
10eaee5f 3554 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3555 }
3556 else
3557 {
3558 /* Write lower 128bits. */
10eaee5f
SM
3559 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3560 - num_lower_zmm_regs, buf);
01f9f808 3561 /* Write upper 128bits. */
10eaee5f
SM
3562 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3564 }
3565 /* Write upper 256bits. */
10eaee5f 3566 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3567 }
1dbcd68c 3568 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3569 {
3570 regnum -= tdep->ymm0_regnum;
3571
3572 /* ... Write lower 128bits. */
10eaee5f 3573 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3574 /* ... Write upper 128bits. */
10eaee5f 3575 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3576 }
01f9f808
MS
3577 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3578 {
3579 regnum -= tdep->ymm16_regnum;
3580
3581 /* ... Write lower 128bits. */
10eaee5f 3582 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3583 /* ... Write upper 128bits. */
10eaee5f 3584 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3585 }
c131fcee 3586 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3587 {
3588 int gpnum = regnum - tdep->ax_regnum;
3589
3590 /* Read ... */
0b883586 3591 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3592 /* ... Modify ... (always little endian). */
3593 memcpy (raw_buf, buf, 2);
3594 /* ... Write. */
10eaee5f 3595 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3596 }
3597 else if (i386_byte_regnum_p (gdbarch, regnum))
3598 {
1ba53b71
L
3599 int gpnum = regnum - tdep->al_regnum;
3600
3601 /* Read ... We read both lower and upper registers. */
0b883586 3602 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3603 /* ... Modify ... (always little endian). */
3604 if (gpnum >= 4)
3605 memcpy (raw_buf + 1, buf, 1);
3606 else
3607 memcpy (raw_buf, buf, 1);
3608 /* ... Write. */
10eaee5f 3609 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3610 }
3611 else
3612 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3613 }
28fc6740 3614}
62e5fd57
MK
3615
3616/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3617
3618int
3619i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3620 struct agent_expr *ax, int regnum)
3621{
3622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3623
3624 if (i386_mmx_regnum_p (gdbarch, regnum))
3625 {
3626 /* MMX to FPU register mapping depends on current TOS. Let's just
3627 not care and collect everything... */
3628 int i;
3629
3630 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3631 for (i = 0; i < 8; i++)
3632 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3633 return 0;
3634 }
3635 else if (i386_bnd_regnum_p (gdbarch, regnum))
3636 {
3637 regnum -= tdep->bnd0_regnum;
3638 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3639 return 0;
3640 }
3641 else if (i386_k_regnum_p (gdbarch, regnum))
3642 {
3643 regnum -= tdep->k0_regnum;
3644 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3645 return 0;
3646 }
3647 else if (i386_zmm_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->zmm0_regnum;
3650 if (regnum < num_lower_zmm_regs)
3651 {
3652 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3653 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3654 }
3655 else
3656 {
3657 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3658 - num_lower_zmm_regs);
3659 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3660 - num_lower_zmm_regs);
3661 }
3662 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3663 return 0;
3664 }
3665 else if (i386_ymm_regnum_p (gdbarch, regnum))
3666 {
3667 regnum -= tdep->ymm0_regnum;
3668 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3669 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3670 return 0;
3671 }
3672 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3673 {
3674 regnum -= tdep->ymm16_regnum;
3675 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3676 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3677 return 0;
3678 }
3679 else if (i386_word_regnum_p (gdbarch, regnum))
3680 {
3681 int gpnum = regnum - tdep->ax_regnum;
3682
3683 ax_reg_mask (ax, gpnum);
3684 return 0;
3685 }
3686 else if (i386_byte_regnum_p (gdbarch, regnum))
3687 {
3688 int gpnum = regnum - tdep->al_regnum;
3689
3690 ax_reg_mask (ax, gpnum % 4);
3691 return 0;
3692 }
3693 else
3694 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3695 return 1;
3696}
ff2e87ac
AC
3697\f
3698
ff2e87ac
AC
3699/* Return the register number of the register allocated by GCC after
3700 REGNUM, or -1 if there is no such register. */
3701
3702static int
3703i386_next_regnum (int regnum)
3704{
3705 /* GCC allocates the registers in the order:
3706
3707 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3708
3709 Since storing a variable in %esp doesn't make any sense we return
3710 -1 for %ebp and for %esp itself. */
3711 static int next_regnum[] =
3712 {
3713 I386_EDX_REGNUM, /* Slot for %eax. */
3714 I386_EBX_REGNUM, /* Slot for %ecx. */
3715 I386_ECX_REGNUM, /* Slot for %edx. */
3716 I386_ESI_REGNUM, /* Slot for %ebx. */
3717 -1, -1, /* Slots for %esp and %ebp. */
3718 I386_EDI_REGNUM, /* Slot for %esi. */
3719 I386_EBP_REGNUM /* Slot for %edi. */
3720 };
3721
de5b9bb9 3722 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3723 return next_regnum[regnum];
28fc6740 3724
ff2e87ac
AC
3725 return -1;
3726}
3727
3728/* Return nonzero if a value of type TYPE stored in register REGNUM
3729 needs any special handling. */
d7a0d72c 3730
3a1e71e3 3731static int
1777feb0
MS
3732i386_convert_register_p (struct gdbarch *gdbarch,
3733 int regnum, struct type *type)
d7a0d72c 3734{
de5b9bb9
MK
3735 int len = TYPE_LENGTH (type);
3736
ff2e87ac
AC
3737 /* Values may be spread across multiple registers. Most debugging
3738 formats aren't expressive enough to specify the locations, so
3739 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3740 have a length that is a multiple of the word size, since GCC
3741 doesn't seem to put any other types into registers. */
3742 if (len > 4 && len % 4 == 0)
3743 {
3744 int last_regnum = regnum;
3745
3746 while (len > 4)
3747 {
3748 last_regnum = i386_next_regnum (last_regnum);
3749 len -= 4;
3750 }
3751
3752 if (last_regnum != -1)
3753 return 1;
3754 }
ff2e87ac 3755
0abe36f5 3756 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3757}
3758
ff2e87ac
AC
3759/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3760 return its contents in TO. */
ac27f131 3761
8dccd430 3762static int
ff2e87ac 3763i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3764 struct type *type, gdb_byte *to,
3765 int *optimizedp, int *unavailablep)
ac27f131 3766{
20a6ec49 3767 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3768 int len = TYPE_LENGTH (type);
de5b9bb9 3769
20a6ec49 3770 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3771 return i387_register_to_value (frame, regnum, type, to,
3772 optimizedp, unavailablep);
ff2e87ac 3773
fd35795f 3774 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3775
3776 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3777
de5b9bb9
MK
3778 while (len > 0)
3779 {
3780 gdb_assert (regnum != -1);
20a6ec49 3781 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3782
8dccd430 3783 if (!get_frame_register_bytes (frame, regnum, 0,
bdec2917
LM
3784 gdb::make_array_view (to,
3785 register_size (gdbarch,
3786 regnum)),
3787 optimizedp, unavailablep))
8dccd430
PA
3788 return 0;
3789
de5b9bb9
MK
3790 regnum = i386_next_regnum (regnum);
3791 len -= 4;
42835c2b 3792 to += 4;
de5b9bb9 3793 }
8dccd430
PA
3794
3795 *optimizedp = *unavailablep = 0;
3796 return 1;
ac27f131
MK
3797}
3798
ff2e87ac
AC
3799/* Write the contents FROM of a value of type TYPE into register
3800 REGNUM in frame FRAME. */
ac27f131 3801
3a1e71e3 3802static void
ff2e87ac 3803i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3804 struct type *type, const gdb_byte *from)
ac27f131 3805{
de5b9bb9 3806 int len = TYPE_LENGTH (type);
de5b9bb9 3807
20a6ec49 3808 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3809 {
d532c08f
MK
3810 i387_value_to_register (frame, regnum, type, from);
3811 return;
3812 }
3d261580 3813
fd35795f 3814 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3815
3816 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3817
de5b9bb9
MK
3818 while (len > 0)
3819 {
3820 gdb_assert (regnum != -1);
875f8d0e 3821 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3822
42835c2b 3823 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3824 regnum = i386_next_regnum (regnum);
3825 len -= 4;
42835c2b 3826 from += 4;
de5b9bb9 3827 }
ac27f131 3828}
ff2e87ac 3829\f
7fdafb5a
MK
3830/* Supply register REGNUM from the buffer specified by GREGS and LEN
3831 in the general-purpose register set REGSET to register cache
3832 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3833
20187ed5 3834void
473f17b0
MK
3835i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3836 int regnum, const void *gregs, size_t len)
3837{
ac7936df 3838 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3839 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3840 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3841 int i;
3842
1528345d 3843 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3844
3845 for (i = 0; i < tdep->gregset_num_regs; i++)
3846 {
3847 if ((regnum == i || regnum == -1)
3848 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3849 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3850 }
3851}
3852
7fdafb5a
MK
3853/* Collect register REGNUM from the register cache REGCACHE and store
3854 it in the buffer specified by GREGS and LEN as described by the
3855 general-purpose register set REGSET. If REGNUM is -1, do this for
3856 all registers in REGSET. */
3857
ecc37a5a 3858static void
7fdafb5a
MK
3859i386_collect_gregset (const struct regset *regset,
3860 const struct regcache *regcache,
3861 int regnum, void *gregs, size_t len)
3862{
ac7936df 3863 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3864 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3865 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3866 int i;
3867
1528345d 3868 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3869
3870 for (i = 0; i < tdep->gregset_num_regs; i++)
3871 {
3872 if ((regnum == i || regnum == -1)
3873 && tdep->gregset_reg_offset[i] != -1)
34a79281 3874 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3875 }
3876}
3877
3878/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3879 in the floating-point register set REGSET to register cache
3880 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3881
3882static void
3883i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3884 int regnum, const void *fpregs, size_t len)
3885{
ac7936df 3886 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3887 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3888
66a72d25
MK
3889 if (len == I387_SIZEOF_FXSAVE)
3890 {
3891 i387_supply_fxsave (regcache, regnum, fpregs);
3892 return;
3893 }
3894
1528345d 3895 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3896 i387_supply_fsave (regcache, regnum, fpregs);
3897}
8446b36a 3898
2f305df1
MK
3899/* Collect register REGNUM from the register cache REGCACHE and store
3900 it in the buffer specified by FPREGS and LEN as described by the
3901 floating-point register set REGSET. If REGNUM is -1, do this for
3902 all registers in REGSET. */
7fdafb5a
MK
3903
3904static void
3905i386_collect_fpregset (const struct regset *regset,
3906 const struct regcache *regcache,
3907 int regnum, void *fpregs, size_t len)
3908{
ac7936df 3909 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3910 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3911
3912 if (len == I387_SIZEOF_FXSAVE)
3913 {
3914 i387_collect_fxsave (regcache, regnum, fpregs);
3915 return;
3916 }
3917
1528345d 3918 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3919 i387_collect_fsave (regcache, regnum, fpregs);
3920}
3921
ecc37a5a
AA
3922/* Register set definitions. */
3923
3924const struct regset i386_gregset =
3925 {
3926 NULL, i386_supply_gregset, i386_collect_gregset
3927 };
3928
8f0435f7 3929const struct regset i386_fpregset =
ecc37a5a
AA
3930 {
3931 NULL, i386_supply_fpregset, i386_collect_fpregset
3932 };
3933
490496c3 3934/* Default iterator over core file register note sections. */
8446b36a 3935
490496c3
AA
3936void
3937i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3938 iterate_over_regset_sections_cb *cb,
3939 void *cb_data,
3940 const struct regcache *regcache)
8446b36a
MK
3941{
3942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3943
a616bb94
AH
3944 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3945 cb_data);
490496c3 3946 if (tdep->sizeof_fpregset)
a616bb94
AH
3947 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3948 NULL, cb_data);
8446b36a 3949}
473f17b0 3950\f
fc338970 3951
fc338970 3952/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3953
3954CORE_ADDR
e17a4113
UW
3955i386_pe_skip_trampoline_code (struct frame_info *frame,
3956 CORE_ADDR pc, char *name)
c906108c 3957{
e17a4113
UW
3958 struct gdbarch *gdbarch = get_frame_arch (frame);
3959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3960
3961 /* jmp *(dest) */
3962 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3963 {
e17a4113
UW
3964 unsigned long indirect =
3965 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3966 struct minimal_symbol *indsym =
7cbd4a93 3967 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3968 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3969
c5aa993b 3970 if (symname)
c906108c 3971 {
61012eef
GB
3972 if (startswith (symname, "__imp_")
3973 || startswith (symname, "_imp_"))
e17a4113
UW
3974 return name ? 1 :
3975 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3976 }
3977 }
fc338970 3978 return 0; /* Not a trampoline. */
c906108c 3979}
fc338970
MK
3980\f
3981
10458914
DJ
3982/* Return whether the THIS_FRAME corresponds to a sigtramp
3983 routine. */
8201327c 3984
4bd207ef 3985int
10458914 3986i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3987{
10458914 3988 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3989 const char *name;
911bc6ee
MK
3990
3991 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3992 return (name && strcmp ("_sigtramp", name) == 0);
3993}
3994\f
3995
fc338970
MK
3996/* We have two flavours of disassembly. The machinery on this page
3997 deals with switching between those. */
c906108c
SS
3998
3999static int
a89aa300 4000i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4001{
5e3397bb
MK
4002 gdb_assert (disassembly_flavor == att_flavor
4003 || disassembly_flavor == intel_flavor);
4004
f995bbe8 4005 info->disassembler_options = disassembly_flavor;
5e3397bb 4006
6394c606 4007 return default_print_insn (pc, info);
7a292a7a 4008}
fc338970 4009\f
3ce1502b 4010
8201327c
MK
4011/* There are a few i386 architecture variants that differ only
4012 slightly from the generic i386 target. For now, we don't give them
4013 their own source file, but include them here. As a consequence,
4014 they'll always be included. */
3ce1502b 4015
8201327c 4016/* System V Release 4 (SVR4). */
3ce1502b 4017
10458914
DJ
4018/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4019 routine. */
911bc6ee 4020
8201327c 4021static int
10458914 4022i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4023{
10458914 4024 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4025 const char *name;
911bc6ee 4026
05b4bd79 4027 /* The origin of these symbols is currently unknown. */
911bc6ee 4028 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4029 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4030 || strcmp ("sigvechandler", name) == 0));
4031}
d2a7c97a 4032
10458914
DJ
4033/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4034 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4035
3a1e71e3 4036static CORE_ADDR
10458914 4037i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4038{
e17a4113
UW
4039 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4040 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4041 gdb_byte buf[4];
acd5c798 4042 CORE_ADDR sp;
3ce1502b 4043
10458914 4044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4045 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4046
e17a4113 4047 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4048}
55aa24fb
SDJ
4049
4050\f
4051
4052/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4053 gdbarch.h. */
4054
4055int
4056i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4057{
4058 return (*s == '$' /* Literal number. */
4059 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4060 || (*s == '(' && s[1] == '%') /* Register indirection. */
4061 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4062}
4063
5acfdbae
SDJ
4064/* Helper function for i386_stap_parse_special_token.
4065
4066 This function parses operands of the form `-8+3+1(%rbp)', which
4067 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4068
af2d9bee 4069 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4070 otherwise. */
4071
af2d9bee 4072static bool
5acfdbae
SDJ
4073i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4074 struct stap_parse_info *p)
4075{
4076 const char *s = p->arg;
4077
4078 if (isdigit (*s) || *s == '-' || *s == '+')
4079 {
af2d9bee 4080 bool got_minus[3];
5acfdbae
SDJ
4081 int i;
4082 long displacements[3];
4083 const char *start;
4084 char *regname;
4085 int len;
4086 struct stoken str;
4087 char *endp;
4088
af2d9bee 4089 got_minus[0] = false;
5acfdbae
SDJ
4090 if (*s == '+')
4091 ++s;
4092 else if (*s == '-')
4093 {
4094 ++s;
af2d9bee 4095 got_minus[0] = true;
5acfdbae
SDJ
4096 }
4097
d7b30f67 4098 if (!isdigit ((unsigned char) *s))
af2d9bee 4099 return false;
d7b30f67 4100
5acfdbae
SDJ
4101 displacements[0] = strtol (s, &endp, 10);
4102 s = endp;
4103
4104 if (*s != '+' && *s != '-')
4105 {
4106 /* We are not dealing with a triplet. */
af2d9bee 4107 return false;
5acfdbae
SDJ
4108 }
4109
af2d9bee 4110 got_minus[1] = false;
5acfdbae
SDJ
4111 if (*s == '+')
4112 ++s;
4113 else
4114 {
4115 ++s;
af2d9bee 4116 got_minus[1] = true;
5acfdbae
SDJ
4117 }
4118
d7b30f67 4119 if (!isdigit ((unsigned char) *s))
af2d9bee 4120 return false;
d7b30f67 4121
5acfdbae
SDJ
4122 displacements[1] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
af2d9bee 4128 return false;
5acfdbae
SDJ
4129 }
4130
af2d9bee 4131 got_minus[2] = false;
5acfdbae
SDJ
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
af2d9bee 4137 got_minus[2] = true;
5acfdbae
SDJ
4138 }
4139
d7b30f67 4140 if (!isdigit ((unsigned char) *s))
af2d9bee 4141 return false;
d7b30f67 4142
5acfdbae
SDJ
4143 displacements[2] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '(' || s[1] != '%')
af2d9bee 4147 return false;
5acfdbae
SDJ
4148
4149 s += 2;
4150 start = s;
4151
4152 while (isalnum (*s))
4153 ++s;
4154
4155 if (*s++ != ')')
af2d9bee 4156 return false;
5acfdbae 4157
d7b30f67 4158 len = s - start - 1;
224c3ddb 4159 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4160
4161 strncpy (regname, start, len);
4162 regname[len] = '\0';
4163
4164 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4165 error (_("Invalid register name `%s' on expression `%s'."),
4166 regname, p->saved_arg);
4167
4168 for (i = 0; i < 3; i++)
4169 {
410a0ff2
SDJ
4170 write_exp_elt_opcode (&p->pstate, OP_LONG);
4171 write_exp_elt_type
4172 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4173 write_exp_elt_longcst (&p->pstate, displacements[i]);
4174 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4175 if (got_minus[i])
410a0ff2 4176 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4177 }
4178
410a0ff2 4179 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4180 str.ptr = regname;
4181 str.length = len;
410a0ff2
SDJ
4182 write_exp_string (&p->pstate, str);
4183 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4184
410a0ff2
SDJ
4185 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4186 write_exp_elt_type (&p->pstate,
4187 builtin_type (gdbarch)->builtin_data_ptr);
4188 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4189
410a0ff2
SDJ
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4192 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4193
410a0ff2
SDJ
4194 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4195 write_exp_elt_type (&p->pstate,
4196 lookup_pointer_type (p->arg_type));
4197 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4198
410a0ff2 4199 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4200
4201 p->arg = s;
4202
af2d9bee 4203 return true;
5acfdbae
SDJ
4204 }
4205
af2d9bee 4206 return false;
5acfdbae
SDJ
4207}
4208
4209/* Helper function for i386_stap_parse_special_token.
4210
4211 This function parses operands of the form `register base +
4212 (register index * size) + offset', as represented in
4213 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4214
af2d9bee 4215 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4216 otherwise. */
4217
af2d9bee 4218static bool
5acfdbae
SDJ
4219i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4220 struct stap_parse_info *p)
4221{
4222 const char *s = p->arg;
4223
4224 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4225 {
af2d9bee 4226 bool offset_minus = false;
5acfdbae 4227 long offset = 0;
af2d9bee 4228 bool size_minus = false;
5acfdbae
SDJ
4229 long size = 0;
4230 const char *start;
4231 char *base;
4232 int len_base;
4233 char *index;
4234 int len_index;
4235 struct stoken base_token, index_token;
4236
4237 if (*s == '+')
4238 ++s;
4239 else if (*s == '-')
4240 {
4241 ++s;
af2d9bee 4242 offset_minus = true;
5acfdbae
SDJ
4243 }
4244
4245 if (offset_minus && !isdigit (*s))
af2d9bee 4246 return false;
5acfdbae
SDJ
4247
4248 if (isdigit (*s))
4249 {
4250 char *endp;
4251
4252 offset = strtol (s, &endp, 10);
4253 s = endp;
4254 }
4255
4256 if (*s != '(' || s[1] != '%')
af2d9bee 4257 return false;
5acfdbae
SDJ
4258
4259 s += 2;
4260 start = s;
4261
4262 while (isalnum (*s))
4263 ++s;
4264
4265 if (*s != ',' || s[1] != '%')
af2d9bee 4266 return false;
5acfdbae
SDJ
4267
4268 len_base = s - start;
224c3ddb 4269 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4270 strncpy (base, start, len_base);
4271 base[len_base] = '\0';
4272
4273 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4274 error (_("Invalid register name `%s' on expression `%s'."),
4275 base, p->saved_arg);
4276
4277 s += 2;
4278 start = s;
4279
4280 while (isalnum (*s))
4281 ++s;
4282
4283 len_index = s - start;
224c3ddb 4284 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4285 strncpy (index, start, len_index);
4286 index[len_index] = '\0';
4287
4288 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4289 error (_("Invalid register name `%s' on expression `%s'."),
4290 index, p->saved_arg);
4291
4292 if (*s != ',' && *s != ')')
af2d9bee 4293 return false;
5acfdbae
SDJ
4294
4295 if (*s == ',')
4296 {
4297 char *endp;
4298
4299 ++s;
4300 if (*s == '+')
4301 ++s;
4302 else if (*s == '-')
4303 {
4304 ++s;
af2d9bee 4305 size_minus = true;
5acfdbae
SDJ
4306 }
4307
4308 size = strtol (s, &endp, 10);
4309 s = endp;
4310
4311 if (*s != ')')
af2d9bee 4312 return false;
5acfdbae
SDJ
4313 }
4314
4315 ++s;
4316
4317 if (offset)
4318 {
410a0ff2
SDJ
4319 write_exp_elt_opcode (&p->pstate, OP_LONG);
4320 write_exp_elt_type (&p->pstate,
4321 builtin_type (gdbarch)->builtin_long);
4322 write_exp_elt_longcst (&p->pstate, offset);
4323 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4324 if (offset_minus)
410a0ff2 4325 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4326 }
4327
410a0ff2 4328 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4329 base_token.ptr = base;
4330 base_token.length = len_base;
410a0ff2
SDJ
4331 write_exp_string (&p->pstate, base_token);
4332 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4333
4334 if (offset)
410a0ff2 4335 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4336
410a0ff2 4337 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4338 index_token.ptr = index;
4339 index_token.length = len_index;
410a0ff2
SDJ
4340 write_exp_string (&p->pstate, index_token);
4341 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4342
4343 if (size)
4344 {
410a0ff2
SDJ
4345 write_exp_elt_opcode (&p->pstate, OP_LONG);
4346 write_exp_elt_type (&p->pstate,
4347 builtin_type (gdbarch)->builtin_long);
4348 write_exp_elt_longcst (&p->pstate, size);
4349 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4350 if (size_minus)
410a0ff2
SDJ
4351 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4352 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4353 }
4354
410a0ff2 4355 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4356
410a0ff2
SDJ
4357 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4358 write_exp_elt_type (&p->pstate,
4359 lookup_pointer_type (p->arg_type));
4360 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4361
410a0ff2 4362 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4363
4364 p->arg = s;
4365
af2d9bee 4366 return true;
5acfdbae
SDJ
4367 }
4368
af2d9bee 4369 return false;
5acfdbae
SDJ
4370}
4371
55aa24fb
SDJ
4372/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4373 gdbarch.h. */
4374
4375int
4376i386_stap_parse_special_token (struct gdbarch *gdbarch,
4377 struct stap_parse_info *p)
4378{
55aa24fb
SDJ
4379 /* In order to parse special tokens, we use a state-machine that go
4380 through every known token and try to get a match. */
4381 enum
4382 {
4383 TRIPLET,
4384 THREE_ARG_DISPLACEMENT,
4385 DONE
570dc176
TT
4386 };
4387 int current_state;
55aa24fb
SDJ
4388
4389 current_state = TRIPLET;
4390
4391 /* The special tokens to be parsed here are:
4392
4393 - `register base + (register index * size) + offset', as represented
4394 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4395
4396 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4397 `*(-8 + 3 - 1 + (void *) $eax)'. */
4398
4399 while (current_state != DONE)
4400 {
55aa24fb
SDJ
4401 switch (current_state)
4402 {
4403 case TRIPLET:
5acfdbae
SDJ
4404 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4405 return 1;
4406 break;
4407
55aa24fb 4408 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4409 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4410 return 1;
4411 break;
55aa24fb
SDJ
4412 }
4413
4414 /* Advancing to the next state. */
4415 ++current_state;
4416 }
4417
4418 return 0;
4419}
4420
7d7571f0
SDJ
4421/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4422 gdbarch.h. */
4423
6b78c3f8 4424static std::string
7d7571f0 4425i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4426 const std::string &regname, int regnum)
7d7571f0
SDJ
4427{
4428 static const std::unordered_set<std::string> reg_assoc
4429 = { "ax", "bx", "cx", "dx",
4430 "si", "di", "bp", "sp" };
4431
6b78c3f8
AB
4432 /* If we are dealing with a register whose size is less than the size
4433 specified by the "[-]N@" prefix, and it is one of the registers that
4434 we know has an extended variant available, then use the extended
4435 version of the register instead. */
4436 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4437 && reg_assoc.find (regname) != reg_assoc.end ())
4438 return "e" + regname;
7d7571f0 4439
6b78c3f8
AB
4440 /* Otherwise, just use the requested register. */
4441 return regname;
7d7571f0
SDJ
4442}
4443
8201327c 4444\f
3ce1502b 4445
ac04f72b
TT
4446/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4447 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4448
4449static const char *
4450i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4451{
4452 return "(x86_64|i.86)";
4453}
4454
4455\f
4456
1d509aa6
MM
4457/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4458
4459static bool
4460i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4461{
4462 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4463 I386_EAX_REGNUM, I386_EIP_REGNUM);
4464}
4465
8201327c 4466/* Generic ELF. */
d2a7c97a 4467
8201327c
MK
4468void
4469i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4470{
05c0465e
SDJ
4471 static const char *const stap_integer_prefixes[] = { "$", NULL };
4472 static const char *const stap_register_prefixes[] = { "%", NULL };
4473 static const char *const stap_register_indirection_prefixes[] = { "(",
4474 NULL };
4475 static const char *const stap_register_indirection_suffixes[] = { ")",
4476 NULL };
4477
c4fc7f1b
MK
4478 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4479 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4480
4481 /* Registering SystemTap handlers. */
05c0465e
SDJ
4482 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4483 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4484 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4485 stap_register_indirection_prefixes);
4486 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4487 stap_register_indirection_suffixes);
55aa24fb
SDJ
4488 set_gdbarch_stap_is_single_operand (gdbarch,
4489 i386_stap_is_single_operand);
4490 set_gdbarch_stap_parse_special_token (gdbarch,
4491 i386_stap_parse_special_token);
7d7571f0
SDJ
4492 set_gdbarch_stap_adjust_register (gdbarch,
4493 i386_stap_adjust_register);
1d509aa6
MM
4494
4495 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4496 i386_in_indirect_branch_thunk);
8201327c 4497}
3ce1502b 4498
8201327c 4499/* System V Release 4 (SVR4). */
3ce1502b 4500
8201327c
MK
4501void
4502i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4503{
4504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4505
8201327c
MK
4506 /* System V Release 4 uses ELF. */
4507 i386_elf_init_abi (info, gdbarch);
3ce1502b 4508
dfe01d39 4509 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4510 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4511
911bc6ee 4512 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4513 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4514 tdep->sc_pc_offset = 36 + 14 * 4;
4515 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4516
8201327c 4517 tdep->jb_pc_offset = 20;
3ce1502b
MK
4518}
4519
8201327c 4520\f
2acceee2 4521
38c968cf
AC
4522/* i386 register groups. In addition to the normal groups, add "mmx"
4523 and "sse". */
4524
4525static struct reggroup *i386_sse_reggroup;
4526static struct reggroup *i386_mmx_reggroup;
4527
4528static void
4529i386_init_reggroups (void)
4530{
4531 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4532 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4533}
4534
4535static void
4536i386_add_reggroups (struct gdbarch *gdbarch)
4537{
4538 reggroup_add (gdbarch, i386_sse_reggroup);
4539 reggroup_add (gdbarch, i386_mmx_reggroup);
4540 reggroup_add (gdbarch, general_reggroup);
4541 reggroup_add (gdbarch, float_reggroup);
4542 reggroup_add (gdbarch, all_reggroup);
4543 reggroup_add (gdbarch, save_reggroup);
4544 reggroup_add (gdbarch, restore_reggroup);
4545 reggroup_add (gdbarch, vector_reggroup);
4546 reggroup_add (gdbarch, system_reggroup);
4547}
4548
4549int
4550i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4551 struct reggroup *group)
4552{
c131fcee
L
4553 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4554 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4555 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4556 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4557 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4558 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4559
1ba53b71
L
4560 /* Don't include pseudo registers, except for MMX, in any register
4561 groups. */
c131fcee 4562 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4563 return 0;
4564
c131fcee 4565 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4566 return 0;
4567
c131fcee 4568 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4569 return 0;
4570
4571 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4572 if (group == i386_mmx_reggroup)
4573 return mmx_regnum_p;
1ba53b71 4574
51547df6 4575 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4576 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4577 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4578 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4579 if (group == i386_sse_reggroup)
01f9f808 4580 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4581
4582 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4583 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4584 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4585
22049425
MS
4586 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4587 == X86_XSTATE_AVX_AVX512_MASK);
4588 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4589 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4590 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4591 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4592
38c968cf 4593 if (group == vector_reggroup)
c131fcee 4594 return (mmx_regnum_p
01f9f808
MS
4595 || (zmm_regnum_p && avx512_p)
4596 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4597 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4598 || mxcsr_regnum_p);
1ba53b71
L
4599
4600 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4601 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4602 if (group == float_reggroup)
4603 return fp_regnum_p;
1ba53b71 4604
c131fcee
L
4605 /* For "info reg all", don't include upper YMM registers nor XMM
4606 registers when AVX is supported. */
4607 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4608 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4609 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4610 if (group == all_reggroup
01f9f808
MS
4611 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4612 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4613 || ymmh_regnum_p
4614 || ymmh_avx512_regnum_p
4615 || zmmh_regnum_p))
c131fcee
L
4616 return 0;
4617
1dbcd68c
WT
4618 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4619 if (group == all_reggroup
df7e5265 4620 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4621 return bnd_regnum_p;
4622
4623 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4624 if (group == all_reggroup
df7e5265 4625 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4626 return 0;
4627
4628 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4629 if (group == all_reggroup
df7e5265 4630 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4631 return mpx_ctrl_regnum_p;
4632
38c968cf 4633 if (group == general_reggroup)
1ba53b71
L
4634 return (!fp_regnum_p
4635 && !mmx_regnum_p
c131fcee
L
4636 && !mxcsr_regnum_p
4637 && !xmm_regnum_p
01f9f808 4638 && !xmm_avx512_regnum_p
c131fcee 4639 && !ymm_regnum_p
1dbcd68c 4640 && !ymmh_regnum_p
01f9f808
MS
4641 && !ymm_avx512_regnum_p
4642 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4643 && !bndr_regnum_p
4644 && !bnd_regnum_p
01f9f808
MS
4645 && !mpx_ctrl_regnum_p
4646 && !zmm_regnum_p
51547df6
MS
4647 && !zmmh_regnum_p
4648 && !pkru_regnum_p);
acd5c798 4649
38c968cf
AC
4650 return default_register_reggroup_p (gdbarch, regnum, group);
4651}
38c968cf 4652\f
acd5c798 4653
f837910f
MK
4654/* Get the ARGIth function argument for the current function. */
4655
42c466d7 4656static CORE_ADDR
143985b7
AF
4657i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4658 struct type *type)
4659{
e17a4113
UW
4660 struct gdbarch *gdbarch = get_frame_arch (frame);
4661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4662 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4663 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4664}
4665
7ad10968
HZ
4666#define PREFIX_REPZ 0x01
4667#define PREFIX_REPNZ 0x02
4668#define PREFIX_LOCK 0x04
4669#define PREFIX_DATA 0x08
4670#define PREFIX_ADDR 0x10
473f17b0 4671
7ad10968
HZ
4672/* operand size */
4673enum
4674{
4675 OT_BYTE = 0,
4676 OT_WORD,
4677 OT_LONG,
cf648174 4678 OT_QUAD,
a3c4230a 4679 OT_DQUAD,
7ad10968 4680};
473f17b0 4681
7ad10968
HZ
4682/* i386 arith/logic operations */
4683enum
4684{
4685 OP_ADDL,
4686 OP_ORL,
4687 OP_ADCL,
4688 OP_SBBL,
4689 OP_ANDL,
4690 OP_SUBL,
4691 OP_XORL,
4692 OP_CMPL,
4693};
5716833c 4694
7ad10968
HZ
4695struct i386_record_s
4696{
cf648174 4697 struct gdbarch *gdbarch;
7ad10968 4698 struct regcache *regcache;
df61f520 4699 CORE_ADDR orig_addr;
7ad10968
HZ
4700 CORE_ADDR addr;
4701 int aflag;
4702 int dflag;
4703 int override;
4704 uint8_t modrm;
4705 uint8_t mod, reg, rm;
4706 int ot;
cf648174
HZ
4707 uint8_t rex_x;
4708 uint8_t rex_b;
4709 int rip_offset;
4710 int popl_esp_hack;
4711 const int *regmap;
7ad10968 4712};
5716833c 4713
99c1624c
PA
4714/* Parse the "modrm" part of the memory address irp->addr points at.
4715 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4716
7ad10968
HZ
4717static int
4718i386_record_modrm (struct i386_record_s *irp)
4719{
cf648174 4720 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4721
4ffa4fc7
PA
4722 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4723 return -1;
4724
7ad10968
HZ
4725 irp->addr++;
4726 irp->mod = (irp->modrm >> 6) & 3;
4727 irp->reg = (irp->modrm >> 3) & 7;
4728 irp->rm = irp->modrm & 7;
5716833c 4729
7ad10968
HZ
4730 return 0;
4731}
d2a7c97a 4732
99c1624c
PA
4733/* Extract the memory address that the current instruction writes to,
4734 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4735
7ad10968 4736static int
cf648174 4737i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4738{
cf648174 4739 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4740 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4741 gdb_byte buf[4];
4742 ULONGEST offset64;
21d0e8a4 4743
7ad10968 4744 *addr = 0;
1e87984a 4745 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4746 {
1e87984a 4747 /* 32/64 bits */
7ad10968
HZ
4748 int havesib = 0;
4749 uint8_t scale = 0;
648d0c8b 4750 uint8_t byte;
7ad10968
HZ
4751 uint8_t index = 0;
4752 uint8_t base = irp->rm;
896fb97d 4753
7ad10968
HZ
4754 if (base == 4)
4755 {
4756 havesib = 1;
4ffa4fc7
PA
4757 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4758 return -1;
7ad10968 4759 irp->addr++;
648d0c8b
MS
4760 scale = (byte >> 6) & 3;
4761 index = ((byte >> 3) & 7) | irp->rex_x;
4762 base = (byte & 7);
7ad10968 4763 }
cf648174 4764 base |= irp->rex_b;
21d0e8a4 4765
7ad10968
HZ
4766 switch (irp->mod)
4767 {
4768 case 0:
4769 if ((base & 7) == 5)
4770 {
4771 base = 0xff;
4ffa4fc7
PA
4772 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4773 return -1;
7ad10968 4774 irp->addr += 4;
60a1502a 4775 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4776 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4777 *addr += irp->addr + irp->rip_offset;
7ad10968 4778 }
7ad10968
HZ
4779 break;
4780 case 1:
4ffa4fc7
PA
4781 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4782 return -1;
7ad10968 4783 irp->addr++;
60a1502a 4784 *addr = (int8_t) buf[0];
7ad10968
HZ
4785 break;
4786 case 2:
4ffa4fc7
PA
4787 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4788 return -1;
60a1502a 4789 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4790 irp->addr += 4;
4791 break;
4792 }
356a6b3e 4793
60a1502a 4794 offset64 = 0;
7ad10968 4795 if (base != 0xff)
dda83cd7 4796 {
cf648174
HZ
4797 if (base == 4 && irp->popl_esp_hack)
4798 *addr += irp->popl_esp_hack;
4799 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
dda83cd7 4800 &offset64);
7ad10968 4801 }
cf648174 4802 if (irp->aflag == 2)
dda83cd7 4803 {
60a1502a 4804 *addr += offset64;
dda83cd7 4805 }
cf648174 4806 else
dda83cd7 4807 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4808
7ad10968
HZ
4809 if (havesib && (index != 4 || scale != 0))
4810 {
cf648174 4811 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
dda83cd7 4812 &offset64);
cf648174 4813 if (irp->aflag == 2)
60a1502a 4814 *addr += offset64 << scale;
cf648174 4815 else
60a1502a 4816 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4817 }
e85596e0
L
4818
4819 if (!irp->aflag)
4820 {
4821 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4822 address from 32-bit to 64-bit. */
4823 *addr = (uint32_t) *addr;
4824 }
7ad10968
HZ
4825 }
4826 else
4827 {
4828 /* 16 bits */
4829 switch (irp->mod)
4830 {
4831 case 0:
4832 if (irp->rm == 6)
4833 {
4ffa4fc7
PA
4834 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4835 return -1;
7ad10968 4836 irp->addr += 2;
60a1502a 4837 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4838 irp->rm = 0;
4839 goto no_rm;
4840 }
7ad10968
HZ
4841 break;
4842 case 1:
4ffa4fc7
PA
4843 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4844 return -1;
7ad10968 4845 irp->addr++;
60a1502a 4846 *addr = (int8_t) buf[0];
7ad10968
HZ
4847 break;
4848 case 2:
4ffa4fc7
PA
4849 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4850 return -1;
7ad10968 4851 irp->addr += 2;
60a1502a 4852 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4853 break;
4854 }
c4fc7f1b 4855
7ad10968
HZ
4856 switch (irp->rm)
4857 {
4858 case 0:
cf648174
HZ
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4861 &offset64);
60a1502a 4862 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4865 &offset64);
60a1502a 4866 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4867 break;
4868 case 1:
cf648174
HZ
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4871 &offset64);
60a1502a 4872 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4873 regcache_raw_read_unsigned (irp->regcache,
4874 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4875 &offset64);
60a1502a 4876 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4877 break;
4878 case 2:
cf648174
HZ
4879 regcache_raw_read_unsigned (irp->regcache,
4880 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4881 &offset64);
60a1502a 4882 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4885 &offset64);
60a1502a 4886 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4887 break;
4888 case 3:
cf648174
HZ
4889 regcache_raw_read_unsigned (irp->regcache,
4890 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4891 &offset64);
60a1502a 4892 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4893 regcache_raw_read_unsigned (irp->regcache,
4894 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4895 &offset64);
60a1502a 4896 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4897 break;
4898 case 4:
cf648174
HZ
4899 regcache_raw_read_unsigned (irp->regcache,
4900 irp->regmap[X86_RECORD_RESI_REGNUM],
dda83cd7 4901 &offset64);
60a1502a 4902 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4903 break;
4904 case 5:
cf648174
HZ
4905 regcache_raw_read_unsigned (irp->regcache,
4906 irp->regmap[X86_RECORD_REDI_REGNUM],
dda83cd7 4907 &offset64);
60a1502a 4908 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4909 break;
4910 case 6:
cf648174
HZ
4911 regcache_raw_read_unsigned (irp->regcache,
4912 irp->regmap[X86_RECORD_REBP_REGNUM],
dda83cd7 4913 &offset64);
60a1502a 4914 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4915 break;
4916 case 7:
cf648174
HZ
4917 regcache_raw_read_unsigned (irp->regcache,
4918 irp->regmap[X86_RECORD_REBX_REGNUM],
dda83cd7 4919 &offset64);
60a1502a 4920 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4921 break;
4922 }
4923 *addr &= 0xffff;
4924 }
c4fc7f1b 4925
01fe1b41 4926 no_rm:
7ad10968
HZ
4927 return 0;
4928}
c4fc7f1b 4929
99c1624c
PA
4930/* Record the address and contents of the memory that will be changed
4931 by the current instruction. Return -1 if something goes wrong, 0
4932 otherwise. */
356a6b3e 4933
7ad10968
HZ
4934static int
4935i386_record_lea_modrm (struct i386_record_s *irp)
4936{
cf648174
HZ
4937 struct gdbarch *gdbarch = irp->gdbarch;
4938 uint64_t addr;
356a6b3e 4939
d7877f7e 4940 if (irp->override >= 0)
7ad10968 4941 {
25ea693b 4942 if (record_full_memory_query)
dda83cd7
SM
4943 {
4944 if (yquery (_("\
bb08c432
HZ
4945Process record ignores the memory change of instruction at address %s\n\
4946because it can't get the value of the segment register.\n\
4947Do you want to stop the program?"),
dda83cd7 4948 paddress (gdbarch, irp->orig_addr)))
651ce16a 4949 return -1;
dda83cd7 4950 }
bb08c432 4951
7ad10968
HZ
4952 return 0;
4953 }
61113f8b 4954
7ad10968
HZ
4955 if (i386_record_lea_modrm_addr (irp, &addr))
4956 return -1;
96297dab 4957
25ea693b 4958 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4959 return -1;
a62cc96e 4960
7ad10968
HZ
4961 return 0;
4962}
b6197528 4963
99c1624c
PA
4964/* Record the effects of a push operation. Return -1 if something
4965 goes wrong, 0 otherwise. */
cf648174
HZ
4966
4967static int
4968i386_record_push (struct i386_record_s *irp, int size)
4969{
648d0c8b 4970 ULONGEST addr;
cf648174 4971
25ea693b
MM
4972 if (record_full_arch_list_add_reg (irp->regcache,
4973 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4974 return -1;
4975 regcache_raw_read_unsigned (irp->regcache,
4976 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4977 &addr);
25ea693b 4978 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4979 return -1;
4980
4981 return 0;
4982}
4983
0289bdd7
MS
4984
4985/* Defines contents to record. */
4986#define I386_SAVE_FPU_REGS 0xfffd
4987#define I386_SAVE_FPU_ENV 0xfffe
4988#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4989
99c1624c
PA
4990/* Record the values of the floating point registers which will be
4991 changed by the current instruction. Returns -1 if something is
4992 wrong, 0 otherwise. */
0289bdd7
MS
4993
4994static int i386_record_floats (struct gdbarch *gdbarch,
dda83cd7
SM
4995 struct i386_record_s *ir,
4996 uint32_t iregnum)
0289bdd7
MS
4997{
4998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4999 int i;
5000
5001 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5002 happen. Currently we store st0-st7 registers, but we need not store all
5003 registers all the time, in future we use ftag register and record only
5004 those who are not marked as an empty. */
5005
5006 if (I386_SAVE_FPU_REGS == iregnum)
5007 {
5008 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
dda83cd7
SM
5009 {
5010 if (record_full_arch_list_add_reg (ir->regcache, i))
5011 return -1;
5012 }
0289bdd7
MS
5013 }
5014 else if (I386_SAVE_FPU_ENV == iregnum)
5015 {
5016 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5017 {
25ea693b 5018 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 5019 return -1;
0289bdd7
MS
5020 }
5021 }
5022 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5023 {
5024 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5025 {
dda83cd7
SM
5026 if (record_full_arch_list_add_reg (ir->regcache, i))
5027 return -1;
0289bdd7
MS
5028 }
5029 }
5030 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
dda83cd7 5031 (iregnum <= I387_FOP_REGNUM (tdep)))
0289bdd7 5032 {
25ea693b 5033 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
dda83cd7 5034 return -1;
0289bdd7
MS
5035 }
5036 else
5037 {
5038 /* Parameter error. */
5039 return -1;
5040 }
5041 if(I386_SAVE_FPU_ENV != iregnum)
5042 {
5043 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5044 {
25ea693b 5045 if (record_full_arch_list_add_reg (ir->regcache, i))
dda83cd7 5046 return -1;
0289bdd7
MS
5047 }
5048 }
5049 return 0;
5050}
5051
99c1624c
PA
5052/* Parse the current instruction, and record the values of the
5053 registers and memory that will be changed by the current
5054 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5055
25ea693b
MM
5056#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5057 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5058
a6b808b4 5059int
7ad10968 5060i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5061 CORE_ADDR input_addr)
7ad10968 5062{
60a1502a 5063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5064 int prefixes = 0;
580879fc 5065 int regnum = 0;
425b824a 5066 uint32_t opcode;
f4644a3f 5067 uint8_t opcode8;
648d0c8b 5068 ULONGEST addr;
975c21ab 5069 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5070 struct i386_record_s ir;
0289bdd7 5071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5072 uint8_t rex_w = -1;
5073 uint8_t rex_r = 0;
7ad10968 5074
8408d274 5075 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5076 ir.regcache = regcache;
648d0c8b
MS
5077 ir.addr = input_addr;
5078 ir.orig_addr = input_addr;
7ad10968
HZ
5079 ir.aflag = 1;
5080 ir.dflag = 1;
cf648174
HZ
5081 ir.override = -1;
5082 ir.popl_esp_hack = 0;
a3c4230a 5083 ir.regmap = tdep->record_regmap;
cf648174 5084 ir.gdbarch = gdbarch;
7ad10968
HZ
5085
5086 if (record_debug > 1)
5087 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
dda83cd7 5088 "addr = %s\n",
5af949e3 5089 paddress (gdbarch, ir.addr));
7ad10968
HZ
5090
5091 /* prefixes */
5092 while (1)
5093 {
4ffa4fc7
PA
5094 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5095 return -1;
7ad10968 5096 ir.addr++;
425b824a 5097 switch (opcode8) /* Instruction prefixes */
7ad10968 5098 {
01fe1b41 5099 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5100 prefixes |= PREFIX_REPZ;
5101 break;
01fe1b41 5102 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5103 prefixes |= PREFIX_REPNZ;
5104 break;
01fe1b41 5105 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5106 prefixes |= PREFIX_LOCK;
5107 break;
01fe1b41 5108 case CS_PREFIX_OPCODE:
cf648174 5109 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5110 break;
01fe1b41 5111 case SS_PREFIX_OPCODE:
cf648174 5112 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5113 break;
01fe1b41 5114 case DS_PREFIX_OPCODE:
cf648174 5115 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5116 break;
01fe1b41 5117 case ES_PREFIX_OPCODE:
cf648174 5118 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5119 break;
01fe1b41 5120 case FS_PREFIX_OPCODE:
cf648174 5121 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5122 break;
01fe1b41 5123 case GS_PREFIX_OPCODE:
cf648174 5124 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5125 break;
01fe1b41 5126 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5127 prefixes |= PREFIX_DATA;
5128 break;
01fe1b41 5129 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5130 prefixes |= PREFIX_ADDR;
5131 break;
dda83cd7
SM
5132 case 0x40: /* i386 inc %eax */
5133 case 0x41: /* i386 inc %ecx */
5134 case 0x42: /* i386 inc %edx */
5135 case 0x43: /* i386 inc %ebx */
5136 case 0x44: /* i386 inc %esp */
5137 case 0x45: /* i386 inc %ebp */
5138 case 0x46: /* i386 inc %esi */
5139 case 0x47: /* i386 inc %edi */
5140 case 0x48: /* i386 dec %eax */
5141 case 0x49: /* i386 dec %ecx */
5142 case 0x4a: /* i386 dec %edx */
5143 case 0x4b: /* i386 dec %ebx */
5144 case 0x4c: /* i386 dec %esp */
5145 case 0x4d: /* i386 dec %ebp */
5146 case 0x4e: /* i386 dec %esi */
5147 case 0x4f: /* i386 dec %edi */
5148 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5149 {
5150 /* REX */
5151 rex_w = (opcode8 >> 3) & 1;
5152 rex_r = (opcode8 & 0x4) << 1;
5153 ir.rex_x = (opcode8 & 0x2) << 2;
5154 ir.rex_b = (opcode8 & 0x1) << 3;
5155 }
d691bec7
MS
5156 else /* 32 bit target */
5157 goto out_prefixes;
dda83cd7 5158 break;
7ad10968
HZ
5159 default:
5160 goto out_prefixes;
5161 break;
5162 }
5163 }
01fe1b41 5164 out_prefixes:
cf648174
HZ
5165 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5166 {
5167 ir.dflag = 2;
5168 }
5169 else
5170 {
5171 if (prefixes & PREFIX_DATA)
dda83cd7 5172 ir.dflag ^= 1;
cf648174 5173 }
7ad10968
HZ
5174 if (prefixes & PREFIX_ADDR)
5175 ir.aflag ^= 1;
cf648174
HZ
5176 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5177 ir.aflag = 2;
7ad10968 5178
1777feb0 5179 /* Now check op code. */
425b824a 5180 opcode = (uint32_t) opcode8;
01fe1b41 5181 reswitch:
7ad10968
HZ
5182 switch (opcode)
5183 {
5184 case 0x0f:
4ffa4fc7
PA
5185 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5186 return -1;
7ad10968 5187 ir.addr++;
a3c4230a 5188 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5189 goto reswitch;
5190 break;
93924b6b 5191
a38bba38 5192 case 0x00: /* arith & logic */
7ad10968
HZ
5193 case 0x01:
5194 case 0x02:
5195 case 0x03:
5196 case 0x04:
5197 case 0x05:
5198 case 0x08:
5199 case 0x09:
5200 case 0x0a:
5201 case 0x0b:
5202 case 0x0c:
5203 case 0x0d:
5204 case 0x10:
5205 case 0x11:
5206 case 0x12:
5207 case 0x13:
5208 case 0x14:
5209 case 0x15:
5210 case 0x18:
5211 case 0x19:
5212 case 0x1a:
5213 case 0x1b:
5214 case 0x1c:
5215 case 0x1d:
5216 case 0x20:
5217 case 0x21:
5218 case 0x22:
5219 case 0x23:
5220 case 0x24:
5221 case 0x25:
5222 case 0x28:
5223 case 0x29:
5224 case 0x2a:
5225 case 0x2b:
5226 case 0x2c:
5227 case 0x2d:
5228 case 0x30:
5229 case 0x31:
5230 case 0x32:
5231 case 0x33:
5232 case 0x34:
5233 case 0x35:
5234 case 0x38:
5235 case 0x39:
5236 case 0x3a:
5237 case 0x3b:
5238 case 0x3c:
5239 case 0x3d:
5240 if (((opcode >> 3) & 7) != OP_CMPL)
5241 {
5242 if ((opcode & 1) == 0)
5243 ir.ot = OT_BYTE;
5244 else
5245 ir.ot = ir.dflag + OT_WORD;
93924b6b 5246
7ad10968
HZ
5247 switch ((opcode >> 1) & 3)
5248 {
a38bba38 5249 case 0: /* OP Ev, Gv */
7ad10968
HZ
5250 if (i386_record_modrm (&ir))
5251 return -1;
5252 if (ir.mod != 3)
5253 {
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
5258 {
dda83cd7 5259 ir.rm |= ir.rex_b;
cf648174 5260 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5261 ir.rm &= 0x3;
25ea693b 5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5263 }
5264 break;
a38bba38 5265 case 1: /* OP Gv, Ev */
7ad10968
HZ
5266 if (i386_record_modrm (&ir))
5267 return -1;
dda83cd7 5268 ir.reg |= rex_r;
cf648174 5269 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5270 ir.reg &= 0x3;
25ea693b 5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5272 break;
a38bba38 5273 case 2: /* OP A, Iv */
25ea693b 5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5275 break;
5276 }
5277 }
25ea693b 5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5279 break;
42fdc8df 5280
a38bba38 5281 case 0x80: /* GRP1 */
7ad10968
HZ
5282 case 0x81:
5283 case 0x82:
5284 case 0x83:
5285 if (i386_record_modrm (&ir))
5286 return -1;
8201327c 5287
7ad10968
HZ
5288 if (ir.reg != OP_CMPL)
5289 {
5290 if ((opcode & 1) == 0)
5291 ir.ot = OT_BYTE;
5292 else
5293 ir.ot = ir.dflag + OT_WORD;
28fc6740 5294
7ad10968
HZ
5295 if (ir.mod != 3)
5296 {
dda83cd7
SM
5297 if (opcode == 0x83)
5298 ir.rip_offset = 1;
5299 else
5300 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 else
25ea693b 5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5306 }
25ea693b 5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5308 break;
5e3397bb 5309
a38bba38 5310 case 0x40: /* inc */
7ad10968
HZ
5311 case 0x41:
5312 case 0x42:
5313 case 0x43:
5314 case 0x44:
5315 case 0x45:
5316 case 0x46:
5317 case 0x47:
a38bba38
MS
5318
5319 case 0x48: /* dec */
7ad10968
HZ
5320 case 0x49:
5321 case 0x4a:
5322 case 0x4b:
5323 case 0x4c:
5324 case 0x4d:
5325 case 0x4e:
5326 case 0x4f:
a38bba38 5327
25ea693b
MM
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5330 break;
acd5c798 5331
a38bba38 5332 case 0xf6: /* GRP3 */
7ad10968
HZ
5333 case 0xf7:
5334 if ((opcode & 1) == 0)
5335 ir.ot = OT_BYTE;
5336 else
5337 ir.ot = ir.dflag + OT_WORD;
5338 if (i386_record_modrm (&ir))
5339 return -1;
acd5c798 5340
cf648174 5341 if (ir.mod != 3 && ir.reg == 0)
dda83cd7 5342 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5343
7ad10968
HZ
5344 switch (ir.reg)
5345 {
a38bba38 5346 case 0: /* test */
25ea693b 5347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5348 break;
a38bba38
MS
5349 case 2: /* not */
5350 case 3: /* neg */
7ad10968
HZ
5351 if (ir.mod != 3)
5352 {
5353 if (i386_record_lea_modrm (&ir))
5354 return -1;
5355 }
5356 else
5357 {
dda83cd7 5358 ir.rm |= ir.rex_b;
cf648174 5359 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5360 ir.rm &= 0x3;
25ea693b 5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5362 }
a38bba38 5363 if (ir.reg == 3) /* neg */
25ea693b 5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5365 break;
a38bba38
MS
5366 case 4: /* mul */
5367 case 5: /* imul */
5368 case 6: /* div */
5369 case 7: /* idiv */
25ea693b 5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5371 if (ir.ot != OT_BYTE)
25ea693b
MM
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5374 break;
5375 default:
5376 ir.addr -= 2;
5377 opcode = opcode << 8 | ir.modrm;
5378 goto no_support;
5379 break;
5380 }
5381 break;
5382
a38bba38
MS
5383 case 0xfe: /* GRP4 */
5384 case 0xff: /* GRP5 */
7ad10968
HZ
5385 if (i386_record_modrm (&ir))
5386 return -1;
5387 if (ir.reg >= 2 && opcode == 0xfe)
5388 {
5389 ir.addr -= 2;
5390 opcode = opcode << 8 | ir.modrm;
5391 goto no_support;
5392 }
7ad10968
HZ
5393 switch (ir.reg)
5394 {
a38bba38
MS
5395 case 0: /* inc */
5396 case 1: /* dec */
dda83cd7 5397 if ((opcode & 1) == 0)
cf648174 5398 ir.ot = OT_BYTE;
dda83cd7 5399 else
cf648174 5400 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5401 if (ir.mod != 3)
5402 {
5403 if (i386_record_lea_modrm (&ir))
5404 return -1;
5405 }
5406 else
5407 {
cf648174
HZ
5408 ir.rm |= ir.rex_b;
5409 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5410 ir.rm &= 0x3;
25ea693b 5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5412 }
25ea693b 5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5414 break;
a38bba38 5415 case 2: /* call */
dda83cd7
SM
5416 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5417 ir.dflag = 2;
cf648174 5418 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5419 return -1;
25ea693b 5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5421 break;
a38bba38 5422 case 3: /* lcall */
25ea693b 5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5424 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5425 return -1;
25ea693b 5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5427 break;
a38bba38
MS
5428 case 4: /* jmp */
5429 case 5: /* ljmp */
25ea693b 5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5431 break;
a38bba38 5432 case 6: /* push */
dda83cd7
SM
5433 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5434 ir.dflag = 2;
cf648174
HZ
5435 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5436 return -1;
7ad10968
HZ
5437 break;
5438 default:
5439 ir.addr -= 2;
5440 opcode = opcode << 8 | ir.modrm;
5441 goto no_support;
5442 break;
5443 }
5444 break;
5445
a38bba38 5446 case 0x84: /* test */
7ad10968
HZ
5447 case 0x85:
5448 case 0xa8:
5449 case 0xa9:
25ea693b 5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5451 break;
5452
a38bba38 5453 case 0x98: /* CWDE/CBW */
25ea693b 5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5455 break;
5456
a38bba38 5457 case 0x99: /* CDQ/CWD */
25ea693b
MM
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5460 break;
5461
a38bba38 5462 case 0x0faf: /* imul */
7ad10968
HZ
5463 case 0x69:
5464 case 0x6b:
5465 ir.ot = ir.dflag + OT_WORD;
5466 if (i386_record_modrm (&ir))
5467 return -1;
cf648174 5468 if (opcode == 0x69)
dda83cd7 5469 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
cf648174 5470 else if (opcode == 0x6b)
dda83cd7 5471 ir.rip_offset = 1;
cf648174
HZ
5472 ir.reg |= rex_r;
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5474 ir.reg &= 0x3;
25ea693b
MM
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5477 break;
5478
a38bba38 5479 case 0x0fc0: /* xadd */
7ad10968
HZ
5480 case 0x0fc1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
cf648174 5487 ir.reg |= rex_r;
7ad10968
HZ
5488 if (ir.mod == 3)
5489 {
cf648174 5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5491 ir.reg &= 0x3;
25ea693b 5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5493 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5494 ir.rm &= 0x3;
25ea693b 5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5496 }
5497 else
5498 {
5499 if (i386_record_lea_modrm (&ir))
5500 return -1;
cf648174 5501 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5502 ir.reg &= 0x3;
25ea693b 5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5504 }
25ea693b 5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5506 break;
5507
a38bba38 5508 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5509 case 0x0fb1:
5510 if ((opcode & 1) == 0)
5511 ir.ot = OT_BYTE;
5512 else
5513 ir.ot = ir.dflag + OT_WORD;
5514 if (i386_record_modrm (&ir))
5515 return -1;
5516 if (ir.mod == 3)
5517 {
dda83cd7 5518 ir.reg |= rex_r;
25ea693b 5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5520 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5521 ir.reg &= 0x3;
25ea693b 5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5523 }
5524 else
5525 {
25ea693b 5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5527 if (i386_record_lea_modrm (&ir))
5528 return -1;
5529 }
25ea693b 5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5531 break;
5532
20b477a7 5533 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5534 if (i386_record_modrm (&ir))
5535 return -1;
5536 if (ir.mod == 3)
5537 {
20b477a7
LM
5538 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5539 an extended opcode. rdrand has bits 110 (/6) and rdseed
5540 has bits 111 (/7). */
5541 if (ir.reg == 6 || ir.reg == 7)
5542 {
5543 /* The storage register is described by the 3 R/M bits, but the
5544 REX.B prefix may be used to give access to registers
5545 R8~R15. In this case ir.rex_b + R/M will give us the register
5546 in the range R8~R15.
5547
5548 REX.W may also be used to access 64-bit registers, but we
5549 already record entire registers and not just partial bits
5550 of them. */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5552 /* These instructions also set conditional bits. */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5554 break;
5555 }
5556 else
5557 {
5558 /* We don't handle this particular instruction yet. */
5559 ir.addr -= 2;
5560 opcode = opcode << 8 | ir.modrm;
5561 goto no_support;
5562 }
7ad10968 5563 }
25ea693b
MM
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5566 if (i386_record_lea_modrm (&ir))
5567 return -1;
25ea693b 5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5569 break;
5570
a38bba38 5571 case 0x50: /* push */
7ad10968
HZ
5572 case 0x51:
5573 case 0x52:
5574 case 0x53:
5575 case 0x54:
5576 case 0x55:
5577 case 0x56:
5578 case 0x57:
5579 case 0x68:
5580 case 0x6a:
cf648174 5581 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5582 ir.dflag = 2;
cf648174
HZ
5583 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5584 return -1;
5585 break;
5586
a38bba38
MS
5587 case 0x06: /* push es */
5588 case 0x0e: /* push cs */
5589 case 0x16: /* push ss */
5590 case 0x1e: /* push ds */
cf648174 5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5592 {
cf648174
HZ
5593 ir.addr -= 1;
5594 goto no_support;
5595 }
5596 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5597 return -1;
5598 break;
5599
a38bba38
MS
5600 case 0x0fa0: /* push fs */
5601 case 0x0fa8: /* push gs */
cf648174 5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5603 {
cf648174
HZ
5604 ir.addr -= 2;
5605 goto no_support;
5606 }
5607 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5608 return -1;
cf648174
HZ
5609 break;
5610
a38bba38 5611 case 0x60: /* pusha */
cf648174 5612 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5613 {
cf648174
HZ
5614 ir.addr -= 1;
5615 goto no_support;
5616 }
5617 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5618 return -1;
5619 break;
5620
a38bba38 5621 case 0x58: /* pop */
7ad10968
HZ
5622 case 0x59:
5623 case 0x5a:
5624 case 0x5b:
5625 case 0x5c:
5626 case 0x5d:
5627 case 0x5e:
5628 case 0x5f:
25ea693b
MM
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5631 break;
5632
a38bba38 5633 case 0x61: /* popa */
cf648174 5634 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5635 {
cf648174
HZ
5636 ir.addr -= 1;
5637 goto no_support;
7ad10968 5638 }
425b824a
MS
5639 for (regnum = X86_RECORD_REAX_REGNUM;
5640 regnum <= X86_RECORD_REDI_REGNUM;
5641 regnum++)
25ea693b 5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5643 break;
5644
a38bba38 5645 case 0x8f: /* pop */
cf648174
HZ
5646 if (ir.regmap[X86_RECORD_R8_REGNUM])
5647 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5648 else
dda83cd7 5649 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5650 if (i386_record_modrm (&ir))
5651 return -1;
5652 if (ir.mod == 3)
25ea693b 5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5654 else
5655 {
dda83cd7 5656 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5657 if (i386_record_lea_modrm (&ir))
5658 return -1;
5659 }
25ea693b 5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5661 break;
5662
a38bba38 5663 case 0xc8: /* enter */
25ea693b 5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174 5665 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 5666 ir.dflag = 2;
cf648174 5667 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5668 return -1;
5669 break;
5670
a38bba38 5671 case 0xc9: /* leave */
25ea693b
MM
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5674 break;
5675
a38bba38 5676 case 0x07: /* pop es */
cf648174 5677 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5678 {
cf648174
HZ
5679 ir.addr -= 1;
5680 goto no_support;
5681 }
25ea693b
MM
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5685 break;
5686
a38bba38 5687 case 0x17: /* pop ss */
cf648174 5688 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5689 {
cf648174
HZ
5690 ir.addr -= 1;
5691 goto no_support;
5692 }
25ea693b
MM
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5696 break;
5697
a38bba38 5698 case 0x1f: /* pop ds */
cf648174 5699 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5700 {
cf648174
HZ
5701 ir.addr -= 1;
5702 goto no_support;
5703 }
25ea693b
MM
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5707 break;
5708
a38bba38 5709 case 0x0fa1: /* pop fs */
25ea693b
MM
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5713 break;
5714
a38bba38 5715 case 0x0fa9: /* pop gs */
25ea693b
MM
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5719 break;
5720
a38bba38 5721 case 0x88: /* mov */
7ad10968
HZ
5722 case 0x89:
5723 case 0xc6:
5724 case 0xc7:
5725 if ((opcode & 1) == 0)
5726 ir.ot = OT_BYTE;
5727 else
5728 ir.ot = ir.dflag + OT_WORD;
5729
5730 if (i386_record_modrm (&ir))
5731 return -1;
5732
5733 if (ir.mod != 3)
5734 {
dda83cd7 5735 if (opcode == 0xc6 || opcode == 0xc7)
cf648174 5736 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5737 if (i386_record_lea_modrm (&ir))
5738 return -1;
5739 }
5740 else
5741 {
dda83cd7 5742 if (opcode == 0xc6 || opcode == 0xc7)
cf648174
HZ
5743 ir.rm |= ir.rex_b;
5744 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5745 ir.rm &= 0x3;
25ea693b 5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5747 }
7ad10968 5748 break;
cf648174 5749
a38bba38 5750 case 0x8a: /* mov */
7ad10968
HZ
5751 case 0x8b:
5752 if ((opcode & 1) == 0)
5753 ir.ot = OT_BYTE;
5754 else
5755 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5756 if (i386_record_modrm (&ir))
5757 return -1;
cf648174
HZ
5758 ir.reg |= rex_r;
5759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5760 ir.reg &= 0x3;
25ea693b 5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5762 break;
7ad10968 5763
a38bba38 5764 case 0x8c: /* mov seg */
cf648174 5765 if (i386_record_modrm (&ir))
7ad10968 5766 return -1;
cf648174
HZ
5767 if (ir.reg > 5)
5768 {
5769 ir.addr -= 2;
5770 opcode = opcode << 8 | ir.modrm;
5771 goto no_support;
5772 }
5773
5774 if (ir.mod == 3)
25ea693b 5775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5776 else
5777 {
5778 ir.ot = OT_WORD;
5779 if (i386_record_lea_modrm (&ir))
5780 return -1;
5781 }
7ad10968
HZ
5782 break;
5783
a38bba38 5784 case 0x8e: /* mov seg */
7ad10968
HZ
5785 if (i386_record_modrm (&ir))
5786 return -1;
7ad10968
HZ
5787 switch (ir.reg)
5788 {
5789 case 0:
425b824a 5790 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5791 break;
5792 case 2:
425b824a 5793 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5794 break;
5795 case 3:
425b824a 5796 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5797 break;
5798 case 4:
425b824a 5799 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5800 break;
5801 case 5:
425b824a 5802 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5803 break;
5804 default:
5805 ir.addr -= 2;
5806 opcode = opcode << 8 | ir.modrm;
5807 goto no_support;
5808 break;
5809 }
25ea693b
MM
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5812 break;
5813
a38bba38
MS
5814 case 0x0fb6: /* movzbS */
5815 case 0x0fb7: /* movzwS */
5816 case 0x0fbe: /* movsbS */
5817 case 0x0fbf: /* movswS */
7ad10968
HZ
5818 if (i386_record_modrm (&ir))
5819 return -1;
25ea693b 5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5821 break;
5822
a38bba38 5823 case 0x8d: /* lea */
7ad10968
HZ
5824 if (i386_record_modrm (&ir))
5825 return -1;
5826 if (ir.mod == 3)
5827 {
5828 ir.addr -= 2;
5829 opcode = opcode << 8 | ir.modrm;
5830 goto no_support;
5831 }
7ad10968 5832 ir.ot = ir.dflag;
cf648174
HZ
5833 ir.reg |= rex_r;
5834 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5835 ir.reg &= 0x3;
25ea693b 5836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5837 break;
5838
a38bba38 5839 case 0xa0: /* mov EAX */
7ad10968 5840 case 0xa1:
a38bba38
MS
5841
5842 case 0xd7: /* xlat */
25ea693b 5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5844 break;
5845
a38bba38 5846 case 0xa2: /* mov EAX */
7ad10968 5847 case 0xa3:
d7877f7e 5848 if (ir.override >= 0)
dda83cd7
SM
5849 {
5850 if (record_full_memory_query)
5851 {
5852 if (yquery (_("\
bb08c432
HZ
5853Process record ignores the memory change of instruction at address %s\n\
5854because it can't get the value of the segment register.\n\
5855Do you want to stop the program?"),
dda83cd7
SM
5856 paddress (gdbarch, ir.orig_addr)))
5857 return -1;
5858 }
cf648174
HZ
5859 }
5860 else
5861 {
dda83cd7 5862 if ((opcode & 1) == 0)
cf648174
HZ
5863 ir.ot = OT_BYTE;
5864 else
5865 ir.ot = ir.dflag + OT_WORD;
5866 if (ir.aflag == 2)
5867 {
dda83cd7 5868 if (record_read_memory (gdbarch, ir.addr, buf, 8))
4ffa4fc7 5869 return -1;
cf648174 5870 ir.addr += 8;
60a1502a 5871 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174 5872 }
dda83cd7 5873 else if (ir.aflag)
cf648174 5874 {
dda83cd7 5875 if (record_read_memory (gdbarch, ir.addr, buf, 4))
4ffa4fc7 5876 return -1;
cf648174 5877 ir.addr += 4;
dda83cd7 5878 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174 5879 }
dda83cd7 5880 else
cf648174 5881 {
dda83cd7 5882 if (record_read_memory (gdbarch, ir.addr, buf, 2))
4ffa4fc7 5883 return -1;
cf648174 5884 ir.addr += 2;
dda83cd7 5885 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5886 }
25ea693b 5887 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174 5888 return -1;
dda83cd7 5889 }
7ad10968
HZ
5890 break;
5891
a38bba38 5892 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5893 case 0xb1:
5894 case 0xb2:
5895 case 0xb3:
5896 case 0xb4:
5897 case 0xb5:
5898 case 0xb6:
5899 case 0xb7:
25ea693b
MM
5900 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5901 ? ((opcode & 0x7) | ir.rex_b)
5902 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5903 break;
5904
a38bba38 5905 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5906 case 0xb9:
5907 case 0xba:
5908 case 0xbb:
5909 case 0xbc:
5910 case 0xbd:
5911 case 0xbe:
5912 case 0xbf:
25ea693b 5913 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5914 break;
5915
a38bba38 5916 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5917 case 0x92:
5918 case 0x93:
5919 case 0x94:
5920 case 0x95:
5921 case 0x96:
5922 case 0x97:
25ea693b
MM
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5925 break;
5926
a38bba38 5927 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5928 case 0x87:
5929 if ((opcode & 1) == 0)
5930 ir.ot = OT_BYTE;
5931 else
5932 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5933 if (i386_record_modrm (&ir))
5934 return -1;
7ad10968
HZ
5935 if (ir.mod == 3)
5936 {
86839d38 5937 ir.rm |= ir.rex_b;
cf648174
HZ
5938 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5939 ir.rm &= 0x3;
25ea693b 5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5941 }
5942 else
5943 {
5944 if (i386_record_lea_modrm (&ir))
5945 return -1;
5946 }
cf648174
HZ
5947 ir.reg |= rex_r;
5948 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5949 ir.reg &= 0x3;
25ea693b 5950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5951 break;
5952
a38bba38
MS
5953 case 0xc4: /* les Gv */
5954 case 0xc5: /* lds Gv */
cf648174 5955 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 5956 {
cf648174
HZ
5957 ir.addr -= 1;
5958 goto no_support;
5959 }
d3f323f3 5960 /* FALLTHROUGH */
a38bba38
MS
5961 case 0x0fb2: /* lss Gv */
5962 case 0x0fb4: /* lfs Gv */
5963 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5964 if (i386_record_modrm (&ir))
5965 return -1;
5966 if (ir.mod == 3)
5967 {
5968 if (opcode > 0xff)
5969 ir.addr -= 3;
5970 else
5971 ir.addr -= 2;
5972 opcode = opcode << 8 | ir.modrm;
5973 goto no_support;
5974 }
7ad10968
HZ
5975 switch (opcode)
5976 {
a38bba38 5977 case 0xc4: /* les Gv */
425b824a 5978 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5979 break;
a38bba38 5980 case 0xc5: /* lds Gv */
425b824a 5981 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5982 break;
a38bba38 5983 case 0x0fb2: /* lss Gv */
425b824a 5984 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5985 break;
a38bba38 5986 case 0x0fb4: /* lfs Gv */
425b824a 5987 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5988 break;
a38bba38 5989 case 0x0fb5: /* lgs Gv */
425b824a 5990 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5991 break;
5992 }
25ea693b
MM
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5996 break;
5997
a38bba38 5998 case 0xc0: /* shifts */
7ad10968
HZ
5999 case 0xc1:
6000 case 0xd0:
6001 case 0xd1:
6002 case 0xd2:
6003 case 0xd3:
6004 if ((opcode & 1) == 0)
6005 ir.ot = OT_BYTE;
6006 else
6007 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
6008 if (i386_record_modrm (&ir))
6009 return -1;
7ad10968
HZ
6010 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6011 {
6012 if (i386_record_lea_modrm (&ir))
6013 return -1;
6014 }
6015 else
6016 {
cf648174
HZ
6017 ir.rm |= ir.rex_b;
6018 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6019 ir.rm &= 0x3;
25ea693b 6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6021 }
25ea693b 6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6023 break;
6024
6025 case 0x0fa4:
6026 case 0x0fa5:
6027 case 0x0fac:
6028 case 0x0fad:
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if (ir.mod == 3)
6032 {
25ea693b 6033 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6034 return -1;
6035 }
6036 else
6037 {
6038 if (i386_record_lea_modrm (&ir))
6039 return -1;
6040 }
6041 break;
6042
a38bba38 6043 case 0xd8: /* Floats. */
7ad10968
HZ
6044 case 0xd9:
6045 case 0xda:
6046 case 0xdb:
6047 case 0xdc:
6048 case 0xdd:
6049 case 0xde:
6050 case 0xdf:
6051 if (i386_record_modrm (&ir))
6052 return -1;
6053 ir.reg |= ((opcode & 7) << 3);
6054 if (ir.mod != 3)
6055 {
1777feb0 6056 /* Memory. */
955db0c0 6057 uint64_t addr64;
7ad10968 6058
955db0c0 6059 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6060 return -1;
6061 switch (ir.reg)
6062 {
7ad10968 6063 case 0x02:
dda83cd7
SM
6064 case 0x12:
6065 case 0x22:
6066 case 0x32:
0289bdd7 6067 /* For fcom, ficom nothing to do. */
dda83cd7 6068 break;
7ad10968 6069 case 0x03:
dda83cd7
SM
6070 case 0x13:
6071 case 0x23:
6072 case 0x33:
0289bdd7 6073 /* For fcomp, ficomp pop FPU stack, store all. */
dda83cd7
SM
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 return -1;
6076 break;
6077 case 0x00:
6078 case 0x01:
7ad10968
HZ
6079 case 0x04:
6080 case 0x05:
6081 case 0x06:
6082 case 0x07:
6083 case 0x10:
6084 case 0x11:
7ad10968
HZ
6085 case 0x14:
6086 case 0x15:
6087 case 0x16:
6088 case 0x17:
6089 case 0x20:
6090 case 0x21:
7ad10968
HZ
6091 case 0x24:
6092 case 0x25:
6093 case 0x26:
6094 case 0x27:
6095 case 0x30:
6096 case 0x31:
7ad10968
HZ
6097 case 0x34:
6098 case 0x35:
6099 case 0x36:
6100 case 0x37:
dda83cd7
SM
6101 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6102 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6103 of code, always affects st(0) register. */
6104 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6105 return -1;
7ad10968
HZ
6106 break;
6107 case 0x08:
6108 case 0x0a:
6109 case 0x0b:
6110 case 0x18:
6111 case 0x19:
6112 case 0x1a:
6113 case 0x1b:
dda83cd7 6114 case 0x1d:
7ad10968
HZ
6115 case 0x28:
6116 case 0x29:
6117 case 0x2a:
6118 case 0x2b:
6119 case 0x38:
6120 case 0x39:
6121 case 0x3a:
6122 case 0x3b:
dda83cd7
SM
6123 case 0x3c:
6124 case 0x3d:
7ad10968
HZ
6125 switch (ir.reg & 7)
6126 {
6127 case 0:
0289bdd7
MS
6128 /* Handling fld, fild. */
6129 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6130 return -1;
7ad10968
HZ
6131 break;
6132 case 1:
6133 switch (ir.reg >> 4)
6134 {
6135 case 0:
25ea693b 6136 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6137 return -1;
6138 break;
6139 case 2:
25ea693b 6140 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6141 return -1;
6142 break;
6143 case 3:
0289bdd7 6144 break;
7ad10968 6145 default:
25ea693b 6146 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6147 return -1;
6148 break;
6149 }
6150 break;
6151 default:
6152 switch (ir.reg >> 4)
6153 {
6154 case 0:
25ea693b 6155 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6156 return -1;
6157 if (3 == (ir.reg & 7))
6158 {
6159 /* For fstp m32fp. */
6160 if (i386_record_floats (gdbarch, &ir,
6161 I386_SAVE_FPU_REGS))
6162 return -1;
6163 }
6164 break;
7ad10968 6165 case 1:
25ea693b 6166 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6167 return -1;
0289bdd7
MS
6168 if ((3 == (ir.reg & 7))
6169 || (5 == (ir.reg & 7))
6170 || (7 == (ir.reg & 7)))
6171 {
6172 /* For fstp insn. */
6173 if (i386_record_floats (gdbarch, &ir,
6174 I386_SAVE_FPU_REGS))
6175 return -1;
6176 }
7ad10968
HZ
6177 break;
6178 case 2:
25ea693b 6179 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6180 return -1;
0289bdd7
MS
6181 if (3 == (ir.reg & 7))
6182 {
6183 /* For fstp m64fp. */
6184 if (i386_record_floats (gdbarch, &ir,
6185 I386_SAVE_FPU_REGS))
6186 return -1;
6187 }
7ad10968
HZ
6188 break;
6189 case 3:
0289bdd7
MS
6190 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6191 {
6192 /* For fistp, fbld, fild, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir,
6194 I386_SAVE_FPU_REGS))
6195 return -1;
6196 }
6197 /* Fall through */
7ad10968 6198 default:
25ea693b 6199 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6200 return -1;
6201 break;
6202 }
6203 break;
6204 }
6205 break;
6206 case 0x0c:
dda83cd7
SM
6207 /* Insn fldenv. */
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_ENV_REG_STACK))
6210 return -1;
6211 break;
7ad10968 6212 case 0x0d:
dda83cd7
SM
6213 /* Insn fldcw. */
6214 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6215 return -1;
6216 break;
7ad10968 6217 case 0x2c:
dda83cd7
SM
6218 /* Insn frstor. */
6219 if (i386_record_floats (gdbarch, &ir,
6220 I386_SAVE_FPU_ENV_REG_STACK))
6221 return -1;
7ad10968
HZ
6222 break;
6223 case 0x0e:
6224 if (ir.dflag)
6225 {
25ea693b 6226 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6227 return -1;
6228 }
6229 else
6230 {
25ea693b 6231 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6232 return -1;
6233 }
6234 break;
6235 case 0x0f:
6236 case 0x2f:
25ea693b 6237 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6238 return -1;
dda83cd7
SM
6239 /* Insn fstp, fbstp. */
6240 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6241 return -1;
7ad10968
HZ
6242 break;
6243 case 0x1f:
6244 case 0x3e:
25ea693b 6245 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6246 return -1;
6247 break;
6248 case 0x2e:
6249 if (ir.dflag)
6250 {
25ea693b 6251 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6252 return -1;
955db0c0 6253 addr64 += 28;
7ad10968
HZ
6254 }
6255 else
6256 {
25ea693b 6257 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6258 return -1;
955db0c0 6259 addr64 += 14;
7ad10968 6260 }
25ea693b 6261 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6262 return -1;
0289bdd7
MS
6263 /* Insn fsave. */
6264 if (i386_record_floats (gdbarch, &ir,
6265 I386_SAVE_FPU_ENV_REG_STACK))
6266 return -1;
7ad10968
HZ
6267 break;
6268 case 0x3f:
25ea693b 6269 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6270 return -1;
0289bdd7
MS
6271 /* Insn fistp. */
6272 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6273 return -1;
7ad10968
HZ
6274 break;
6275 default:
6276 ir.addr -= 2;
6277 opcode = opcode << 8 | ir.modrm;
6278 goto no_support;
6279 break;
6280 }
6281 }
0289bdd7
MS
6282 /* Opcode is an extension of modR/M byte. */
6283 else
dda83cd7 6284 {
0289bdd7
MS
6285 switch (opcode)
6286 {
6287 case 0xd8:
6288 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6289 return -1;
6290 break;
6291 case 0xd9:
6292 if (0x0c == (ir.modrm >> 4))
6293 {
6294 if ((ir.modrm & 0x0f) <= 7)
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I386_SAVE_FPU_REGS))
6298 return -1;
6299 }
dda83cd7 6300 else
0289bdd7
MS
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep)))
6304 return -1;
6305 /* If only st(0) is changing, then we have already
6306 recorded. */
6307 if ((ir.modrm & 0x0f) - 0x08)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 ((ir.modrm & 0x0f) - 0x08)))
6312 return -1;
6313 }
6314 }
6315 }
dda83cd7
SM
6316 else
6317 {
0289bdd7
MS
6318 switch (ir.modrm)
6319 {
6320 case 0xe0:
6321 case 0xe1:
6322 case 0xf0:
6323 case 0xf5:
6324 case 0xf8:
6325 case 0xfa:
6326 case 0xfc:
6327 case 0xfe:
6328 case 0xff:
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep)))
6331 return -1;
6332 break;
6333 case 0xf1:
6334 case 0xf2:
6335 case 0xf3:
6336 case 0xf4:
6337 case 0xf6:
6338 case 0xf7:
6339 case 0xe8:
6340 case 0xe9:
6341 case 0xea:
6342 case 0xeb:
6343 case 0xec:
6344 case 0xed:
6345 case 0xee:
6346 case 0xf9:
6347 case 0xfb:
6348 if (i386_record_floats (gdbarch, &ir,
6349 I386_SAVE_FPU_REGS))
6350 return -1;
6351 break;
6352 case 0xfd:
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep)))
6355 return -1;
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) + 1))
6358 return -1;
6359 break;
6360 }
6361 }
dda83cd7
SM
6362 break;
6363 case 0xda:
6364 if (0xe9 == ir.modrm)
6365 {
0289bdd7
MS
6366 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6367 return -1;
dda83cd7
SM
6368 }
6369 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6370 {
0289bdd7
MS
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep)))
6373 return -1;
6374 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 (ir.modrm & 0x0f)))
6379 return -1;
6380 }
6381 else if ((ir.modrm & 0x0f) - 0x08)
6382 {
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_ST0_REGNUM (tdep) +
6385 ((ir.modrm & 0x0f) - 0x08)))
6386 return -1;
6387 }
dda83cd7
SM
6388 }
6389 break;
6390 case 0xdb:
6391 if (0xe3 == ir.modrm)
6392 {
0289bdd7
MS
6393 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6394 return -1;
dda83cd7
SM
6395 }
6396 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6397 {
0289bdd7
MS
6398 if (i386_record_floats (gdbarch, &ir,
6399 I387_ST0_REGNUM (tdep)))
6400 return -1;
6401 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6402 {
6403 if (i386_record_floats (gdbarch, &ir,
6404 I387_ST0_REGNUM (tdep) +
6405 (ir.modrm & 0x0f)))
6406 return -1;
6407 }
6408 else if ((ir.modrm & 0x0f) - 0x08)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 ((ir.modrm & 0x0f) - 0x08)))
6413 return -1;
6414 }
dda83cd7
SM
6415 }
6416 break;
6417 case 0xdc:
6418 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6419 || (0x0d == ir.modrm >> 4)
6420 || (0x0f == ir.modrm >> 4))
dda83cd7 6421 {
0289bdd7
MS
6422 if ((ir.modrm & 0x0f) <= 7)
6423 {
6424 if (i386_record_floats (gdbarch, &ir,
6425 I387_ST0_REGNUM (tdep) +
6426 (ir.modrm & 0x0f)))
6427 return -1;
6428 }
6429 else
6430 {
6431 if (i386_record_floats (gdbarch, &ir,
6432 I387_ST0_REGNUM (tdep) +
6433 ((ir.modrm & 0x0f) - 0x08)))
6434 return -1;
6435 }
dda83cd7 6436 }
0289bdd7 6437 break;
dda83cd7
SM
6438 case 0xdd:
6439 if (0x0c == ir.modrm >> 4)
6440 {
6441 if (i386_record_floats (gdbarch, &ir,
6442 I387_FTAG_REGNUM (tdep)))
6443 return -1;
6444 }
6445 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6446 {
6447 if ((ir.modrm & 0x0f) <= 7)
6448 {
0289bdd7
MS
6449 if (i386_record_floats (gdbarch, &ir,
6450 I387_ST0_REGNUM (tdep) +
6451 (ir.modrm & 0x0f)))
6452 return -1;
dda83cd7
SM
6453 }
6454 else
6455 {
6456 if (i386_record_floats (gdbarch, &ir,
0289bdd7 6457 I386_SAVE_FPU_REGS))
dda83cd7
SM
6458 return -1;
6459 }
6460 }
6461 break;
6462 case 0xde:
6463 if ((0x0c == ir.modrm >> 4)
0289bdd7
MS
6464 || (0x0e == ir.modrm >> 4)
6465 || (0x0f == ir.modrm >> 4)
6466 || (0xd9 == ir.modrm))
dda83cd7 6467 {
0289bdd7
MS
6468 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6469 return -1;
dda83cd7
SM
6470 }
6471 break;
6472 case 0xdf:
6473 if (0xe0 == ir.modrm)
6474 {
25ea693b
MM
6475 if (record_full_arch_list_add_reg (ir.regcache,
6476 I386_EAX_REGNUM))
0289bdd7 6477 return -1;
dda83cd7
SM
6478 }
6479 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6480 {
0289bdd7
MS
6481 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6482 return -1;
dda83cd7
SM
6483 }
6484 break;
0289bdd7
MS
6485 }
6486 }
7ad10968 6487 break;
7ad10968 6488 /* string ops */
a38bba38 6489 case 0xa4: /* movsS */
7ad10968 6490 case 0xa5:
a38bba38 6491 case 0xaa: /* stosS */
7ad10968 6492 case 0xab:
a38bba38 6493 case 0x6c: /* insS */
7ad10968 6494 case 0x6d:
cf648174 6495 regcache_raw_read_unsigned (ir.regcache,
dda83cd7
SM
6496 ir.regmap[X86_RECORD_RECX_REGNUM],
6497 &addr);
648d0c8b 6498 if (addr)
dda83cd7
SM
6499 {
6500 ULONGEST es, ds;
77d7dc92 6501
dda83cd7 6502 if ((opcode & 1) == 0)
77d7dc92 6503 ir.ot = OT_BYTE;
dda83cd7 6504 else
77d7dc92 6505 ir.ot = ir.dflag + OT_WORD;
dda83cd7
SM
6506 regcache_raw_read_unsigned (ir.regcache,
6507 ir.regmap[X86_RECORD_REDI_REGNUM],
6508 &addr);
6509
6510 regcache_raw_read_unsigned (ir.regcache,
6511 ir.regmap[X86_RECORD_ES_REGNUM],
6512 &es);
6513 regcache_raw_read_unsigned (ir.regcache,
6514 ir.regmap[X86_RECORD_DS_REGNUM],
6515 &ds);
6516 if (ir.aflag && (es != ds))
6517 {
6518 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6519 if (record_full_memory_query)
6520 {
6521 if (yquery (_("\
bb08c432
HZ
6522Process record ignores the memory change of instruction at address %s\n\
6523because it can't get the value of the segment register.\n\
6524Do you want to stop the program?"),
dda83cd7
SM
6525 paddress (gdbarch, ir.orig_addr)))
6526 return -1;
6527 }
6528 }
6529 else
6530 {
6531 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6532 return -1;
6533 }
6534
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 if (opcode == 0xa4 || opcode == 0xa5)
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6541 }
cf648174 6542 break;
7ad10968 6543
a38bba38 6544 case 0xa6: /* cmpsS */
cf648174 6545 case 0xa7:
25ea693b
MM
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6548 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6551 break;
6552
a38bba38 6553 case 0xac: /* lodsS */
7ad10968 6554 case 0xad:
25ea693b
MM
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6557 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6560 break;
6561
a38bba38 6562 case 0xae: /* scasS */
7ad10968 6563 case 0xaf:
25ea693b 6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6565 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6568 break;
6569
a38bba38 6570 case 0x6e: /* outsS */
cf648174 6571 case 0x6f:
25ea693b 6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6573 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
dda83cd7 6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
25ea693b 6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6576 break;
6577
a38bba38 6578 case 0xe4: /* port I/O */
7ad10968
HZ
6579 case 0xe5:
6580 case 0xec:
6581 case 0xed:
25ea693b
MM
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6584 break;
6585
6586 case 0xe6:
6587 case 0xe7:
6588 case 0xee:
6589 case 0xef:
6590 break;
6591
6592 /* control */
a38bba38
MS
6593 case 0xc2: /* ret im */
6594 case 0xc3: /* ret */
25ea693b
MM
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6597 break;
6598
a38bba38
MS
6599 case 0xca: /* lret im */
6600 case 0xcb: /* lret */
6601 case 0xcf: /* iret */
25ea693b
MM
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6605 break;
6606
a38bba38 6607 case 0xe8: /* call im */
cf648174 6608 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6609 ir.dflag = 2;
cf648174 6610 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6611 return -1;
7ad10968
HZ
6612 break;
6613
a38bba38 6614 case 0x9a: /* lcall im */
cf648174 6615 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6616 {
6617 ir.addr -= 1;
6618 goto no_support;
6619 }
25ea693b 6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 6621 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6622 return -1;
7ad10968
HZ
6623 break;
6624
a38bba38
MS
6625 case 0xe9: /* jmp im */
6626 case 0xea: /* ljmp im */
6627 case 0xeb: /* jmp Jb */
6628 case 0x70: /* jcc Jb */
7ad10968
HZ
6629 case 0x71:
6630 case 0x72:
6631 case 0x73:
6632 case 0x74:
6633 case 0x75:
6634 case 0x76:
6635 case 0x77:
6636 case 0x78:
6637 case 0x79:
6638 case 0x7a:
6639 case 0x7b:
6640 case 0x7c:
6641 case 0x7d:
6642 case 0x7e:
6643 case 0x7f:
a38bba38 6644 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6645 case 0x0f81:
6646 case 0x0f82:
6647 case 0x0f83:
6648 case 0x0f84:
6649 case 0x0f85:
6650 case 0x0f86:
6651 case 0x0f87:
6652 case 0x0f88:
6653 case 0x0f89:
6654 case 0x0f8a:
6655 case 0x0f8b:
6656 case 0x0f8c:
6657 case 0x0f8d:
6658 case 0x0f8e:
6659 case 0x0f8f:
6660 break;
6661
a38bba38 6662 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6663 case 0x0f91:
6664 case 0x0f92:
6665 case 0x0f93:
6666 case 0x0f94:
6667 case 0x0f95:
6668 case 0x0f96:
6669 case 0x0f97:
6670 case 0x0f98:
6671 case 0x0f99:
6672 case 0x0f9a:
6673 case 0x0f9b:
6674 case 0x0f9c:
6675 case 0x0f9d:
6676 case 0x0f9e:
6677 case 0x0f9f:
25ea693b 6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6679 ir.ot = OT_BYTE;
6680 if (i386_record_modrm (&ir))
6681 return -1;
6682 if (ir.mod == 3)
dda83cd7 6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
25ea693b 6684 : (ir.rm & 0x3));
7ad10968
HZ
6685 else
6686 {
6687 if (i386_record_lea_modrm (&ir))
6688 return -1;
6689 }
6690 break;
6691
a38bba38 6692 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6693 case 0x0f41:
6694 case 0x0f42:
6695 case 0x0f43:
6696 case 0x0f44:
6697 case 0x0f45:
6698 case 0x0f46:
6699 case 0x0f47:
6700 case 0x0f48:
6701 case 0x0f49:
6702 case 0x0f4a:
6703 case 0x0f4b:
6704 case 0x0f4c:
6705 case 0x0f4d:
6706 case 0x0f4e:
6707 case 0x0f4f:
6708 if (i386_record_modrm (&ir))
6709 return -1;
cf648174 6710 ir.reg |= rex_r;
7ad10968
HZ
6711 if (ir.dflag == OT_BYTE)
6712 ir.reg &= 0x3;
25ea693b 6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6714 break;
6715
6716 /* flags */
a38bba38 6717 case 0x9c: /* pushf */
25ea693b 6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 6719 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
dda83cd7 6720 ir.dflag = 2;
cf648174 6721 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
dda83cd7 6722 return -1;
7ad10968
HZ
6723 break;
6724
a38bba38 6725 case 0x9d: /* popf */
25ea693b
MM
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6728 break;
6729
a38bba38 6730 case 0x9e: /* sahf */
cf648174 6731 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6732 {
6733 ir.addr -= 1;
6734 goto no_support;
6735 }
d3f323f3 6736 /* FALLTHROUGH */
a38bba38
MS
6737 case 0xf5: /* cmc */
6738 case 0xf8: /* clc */
6739 case 0xf9: /* stc */
6740 case 0xfc: /* cld */
6741 case 0xfd: /* std */
25ea693b 6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6743 break;
6744
a38bba38 6745 case 0x9f: /* lahf */
cf648174 6746 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6747 {
6748 ir.addr -= 1;
6749 goto no_support;
6750 }
25ea693b
MM
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6753 break;
6754
6755 /* bit operations */
a38bba38 6756 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6757 ir.ot = ir.dflag + OT_WORD;
6758 if (i386_record_modrm (&ir))
6759 return -1;
6760 if (ir.reg < 4)
6761 {
cf648174 6762 ir.addr -= 2;
7ad10968
HZ
6763 opcode = opcode << 8 | ir.modrm;
6764 goto no_support;
6765 }
cf648174 6766 if (ir.reg != 4)
7ad10968 6767 {
dda83cd7
SM
6768 if (ir.mod == 3)
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6770 else
6771 {
cf648174 6772 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6773 return -1;
6774 }
6775 }
25ea693b 6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6777 break;
6778
a38bba38 6779 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6781 break;
6782
a38bba38
MS
6783 case 0x0fab: /* bts */
6784 case 0x0fb3: /* btr */
6785 case 0x0fbb: /* btc */
cf648174
HZ
6786 ir.ot = ir.dflag + OT_WORD;
6787 if (i386_record_modrm (&ir))
dda83cd7 6788 return -1;
cf648174 6789 if (ir.mod == 3)
dda83cd7 6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174 6791 else
dda83cd7
SM
6792 {
6793 uint64_t addr64;
6794 if (i386_record_lea_modrm_addr (&ir, &addr64))
6795 return -1;
6796 regcache_raw_read_unsigned (ir.regcache,
6797 ir.regmap[ir.reg | rex_r],
6798 &addr);
6799 switch (ir.dflag)
6800 {
6801 case 0:
6802 addr64 += ((int16_t) addr >> 4) << 4;
6803 break;
6804 case 1:
6805 addr64 += ((int32_t) addr >> 5) << 5;
6806 break;
6807 case 2:
6808 addr64 += ((int64_t) addr >> 6) << 6;
6809 break;
6810 }
6811 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6812 return -1;
6813 if (i386_record_lea_modrm (&ir))
6814 return -1;
6815 }
25ea693b 6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6817 break;
6818
a38bba38
MS
6819 case 0x0fbc: /* bsf */
6820 case 0x0fbd: /* bsr */
25ea693b
MM
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6823 break;
6824
6825 /* bcd */
a38bba38
MS
6826 case 0x27: /* daa */
6827 case 0x2f: /* das */
6828 case 0x37: /* aaa */
6829 case 0x3f: /* aas */
6830 case 0xd4: /* aam */
6831 case 0xd5: /* aad */
cf648174 6832 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6833 {
6834 ir.addr -= 1;
6835 goto no_support;
6836 }
25ea693b
MM
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6839 break;
6840
6841 /* misc */
a38bba38 6842 case 0x90: /* nop */
7ad10968
HZ
6843 if (prefixes & PREFIX_LOCK)
6844 {
6845 ir.addr -= 1;
6846 goto no_support;
6847 }
6848 break;
6849
a38bba38 6850 case 0x9b: /* fwait */
4ffa4fc7
PA
6851 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6852 return -1;
425b824a 6853 opcode = (uint32_t) opcode8;
0289bdd7
MS
6854 ir.addr++;
6855 goto reswitch;
7ad10968
HZ
6856 break;
6857
7ad10968 6858 /* XXX */
a38bba38 6859 case 0xcc: /* int3 */
a3c4230a 6860 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6861 "int3.\n"));
6862 ir.addr -= 1;
6863 goto no_support;
6864 break;
6865
7ad10968 6866 /* XXX */
a38bba38 6867 case 0xcd: /* int */
7ad10968
HZ
6868 {
6869 int ret;
425b824a 6870 uint8_t interrupt;
4ffa4fc7
PA
6871 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6872 return -1;
7ad10968 6873 ir.addr++;
425b824a 6874 if (interrupt != 0x80
a3c4230a 6875 || tdep->i386_intx80_record == NULL)
7ad10968 6876 {
a3c4230a 6877 printf_unfiltered (_("Process record does not support "
7ad10968 6878 "instruction int 0x%02x.\n"),
425b824a 6879 interrupt);
7ad10968
HZ
6880 ir.addr -= 2;
6881 goto no_support;
6882 }
a3c4230a 6883 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6884 if (ret)
6885 return ret;
6886 }
6887 break;
6888
7ad10968 6889 /* XXX */
a38bba38 6890 case 0xce: /* into */
a3c4230a 6891 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6892 "instruction into.\n"));
6893 ir.addr -= 1;
6894 goto no_support;
6895 break;
6896
a38bba38
MS
6897 case 0xfa: /* cli */
6898 case 0xfb: /* sti */
7ad10968
HZ
6899 break;
6900
a38bba38 6901 case 0x62: /* bound */
a3c4230a 6902 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6903 "instruction bound.\n"));
6904 ir.addr -= 1;
6905 goto no_support;
6906 break;
6907
a38bba38 6908 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6909 case 0x0fc9:
6910 case 0x0fca:
6911 case 0x0fcb:
6912 case 0x0fcc:
6913 case 0x0fcd:
6914 case 0x0fce:
6915 case 0x0fcf:
25ea693b 6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6917 break;
6918
a38bba38 6919 case 0xd6: /* salc */
cf648174 6920 if (ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
6921 {
6922 ir.addr -= 1;
6923 goto no_support;
6924 }
25ea693b
MM
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6926 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6927 break;
6928
a38bba38
MS
6929 case 0xe0: /* loopnz */
6930 case 0xe1: /* loopz */
6931 case 0xe2: /* loop */
6932 case 0xe3: /* jecxz */
25ea693b
MM
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6934 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6935 break;
6936
a38bba38 6937 case 0x0f30: /* wrmsr */
a3c4230a 6938 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6939 "instruction wrmsr.\n"));
6940 ir.addr -= 2;
6941 goto no_support;
6942 break;
6943
a38bba38 6944 case 0x0f32: /* rdmsr */
a3c4230a 6945 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6946 "instruction rdmsr.\n"));
6947 ir.addr -= 2;
6948 goto no_support;
6949 break;
6950
a38bba38 6951 case 0x0f31: /* rdtsc */
25ea693b
MM
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6953 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6954 break;
6955
a38bba38 6956 case 0x0f34: /* sysenter */
7ad10968
HZ
6957 {
6958 int ret;
dda83cd7
SM
6959 if (ir.regmap[X86_RECORD_R8_REGNUM])
6960 {
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
a3c4230a 6964 if (tdep->i386_sysenter_record == NULL)
7ad10968 6965 {
a3c4230a 6966 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6967 "instruction sysenter.\n"));
6968 ir.addr -= 2;
6969 goto no_support;
6970 }
a3c4230a 6971 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6972 if (ret)
6973 return ret;
6974 }
6975 break;
6976
a38bba38 6977 case 0x0f35: /* sysexit */
a3c4230a 6978 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6979 "instruction sysexit.\n"));
6980 ir.addr -= 2;
6981 goto no_support;
6982 break;
6983
a38bba38 6984 case 0x0f05: /* syscall */
cf648174
HZ
6985 {
6986 int ret;
a3c4230a 6987 if (tdep->i386_syscall_record == NULL)
cf648174 6988 {
a3c4230a 6989 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6990 "instruction syscall.\n"));
6991 ir.addr -= 2;
6992 goto no_support;
6993 }
a3c4230a 6994 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6995 if (ret)
6996 return ret;
6997 }
6998 break;
6999
a38bba38 7000 case 0x0f07: /* sysret */
a3c4230a 7001 printf_unfiltered (_("Process record does not support "
dda83cd7 7002 "instruction sysret.\n"));
cf648174
HZ
7003 ir.addr -= 2;
7004 goto no_support;
7005 break;
7006
a38bba38 7007 case 0x0fa2: /* cpuid */
25ea693b
MM
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7012 break;
7013
a38bba38 7014 case 0xf4: /* hlt */
a3c4230a 7015 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7016 "instruction hlt.\n"));
7017 ir.addr -= 1;
7018 goto no_support;
7019 break;
7020
7021 case 0x0f00:
7022 if (i386_record_modrm (&ir))
7023 return -1;
7024 switch (ir.reg)
7025 {
a38bba38
MS
7026 case 0: /* sldt */
7027 case 1: /* str */
7ad10968 7028 if (ir.mod == 3)
dda83cd7 7029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7030 else
7031 {
7032 ir.ot = OT_WORD;
7033 if (i386_record_lea_modrm (&ir))
7034 return -1;
7035 }
7036 break;
a38bba38
MS
7037 case 2: /* lldt */
7038 case 3: /* ltr */
7ad10968 7039 break;
a38bba38
MS
7040 case 4: /* verr */
7041 case 5: /* verw */
dda83cd7 7042 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7043 break;
7044 default:
7045 ir.addr -= 3;
7046 opcode = opcode << 8 | ir.modrm;
7047 goto no_support;
7048 break;
7049 }
7050 break;
7051
7052 case 0x0f01:
7053 if (i386_record_modrm (&ir))
7054 return -1;
7055 switch (ir.reg)
7056 {
a38bba38 7057 case 0: /* sgdt */
7ad10968 7058 {
955db0c0 7059 uint64_t addr64;
7ad10968
HZ
7060
7061 if (ir.mod == 3)
7062 {
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 }
d7877f7e 7067 if (ir.override >= 0)
7ad10968 7068 {
dda83cd7
SM
7069 if (record_full_memory_query)
7070 {
7071 if (yquery (_("\
bb08c432
HZ
7072Process record ignores the memory change of instruction at address %s\n\
7073because it can't get the value of the segment register.\n\
7074Do you want to stop the program?"),
dda83cd7 7075 paddress (gdbarch, ir.orig_addr)))
651ce16a 7076 return -1;
dda83cd7 7077 }
7ad10968
HZ
7078 }
7079 else
7080 {
955db0c0 7081 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7082 return -1;
25ea693b 7083 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7084 return -1;
955db0c0 7085 addr64 += 2;
dda83cd7
SM
7086 if (ir.regmap[X86_RECORD_R8_REGNUM])
7087 {
7088 if (record_full_arch_list_add_mem (addr64, 8))
cf648174 7089 return -1;
dda83cd7
SM
7090 }
7091 else
7092 {
7093 if (record_full_arch_list_add_mem (addr64, 4))
cf648174 7094 return -1;
dda83cd7 7095 }
7ad10968
HZ
7096 }
7097 }
7098 break;
7099 case 1:
7100 if (ir.mod == 3)
7101 {
7102 switch (ir.rm)
7103 {
a38bba38 7104 case 0: /* monitor */
7ad10968 7105 break;
a38bba38 7106 case 1: /* mwait */
25ea693b 7107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7108 break;
7109 default:
7110 ir.addr -= 3;
7111 opcode = opcode << 8 | ir.modrm;
7112 goto no_support;
7113 break;
7114 }
7115 }
7116 else
7117 {
7118 /* sidt */
d7877f7e 7119 if (ir.override >= 0)
7ad10968 7120 {
dda83cd7
SM
7121 if (record_full_memory_query)
7122 {
7123 if (yquery (_("\
bb08c432
HZ
7124Process record ignores the memory change of instruction at address %s\n\
7125because it can't get the value of the segment register.\n\
7126Do you want to stop the program?"),
dda83cd7
SM
7127 paddress (gdbarch, ir.orig_addr)))
7128 return -1;
7129 }
7ad10968
HZ
7130 }
7131 else
7132 {
955db0c0 7133 uint64_t addr64;
7ad10968 7134
955db0c0 7135 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7136 return -1;
25ea693b 7137 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7138 return -1;
955db0c0 7139 addr64 += 2;
dda83cd7
SM
7140 if (ir.regmap[X86_RECORD_R8_REGNUM])
7141 {
7142 if (record_full_arch_list_add_mem (addr64, 8))
7143 return -1;
7144 }
7145 else
7146 {
7147 if (record_full_arch_list_add_mem (addr64, 4))
7148 return -1;
7149 }
7ad10968
HZ
7150 }
7151 }
7152 break;
a38bba38 7153 case 2: /* lgdt */
3800e645
MS
7154 if (ir.mod == 3)
7155 {
7156 /* xgetbv */
7157 if (ir.rm == 0)
7158 {
25ea693b
MM
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7161 break;
7162 }
7163 /* xsetbv */
7164 else if (ir.rm == 1)
7165 break;
7166 }
da0e1563 7167 /* Fall through. */
a38bba38 7168 case 3: /* lidt */
7ad10968
HZ
7169 if (ir.mod == 3)
7170 {
7171 ir.addr -= 3;
7172 opcode = opcode << 8 | ir.modrm;
7173 goto no_support;
7174 }
7175 break;
a38bba38 7176 case 4: /* smsw */
7ad10968
HZ
7177 if (ir.mod == 3)
7178 {
25ea693b 7179 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7180 return -1;
7181 }
7182 else
7183 {
7184 ir.ot = OT_WORD;
7185 if (i386_record_lea_modrm (&ir))
7186 return -1;
7187 }
25ea693b 7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7189 break;
a38bba38 7190 case 6: /* lmsw */
25ea693b 7191 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7192 break;
a38bba38 7193 case 7: /* invlpg */
cf648174
HZ
7194 if (ir.mod == 3)
7195 {
7196 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7197 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174 7198 else
dda83cd7
SM
7199 {
7200 ir.addr -= 3;
7201 opcode = opcode << 8 | ir.modrm;
7202 goto no_support;
7203 }
cf648174
HZ
7204 }
7205 else
25ea693b 7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7207 break;
7208 default:
7209 ir.addr -= 3;
7210 opcode = opcode << 8 | ir.modrm;
7211 goto no_support;
7ad10968
HZ
7212 break;
7213 }
7214 break;
7215
a38bba38
MS
7216 case 0x0f08: /* invd */
7217 case 0x0f09: /* wbinvd */
7ad10968
HZ
7218 break;
7219
a38bba38 7220 case 0x63: /* arpl */
7ad10968
HZ
7221 if (i386_record_modrm (&ir))
7222 return -1;
cf648174 7223 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7
SM
7224 {
7225 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
25ea693b 7226 ? (ir.reg | rex_r) : ir.rm);
dda83cd7 7227 }
7ad10968 7228 else
dda83cd7
SM
7229 {
7230 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7231 if (i386_record_lea_modrm (&ir))
7232 return -1;
7233 }
cf648174 7234 if (!ir.regmap[X86_RECORD_R8_REGNUM])
dda83cd7 7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7236 break;
7237
a38bba38
MS
7238 case 0x0f02: /* lar */
7239 case 0x0f03: /* lsl */
7ad10968
HZ
7240 if (i386_record_modrm (&ir))
7241 return -1;
25ea693b
MM
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7244 break;
7245
7246 case 0x0f18:
cf648174
HZ
7247 if (i386_record_modrm (&ir))
7248 return -1;
7249 if (ir.mod == 3 && ir.reg == 3)
dda83cd7 7250 {
cf648174
HZ
7251 ir.addr -= 3;
7252 opcode = opcode << 8 | ir.modrm;
7253 goto no_support;
7254 }
7ad10968
HZ
7255 break;
7256
7ad10968
HZ
7257 case 0x0f19:
7258 case 0x0f1a:
7259 case 0x0f1b:
7260 case 0x0f1c:
7261 case 0x0f1d:
7262 case 0x0f1e:
7263 case 0x0f1f:
a38bba38 7264 /* nop (multi byte) */
7ad10968
HZ
7265 break;
7266
a38bba38
MS
7267 case 0x0f20: /* mov reg, crN */
7268 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7269 if (i386_record_modrm (&ir))
7270 return -1;
7271 if ((ir.modrm & 0xc0) != 0xc0)
7272 {
cf648174 7273 ir.addr -= 3;
7ad10968
HZ
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 switch (ir.reg)
7278 {
7279 case 0:
7280 case 2:
7281 case 3:
7282 case 4:
7283 case 8:
7284 if (opcode & 2)
25ea693b 7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7286 else
dda83cd7 7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7288 break;
7289 default:
cf648174 7290 ir.addr -= 3;
7ad10968
HZ
7291 opcode = opcode << 8 | ir.modrm;
7292 goto no_support;
7293 break;
7294 }
7295 break;
7296
a38bba38
MS
7297 case 0x0f21: /* mov reg, drN */
7298 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7299 if (i386_record_modrm (&ir))
7300 return -1;
7301 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7302 || ir.reg == 5 || ir.reg >= 8)
7303 {
cf648174 7304 ir.addr -= 3;
7ad10968
HZ
7305 opcode = opcode << 8 | ir.modrm;
7306 goto no_support;
7307 }
7308 if (opcode & 2)
dda83cd7 7309 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7310 else
25ea693b 7311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7312 break;
7313
a38bba38 7314 case 0x0f06: /* clts */
25ea693b 7315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7316 break;
7317
a3c4230a
HZ
7318 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7319
7320 case 0x0f0d: /* 3DNow! prefetch */
7321 break;
7322
7323 case 0x0f0e: /* 3DNow! femms */
7324 case 0x0f77: /* emms */
7325 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
dda83cd7 7326 goto no_support;
25ea693b 7327 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7328 break;
7329
7330 case 0x0f0f: /* 3DNow! data */
7331 if (i386_record_modrm (&ir))
7332 return -1;
4ffa4fc7
PA
7333 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7334 return -1;
a3c4230a
HZ
7335 ir.addr++;
7336 switch (opcode8)
dda83cd7
SM
7337 {
7338 case 0x0c: /* 3DNow! pi2fw */
7339 case 0x0d: /* 3DNow! pi2fd */
7340 case 0x1c: /* 3DNow! pf2iw */
7341 case 0x1d: /* 3DNow! pf2id */
7342 case 0x8a: /* 3DNow! pfnacc */
7343 case 0x8e: /* 3DNow! pfpnacc */
7344 case 0x90: /* 3DNow! pfcmpge */
7345 case 0x94: /* 3DNow! pfmin */
7346 case 0x96: /* 3DNow! pfrcp */
7347 case 0x97: /* 3DNow! pfrsqrt */
7348 case 0x9a: /* 3DNow! pfsub */
7349 case 0x9e: /* 3DNow! pfadd */
7350 case 0xa0: /* 3DNow! pfcmpgt */
7351 case 0xa4: /* 3DNow! pfmax */
7352 case 0xa6: /* 3DNow! pfrcpit1 */
7353 case 0xa7: /* 3DNow! pfrsqit1 */
7354 case 0xaa: /* 3DNow! pfsubr */
7355 case 0xae: /* 3DNow! pfacc */
7356 case 0xb0: /* 3DNow! pfcmpeq */
7357 case 0xb4: /* 3DNow! pfmul */
7358 case 0xb6: /* 3DNow! pfrcpit2 */
7359 case 0xb7: /* 3DNow! pmulhrw */
7360 case 0xbb: /* 3DNow! pswapd */
7361 case 0xbf: /* 3DNow! pavgusb */
7362 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7363 goto no_support_3dnow_data;
7364 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7365 break;
7366
7367 default:
a3c4230a 7368no_support_3dnow_data:
dda83cd7
SM
7369 opcode = (opcode << 8) | opcode8;
7370 goto no_support;
7371 break;
7372 }
a3c4230a
HZ
7373 break;
7374
7375 case 0x0faa: /* rsm */
25ea693b
MM
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7385 break;
7386
7387 case 0x0fae:
7388 if (i386_record_modrm (&ir))
7389 return -1;
7390 switch(ir.reg)
dda83cd7
SM
7391 {
7392 case 0: /* fxsave */
7393 {
7394 uint64_t tmpu64;
a3c4230a 7395
dda83cd7 7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7397 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7398 return -1;
dda83cd7
SM
7399 if (record_full_arch_list_add_mem (tmpu64, 512))
7400 return -1;
7401 }
7402 break;
a3c4230a 7403
dda83cd7
SM
7404 case 1: /* fxrstor */
7405 {
7406 int i;
a3c4230a 7407
dda83cd7 7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a 7409
dda83cd7
SM
7410 for (i = I387_MM0_REGNUM (tdep);
7411 i386_mmx_regnum_p (gdbarch, i); i++)
7412 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7413
dda83cd7
SM
7414 for (i = I387_XMM0_REGNUM (tdep);
7415 i386_xmm_regnum_p (gdbarch, i); i++)
7416 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a 7417
dda83cd7
SM
7418 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7419 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7420 I387_MXCSR_REGNUM(tdep));
a3c4230a 7421
dda83cd7
SM
7422 for (i = I387_ST0_REGNUM (tdep);
7423 i386_fp_regnum_p (gdbarch, i); i++)
7424 record_full_arch_list_add_reg (ir.regcache, i);
7425
7426 for (i = I387_FCTRL_REGNUM (tdep);
7427 i386_fpc_regnum_p (gdbarch, i); i++)
7428 record_full_arch_list_add_reg (ir.regcache, i);
7429 }
7430 break;
7431
7432 case 2: /* ldmxcsr */
7433 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7434 goto no_support;
7435 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7436 break;
7437
7438 case 3: /* stmxcsr */
7439 ir.ot = OT_LONG;
7440 if (i386_record_lea_modrm (&ir))
7441 return -1;
7442 break;
7443
7444 case 5: /* lfence */
7445 case 6: /* mfence */
7446 case 7: /* sfence clflush */
7447 break;
7448
7449 default:
7450 opcode = (opcode << 8) | ir.modrm;
7451 goto no_support;
7452 break;
7453 }
a3c4230a
HZ
7454 break;
7455
7456 case 0x0fc3: /* movnti */
7457 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7458 if (i386_record_modrm (&ir))
7459 return -1;
7460 if (ir.mod == 3)
dda83cd7 7461 goto no_support;
a3c4230a
HZ
7462 ir.reg |= rex_r;
7463 if (i386_record_lea_modrm (&ir))
dda83cd7 7464 return -1;
a3c4230a
HZ
7465 break;
7466
7467 /* Add prefix to opcode. */
7468 case 0x0f10:
7469 case 0x0f11:
7470 case 0x0f12:
7471 case 0x0f13:
7472 case 0x0f14:
7473 case 0x0f15:
7474 case 0x0f16:
7475 case 0x0f17:
7476 case 0x0f28:
7477 case 0x0f29:
7478 case 0x0f2a:
7479 case 0x0f2b:
7480 case 0x0f2c:
7481 case 0x0f2d:
7482 case 0x0f2e:
7483 case 0x0f2f:
7484 case 0x0f38:
7485 case 0x0f39:
7486 case 0x0f3a:
7487 case 0x0f50:
7488 case 0x0f51:
7489 case 0x0f52:
7490 case 0x0f53:
7491 case 0x0f54:
7492 case 0x0f55:
7493 case 0x0f56:
7494 case 0x0f57:
7495 case 0x0f58:
7496 case 0x0f59:
7497 case 0x0f5a:
7498 case 0x0f5b:
7499 case 0x0f5c:
7500 case 0x0f5d:
7501 case 0x0f5e:
7502 case 0x0f5f:
7503 case 0x0f60:
7504 case 0x0f61:
7505 case 0x0f62:
7506 case 0x0f63:
7507 case 0x0f64:
7508 case 0x0f65:
7509 case 0x0f66:
7510 case 0x0f67:
7511 case 0x0f68:
7512 case 0x0f69:
7513 case 0x0f6a:
7514 case 0x0f6b:
7515 case 0x0f6c:
7516 case 0x0f6d:
7517 case 0x0f6e:
7518 case 0x0f6f:
7519 case 0x0f70:
7520 case 0x0f71:
7521 case 0x0f72:
7522 case 0x0f73:
7523 case 0x0f74:
7524 case 0x0f75:
7525 case 0x0f76:
7526 case 0x0f7c:
7527 case 0x0f7d:
7528 case 0x0f7e:
7529 case 0x0f7f:
7530 case 0x0fb8:
7531 case 0x0fc2:
7532 case 0x0fc4:
7533 case 0x0fc5:
7534 case 0x0fc6:
7535 case 0x0fd0:
7536 case 0x0fd1:
7537 case 0x0fd2:
7538 case 0x0fd3:
7539 case 0x0fd4:
7540 case 0x0fd5:
7541 case 0x0fd6:
7542 case 0x0fd7:
7543 case 0x0fd8:
7544 case 0x0fd9:
7545 case 0x0fda:
7546 case 0x0fdb:
7547 case 0x0fdc:
7548 case 0x0fdd:
7549 case 0x0fde:
7550 case 0x0fdf:
7551 case 0x0fe0:
7552 case 0x0fe1:
7553 case 0x0fe2:
7554 case 0x0fe3:
7555 case 0x0fe4:
7556 case 0x0fe5:
7557 case 0x0fe6:
7558 case 0x0fe7:
7559 case 0x0fe8:
7560 case 0x0fe9:
7561 case 0x0fea:
7562 case 0x0feb:
7563 case 0x0fec:
7564 case 0x0fed:
7565 case 0x0fee:
7566 case 0x0fef:
7567 case 0x0ff0:
7568 case 0x0ff1:
7569 case 0x0ff2:
7570 case 0x0ff3:
7571 case 0x0ff4:
7572 case 0x0ff5:
7573 case 0x0ff6:
7574 case 0x0ff7:
7575 case 0x0ff8:
7576 case 0x0ff9:
7577 case 0x0ffa:
7578 case 0x0ffb:
7579 case 0x0ffc:
7580 case 0x0ffd:
7581 case 0x0ffe:
f9fda3f5
L
7582 /* Mask out PREFIX_ADDR. */
7583 switch ((prefixes & ~PREFIX_ADDR))
dda83cd7
SM
7584 {
7585 case PREFIX_REPNZ:
7586 opcode |= 0xf20000;
7587 break;
7588 case PREFIX_DATA:
7589 opcode |= 0x660000;
7590 break;
7591 case PREFIX_REPZ:
7592 opcode |= 0xf30000;
7593 break;
7594 }
a3c4230a
HZ
7595reswitch_prefix_add:
7596 switch (opcode)
dda83cd7
SM
7597 {
7598 case 0x0f38:
7599 case 0x660f38:
7600 case 0xf20f38:
7601 case 0x0f3a:
7602 case 0x660f3a:
7603 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4ffa4fc7 7604 return -1;
dda83cd7
SM
7605 ir.addr++;
7606 opcode = (uint32_t) opcode8 | opcode << 8;
7607 goto reswitch_prefix_add;
7608 break;
7609
7610 case 0x0f10: /* movups */
7611 case 0x660f10: /* movupd */
7612 case 0xf30f10: /* movss */
7613 case 0xf20f10: /* movsd */
7614 case 0x0f12: /* movlps */
7615 case 0x660f12: /* movlpd */
7616 case 0xf30f12: /* movsldup */
7617 case 0xf20f12: /* movddup */
7618 case 0x0f14: /* unpcklps */
7619 case 0x660f14: /* unpcklpd */
7620 case 0x0f15: /* unpckhps */
7621 case 0x660f15: /* unpckhpd */
7622 case 0x0f16: /* movhps */
7623 case 0x660f16: /* movhpd */
7624 case 0xf30f16: /* movshdup */
7625 case 0x0f28: /* movaps */
7626 case 0x660f28: /* movapd */
7627 case 0x0f2a: /* cvtpi2ps */
7628 case 0x660f2a: /* cvtpi2pd */
7629 case 0xf30f2a: /* cvtsi2ss */
7630 case 0xf20f2a: /* cvtsi2sd */
7631 case 0x0f2c: /* cvttps2pi */
7632 case 0x660f2c: /* cvttpd2pi */
7633 case 0x0f2d: /* cvtps2pi */
7634 case 0x660f2d: /* cvtpd2pi */
7635 case 0x660f3800: /* pshufb */
7636 case 0x660f3801: /* phaddw */
7637 case 0x660f3802: /* phaddd */
7638 case 0x660f3803: /* phaddsw */
7639 case 0x660f3804: /* pmaddubsw */
7640 case 0x660f3805: /* phsubw */
7641 case 0x660f3806: /* phsubd */
7642 case 0x660f3807: /* phsubsw */
7643 case 0x660f3808: /* psignb */
7644 case 0x660f3809: /* psignw */
7645 case 0x660f380a: /* psignd */
7646 case 0x660f380b: /* pmulhrsw */
7647 case 0x660f3810: /* pblendvb */
7648 case 0x660f3814: /* blendvps */
7649 case 0x660f3815: /* blendvpd */
7650 case 0x660f381c: /* pabsb */
7651 case 0x660f381d: /* pabsw */
7652 case 0x660f381e: /* pabsd */
7653 case 0x660f3820: /* pmovsxbw */
7654 case 0x660f3821: /* pmovsxbd */
7655 case 0x660f3822: /* pmovsxbq */
7656 case 0x660f3823: /* pmovsxwd */
7657 case 0x660f3824: /* pmovsxwq */
7658 case 0x660f3825: /* pmovsxdq */
7659 case 0x660f3828: /* pmuldq */
7660 case 0x660f3829: /* pcmpeqq */
7661 case 0x660f382a: /* movntdqa */
7662 case 0x660f3a08: /* roundps */
7663 case 0x660f3a09: /* roundpd */
7664 case 0x660f3a0a: /* roundss */
7665 case 0x660f3a0b: /* roundsd */
7666 case 0x660f3a0c: /* blendps */
7667 case 0x660f3a0d: /* blendpd */
7668 case 0x660f3a0e: /* pblendw */
7669 case 0x660f3a0f: /* palignr */
7670 case 0x660f3a20: /* pinsrb */
7671 case 0x660f3a21: /* insertps */
7672 case 0x660f3a22: /* pinsrd pinsrq */
7673 case 0x660f3a40: /* dpps */
7674 case 0x660f3a41: /* dppd */
7675 case 0x660f3a42: /* mpsadbw */
7676 case 0x660f3a60: /* pcmpestrm */
7677 case 0x660f3a61: /* pcmpestri */
7678 case 0x660f3a62: /* pcmpistrm */
7679 case 0x660f3a63: /* pcmpistri */
7680 case 0x0f51: /* sqrtps */
7681 case 0x660f51: /* sqrtpd */
7682 case 0xf20f51: /* sqrtsd */
7683 case 0xf30f51: /* sqrtss */
7684 case 0x0f52: /* rsqrtps */
7685 case 0xf30f52: /* rsqrtss */
7686 case 0x0f53: /* rcpps */
7687 case 0xf30f53: /* rcpss */
7688 case 0x0f54: /* andps */
7689 case 0x660f54: /* andpd */
7690 case 0x0f55: /* andnps */
7691 case 0x660f55: /* andnpd */
7692 case 0x0f56: /* orps */
7693 case 0x660f56: /* orpd */
7694 case 0x0f57: /* xorps */
7695 case 0x660f57: /* xorpd */
7696 case 0x0f58: /* addps */
7697 case 0x660f58: /* addpd */
7698 case 0xf20f58: /* addsd */
7699 case 0xf30f58: /* addss */
7700 case 0x0f59: /* mulps */
7701 case 0x660f59: /* mulpd */
7702 case 0xf20f59: /* mulsd */
7703 case 0xf30f59: /* mulss */
7704 case 0x0f5a: /* cvtps2pd */
7705 case 0x660f5a: /* cvtpd2ps */
7706 case 0xf20f5a: /* cvtsd2ss */
7707 case 0xf30f5a: /* cvtss2sd */
7708 case 0x0f5b: /* cvtdq2ps */
7709 case 0x660f5b: /* cvtps2dq */
7710 case 0xf30f5b: /* cvttps2dq */
7711 case 0x0f5c: /* subps */
7712 case 0x660f5c: /* subpd */
7713 case 0xf20f5c: /* subsd */
7714 case 0xf30f5c: /* subss */
7715 case 0x0f5d: /* minps */
7716 case 0x660f5d: /* minpd */
7717 case 0xf20f5d: /* minsd */
7718 case 0xf30f5d: /* minss */
7719 case 0x0f5e: /* divps */
7720 case 0x660f5e: /* divpd */
7721 case 0xf20f5e: /* divsd */
7722 case 0xf30f5e: /* divss */
7723 case 0x0f5f: /* maxps */
7724 case 0x660f5f: /* maxpd */
7725 case 0xf20f5f: /* maxsd */
7726 case 0xf30f5f: /* maxss */
7727 case 0x660f60: /* punpcklbw */
7728 case 0x660f61: /* punpcklwd */
7729 case 0x660f62: /* punpckldq */
7730 case 0x660f63: /* packsswb */
7731 case 0x660f64: /* pcmpgtb */
7732 case 0x660f65: /* pcmpgtw */
7733 case 0x660f66: /* pcmpgtd */
7734 case 0x660f67: /* packuswb */
7735 case 0x660f68: /* punpckhbw */
7736 case 0x660f69: /* punpckhwd */
7737 case 0x660f6a: /* punpckhdq */
7738 case 0x660f6b: /* packssdw */
7739 case 0x660f6c: /* punpcklqdq */
7740 case 0x660f6d: /* punpckhqdq */
7741 case 0x660f6e: /* movd */
7742 case 0x660f6f: /* movdqa */
7743 case 0xf30f6f: /* movdqu */
7744 case 0x660f70: /* pshufd */
7745 case 0xf20f70: /* pshuflw */
7746 case 0xf30f70: /* pshufhw */
7747 case 0x660f74: /* pcmpeqb */
7748 case 0x660f75: /* pcmpeqw */
7749 case 0x660f76: /* pcmpeqd */
7750 case 0x660f7c: /* haddpd */
7751 case 0xf20f7c: /* haddps */
7752 case 0x660f7d: /* hsubpd */
7753 case 0xf20f7d: /* hsubps */
7754 case 0xf30f7e: /* movq */
7755 case 0x0fc2: /* cmpps */
7756 case 0x660fc2: /* cmppd */
7757 case 0xf20fc2: /* cmpsd */
7758 case 0xf30fc2: /* cmpss */
7759 case 0x660fc4: /* pinsrw */
7760 case 0x0fc6: /* shufps */
7761 case 0x660fc6: /* shufpd */
7762 case 0x660fd0: /* addsubpd */
7763 case 0xf20fd0: /* addsubps */
7764 case 0x660fd1: /* psrlw */
7765 case 0x660fd2: /* psrld */
7766 case 0x660fd3: /* psrlq */
7767 case 0x660fd4: /* paddq */
7768 case 0x660fd5: /* pmullw */
7769 case 0xf30fd6: /* movq2dq */
7770 case 0x660fd8: /* psubusb */
7771 case 0x660fd9: /* psubusw */
7772 case 0x660fda: /* pminub */
7773 case 0x660fdb: /* pand */
7774 case 0x660fdc: /* paddusb */
7775 case 0x660fdd: /* paddusw */
7776 case 0x660fde: /* pmaxub */
7777 case 0x660fdf: /* pandn */
7778 case 0x660fe0: /* pavgb */
7779 case 0x660fe1: /* psraw */
7780 case 0x660fe2: /* psrad */
7781 case 0x660fe3: /* pavgw */
7782 case 0x660fe4: /* pmulhuw */
7783 case 0x660fe5: /* pmulhw */
7784 case 0x660fe6: /* cvttpd2dq */
7785 case 0xf20fe6: /* cvtpd2dq */
7786 case 0xf30fe6: /* cvtdq2pd */
7787 case 0x660fe8: /* psubsb */
7788 case 0x660fe9: /* psubsw */
7789 case 0x660fea: /* pminsw */
7790 case 0x660feb: /* por */
7791 case 0x660fec: /* paddsb */
7792 case 0x660fed: /* paddsw */
7793 case 0x660fee: /* pmaxsw */
7794 case 0x660fef: /* pxor */
7795 case 0xf20ff0: /* lddqu */
7796 case 0x660ff1: /* psllw */
7797 case 0x660ff2: /* pslld */
7798 case 0x660ff3: /* psllq */
7799 case 0x660ff4: /* pmuludq */
7800 case 0x660ff5: /* pmaddwd */
7801 case 0x660ff6: /* psadbw */
7802 case 0x660ff8: /* psubb */
7803 case 0x660ff9: /* psubw */
7804 case 0x660ffa: /* psubd */
7805 case 0x660ffb: /* psubq */
7806 case 0x660ffc: /* paddb */
7807 case 0x660ffd: /* paddw */
7808 case 0x660ffe: /* paddd */
7809 if (i386_record_modrm (&ir))
a3c4230a 7810 return -1;
dda83cd7
SM
7811 ir.reg |= rex_r;
7812 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7813 goto no_support;
7814 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7815 I387_XMM0_REGNUM (tdep) + ir.reg);
dda83cd7
SM
7816 if ((opcode & 0xfffffffc) == 0x660f3a60)
7817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7818 break;
7819
7820 case 0x0f11: /* movups */
7821 case 0x660f11: /* movupd */
7822 case 0xf30f11: /* movss */
7823 case 0xf20f11: /* movsd */
7824 case 0x0f13: /* movlps */
7825 case 0x660f13: /* movlpd */
7826 case 0x0f17: /* movhps */
7827 case 0x660f17: /* movhpd */
7828 case 0x0f29: /* movaps */
7829 case 0x660f29: /* movapd */
7830 case 0x660f3a14: /* pextrb */
7831 case 0x660f3a15: /* pextrw */
7832 case 0x660f3a16: /* pextrd pextrq */
7833 case 0x660f3a17: /* extractps */
7834 case 0x660f7f: /* movdqa */
7835 case 0xf30f7f: /* movdqu */
7836 if (i386_record_modrm (&ir))
a3c4230a 7837 return -1;
dda83cd7
SM
7838 if (ir.mod == 3)
7839 {
7840 if (opcode == 0x0f13 || opcode == 0x660f13
7841 || opcode == 0x0f17 || opcode == 0x660f17)
7842 goto no_support;
7843 ir.rm |= ir.rex_b;
7844 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 7845 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
7846 goto no_support;
7847 record_full_arch_list_add_reg (ir.regcache,
25ea693b 7848 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
7849 }
7850 else
7851 {
7852 switch (opcode)
7853 {
7854 case 0x660f3a14:
7855 ir.ot = OT_BYTE;
7856 break;
7857 case 0x660f3a15:
7858 ir.ot = OT_WORD;
7859 break;
7860 case 0x660f3a16:
7861 ir.ot = OT_LONG;
7862 break;
7863 case 0x660f3a17:
7864 ir.ot = OT_QUAD;
7865 break;
7866 default:
7867 ir.ot = OT_DQUAD;
7868 break;
7869 }
7870 if (i386_record_lea_modrm (&ir))
7871 return -1;
7872 }
7873 break;
7874
7875 case 0x0f2b: /* movntps */
7876 case 0x660f2b: /* movntpd */
7877 case 0x0fe7: /* movntq */
7878 case 0x660fe7: /* movntdq */
7879 if (ir.mod == 3)
7880 goto no_support;
7881 if (opcode == 0x0fe7)
7882 ir.ot = OT_QUAD;
7883 else
7884 ir.ot = OT_DQUAD;
7885 if (i386_record_lea_modrm (&ir))
a3c4230a 7886 return -1;
dda83cd7
SM
7887 break;
7888
7889 case 0xf30f2c: /* cvttss2si */
7890 case 0xf20f2c: /* cvttsd2si */
7891 case 0xf30f2d: /* cvtss2si */
7892 case 0xf20f2d: /* cvtsd2si */
7893 case 0xf20f38f0: /* crc32 */
7894 case 0xf20f38f1: /* crc32 */
7895 case 0x0f50: /* movmskps */
7896 case 0x660f50: /* movmskpd */
7897 case 0x0fc5: /* pextrw */
7898 case 0x660fc5: /* pextrw */
7899 case 0x0fd7: /* pmovmskb */
7900 case 0x660fd7: /* pmovmskb */
7901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7902 break;
7903
7904 case 0x0f3800: /* pshufb */
7905 case 0x0f3801: /* phaddw */
7906 case 0x0f3802: /* phaddd */
7907 case 0x0f3803: /* phaddsw */
7908 case 0x0f3804: /* pmaddubsw */
7909 case 0x0f3805: /* phsubw */
7910 case 0x0f3806: /* phsubd */
7911 case 0x0f3807: /* phsubsw */
7912 case 0x0f3808: /* psignb */
7913 case 0x0f3809: /* psignw */
7914 case 0x0f380a: /* psignd */
7915 case 0x0f380b: /* pmulhrsw */
7916 case 0x0f381c: /* pabsb */
7917 case 0x0f381d: /* pabsw */
7918 case 0x0f381e: /* pabsd */
7919 case 0x0f382b: /* packusdw */
7920 case 0x0f3830: /* pmovzxbw */
7921 case 0x0f3831: /* pmovzxbd */
7922 case 0x0f3832: /* pmovzxbq */
7923 case 0x0f3833: /* pmovzxwd */
7924 case 0x0f3834: /* pmovzxwq */
7925 case 0x0f3835: /* pmovzxdq */
7926 case 0x0f3837: /* pcmpgtq */
7927 case 0x0f3838: /* pminsb */
7928 case 0x0f3839: /* pminsd */
7929 case 0x0f383a: /* pminuw */
7930 case 0x0f383b: /* pminud */
7931 case 0x0f383c: /* pmaxsb */
7932 case 0x0f383d: /* pmaxsd */
7933 case 0x0f383e: /* pmaxuw */
7934 case 0x0f383f: /* pmaxud */
7935 case 0x0f3840: /* pmulld */
7936 case 0x0f3841: /* phminposuw */
7937 case 0x0f3a0f: /* palignr */
7938 case 0x0f60: /* punpcklbw */
7939 case 0x0f61: /* punpcklwd */
7940 case 0x0f62: /* punpckldq */
7941 case 0x0f63: /* packsswb */
7942 case 0x0f64: /* pcmpgtb */
7943 case 0x0f65: /* pcmpgtw */
7944 case 0x0f66: /* pcmpgtd */
7945 case 0x0f67: /* packuswb */
7946 case 0x0f68: /* punpckhbw */
7947 case 0x0f69: /* punpckhwd */
7948 case 0x0f6a: /* punpckhdq */
7949 case 0x0f6b: /* packssdw */
7950 case 0x0f6e: /* movd */
7951 case 0x0f6f: /* movq */
7952 case 0x0f70: /* pshufw */
7953 case 0x0f74: /* pcmpeqb */
7954 case 0x0f75: /* pcmpeqw */
7955 case 0x0f76: /* pcmpeqd */
7956 case 0x0fc4: /* pinsrw */
7957 case 0x0fd1: /* psrlw */
7958 case 0x0fd2: /* psrld */
7959 case 0x0fd3: /* psrlq */
7960 case 0x0fd4: /* paddq */
7961 case 0x0fd5: /* pmullw */
7962 case 0xf20fd6: /* movdq2q */
7963 case 0x0fd8: /* psubusb */
7964 case 0x0fd9: /* psubusw */
7965 case 0x0fda: /* pminub */
7966 case 0x0fdb: /* pand */
7967 case 0x0fdc: /* paddusb */
7968 case 0x0fdd: /* paddusw */
7969 case 0x0fde: /* pmaxub */
7970 case 0x0fdf: /* pandn */
7971 case 0x0fe0: /* pavgb */
7972 case 0x0fe1: /* psraw */
7973 case 0x0fe2: /* psrad */
7974 case 0x0fe3: /* pavgw */
7975 case 0x0fe4: /* pmulhuw */
7976 case 0x0fe5: /* pmulhw */
7977 case 0x0fe8: /* psubsb */
7978 case 0x0fe9: /* psubsw */
7979 case 0x0fea: /* pminsw */
7980 case 0x0feb: /* por */
7981 case 0x0fec: /* paddsb */
7982 case 0x0fed: /* paddsw */
7983 case 0x0fee: /* pmaxsw */
7984 case 0x0fef: /* pxor */
7985 case 0x0ff1: /* psllw */
7986 case 0x0ff2: /* pslld */
7987 case 0x0ff3: /* psllq */
7988 case 0x0ff4: /* pmuludq */
7989 case 0x0ff5: /* pmaddwd */
7990 case 0x0ff6: /* psadbw */
7991 case 0x0ff8: /* psubb */
7992 case 0x0ff9: /* psubw */
7993 case 0x0ffa: /* psubd */
7994 case 0x0ffb: /* psubq */
7995 case 0x0ffc: /* paddb */
7996 case 0x0ffd: /* paddw */
7997 case 0x0ffe: /* paddd */
7998 if (i386_record_modrm (&ir))
7999 return -1;
8000 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8001 goto no_support;
8002 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8003 I387_MM0_REGNUM (tdep) + ir.reg);
dda83cd7 8004 break;
a3c4230a 8005
dda83cd7
SM
8006 case 0x0f71: /* psllw */
8007 case 0x0f72: /* pslld */
8008 case 0x0f73: /* psllq */
8009 if (i386_record_modrm (&ir))
a3c4230a 8010 return -1;
dda83cd7
SM
8011 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8012 goto no_support;
8013 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8014 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7 8015 break;
a3c4230a 8016
dda83cd7
SM
8017 case 0x660f71: /* psllw */
8018 case 0x660f72: /* pslld */
8019 case 0x660f73: /* psllq */
8020 if (i386_record_modrm (&ir))
a3c4230a 8021 return -1;
dda83cd7
SM
8022 ir.rm |= ir.rex_b;
8023 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8024 goto no_support;
8025 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8026 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7 8027 break;
a3c4230a 8028
dda83cd7
SM
8029 case 0x0f7e: /* movd */
8030 case 0x660f7e: /* movd */
8031 if (i386_record_modrm (&ir))
a3c4230a 8032 return -1;
dda83cd7
SM
8033 if (ir.mod == 3)
8034 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8035 else
8036 {
8037 if (ir.dflag == 2)
8038 ir.ot = OT_QUAD;
8039 else
8040 ir.ot = OT_LONG;
8041 if (i386_record_lea_modrm (&ir))
8042 return -1;
8043 }
8044 break;
8045
8046 case 0x0f7f: /* movq */
8047 if (i386_record_modrm (&ir))
a3c4230a 8048 return -1;
dda83cd7
SM
8049 if (ir.mod == 3)
8050 {
8051 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8052 goto no_support;
8053 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8054 I387_MM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8055 }
8056 else
8057 {
8058 ir.ot = OT_QUAD;
8059 if (i386_record_lea_modrm (&ir))
8060 return -1;
8061 }
8062 break;
8063
8064 case 0xf30fb8: /* popcnt */
8065 if (i386_record_modrm (&ir))
a3c4230a 8066 return -1;
dda83cd7
SM
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8069 break;
a3c4230a 8070
dda83cd7
SM
8071 case 0x660fd6: /* movq */
8072 if (i386_record_modrm (&ir))
a3c4230a 8073 return -1;
dda83cd7
SM
8074 if (ir.mod == 3)
8075 {
8076 ir.rm |= ir.rex_b;
8077 if (!i386_xmm_regnum_p (gdbarch,
1777feb0 8078 I387_XMM0_REGNUM (tdep) + ir.rm))
dda83cd7
SM
8079 goto no_support;
8080 record_full_arch_list_add_reg (ir.regcache,
25ea693b 8081 I387_XMM0_REGNUM (tdep) + ir.rm);
dda83cd7
SM
8082 }
8083 else
8084 {
8085 ir.ot = OT_QUAD;
8086 if (i386_record_lea_modrm (&ir))
8087 return -1;
8088 }
8089 break;
8090
8091 case 0x660f3817: /* ptest */
8092 case 0x0f2e: /* ucomiss */
8093 case 0x660f2e: /* ucomisd */
8094 case 0x0f2f: /* comiss */
8095 case 0x660f2f: /* comisd */
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8097 break;
8098
8099 case 0x0ff7: /* maskmovq */
8100 regcache_raw_read_unsigned (ir.regcache,
8101 ir.regmap[X86_RECORD_REDI_REGNUM],
8102 &addr);
8103 if (record_full_arch_list_add_mem (addr, 64))
8104 return -1;
8105 break;
8106
8107 case 0x660ff7: /* maskmovdqu */
8108 regcache_raw_read_unsigned (ir.regcache,
8109 ir.regmap[X86_RECORD_REDI_REGNUM],
8110 &addr);
8111 if (record_full_arch_list_add_mem (addr, 128))
8112 return -1;
8113 break;
8114
8115 default:
8116 goto no_support;
8117 break;
8118 }
a3c4230a 8119 break;
7ad10968
HZ
8120
8121 default:
7ad10968
HZ
8122 goto no_support;
8123 break;
8124 }
8125
cf648174 8126 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8128 if (record_full_arch_list_add_end ())
7ad10968
HZ
8129 return -1;
8130
8131 return 0;
8132
01fe1b41 8133 no_support:
a3c4230a 8134 printf_unfiltered (_("Process record does not support instruction 0x%02x "
dda83cd7
SM
8135 "at address %s.\n"),
8136 (unsigned int) (opcode),
8137 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8138 return -1;
8139}
8140
cf648174
HZ
8141static const int i386_record_regmap[] =
8142{
8143 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8144 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8145 0, 0, 0, 0, 0, 0, 0, 0,
8146 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8147 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8148};
8149
7a697b8d 8150/* Check that the given address appears suitable for a fast
405f8e94 8151 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8152 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8153 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8154 middle of the tracepoint jump. On x86, it may be possible to use
8155 4-byte jumps with a 2-byte offset to a trampoline located in the
8156 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8157 of instruction to replace, and 0 if not, plus an explanatory
8158 string. */
8159
8160static int
6b940e6a 8161i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8162 std::string *msg)
7a697b8d
SS
8163{
8164 int len, jumplen;
7a697b8d 8165
405f8e94
SS
8166 /* Ask the target for the minimum instruction length supported. */
8167 jumplen = target_get_min_fast_tracepoint_insn_len ();
8168
8169 if (jumplen < 0)
8170 {
8171 /* If the target does not support the get_min_fast_tracepoint_insn_len
8172 operation, assume that fast tracepoints will always be implemented
8173 using 4-byte relative jumps on both x86 and x86-64. */
8174 jumplen = 5;
8175 }
8176 else if (jumplen == 0)
8177 {
8178 /* If the target does support get_min_fast_tracepoint_insn_len but
8179 returns zero, then the IPA has not loaded yet. In this case,
8180 we optimistically assume that truncated 2-byte relative jumps
8181 will be available on x86, and compensate later if this assumption
8182 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8183 jumps will always be used. */
8184 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8185 }
7a697b8d 8186
7a697b8d 8187 /* Check for fit. */
be85ce7d 8188 len = gdb_insn_length (gdbarch, addr);
405f8e94 8189
7a697b8d
SS
8190 if (len < jumplen)
8191 {
8192 /* Return a bit of target-specific detail to add to the caller's
8193 generic failure message. */
8194 if (msg)
281d762b
TT
8195 *msg = string_printf (_("; instruction is only %d bytes long, "
8196 "need at least %d bytes for the jump"),
8197 len, jumplen);
7a697b8d
SS
8198 return 0;
8199 }
405f8e94
SS
8200 else
8201 {
8202 if (msg)
281d762b 8203 msg->clear ();
405f8e94
SS
8204 return 1;
8205 }
7a697b8d
SS
8206}
8207
00d5215e
UW
8208/* Return a floating-point format for a floating-point variable of
8209 length LEN in bits. If non-NULL, NAME is the name of its type.
8210 If no suitable type is found, return NULL. */
8211
cb8c24b6 8212static const struct floatformat **
00d5215e
UW
8213i386_floatformat_for_type (struct gdbarch *gdbarch,
8214 const char *name, int len)
8215{
8216 if (len == 128 && name)
8217 if (strcmp (name, "__float128") == 0
8218 || strcmp (name, "_Float128") == 0
34d11c68
AB
8219 || strcmp (name, "complex _Float128") == 0
8220 || strcmp (name, "complex(kind=16)") == 0
e56798df
AKS
8221 || strcmp (name, "quad complex") == 0
8222 || strcmp (name, "real(kind=16)") == 0
8223 || strcmp (name, "real*16") == 0)
00d5215e
UW
8224 return floatformats_ia64_quad;
8225
8226 return default_floatformat_for_type (gdbarch, name, len);
8227}
8228
90884b2b
L
8229static int
8230i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8231 struct tdesc_arch_data *tdesc_data)
8232{
8233 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8234 const struct tdesc_feature *feature_core;
01f9f808
MS
8235
8236 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8237 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8238 int i, num_regs, valid_p;
8239
8240 if (! tdesc_has_registers (tdesc))
8241 return 0;
8242
8243 /* Get core registers. */
8244 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8245 if (feature_core == NULL)
8246 return 0;
90884b2b
L
8247
8248 /* Get SSE registers. */
c131fcee 8249 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8250
c131fcee
L
8251 /* Try AVX registers. */
8252 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8253
1dbcd68c
WT
8254 /* Try MPX registers. */
8255 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8256
01f9f808
MS
8257 /* Try AVX512 registers. */
8258 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8259
1163a4b7
JB
8260 /* Try segment base registers. */
8261 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8262
51547df6
MS
8263 /* Try PKEYS */
8264 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8265
90884b2b
L
8266 valid_p = 1;
8267
c131fcee 8268 /* The XCR0 bits. */
01f9f808
MS
8269 if (feature_avx512)
8270 {
8271 /* AVX512 register description requires AVX register description. */
8272 if (!feature_avx)
8273 return 0;
8274
a1fa17ee 8275 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8276
8277 /* It may have been set by OSABI initialization function. */
8278 if (tdep->k0_regnum < 0)
8279 {
8280 tdep->k_register_names = i386_k_names;
8281 tdep->k0_regnum = I386_K0_REGNUM;
8282 }
8283
8284 for (i = 0; i < I387_NUM_K_REGS; i++)
8285 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8286 tdep->k0_regnum + i,
8287 i386_k_names[i]);
8288
8289 if (tdep->num_zmm_regs == 0)
8290 {
8291 tdep->zmmh_register_names = i386_zmmh_names;
8292 tdep->num_zmm_regs = 8;
8293 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8294 }
8295
8296 for (i = 0; i < tdep->num_zmm_regs; i++)
8297 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8298 tdep->zmm0h_regnum + i,
8299 tdep->zmmh_register_names[i]);
8300
8301 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8302 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8303 tdep->xmm16_regnum + i,
8304 tdep->xmm_avx512_register_names[i]);
8305
8306 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8307 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8308 tdep->ymm16h_regnum + i,
8309 tdep->ymm16h_register_names[i]);
8310 }
c131fcee
L
8311 if (feature_avx)
8312 {
3a13a53b
L
8313 /* AVX register description requires SSE register description. */
8314 if (!feature_sse)
8315 return 0;
8316
01f9f808 8317 if (!feature_avx512)
df7e5265 8318 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8319
8320 /* It may have been set by OSABI initialization function. */
8321 if (tdep->num_ymm_regs == 0)
8322 {
8323 tdep->ymmh_register_names = i386_ymmh_names;
8324 tdep->num_ymm_regs = 8;
8325 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8326 }
8327
8328 for (i = 0; i < tdep->num_ymm_regs; i++)
8329 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8330 tdep->ymm0h_regnum + i,
8331 tdep->ymmh_register_names[i]);
8332 }
3a13a53b 8333 else if (feature_sse)
df7e5265 8334 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8335 else
8336 {
df7e5265 8337 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8338 tdep->num_xmm_regs = 0;
8339 }
c131fcee 8340
90884b2b
L
8341 num_regs = tdep->num_core_regs;
8342 for (i = 0; i < num_regs; i++)
8343 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8344 tdep->register_names[i]);
8345
3a13a53b
L
8346 if (feature_sse)
8347 {
8348 /* Need to include %mxcsr, so add one. */
8349 num_regs += tdep->num_xmm_regs + 1;
8350 for (; i < num_regs; i++)
8351 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8352 tdep->register_names[i]);
8353 }
90884b2b 8354
1dbcd68c
WT
8355 if (feature_mpx)
8356 {
df7e5265 8357 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8358
8359 if (tdep->bnd0r_regnum < 0)
8360 {
8361 tdep->mpx_register_names = i386_mpx_names;
8362 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8363 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8364 }
8365
8366 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8367 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8368 I387_BND0R_REGNUM (tdep) + i,
8369 tdep->mpx_register_names[i]);
8370 }
8371
1163a4b7
JB
8372 if (feature_segments)
8373 {
8374 if (tdep->fsbase_regnum < 0)
8375 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8376 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8377 tdep->fsbase_regnum, "fs_base");
8378 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8379 tdep->fsbase_regnum + 1, "gs_base");
8380 }
8381
51547df6
MS
8382 if (feature_pkeys)
8383 {
8384 tdep->xcr0 |= X86_XSTATE_PKRU;
8385 if (tdep->pkru_regnum < 0)
8386 {
8387 tdep->pkeys_register_names = i386_pkeys_names;
8388 tdep->pkru_regnum = I386_PKRU_REGNUM;
8389 tdep->num_pkeys_regs = 1;
8390 }
8391
8392 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8393 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8394 I387_PKRU_REGNUM (tdep) + i,
8395 tdep->pkeys_register_names[i]);
8396 }
8397
90884b2b
L
8398 return valid_p;
8399}
8400
2b4424c3
TT
8401\f
8402
8403/* Implement the type_align gdbarch function. */
8404
8405static ULONGEST
8406i386_type_align (struct gdbarch *gdbarch, struct type *type)
8407{
8408 type = check_typedef (type);
8409
8410 if (gdbarch_ptr_bit (gdbarch) == 32)
8411 {
78134374
SM
8412 if ((type->code () == TYPE_CODE_INT
8413 || type->code () == TYPE_CODE_FLT)
2b4424c3
TT
8414 && TYPE_LENGTH (type) > 4)
8415 return 4;
8416
8417 /* Handle x86's funny long double. */
78134374 8418 if (type->code () == TYPE_CODE_FLT
2b4424c3
TT
8419 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8420 return 4;
8421 }
8422
5561fc30 8423 return 0;
2b4424c3
TT
8424}
8425
7ad10968 8426\f
ad9eb1fd
DE
8427/* Note: This is called for both i386 and amd64. */
8428
7ad10968
HZ
8429static struct gdbarch *
8430i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8431{
8432 struct gdbarch_tdep *tdep;
8433 struct gdbarch *gdbarch;
90884b2b 8434 const struct target_desc *tdesc;
1ba53b71 8435 int mm0_regnum;
c131fcee 8436 int ymm0_regnum;
1dbcd68c
WT
8437 int bnd0_regnum;
8438 int num_bnd_cooked;
7ad10968
HZ
8439
8440 /* If there is already a candidate, use it. */
8441 arches = gdbarch_list_lookup_by_info (arches, &info);
8442 if (arches != NULL)
8443 return arches->gdbarch;
8444
ad9eb1fd 8445 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8446 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8447 gdbarch = gdbarch_alloc (&info, tdep);
8448
8449 /* General-purpose registers. */
7ad10968
HZ
8450 tdep->gregset_reg_offset = NULL;
8451 tdep->gregset_num_regs = I386_NUM_GREGS;
8452 tdep->sizeof_gregset = 0;
8453
8454 /* Floating-point registers. */
7ad10968 8455 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8456 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8457
8458 /* The default settings include the FPU registers, the MMX registers
8459 and the SSE registers. This can be overridden for a specific ABI
8460 by adjusting the members `st0_regnum', `mm0_regnum' and
8461 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8462 will show up in the output of "info all-registers". */
7ad10968
HZ
8463
8464 tdep->st0_regnum = I386_ST0_REGNUM;
8465
7ad10968
HZ
8466 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8467 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8468
8469 tdep->jb_pc_offset = -1;
8470 tdep->struct_return = pcc_struct_return;
8471 tdep->sigtramp_start = 0;
8472 tdep->sigtramp_end = 0;
8473 tdep->sigtramp_p = i386_sigtramp_p;
8474 tdep->sigcontext_addr = NULL;
8475 tdep->sc_reg_offset = NULL;
8476 tdep->sc_pc_offset = -1;
8477 tdep->sc_sp_offset = -1;
8478
c131fcee
L
8479 tdep->xsave_xcr0_offset = -1;
8480
cf648174
HZ
8481 tdep->record_regmap = i386_record_regmap;
8482
2b4424c3 8483 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8484
7ad10968
HZ
8485 /* The format used for `long double' on almost all i386 targets is
8486 the i387 extended floating-point format. In fact, of all targets
8487 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8488 on having a `long double' that's not `long' at all. */
8489 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8490
8491 /* Although the i387 extended floating-point has only 80 significant
8492 bits, a `long double' actually takes up 96, probably to enforce
8493 alignment. */
8494 set_gdbarch_long_double_bit (gdbarch, 96);
8495
2a67f09d
FW
8496 /* Support of bfloat16 format. */
8497 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8498
00d5215e
UW
8499 /* Support for floating-point data type variants. */
8500 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8501
7ad10968
HZ
8502 /* Register numbers of various important registers. */
8503 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8504 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8505 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8506 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8507
8508 /* NOTE: kettenis/20040418: GCC does have two possible register
8509 numbering schemes on the i386: dbx and SVR4. These schemes
8510 differ in how they number %ebp, %esp, %eflags, and the
8511 floating-point registers, and are implemented by the arrays
8512 dbx_register_map[] and svr4_dbx_register_map in
8513 gcc/config/i386.c. GCC also defines a third numbering scheme in
8514 gcc/config/i386.c, which it designates as the "default" register
8515 map used in 64bit mode. This last register numbering scheme is
8516 implemented in dbx64_register_map, and is used for AMD64; see
8517 amd64-tdep.c.
8518
8519 Currently, each GCC i386 target always uses the same register
8520 numbering scheme across all its supported debugging formats
8521 i.e. SDB (COFF), stabs and DWARF 2. This is because
8522 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8523 DBX_REGISTER_NUMBER macro which is defined by each target's
8524 respective config header in a manner independent of the requested
8525 output debugging format.
8526
8527 This does not match the arrangement below, which presumes that
8528 the SDB and stabs numbering schemes differ from the DWARF and
8529 DWARF 2 ones. The reason for this arrangement is that it is
8530 likely to get the numbering scheme for the target's
8531 default/native debug format right. For targets where GCC is the
8532 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8533 targets where the native toolchain uses a different numbering
8534 scheme for a particular debug format (stabs-in-ELF on Solaris)
8535 the defaults below will have to be overridden, like
8536 i386_elf_init_abi() does. */
8537
8538 /* Use the dbx register numbering scheme for stabs and COFF. */
8539 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8540 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8541
8542 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8543 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8544
8545 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8546 be in use on any of the supported i386 targets. */
8547
8548 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8549
8550 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8551
8552 /* Call dummy code. */
a9b8d892
JK
8553 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8554 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8555 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8556 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8557
8558 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8559 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8560 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8561
8562 set_gdbarch_return_value (gdbarch, i386_return_value);
8563
8564 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8565
8566 /* Stack grows downward. */
8567 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8568
04180708
YQ
8569 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8570 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8571
7ad10968
HZ
8572 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8573 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8574
8575 set_gdbarch_frame_args_skip (gdbarch, 8);
8576
7ad10968
HZ
8577 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8578
8579 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8580
8581 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8582
8583 /* Add the i386 register groups. */
8584 i386_add_reggroups (gdbarch);
90884b2b 8585 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8586
143985b7
AF
8587 /* Helper for function argument information. */
8588 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8589
06da04c6 8590 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8591 appended to the list first, so that it supercedes the DWARF
8592 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8593 currently fails). */
8594 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8595
8596 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8597 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8598 CFI info will be used if it is available. */
10458914 8599 dwarf2_append_unwinders (gdbarch);
6405b0a6 8600
acd5c798 8601 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8602
1ba53b71 8603 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8604 set_gdbarch_pseudo_register_read_value (gdbarch,
8605 i386_pseudo_register_read_value);
90884b2b 8606 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8607 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8608 i386_ax_pseudo_register_collect);
90884b2b
L
8609
8610 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8611 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8612
c131fcee
L
8613 /* Override the normal target description method to make the AVX
8614 upper halves anonymous. */
8615 set_gdbarch_register_name (gdbarch, i386_register_name);
8616
8617 /* Even though the default ABI only includes general-purpose registers,
8618 floating-point registers and the SSE registers, we have to leave a
01f9f808 8619 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8620 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8621
ac04f72b
TT
8622 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8623
90884b2b
L
8624 /* Get the x86 target description from INFO. */
8625 tdesc = info.target_desc;
8626 if (! tdesc_has_registers (tdesc))
1163a4b7 8627 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8628 tdep->tdesc = tdesc;
8629
8630 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8631 tdep->register_names = i386_register_names;
8632
c131fcee
L
8633 /* No upper YMM registers. */
8634 tdep->ymmh_register_names = NULL;
8635 tdep->ymm0h_regnum = -1;
8636
01f9f808
MS
8637 /* No upper ZMM registers. */
8638 tdep->zmmh_register_names = NULL;
8639 tdep->zmm0h_regnum = -1;
8640
8641 /* No high XMM registers. */
8642 tdep->xmm_avx512_register_names = NULL;
8643 tdep->xmm16_regnum = -1;
8644
8645 /* No upper YMM16-31 registers. */
8646 tdep->ymm16h_register_names = NULL;
8647 tdep->ymm16h_regnum = -1;
8648
1ba53b71
L
8649 tdep->num_byte_regs = 8;
8650 tdep->num_word_regs = 8;
8651 tdep->num_dword_regs = 0;
8652 tdep->num_mmx_regs = 8;
c131fcee 8653 tdep->num_ymm_regs = 0;
1ba53b71 8654
1dbcd68c
WT
8655 /* No MPX registers. */
8656 tdep->bnd0r_regnum = -1;
8657 tdep->bndcfgu_regnum = -1;
8658
01f9f808
MS
8659 /* No AVX512 registers. */
8660 tdep->k0_regnum = -1;
8661 tdep->num_zmm_regs = 0;
8662 tdep->num_ymm_avx512_regs = 0;
8663 tdep->num_xmm_avx512_regs = 0;
8664
51547df6
MS
8665 /* No PKEYS registers */
8666 tdep->pkru_regnum = -1;
8667 tdep->num_pkeys_regs = 0;
8668
1163a4b7
JB
8669 /* No segment base registers. */
8670 tdep->fsbase_regnum = -1;
8671
c1e1314d 8672 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
90884b2b 8673
dde08ee1
PA
8674 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8675
6710bf39
SS
8676 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8677
c2170eef
MM
8678 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8679 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8680 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8681
ad9eb1fd
DE
8682 /* Hook in ABI-specific overrides, if they have been registered.
8683 Note: If INFO specifies a 64 bit arch, this is where we turn
8684 a 32-bit i386 into a 64-bit amd64. */
c1e1314d 8685 info.tdesc_data = tdesc_data.get ();
4be87837 8686 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8687
c1e1314d 8688 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
c131fcee 8689 {
c131fcee
L
8690 xfree (tdep);
8691 gdbarch_free (gdbarch);
8692 return NULL;
8693 }
8694
1dbcd68c
WT
8695 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8696
1ba53b71
L
8697 /* Wire in pseudo registers. Number of pseudo registers may be
8698 changed. */
8699 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8700 + tdep->num_word_regs
8701 + tdep->num_dword_regs
c131fcee 8702 + tdep->num_mmx_regs
1dbcd68c 8703 + tdep->num_ymm_regs
01f9f808
MS
8704 + num_bnd_cooked
8705 + tdep->num_ymm_avx512_regs
8706 + tdep->num_zmm_regs));
1ba53b71 8707
90884b2b
L
8708 /* Target description may be changed. */
8709 tdesc = tdep->tdesc;
8710
c1e1314d 8711 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
90884b2b
L
8712
8713 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8714 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8715
1ba53b71
L
8716 /* Make %al the first pseudo-register. */
8717 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8718 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8719
c131fcee 8720 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8721 if (tdep->num_dword_regs)
8722 {
1c6272a6 8723 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8724 tdep->eax_regnum = ymm0_regnum;
8725 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8726 }
8727 else
8728 tdep->eax_regnum = -1;
8729
c131fcee
L
8730 mm0_regnum = ymm0_regnum;
8731 if (tdep->num_ymm_regs)
8732 {
1c6272a6 8733 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8734 tdep->ymm0_regnum = ymm0_regnum;
8735 mm0_regnum += tdep->num_ymm_regs;
8736 }
8737 else
8738 tdep->ymm0_regnum = -1;
8739
01f9f808
MS
8740 if (tdep->num_ymm_avx512_regs)
8741 {
8742 /* Support YMM16-31 pseudo registers if available. */
8743 tdep->ymm16_regnum = mm0_regnum;
8744 mm0_regnum += tdep->num_ymm_avx512_regs;
8745 }
8746 else
8747 tdep->ymm16_regnum = -1;
8748
8749 if (tdep->num_zmm_regs)
8750 {
8751 /* Support ZMM pseudo-register if it is available. */
8752 tdep->zmm0_regnum = mm0_regnum;
8753 mm0_regnum += tdep->num_zmm_regs;
8754 }
8755 else
8756 tdep->zmm0_regnum = -1;
8757
1dbcd68c 8758 bnd0_regnum = mm0_regnum;
1ba53b71
L
8759 if (tdep->num_mmx_regs != 0)
8760 {
1c6272a6 8761 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8762 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8763 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8764 }
8765 else
8766 tdep->mm0_regnum = -1;
8767
1dbcd68c
WT
8768 if (tdep->bnd0r_regnum > 0)
8769 tdep->bnd0_regnum = bnd0_regnum;
8770 else
8771 tdep-> bnd0_regnum = -1;
8772
06da04c6 8773 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8774 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8775 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8776 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8777
8446b36a
MK
8778 /* If we have a register mapping, enable the generic core file
8779 support, unless it has already been enabled. */
8780 if (tdep->gregset_reg_offset
8f0435f7 8781 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8782 set_gdbarch_iterate_over_regset_sections
8783 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8784
7a697b8d
SS
8785 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8786 i386_fast_tracepoint_valid_at);
8787
a62cc96e
AC
8788 return gdbarch;
8789}
8790
8201327c
MK
8791\f
8792
97de3545
JB
8793/* Return the target description for a specified XSAVE feature mask. */
8794
8795const struct target_desc *
1163a4b7 8796i386_target_description (uint64_t xcr0, bool segments)
97de3545 8797{
22916b07 8798 static target_desc *i386_tdescs \
1163a4b7 8799 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8800 target_desc **tdesc;
8801
8802 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8803 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8804 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8805 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8806 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8807 [segments ? 1 : 0];
22916b07
YQ
8808
8809 if (*tdesc == NULL)
1163a4b7 8810 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8811
8812 return *tdesc;
97de3545
JB
8813}
8814
29c1c244
WT
8815#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8816
8817/* Find the bound directory base address. */
8818
8819static unsigned long
8820i386_mpx_bd_base (void)
8821{
8822 struct regcache *rcache;
8823 struct gdbarch_tdep *tdep;
8824 ULONGEST ret;
8825 enum register_status regstatus;
29c1c244
WT
8826
8827 rcache = get_current_regcache ();
ac7936df 8828 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8829
8830 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8831
8832 if (regstatus != REG_VALID)
8833 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8834
8835 return ret & MPX_BASE_MASK;
8836}
8837
012b3a21 8838int
29c1c244
WT
8839i386_mpx_enabled (void)
8840{
8841 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8842 const struct target_desc *tdesc = tdep->tdesc;
8843
8844 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8845}
8846
8847#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8848#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8849#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8850#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8851
8852/* Find the bound table entry given the pointer location and the base
8853 address of the table. */
8854
8855static CORE_ADDR
8856i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8857{
8858 CORE_ADDR offset1;
8859 CORE_ADDR offset2;
8860 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8861 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8862 CORE_ADDR bd_entry_addr;
8863 CORE_ADDR bt_addr;
8864 CORE_ADDR bd_entry;
8865 struct gdbarch *gdbarch = get_current_arch ();
8866 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8867
8868
8869 if (gdbarch_ptr_bit (gdbarch) == 64)
8870 {
966f0aef 8871 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8872 bd_ptr_r_shift = 20;
8873 bd_ptr_l_shift = 3;
8874 bt_select_r_shift = 3;
8875 bt_select_l_shift = 5;
966f0aef
WT
8876 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8877
8878 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8879 error (_("bound table examination not supported\
8880 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8881 }
8882 else
8883 {
8884 mpx_bd_mask = MPX_BD_MASK_32;
8885 bd_ptr_r_shift = 12;
8886 bd_ptr_l_shift = 2;
8887 bt_select_r_shift = 2;
8888 bt_select_l_shift = 4;
8889 bt_mask = MPX_BT_MASK_32;
8890 }
8891
8892 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8893 bd_entry_addr = bd_base + offset1;
8894 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8895
8896 if ((bd_entry & 0x1) == 0)
8897 error (_("Invalid bounds directory entry at %s."),
8898 paddress (get_current_arch (), bd_entry_addr));
8899
8900 /* Clearing status bit. */
8901 bd_entry--;
8902 bt_addr = bd_entry & ~bt_select_r_shift;
8903 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8904
8905 return bt_addr + offset2;
8906}
8907
8908/* Print routine for the mpx bounds. */
8909
8910static void
8911i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8912{
8913 struct ui_out *uiout = current_uiout;
34f8ac9f 8914 LONGEST size;
29c1c244
WT
8915 struct gdbarch *gdbarch = get_current_arch ();
8916 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8917 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8918
8919 if (bounds_in_map == 1)
8920 {
112e8700
SM
8921 uiout->text ("Null bounds on map:");
8922 uiout->text (" pointer value = ");
8923 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8924 uiout->text (".");
8925 uiout->text ("\n");
29c1c244
WT
8926 }
8927 else
8928 {
112e8700
SM
8929 uiout->text ("{lbound = ");
8930 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8931 uiout->text (", ubound = ");
29c1c244
WT
8932
8933 /* The upper bound is stored in 1's complement. */
112e8700
SM
8934 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8935 uiout->text ("}: pointer value = ");
8936 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8937
8938 if (gdbarch_ptr_bit (gdbarch) == 64)
8939 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8940 else
8941 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8942
8943 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8944 -1 represents in this sense full memory access, and there is no need
8945 one to the size. */
8946
8947 size = (size > -1 ? size + 1 : size);
112e8700 8948 uiout->text (", size = ");
33eca680 8949 uiout->field_string ("size", plongest (size));
29c1c244 8950
112e8700
SM
8951 uiout->text (", metadata = ");
8952 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8953 uiout->text ("\n");
29c1c244
WT
8954 }
8955}
8956
8957/* Implement the command "show mpx bound". */
8958
8959static void
c4a3e68e 8960i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8961{
8962 CORE_ADDR bd_base = 0;
8963 CORE_ADDR addr;
8964 CORE_ADDR bt_entry_addr = 0;
8965 CORE_ADDR bt_entry[4];
8966 int i;
8967 struct gdbarch *gdbarch = get_current_arch ();
8968 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8969
ae71e7b5
MR
8970 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8971 || !i386_mpx_enabled ())
118ca224 8972 {
bc504a31 8973 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8974 "supported on this target.\n"));
8975 return;
8976 }
29c1c244
WT
8977
8978 if (args == NULL)
118ca224
PP
8979 {
8980 printf_unfiltered (_("Address of pointer variable expected.\n"));
8981 return;
8982 }
29c1c244
WT
8983
8984 addr = parse_and_eval_address (args);
8985
8986 bd_base = i386_mpx_bd_base ();
8987 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8988
8989 memset (bt_entry, 0, sizeof (bt_entry));
8990
8991 for (i = 0; i < 4; i++)
8992 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8993 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8994 data_ptr_type);
8995
8996 i386_mpx_print_bounds (bt_entry);
8997}
8998
8999/* Implement the command "set mpx bound". */
9000
9001static void
c4a3e68e 9002i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
9003{
9004 CORE_ADDR bd_base = 0;
9005 CORE_ADDR addr, lower, upper;
9006 CORE_ADDR bt_entry_addr = 0;
9007 CORE_ADDR bt_entry[2];
9008 const char *input = args;
9009 int i;
9010 struct gdbarch *gdbarch = get_current_arch ();
9011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9012 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9013
ae71e7b5
MR
9014 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9015 || !i386_mpx_enabled ())
bc504a31 9016 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
9017 on this target."));
9018
9019 if (args == NULL)
9020 error (_("Pointer value expected."));
9021
9022 addr = value_as_address (parse_to_comma_and_eval (&input));
9023
9024 if (input[0] == ',')
9025 ++input;
9026 if (input[0] == '\0')
9027 error (_("wrong number of arguments: missing lower and upper bound."));
9028 lower = value_as_address (parse_to_comma_and_eval (&input));
9029
9030 if (input[0] == ',')
9031 ++input;
9032 if (input[0] == '\0')
9033 error (_("Wrong number of arguments; Missing upper bound."));
9034 upper = value_as_address (parse_to_comma_and_eval (&input));
9035
9036 bd_base = i386_mpx_bd_base ();
9037 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9038 for (i = 0; i < 2; i++)
9039 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9040 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9041 data_ptr_type);
9042 bt_entry[0] = (uint64_t) lower;
9043 bt_entry[1] = ~(uint64_t) upper;
9044
9045 for (i = 0; i < 2; i++)
132874d7
AB
9046 write_memory_unsigned_integer (bt_entry_addr
9047 + i * TYPE_LENGTH (data_ptr_type),
9048 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9049 bt_entry[i]);
9050}
9051
9052static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9053
6c265988 9054void _initialize_i386_tdep ();
c906108c 9055void
6c265988 9056_initialize_i386_tdep ()
c906108c 9057{
a62cc96e
AC
9058 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9059
fc338970 9060 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9061 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9062 &disassembly_flavor, _("\
9063Set the disassembly flavor."), _("\
9064Show the disassembly flavor."), _("\
9065The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9066 NULL,
9067 NULL, /* FIXME: i18n: */
9068 &setlist, &showlist);
8201327c
MK
9069
9070 /* Add the variable that controls the convention for returning
9071 structs. */
7ab04401
AC
9072 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9073 &struct_convention, _("\
9074Set the convention for returning small structs."), _("\
9075Show the convention for returning small structs."), _("\
9076Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9077is \"default\"."),
9078 NULL,
9079 NULL, /* FIXME: i18n: */
9080 &setlist, &showlist);
8201327c 9081
29c1c244
WT
9082 /* Add "mpx" prefix for the set commands. */
9083
0743fc83 9084 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9085Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9086 &mpx_set_cmdlist, "set mpx ",
9087 0 /* allow-unknown */, &setlist);
29c1c244
WT
9088
9089 /* Add "mpx" prefix for the show commands. */
9090
0743fc83 9091 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9092Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9093 &mpx_show_cmdlist, "show mpx ",
9094 0 /* allow-unknown */, &showlist);
29c1c244
WT
9095
9096 /* Add "bound" command for the show mpx commands list. */
9097
9098 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9099 "Show the memory bounds for a given array/pointer storage\
9100 in the bound table.",
9101 &mpx_show_cmdlist);
9102
9103 /* Add "bound" command for the set mpx commands list. */
9104
9105 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9106 "Set the memory bounds for a given array/pointer storage\
9107 in the bound table.",
9108 &mpx_set_cmdlist);
9109
05816f70 9110 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9111 i386_svr4_init_abi);
38c968cf 9112
209bd28e 9113 /* Initialize the i386-specific register groups. */
38c968cf 9114 i386_init_reggroups ();
90884b2b 9115
c8d5aac9
L
9116 /* Tell remote stub that we support XML target description. */
9117 register_remote_support_xml ("i386");
c906108c 9118}
This page took 2.39452 seconds and 4 git commands to generate.