Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
b811d2c2 3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
82ca8957 25#include "dwarf2/frame.h"
c906108c 26#include "frame.h"
acd5c798
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
c906108c 29#include "inferior.h"
45741a9c 30#include "infrun.h"
acd5c798 31#include "gdbcmd.h"
c906108c 32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
dfe01d39 34#include "objfiles.h"
acd5c798
MK
35#include "osabi.h"
36#include "regcache.h"
37#include "reggroups.h"
473f17b0 38#include "regset.h"
c0d1d883 39#include "symfile.h"
c906108c 40#include "symtab.h"
acd5c798 41#include "target.h"
3b2ca824 42#include "target-float.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
268a13a5 49#include "gdbsupport/x86-xstate.h"
1d509aa6 50#include "x86-tdep.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
22916b07
YQ
54#include "target-descriptions.h"
55#include "arch/i386.h"
90884b2b 56
6710bf39
SS
57#include "ax.h"
58#include "ax-gdb.h"
59
55aa24fb
SDJ
60#include "stap-probe.h"
61#include "user-regs.h"
62#include "cli/cli-utils.h"
63#include "expression.h"
64#include "parser-defs.h"
65#include <ctype.h>
325fac50 66#include <algorithm>
7d7571f0 67#include <unordered_set>
c2fd7fae 68#include "producer.h"
55aa24fb 69
c4fc7f1b 70/* Register names. */
c40e1eab 71
27087b7f 72static const char * const i386_register_names[] =
fc633446
MK
73{
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85};
86
27087b7f 87static const char * const i386_zmm_names[] =
01f9f808
MS
88{
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91};
92
27087b7f 93static const char * const i386_zmmh_names[] =
01f9f808
MS
94{
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97};
98
27087b7f 99static const char * const i386_k_names[] =
01f9f808
MS
100{
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103};
104
27087b7f 105static const char * const i386_ymm_names[] =
c131fcee
L
106{
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109};
110
27087b7f 111static const char * const i386_ymmh_names[] =
c131fcee
L
112{
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115};
116
27087b7f 117static const char * const i386_mpx_names[] =
1dbcd68c
WT
118{
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120};
121
27087b7f 122static const char * const i386_pkeys_names[] =
51547df6
MS
123{
124 "pkru"
125};
126
1dbcd68c
WT
127/* Register names for MPX pseudo-registers. */
128
27087b7f 129static const char * const i386_bnd_names[] =
1dbcd68c
WT
130{
131 "bnd0", "bnd1", "bnd2", "bnd3"
132};
133
c4fc7f1b 134/* Register names for MMX pseudo-registers. */
28fc6740 135
27087b7f 136static const char * const i386_mmx_names[] =
28fc6740
AC
137{
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140};
c40e1eab 141
1ba53b71
L
142/* Register names for byte pseudo-registers. */
143
27087b7f 144static const char * const i386_byte_names[] =
1ba53b71
L
145{
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148};
149
150/* Register names for word pseudo-registers. */
151
27087b7f 152static const char * const i386_word_names[] =
1ba53b71
L
153{
154 "ax", "cx", "dx", "bx",
9cad29ac 155 "", "bp", "si", "di"
1ba53b71
L
156};
157
01f9f808
MS
158/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162const int num_lower_zmm_regs = 16;
163
1ba53b71 164/* MMX register? */
c40e1eab 165
28fc6740 166static int
5716833c 167i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 168{
1ba53b71
L
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
171
172 if (mm0_regnum < 0)
173 return 0;
174
1ba53b71
L
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177}
178
179/* Byte register? */
180
181int
182i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183{
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188}
189
190/* Word register? */
191
192int
193i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194{
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199}
200
201/* Dword register? */
202
203int
204i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
214}
215
01f9f808
MS
216/* AVX512 register? */
217
218int
219i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229}
230
231int
232i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233{
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242}
243
244int
245i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246{
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255}
256
9191d390 257static int
c131fcee
L
258i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259{
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268}
269
270/* AVX register? */
271
272int
273i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274{
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283}
284
01f9f808
MS
285static int
286i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287{
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296}
297
298int
299i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300{
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309}
310
1dbcd68c
WT
311/* BND register? */
312
313int
314i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315{
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324}
325
5716833c 326/* SSE register? */
23a34459 327
c131fcee
L
328int
329i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 330{
5716833c 331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 333
c131fcee 334 if (num_xmm_regs == 0)
5716833c
MK
335 return 0;
336
c131fcee
L
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
339}
340
01f9f808
MS
341/* XMM_512 register? */
342
343int
344i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345{
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354}
355
5716833c
MK
356static int
357i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 358{
5716833c
MK
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
20a6ec49 361 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
362 return 0;
363
20a6ec49 364 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
365}
366
5716833c 367/* FP register? */
23a34459
AC
368
369int
20a6ec49 370i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 371{
20a6ec49
MD
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
375 return 0;
376
20a6ec49
MD
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
379}
380
381int
20a6ec49 382i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 383{
20a6ec49
MD
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
387 return 0;
388
20a6ec49
MD
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
391}
392
1dbcd68c
WT
393/* BNDr (raw) register? */
394
395static int
396i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397{
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405}
406
407/* BND control register? */
408
409static int
410i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411{
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419}
420
51547df6
MS
421/* PKRU register? */
422
423bool
424i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425{
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434}
435
c131fcee
L
436/* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439static const char *
440i386_register_name (struct gdbarch *gdbarch, int regnum)
441{
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
01f9f808
MS
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
c131fcee
L
454 return tdesc_register_name (gdbarch, regnum);
455}
456
30b0e2d8 457/* Return the name of register REGNUM. */
fc633446 458
1ba53b71 459const char *
90884b2b 460i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 461{
1ba53b71 462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
477}
478
c4fc7f1b 479/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
480 number used by GDB. */
481
8201327c 482static int
d3f73121 483i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 484{
20a6ec49
MD
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
c4fc7f1b
MK
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
85540d8c
MK
490 if (reg >= 0 && reg <= 7)
491 {
9872ad24
JB
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
85540d8c
MK
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
20a6ec49 503 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
c131fcee
L
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
20a6ec49 519 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
520 }
521
522 /* This will hopefully provoke a warning. */
f6efe3f8 523 return gdbarch_num_cooked_regs (gdbarch);
85540d8c
MK
524}
525
0fde2c53 526/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 527 used by GDB. */
85540d8c 528
8201327c 529static int
0fde2c53 530i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 531{
20a6ec49
MD
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
c4fc7f1b
MK
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
acd5c798 541 /* General-purpose registers. */
85540d8c
MK
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
20a6ec49 547 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 548 }
c6f4c129 549 else if (reg >= 21 && reg <= 36)
85540d8c 550 {
c4fc7f1b 551 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 552 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
553 }
554
c6f4c129
JB
555 switch (reg)
556 {
20a6ec49
MD
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
0fde2c53
DE
568 return -1;
569}
570
571/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
8f10c932 574int
0fde2c53
DE
575i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576{
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
f6efe3f8 580 return gdbarch_num_cooked_regs (gdbarch);
0fde2c53 581 return regnum;
85540d8c 582}
5716833c 583
fc338970 584\f
917317f4 585
fc338970
MK
586/* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
53904c9e
AC
588static const char att_flavor[] = "att";
589static const char intel_flavor[] = "intel";
40478521 590static const char *const valid_flavors[] =
c5aa993b 591{
c906108c
SS
592 att_flavor,
593 intel_flavor,
594 NULL
595};
53904c9e 596static const char *disassembly_flavor = att_flavor;
acd5c798 597\f
c906108c 598
acd5c798
MK
599/* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
c906108c 604
acd5c798
MK
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
c906108c 607
acd5c798 608 This function is 64-bit safe. */
63c0089f 609
04180708
YQ
610constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 613
237fc4c9
PA
614\f
615/* Displaced instruction handling. */
616
1903f0e6
DE
617/* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623static gdb_byte *
624i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625{
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651}
237fc4c9
PA
652
653static int
1903f0e6 654i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 655{
1777feb0 656 /* jmp far (absolute address in operand). */
237fc4c9
PA
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
1777feb0 662 /* jump near, absolute indirect (/4). */
237fc4c9
PA
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
1777feb0 666 /* jump far, absolute indirect (/5). */
237fc4c9
PA
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672}
673
c2170eef
MM
674/* Return non-zero if INSN is a jump, zero otherwise. */
675
676static int
677i386_jmp_p (const gdb_byte *insn)
678{
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688}
689
237fc4c9 690static int
1903f0e6 691i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 692{
1777feb0 693 /* call far, absolute. */
237fc4c9
PA
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
1777feb0 699 /* Call near, absolute indirect (/2). */
237fc4c9
PA
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
1777feb0 703 /* Call far, absolute indirect (/3). */
237fc4c9
PA
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709}
710
711static int
1903f0e6 712i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
713{
714 switch (insn[0])
715 {
1777feb0 716 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 717 case 0xc3: /* ret near */
1777feb0 718 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726}
727
728static int
1903f0e6 729i386_call_p (const gdb_byte *insn)
237fc4c9
PA
730{
731 if (i386_absolute_call_p (insn))
732 return 1;
733
1777feb0 734 /* call near, relative. */
237fc4c9
PA
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739}
740
237fc4c9
PA
741/* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
1903f0e6 743
237fc4c9 744static int
b55078be 745i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 746{
9a7f938f
JK
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759}
760
c2170eef
MM
761/* The gdbarch insn_is_call method. */
762
763static int
764i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765{
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772}
773
774/* The gdbarch insn_is_ret method. */
775
776static int
777i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778{
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785}
786
787/* The gdbarch insn_is_jump method. */
788
789static int
790i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791{
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798}
799
c2508e90 800/* Some kernels may run one past a syscall insn, so we have to cope. */
b55078be 801
fdb61c6c 802displaced_step_closure_up
b55078be
DE
803i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806{
807 size_t len = gdbarch_max_insn_length (gdbarch);
e8217e61
SM
808 std::unique_ptr<i386_displaced_step_closure> closure
809 (new i386_displaced_step_closure (len));
cfba9872 810 gdb_byte *buf = closure->buf.data ();
b55078be
DE
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 if (debug_displaced)
829 {
830 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
831 paddress (gdbarch, from), paddress (gdbarch, to));
832 displaced_step_dump_bytes (gdb_stdlog, buf, len);
833 }
834
6d0cf446
BE
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_closure_up (closure.release ());
b55078be
DE
837}
838
237fc4c9
PA
839/* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
1903f0e6 841
237fc4c9
PA
842void
843i386_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 844 struct displaced_step_closure *closure_,
237fc4c9
PA
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847{
e17a4113
UW
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
237fc4c9
PA
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
cfba9872
SM
856 i386_displaced_step_closure *closure
857 = (i386_displaced_step_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
1903f0e6
DE
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
237fc4c9
PA
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
5af949e3 864 "displaced: fixup (%s, %s), "
237fc4c9 865 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
237fc4c9
PA
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
1903f0e6
DE
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
237fc4c9
PA
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
b55078be 897 int insn_len;
237fc4c9
PA
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
1903f0e6
DE
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
237fc4c9
PA
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
5af949e3
UW
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
237fc4c9
PA
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
237fc4c9
PA
971 }
972}
dde08ee1
PA
973
974static void
975append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976{
977 target_write_memory (*to, buf, len);
978 *to += len;
979}
980
981static void
982i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984{
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1777feb0 1009 push_buf[0] = 0x68; /* pushq $... */
144db827 1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
f4a1794a 1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
dde08ee1
PA
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058}
1059
fc338970 1060\f
acd5c798
MK
1061#ifdef I386_REGNO_TO_SYMMETRY
1062#error "The Sequent Symmetry is no longer supported."
1063#endif
c906108c 1064
acd5c798
MK
1065/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
c906108c 1068
acd5c798
MK
1069/* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
a3386186 1071#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1072
1073struct i386_frame_cache
c906108c 1074{
acd5c798
MK
1075 /* Base address. */
1076 CORE_ADDR base;
8fbca658 1077 int base_p;
772562f8 1078 LONGEST sp_offset;
acd5c798
MK
1079 CORE_ADDR pc;
1080
fd13a04a
AC
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1083 CORE_ADDR saved_sp;
e0c62198 1084 int saved_sp_reg;
acd5c798
MK
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089};
1090
1091/* Allocate and initialize a frame cache. */
1092
1093static struct i386_frame_cache *
fd13a04a 1094i386_alloc_frame_cache (void)
acd5c798
MK
1095{
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
8fbca658 1102 cache->base_p = 0;
acd5c798
MK
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
fd13a04a
AC
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
acd5c798 1111 cache->saved_sp = 0;
e0c62198 1112 cache->saved_sp_reg = -1;
acd5c798
MK
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119}
c906108c 1120
acd5c798
MK
1121/* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
c906108c 1123
acd5c798 1124static CORE_ADDR
e17a4113 1125i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1126{
e17a4113 1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1128 gdb_byte op;
acd5c798
MK
1129 long delta = 0;
1130 int data16 = 0;
c906108c 1131
0865b04a 1132 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1133 return pc;
1134
acd5c798 1135 if (op == 0x66)
c906108c 1136 {
c906108c 1137 data16 = 1;
0865b04a
YQ
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1140 }
1141
acd5c798 1142 switch (op)
c906108c
SS
1143 {
1144 case 0xe9:
fc338970 1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1146 if (data16)
1147 {
e17a4113 1148 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1149
fc338970
MK
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
acd5c798 1152 delta += 4;
c906108c
SS
1153 }
1154 else
1155 {
e17a4113 1156 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1157
acd5c798
MK
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
c906108c
SS
1160 }
1161 break;
1162 case 0xeb:
fc338970 1163 /* Relative jump, disp8 (ignore data16). */
e17a4113 1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1165
acd5c798 1166 delta += data16 + 2;
c906108c
SS
1167 break;
1168 }
c906108c 1169
acd5c798
MK
1170 return pc + delta;
1171}
fc338970 1172
acd5c798
MK
1173/* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
c906108c 1178
acd5c798
MK
1179static CORE_ADDR
1180i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
c906108c 1182{
acd5c798
MK
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
63c0089f
MK
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
c906108c 1197
acd5c798
MK
1198 if (current_pc <= pc)
1199 return pc;
1200
0865b04a 1201 if (target_read_code (pc, &op, 1))
3dcabaa8 1202 return pc;
c906108c 1203
acd5c798
MK
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
c906108c 1206
0865b04a 1207 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1208 return pc;
1209
acd5c798
MK
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
c906108c 1212
acd5c798 1213 if (current_pc == pc)
c906108c 1214 {
acd5c798
MK
1215 cache->sp_offset += 4;
1216 return current_pc;
c906108c
SS
1217 }
1218
acd5c798 1219 if (current_pc == pc + 1)
c906108c 1220 {
acd5c798
MK
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229}
1230
1231static CORE_ADDR
1232i386_skip_probe (CORE_ADDR pc)
1233{
1234 /* A function may start with
fc338970 1235
acd5c798
MK
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
fc338970 1239
acd5c798
MK
1240 followed by
1241
1242 pushl %ebp
fc338970 1243
acd5c798 1244 etc. */
63c0089f
MK
1245 gdb_byte buf[8];
1246 gdb_byte op;
fc338970 1247
0865b04a 1248 if (target_read_code (pc, &op, 1))
3dcabaa8 1249 return pc;
acd5c798
MK
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
c906108c 1254
acd5c798
MK
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
c906108c 1257 if (op == 0x68)
acd5c798 1258 delta = 5;
c906108c 1259 else
acd5c798 1260 delta = 2;
c906108c 1261
acd5c798
MK
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1266 pc += delta + sizeof (buf);
c906108c
SS
1267 }
1268
acd5c798
MK
1269 return pc;
1270}
1271
92dd43fa
MK
1272/* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278static CORE_ADDR
1279i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281{
e0c62198
L
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
92dd43fa 1316 };
92dd43fa 1317
0865b04a 1318 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1381 return pc;
1382
e0c62198
L
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
92dd43fa 1385
325fac50 1386 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1387}
1388
37bdc87e 1389/* Maximum instruction length we need to handle. */
237fc4c9 1390#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1391
1392/* Instruction description. */
1393struct i386_insn
1394{
1395 size_t len;
237fc4c9
PA
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1398};
1399
a3fcb948 1400/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1401
a3fcb948
JG
1402static int
1403i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1404{
63c0089f 1405 gdb_byte op;
37bdc87e 1406
0865b04a 1407 if (target_read_code (pc, &op, 1))
a3fcb948 1408 return 0;
37bdc87e 1409
a3fcb948 1410 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1411 {
a3fcb948
JG
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
37bdc87e 1415
a3fcb948
JG
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1418
0865b04a 1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1420 return 0;
613e8135 1421
a3fcb948
JG
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
37bdc87e 1426 }
a3fcb948
JG
1427 return insn_matched;
1428 }
1429 return 0;
1430}
1431
1432/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436static struct i386_insn *
1437i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438{
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
37bdc87e
MK
1445 }
1446
1447 return NULL;
1448}
1449
a3fcb948
JG
1450/* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453static int
1454i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455{
1456 CORE_ADDR current_pc;
1457 int ix, i;
a3fcb948
JG
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
8bbdd3f4 1464 current_pc = pc;
a3fcb948
JG
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
8bbdd3f4
MK
1468 current_pc -= insn_patterns[i].len;
1469
a3fcb948
JG
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
a3fcb948
JG
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484}
1485
37bdc87e
MK
1486/* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492struct i386_insn i386_frame_setup_skip_insns[] =
1493{
1777feb0 1494 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
85102364 1511 ??? Should we handle SIB addressing here?
37bdc87e
MK
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539};
1540
e11481da
PM
1541
1542/* Check whether PC points to a no-op instruction. */
1543static CORE_ADDR
1544i386_skip_noop (CORE_ADDR pc)
1545{
1546 gdb_byte op;
1547 int check = 1;
1548
0865b04a 1549 if (target_read_code (pc, &op, 1))
3dcabaa8 1550 return pc;
e11481da
PM
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
0865b04a 1559 if (target_read_code (pc, &op, 1))
3dcabaa8 1560 return pc;
e11481da
PM
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
0865b04a 1576 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1577 return pc;
1578
e11481da
PM
1579 if (op == 0xff)
1580 {
1581 pc += 2;
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1583 return pc;
1584
e11481da
PM
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590}
1591
acd5c798
MK
1592/* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1596
1597static CORE_ADDR
e17a4113
UW
1598i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1600 struct i386_frame_cache *cache)
1601{
e17a4113 1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1603 struct i386_insn *insn;
63c0089f 1604 gdb_byte op;
26604a34 1605 int skip = 0;
acd5c798 1606
37bdc87e
MK
1607 if (limit <= pc)
1608 return limit;
acd5c798 1609
0865b04a 1610 if (target_read_code (pc, &op, 1))
3dcabaa8 1611 return pc;
acd5c798 1612
c906108c 1613 if (op == 0x55) /* pushl %ebp */
c5aa993b 1614 {
acd5c798
MK
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
fd13a04a 1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1618 cache->sp_offset += 4;
37bdc87e 1619 pc++;
acd5c798
MK
1620
1621 /* If that's all, return now. */
37bdc87e
MK
1622 if (limit <= pc)
1623 return limit;
26604a34 1624
b4632131 1625 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
30baf67b 1628 %ecx and %edx, so while the number of possibilities is sheer,
37bdc87e 1629 it is limited.
5daa5b4e 1630
26604a34
MK
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1633 while (pc + skip < limit)
26604a34 1634 {
37bdc87e
MK
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
b4632131 1638
37bdc87e 1639 skip += insn->len;
26604a34
MK
1640 }
1641
37bdc87e
MK
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
0865b04a 1646 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1647 return pc + skip;
37bdc87e 1648
30f8135b
YQ
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
acd5c798 1663 switch (op)
c906108c 1664 {
30f8135b 1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1666 case 0x8b:
0865b04a 1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1668 != 0xec)
37bdc87e 1669 return pc;
30f8135b 1670 pc += (skip + 2);
c906108c
SS
1671 break;
1672 case 0x89:
0865b04a 1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1674 != 0xe5)
37bdc87e 1675 return pc;
30f8135b
YQ
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
c906108c
SS
1683 break;
1684 default:
37bdc87e 1685 return pc;
c906108c 1686 }
acd5c798 1687
26604a34
MK
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
acd5c798
MK
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
37bdc87e
MK
1695 if (limit <= pc)
1696 return limit;
acd5c798 1697
fc338970
MK
1698 /* Check for stack adjustment
1699
acd5c798 1700 subl $XXX, %esp
30f8135b
YQ
1701 or
1702 lea -XXX(%esp),%esp
fc338970 1703
fd35795f 1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1705 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1706 if (target_read_code (pc, &op, 1))
3dcabaa8 1707 return pc;
c906108c
SS
1708 if (op == 0x83)
1709 {
fd35795f 1710 /* `subl' with 8-bit immediate. */
0865b04a 1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1712 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1713 return pc;
acd5c798 1714
37bdc87e
MK
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
0865b04a 1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1718 return pc + 3;
c906108c
SS
1719 }
1720 else if (op == 0x81)
1721 {
fd35795f 1722 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1724 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1725 return pc;
acd5c798 1726
fd35795f 1727 /* It is `subl' with a 32-bit immediate. */
0865b04a 1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1729 return pc + 6;
c906108c 1730 }
30f8135b
YQ
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
0865b04a 1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
0865b04a 1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1738 return pc + 4;
1739 }
c906108c
SS
1740 else
1741 {
30f8135b 1742 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1743 return pc;
c906108c
SS
1744 }
1745 }
37bdc87e 1746 else if (op == 0xc8) /* enter */
c906108c 1747 {
0865b04a 1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1749 return pc + 4;
c906108c 1750 }
21d0e8a4 1751
acd5c798 1752 return pc;
21d0e8a4
MK
1753}
1754
acd5c798
MK
1755/* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
6bff26de
MK
1759
1760static CORE_ADDR
acd5c798
MK
1761i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
6bff26de 1763{
99ab4326 1764 CORE_ADDR offset = 0;
63c0089f 1765 gdb_byte op;
99ab4326 1766 int i;
c0d1d883 1767
99ab4326
MK
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
0865b04a 1772 if (target_read_code (pc, &op, 1))
3dcabaa8 1773 return pc;
99ab4326
MK
1774 if (op < 0x50 || op > 0x57)
1775 break;
0d17c81d 1776
99ab4326
MK
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
6bff26de
MK
1781 }
1782
acd5c798 1783 return pc;
22797942
AC
1784}
1785
acd5c798
MK
1786/* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
ed84f6c1 1789
fc338970
MK
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
c906108c 1812
acd5c798 1813static CORE_ADDR
e17a4113
UW
1814i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1816 struct i386_frame_cache *cache)
c906108c 1817{
e11481da 1818 pc = i386_skip_noop (pc);
e17a4113 1819 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
92dd43fa 1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1824 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1825}
1826
fc338970 1827/* Return PC of first real instruction. */
c906108c 1828
3a1e71e3 1829static CORE_ADDR
6093d2eb 1830i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1831{
e17a4113
UW
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
63c0089f 1834 static gdb_byte pic_pat[6] =
acd5c798
MK
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
c5aa993b 1838 };
acd5c798
MK
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
63c0089f 1841 gdb_byte op;
acd5c798 1842 int i;
56bf0743 1843 CORE_ADDR func_addr;
4e879fc2 1844
56bf0743
KB
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 1850
c2fd7fae
AKS
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang to emit usable
1853 line notes. */
56bf0743 1854 if (post_prologue_pc
43f3e411
DE
1855 && (cust != NULL
1856 && COMPUNIT_PRODUCER (cust) != NULL
c2fd7fae 1857 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
325fac50 1858 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1859 }
1860
e0f33b1f 1861 cache.locals = -1;
e17a4113 1862 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1863 if (cache.locals < 0)
1864 return start_pc;
c5aa993b 1865
acd5c798 1866 /* Found valid frame setup. */
c906108c 1867
fc338970
MK
1868 /* The native cc on SVR4 in -K PIC mode inserts the following code
1869 to get the address of the global offset table (GOT) into register
acd5c798
MK
1870 %ebx:
1871
fc338970
MK
1872 call 0x0
1873 popl %ebx
1874 movl %ebx,x(%ebp) (optional)
1875 addl y,%ebx
1876
c906108c
SS
1877 This code is with the rest of the prologue (at the end of the
1878 function), so we have to skip it to get to the first real
1879 instruction at the start of the function. */
c5aa993b 1880
c906108c
SS
1881 for (i = 0; i < 6; i++)
1882 {
0865b04a 1883 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1884 return pc;
1885
c5aa993b 1886 if (pic_pat[i] != op)
c906108c
SS
1887 break;
1888 }
1889 if (i == 6)
1890 {
acd5c798
MK
1891 int delta = 6;
1892
0865b04a 1893 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1894 return pc;
c906108c 1895
c5aa993b 1896 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1897 {
0865b04a 1898 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1899
fc338970 1900 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1901 delta += 3;
fc338970 1902 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1903 delta += 6;
fc338970 1904 else /* Unexpected instruction. */
acd5c798
MK
1905 delta = 0;
1906
0865b04a 1907 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1908 return pc;
c906108c 1909 }
acd5c798 1910
c5aa993b 1911 /* addl y,%ebx */
acd5c798 1912 if (delta > 0 && op == 0x81
0865b04a 1913 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1914 == 0xc3)
c906108c 1915 {
acd5c798 1916 pc += delta + 6;
c906108c
SS
1917 }
1918 }
c5aa993b 1919
e63bbc88
MK
1920 /* If the function starts with a branch (to startup code at the end)
1921 the last instruction should bring us back to the first
1922 instruction of the real code. */
e17a4113
UW
1923 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1924 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1925
1926 return pc;
c906108c
SS
1927}
1928
4309257c
PM
1929/* Check that the code pointed to by PC corresponds to a call to
1930 __main, skip it if so. Return PC otherwise. */
1931
1932CORE_ADDR
1933i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1934{
e17a4113 1935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1936 gdb_byte op;
1937
0865b04a 1938 if (target_read_code (pc, &op, 1))
3dcabaa8 1939 return pc;
4309257c
PM
1940 if (op == 0xe8)
1941 {
1942 gdb_byte buf[4];
1943
0865b04a 1944 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1945 {
1946 /* Make sure address is computed correctly as a 32bit
1947 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1948 struct bound_minimal_symbol s;
e17a4113 1949 CORE_ADDR call_dest;
4309257c 1950
e17a4113 1951 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1952 call_dest = call_dest & 0xffffffffU;
1953 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1954 if (s.minsym != NULL
c9d95fa3
CB
1955 && s.minsym->linkage_name () != NULL
1956 && strcmp (s.minsym->linkage_name (), "__main") == 0)
4309257c
PM
1957 pc += 5;
1958 }
1959 }
1960
1961 return pc;
1962}
1963
acd5c798 1964/* This function is 64-bit safe. */
93924b6b 1965
acd5c798
MK
1966static CORE_ADDR
1967i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1968{
63c0089f 1969 gdb_byte buf[8];
acd5c798 1970
875f8d0e 1971 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1972 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1973}
acd5c798 1974\f
93924b6b 1975
acd5c798 1976/* Normal frames. */
c5aa993b 1977
8fbca658
PA
1978static void
1979i386_frame_cache_1 (struct frame_info *this_frame,
1980 struct i386_frame_cache *cache)
a7769679 1981{
e17a4113
UW
1982 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1983 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1984 gdb_byte buf[4];
acd5c798
MK
1985 int i;
1986
8fbca658 1987 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1988
1989 /* In principle, for normal frames, %ebp holds the frame pointer,
1990 which holds the base address for the current stack frame.
1991 However, for functions that don't need it, the frame pointer is
1992 optional. For these "frameless" functions the frame pointer is
1993 actually the frame pointer of the calling frame. Signal
1994 trampolines are just a special case of a "frameless" function.
1995 They (usually) share their frame pointer with the frame that was
1996 in progress when the signal occurred. */
1997
10458914 1998 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1999 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 2000 if (cache->base == 0)
620fa63a
PA
2001 {
2002 cache->base_p = 1;
2003 return;
2004 }
acd5c798
MK
2005
2006 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2007 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2008
acd5c798 2009 if (cache->pc != 0)
e17a4113
UW
2010 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2011 cache);
acd5c798
MK
2012
2013 if (cache->locals < 0)
2014 {
2015 /* We didn't find a valid frame, which means that CACHE->base
2016 currently holds the frame pointer for our calling frame. If
2017 we're at the start of a function, or somewhere half-way its
2018 prologue, the function's frame probably hasn't been fully
2019 setup yet. Try to reconstruct the base address for the stack
2020 frame by looking at the stack pointer. For truly "frameless"
2021 functions this might work too. */
2022
e0c62198 2023 if (cache->saved_sp_reg != -1)
92dd43fa 2024 {
8fbca658
PA
2025 /* Saved stack pointer has been saved. */
2026 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2027 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2028
92dd43fa
MK
2029 /* We're halfway aligning the stack. */
2030 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2031 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2032
2033 /* This will be added back below. */
2034 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2035 }
7618e12b 2036 else if (cache->pc != 0
0865b04a 2037 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2038 {
7618e12b
DJ
2039 /* We're in a known function, but did not find a frame
2040 setup. Assume that the function does not use %ebp.
2041 Alternatively, we may have jumped to an invalid
2042 address; in that case there is definitely no new
2043 frame in %ebp. */
10458914 2044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2045 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2046 + cache->sp_offset;
92dd43fa 2047 }
7618e12b
DJ
2048 else
2049 /* We're in an unknown function. We could not find the start
2050 of the function to analyze the prologue; our best option is
2051 to assume a typical frame layout with the caller's %ebp
2052 saved. */
2053 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2054 }
2055
8fbca658
PA
2056 if (cache->saved_sp_reg != -1)
2057 {
2058 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2059 register may be unavailable). */
2060 if (cache->saved_sp == 0
ca9d61b9
JB
2061 && deprecated_frame_register_read (this_frame,
2062 cache->saved_sp_reg, buf))
8fbca658
PA
2063 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2064 }
acd5c798
MK
2065 /* Now that we have the base address for the stack frame we can
2066 calculate the value of %esp in the calling frame. */
8fbca658 2067 else if (cache->saved_sp == 0)
92dd43fa 2068 cache->saved_sp = cache->base + 8;
a7769679 2069
acd5c798
MK
2070 /* Adjust all the saved registers such that they contain addresses
2071 instead of offsets. */
2072 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2073 if (cache->saved_regs[i] != -1)
2074 cache->saved_regs[i] += cache->base;
acd5c798 2075
8fbca658
PA
2076 cache->base_p = 1;
2077}
2078
2079static struct i386_frame_cache *
2080i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2081{
8fbca658
PA
2082 struct i386_frame_cache *cache;
2083
2084 if (*this_cache)
9a3c8263 2085 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2086
2087 cache = i386_alloc_frame_cache ();
2088 *this_cache = cache;
2089
a70b8144 2090 try
8fbca658
PA
2091 {
2092 i386_frame_cache_1 (this_frame, cache);
2093 }
230d2906 2094 catch (const gdb_exception_error &ex)
7556d4a4
PA
2095 {
2096 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2097 throw;
7556d4a4 2098 }
8fbca658 2099
acd5c798 2100 return cache;
a7769679
MK
2101}
2102
3a1e71e3 2103static void
10458914 2104i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2105 struct frame_id *this_id)
c906108c 2106{
10458914 2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2108
5ce0145d
PA
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
acd5c798
MK
2120}
2121
8fbca658
PA
2122static enum unwind_stop_reason
2123i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125{
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136}
2137
10458914
DJ
2138static struct value *
2139i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
acd5c798 2141{
10458914 2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
10458914 2167 ULONGEST val;
c5aa993b 2168
10458914
DJ
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2172 }
1211c4e4 2173
acd5c798 2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2176
fcf250e2
UW
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
fcf250e2 2183 if (cache->saved_sp == 0)
8fbca658
PA
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
acd5c798 2190
fd13a04a 2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
fd13a04a 2194
10458914 2195 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2196}
2197
2198static const struct frame_unwind i386_frame_unwind =
2199{
2200 NORMAL_FRAME,
8fbca658 2201 i386_frame_unwind_stop_reason,
acd5c798 2202 i386_frame_this_id,
10458914
DJ
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
acd5c798 2206};
06da04c6
MS
2207
2208/* Normal frames, but in a function epilogue. */
2209
c9cf6e20
MG
2210/* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216static int
c9cf6e20 2217i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2218{
2219 gdb_byte insn;
43f3e411 2220 struct compunit_symtab *cust;
e0d00bc7 2221
43f3e411
DE
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2224 return 0;
06da04c6
MS
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233}
2234
2235static int
2236i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239{
2240 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
06da04c6
MS
2243 else
2244 return 0;
2245}
2246
2247static struct i386_frame_cache *
2248i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249{
06da04c6 2250 struct i386_frame_cache *cache;
0d6c2135 2251 CORE_ADDR sp;
06da04c6
MS
2252
2253 if (*this_cache)
9a3c8263 2254 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
a70b8144 2259 try
8fbca658 2260 {
0d6c2135 2261 cache->pc = get_frame_func (this_frame);
06da04c6 2262
0d6c2135
MK
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
8fbca658 2268 cache->saved_sp = cache->base + 8;
8fbca658 2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2270
8fbca658
PA
2271 cache->base_p = 1;
2272 }
230d2906 2273 catch (const gdb_exception_error &ex)
7556d4a4
PA
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2276 throw;
7556d4a4 2277 }
06da04c6
MS
2278
2279 return cache;
2280}
2281
8fbca658
PA
2282static enum unwind_stop_reason
2283i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285{
0d6c2135
MK
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293}
2294
06da04c6
MS
2295static void
2296i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299{
0d6c2135
MK
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2302
8fbca658 2303 if (!cache->base_p)
5ce0145d
PA
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2307}
2308
0d6c2135
MK
2309static struct value *
2310i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312{
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317}
2318
06da04c6
MS
2319static const struct frame_unwind i386_epilogue_frame_unwind =
2320{
2321 NORMAL_FRAME,
8fbca658 2322 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2323 i386_epilogue_frame_this_id,
0d6c2135 2324 i386_epilogue_frame_prev_register,
06da04c6
MS
2325 NULL,
2326 i386_epilogue_frame_sniffer
2327};
acd5c798
MK
2328\f
2329
a3fcb948
JG
2330/* Stack-based trampolines. */
2331
2332/* These trampolines are used on cross x86 targets, when taking the
2333 address of a nested function. When executing these trampolines,
2334 no stack frame is set up, so we are in a similar situation as in
2335 epilogues and i386_epilogue_frame_this_id can be re-used. */
2336
2337/* Static chain passed in register. */
2338
2339struct i386_insn i386_tramp_chain_in_reg_insns[] =
2340{
2341 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2342 { 5, { 0xb8 }, { 0xfe } },
2343
2344 /* `jmp imm32' */
2345 { 5, { 0xe9 }, { 0xff } },
2346
2347 {0}
2348};
2349
2350/* Static chain passed on stack (when regparm=3). */
2351
2352struct i386_insn i386_tramp_chain_on_stack_insns[] =
2353{
2354 /* `push imm32' */
2355 { 5, { 0x68 }, { 0xff } },
2356
2357 /* `jmp imm32' */
2358 { 5, { 0xe9 }, { 0xff } },
2359
2360 {0}
2361};
2362
2363/* Return whether PC points inside a stack trampoline. */
2364
2365static int
6df81a63 2366i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2367{
2368 gdb_byte insn;
2c02bd72 2369 const char *name;
a3fcb948
JG
2370
2371 /* A stack trampoline is detected if no name is associated
2372 to the current pc and if it points inside a trampoline
2373 sequence. */
2374
2375 find_pc_partial_function (pc, &name, NULL, NULL);
2376 if (name)
2377 return 0;
2378
2379 if (target_read_memory (pc, &insn, 1))
2380 return 0;
2381
2382 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2383 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2384 return 0;
2385
2386 return 1;
2387}
2388
2389static int
2390i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2391 struct frame_info *this_frame,
2392 void **this_cache)
a3fcb948
JG
2393{
2394 if (frame_relative_level (this_frame) == 0)
6df81a63 2395 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2396 else
2397 return 0;
2398}
2399
2400static const struct frame_unwind i386_stack_tramp_frame_unwind =
2401{
2402 NORMAL_FRAME,
2403 i386_epilogue_frame_unwind_stop_reason,
2404 i386_epilogue_frame_this_id,
0d6c2135 2405 i386_epilogue_frame_prev_register,
a3fcb948
JG
2406 NULL,
2407 i386_stack_tramp_frame_sniffer
2408};
2409\f
6710bf39
SS
2410/* Generate a bytecode expression to get the value of the saved PC. */
2411
2412static void
2413i386_gen_return_address (struct gdbarch *gdbarch,
2414 struct agent_expr *ax, struct axs_value *value,
2415 CORE_ADDR scope)
2416{
2417 /* The following sequence assumes the traditional use of the base
2418 register. */
2419 ax_reg (ax, I386_EBP_REGNUM);
2420 ax_const_l (ax, 4);
2421 ax_simple (ax, aop_add);
2422 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2423 value->kind = axs_lvalue_memory;
2424}
2425\f
a3fcb948 2426
acd5c798
MK
2427/* Signal trampolines. */
2428
2429static struct i386_frame_cache *
10458914 2430i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2431{
e17a4113
UW
2432 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2433 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2435 struct i386_frame_cache *cache;
acd5c798 2436 CORE_ADDR addr;
63c0089f 2437 gdb_byte buf[4];
acd5c798
MK
2438
2439 if (*this_cache)
9a3c8263 2440 return (struct i386_frame_cache *) *this_cache;
acd5c798 2441
fd13a04a 2442 cache = i386_alloc_frame_cache ();
acd5c798 2443
a70b8144 2444 try
a3386186 2445 {
8fbca658
PA
2446 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2447 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2448
8fbca658
PA
2449 addr = tdep->sigcontext_addr (this_frame);
2450 if (tdep->sc_reg_offset)
2451 {
2452 int i;
a3386186 2453
8fbca658
PA
2454 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2455
2456 for (i = 0; i < tdep->sc_num_regs; i++)
2457 if (tdep->sc_reg_offset[i] != -1)
2458 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2459 }
2460 else
2461 {
2462 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2463 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2464 }
2465
2466 cache->base_p = 1;
a3386186 2467 }
230d2906 2468 catch (const gdb_exception_error &ex)
7556d4a4
PA
2469 {
2470 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2471 throw;
7556d4a4 2472 }
acd5c798
MK
2473
2474 *this_cache = cache;
2475 return cache;
2476}
2477
8fbca658
PA
2478static enum unwind_stop_reason
2479i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2480 void **this_cache)
2481{
2482 struct i386_frame_cache *cache =
2483 i386_sigtramp_frame_cache (this_frame, this_cache);
2484
2485 if (!cache->base_p)
2486 return UNWIND_UNAVAILABLE;
2487
2488 return UNWIND_NO_REASON;
2489}
2490
acd5c798 2491static void
10458914 2492i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2493 struct frame_id *this_id)
2494{
2495 struct i386_frame_cache *cache =
10458914 2496 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2497
8fbca658 2498 if (!cache->base_p)
5ce0145d
PA
2499 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2500 else
2501 {
2502 /* See the end of i386_push_dummy_call. */
2503 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2504 }
acd5c798
MK
2505}
2506
10458914
DJ
2507static struct value *
2508i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2509 void **this_cache, int regnum)
acd5c798
MK
2510{
2511 /* Make sure we've initialized the cache. */
10458914 2512 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2513
10458914 2514 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2515}
c0d1d883 2516
10458914
DJ
2517static int
2518i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2519 struct frame_info *this_frame,
2520 void **this_prologue_cache)
acd5c798 2521{
10458914 2522 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2523
911bc6ee
MK
2524 /* We shouldn't even bother if we don't have a sigcontext_addr
2525 handler. */
2526 if (tdep->sigcontext_addr == NULL)
10458914 2527 return 0;
1c3545ae 2528
911bc6ee
MK
2529 if (tdep->sigtramp_p != NULL)
2530 {
10458914
DJ
2531 if (tdep->sigtramp_p (this_frame))
2532 return 1;
911bc6ee
MK
2533 }
2534
2535 if (tdep->sigtramp_start != 0)
2536 {
10458914 2537 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2538
2539 gdb_assert (tdep->sigtramp_end != 0);
2540 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2541 return 1;
911bc6ee 2542 }
acd5c798 2543
10458914 2544 return 0;
acd5c798 2545}
10458914
DJ
2546
2547static const struct frame_unwind i386_sigtramp_frame_unwind =
2548{
2549 SIGTRAMP_FRAME,
8fbca658 2550 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2551 i386_sigtramp_frame_this_id,
2552 i386_sigtramp_frame_prev_register,
2553 NULL,
2554 i386_sigtramp_frame_sniffer
2555};
acd5c798
MK
2556\f
2557
2558static CORE_ADDR
10458914 2559i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2560{
10458914 2561 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2562
2563 return cache->base;
2564}
2565
2566static const struct frame_base i386_frame_base =
2567{
2568 &i386_frame_unwind,
2569 i386_frame_base_address,
2570 i386_frame_base_address,
2571 i386_frame_base_address
2572};
2573
acd5c798 2574static struct frame_id
10458914 2575i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2576{
acd5c798
MK
2577 CORE_ADDR fp;
2578
10458914 2579 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2580
3e210248 2581 /* See the end of i386_push_dummy_call. */
10458914 2582 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2583}
e04e5beb
JM
2584
2585/* _Decimal128 function return values need 16-byte alignment on the
2586 stack. */
2587
2588static CORE_ADDR
2589i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2590{
2591 return sp & -(CORE_ADDR)16;
2592}
fc338970 2593\f
c906108c 2594
fc338970
MK
2595/* Figure out where the longjmp will land. Slurp the args out of the
2596 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2597 structure from which we extract the address that we will land at.
28bcfd30 2598 This address is copied into PC. This routine returns non-zero on
436675d3 2599 success. */
c906108c 2600
8201327c 2601static int
60ade65d 2602i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2603{
436675d3 2604 gdb_byte buf[4];
c906108c 2605 CORE_ADDR sp, jb_addr;
20a6ec49 2606 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2608 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2609
8201327c
MK
2610 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2611 longjmp will land. */
2612 if (jb_pc_offset == -1)
c906108c
SS
2613 return 0;
2614
436675d3 2615 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2616 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2617 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2618 return 0;
2619
e17a4113 2620 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2621 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2622 return 0;
c906108c 2623
e17a4113 2624 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2625 return 1;
2626}
fc338970 2627\f
c906108c 2628
7ccc1c74
JM
2629/* Check whether TYPE must be 16-byte-aligned when passed as a
2630 function argument. 16-byte vectors, _Decimal128 and structures or
2631 unions containing such types must be 16-byte-aligned; other
2632 arguments are 4-byte-aligned. */
2633
2634static int
2635i386_16_byte_align_p (struct type *type)
2636{
2637 type = check_typedef (type);
78134374 2638 if ((type->code () == TYPE_CODE_DECFLOAT
bd63c870 2639 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
7ccc1c74
JM
2640 && TYPE_LENGTH (type) == 16)
2641 return 1;
78134374 2642 if (type->code () == TYPE_CODE_ARRAY)
7ccc1c74 2643 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
78134374
SM
2644 if (type->code () == TYPE_CODE_STRUCT
2645 || type->code () == TYPE_CODE_UNION)
7ccc1c74
JM
2646 {
2647 int i;
1f704f76 2648 for (i = 0; i < type->num_fields (); i++)
7ccc1c74 2649 {
940da03e 2650 if (i386_16_byte_align_p (type->field (i).type ()))
7ccc1c74
JM
2651 return 1;
2652 }
2653 }
2654 return 0;
2655}
2656
a9b8d892
JK
2657/* Implementation for set_gdbarch_push_dummy_code. */
2658
2659static CORE_ADDR
2660i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2661 struct value **args, int nargs, struct type *value_type,
2662 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2663 struct regcache *regcache)
2664{
2665 /* Use 0xcc breakpoint - 1 byte. */
2666 *bp_addr = sp - 1;
2667 *real_pc = funaddr;
2668
2669 /* Keep the stack aligned. */
2670 return sp - 16;
2671}
2672
627c7fb8
HD
2673/* The "push_dummy_call" gdbarch method, optionally with the thiscall
2674 calling convention. */
2675
2676CORE_ADDR
2677i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2678 struct regcache *regcache, CORE_ADDR bp_addr,
2679 int nargs, struct value **args, CORE_ADDR sp,
2680 function_call_return_method return_method,
2681 CORE_ADDR struct_addr, bool thiscall)
22f8ba57 2682{
e17a4113 2683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2684 gdb_byte buf[4];
acd5c798 2685 int i;
7ccc1c74
JM
2686 int write_pass;
2687 int args_space = 0;
acd5c798 2688
4a612d6f
WT
2689 /* BND registers can be in arbitrary values at the moment of the
2690 inferior call. This can cause boundary violations that are not
2691 due to a real bug or even desired by the user. The best to be done
2692 is set the BND registers to allow access to the whole memory, INIT
2693 state, before pushing the inferior call. */
2694 i387_reset_bnd_regs (gdbarch, regcache);
2695
7ccc1c74
JM
2696 /* Determine the total space required for arguments and struct
2697 return address in a first pass (allowing for 16-byte-aligned
2698 arguments), then push arguments in a second pass. */
2699
2700 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2701 {
7ccc1c74 2702 int args_space_used = 0;
7ccc1c74 2703
cf84fa6b 2704 if (return_method == return_method_struct)
7ccc1c74
JM
2705 {
2706 if (write_pass)
2707 {
2708 /* Push value address. */
e17a4113 2709 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2710 write_memory (sp, buf, 4);
2711 args_space_used += 4;
2712 }
2713 else
2714 args_space += 4;
2715 }
2716
627c7fb8 2717 for (i = thiscall ? 1 : 0; i < nargs; i++)
7ccc1c74
JM
2718 {
2719 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2720
7ccc1c74
JM
2721 if (write_pass)
2722 {
2723 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2724 args_space_used = align_up (args_space_used, 16);
acd5c798 2725
7ccc1c74
JM
2726 write_memory (sp + args_space_used,
2727 value_contents_all (args[i]), len);
2728 /* The System V ABI says that:
acd5c798 2729
7ccc1c74
JM
2730 "An argument's size is increased, if necessary, to make it a
2731 multiple of [32-bit] words. This may require tail padding,
2732 depending on the size of the argument."
22f8ba57 2733
7ccc1c74
JM
2734 This makes sure the stack stays word-aligned. */
2735 args_space_used += align_up (len, 4);
2736 }
2737 else
2738 {
2739 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2740 args_space = align_up (args_space, 16);
7ccc1c74
JM
2741 args_space += align_up (len, 4);
2742 }
2743 }
2744
2745 if (!write_pass)
2746 {
7ccc1c74 2747 sp -= args_space;
284c5a60
MK
2748
2749 /* The original System V ABI only requires word alignment,
2750 but modern incarnations need 16-byte alignment in order
2751 to support SSE. Since wasting a few bytes here isn't
2752 harmful we unconditionally enforce 16-byte alignment. */
2753 sp &= ~0xf;
7ccc1c74 2754 }
22f8ba57
MK
2755 }
2756
acd5c798
MK
2757 /* Store return address. */
2758 sp -= 4;
e17a4113 2759 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2760 write_memory (sp, buf, 4);
2761
2762 /* Finally, update the stack pointer... */
e17a4113 2763 store_unsigned_integer (buf, 4, byte_order, sp);
b66f5587 2764 regcache->cooked_write (I386_ESP_REGNUM, buf);
acd5c798
MK
2765
2766 /* ...and fake a frame pointer. */
b66f5587 2767 regcache->cooked_write (I386_EBP_REGNUM, buf);
acd5c798 2768
627c7fb8
HD
2769 /* The 'this' pointer needs to be in ECX. */
2770 if (thiscall)
2771 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2772
3e210248
AC
2773 /* MarkK wrote: This "+ 8" is all over the place:
2774 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2775 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2776 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2777 definition of the stack address of a frame. Otherwise frame id
2778 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2779 stack address *before* the function call as a frame's CFA. On
2780 the i386, when %ebp is used as a frame pointer, the offset
2781 between the contents %ebp and the CFA as defined by GCC. */
2782 return sp + 8;
22f8ba57
MK
2783}
2784
627c7fb8
HD
2785/* Implement the "push_dummy_call" gdbarch method. */
2786
2787static CORE_ADDR
2788i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2789 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2790 struct value **args, CORE_ADDR sp,
2791 function_call_return_method return_method,
2792 CORE_ADDR struct_addr)
2793{
2794 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2795 nargs, args, sp, return_method,
2796 struct_addr, false);
2797}
2798
1a309862
MK
2799/* These registers are used for returning integers (and on some
2800 targets also for returning `struct' and `union' values when their
ef9dff19 2801 size and alignment match an integer type). */
acd5c798
MK
2802#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2803#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2804
c5e656c1
MK
2805/* Read, for architecture GDBARCH, a function return value of TYPE
2806 from REGCACHE, and copy that into VALBUF. */
1a309862 2807
3a1e71e3 2808static void
c5e656c1 2809i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2810 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2811{
c5e656c1 2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2813 int len = TYPE_LENGTH (type);
63c0089f 2814 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2815
78134374 2816 if (type->code () == TYPE_CODE_FLT)
c906108c 2817 {
5716833c 2818 if (tdep->st0_regnum < 0)
1a309862 2819 {
8a3fe4f8 2820 warning (_("Cannot find floating-point return value."));
1a309862 2821 memset (valbuf, 0, len);
ef9dff19 2822 return;
1a309862
MK
2823 }
2824
c6ba6f0d
MK
2825 /* Floating-point return values can be found in %st(0). Convert
2826 its contents to the desired type. This is probably not
2827 exactly how it would happen on the target itself, but it is
2828 the best we can do. */
0b883586 2829 regcache->raw_read (I386_ST0_REGNUM, buf);
3b2ca824 2830 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2831 }
2832 else
c5aa993b 2833 {
875f8d0e
UW
2834 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2835 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2836
2837 if (len <= low_size)
00f8375e 2838 {
0b883586 2839 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e
MK
2840 memcpy (valbuf, buf, len);
2841 }
d4f3574e
SS
2842 else if (len <= (low_size + high_size))
2843 {
0b883586 2844 regcache->raw_read (LOW_RETURN_REGNUM, buf);
00f8375e 2845 memcpy (valbuf, buf, low_size);
0b883586 2846 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
63c0089f 2847 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2848 }
2849 else
8e65ff28 2850 internal_error (__FILE__, __LINE__,
1777feb0
MS
2851 _("Cannot extract return value of %d bytes long."),
2852 len);
c906108c
SS
2853 }
2854}
2855
c5e656c1
MK
2856/* Write, for architecture GDBARCH, a function return value of TYPE
2857 from VALBUF into REGCACHE. */
ef9dff19 2858
3a1e71e3 2859static void
c5e656c1 2860i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2861 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2862{
c5e656c1 2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2864 int len = TYPE_LENGTH (type);
2865
78134374 2866 if (type->code () == TYPE_CODE_FLT)
ef9dff19 2867 {
3d7f4f49 2868 ULONGEST fstat;
63c0089f 2869 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2870
5716833c 2871 if (tdep->st0_regnum < 0)
ef9dff19 2872 {
8a3fe4f8 2873 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2874 return;
2875 }
2876
635b0cc1
MK
2877 /* Returning floating-point values is a bit tricky. Apart from
2878 storing the return value in %st(0), we have to simulate the
2879 state of the FPU at function return point. */
2880
c6ba6f0d
MK
2881 /* Convert the value found in VALBUF to the extended
2882 floating-point format used by the FPU. This is probably
2883 not exactly how it would happen on the target itself, but
2884 it is the best we can do. */
3b2ca824 2885 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
10eaee5f 2886 regcache->raw_write (I386_ST0_REGNUM, buf);
ccb945b8 2887
635b0cc1
MK
2888 /* Set the top of the floating-point register stack to 7. The
2889 actual value doesn't really matter, but 7 is what a normal
2890 function return would end up with if the program started out
2891 with a freshly initialized FPU. */
20a6ec49 2892 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2893 fstat |= (7 << 11);
20a6ec49 2894 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2895
635b0cc1
MK
2896 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2897 the floating-point register stack to 7, the appropriate value
2898 for the tag word is 0x3fff. */
20a6ec49 2899 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2900 }
2901 else
2902 {
875f8d0e
UW
2903 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2904 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2905
2906 if (len <= low_size)
4f0420fd 2907 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2908 else if (len <= (low_size + high_size))
2909 {
10eaee5f 2910 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
4f0420fd
SM
2911 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2912 valbuf + low_size);
ef9dff19
MK
2913 }
2914 else
8e65ff28 2915 internal_error (__FILE__, __LINE__,
e2e0b3e5 2916 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2917 }
2918}
fc338970 2919\f
ef9dff19 2920
8201327c
MK
2921/* This is the variable that is set with "set struct-convention", and
2922 its legitimate values. */
2923static const char default_struct_convention[] = "default";
2924static const char pcc_struct_convention[] = "pcc";
2925static const char reg_struct_convention[] = "reg";
40478521 2926static const char *const valid_conventions[] =
8201327c
MK
2927{
2928 default_struct_convention,
2929 pcc_struct_convention,
2930 reg_struct_convention,
2931 NULL
2932};
2933static const char *struct_convention = default_struct_convention;
2934
0e4377e1
JB
2935/* Return non-zero if TYPE, which is assumed to be a structure,
2936 a union type, or an array type, should be returned in registers
2937 for architecture GDBARCH. */
c5e656c1 2938
8201327c 2939static int
c5e656c1 2940i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2941{
c5e656c1 2942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78134374 2943 enum type_code code = type->code ();
c5e656c1 2944 int len = TYPE_LENGTH (type);
8201327c 2945
0e4377e1
JB
2946 gdb_assert (code == TYPE_CODE_STRUCT
2947 || code == TYPE_CODE_UNION
2948 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2949
2950 if (struct_convention == pcc_struct_convention
2951 || (struct_convention == default_struct_convention
2952 && tdep->struct_return == pcc_struct_return))
2953 return 0;
2954
9edde48e
MK
2955 /* Structures consisting of a single `float', `double' or 'long
2956 double' member are returned in %st(0). */
1f704f76 2957 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
9edde48e 2958 {
940da03e 2959 type = check_typedef (type->field (0).type ());
78134374 2960 if (type->code () == TYPE_CODE_FLT)
9edde48e
MK
2961 return (len == 4 || len == 8 || len == 12);
2962 }
2963
c5e656c1
MK
2964 return (len == 1 || len == 2 || len == 4 || len == 8);
2965}
2966
2967/* Determine, for architecture GDBARCH, how a return value of TYPE
2968 should be returned. If it is supposed to be returned in registers,
2969 and READBUF is non-zero, read the appropriate value from REGCACHE,
2970 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2971 from WRITEBUF into REGCACHE. */
2972
2973static enum return_value_convention
6a3a010b 2974i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2975 struct type *type, struct regcache *regcache,
2976 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1 2977{
78134374 2978 enum type_code code = type->code ();
c5e656c1 2979
5daa78cc
TJB
2980 if (((code == TYPE_CODE_STRUCT
2981 || code == TYPE_CODE_UNION
2982 || code == TYPE_CODE_ARRAY)
2983 && !i386_reg_struct_return_p (gdbarch, type))
405feb71 2984 /* Complex double and long double uses the struct return convention. */
2445fd7b
MK
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2987 /* 128-bit decimal float uses the struct return convention. */
2988 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2989 {
2990 /* The System V ABI says that:
2991
2992 "A function that returns a structure or union also sets %eax
2993 to the value of the original address of the caller's area
2994 before it returns. Thus when the caller receives control
2995 again, the address of the returned object resides in register
2996 %eax and can be used to access the object."
2997
2998 So the ABI guarantees that we can always find the return
2999 value just after the function has returned. */
3000
0e4377e1
JB
3001 /* Note that the ABI doesn't mention functions returning arrays,
3002 which is something possible in certain languages such as Ada.
3003 In this case, the value is returned as if it was wrapped in
3004 a record, so the convention applied to records also applies
3005 to arrays. */
3006
31db7b6c
MK
3007 if (readbuf)
3008 {
3009 ULONGEST addr;
3010
3011 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3012 read_memory (addr, readbuf, TYPE_LENGTH (type));
3013 }
3014
3015 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3016 }
c5e656c1
MK
3017
3018 /* This special case is for structures consisting of a single
9edde48e
MK
3019 `float', `double' or 'long double' member. These structures are
3020 returned in %st(0). For these structures, we call ourselves
3021 recursively, changing TYPE into the type of the first member of
3022 the structure. Since that should work for all structures that
3023 have only one member, we don't bother to check the member's type
3024 here. */
1f704f76 3025 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
c5e656c1 3026 {
940da03e 3027 type = check_typedef (type->field (0).type ());
6a3a010b 3028 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3029 readbuf, writebuf);
c5e656c1
MK
3030 }
3031
3032 if (readbuf)
3033 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3034 if (writebuf)
3035 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3036
c5e656c1 3037 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3038}
3039\f
3040
27067745
UW
3041struct type *
3042i387_ext_type (struct gdbarch *gdbarch)
3043{
3044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045
3046 if (!tdep->i387_ext_type)
90884b2b
L
3047 {
3048 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3049 gdb_assert (tdep->i387_ext_type != NULL);
3050 }
27067745
UW
3051
3052 return tdep->i387_ext_type;
3053}
3054
1dbcd68c
WT
3055/* Construct type for pseudo BND registers. We can't use
3056 tdesc_find_type since a complement of one value has to be used
3057 to describe the upper bound. */
3058
3059static struct type *
3060i386_bnd_type (struct gdbarch *gdbarch)
3061{
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063
3064
3065 if (!tdep->i386_bnd_type)
3066 {
870f88f7 3067 struct type *t;
1dbcd68c
WT
3068 const struct builtin_type *bt = builtin_type (gdbarch);
3069
3070 /* The type we're building is described bellow: */
3071#if 0
3072 struct __bound128
3073 {
3074 void *lbound;
3075 void *ubound; /* One complement of raw ubound field. */
3076 };
3077#endif
3078
3079 t = arch_composite_type (gdbarch,
3080 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3081
3082 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3083 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3084
d0e39ea2 3085 t->set_name ("builtin_type_bound128");
1dbcd68c
WT
3086 tdep->i386_bnd_type = t;
3087 }
3088
3089 return tdep->i386_bnd_type;
3090}
3091
01f9f808
MS
3092/* Construct vector type for pseudo ZMM registers. We can't use
3093 tdesc_find_type since ZMM isn't described in target description. */
3094
3095static struct type *
3096i386_zmm_type (struct gdbarch *gdbarch)
3097{
3098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3099
3100 if (!tdep->i386_zmm_type)
3101 {
3102 const struct builtin_type *bt = builtin_type (gdbarch);
3103
3104 /* The type we're building is this: */
3105#if 0
3106 union __gdb_builtin_type_vec512i
3107 {
1347d111
FW
3108 int128_t v4_int128[4];
3109 int64_t v8_int64[8];
3110 int32_t v16_int32[16];
3111 int16_t v32_int16[32];
3112 int8_t v64_int8[64];
3113 double v8_double[8];
3114 float v16_float[16];
2a67f09d 3115 bfloat16_t v32_bfloat16[32];
01f9f808
MS
3116 };
3117#endif
3118
3119 struct type *t;
3120
3121 t = arch_composite_type (gdbarch,
3122 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
2a67f09d
FW
3123 append_composite_type_field (t, "v32_bfloat16",
3124 init_vector_type (bt->builtin_bfloat16, 32));
01f9f808
MS
3125 append_composite_type_field (t, "v16_float",
3126 init_vector_type (bt->builtin_float, 16));
3127 append_composite_type_field (t, "v8_double",
3128 init_vector_type (bt->builtin_double, 8));
3129 append_composite_type_field (t, "v64_int8",
3130 init_vector_type (bt->builtin_int8, 64));
3131 append_composite_type_field (t, "v32_int16",
3132 init_vector_type (bt->builtin_int16, 32));
3133 append_composite_type_field (t, "v16_int32",
3134 init_vector_type (bt->builtin_int32, 16));
3135 append_composite_type_field (t, "v8_int64",
3136 init_vector_type (bt->builtin_int64, 8));
3137 append_composite_type_field (t, "v4_int128",
3138 init_vector_type (bt->builtin_int128, 4));
3139
2062087b 3140 t->set_is_vector (true);
d0e39ea2 3141 t->set_name ("builtin_type_vec512i");
01f9f808
MS
3142 tdep->i386_zmm_type = t;
3143 }
3144
3145 return tdep->i386_zmm_type;
3146}
3147
c131fcee
L
3148/* Construct vector type for pseudo YMM registers. We can't use
3149 tdesc_find_type since YMM isn't described in target description. */
3150
3151static struct type *
3152i386_ymm_type (struct gdbarch *gdbarch)
3153{
3154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3155
3156 if (!tdep->i386_ymm_type)
3157 {
3158 const struct builtin_type *bt = builtin_type (gdbarch);
3159
3160 /* The type we're building is this: */
3161#if 0
3162 union __gdb_builtin_type_vec256i
3163 {
1347d111
FW
3164 int128_t v2_int128[2];
3165 int64_t v4_int64[4];
3166 int32_t v8_int32[8];
3167 int16_t v16_int16[16];
3168 int8_t v32_int8[32];
3169 double v4_double[4];
3170 float v8_float[8];
2a67f09d 3171 bfloat16_t v16_bfloat16[16];
c131fcee
L
3172 };
3173#endif
3174
3175 struct type *t;
3176
3177 t = arch_composite_type (gdbarch,
3178 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2a67f09d
FW
3179 append_composite_type_field (t, "v16_bfloat16",
3180 init_vector_type (bt->builtin_bfloat16, 16));
c131fcee
L
3181 append_composite_type_field (t, "v8_float",
3182 init_vector_type (bt->builtin_float, 8));
3183 append_composite_type_field (t, "v4_double",
3184 init_vector_type (bt->builtin_double, 4));
3185 append_composite_type_field (t, "v32_int8",
3186 init_vector_type (bt->builtin_int8, 32));
3187 append_composite_type_field (t, "v16_int16",
3188 init_vector_type (bt->builtin_int16, 16));
3189 append_composite_type_field (t, "v8_int32",
3190 init_vector_type (bt->builtin_int32, 8));
3191 append_composite_type_field (t, "v4_int64",
3192 init_vector_type (bt->builtin_int64, 4));
3193 append_composite_type_field (t, "v2_int128",
3194 init_vector_type (bt->builtin_int128, 2));
3195
2062087b 3196 t->set_is_vector (true);
d0e39ea2 3197 t->set_name ("builtin_type_vec256i");
c131fcee
L
3198 tdep->i386_ymm_type = t;
3199 }
3200
3201 return tdep->i386_ymm_type;
3202}
3203
794ac428 3204/* Construct vector type for MMX registers. */
90884b2b 3205static struct type *
794ac428
UW
3206i386_mmx_type (struct gdbarch *gdbarch)
3207{
3208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3209
3210 if (!tdep->i386_mmx_type)
3211 {
df4df182
UW
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213
794ac428
UW
3214 /* The type we're building is this: */
3215#if 0
3216 union __gdb_builtin_type_vec64i
3217 {
3218 int64_t uint64;
3219 int32_t v2_int32[2];
3220 int16_t v4_int16[4];
3221 int8_t v8_int8[8];
3222 };
3223#endif
3224
3225 struct type *t;
3226
e9bb382b
UW
3227 t = arch_composite_type (gdbarch,
3228 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3229
3230 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3231 append_composite_type_field (t, "v2_int32",
df4df182 3232 init_vector_type (bt->builtin_int32, 2));
794ac428 3233 append_composite_type_field (t, "v4_int16",
df4df182 3234 init_vector_type (bt->builtin_int16, 4));
794ac428 3235 append_composite_type_field (t, "v8_int8",
df4df182 3236 init_vector_type (bt->builtin_int8, 8));
794ac428 3237
2062087b 3238 t->set_is_vector (true);
d0e39ea2 3239 t->set_name ("builtin_type_vec64i");
794ac428
UW
3240 tdep->i386_mmx_type = t;
3241 }
3242
3243 return tdep->i386_mmx_type;
3244}
3245
d7a0d72c 3246/* Return the GDB type object for the "standard" data type of data in
1777feb0 3247 register REGNUM. */
d7a0d72c 3248
fff4548b 3249struct type *
90884b2b 3250i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3251{
1dbcd68c
WT
3252 if (i386_bnd_regnum_p (gdbarch, regnum))
3253 return i386_bnd_type (gdbarch);
1ba53b71
L
3254 if (i386_mmx_regnum_p (gdbarch, regnum))
3255 return i386_mmx_type (gdbarch);
c131fcee
L
3256 else if (i386_ymm_regnum_p (gdbarch, regnum))
3257 return i386_ymm_type (gdbarch);
01f9f808
MS
3258 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3259 return i386_ymm_type (gdbarch);
3260 else if (i386_zmm_regnum_p (gdbarch, regnum))
3261 return i386_zmm_type (gdbarch);
1ba53b71
L
3262 else
3263 {
3264 const struct builtin_type *bt = builtin_type (gdbarch);
3265 if (i386_byte_regnum_p (gdbarch, regnum))
3266 return bt->builtin_int8;
3267 else if (i386_word_regnum_p (gdbarch, regnum))
3268 return bt->builtin_int16;
3269 else if (i386_dword_regnum_p (gdbarch, regnum))
3270 return bt->builtin_int32;
01f9f808
MS
3271 else if (i386_k_regnum_p (gdbarch, regnum))
3272 return bt->builtin_int64;
1ba53b71
L
3273 }
3274
3275 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3276}
3277
28fc6740 3278/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3279 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3280
3281static int
849d0ba8 3282i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
28fc6740 3283{
ac7936df 3284 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
5716833c 3285 int mmxreg, fpreg;
28fc6740
AC
3286 ULONGEST fstat;
3287 int tos;
c86c27af 3288
5716833c 3289 mmxreg = regnum - tdep->mm0_regnum;
03f50fc8 3290 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3291 tos = (fstat >> 11) & 0x7;
5716833c
MK
3292 fpreg = (mmxreg + tos) % 8;
3293
20a6ec49 3294 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3295}
3296
3543a589
TT
3297/* A helper function for us by i386_pseudo_register_read_value and
3298 amd64_pseudo_register_read_value. It does all the work but reads
3299 the data into an already-allocated value. */
3300
3301void
3302i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
849d0ba8 3303 readable_regcache *regcache,
3543a589
TT
3304 int regnum,
3305 struct value *result_value)
28fc6740 3306{
975c21ab 3307 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3308 enum register_status status;
3543a589 3309 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3310
5716833c 3311 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3312 {
c86c27af
MK
3313 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3314
28fc6740 3315 /* Extract (always little endian). */
03f50fc8 3316 status = regcache->raw_read (fpnum, raw_buf);
05d1431c 3317 if (status != REG_VALID)
3543a589
TT
3318 mark_value_bytes_unavailable (result_value, 0,
3319 TYPE_LENGTH (value_type (result_value)));
3320 else
3321 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3322 }
3323 else
1ba53b71
L
3324 {
3325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3326 if (i386_bnd_regnum_p (gdbarch, regnum))
3327 {
3328 regnum -= tdep->bnd0_regnum;
1ba53b71 3329
1dbcd68c 3330 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3331 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3332 raw_buf);
1dbcd68c
WT
3333 if (status != REG_VALID)
3334 mark_value_bytes_unavailable (result_value, 0, 16);
3335 else
3336 {
3337 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3338 LONGEST upper, lower;
3339 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3340
3341 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3342 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3343 upper = ~upper;
3344
3345 memcpy (buf, &lower, size);
3346 memcpy (buf + size, &upper, size);
3347 }
3348 }
01f9f808
MS
3349 else if (i386_k_regnum_p (gdbarch, regnum))
3350 {
3351 regnum -= tdep->k0_regnum;
3352
3353 /* Extract (always little endian). */
03f50fc8 3354 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
01f9f808
MS
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 8);
3357 else
3358 memcpy (buf, raw_buf, 8);
3359 }
3360 else if (i386_zmm_regnum_p (gdbarch, regnum))
3361 {
3362 regnum -= tdep->zmm0_regnum;
3363
3364 if (regnum < num_lower_zmm_regs)
3365 {
3366 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3367 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3368 raw_buf);
01f9f808
MS
3369 if (status != REG_VALID)
3370 mark_value_bytes_unavailable (result_value, 0, 16);
3371 else
3372 memcpy (buf, raw_buf, 16);
3373
3374 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3375 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3376 raw_buf);
01f9f808
MS
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 16, 16);
3379 else
3380 memcpy (buf + 16, raw_buf, 16);
3381 }
3382 else
3383 {
3384 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3385 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3386 - num_lower_zmm_regs,
3387 raw_buf);
01f9f808
MS
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392
3393 /* Extract (always little endian). Read upper 128bits. */
03f50fc8
YQ
3394 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3395 - num_lower_zmm_regs,
3396 raw_buf);
01f9f808
MS
3397 if (status != REG_VALID)
3398 mark_value_bytes_unavailable (result_value, 16, 16);
3399 else
3400 memcpy (buf + 16, raw_buf, 16);
3401 }
3402
3403 /* Read upper 256bits. */
03f50fc8
YQ
3404 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3405 raw_buf);
01f9f808
MS
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 32, 32);
3408 else
3409 memcpy (buf + 32, raw_buf, 32);
3410 }
1dbcd68c 3411 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3412 {
3413 regnum -= tdep->ymm0_regnum;
3414
1777feb0 3415 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3416 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3417 raw_buf);
05d1431c 3418 if (status != REG_VALID)
3543a589
TT
3419 mark_value_bytes_unavailable (result_value, 0, 16);
3420 else
3421 memcpy (buf, raw_buf, 16);
c131fcee 3422 /* Read upper 128bits. */
03f50fc8
YQ
3423 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3424 raw_buf);
05d1431c 3425 if (status != REG_VALID)
3543a589
TT
3426 mark_value_bytes_unavailable (result_value, 16, 32);
3427 else
3428 memcpy (buf + 16, raw_buf, 16);
c131fcee 3429 }
01f9f808
MS
3430 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3431 {
3432 regnum -= tdep->ymm16_regnum;
3433 /* Extract (always little endian). Read lower 128bits. */
03f50fc8
YQ
3434 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3435 raw_buf);
01f9f808
MS
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0, 16);
3438 else
3439 memcpy (buf, raw_buf, 16);
3440 /* Read upper 128bits. */
03f50fc8
YQ
3441 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3442 raw_buf);
01f9f808
MS
3443 if (status != REG_VALID)
3444 mark_value_bytes_unavailable (result_value, 16, 16);
3445 else
3446 memcpy (buf + 16, raw_buf, 16);
3447 }
c131fcee 3448 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3449 {
3450 int gpnum = regnum - tdep->ax_regnum;
3451
3452 /* Extract (always little endian). */
03f50fc8 3453 status = regcache->raw_read (gpnum, raw_buf);
05d1431c 3454 if (status != REG_VALID)
3543a589
TT
3455 mark_value_bytes_unavailable (result_value, 0,
3456 TYPE_LENGTH (value_type (result_value)));
3457 else
3458 memcpy (buf, raw_buf, 2);
1ba53b71
L
3459 }
3460 else if (i386_byte_regnum_p (gdbarch, regnum))
3461 {
1ba53b71
L
3462 int gpnum = regnum - tdep->al_regnum;
3463
3464 /* Extract (always little endian). We read both lower and
3465 upper registers. */
03f50fc8 3466 status = regcache->raw_read (gpnum % 4, raw_buf);
05d1431c 3467 if (status != REG_VALID)
3543a589
TT
3468 mark_value_bytes_unavailable (result_value, 0,
3469 TYPE_LENGTH (value_type (result_value)));
3470 else if (gpnum >= 4)
1ba53b71
L
3471 memcpy (buf, raw_buf + 1, 1);
3472 else
3473 memcpy (buf, raw_buf, 1);
3474 }
3475 else
3476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3477 }
3543a589
TT
3478}
3479
3480static struct value *
3481i386_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 3482 readable_regcache *regcache,
3543a589
TT
3483 int regnum)
3484{
3485 struct value *result;
3486
3487 result = allocate_value (register_type (gdbarch, regnum));
3488 VALUE_LVAL (result) = lval_register;
3489 VALUE_REGNUM (result) = regnum;
3490
3491 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3492
3543a589 3493 return result;
28fc6740
AC
3494}
3495
1ba53b71 3496void
28fc6740 3497i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3498 int regnum, const gdb_byte *buf)
28fc6740 3499{
975c21ab 3500 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3501
5716833c 3502 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3503 {
c86c27af
MK
3504 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3505
28fc6740 3506 /* Read ... */
0b883586 3507 regcache->raw_read (fpnum, raw_buf);
28fc6740 3508 /* ... Modify ... (always little endian). */
1ba53b71 3509 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3510 /* ... Write. */
10eaee5f 3511 regcache->raw_write (fpnum, raw_buf);
28fc6740
AC
3512 }
3513 else
1ba53b71
L
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
1dbcd68c
WT
3517 if (i386_bnd_regnum_p (gdbarch, regnum))
3518 {
3519 ULONGEST upper, lower;
3520 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3522
3523 /* New values from input value. */
3524 regnum -= tdep->bnd0_regnum;
3525 lower = extract_unsigned_integer (buf, size, byte_order);
3526 upper = extract_unsigned_integer (buf + size, size, byte_order);
3527
3528 /* Fetching register buffer. */
0b883586
SM
3529 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3530 raw_buf);
1dbcd68c
WT
3531
3532 upper = ~upper;
3533
3534 /* Set register bits. */
3535 memcpy (raw_buf, &lower, 8);
3536 memcpy (raw_buf + 8, &upper, 8);
3537
10eaee5f 3538 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
1dbcd68c 3539 }
01f9f808
MS
3540 else if (i386_k_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->k0_regnum;
3543
10eaee5f 3544 regcache->raw_write (tdep->k0_regnum + regnum, buf);
01f9f808
MS
3545 }
3546 else if (i386_zmm_regnum_p (gdbarch, regnum))
3547 {
3548 regnum -= tdep->zmm0_regnum;
3549
3550 if (regnum < num_lower_zmm_regs)
3551 {
3552 /* Write lower 128bits. */
10eaee5f 3553 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
01f9f808 3554 /* Write upper 128bits. */
10eaee5f 3555 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
01f9f808
MS
3556 }
3557 else
3558 {
3559 /* Write lower 128bits. */
10eaee5f
SM
3560 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3561 - num_lower_zmm_regs, buf);
01f9f808 3562 /* Write upper 128bits. */
10eaee5f
SM
3563 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3564 - num_lower_zmm_regs, buf + 16);
01f9f808
MS
3565 }
3566 /* Write upper 256bits. */
10eaee5f 3567 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
01f9f808 3568 }
1dbcd68c 3569 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3570 {
3571 regnum -= tdep->ymm0_regnum;
3572
3573 /* ... Write lower 128bits. */
10eaee5f 3574 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
c131fcee 3575 /* ... Write upper 128bits. */
10eaee5f 3576 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
c131fcee 3577 }
01f9f808
MS
3578 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3579 {
3580 regnum -= tdep->ymm16_regnum;
3581
3582 /* ... Write lower 128bits. */
10eaee5f 3583 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
01f9f808 3584 /* ... Write upper 128bits. */
10eaee5f 3585 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
01f9f808 3586 }
c131fcee 3587 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3588 {
3589 int gpnum = regnum - tdep->ax_regnum;
3590
3591 /* Read ... */
0b883586 3592 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
3593 /* ... Modify ... (always little endian). */
3594 memcpy (raw_buf, buf, 2);
3595 /* ... Write. */
10eaee5f 3596 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
3597 }
3598 else if (i386_byte_regnum_p (gdbarch, regnum))
3599 {
1ba53b71
L
3600 int gpnum = regnum - tdep->al_regnum;
3601
3602 /* Read ... We read both lower and upper registers. */
0b883586 3603 regcache->raw_read (gpnum % 4, raw_buf);
1ba53b71
L
3604 /* ... Modify ... (always little endian). */
3605 if (gpnum >= 4)
3606 memcpy (raw_buf + 1, buf, 1);
3607 else
3608 memcpy (raw_buf, buf, 1);
3609 /* ... Write. */
10eaee5f 3610 regcache->raw_write (gpnum % 4, raw_buf);
1ba53b71
L
3611 }
3612 else
3613 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3614 }
28fc6740 3615}
62e5fd57
MK
3616
3617/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3618
3619int
3620i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3621 struct agent_expr *ax, int regnum)
3622{
3623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3624
3625 if (i386_mmx_regnum_p (gdbarch, regnum))
3626 {
3627 /* MMX to FPU register mapping depends on current TOS. Let's just
3628 not care and collect everything... */
3629 int i;
3630
3631 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3632 for (i = 0; i < 8; i++)
3633 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3634 return 0;
3635 }
3636 else if (i386_bnd_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->bnd0_regnum;
3639 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3640 return 0;
3641 }
3642 else if (i386_k_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->k0_regnum;
3645 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_zmm_regnum_p (gdbarch, regnum))
3649 {
3650 regnum -= tdep->zmm0_regnum;
3651 if (regnum < num_lower_zmm_regs)
3652 {
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3655 }
3656 else
3657 {
3658 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3659 - num_lower_zmm_regs);
3660 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3661 - num_lower_zmm_regs);
3662 }
3663 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_ymm_regnum_p (gdbarch, regnum))
3667 {
3668 regnum -= tdep->ymm0_regnum;
3669 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3670 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3671 return 0;
3672 }
3673 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3674 {
3675 regnum -= tdep->ymm16_regnum;
3676 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3677 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3678 return 0;
3679 }
3680 else if (i386_word_regnum_p (gdbarch, regnum))
3681 {
3682 int gpnum = regnum - tdep->ax_regnum;
3683
3684 ax_reg_mask (ax, gpnum);
3685 return 0;
3686 }
3687 else if (i386_byte_regnum_p (gdbarch, regnum))
3688 {
3689 int gpnum = regnum - tdep->al_regnum;
3690
3691 ax_reg_mask (ax, gpnum % 4);
3692 return 0;
3693 }
3694 else
3695 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3696 return 1;
3697}
ff2e87ac
AC
3698\f
3699
ff2e87ac
AC
3700/* Return the register number of the register allocated by GCC after
3701 REGNUM, or -1 if there is no such register. */
3702
3703static int
3704i386_next_regnum (int regnum)
3705{
3706 /* GCC allocates the registers in the order:
3707
3708 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3709
3710 Since storing a variable in %esp doesn't make any sense we return
3711 -1 for %ebp and for %esp itself. */
3712 static int next_regnum[] =
3713 {
3714 I386_EDX_REGNUM, /* Slot for %eax. */
3715 I386_EBX_REGNUM, /* Slot for %ecx. */
3716 I386_ECX_REGNUM, /* Slot for %edx. */
3717 I386_ESI_REGNUM, /* Slot for %ebx. */
3718 -1, -1, /* Slots for %esp and %ebp. */
3719 I386_EDI_REGNUM, /* Slot for %esi. */
3720 I386_EBP_REGNUM /* Slot for %edi. */
3721 };
3722
de5b9bb9 3723 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3724 return next_regnum[regnum];
28fc6740 3725
ff2e87ac
AC
3726 return -1;
3727}
3728
3729/* Return nonzero if a value of type TYPE stored in register REGNUM
3730 needs any special handling. */
d7a0d72c 3731
3a1e71e3 3732static int
1777feb0
MS
3733i386_convert_register_p (struct gdbarch *gdbarch,
3734 int regnum, struct type *type)
d7a0d72c 3735{
de5b9bb9
MK
3736 int len = TYPE_LENGTH (type);
3737
ff2e87ac
AC
3738 /* Values may be spread across multiple registers. Most debugging
3739 formats aren't expressive enough to specify the locations, so
3740 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3741 have a length that is a multiple of the word size, since GCC
3742 doesn't seem to put any other types into registers. */
3743 if (len > 4 && len % 4 == 0)
3744 {
3745 int last_regnum = regnum;
3746
3747 while (len > 4)
3748 {
3749 last_regnum = i386_next_regnum (last_regnum);
3750 len -= 4;
3751 }
3752
3753 if (last_regnum != -1)
3754 return 1;
3755 }
ff2e87ac 3756
0abe36f5 3757 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3758}
3759
ff2e87ac
AC
3760/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3761 return its contents in TO. */
ac27f131 3762
8dccd430 3763static int
ff2e87ac 3764i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3765 struct type *type, gdb_byte *to,
3766 int *optimizedp, int *unavailablep)
ac27f131 3767{
20a6ec49 3768 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3769 int len = TYPE_LENGTH (type);
de5b9bb9 3770
20a6ec49 3771 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3772 return i387_register_to_value (frame, regnum, type, to,
3773 optimizedp, unavailablep);
ff2e87ac 3774
fd35795f 3775 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3776
3777 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3778
de5b9bb9
MK
3779 while (len > 0)
3780 {
3781 gdb_assert (regnum != -1);
20a6ec49 3782 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3783
8dccd430
PA
3784 if (!get_frame_register_bytes (frame, regnum, 0,
3785 register_size (gdbarch, regnum),
3786 to, optimizedp, unavailablep))
3787 return 0;
3788
de5b9bb9
MK
3789 regnum = i386_next_regnum (regnum);
3790 len -= 4;
42835c2b 3791 to += 4;
de5b9bb9 3792 }
8dccd430
PA
3793
3794 *optimizedp = *unavailablep = 0;
3795 return 1;
ac27f131
MK
3796}
3797
ff2e87ac
AC
3798/* Write the contents FROM of a value of type TYPE into register
3799 REGNUM in frame FRAME. */
ac27f131 3800
3a1e71e3 3801static void
ff2e87ac 3802i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3803 struct type *type, const gdb_byte *from)
ac27f131 3804{
de5b9bb9 3805 int len = TYPE_LENGTH (type);
de5b9bb9 3806
20a6ec49 3807 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3808 {
d532c08f
MK
3809 i387_value_to_register (frame, regnum, type, from);
3810 return;
3811 }
3d261580 3812
fd35795f 3813 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3814
3815 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3816
de5b9bb9
MK
3817 while (len > 0)
3818 {
3819 gdb_assert (regnum != -1);
875f8d0e 3820 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3821
42835c2b 3822 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3823 regnum = i386_next_regnum (regnum);
3824 len -= 4;
42835c2b 3825 from += 4;
de5b9bb9 3826 }
ac27f131 3827}
ff2e87ac 3828\f
7fdafb5a
MK
3829/* Supply register REGNUM from the buffer specified by GREGS and LEN
3830 in the general-purpose register set REGSET to register cache
3831 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3832
20187ed5 3833void
473f17b0
MK
3834i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3835 int regnum, const void *gregs, size_t len)
3836{
ac7936df 3837 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3838 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3839 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3840 int i;
3841
1528345d 3842 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3843
3844 for (i = 0; i < tdep->gregset_num_regs; i++)
3845 {
3846 if ((regnum == i || regnum == -1)
3847 && tdep->gregset_reg_offset[i] != -1)
73e1c03f 3848 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
473f17b0
MK
3849 }
3850}
3851
7fdafb5a
MK
3852/* Collect register REGNUM from the register cache REGCACHE and store
3853 it in the buffer specified by GREGS and LEN as described by the
3854 general-purpose register set REGSET. If REGNUM is -1, do this for
3855 all registers in REGSET. */
3856
ecc37a5a 3857static void
7fdafb5a
MK
3858i386_collect_gregset (const struct regset *regset,
3859 const struct regcache *regcache,
3860 int regnum, void *gregs, size_t len)
3861{
ac7936df 3862 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3863 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3864 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3865 int i;
3866
1528345d 3867 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3868
3869 for (i = 0; i < tdep->gregset_num_regs; i++)
3870 {
3871 if ((regnum == i || regnum == -1)
3872 && tdep->gregset_reg_offset[i] != -1)
34a79281 3873 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
7fdafb5a
MK
3874 }
3875}
3876
3877/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3878 in the floating-point register set REGSET to register cache
3879 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3880
3881static void
3882i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3883 int regnum, const void *fpregs, size_t len)
3884{
ac7936df 3885 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3886 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3887
66a72d25
MK
3888 if (len == I387_SIZEOF_FXSAVE)
3889 {
3890 i387_supply_fxsave (regcache, regnum, fpregs);
3891 return;
3892 }
3893
1528345d 3894 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3895 i387_supply_fsave (regcache, regnum, fpregs);
3896}
8446b36a 3897
2f305df1
MK
3898/* Collect register REGNUM from the register cache REGCACHE and store
3899 it in the buffer specified by FPREGS and LEN as described by the
3900 floating-point register set REGSET. If REGNUM is -1, do this for
3901 all registers in REGSET. */
7fdafb5a
MK
3902
3903static void
3904i386_collect_fpregset (const struct regset *regset,
3905 const struct regcache *regcache,
3906 int regnum, void *fpregs, size_t len)
3907{
ac7936df 3908 struct gdbarch *gdbarch = regcache->arch ();
09424cff 3909 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3910
3911 if (len == I387_SIZEOF_FXSAVE)
3912 {
3913 i387_collect_fxsave (regcache, regnum, fpregs);
3914 return;
3915 }
3916
1528345d 3917 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3918 i387_collect_fsave (regcache, regnum, fpregs);
3919}
3920
ecc37a5a
AA
3921/* Register set definitions. */
3922
3923const struct regset i386_gregset =
3924 {
3925 NULL, i386_supply_gregset, i386_collect_gregset
3926 };
3927
8f0435f7 3928const struct regset i386_fpregset =
ecc37a5a
AA
3929 {
3930 NULL, i386_supply_fpregset, i386_collect_fpregset
3931 };
3932
490496c3 3933/* Default iterator over core file register note sections. */
8446b36a 3934
490496c3
AA
3935void
3936i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3937 iterate_over_regset_sections_cb *cb,
3938 void *cb_data,
3939 const struct regcache *regcache)
8446b36a
MK
3940{
3941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3942
a616bb94
AH
3943 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3944 cb_data);
490496c3 3945 if (tdep->sizeof_fpregset)
a616bb94
AH
3946 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3947 NULL, cb_data);
8446b36a 3948}
473f17b0 3949\f
fc338970 3950
fc338970 3951/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3952
3953CORE_ADDR
e17a4113
UW
3954i386_pe_skip_trampoline_code (struct frame_info *frame,
3955 CORE_ADDR pc, char *name)
c906108c 3956{
e17a4113
UW
3957 struct gdbarch *gdbarch = get_frame_arch (frame);
3958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3959
3960 /* jmp *(dest) */
3961 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3962 {
e17a4113
UW
3963 unsigned long indirect =
3964 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3965 struct minimal_symbol *indsym =
7cbd4a93 3966 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
c9d95fa3 3967 const char *symname = indsym ? indsym->linkage_name () : 0;
c906108c 3968
c5aa993b 3969 if (symname)
c906108c 3970 {
61012eef
GB
3971 if (startswith (symname, "__imp_")
3972 || startswith (symname, "_imp_"))
e17a4113
UW
3973 return name ? 1 :
3974 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3975 }
3976 }
fc338970 3977 return 0; /* Not a trampoline. */
c906108c 3978}
fc338970
MK
3979\f
3980
10458914
DJ
3981/* Return whether the THIS_FRAME corresponds to a sigtramp
3982 routine. */
8201327c 3983
4bd207ef 3984int
10458914 3985i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3986{
10458914 3987 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3988 const char *name;
911bc6ee
MK
3989
3990 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3991 return (name && strcmp ("_sigtramp", name) == 0);
3992}
3993\f
3994
fc338970
MK
3995/* We have two flavours of disassembly. The machinery on this page
3996 deals with switching between those. */
c906108c
SS
3997
3998static int
a89aa300 3999i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4000{
5e3397bb
MK
4001 gdb_assert (disassembly_flavor == att_flavor
4002 || disassembly_flavor == intel_flavor);
4003
f995bbe8 4004 info->disassembler_options = disassembly_flavor;
5e3397bb 4005
6394c606 4006 return default_print_insn (pc, info);
7a292a7a 4007}
fc338970 4008\f
3ce1502b 4009
8201327c
MK
4010/* There are a few i386 architecture variants that differ only
4011 slightly from the generic i386 target. For now, we don't give them
4012 their own source file, but include them here. As a consequence,
4013 they'll always be included. */
3ce1502b 4014
8201327c 4015/* System V Release 4 (SVR4). */
3ce1502b 4016
10458914
DJ
4017/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4018 routine. */
911bc6ee 4019
8201327c 4020static int
10458914 4021i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4022{
10458914 4023 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4024 const char *name;
911bc6ee 4025
05b4bd79 4026 /* The origin of these symbols is currently unknown. */
911bc6ee 4027 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4028 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4029 || strcmp ("sigvechandler", name) == 0));
4030}
d2a7c97a 4031
10458914
DJ
4032/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4033 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4034
3a1e71e3 4035static CORE_ADDR
10458914 4036i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4037{
e17a4113
UW
4038 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4039 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4040 gdb_byte buf[4];
acd5c798 4041 CORE_ADDR sp;
3ce1502b 4042
10458914 4043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4044 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4045
e17a4113 4046 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4047}
55aa24fb
SDJ
4048
4049\f
4050
4051/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4052 gdbarch.h. */
4053
4054int
4055i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4056{
4057 return (*s == '$' /* Literal number. */
4058 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4059 || (*s == '(' && s[1] == '%') /* Register indirection. */
4060 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4061}
4062
5acfdbae
SDJ
4063/* Helper function for i386_stap_parse_special_token.
4064
4065 This function parses operands of the form `-8+3+1(%rbp)', which
4066 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4067
af2d9bee 4068 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4069 otherwise. */
4070
af2d9bee 4071static bool
5acfdbae
SDJ
4072i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4073 struct stap_parse_info *p)
4074{
4075 const char *s = p->arg;
4076
4077 if (isdigit (*s) || *s == '-' || *s == '+')
4078 {
af2d9bee 4079 bool got_minus[3];
5acfdbae
SDJ
4080 int i;
4081 long displacements[3];
4082 const char *start;
4083 char *regname;
4084 int len;
4085 struct stoken str;
4086 char *endp;
4087
af2d9bee 4088 got_minus[0] = false;
5acfdbae
SDJ
4089 if (*s == '+')
4090 ++s;
4091 else if (*s == '-')
4092 {
4093 ++s;
af2d9bee 4094 got_minus[0] = true;
5acfdbae
SDJ
4095 }
4096
d7b30f67 4097 if (!isdigit ((unsigned char) *s))
af2d9bee 4098 return false;
d7b30f67 4099
5acfdbae
SDJ
4100 displacements[0] = strtol (s, &endp, 10);
4101 s = endp;
4102
4103 if (*s != '+' && *s != '-')
4104 {
4105 /* We are not dealing with a triplet. */
af2d9bee 4106 return false;
5acfdbae
SDJ
4107 }
4108
af2d9bee 4109 got_minus[1] = false;
5acfdbae
SDJ
4110 if (*s == '+')
4111 ++s;
4112 else
4113 {
4114 ++s;
af2d9bee 4115 got_minus[1] = true;
5acfdbae
SDJ
4116 }
4117
d7b30f67 4118 if (!isdigit ((unsigned char) *s))
af2d9bee 4119 return false;
d7b30f67 4120
5acfdbae
SDJ
4121 displacements[1] = strtol (s, &endp, 10);
4122 s = endp;
4123
4124 if (*s != '+' && *s != '-')
4125 {
4126 /* We are not dealing with a triplet. */
af2d9bee 4127 return false;
5acfdbae
SDJ
4128 }
4129
af2d9bee 4130 got_minus[2] = false;
5acfdbae
SDJ
4131 if (*s == '+')
4132 ++s;
4133 else
4134 {
4135 ++s;
af2d9bee 4136 got_minus[2] = true;
5acfdbae
SDJ
4137 }
4138
d7b30f67 4139 if (!isdigit ((unsigned char) *s))
af2d9bee 4140 return false;
d7b30f67 4141
5acfdbae
SDJ
4142 displacements[2] = strtol (s, &endp, 10);
4143 s = endp;
4144
4145 if (*s != '(' || s[1] != '%')
af2d9bee 4146 return false;
5acfdbae
SDJ
4147
4148 s += 2;
4149 start = s;
4150
4151 while (isalnum (*s))
4152 ++s;
4153
4154 if (*s++ != ')')
af2d9bee 4155 return false;
5acfdbae 4156
d7b30f67 4157 len = s - start - 1;
224c3ddb 4158 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4159
4160 strncpy (regname, start, len);
4161 regname[len] = '\0';
4162
4163 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4164 error (_("Invalid register name `%s' on expression `%s'."),
4165 regname, p->saved_arg);
4166
4167 for (i = 0; i < 3; i++)
4168 {
410a0ff2
SDJ
4169 write_exp_elt_opcode (&p->pstate, OP_LONG);
4170 write_exp_elt_type
4171 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4172 write_exp_elt_longcst (&p->pstate, displacements[i]);
4173 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4174 if (got_minus[i])
410a0ff2 4175 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4176 }
4177
410a0ff2 4178 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4179 str.ptr = regname;
4180 str.length = len;
410a0ff2
SDJ
4181 write_exp_string (&p->pstate, str);
4182 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4183
410a0ff2
SDJ
4184 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4185 write_exp_elt_type (&p->pstate,
4186 builtin_type (gdbarch)->builtin_data_ptr);
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4188
410a0ff2
SDJ
4189 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4192
410a0ff2
SDJ
4193 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4194 write_exp_elt_type (&p->pstate,
4195 lookup_pointer_type (p->arg_type));
4196 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4197
410a0ff2 4198 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4199
4200 p->arg = s;
4201
af2d9bee 4202 return true;
5acfdbae
SDJ
4203 }
4204
af2d9bee 4205 return false;
5acfdbae
SDJ
4206}
4207
4208/* Helper function for i386_stap_parse_special_token.
4209
4210 This function parses operands of the form `register base +
4211 (register index * size) + offset', as represented in
4212 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4213
af2d9bee 4214 Return true if the operand was parsed successfully, false
5acfdbae
SDJ
4215 otherwise. */
4216
af2d9bee 4217static bool
5acfdbae
SDJ
4218i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4219 struct stap_parse_info *p)
4220{
4221 const char *s = p->arg;
4222
4223 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4224 {
af2d9bee 4225 bool offset_minus = false;
5acfdbae 4226 long offset = 0;
af2d9bee 4227 bool size_minus = false;
5acfdbae
SDJ
4228 long size = 0;
4229 const char *start;
4230 char *base;
4231 int len_base;
4232 char *index;
4233 int len_index;
4234 struct stoken base_token, index_token;
4235
4236 if (*s == '+')
4237 ++s;
4238 else if (*s == '-')
4239 {
4240 ++s;
af2d9bee 4241 offset_minus = true;
5acfdbae
SDJ
4242 }
4243
4244 if (offset_minus && !isdigit (*s))
af2d9bee 4245 return false;
5acfdbae
SDJ
4246
4247 if (isdigit (*s))
4248 {
4249 char *endp;
4250
4251 offset = strtol (s, &endp, 10);
4252 s = endp;
4253 }
4254
4255 if (*s != '(' || s[1] != '%')
af2d9bee 4256 return false;
5acfdbae
SDJ
4257
4258 s += 2;
4259 start = s;
4260
4261 while (isalnum (*s))
4262 ++s;
4263
4264 if (*s != ',' || s[1] != '%')
af2d9bee 4265 return false;
5acfdbae
SDJ
4266
4267 len_base = s - start;
224c3ddb 4268 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4269 strncpy (base, start, len_base);
4270 base[len_base] = '\0';
4271
4272 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4273 error (_("Invalid register name `%s' on expression `%s'."),
4274 base, p->saved_arg);
4275
4276 s += 2;
4277 start = s;
4278
4279 while (isalnum (*s))
4280 ++s;
4281
4282 len_index = s - start;
224c3ddb 4283 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4284 strncpy (index, start, len_index);
4285 index[len_index] = '\0';
4286
4287 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4288 error (_("Invalid register name `%s' on expression `%s'."),
4289 index, p->saved_arg);
4290
4291 if (*s != ',' && *s != ')')
af2d9bee 4292 return false;
5acfdbae
SDJ
4293
4294 if (*s == ',')
4295 {
4296 char *endp;
4297
4298 ++s;
4299 if (*s == '+')
4300 ++s;
4301 else if (*s == '-')
4302 {
4303 ++s;
af2d9bee 4304 size_minus = true;
5acfdbae
SDJ
4305 }
4306
4307 size = strtol (s, &endp, 10);
4308 s = endp;
4309
4310 if (*s != ')')
af2d9bee 4311 return false;
5acfdbae
SDJ
4312 }
4313
4314 ++s;
4315
4316 if (offset)
4317 {
410a0ff2
SDJ
4318 write_exp_elt_opcode (&p->pstate, OP_LONG);
4319 write_exp_elt_type (&p->pstate,
4320 builtin_type (gdbarch)->builtin_long);
4321 write_exp_elt_longcst (&p->pstate, offset);
4322 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4323 if (offset_minus)
410a0ff2 4324 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4325 }
4326
410a0ff2 4327 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4328 base_token.ptr = base;
4329 base_token.length = len_base;
410a0ff2
SDJ
4330 write_exp_string (&p->pstate, base_token);
4331 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4332
4333 if (offset)
410a0ff2 4334 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4335
410a0ff2 4336 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4337 index_token.ptr = index;
4338 index_token.length = len_index;
410a0ff2
SDJ
4339 write_exp_string (&p->pstate, index_token);
4340 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4341
4342 if (size)
4343 {
410a0ff2
SDJ
4344 write_exp_elt_opcode (&p->pstate, OP_LONG);
4345 write_exp_elt_type (&p->pstate,
4346 builtin_type (gdbarch)->builtin_long);
4347 write_exp_elt_longcst (&p->pstate, size);
4348 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4349 if (size_minus)
410a0ff2
SDJ
4350 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4351 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4352 }
4353
410a0ff2 4354 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4355
410a0ff2
SDJ
4356 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4357 write_exp_elt_type (&p->pstate,
4358 lookup_pointer_type (p->arg_type));
4359 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4360
410a0ff2 4361 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4362
4363 p->arg = s;
4364
af2d9bee 4365 return true;
5acfdbae
SDJ
4366 }
4367
af2d9bee 4368 return false;
5acfdbae
SDJ
4369}
4370
55aa24fb
SDJ
4371/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4372 gdbarch.h. */
4373
4374int
4375i386_stap_parse_special_token (struct gdbarch *gdbarch,
4376 struct stap_parse_info *p)
4377{
55aa24fb
SDJ
4378 /* In order to parse special tokens, we use a state-machine that go
4379 through every known token and try to get a match. */
4380 enum
4381 {
4382 TRIPLET,
4383 THREE_ARG_DISPLACEMENT,
4384 DONE
570dc176
TT
4385 };
4386 int current_state;
55aa24fb
SDJ
4387
4388 current_state = TRIPLET;
4389
4390 /* The special tokens to be parsed here are:
4391
4392 - `register base + (register index * size) + offset', as represented
4393 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4394
4395 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4396 `*(-8 + 3 - 1 + (void *) $eax)'. */
4397
4398 while (current_state != DONE)
4399 {
55aa24fb
SDJ
4400 switch (current_state)
4401 {
4402 case TRIPLET:
5acfdbae
SDJ
4403 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4404 return 1;
4405 break;
4406
55aa24fb 4407 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4408 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4409 return 1;
4410 break;
55aa24fb
SDJ
4411 }
4412
4413 /* Advancing to the next state. */
4414 ++current_state;
4415 }
4416
4417 return 0;
4418}
4419
7d7571f0
SDJ
4420/* Implementation of 'gdbarch_stap_adjust_register', as defined in
4421 gdbarch.h. */
4422
6b78c3f8 4423static std::string
7d7571f0 4424i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
6b78c3f8 4425 const std::string &regname, int regnum)
7d7571f0
SDJ
4426{
4427 static const std::unordered_set<std::string> reg_assoc
4428 = { "ax", "bx", "cx", "dx",
4429 "si", "di", "bp", "sp" };
4430
6b78c3f8
AB
4431 /* If we are dealing with a register whose size is less than the size
4432 specified by the "[-]N@" prefix, and it is one of the registers that
4433 we know has an extended variant available, then use the extended
4434 version of the register instead. */
4435 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4436 && reg_assoc.find (regname) != reg_assoc.end ())
4437 return "e" + regname;
7d7571f0 4438
6b78c3f8
AB
4439 /* Otherwise, just use the requested register. */
4440 return regname;
7d7571f0
SDJ
4441}
4442
8201327c 4443\f
3ce1502b 4444
ac04f72b
TT
4445/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4446 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4447
4448static const char *
4449i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4450{
4451 return "(x86_64|i.86)";
4452}
4453
4454\f
4455
1d509aa6
MM
4456/* Implement the "in_indirect_branch_thunk" gdbarch function. */
4457
4458static bool
4459i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4460{
4461 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4462 I386_EAX_REGNUM, I386_EIP_REGNUM);
4463}
4464
8201327c 4465/* Generic ELF. */
d2a7c97a 4466
8201327c
MK
4467void
4468i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4469{
05c0465e
SDJ
4470 static const char *const stap_integer_prefixes[] = { "$", NULL };
4471 static const char *const stap_register_prefixes[] = { "%", NULL };
4472 static const char *const stap_register_indirection_prefixes[] = { "(",
4473 NULL };
4474 static const char *const stap_register_indirection_suffixes[] = { ")",
4475 NULL };
4476
c4fc7f1b
MK
4477 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4478 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4479
4480 /* Registering SystemTap handlers. */
05c0465e
SDJ
4481 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4482 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4483 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4484 stap_register_indirection_prefixes);
4485 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4486 stap_register_indirection_suffixes);
55aa24fb
SDJ
4487 set_gdbarch_stap_is_single_operand (gdbarch,
4488 i386_stap_is_single_operand);
4489 set_gdbarch_stap_parse_special_token (gdbarch,
4490 i386_stap_parse_special_token);
7d7571f0
SDJ
4491 set_gdbarch_stap_adjust_register (gdbarch,
4492 i386_stap_adjust_register);
1d509aa6
MM
4493
4494 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4495 i386_in_indirect_branch_thunk);
8201327c 4496}
3ce1502b 4497
8201327c 4498/* System V Release 4 (SVR4). */
3ce1502b 4499
8201327c
MK
4500void
4501i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4502{
4503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4504
8201327c
MK
4505 /* System V Release 4 uses ELF. */
4506 i386_elf_init_abi (info, gdbarch);
3ce1502b 4507
dfe01d39 4508 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4509 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4510
911bc6ee 4511 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4512 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4513 tdep->sc_pc_offset = 36 + 14 * 4;
4514 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4515
8201327c 4516 tdep->jb_pc_offset = 20;
3ce1502b
MK
4517}
4518
8201327c 4519\f
2acceee2 4520
38c968cf
AC
4521/* i386 register groups. In addition to the normal groups, add "mmx"
4522 and "sse". */
4523
4524static struct reggroup *i386_sse_reggroup;
4525static struct reggroup *i386_mmx_reggroup;
4526
4527static void
4528i386_init_reggroups (void)
4529{
4530 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4531 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4532}
4533
4534static void
4535i386_add_reggroups (struct gdbarch *gdbarch)
4536{
4537 reggroup_add (gdbarch, i386_sse_reggroup);
4538 reggroup_add (gdbarch, i386_mmx_reggroup);
4539 reggroup_add (gdbarch, general_reggroup);
4540 reggroup_add (gdbarch, float_reggroup);
4541 reggroup_add (gdbarch, all_reggroup);
4542 reggroup_add (gdbarch, save_reggroup);
4543 reggroup_add (gdbarch, restore_reggroup);
4544 reggroup_add (gdbarch, vector_reggroup);
4545 reggroup_add (gdbarch, system_reggroup);
4546}
4547
4548int
4549i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4550 struct reggroup *group)
4551{
c131fcee
L
4552 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4553 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808 4554 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
798a7429
SM
4555 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4556 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4557 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4558
1ba53b71
L
4559 /* Don't include pseudo registers, except for MMX, in any register
4560 groups. */
c131fcee 4561 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4562 return 0;
4563
c131fcee 4564 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4565 return 0;
4566
c131fcee 4567 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4568 return 0;
4569
4570 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4571 if (group == i386_mmx_reggroup)
4572 return mmx_regnum_p;
1ba53b71 4573
51547df6 4574 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4575 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4576 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4577 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4578 if (group == i386_sse_reggroup)
01f9f808 4579 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4580
4581 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4582 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4583 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4584
22049425
MS
4585 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4586 == X86_XSTATE_AVX_AVX512_MASK);
4587 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4588 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4589 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4590 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4591
38c968cf 4592 if (group == vector_reggroup)
c131fcee 4593 return (mmx_regnum_p
01f9f808
MS
4594 || (zmm_regnum_p && avx512_p)
4595 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4596 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4597 || mxcsr_regnum_p);
1ba53b71
L
4598
4599 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4600 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4601 if (group == float_reggroup)
4602 return fp_regnum_p;
1ba53b71 4603
c131fcee
L
4604 /* For "info reg all", don't include upper YMM registers nor XMM
4605 registers when AVX is supported. */
4606 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4607 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4608 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4609 if (group == all_reggroup
01f9f808
MS
4610 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4611 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4612 || ymmh_regnum_p
4613 || ymmh_avx512_regnum_p
4614 || zmmh_regnum_p))
c131fcee
L
4615 return 0;
4616
1dbcd68c
WT
4617 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4618 if (group == all_reggroup
df7e5265 4619 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4620 return bnd_regnum_p;
4621
4622 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4623 if (group == all_reggroup
df7e5265 4624 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4625 return 0;
4626
4627 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4628 if (group == all_reggroup
df7e5265 4629 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4630 return mpx_ctrl_regnum_p;
4631
38c968cf 4632 if (group == general_reggroup)
1ba53b71
L
4633 return (!fp_regnum_p
4634 && !mmx_regnum_p
c131fcee
L
4635 && !mxcsr_regnum_p
4636 && !xmm_regnum_p
01f9f808 4637 && !xmm_avx512_regnum_p
c131fcee 4638 && !ymm_regnum_p
1dbcd68c 4639 && !ymmh_regnum_p
01f9f808
MS
4640 && !ymm_avx512_regnum_p
4641 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4642 && !bndr_regnum_p
4643 && !bnd_regnum_p
01f9f808
MS
4644 && !mpx_ctrl_regnum_p
4645 && !zmm_regnum_p
51547df6
MS
4646 && !zmmh_regnum_p
4647 && !pkru_regnum_p);
acd5c798 4648
38c968cf
AC
4649 return default_register_reggroup_p (gdbarch, regnum, group);
4650}
38c968cf 4651\f
acd5c798 4652
f837910f
MK
4653/* Get the ARGIth function argument for the current function. */
4654
42c466d7 4655static CORE_ADDR
143985b7
AF
4656i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4657 struct type *type)
4658{
e17a4113
UW
4659 struct gdbarch *gdbarch = get_frame_arch (frame);
4660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4661 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4662 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4663}
4664
7ad10968
HZ
4665#define PREFIX_REPZ 0x01
4666#define PREFIX_REPNZ 0x02
4667#define PREFIX_LOCK 0x04
4668#define PREFIX_DATA 0x08
4669#define PREFIX_ADDR 0x10
473f17b0 4670
7ad10968
HZ
4671/* operand size */
4672enum
4673{
4674 OT_BYTE = 0,
4675 OT_WORD,
4676 OT_LONG,
cf648174 4677 OT_QUAD,
a3c4230a 4678 OT_DQUAD,
7ad10968 4679};
473f17b0 4680
7ad10968
HZ
4681/* i386 arith/logic operations */
4682enum
4683{
4684 OP_ADDL,
4685 OP_ORL,
4686 OP_ADCL,
4687 OP_SBBL,
4688 OP_ANDL,
4689 OP_SUBL,
4690 OP_XORL,
4691 OP_CMPL,
4692};
5716833c 4693
7ad10968
HZ
4694struct i386_record_s
4695{
cf648174 4696 struct gdbarch *gdbarch;
7ad10968 4697 struct regcache *regcache;
df61f520 4698 CORE_ADDR orig_addr;
7ad10968
HZ
4699 CORE_ADDR addr;
4700 int aflag;
4701 int dflag;
4702 int override;
4703 uint8_t modrm;
4704 uint8_t mod, reg, rm;
4705 int ot;
cf648174
HZ
4706 uint8_t rex_x;
4707 uint8_t rex_b;
4708 int rip_offset;
4709 int popl_esp_hack;
4710 const int *regmap;
7ad10968 4711};
5716833c 4712
99c1624c
PA
4713/* Parse the "modrm" part of the memory address irp->addr points at.
4714 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4715
7ad10968
HZ
4716static int
4717i386_record_modrm (struct i386_record_s *irp)
4718{
cf648174 4719 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4720
4ffa4fc7
PA
4721 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4722 return -1;
4723
7ad10968
HZ
4724 irp->addr++;
4725 irp->mod = (irp->modrm >> 6) & 3;
4726 irp->reg = (irp->modrm >> 3) & 7;
4727 irp->rm = irp->modrm & 7;
5716833c 4728
7ad10968
HZ
4729 return 0;
4730}
d2a7c97a 4731
99c1624c
PA
4732/* Extract the memory address that the current instruction writes to,
4733 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4734
7ad10968 4735static int
cf648174 4736i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4737{
cf648174 4738 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4739 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4740 gdb_byte buf[4];
4741 ULONGEST offset64;
21d0e8a4 4742
7ad10968 4743 *addr = 0;
1e87984a 4744 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4745 {
1e87984a 4746 /* 32/64 bits */
7ad10968
HZ
4747 int havesib = 0;
4748 uint8_t scale = 0;
648d0c8b 4749 uint8_t byte;
7ad10968
HZ
4750 uint8_t index = 0;
4751 uint8_t base = irp->rm;
896fb97d 4752
7ad10968
HZ
4753 if (base == 4)
4754 {
4755 havesib = 1;
4ffa4fc7
PA
4756 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4757 return -1;
7ad10968 4758 irp->addr++;
648d0c8b
MS
4759 scale = (byte >> 6) & 3;
4760 index = ((byte >> 3) & 7) | irp->rex_x;
4761 base = (byte & 7);
7ad10968 4762 }
cf648174 4763 base |= irp->rex_b;
21d0e8a4 4764
7ad10968
HZ
4765 switch (irp->mod)
4766 {
4767 case 0:
4768 if ((base & 7) == 5)
4769 {
4770 base = 0xff;
4ffa4fc7
PA
4771 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4772 return -1;
7ad10968 4773 irp->addr += 4;
60a1502a 4774 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4775 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4776 *addr += irp->addr + irp->rip_offset;
7ad10968 4777 }
7ad10968
HZ
4778 break;
4779 case 1:
4ffa4fc7
PA
4780 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4781 return -1;
7ad10968 4782 irp->addr++;
60a1502a 4783 *addr = (int8_t) buf[0];
7ad10968
HZ
4784 break;
4785 case 2:
4ffa4fc7
PA
4786 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4787 return -1;
60a1502a 4788 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4789 irp->addr += 4;
4790 break;
4791 }
356a6b3e 4792
60a1502a 4793 offset64 = 0;
7ad10968 4794 if (base != 0xff)
cf648174
HZ
4795 {
4796 if (base == 4 && irp->popl_esp_hack)
4797 *addr += irp->popl_esp_hack;
4798 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4799 &offset64);
7ad10968 4800 }
cf648174
HZ
4801 if (irp->aflag == 2)
4802 {
60a1502a 4803 *addr += offset64;
cf648174
HZ
4804 }
4805 else
60a1502a 4806 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4807
7ad10968
HZ
4808 if (havesib && (index != 4 || scale != 0))
4809 {
cf648174 4810 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4811 &offset64);
cf648174 4812 if (irp->aflag == 2)
60a1502a 4813 *addr += offset64 << scale;
cf648174 4814 else
60a1502a 4815 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4816 }
e85596e0
L
4817
4818 if (!irp->aflag)
4819 {
4820 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4821 address from 32-bit to 64-bit. */
4822 *addr = (uint32_t) *addr;
4823 }
7ad10968
HZ
4824 }
4825 else
4826 {
4827 /* 16 bits */
4828 switch (irp->mod)
4829 {
4830 case 0:
4831 if (irp->rm == 6)
4832 {
4ffa4fc7
PA
4833 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4834 return -1;
7ad10968 4835 irp->addr += 2;
60a1502a 4836 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4837 irp->rm = 0;
4838 goto no_rm;
4839 }
7ad10968
HZ
4840 break;
4841 case 1:
4ffa4fc7
PA
4842 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4843 return -1;
7ad10968 4844 irp->addr++;
60a1502a 4845 *addr = (int8_t) buf[0];
7ad10968
HZ
4846 break;
4847 case 2:
4ffa4fc7
PA
4848 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4849 return -1;
7ad10968 4850 irp->addr += 2;
60a1502a 4851 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4852 break;
4853 }
c4fc7f1b 4854
7ad10968
HZ
4855 switch (irp->rm)
4856 {
4857 case 0:
cf648174
HZ
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4866 break;
4867 case 1:
cf648174
HZ
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4876 break;
4877 case 2:
cf648174
HZ
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4886 break;
4887 case 3:
cf648174
HZ
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4896 break;
4897 case 4:
cf648174
HZ
4898 regcache_raw_read_unsigned (irp->regcache,
4899 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4900 &offset64);
4901 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4902 break;
4903 case 5:
cf648174
HZ
4904 regcache_raw_read_unsigned (irp->regcache,
4905 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4906 &offset64);
4907 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4908 break;
4909 case 6:
cf648174
HZ
4910 regcache_raw_read_unsigned (irp->regcache,
4911 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4912 &offset64);
4913 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4914 break;
4915 case 7:
cf648174
HZ
4916 regcache_raw_read_unsigned (irp->regcache,
4917 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4918 &offset64);
4919 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4920 break;
4921 }
4922 *addr &= 0xffff;
4923 }
c4fc7f1b 4924
01fe1b41 4925 no_rm:
7ad10968
HZ
4926 return 0;
4927}
c4fc7f1b 4928
99c1624c
PA
4929/* Record the address and contents of the memory that will be changed
4930 by the current instruction. Return -1 if something goes wrong, 0
4931 otherwise. */
356a6b3e 4932
7ad10968
HZ
4933static int
4934i386_record_lea_modrm (struct i386_record_s *irp)
4935{
cf648174
HZ
4936 struct gdbarch *gdbarch = irp->gdbarch;
4937 uint64_t addr;
356a6b3e 4938
d7877f7e 4939 if (irp->override >= 0)
7ad10968 4940 {
25ea693b 4941 if (record_full_memory_query)
bb08c432 4942 {
651ce16a 4943 if (yquery (_("\
bb08c432
HZ
4944Process record ignores the memory change of instruction at address %s\n\
4945because it can't get the value of the segment register.\n\
4946Do you want to stop the program?"),
651ce16a
PA
4947 paddress (gdbarch, irp->orig_addr)))
4948 return -1;
bb08c432
HZ
4949 }
4950
7ad10968
HZ
4951 return 0;
4952 }
61113f8b 4953
7ad10968
HZ
4954 if (i386_record_lea_modrm_addr (irp, &addr))
4955 return -1;
96297dab 4956
25ea693b 4957 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4958 return -1;
a62cc96e 4959
7ad10968
HZ
4960 return 0;
4961}
b6197528 4962
99c1624c
PA
4963/* Record the effects of a push operation. Return -1 if something
4964 goes wrong, 0 otherwise. */
cf648174
HZ
4965
4966static int
4967i386_record_push (struct i386_record_s *irp, int size)
4968{
648d0c8b 4969 ULONGEST addr;
cf648174 4970
25ea693b
MM
4971 if (record_full_arch_list_add_reg (irp->regcache,
4972 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4973 return -1;
4974 regcache_raw_read_unsigned (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4976 &addr);
25ea693b 4977 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4978 return -1;
4979
4980 return 0;
4981}
4982
0289bdd7
MS
4983
4984/* Defines contents to record. */
4985#define I386_SAVE_FPU_REGS 0xfffd
4986#define I386_SAVE_FPU_ENV 0xfffe
4987#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4988
99c1624c
PA
4989/* Record the values of the floating point registers which will be
4990 changed by the current instruction. Returns -1 if something is
4991 wrong, 0 otherwise. */
0289bdd7
MS
4992
4993static int i386_record_floats (struct gdbarch *gdbarch,
4994 struct i386_record_s *ir,
4995 uint32_t iregnum)
4996{
4997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4998 int i;
4999
5000 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5001 happen. Currently we store st0-st7 registers, but we need not store all
5002 registers all the time, in future we use ftag register and record only
5003 those who are not marked as an empty. */
5004
5005 if (I386_SAVE_FPU_REGS == iregnum)
5006 {
5007 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5008 {
25ea693b 5009 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5010 return -1;
5011 }
5012 }
5013 else if (I386_SAVE_FPU_ENV == iregnum)
5014 {
5015 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
25ea693b 5017 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5018 return -1;
5019 }
5020 }
5021 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5022 {
5023 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5024 {
25ea693b 5025 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5026 return -1;
5027 }
5028 }
5029 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5030 (iregnum <= I387_FOP_REGNUM (tdep)))
5031 {
25ea693b 5032 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5033 return -1;
5034 }
5035 else
5036 {
5037 /* Parameter error. */
5038 return -1;
5039 }
5040 if(I386_SAVE_FPU_ENV != iregnum)
5041 {
5042 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5043 {
25ea693b 5044 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5045 return -1;
5046 }
5047 }
5048 return 0;
5049}
5050
99c1624c
PA
5051/* Parse the current instruction, and record the values of the
5052 registers and memory that will be changed by the current
5053 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5054
25ea693b
MM
5055#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5057
a6b808b4 5058int
7ad10968 5059i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5060 CORE_ADDR input_addr)
7ad10968 5061{
60a1502a 5062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5063 int prefixes = 0;
580879fc 5064 int regnum = 0;
425b824a 5065 uint32_t opcode;
f4644a3f 5066 uint8_t opcode8;
648d0c8b 5067 ULONGEST addr;
975c21ab 5068 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5069 struct i386_record_s ir;
0289bdd7 5070 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5071 uint8_t rex_w = -1;
5072 uint8_t rex_r = 0;
7ad10968 5073
8408d274 5074 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5075 ir.regcache = regcache;
648d0c8b
MS
5076 ir.addr = input_addr;
5077 ir.orig_addr = input_addr;
7ad10968
HZ
5078 ir.aflag = 1;
5079 ir.dflag = 1;
cf648174
HZ
5080 ir.override = -1;
5081 ir.popl_esp_hack = 0;
a3c4230a 5082 ir.regmap = tdep->record_regmap;
cf648174 5083 ir.gdbarch = gdbarch;
7ad10968
HZ
5084
5085 if (record_debug > 1)
5086 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5087 "addr = %s\n",
5088 paddress (gdbarch, ir.addr));
7ad10968
HZ
5089
5090 /* prefixes */
5091 while (1)
5092 {
4ffa4fc7
PA
5093 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5094 return -1;
7ad10968 5095 ir.addr++;
425b824a 5096 switch (opcode8) /* Instruction prefixes */
7ad10968 5097 {
01fe1b41 5098 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5099 prefixes |= PREFIX_REPZ;
5100 break;
01fe1b41 5101 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5102 prefixes |= PREFIX_REPNZ;
5103 break;
01fe1b41 5104 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5105 prefixes |= PREFIX_LOCK;
5106 break;
01fe1b41 5107 case CS_PREFIX_OPCODE:
cf648174 5108 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5109 break;
01fe1b41 5110 case SS_PREFIX_OPCODE:
cf648174 5111 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5112 break;
01fe1b41 5113 case DS_PREFIX_OPCODE:
cf648174 5114 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5115 break;
01fe1b41 5116 case ES_PREFIX_OPCODE:
cf648174 5117 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5118 break;
01fe1b41 5119 case FS_PREFIX_OPCODE:
cf648174 5120 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5121 break;
01fe1b41 5122 case GS_PREFIX_OPCODE:
cf648174 5123 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5124 break;
01fe1b41 5125 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5126 prefixes |= PREFIX_DATA;
5127 break;
01fe1b41 5128 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5129 prefixes |= PREFIX_ADDR;
5130 break;
d691bec7
MS
5131 case 0x40: /* i386 inc %eax */
5132 case 0x41: /* i386 inc %ecx */
5133 case 0x42: /* i386 inc %edx */
5134 case 0x43: /* i386 inc %ebx */
5135 case 0x44: /* i386 inc %esp */
5136 case 0x45: /* i386 inc %ebp */
5137 case 0x46: /* i386 inc %esi */
5138 case 0x47: /* i386 inc %edi */
5139 case 0x48: /* i386 dec %eax */
5140 case 0x49: /* i386 dec %ecx */
5141 case 0x4a: /* i386 dec %edx */
5142 case 0x4b: /* i386 dec %ebx */
5143 case 0x4c: /* i386 dec %esp */
5144 case 0x4d: /* i386 dec %ebp */
5145 case 0x4e: /* i386 dec %esi */
5146 case 0x4f: /* i386 dec %edi */
5147 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5148 {
5149 /* REX */
425b824a
MS
5150 rex_w = (opcode8 >> 3) & 1;
5151 rex_r = (opcode8 & 0x4) << 1;
5152 ir.rex_x = (opcode8 & 0x2) << 2;
5153 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5154 }
d691bec7
MS
5155 else /* 32 bit target */
5156 goto out_prefixes;
cf648174 5157 break;
7ad10968
HZ
5158 default:
5159 goto out_prefixes;
5160 break;
5161 }
5162 }
01fe1b41 5163 out_prefixes:
cf648174
HZ
5164 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5165 {
5166 ir.dflag = 2;
5167 }
5168 else
5169 {
5170 if (prefixes & PREFIX_DATA)
5171 ir.dflag ^= 1;
5172 }
7ad10968
HZ
5173 if (prefixes & PREFIX_ADDR)
5174 ir.aflag ^= 1;
cf648174
HZ
5175 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5176 ir.aflag = 2;
7ad10968 5177
1777feb0 5178 /* Now check op code. */
425b824a 5179 opcode = (uint32_t) opcode8;
01fe1b41 5180 reswitch:
7ad10968
HZ
5181 switch (opcode)
5182 {
5183 case 0x0f:
4ffa4fc7
PA
5184 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5185 return -1;
7ad10968 5186 ir.addr++;
a3c4230a 5187 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5188 goto reswitch;
5189 break;
93924b6b 5190
a38bba38 5191 case 0x00: /* arith & logic */
7ad10968
HZ
5192 case 0x01:
5193 case 0x02:
5194 case 0x03:
5195 case 0x04:
5196 case 0x05:
5197 case 0x08:
5198 case 0x09:
5199 case 0x0a:
5200 case 0x0b:
5201 case 0x0c:
5202 case 0x0d:
5203 case 0x10:
5204 case 0x11:
5205 case 0x12:
5206 case 0x13:
5207 case 0x14:
5208 case 0x15:
5209 case 0x18:
5210 case 0x19:
5211 case 0x1a:
5212 case 0x1b:
5213 case 0x1c:
5214 case 0x1d:
5215 case 0x20:
5216 case 0x21:
5217 case 0x22:
5218 case 0x23:
5219 case 0x24:
5220 case 0x25:
5221 case 0x28:
5222 case 0x29:
5223 case 0x2a:
5224 case 0x2b:
5225 case 0x2c:
5226 case 0x2d:
5227 case 0x30:
5228 case 0x31:
5229 case 0x32:
5230 case 0x33:
5231 case 0x34:
5232 case 0x35:
5233 case 0x38:
5234 case 0x39:
5235 case 0x3a:
5236 case 0x3b:
5237 case 0x3c:
5238 case 0x3d:
5239 if (((opcode >> 3) & 7) != OP_CMPL)
5240 {
5241 if ((opcode & 1) == 0)
5242 ir.ot = OT_BYTE;
5243 else
5244 ir.ot = ir.dflag + OT_WORD;
93924b6b 5245
7ad10968
HZ
5246 switch ((opcode >> 1) & 3)
5247 {
a38bba38 5248 case 0: /* OP Ev, Gv */
7ad10968
HZ
5249 if (i386_record_modrm (&ir))
5250 return -1;
5251 if (ir.mod != 3)
5252 {
5253 if (i386_record_lea_modrm (&ir))
5254 return -1;
5255 }
5256 else
5257 {
cf648174
HZ
5258 ir.rm |= ir.rex_b;
5259 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5260 ir.rm &= 0x3;
25ea693b 5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5262 }
5263 break;
a38bba38 5264 case 1: /* OP Gv, Ev */
7ad10968
HZ
5265 if (i386_record_modrm (&ir))
5266 return -1;
cf648174
HZ
5267 ir.reg |= rex_r;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5269 ir.reg &= 0x3;
25ea693b 5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5271 break;
a38bba38 5272 case 2: /* OP A, Iv */
25ea693b 5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5274 break;
5275 }
5276 }
25ea693b 5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5278 break;
42fdc8df 5279
a38bba38 5280 case 0x80: /* GRP1 */
7ad10968
HZ
5281 case 0x81:
5282 case 0x82:
5283 case 0x83:
5284 if (i386_record_modrm (&ir))
5285 return -1;
8201327c 5286
7ad10968
HZ
5287 if (ir.reg != OP_CMPL)
5288 {
5289 if ((opcode & 1) == 0)
5290 ir.ot = OT_BYTE;
5291 else
5292 ir.ot = ir.dflag + OT_WORD;
28fc6740 5293
7ad10968
HZ
5294 if (ir.mod != 3)
5295 {
cf648174
HZ
5296 if (opcode == 0x83)
5297 ir.rip_offset = 1;
5298 else
5299 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5300 if (i386_record_lea_modrm (&ir))
5301 return -1;
5302 }
5303 else
25ea693b 5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5305 }
25ea693b 5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5307 break;
5e3397bb 5308
a38bba38 5309 case 0x40: /* inc */
7ad10968
HZ
5310 case 0x41:
5311 case 0x42:
5312 case 0x43:
5313 case 0x44:
5314 case 0x45:
5315 case 0x46:
5316 case 0x47:
a38bba38
MS
5317
5318 case 0x48: /* dec */
7ad10968
HZ
5319 case 0x49:
5320 case 0x4a:
5321 case 0x4b:
5322 case 0x4c:
5323 case 0x4d:
5324 case 0x4e:
5325 case 0x4f:
a38bba38 5326
25ea693b
MM
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5329 break;
acd5c798 5330
a38bba38 5331 case 0xf6: /* GRP3 */
7ad10968
HZ
5332 case 0xf7:
5333 if ((opcode & 1) == 0)
5334 ir.ot = OT_BYTE;
5335 else
5336 ir.ot = ir.dflag + OT_WORD;
5337 if (i386_record_modrm (&ir))
5338 return -1;
acd5c798 5339
cf648174
HZ
5340 if (ir.mod != 3 && ir.reg == 0)
5341 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5342
7ad10968
HZ
5343 switch (ir.reg)
5344 {
a38bba38 5345 case 0: /* test */
25ea693b 5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5347 break;
a38bba38
MS
5348 case 2: /* not */
5349 case 3: /* neg */
7ad10968
HZ
5350 if (ir.mod != 3)
5351 {
5352 if (i386_record_lea_modrm (&ir))
5353 return -1;
5354 }
5355 else
5356 {
cf648174
HZ
5357 ir.rm |= ir.rex_b;
5358 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5359 ir.rm &= 0x3;
25ea693b 5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5361 }
a38bba38 5362 if (ir.reg == 3) /* neg */
25ea693b 5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5364 break;
a38bba38
MS
5365 case 4: /* mul */
5366 case 5: /* imul */
5367 case 6: /* div */
5368 case 7: /* idiv */
25ea693b 5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5370 if (ir.ot != OT_BYTE)
25ea693b
MM
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5373 break;
5374 default:
5375 ir.addr -= 2;
5376 opcode = opcode << 8 | ir.modrm;
5377 goto no_support;
5378 break;
5379 }
5380 break;
5381
a38bba38
MS
5382 case 0xfe: /* GRP4 */
5383 case 0xff: /* GRP5 */
7ad10968
HZ
5384 if (i386_record_modrm (&ir))
5385 return -1;
5386 if (ir.reg >= 2 && opcode == 0xfe)
5387 {
5388 ir.addr -= 2;
5389 opcode = opcode << 8 | ir.modrm;
5390 goto no_support;
5391 }
7ad10968
HZ
5392 switch (ir.reg)
5393 {
a38bba38
MS
5394 case 0: /* inc */
5395 case 1: /* dec */
cf648174
HZ
5396 if ((opcode & 1) == 0)
5397 ir.ot = OT_BYTE;
5398 else
5399 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5400 if (ir.mod != 3)
5401 {
5402 if (i386_record_lea_modrm (&ir))
5403 return -1;
5404 }
5405 else
5406 {
cf648174
HZ
5407 ir.rm |= ir.rex_b;
5408 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5409 ir.rm &= 0x3;
25ea693b 5410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5411 }
25ea693b 5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5413 break;
a38bba38 5414 case 2: /* call */
cf648174
HZ
5415 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5416 ir.dflag = 2;
5417 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5418 return -1;
25ea693b 5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5420 break;
a38bba38 5421 case 3: /* lcall */
25ea693b 5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5423 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5424 return -1;
25ea693b 5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5426 break;
a38bba38
MS
5427 case 4: /* jmp */
5428 case 5: /* ljmp */
25ea693b 5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5430 break;
a38bba38 5431 case 6: /* push */
cf648174
HZ
5432 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5433 ir.dflag = 2;
5434 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5435 return -1;
7ad10968
HZ
5436 break;
5437 default:
5438 ir.addr -= 2;
5439 opcode = opcode << 8 | ir.modrm;
5440 goto no_support;
5441 break;
5442 }
5443 break;
5444
a38bba38 5445 case 0x84: /* test */
7ad10968
HZ
5446 case 0x85:
5447 case 0xa8:
5448 case 0xa9:
25ea693b 5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5450 break;
5451
a38bba38 5452 case 0x98: /* CWDE/CBW */
25ea693b 5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5454 break;
5455
a38bba38 5456 case 0x99: /* CDQ/CWD */
25ea693b
MM
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5459 break;
5460
a38bba38 5461 case 0x0faf: /* imul */
7ad10968
HZ
5462 case 0x69:
5463 case 0x6b:
5464 ir.ot = ir.dflag + OT_WORD;
5465 if (i386_record_modrm (&ir))
5466 return -1;
cf648174
HZ
5467 if (opcode == 0x69)
5468 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5469 else if (opcode == 0x6b)
5470 ir.rip_offset = 1;
5471 ir.reg |= rex_r;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5473 ir.reg &= 0x3;
25ea693b
MM
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5476 break;
5477
a38bba38 5478 case 0x0fc0: /* xadd */
7ad10968
HZ
5479 case 0x0fc1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
cf648174 5486 ir.reg |= rex_r;
7ad10968
HZ
5487 if (ir.mod == 3)
5488 {
cf648174 5489 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5490 ir.reg &= 0x3;
25ea693b 5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5493 ir.rm &= 0x3;
25ea693b 5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5495 }
5496 else
5497 {
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
cf648174 5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5501 ir.reg &= 0x3;
25ea693b 5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5503 }
25ea693b 5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5505 break;
5506
a38bba38 5507 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5508 case 0x0fb1:
5509 if ((opcode & 1) == 0)
5510 ir.ot = OT_BYTE;
5511 else
5512 ir.ot = ir.dflag + OT_WORD;
5513 if (i386_record_modrm (&ir))
5514 return -1;
5515 if (ir.mod == 3)
5516 {
cf648174 5517 ir.reg |= rex_r;
25ea693b 5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5519 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5520 ir.reg &= 0x3;
25ea693b 5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5522 }
5523 else
5524 {
25ea693b 5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5526 if (i386_record_lea_modrm (&ir))
5527 return -1;
5528 }
25ea693b 5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5530 break;
5531
20b477a7 5532 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5533 if (i386_record_modrm (&ir))
5534 return -1;
5535 if (ir.mod == 3)
5536 {
20b477a7
LM
5537 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 an extended opcode. rdrand has bits 110 (/6) and rdseed
5539 has bits 111 (/7). */
5540 if (ir.reg == 6 || ir.reg == 7)
5541 {
5542 /* The storage register is described by the 3 R/M bits, but the
5543 REX.B prefix may be used to give access to registers
5544 R8~R15. In this case ir.rex_b + R/M will give us the register
5545 in the range R8~R15.
5546
5547 REX.W may also be used to access 64-bit registers, but we
5548 already record entire registers and not just partial bits
5549 of them. */
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5551 /* These instructions also set conditional bits. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 break;
5554 }
5555 else
5556 {
5557 /* We don't handle this particular instruction yet. */
5558 ir.addr -= 2;
5559 opcode = opcode << 8 | ir.modrm;
5560 goto no_support;
5561 }
7ad10968 5562 }
25ea693b
MM
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5565 if (i386_record_lea_modrm (&ir))
5566 return -1;
25ea693b 5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5568 break;
5569
a38bba38 5570 case 0x50: /* push */
7ad10968
HZ
5571 case 0x51:
5572 case 0x52:
5573 case 0x53:
5574 case 0x54:
5575 case 0x55:
5576 case 0x56:
5577 case 0x57:
5578 case 0x68:
5579 case 0x6a:
cf648174
HZ
5580 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5581 ir.dflag = 2;
5582 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5583 return -1;
5584 break;
5585
a38bba38
MS
5586 case 0x06: /* push es */
5587 case 0x0e: /* push cs */
5588 case 0x16: /* push ss */
5589 case 0x1e: /* push ds */
cf648174
HZ
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 {
5592 ir.addr -= 1;
5593 goto no_support;
5594 }
5595 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5596 return -1;
5597 break;
5598
a38bba38
MS
5599 case 0x0fa0: /* push fs */
5600 case 0x0fa8: /* push gs */
cf648174
HZ
5601 if (ir.regmap[X86_RECORD_R8_REGNUM])
5602 {
5603 ir.addr -= 2;
5604 goto no_support;
5605 }
5606 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5607 return -1;
cf648174
HZ
5608 break;
5609
a38bba38 5610 case 0x60: /* pusha */
cf648174
HZ
5611 if (ir.regmap[X86_RECORD_R8_REGNUM])
5612 {
5613 ir.addr -= 1;
5614 goto no_support;
5615 }
5616 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5617 return -1;
5618 break;
5619
a38bba38 5620 case 0x58: /* pop */
7ad10968
HZ
5621 case 0x59:
5622 case 0x5a:
5623 case 0x5b:
5624 case 0x5c:
5625 case 0x5d:
5626 case 0x5e:
5627 case 0x5f:
25ea693b
MM
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5630 break;
5631
a38bba38 5632 case 0x61: /* popa */
cf648174
HZ
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 {
5635 ir.addr -= 1;
5636 goto no_support;
7ad10968 5637 }
425b824a
MS
5638 for (regnum = X86_RECORD_REAX_REGNUM;
5639 regnum <= X86_RECORD_REDI_REGNUM;
5640 regnum++)
25ea693b 5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5642 break;
5643
a38bba38 5644 case 0x8f: /* pop */
cf648174
HZ
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5647 else
5648 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5649 if (i386_record_modrm (&ir))
5650 return -1;
5651 if (ir.mod == 3)
25ea693b 5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5653 else
5654 {
cf648174 5655 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5656 if (i386_record_lea_modrm (&ir))
5657 return -1;
5658 }
25ea693b 5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5660 break;
5661
a38bba38 5662 case 0xc8: /* enter */
25ea693b 5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5665 ir.dflag = 2;
5666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5667 return -1;
5668 break;
5669
a38bba38 5670 case 0xc9: /* leave */
25ea693b
MM
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5673 break;
5674
a38bba38 5675 case 0x07: /* pop es */
cf648174
HZ
5676 if (ir.regmap[X86_RECORD_R8_REGNUM])
5677 {
5678 ir.addr -= 1;
5679 goto no_support;
5680 }
25ea693b
MM
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5684 break;
5685
a38bba38 5686 case 0x17: /* pop ss */
cf648174
HZ
5687 if (ir.regmap[X86_RECORD_R8_REGNUM])
5688 {
5689 ir.addr -= 1;
5690 goto no_support;
5691 }
25ea693b
MM
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5695 break;
5696
a38bba38 5697 case 0x1f: /* pop ds */
cf648174
HZ
5698 if (ir.regmap[X86_RECORD_R8_REGNUM])
5699 {
5700 ir.addr -= 1;
5701 goto no_support;
5702 }
25ea693b
MM
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5706 break;
5707
a38bba38 5708 case 0x0fa1: /* pop fs */
25ea693b
MM
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5712 break;
5713
a38bba38 5714 case 0x0fa9: /* pop gs */
25ea693b
MM
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5718 break;
5719
a38bba38 5720 case 0x88: /* mov */
7ad10968
HZ
5721 case 0x89:
5722 case 0xc6:
5723 case 0xc7:
5724 if ((opcode & 1) == 0)
5725 ir.ot = OT_BYTE;
5726 else
5727 ir.ot = ir.dflag + OT_WORD;
5728
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731
5732 if (ir.mod != 3)
5733 {
cf648174
HZ
5734 if (opcode == 0xc6 || opcode == 0xc7)
5735 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5736 if (i386_record_lea_modrm (&ir))
5737 return -1;
5738 }
5739 else
5740 {
cf648174
HZ
5741 if (opcode == 0xc6 || opcode == 0xc7)
5742 ir.rm |= ir.rex_b;
5743 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5744 ir.rm &= 0x3;
25ea693b 5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5746 }
7ad10968 5747 break;
cf648174 5748
a38bba38 5749 case 0x8a: /* mov */
7ad10968
HZ
5750 case 0x8b:
5751 if ((opcode & 1) == 0)
5752 ir.ot = OT_BYTE;
5753 else
5754 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5755 if (i386_record_modrm (&ir))
5756 return -1;
cf648174
HZ
5757 ir.reg |= rex_r;
5758 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5759 ir.reg &= 0x3;
25ea693b 5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5761 break;
7ad10968 5762
a38bba38 5763 case 0x8c: /* mov seg */
cf648174 5764 if (i386_record_modrm (&ir))
7ad10968 5765 return -1;
cf648174
HZ
5766 if (ir.reg > 5)
5767 {
5768 ir.addr -= 2;
5769 opcode = opcode << 8 | ir.modrm;
5770 goto no_support;
5771 }
5772
5773 if (ir.mod == 3)
25ea693b 5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5775 else
5776 {
5777 ir.ot = OT_WORD;
5778 if (i386_record_lea_modrm (&ir))
5779 return -1;
5780 }
7ad10968
HZ
5781 break;
5782
a38bba38 5783 case 0x8e: /* mov seg */
7ad10968
HZ
5784 if (i386_record_modrm (&ir))
5785 return -1;
7ad10968
HZ
5786 switch (ir.reg)
5787 {
5788 case 0:
425b824a 5789 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5790 break;
5791 case 2:
425b824a 5792 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5793 break;
5794 case 3:
425b824a 5795 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5796 break;
5797 case 4:
425b824a 5798 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5799 break;
5800 case 5:
425b824a 5801 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5802 break;
5803 default:
5804 ir.addr -= 2;
5805 opcode = opcode << 8 | ir.modrm;
5806 goto no_support;
5807 break;
5808 }
25ea693b
MM
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5811 break;
5812
a38bba38
MS
5813 case 0x0fb6: /* movzbS */
5814 case 0x0fb7: /* movzwS */
5815 case 0x0fbe: /* movsbS */
5816 case 0x0fbf: /* movswS */
7ad10968
HZ
5817 if (i386_record_modrm (&ir))
5818 return -1;
25ea693b 5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5820 break;
5821
a38bba38 5822 case 0x8d: /* lea */
7ad10968
HZ
5823 if (i386_record_modrm (&ir))
5824 return -1;
5825 if (ir.mod == 3)
5826 {
5827 ir.addr -= 2;
5828 opcode = opcode << 8 | ir.modrm;
5829 goto no_support;
5830 }
7ad10968 5831 ir.ot = ir.dflag;
cf648174
HZ
5832 ir.reg |= rex_r;
5833 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5834 ir.reg &= 0x3;
25ea693b 5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5836 break;
5837
a38bba38 5838 case 0xa0: /* mov EAX */
7ad10968 5839 case 0xa1:
a38bba38
MS
5840
5841 case 0xd7: /* xlat */
25ea693b 5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5843 break;
5844
a38bba38 5845 case 0xa2: /* mov EAX */
7ad10968 5846 case 0xa3:
d7877f7e 5847 if (ir.override >= 0)
cf648174 5848 {
25ea693b 5849 if (record_full_memory_query)
bb08c432 5850 {
651ce16a 5851 if (yquery (_("\
bb08c432
HZ
5852Process record ignores the memory change of instruction at address %s\n\
5853because it can't get the value of the segment register.\n\
5854Do you want to stop the program?"),
651ce16a 5855 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5856 return -1;
5857 }
cf648174
HZ
5858 }
5859 else
5860 {
5861 if ((opcode & 1) == 0)
5862 ir.ot = OT_BYTE;
5863 else
5864 ir.ot = ir.dflag + OT_WORD;
5865 if (ir.aflag == 2)
5866 {
4ffa4fc7
PA
5867 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5868 return -1;
cf648174 5869 ir.addr += 8;
60a1502a 5870 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5871 }
5872 else if (ir.aflag)
5873 {
4ffa4fc7
PA
5874 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5875 return -1;
cf648174 5876 ir.addr += 4;
60a1502a 5877 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5878 }
5879 else
5880 {
4ffa4fc7
PA
5881 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5882 return -1;
cf648174 5883 ir.addr += 2;
60a1502a 5884 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5885 }
25ea693b 5886 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5887 return -1;
5888 }
7ad10968
HZ
5889 break;
5890
a38bba38 5891 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5892 case 0xb1:
5893 case 0xb2:
5894 case 0xb3:
5895 case 0xb4:
5896 case 0xb5:
5897 case 0xb6:
5898 case 0xb7:
25ea693b
MM
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5900 ? ((opcode & 0x7) | ir.rex_b)
5901 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5902 break;
5903
a38bba38 5904 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5905 case 0xb9:
5906 case 0xba:
5907 case 0xbb:
5908 case 0xbc:
5909 case 0xbd:
5910 case 0xbe:
5911 case 0xbf:
25ea693b 5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5913 break;
5914
a38bba38 5915 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5916 case 0x92:
5917 case 0x93:
5918 case 0x94:
5919 case 0x95:
5920 case 0x96:
5921 case 0x97:
25ea693b
MM
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5924 break;
5925
a38bba38 5926 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5927 case 0x87:
5928 if ((opcode & 1) == 0)
5929 ir.ot = OT_BYTE;
5930 else
5931 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5932 if (i386_record_modrm (&ir))
5933 return -1;
7ad10968
HZ
5934 if (ir.mod == 3)
5935 {
86839d38 5936 ir.rm |= ir.rex_b;
cf648174
HZ
5937 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5938 ir.rm &= 0x3;
25ea693b 5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5940 }
5941 else
5942 {
5943 if (i386_record_lea_modrm (&ir))
5944 return -1;
5945 }
cf648174
HZ
5946 ir.reg |= rex_r;
5947 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5948 ir.reg &= 0x3;
25ea693b 5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5950 break;
5951
a38bba38
MS
5952 case 0xc4: /* les Gv */
5953 case 0xc5: /* lds Gv */
cf648174
HZ
5954 if (ir.regmap[X86_RECORD_R8_REGNUM])
5955 {
5956 ir.addr -= 1;
5957 goto no_support;
5958 }
d3f323f3 5959 /* FALLTHROUGH */
a38bba38
MS
5960 case 0x0fb2: /* lss Gv */
5961 case 0x0fb4: /* lfs Gv */
5962 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5963 if (i386_record_modrm (&ir))
5964 return -1;
5965 if (ir.mod == 3)
5966 {
5967 if (opcode > 0xff)
5968 ir.addr -= 3;
5969 else
5970 ir.addr -= 2;
5971 opcode = opcode << 8 | ir.modrm;
5972 goto no_support;
5973 }
7ad10968
HZ
5974 switch (opcode)
5975 {
a38bba38 5976 case 0xc4: /* les Gv */
425b824a 5977 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5978 break;
a38bba38 5979 case 0xc5: /* lds Gv */
425b824a 5980 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5981 break;
a38bba38 5982 case 0x0fb2: /* lss Gv */
425b824a 5983 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5984 break;
a38bba38 5985 case 0x0fb4: /* lfs Gv */
425b824a 5986 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5987 break;
a38bba38 5988 case 0x0fb5: /* lgs Gv */
425b824a 5989 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5990 break;
5991 }
25ea693b
MM
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5995 break;
5996
a38bba38 5997 case 0xc0: /* shifts */
7ad10968
HZ
5998 case 0xc1:
5999 case 0xd0:
6000 case 0xd1:
6001 case 0xd2:
6002 case 0xd3:
6003 if ((opcode & 1) == 0)
6004 ir.ot = OT_BYTE;
6005 else
6006 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
6007 if (i386_record_modrm (&ir))
6008 return -1;
7ad10968
HZ
6009 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6010 {
6011 if (i386_record_lea_modrm (&ir))
6012 return -1;
6013 }
6014 else
6015 {
cf648174
HZ
6016 ir.rm |= ir.rex_b;
6017 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 6018 ir.rm &= 0x3;
25ea693b 6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 6020 }
25ea693b 6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6022 break;
6023
6024 case 0x0fa4:
6025 case 0x0fa5:
6026 case 0x0fac:
6027 case 0x0fad:
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if (ir.mod == 3)
6031 {
25ea693b 6032 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6033 return -1;
6034 }
6035 else
6036 {
6037 if (i386_record_lea_modrm (&ir))
6038 return -1;
6039 }
6040 break;
6041
a38bba38 6042 case 0xd8: /* Floats. */
7ad10968
HZ
6043 case 0xd9:
6044 case 0xda:
6045 case 0xdb:
6046 case 0xdc:
6047 case 0xdd:
6048 case 0xde:
6049 case 0xdf:
6050 if (i386_record_modrm (&ir))
6051 return -1;
6052 ir.reg |= ((opcode & 7) << 3);
6053 if (ir.mod != 3)
6054 {
1777feb0 6055 /* Memory. */
955db0c0 6056 uint64_t addr64;
7ad10968 6057
955db0c0 6058 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6059 return -1;
6060 switch (ir.reg)
6061 {
7ad10968 6062 case 0x02:
0289bdd7
MS
6063 case 0x12:
6064 case 0x22:
6065 case 0x32:
6066 /* For fcom, ficom nothing to do. */
6067 break;
7ad10968 6068 case 0x03:
0289bdd7
MS
6069 case 0x13:
6070 case 0x23:
6071 case 0x33:
6072 /* For fcomp, ficomp pop FPU stack, store all. */
6073 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 return -1;
6075 break;
6076 case 0x00:
6077 case 0x01:
7ad10968
HZ
6078 case 0x04:
6079 case 0x05:
6080 case 0x06:
6081 case 0x07:
6082 case 0x10:
6083 case 0x11:
7ad10968
HZ
6084 case 0x14:
6085 case 0x15:
6086 case 0x16:
6087 case 0x17:
6088 case 0x20:
6089 case 0x21:
7ad10968
HZ
6090 case 0x24:
6091 case 0x25:
6092 case 0x26:
6093 case 0x27:
6094 case 0x30:
6095 case 0x31:
7ad10968
HZ
6096 case 0x34:
6097 case 0x35:
6098 case 0x36:
6099 case 0x37:
0289bdd7
MS
6100 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 of code, always affects st(0) register. */
6103 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6104 return -1;
7ad10968
HZ
6105 break;
6106 case 0x08:
6107 case 0x0a:
6108 case 0x0b:
6109 case 0x18:
6110 case 0x19:
6111 case 0x1a:
6112 case 0x1b:
0289bdd7 6113 case 0x1d:
7ad10968
HZ
6114 case 0x28:
6115 case 0x29:
6116 case 0x2a:
6117 case 0x2b:
6118 case 0x38:
6119 case 0x39:
6120 case 0x3a:
6121 case 0x3b:
0289bdd7
MS
6122 case 0x3c:
6123 case 0x3d:
7ad10968
HZ
6124 switch (ir.reg & 7)
6125 {
6126 case 0:
0289bdd7
MS
6127 /* Handling fld, fild. */
6128 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6129 return -1;
7ad10968
HZ
6130 break;
6131 case 1:
6132 switch (ir.reg >> 4)
6133 {
6134 case 0:
25ea693b 6135 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6136 return -1;
6137 break;
6138 case 2:
25ea693b 6139 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6140 return -1;
6141 break;
6142 case 3:
0289bdd7 6143 break;
7ad10968 6144 default:
25ea693b 6145 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6146 return -1;
6147 break;
6148 }
6149 break;
6150 default:
6151 switch (ir.reg >> 4)
6152 {
6153 case 0:
25ea693b 6154 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6155 return -1;
6156 if (3 == (ir.reg & 7))
6157 {
6158 /* For fstp m32fp. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_REGS))
6161 return -1;
6162 }
6163 break;
7ad10968 6164 case 1:
25ea693b 6165 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6166 return -1;
0289bdd7
MS
6167 if ((3 == (ir.reg & 7))
6168 || (5 == (ir.reg & 7))
6169 || (7 == (ir.reg & 7)))
6170 {
6171 /* For fstp insn. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_REGS))
6174 return -1;
6175 }
7ad10968
HZ
6176 break;
6177 case 2:
25ea693b 6178 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6179 return -1;
0289bdd7
MS
6180 if (3 == (ir.reg & 7))
6181 {
6182 /* For fstp m64fp. */
6183 if (i386_record_floats (gdbarch, &ir,
6184 I386_SAVE_FPU_REGS))
6185 return -1;
6186 }
7ad10968
HZ
6187 break;
6188 case 3:
0289bdd7
MS
6189 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6190 {
6191 /* For fistp, fbld, fild, fbstp. */
6192 if (i386_record_floats (gdbarch, &ir,
6193 I386_SAVE_FPU_REGS))
6194 return -1;
6195 }
6196 /* Fall through */
7ad10968 6197 default:
25ea693b 6198 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6199 return -1;
6200 break;
6201 }
6202 break;
6203 }
6204 break;
6205 case 0x0c:
0289bdd7
MS
6206 /* Insn fldenv. */
6207 if (i386_record_floats (gdbarch, &ir,
6208 I386_SAVE_FPU_ENV_REG_STACK))
6209 return -1;
6210 break;
7ad10968 6211 case 0x0d:
0289bdd7
MS
6212 /* Insn fldcw. */
6213 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6214 return -1;
6215 break;
7ad10968 6216 case 0x2c:
0289bdd7
MS
6217 /* Insn frstor. */
6218 if (i386_record_floats (gdbarch, &ir,
6219 I386_SAVE_FPU_ENV_REG_STACK))
6220 return -1;
7ad10968
HZ
6221 break;
6222 case 0x0e:
6223 if (ir.dflag)
6224 {
25ea693b 6225 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6226 return -1;
6227 }
6228 else
6229 {
25ea693b 6230 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6231 return -1;
6232 }
6233 break;
6234 case 0x0f:
6235 case 0x2f:
25ea693b 6236 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6237 return -1;
0289bdd7
MS
6238 /* Insn fstp, fbstp. */
6239 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 return -1;
7ad10968
HZ
6241 break;
6242 case 0x1f:
6243 case 0x3e:
25ea693b 6244 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6245 return -1;
6246 break;
6247 case 0x2e:
6248 if (ir.dflag)
6249 {
25ea693b 6250 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6251 return -1;
955db0c0 6252 addr64 += 28;
7ad10968
HZ
6253 }
6254 else
6255 {
25ea693b 6256 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6257 return -1;
955db0c0 6258 addr64 += 14;
7ad10968 6259 }
25ea693b 6260 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6261 return -1;
0289bdd7
MS
6262 /* Insn fsave. */
6263 if (i386_record_floats (gdbarch, &ir,
6264 I386_SAVE_FPU_ENV_REG_STACK))
6265 return -1;
7ad10968
HZ
6266 break;
6267 case 0x3f:
25ea693b 6268 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6269 return -1;
0289bdd7
MS
6270 /* Insn fistp. */
6271 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6272 return -1;
7ad10968
HZ
6273 break;
6274 default:
6275 ir.addr -= 2;
6276 opcode = opcode << 8 | ir.modrm;
6277 goto no_support;
6278 break;
6279 }
6280 }
0289bdd7
MS
6281 /* Opcode is an extension of modR/M byte. */
6282 else
6283 {
6284 switch (opcode)
6285 {
6286 case 0xd8:
6287 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6288 return -1;
6289 break;
6290 case 0xd9:
6291 if (0x0c == (ir.modrm >> 4))
6292 {
6293 if ((ir.modrm & 0x0f) <= 7)
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I386_SAVE_FPU_REGS))
6297 return -1;
6298 }
6299 else
6300 {
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep)))
6303 return -1;
6304 /* If only st(0) is changing, then we have already
6305 recorded. */
6306 if ((ir.modrm & 0x0f) - 0x08)
6307 {
6308 if (i386_record_floats (gdbarch, &ir,
6309 I387_ST0_REGNUM (tdep) +
6310 ((ir.modrm & 0x0f) - 0x08)))
6311 return -1;
6312 }
6313 }
6314 }
6315 else
6316 {
6317 switch (ir.modrm)
6318 {
6319 case 0xe0:
6320 case 0xe1:
6321 case 0xf0:
6322 case 0xf5:
6323 case 0xf8:
6324 case 0xfa:
6325 case 0xfc:
6326 case 0xfe:
6327 case 0xff:
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep)))
6330 return -1;
6331 break;
6332 case 0xf1:
6333 case 0xf2:
6334 case 0xf3:
6335 case 0xf4:
6336 case 0xf6:
6337 case 0xf7:
6338 case 0xe8:
6339 case 0xe9:
6340 case 0xea:
6341 case 0xeb:
6342 case 0xec:
6343 case 0xed:
6344 case 0xee:
6345 case 0xf9:
6346 case 0xfb:
6347 if (i386_record_floats (gdbarch, &ir,
6348 I386_SAVE_FPU_REGS))
6349 return -1;
6350 break;
6351 case 0xfd:
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep)))
6354 return -1;
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) + 1))
6357 return -1;
6358 break;
6359 }
6360 }
6361 break;
6362 case 0xda:
6363 if (0xe9 == ir.modrm)
6364 {
6365 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6366 return -1;
6367 }
6368 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep)))
6372 return -1;
6373 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else if ((ir.modrm & 0x0f) - 0x08)
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6385 return -1;
6386 }
6387 }
6388 break;
6389 case 0xdb:
6390 if (0xe3 == ir.modrm)
6391 {
6392 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6393 return -1;
6394 }
6395 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep)))
6399 return -1;
6400 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else if ((ir.modrm & 0x0f) - 0x08)
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I387_ST0_REGNUM (tdep) +
6411 ((ir.modrm & 0x0f) - 0x08)))
6412 return -1;
6413 }
6414 }
6415 break;
6416 case 0xdc:
6417 if ((0x0c == ir.modrm >> 4)
6418 || (0x0d == ir.modrm >> 4)
6419 || (0x0f == ir.modrm >> 4))
6420 {
6421 if ((ir.modrm & 0x0f) <= 7)
6422 {
6423 if (i386_record_floats (gdbarch, &ir,
6424 I387_ST0_REGNUM (tdep) +
6425 (ir.modrm & 0x0f)))
6426 return -1;
6427 }
6428 else
6429 {
6430 if (i386_record_floats (gdbarch, &ir,
6431 I387_ST0_REGNUM (tdep) +
6432 ((ir.modrm & 0x0f) - 0x08)))
6433 return -1;
6434 }
6435 }
6436 break;
6437 case 0xdd:
6438 if (0x0c == ir.modrm >> 4)
6439 {
6440 if (i386_record_floats (gdbarch, &ir,
6441 I387_FTAG_REGNUM (tdep)))
6442 return -1;
6443 }
6444 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6445 {
6446 if ((ir.modrm & 0x0f) <= 7)
6447 {
6448 if (i386_record_floats (gdbarch, &ir,
6449 I387_ST0_REGNUM (tdep) +
6450 (ir.modrm & 0x0f)))
6451 return -1;
6452 }
6453 else
6454 {
6455 if (i386_record_floats (gdbarch, &ir,
6456 I386_SAVE_FPU_REGS))
6457 return -1;
6458 }
6459 }
6460 break;
6461 case 0xde:
6462 if ((0x0c == ir.modrm >> 4)
6463 || (0x0e == ir.modrm >> 4)
6464 || (0x0f == ir.modrm >> 4)
6465 || (0xd9 == ir.modrm))
6466 {
6467 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6468 return -1;
6469 }
6470 break;
6471 case 0xdf:
6472 if (0xe0 == ir.modrm)
6473 {
25ea693b
MM
6474 if (record_full_arch_list_add_reg (ir.regcache,
6475 I386_EAX_REGNUM))
0289bdd7
MS
6476 return -1;
6477 }
6478 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6479 {
6480 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6481 return -1;
6482 }
6483 break;
6484 }
6485 }
7ad10968 6486 break;
7ad10968 6487 /* string ops */
a38bba38 6488 case 0xa4: /* movsS */
7ad10968 6489 case 0xa5:
a38bba38 6490 case 0xaa: /* stosS */
7ad10968 6491 case 0xab:
a38bba38 6492 case 0x6c: /* insS */
7ad10968 6493 case 0x6d:
cf648174 6494 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6495 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6496 &addr);
6497 if (addr)
cf648174 6498 {
77d7dc92
HZ
6499 ULONGEST es, ds;
6500
6501 if ((opcode & 1) == 0)
6502 ir.ot = OT_BYTE;
6503 else
6504 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6505 regcache_raw_read_unsigned (ir.regcache,
6506 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6507 &addr);
77d7dc92 6508
d7877f7e
HZ
6509 regcache_raw_read_unsigned (ir.regcache,
6510 ir.regmap[X86_RECORD_ES_REGNUM],
6511 &es);
6512 regcache_raw_read_unsigned (ir.regcache,
6513 ir.regmap[X86_RECORD_DS_REGNUM],
6514 &ds);
6515 if (ir.aflag && (es != ds))
77d7dc92
HZ
6516 {
6517 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6518 if (record_full_memory_query)
bb08c432 6519 {
651ce16a 6520 if (yquery (_("\
bb08c432
HZ
6521Process record ignores the memory change of instruction at address %s\n\
6522because it can't get the value of the segment register.\n\
6523Do you want to stop the program?"),
651ce16a 6524 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6525 return -1;
6526 }
df61f520
HZ
6527 }
6528 else
6529 {
25ea693b 6530 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6531 return -1;
77d7dc92
HZ
6532 }
6533
6534 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6536 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6540 }
cf648174 6541 break;
7ad10968 6542
a38bba38 6543 case 0xa6: /* cmpsS */
cf648174 6544 case 0xa7:
25ea693b
MM
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6547 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6550 break;
6551
a38bba38 6552 case 0xac: /* lodsS */
7ad10968 6553 case 0xad:
25ea693b
MM
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6559 break;
6560
a38bba38 6561 case 0xae: /* scasS */
7ad10968 6562 case 0xaf:
25ea693b 6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6567 break;
6568
a38bba38 6569 case 0x6e: /* outsS */
cf648174 6570 case 0x6f:
25ea693b 6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6572 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6575 break;
6576
a38bba38 6577 case 0xe4: /* port I/O */
7ad10968
HZ
6578 case 0xe5:
6579 case 0xec:
6580 case 0xed:
25ea693b
MM
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6583 break;
6584
6585 case 0xe6:
6586 case 0xe7:
6587 case 0xee:
6588 case 0xef:
6589 break;
6590
6591 /* control */
a38bba38
MS
6592 case 0xc2: /* ret im */
6593 case 0xc3: /* ret */
25ea693b
MM
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6596 break;
6597
a38bba38
MS
6598 case 0xca: /* lret im */
6599 case 0xcb: /* lret */
6600 case 0xcf: /* iret */
25ea693b
MM
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6604 break;
6605
a38bba38 6606 case 0xe8: /* call im */
cf648174
HZ
6607 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6608 ir.dflag = 2;
6609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6610 return -1;
7ad10968
HZ
6611 break;
6612
a38bba38 6613 case 0x9a: /* lcall im */
cf648174
HZ
6614 if (ir.regmap[X86_RECORD_R8_REGNUM])
6615 {
6616 ir.addr -= 1;
6617 goto no_support;
6618 }
25ea693b 6619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 return -1;
7ad10968
HZ
6622 break;
6623
a38bba38
MS
6624 case 0xe9: /* jmp im */
6625 case 0xea: /* ljmp im */
6626 case 0xeb: /* jmp Jb */
6627 case 0x70: /* jcc Jb */
7ad10968
HZ
6628 case 0x71:
6629 case 0x72:
6630 case 0x73:
6631 case 0x74:
6632 case 0x75:
6633 case 0x76:
6634 case 0x77:
6635 case 0x78:
6636 case 0x79:
6637 case 0x7a:
6638 case 0x7b:
6639 case 0x7c:
6640 case 0x7d:
6641 case 0x7e:
6642 case 0x7f:
a38bba38 6643 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6644 case 0x0f81:
6645 case 0x0f82:
6646 case 0x0f83:
6647 case 0x0f84:
6648 case 0x0f85:
6649 case 0x0f86:
6650 case 0x0f87:
6651 case 0x0f88:
6652 case 0x0f89:
6653 case 0x0f8a:
6654 case 0x0f8b:
6655 case 0x0f8c:
6656 case 0x0f8d:
6657 case 0x0f8e:
6658 case 0x0f8f:
6659 break;
6660
a38bba38 6661 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6662 case 0x0f91:
6663 case 0x0f92:
6664 case 0x0f93:
6665 case 0x0f94:
6666 case 0x0f95:
6667 case 0x0f96:
6668 case 0x0f97:
6669 case 0x0f98:
6670 case 0x0f99:
6671 case 0x0f9a:
6672 case 0x0f9b:
6673 case 0x0f9c:
6674 case 0x0f9d:
6675 case 0x0f9e:
6676 case 0x0f9f:
25ea693b 6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6678 ir.ot = OT_BYTE;
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 if (ir.mod == 3)
25ea693b
MM
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6683 : (ir.rm & 0x3));
7ad10968
HZ
6684 else
6685 {
6686 if (i386_record_lea_modrm (&ir))
6687 return -1;
6688 }
6689 break;
6690
a38bba38 6691 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6692 case 0x0f41:
6693 case 0x0f42:
6694 case 0x0f43:
6695 case 0x0f44:
6696 case 0x0f45:
6697 case 0x0f46:
6698 case 0x0f47:
6699 case 0x0f48:
6700 case 0x0f49:
6701 case 0x0f4a:
6702 case 0x0f4b:
6703 case 0x0f4c:
6704 case 0x0f4d:
6705 case 0x0f4e:
6706 case 0x0f4f:
6707 if (i386_record_modrm (&ir))
6708 return -1;
cf648174 6709 ir.reg |= rex_r;
7ad10968
HZ
6710 if (ir.dflag == OT_BYTE)
6711 ir.reg &= 0x3;
25ea693b 6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6713 break;
6714
6715 /* flags */
a38bba38 6716 case 0x9c: /* pushf */
25ea693b 6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6718 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6719 ir.dflag = 2;
6720 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6721 return -1;
7ad10968
HZ
6722 break;
6723
a38bba38 6724 case 0x9d: /* popf */
25ea693b
MM
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6727 break;
6728
a38bba38 6729 case 0x9e: /* sahf */
cf648174
HZ
6730 if (ir.regmap[X86_RECORD_R8_REGNUM])
6731 {
6732 ir.addr -= 1;
6733 goto no_support;
6734 }
d3f323f3 6735 /* FALLTHROUGH */
a38bba38
MS
6736 case 0xf5: /* cmc */
6737 case 0xf8: /* clc */
6738 case 0xf9: /* stc */
6739 case 0xfc: /* cld */
6740 case 0xfd: /* std */
25ea693b 6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6742 break;
6743
a38bba38 6744 case 0x9f: /* lahf */
cf648174
HZ
6745 if (ir.regmap[X86_RECORD_R8_REGNUM])
6746 {
6747 ir.addr -= 1;
6748 goto no_support;
6749 }
25ea693b
MM
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6752 break;
6753
6754 /* bit operations */
a38bba38 6755 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.reg < 4)
6760 {
cf648174 6761 ir.addr -= 2;
7ad10968
HZ
6762 opcode = opcode << 8 | ir.modrm;
6763 goto no_support;
6764 }
cf648174 6765 if (ir.reg != 4)
7ad10968 6766 {
cf648174 6767 if (ir.mod == 3)
25ea693b 6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6769 else
6770 {
cf648174 6771 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6772 return -1;
6773 }
6774 }
25ea693b 6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6776 break;
6777
a38bba38 6778 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6780 break;
6781
a38bba38
MS
6782 case 0x0fab: /* bts */
6783 case 0x0fb3: /* btr */
6784 case 0x0fbb: /* btc */
cf648174
HZ
6785 ir.ot = ir.dflag + OT_WORD;
6786 if (i386_record_modrm (&ir))
6787 return -1;
6788 if (ir.mod == 3)
25ea693b 6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6790 else
6791 {
955db0c0
MS
6792 uint64_t addr64;
6793 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6794 return -1;
6795 regcache_raw_read_unsigned (ir.regcache,
6796 ir.regmap[ir.reg | rex_r],
648d0c8b 6797 &addr);
cf648174
HZ
6798 switch (ir.dflag)
6799 {
6800 case 0:
648d0c8b 6801 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6802 break;
6803 case 1:
648d0c8b 6804 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6805 break;
6806 case 2:
648d0c8b 6807 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6808 break;
6809 }
25ea693b 6810 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6811 return -1;
6812 if (i386_record_lea_modrm (&ir))
6813 return -1;
6814 }
25ea693b 6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6816 break;
6817
a38bba38
MS
6818 case 0x0fbc: /* bsf */
6819 case 0x0fbd: /* bsr */
25ea693b
MM
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6822 break;
6823
6824 /* bcd */
a38bba38
MS
6825 case 0x27: /* daa */
6826 case 0x2f: /* das */
6827 case 0x37: /* aaa */
6828 case 0x3f: /* aas */
6829 case 0xd4: /* aam */
6830 case 0xd5: /* aad */
cf648174
HZ
6831 if (ir.regmap[X86_RECORD_R8_REGNUM])
6832 {
6833 ir.addr -= 1;
6834 goto no_support;
6835 }
25ea693b
MM
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6838 break;
6839
6840 /* misc */
a38bba38 6841 case 0x90: /* nop */
7ad10968
HZ
6842 if (prefixes & PREFIX_LOCK)
6843 {
6844 ir.addr -= 1;
6845 goto no_support;
6846 }
6847 break;
6848
a38bba38 6849 case 0x9b: /* fwait */
4ffa4fc7
PA
6850 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6851 return -1;
425b824a 6852 opcode = (uint32_t) opcode8;
0289bdd7
MS
6853 ir.addr++;
6854 goto reswitch;
7ad10968
HZ
6855 break;
6856
7ad10968 6857 /* XXX */
a38bba38 6858 case 0xcc: /* int3 */
a3c4230a 6859 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6860 "int3.\n"));
6861 ir.addr -= 1;
6862 goto no_support;
6863 break;
6864
7ad10968 6865 /* XXX */
a38bba38 6866 case 0xcd: /* int */
7ad10968
HZ
6867 {
6868 int ret;
425b824a 6869 uint8_t interrupt;
4ffa4fc7
PA
6870 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6871 return -1;
7ad10968 6872 ir.addr++;
425b824a 6873 if (interrupt != 0x80
a3c4230a 6874 || tdep->i386_intx80_record == NULL)
7ad10968 6875 {
a3c4230a 6876 printf_unfiltered (_("Process record does not support "
7ad10968 6877 "instruction int 0x%02x.\n"),
425b824a 6878 interrupt);
7ad10968
HZ
6879 ir.addr -= 2;
6880 goto no_support;
6881 }
a3c4230a 6882 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6883 if (ret)
6884 return ret;
6885 }
6886 break;
6887
7ad10968 6888 /* XXX */
a38bba38 6889 case 0xce: /* into */
a3c4230a 6890 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6891 "instruction into.\n"));
6892 ir.addr -= 1;
6893 goto no_support;
6894 break;
6895
a38bba38
MS
6896 case 0xfa: /* cli */
6897 case 0xfb: /* sti */
7ad10968
HZ
6898 break;
6899
a38bba38 6900 case 0x62: /* bound */
a3c4230a 6901 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6902 "instruction bound.\n"));
6903 ir.addr -= 1;
6904 goto no_support;
6905 break;
6906
a38bba38 6907 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6908 case 0x0fc9:
6909 case 0x0fca:
6910 case 0x0fcb:
6911 case 0x0fcc:
6912 case 0x0fcd:
6913 case 0x0fce:
6914 case 0x0fcf:
25ea693b 6915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6916 break;
6917
a38bba38 6918 case 0xd6: /* salc */
cf648174
HZ
6919 if (ir.regmap[X86_RECORD_R8_REGNUM])
6920 {
6921 ir.addr -= 1;
6922 goto no_support;
6923 }
25ea693b
MM
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6926 break;
6927
a38bba38
MS
6928 case 0xe0: /* loopnz */
6929 case 0xe1: /* loopz */
6930 case 0xe2: /* loop */
6931 case 0xe3: /* jecxz */
25ea693b
MM
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6934 break;
6935
a38bba38 6936 case 0x0f30: /* wrmsr */
a3c4230a 6937 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6938 "instruction wrmsr.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 break;
6942
a38bba38 6943 case 0x0f32: /* rdmsr */
a3c4230a 6944 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6945 "instruction rdmsr.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
a38bba38 6950 case 0x0f31: /* rdtsc */
25ea693b
MM
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6953 break;
6954
a38bba38 6955 case 0x0f34: /* sysenter */
7ad10968
HZ
6956 {
6957 int ret;
cf648174
HZ
6958 if (ir.regmap[X86_RECORD_R8_REGNUM])
6959 {
6960 ir.addr -= 2;
6961 goto no_support;
6962 }
a3c4230a 6963 if (tdep->i386_sysenter_record == NULL)
7ad10968 6964 {
a3c4230a 6965 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6966 "instruction sysenter.\n"));
6967 ir.addr -= 2;
6968 goto no_support;
6969 }
a3c4230a 6970 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6971 if (ret)
6972 return ret;
6973 }
6974 break;
6975
a38bba38 6976 case 0x0f35: /* sysexit */
a3c4230a 6977 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6978 "instruction sysexit.\n"));
6979 ir.addr -= 2;
6980 goto no_support;
6981 break;
6982
a38bba38 6983 case 0x0f05: /* syscall */
cf648174
HZ
6984 {
6985 int ret;
a3c4230a 6986 if (tdep->i386_syscall_record == NULL)
cf648174 6987 {
a3c4230a 6988 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6989 "instruction syscall.\n"));
6990 ir.addr -= 2;
6991 goto no_support;
6992 }
a3c4230a 6993 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6994 if (ret)
6995 return ret;
6996 }
6997 break;
6998
a38bba38 6999 case 0x0f07: /* sysret */
a3c4230a 7000 printf_unfiltered (_("Process record does not support "
cf648174
HZ
7001 "instruction sysret.\n"));
7002 ir.addr -= 2;
7003 goto no_support;
7004 break;
7005
a38bba38 7006 case 0x0fa2: /* cpuid */
25ea693b
MM
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
7011 break;
7012
a38bba38 7013 case 0xf4: /* hlt */
a3c4230a 7014 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
7015 "instruction hlt.\n"));
7016 ir.addr -= 1;
7017 goto no_support;
7018 break;
7019
7020 case 0x0f00:
7021 if (i386_record_modrm (&ir))
7022 return -1;
7023 switch (ir.reg)
7024 {
a38bba38
MS
7025 case 0: /* sldt */
7026 case 1: /* str */
7ad10968 7027 if (ir.mod == 3)
25ea693b 7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7029 else
7030 {
7031 ir.ot = OT_WORD;
7032 if (i386_record_lea_modrm (&ir))
7033 return -1;
7034 }
7035 break;
a38bba38
MS
7036 case 2: /* lldt */
7037 case 3: /* ltr */
7ad10968 7038 break;
a38bba38
MS
7039 case 4: /* verr */
7040 case 5: /* verw */
25ea693b 7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7042 break;
7043 default:
7044 ir.addr -= 3;
7045 opcode = opcode << 8 | ir.modrm;
7046 goto no_support;
7047 break;
7048 }
7049 break;
7050
7051 case 0x0f01:
7052 if (i386_record_modrm (&ir))
7053 return -1;
7054 switch (ir.reg)
7055 {
a38bba38 7056 case 0: /* sgdt */
7ad10968 7057 {
955db0c0 7058 uint64_t addr64;
7ad10968
HZ
7059
7060 if (ir.mod == 3)
7061 {
7062 ir.addr -= 3;
7063 opcode = opcode << 8 | ir.modrm;
7064 goto no_support;
7065 }
d7877f7e 7066 if (ir.override >= 0)
7ad10968 7067 {
25ea693b 7068 if (record_full_memory_query)
bb08c432 7069 {
651ce16a 7070 if (yquery (_("\
bb08c432
HZ
7071Process record ignores the memory change of instruction at address %s\n\
7072because it can't get the value of the segment register.\n\
7073Do you want to stop the program?"),
651ce16a
PA
7074 paddress (gdbarch, ir.orig_addr)))
7075 return -1;
bb08c432 7076 }
7ad10968
HZ
7077 }
7078 else
7079 {
955db0c0 7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7081 return -1;
25ea693b 7082 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7083 return -1;
955db0c0 7084 addr64 += 2;
cf648174
HZ
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
25ea693b 7087 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7088 return -1;
7089 }
7090 else
7091 {
25ea693b 7092 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7093 return -1;
7094 }
7ad10968
HZ
7095 }
7096 }
7097 break;
7098 case 1:
7099 if (ir.mod == 3)
7100 {
7101 switch (ir.rm)
7102 {
a38bba38 7103 case 0: /* monitor */
7ad10968 7104 break;
a38bba38 7105 case 1: /* mwait */
25ea693b 7106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7107 break;
7108 default:
7109 ir.addr -= 3;
7110 opcode = opcode << 8 | ir.modrm;
7111 goto no_support;
7112 break;
7113 }
7114 }
7115 else
7116 {
7117 /* sidt */
d7877f7e 7118 if (ir.override >= 0)
7ad10968 7119 {
25ea693b 7120 if (record_full_memory_query)
bb08c432 7121 {
651ce16a 7122 if (yquery (_("\
bb08c432
HZ
7123Process record ignores the memory change of instruction at address %s\n\
7124because it can't get the value of the segment register.\n\
7125Do you want to stop the program?"),
651ce16a 7126 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7127 return -1;
7128 }
7ad10968
HZ
7129 }
7130 else
7131 {
955db0c0 7132 uint64_t addr64;
7ad10968 7133
955db0c0 7134 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7135 return -1;
25ea693b 7136 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7137 return -1;
955db0c0 7138 addr64 += 2;
cf648174
HZ
7139 if (ir.regmap[X86_RECORD_R8_REGNUM])
7140 {
25ea693b 7141 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7142 return -1;
7143 }
7144 else
7145 {
25ea693b 7146 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7147 return -1;
7148 }
7ad10968
HZ
7149 }
7150 }
7151 break;
a38bba38 7152 case 2: /* lgdt */
3800e645
MS
7153 if (ir.mod == 3)
7154 {
7155 /* xgetbv */
7156 if (ir.rm == 0)
7157 {
25ea693b
MM
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7160 break;
7161 }
7162 /* xsetbv */
7163 else if (ir.rm == 1)
7164 break;
7165 }
da0e1563 7166 /* Fall through. */
a38bba38 7167 case 3: /* lidt */
7ad10968
HZ
7168 if (ir.mod == 3)
7169 {
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 }
7174 break;
a38bba38 7175 case 4: /* smsw */
7ad10968
HZ
7176 if (ir.mod == 3)
7177 {
25ea693b 7178 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7179 return -1;
7180 }
7181 else
7182 {
7183 ir.ot = OT_WORD;
7184 if (i386_record_lea_modrm (&ir))
7185 return -1;
7186 }
25ea693b 7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7188 break;
a38bba38 7189 case 6: /* lmsw */
25ea693b 7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7191 break;
a38bba38 7192 case 7: /* invlpg */
cf648174
HZ
7193 if (ir.mod == 3)
7194 {
7195 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7197 else
7198 {
7199 ir.addr -= 3;
7200 opcode = opcode << 8 | ir.modrm;
7201 goto no_support;
7202 }
7203 }
7204 else
25ea693b 7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7206 break;
7207 default:
7208 ir.addr -= 3;
7209 opcode = opcode << 8 | ir.modrm;
7210 goto no_support;
7ad10968
HZ
7211 break;
7212 }
7213 break;
7214
a38bba38
MS
7215 case 0x0f08: /* invd */
7216 case 0x0f09: /* wbinvd */
7ad10968
HZ
7217 break;
7218
a38bba38 7219 case 0x63: /* arpl */
7ad10968
HZ
7220 if (i386_record_modrm (&ir))
7221 return -1;
cf648174
HZ
7222 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7223 {
25ea693b
MM
7224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7225 ? (ir.reg | rex_r) : ir.rm);
cf648174 7226 }
7ad10968 7227 else
cf648174
HZ
7228 {
7229 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7230 if (i386_record_lea_modrm (&ir))
7231 return -1;
7232 }
7233 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7235 break;
7236
a38bba38
MS
7237 case 0x0f02: /* lar */
7238 case 0x0f03: /* lsl */
7ad10968
HZ
7239 if (i386_record_modrm (&ir))
7240 return -1;
25ea693b
MM
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7243 break;
7244
7245 case 0x0f18:
cf648174
HZ
7246 if (i386_record_modrm (&ir))
7247 return -1;
7248 if (ir.mod == 3 && ir.reg == 3)
7249 {
7250 ir.addr -= 3;
7251 opcode = opcode << 8 | ir.modrm;
7252 goto no_support;
7253 }
7ad10968
HZ
7254 break;
7255
7ad10968
HZ
7256 case 0x0f19:
7257 case 0x0f1a:
7258 case 0x0f1b:
7259 case 0x0f1c:
7260 case 0x0f1d:
7261 case 0x0f1e:
7262 case 0x0f1f:
a38bba38 7263 /* nop (multi byte) */
7ad10968
HZ
7264 break;
7265
a38bba38
MS
7266 case 0x0f20: /* mov reg, crN */
7267 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7268 if (i386_record_modrm (&ir))
7269 return -1;
7270 if ((ir.modrm & 0xc0) != 0xc0)
7271 {
cf648174 7272 ir.addr -= 3;
7ad10968
HZ
7273 opcode = opcode << 8 | ir.modrm;
7274 goto no_support;
7275 }
7276 switch (ir.reg)
7277 {
7278 case 0:
7279 case 2:
7280 case 3:
7281 case 4:
7282 case 8:
7283 if (opcode & 2)
25ea693b 7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7285 else
25ea693b 7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7287 break;
7288 default:
cf648174 7289 ir.addr -= 3;
7ad10968
HZ
7290 opcode = opcode << 8 | ir.modrm;
7291 goto no_support;
7292 break;
7293 }
7294 break;
7295
a38bba38
MS
7296 case 0x0f21: /* mov reg, drN */
7297 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7298 if (i386_record_modrm (&ir))
7299 return -1;
7300 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7301 || ir.reg == 5 || ir.reg >= 8)
7302 {
cf648174 7303 ir.addr -= 3;
7ad10968
HZ
7304 opcode = opcode << 8 | ir.modrm;
7305 goto no_support;
7306 }
7307 if (opcode & 2)
25ea693b 7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7309 else
25ea693b 7310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7311 break;
7312
a38bba38 7313 case 0x0f06: /* clts */
25ea693b 7314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7315 break;
7316
a3c4230a
HZ
7317 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7318
7319 case 0x0f0d: /* 3DNow! prefetch */
7320 break;
7321
7322 case 0x0f0e: /* 3DNow! femms */
7323 case 0x0f77: /* emms */
7324 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7325 goto no_support;
25ea693b 7326 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7327 break;
7328
7329 case 0x0f0f: /* 3DNow! data */
7330 if (i386_record_modrm (&ir))
7331 return -1;
4ffa4fc7
PA
7332 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7333 return -1;
a3c4230a
HZ
7334 ir.addr++;
7335 switch (opcode8)
7336 {
7337 case 0x0c: /* 3DNow! pi2fw */
7338 case 0x0d: /* 3DNow! pi2fd */
7339 case 0x1c: /* 3DNow! pf2iw */
7340 case 0x1d: /* 3DNow! pf2id */
7341 case 0x8a: /* 3DNow! pfnacc */
7342 case 0x8e: /* 3DNow! pfpnacc */
7343 case 0x90: /* 3DNow! pfcmpge */
7344 case 0x94: /* 3DNow! pfmin */
7345 case 0x96: /* 3DNow! pfrcp */
7346 case 0x97: /* 3DNow! pfrsqrt */
7347 case 0x9a: /* 3DNow! pfsub */
7348 case 0x9e: /* 3DNow! pfadd */
7349 case 0xa0: /* 3DNow! pfcmpgt */
7350 case 0xa4: /* 3DNow! pfmax */
7351 case 0xa6: /* 3DNow! pfrcpit1 */
7352 case 0xa7: /* 3DNow! pfrsqit1 */
7353 case 0xaa: /* 3DNow! pfsubr */
7354 case 0xae: /* 3DNow! pfacc */
7355 case 0xb0: /* 3DNow! pfcmpeq */
7356 case 0xb4: /* 3DNow! pfmul */
7357 case 0xb6: /* 3DNow! pfrcpit2 */
7358 case 0xb7: /* 3DNow! pmulhrw */
7359 case 0xbb: /* 3DNow! pswapd */
7360 case 0xbf: /* 3DNow! pavgusb */
7361 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7362 goto no_support_3dnow_data;
25ea693b 7363 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7364 break;
7365
7366 default:
7367no_support_3dnow_data:
7368 opcode = (opcode << 8) | opcode8;
7369 goto no_support;
7370 break;
7371 }
7372 break;
7373
7374 case 0x0faa: /* rsm */
25ea693b
MM
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7384 break;
7385
7386 case 0x0fae:
7387 if (i386_record_modrm (&ir))
7388 return -1;
7389 switch(ir.reg)
7390 {
7391 case 0: /* fxsave */
7392 {
7393 uint64_t tmpu64;
7394
25ea693b 7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7396 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7397 return -1;
25ea693b 7398 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7399 return -1;
7400 }
7401 break;
7402
7403 case 1: /* fxrstor */
7404 {
7405 int i;
7406
25ea693b 7407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7408
7409 for (i = I387_MM0_REGNUM (tdep);
7410 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7411 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7412
7413 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7414 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7415 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7416
7417 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7418 record_full_arch_list_add_reg (ir.regcache,
7419 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7420
7421 for (i = I387_ST0_REGNUM (tdep);
7422 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7423 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7424
7425 for (i = I387_FCTRL_REGNUM (tdep);
7426 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7427 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7428 }
7429 break;
7430
7431 case 2: /* ldmxcsr */
7432 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7433 goto no_support;
25ea693b 7434 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7435 break;
7436
7437 case 3: /* stmxcsr */
7438 ir.ot = OT_LONG;
7439 if (i386_record_lea_modrm (&ir))
7440 return -1;
7441 break;
7442
7443 case 5: /* lfence */
7444 case 6: /* mfence */
7445 case 7: /* sfence clflush */
7446 break;
7447
7448 default:
7449 opcode = (opcode << 8) | ir.modrm;
7450 goto no_support;
7451 break;
7452 }
7453 break;
7454
7455 case 0x0fc3: /* movnti */
7456 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7457 if (i386_record_modrm (&ir))
7458 return -1;
7459 if (ir.mod == 3)
7460 goto no_support;
7461 ir.reg |= rex_r;
7462 if (i386_record_lea_modrm (&ir))
7463 return -1;
7464 break;
7465
7466 /* Add prefix to opcode. */
7467 case 0x0f10:
7468 case 0x0f11:
7469 case 0x0f12:
7470 case 0x0f13:
7471 case 0x0f14:
7472 case 0x0f15:
7473 case 0x0f16:
7474 case 0x0f17:
7475 case 0x0f28:
7476 case 0x0f29:
7477 case 0x0f2a:
7478 case 0x0f2b:
7479 case 0x0f2c:
7480 case 0x0f2d:
7481 case 0x0f2e:
7482 case 0x0f2f:
7483 case 0x0f38:
7484 case 0x0f39:
7485 case 0x0f3a:
7486 case 0x0f50:
7487 case 0x0f51:
7488 case 0x0f52:
7489 case 0x0f53:
7490 case 0x0f54:
7491 case 0x0f55:
7492 case 0x0f56:
7493 case 0x0f57:
7494 case 0x0f58:
7495 case 0x0f59:
7496 case 0x0f5a:
7497 case 0x0f5b:
7498 case 0x0f5c:
7499 case 0x0f5d:
7500 case 0x0f5e:
7501 case 0x0f5f:
7502 case 0x0f60:
7503 case 0x0f61:
7504 case 0x0f62:
7505 case 0x0f63:
7506 case 0x0f64:
7507 case 0x0f65:
7508 case 0x0f66:
7509 case 0x0f67:
7510 case 0x0f68:
7511 case 0x0f69:
7512 case 0x0f6a:
7513 case 0x0f6b:
7514 case 0x0f6c:
7515 case 0x0f6d:
7516 case 0x0f6e:
7517 case 0x0f6f:
7518 case 0x0f70:
7519 case 0x0f71:
7520 case 0x0f72:
7521 case 0x0f73:
7522 case 0x0f74:
7523 case 0x0f75:
7524 case 0x0f76:
7525 case 0x0f7c:
7526 case 0x0f7d:
7527 case 0x0f7e:
7528 case 0x0f7f:
7529 case 0x0fb8:
7530 case 0x0fc2:
7531 case 0x0fc4:
7532 case 0x0fc5:
7533 case 0x0fc6:
7534 case 0x0fd0:
7535 case 0x0fd1:
7536 case 0x0fd2:
7537 case 0x0fd3:
7538 case 0x0fd4:
7539 case 0x0fd5:
7540 case 0x0fd6:
7541 case 0x0fd7:
7542 case 0x0fd8:
7543 case 0x0fd9:
7544 case 0x0fda:
7545 case 0x0fdb:
7546 case 0x0fdc:
7547 case 0x0fdd:
7548 case 0x0fde:
7549 case 0x0fdf:
7550 case 0x0fe0:
7551 case 0x0fe1:
7552 case 0x0fe2:
7553 case 0x0fe3:
7554 case 0x0fe4:
7555 case 0x0fe5:
7556 case 0x0fe6:
7557 case 0x0fe7:
7558 case 0x0fe8:
7559 case 0x0fe9:
7560 case 0x0fea:
7561 case 0x0feb:
7562 case 0x0fec:
7563 case 0x0fed:
7564 case 0x0fee:
7565 case 0x0fef:
7566 case 0x0ff0:
7567 case 0x0ff1:
7568 case 0x0ff2:
7569 case 0x0ff3:
7570 case 0x0ff4:
7571 case 0x0ff5:
7572 case 0x0ff6:
7573 case 0x0ff7:
7574 case 0x0ff8:
7575 case 0x0ff9:
7576 case 0x0ffa:
7577 case 0x0ffb:
7578 case 0x0ffc:
7579 case 0x0ffd:
7580 case 0x0ffe:
f9fda3f5
L
7581 /* Mask out PREFIX_ADDR. */
7582 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7583 {
7584 case PREFIX_REPNZ:
7585 opcode |= 0xf20000;
7586 break;
7587 case PREFIX_DATA:
7588 opcode |= 0x660000;
7589 break;
7590 case PREFIX_REPZ:
7591 opcode |= 0xf30000;
7592 break;
7593 }
7594reswitch_prefix_add:
7595 switch (opcode)
7596 {
7597 case 0x0f38:
7598 case 0x660f38:
7599 case 0xf20f38:
7600 case 0x0f3a:
7601 case 0x660f3a:
4ffa4fc7
PA
7602 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7603 return -1;
a3c4230a
HZ
7604 ir.addr++;
7605 opcode = (uint32_t) opcode8 | opcode << 8;
7606 goto reswitch_prefix_add;
7607 break;
7608
7609 case 0x0f10: /* movups */
7610 case 0x660f10: /* movupd */
7611 case 0xf30f10: /* movss */
7612 case 0xf20f10: /* movsd */
7613 case 0x0f12: /* movlps */
7614 case 0x660f12: /* movlpd */
7615 case 0xf30f12: /* movsldup */
7616 case 0xf20f12: /* movddup */
7617 case 0x0f14: /* unpcklps */
7618 case 0x660f14: /* unpcklpd */
7619 case 0x0f15: /* unpckhps */
7620 case 0x660f15: /* unpckhpd */
7621 case 0x0f16: /* movhps */
7622 case 0x660f16: /* movhpd */
7623 case 0xf30f16: /* movshdup */
7624 case 0x0f28: /* movaps */
7625 case 0x660f28: /* movapd */
7626 case 0x0f2a: /* cvtpi2ps */
7627 case 0x660f2a: /* cvtpi2pd */
7628 case 0xf30f2a: /* cvtsi2ss */
7629 case 0xf20f2a: /* cvtsi2sd */
7630 case 0x0f2c: /* cvttps2pi */
7631 case 0x660f2c: /* cvttpd2pi */
7632 case 0x0f2d: /* cvtps2pi */
7633 case 0x660f2d: /* cvtpd2pi */
7634 case 0x660f3800: /* pshufb */
7635 case 0x660f3801: /* phaddw */
7636 case 0x660f3802: /* phaddd */
7637 case 0x660f3803: /* phaddsw */
7638 case 0x660f3804: /* pmaddubsw */
7639 case 0x660f3805: /* phsubw */
7640 case 0x660f3806: /* phsubd */
4f7d61a8 7641 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7642 case 0x660f3808: /* psignb */
7643 case 0x660f3809: /* psignw */
7644 case 0x660f380a: /* psignd */
7645 case 0x660f380b: /* pmulhrsw */
7646 case 0x660f3810: /* pblendvb */
7647 case 0x660f3814: /* blendvps */
7648 case 0x660f3815: /* blendvpd */
7649 case 0x660f381c: /* pabsb */
7650 case 0x660f381d: /* pabsw */
7651 case 0x660f381e: /* pabsd */
7652 case 0x660f3820: /* pmovsxbw */
7653 case 0x660f3821: /* pmovsxbd */
7654 case 0x660f3822: /* pmovsxbq */
7655 case 0x660f3823: /* pmovsxwd */
7656 case 0x660f3824: /* pmovsxwq */
7657 case 0x660f3825: /* pmovsxdq */
7658 case 0x660f3828: /* pmuldq */
7659 case 0x660f3829: /* pcmpeqq */
7660 case 0x660f382a: /* movntdqa */
7661 case 0x660f3a08: /* roundps */
7662 case 0x660f3a09: /* roundpd */
7663 case 0x660f3a0a: /* roundss */
7664 case 0x660f3a0b: /* roundsd */
7665 case 0x660f3a0c: /* blendps */
7666 case 0x660f3a0d: /* blendpd */
7667 case 0x660f3a0e: /* pblendw */
7668 case 0x660f3a0f: /* palignr */
7669 case 0x660f3a20: /* pinsrb */
7670 case 0x660f3a21: /* insertps */
7671 case 0x660f3a22: /* pinsrd pinsrq */
7672 case 0x660f3a40: /* dpps */
7673 case 0x660f3a41: /* dppd */
7674 case 0x660f3a42: /* mpsadbw */
7675 case 0x660f3a60: /* pcmpestrm */
7676 case 0x660f3a61: /* pcmpestri */
7677 case 0x660f3a62: /* pcmpistrm */
7678 case 0x660f3a63: /* pcmpistri */
7679 case 0x0f51: /* sqrtps */
7680 case 0x660f51: /* sqrtpd */
7681 case 0xf20f51: /* sqrtsd */
7682 case 0xf30f51: /* sqrtss */
7683 case 0x0f52: /* rsqrtps */
7684 case 0xf30f52: /* rsqrtss */
7685 case 0x0f53: /* rcpps */
7686 case 0xf30f53: /* rcpss */
7687 case 0x0f54: /* andps */
7688 case 0x660f54: /* andpd */
7689 case 0x0f55: /* andnps */
7690 case 0x660f55: /* andnpd */
7691 case 0x0f56: /* orps */
7692 case 0x660f56: /* orpd */
7693 case 0x0f57: /* xorps */
7694 case 0x660f57: /* xorpd */
7695 case 0x0f58: /* addps */
7696 case 0x660f58: /* addpd */
7697 case 0xf20f58: /* addsd */
7698 case 0xf30f58: /* addss */
7699 case 0x0f59: /* mulps */
7700 case 0x660f59: /* mulpd */
7701 case 0xf20f59: /* mulsd */
7702 case 0xf30f59: /* mulss */
7703 case 0x0f5a: /* cvtps2pd */
7704 case 0x660f5a: /* cvtpd2ps */
7705 case 0xf20f5a: /* cvtsd2ss */
7706 case 0xf30f5a: /* cvtss2sd */
7707 case 0x0f5b: /* cvtdq2ps */
7708 case 0x660f5b: /* cvtps2dq */
7709 case 0xf30f5b: /* cvttps2dq */
7710 case 0x0f5c: /* subps */
7711 case 0x660f5c: /* subpd */
7712 case 0xf20f5c: /* subsd */
7713 case 0xf30f5c: /* subss */
7714 case 0x0f5d: /* minps */
7715 case 0x660f5d: /* minpd */
7716 case 0xf20f5d: /* minsd */
7717 case 0xf30f5d: /* minss */
7718 case 0x0f5e: /* divps */
7719 case 0x660f5e: /* divpd */
7720 case 0xf20f5e: /* divsd */
7721 case 0xf30f5e: /* divss */
7722 case 0x0f5f: /* maxps */
7723 case 0x660f5f: /* maxpd */
7724 case 0xf20f5f: /* maxsd */
7725 case 0xf30f5f: /* maxss */
7726 case 0x660f60: /* punpcklbw */
7727 case 0x660f61: /* punpcklwd */
7728 case 0x660f62: /* punpckldq */
7729 case 0x660f63: /* packsswb */
7730 case 0x660f64: /* pcmpgtb */
7731 case 0x660f65: /* pcmpgtw */
56d2815c 7732 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7733 case 0x660f67: /* packuswb */
7734 case 0x660f68: /* punpckhbw */
7735 case 0x660f69: /* punpckhwd */
7736 case 0x660f6a: /* punpckhdq */
7737 case 0x660f6b: /* packssdw */
7738 case 0x660f6c: /* punpcklqdq */
7739 case 0x660f6d: /* punpckhqdq */
7740 case 0x660f6e: /* movd */
7741 case 0x660f6f: /* movdqa */
7742 case 0xf30f6f: /* movdqu */
7743 case 0x660f70: /* pshufd */
7744 case 0xf20f70: /* pshuflw */
7745 case 0xf30f70: /* pshufhw */
7746 case 0x660f74: /* pcmpeqb */
7747 case 0x660f75: /* pcmpeqw */
56d2815c 7748 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7749 case 0x660f7c: /* haddpd */
7750 case 0xf20f7c: /* haddps */
7751 case 0x660f7d: /* hsubpd */
7752 case 0xf20f7d: /* hsubps */
7753 case 0xf30f7e: /* movq */
7754 case 0x0fc2: /* cmpps */
7755 case 0x660fc2: /* cmppd */
7756 case 0xf20fc2: /* cmpsd */
7757 case 0xf30fc2: /* cmpss */
7758 case 0x660fc4: /* pinsrw */
7759 case 0x0fc6: /* shufps */
7760 case 0x660fc6: /* shufpd */
7761 case 0x660fd0: /* addsubpd */
7762 case 0xf20fd0: /* addsubps */
7763 case 0x660fd1: /* psrlw */
7764 case 0x660fd2: /* psrld */
7765 case 0x660fd3: /* psrlq */
7766 case 0x660fd4: /* paddq */
7767 case 0x660fd5: /* pmullw */
7768 case 0xf30fd6: /* movq2dq */
7769 case 0x660fd8: /* psubusb */
7770 case 0x660fd9: /* psubusw */
7771 case 0x660fda: /* pminub */
7772 case 0x660fdb: /* pand */
7773 case 0x660fdc: /* paddusb */
7774 case 0x660fdd: /* paddusw */
7775 case 0x660fde: /* pmaxub */
7776 case 0x660fdf: /* pandn */
7777 case 0x660fe0: /* pavgb */
7778 case 0x660fe1: /* psraw */
7779 case 0x660fe2: /* psrad */
7780 case 0x660fe3: /* pavgw */
7781 case 0x660fe4: /* pmulhuw */
7782 case 0x660fe5: /* pmulhw */
7783 case 0x660fe6: /* cvttpd2dq */
7784 case 0xf20fe6: /* cvtpd2dq */
7785 case 0xf30fe6: /* cvtdq2pd */
7786 case 0x660fe8: /* psubsb */
7787 case 0x660fe9: /* psubsw */
7788 case 0x660fea: /* pminsw */
7789 case 0x660feb: /* por */
7790 case 0x660fec: /* paddsb */
7791 case 0x660fed: /* paddsw */
7792 case 0x660fee: /* pmaxsw */
7793 case 0x660fef: /* pxor */
4f7d61a8 7794 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7795 case 0x660ff1: /* psllw */
7796 case 0x660ff2: /* pslld */
7797 case 0x660ff3: /* psllq */
7798 case 0x660ff4: /* pmuludq */
7799 case 0x660ff5: /* pmaddwd */
7800 case 0x660ff6: /* psadbw */
7801 case 0x660ff8: /* psubb */
7802 case 0x660ff9: /* psubw */
56d2815c 7803 case 0x660ffa: /* psubd */
a3c4230a
HZ
7804 case 0x660ffb: /* psubq */
7805 case 0x660ffc: /* paddb */
7806 case 0x660ffd: /* paddw */
56d2815c 7807 case 0x660ffe: /* paddd */
a3c4230a
HZ
7808 if (i386_record_modrm (&ir))
7809 return -1;
7810 ir.reg |= rex_r;
c131fcee 7811 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7812 goto no_support;
25ea693b
MM
7813 record_full_arch_list_add_reg (ir.regcache,
7814 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7815 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7817 break;
7818
7819 case 0x0f11: /* movups */
7820 case 0x660f11: /* movupd */
7821 case 0xf30f11: /* movss */
7822 case 0xf20f11: /* movsd */
7823 case 0x0f13: /* movlps */
7824 case 0x660f13: /* movlpd */
7825 case 0x0f17: /* movhps */
7826 case 0x660f17: /* movhpd */
7827 case 0x0f29: /* movaps */
7828 case 0x660f29: /* movapd */
7829 case 0x660f3a14: /* pextrb */
7830 case 0x660f3a15: /* pextrw */
7831 case 0x660f3a16: /* pextrd pextrq */
7832 case 0x660f3a17: /* extractps */
7833 case 0x660f7f: /* movdqa */
7834 case 0xf30f7f: /* movdqu */
7835 if (i386_record_modrm (&ir))
7836 return -1;
7837 if (ir.mod == 3)
7838 {
7839 if (opcode == 0x0f13 || opcode == 0x660f13
7840 || opcode == 0x0f17 || opcode == 0x660f17)
7841 goto no_support;
7842 ir.rm |= ir.rex_b;
1777feb0
MS
7843 if (!i386_xmm_regnum_p (gdbarch,
7844 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7845 goto no_support;
25ea693b
MM
7846 record_full_arch_list_add_reg (ir.regcache,
7847 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7848 }
7849 else
7850 {
7851 switch (opcode)
7852 {
7853 case 0x660f3a14:
7854 ir.ot = OT_BYTE;
7855 break;
7856 case 0x660f3a15:
7857 ir.ot = OT_WORD;
7858 break;
7859 case 0x660f3a16:
7860 ir.ot = OT_LONG;
7861 break;
7862 case 0x660f3a17:
7863 ir.ot = OT_QUAD;
7864 break;
7865 default:
7866 ir.ot = OT_DQUAD;
7867 break;
7868 }
7869 if (i386_record_lea_modrm (&ir))
7870 return -1;
7871 }
7872 break;
7873
7874 case 0x0f2b: /* movntps */
7875 case 0x660f2b: /* movntpd */
7876 case 0x0fe7: /* movntq */
7877 case 0x660fe7: /* movntdq */
7878 if (ir.mod == 3)
7879 goto no_support;
7880 if (opcode == 0x0fe7)
7881 ir.ot = OT_QUAD;
7882 else
7883 ir.ot = OT_DQUAD;
7884 if (i386_record_lea_modrm (&ir))
7885 return -1;
7886 break;
7887
7888 case 0xf30f2c: /* cvttss2si */
7889 case 0xf20f2c: /* cvttsd2si */
7890 case 0xf30f2d: /* cvtss2si */
7891 case 0xf20f2d: /* cvtsd2si */
7892 case 0xf20f38f0: /* crc32 */
7893 case 0xf20f38f1: /* crc32 */
7894 case 0x0f50: /* movmskps */
7895 case 0x660f50: /* movmskpd */
7896 case 0x0fc5: /* pextrw */
7897 case 0x660fc5: /* pextrw */
7898 case 0x0fd7: /* pmovmskb */
7899 case 0x660fd7: /* pmovmskb */
25ea693b 7900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7901 break;
7902
7903 case 0x0f3800: /* pshufb */
7904 case 0x0f3801: /* phaddw */
7905 case 0x0f3802: /* phaddd */
7906 case 0x0f3803: /* phaddsw */
7907 case 0x0f3804: /* pmaddubsw */
7908 case 0x0f3805: /* phsubw */
7909 case 0x0f3806: /* phsubd */
4f7d61a8 7910 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7911 case 0x0f3808: /* psignb */
7912 case 0x0f3809: /* psignw */
7913 case 0x0f380a: /* psignd */
7914 case 0x0f380b: /* pmulhrsw */
7915 case 0x0f381c: /* pabsb */
7916 case 0x0f381d: /* pabsw */
7917 case 0x0f381e: /* pabsd */
7918 case 0x0f382b: /* packusdw */
7919 case 0x0f3830: /* pmovzxbw */
7920 case 0x0f3831: /* pmovzxbd */
7921 case 0x0f3832: /* pmovzxbq */
7922 case 0x0f3833: /* pmovzxwd */
7923 case 0x0f3834: /* pmovzxwq */
7924 case 0x0f3835: /* pmovzxdq */
7925 case 0x0f3837: /* pcmpgtq */
7926 case 0x0f3838: /* pminsb */
7927 case 0x0f3839: /* pminsd */
7928 case 0x0f383a: /* pminuw */
7929 case 0x0f383b: /* pminud */
7930 case 0x0f383c: /* pmaxsb */
7931 case 0x0f383d: /* pmaxsd */
7932 case 0x0f383e: /* pmaxuw */
7933 case 0x0f383f: /* pmaxud */
7934 case 0x0f3840: /* pmulld */
7935 case 0x0f3841: /* phminposuw */
7936 case 0x0f3a0f: /* palignr */
7937 case 0x0f60: /* punpcklbw */
7938 case 0x0f61: /* punpcklwd */
7939 case 0x0f62: /* punpckldq */
7940 case 0x0f63: /* packsswb */
7941 case 0x0f64: /* pcmpgtb */
7942 case 0x0f65: /* pcmpgtw */
56d2815c 7943 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7944 case 0x0f67: /* packuswb */
7945 case 0x0f68: /* punpckhbw */
7946 case 0x0f69: /* punpckhwd */
7947 case 0x0f6a: /* punpckhdq */
7948 case 0x0f6b: /* packssdw */
7949 case 0x0f6e: /* movd */
7950 case 0x0f6f: /* movq */
7951 case 0x0f70: /* pshufw */
7952 case 0x0f74: /* pcmpeqb */
7953 case 0x0f75: /* pcmpeqw */
56d2815c 7954 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7955 case 0x0fc4: /* pinsrw */
7956 case 0x0fd1: /* psrlw */
7957 case 0x0fd2: /* psrld */
7958 case 0x0fd3: /* psrlq */
7959 case 0x0fd4: /* paddq */
7960 case 0x0fd5: /* pmullw */
7961 case 0xf20fd6: /* movdq2q */
7962 case 0x0fd8: /* psubusb */
7963 case 0x0fd9: /* psubusw */
7964 case 0x0fda: /* pminub */
7965 case 0x0fdb: /* pand */
7966 case 0x0fdc: /* paddusb */
7967 case 0x0fdd: /* paddusw */
7968 case 0x0fde: /* pmaxub */
7969 case 0x0fdf: /* pandn */
7970 case 0x0fe0: /* pavgb */
7971 case 0x0fe1: /* psraw */
7972 case 0x0fe2: /* psrad */
7973 case 0x0fe3: /* pavgw */
7974 case 0x0fe4: /* pmulhuw */
7975 case 0x0fe5: /* pmulhw */
7976 case 0x0fe8: /* psubsb */
7977 case 0x0fe9: /* psubsw */
7978 case 0x0fea: /* pminsw */
7979 case 0x0feb: /* por */
7980 case 0x0fec: /* paddsb */
7981 case 0x0fed: /* paddsw */
7982 case 0x0fee: /* pmaxsw */
7983 case 0x0fef: /* pxor */
7984 case 0x0ff1: /* psllw */
7985 case 0x0ff2: /* pslld */
7986 case 0x0ff3: /* psllq */
7987 case 0x0ff4: /* pmuludq */
7988 case 0x0ff5: /* pmaddwd */
7989 case 0x0ff6: /* psadbw */
7990 case 0x0ff8: /* psubb */
7991 case 0x0ff9: /* psubw */
56d2815c 7992 case 0x0ffa: /* psubd */
a3c4230a
HZ
7993 case 0x0ffb: /* psubq */
7994 case 0x0ffc: /* paddb */
7995 case 0x0ffd: /* paddw */
56d2815c 7996 case 0x0ffe: /* paddd */
a3c4230a
HZ
7997 if (i386_record_modrm (&ir))
7998 return -1;
7999 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8000 goto no_support;
25ea693b
MM
8001 record_full_arch_list_add_reg (ir.regcache,
8002 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
8003 break;
8004
8005 case 0x0f71: /* psllw */
8006 case 0x0f72: /* pslld */
8007 case 0x0f73: /* psllq */
8008 if (i386_record_modrm (&ir))
8009 return -1;
8010 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8011 goto no_support;
25ea693b
MM
8012 record_full_arch_list_add_reg (ir.regcache,
8013 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8014 break;
8015
8016 case 0x660f71: /* psllw */
8017 case 0x660f72: /* pslld */
8018 case 0x660f73: /* psllq */
8019 if (i386_record_modrm (&ir))
8020 return -1;
8021 ir.rm |= ir.rex_b;
c131fcee 8022 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8023 goto no_support;
25ea693b
MM
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8026 break;
8027
8028 case 0x0f7e: /* movd */
8029 case 0x660f7e: /* movd */
8030 if (i386_record_modrm (&ir))
8031 return -1;
8032 if (ir.mod == 3)
25ea693b 8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8034 else
8035 {
8036 if (ir.dflag == 2)
8037 ir.ot = OT_QUAD;
8038 else
8039 ir.ot = OT_LONG;
8040 if (i386_record_lea_modrm (&ir))
8041 return -1;
8042 }
8043 break;
8044
8045 case 0x0f7f: /* movq */
8046 if (i386_record_modrm (&ir))
8047 return -1;
8048 if (ir.mod == 3)
8049 {
8050 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8051 goto no_support;
25ea693b
MM
8052 record_full_arch_list_add_reg (ir.regcache,
8053 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8054 }
8055 else
8056 {
8057 ir.ot = OT_QUAD;
8058 if (i386_record_lea_modrm (&ir))
8059 return -1;
8060 }
8061 break;
8062
8063 case 0xf30fb8: /* popcnt */
8064 if (i386_record_modrm (&ir))
8065 return -1;
25ea693b
MM
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8068 break;
8069
8070 case 0x660fd6: /* movq */
8071 if (i386_record_modrm (&ir))
8072 return -1;
8073 if (ir.mod == 3)
8074 {
8075 ir.rm |= ir.rex_b;
1777feb0
MS
8076 if (!i386_xmm_regnum_p (gdbarch,
8077 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8078 goto no_support;
25ea693b
MM
8079 record_full_arch_list_add_reg (ir.regcache,
8080 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8081 }
8082 else
8083 {
8084 ir.ot = OT_QUAD;
8085 if (i386_record_lea_modrm (&ir))
8086 return -1;
8087 }
8088 break;
8089
8090 case 0x660f3817: /* ptest */
8091 case 0x0f2e: /* ucomiss */
8092 case 0x660f2e: /* ucomisd */
8093 case 0x0f2f: /* comiss */
8094 case 0x660f2f: /* comisd */
25ea693b 8095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8096 break;
8097
8098 case 0x0ff7: /* maskmovq */
8099 regcache_raw_read_unsigned (ir.regcache,
8100 ir.regmap[X86_RECORD_REDI_REGNUM],
8101 &addr);
25ea693b 8102 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8103 return -1;
8104 break;
8105
8106 case 0x660ff7: /* maskmovdqu */
8107 regcache_raw_read_unsigned (ir.regcache,
8108 ir.regmap[X86_RECORD_REDI_REGNUM],
8109 &addr);
25ea693b 8110 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8111 return -1;
8112 break;
8113
8114 default:
8115 goto no_support;
8116 break;
8117 }
8118 break;
7ad10968
HZ
8119
8120 default:
7ad10968
HZ
8121 goto no_support;
8122 break;
8123 }
8124
cf648174 8125 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8127 if (record_full_arch_list_add_end ())
7ad10968
HZ
8128 return -1;
8129
8130 return 0;
8131
01fe1b41 8132 no_support:
a3c4230a
HZ
8133 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8134 "at address %s.\n"),
8135 (unsigned int) (opcode),
8136 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8137 return -1;
8138}
8139
cf648174
HZ
8140static const int i386_record_regmap[] =
8141{
8142 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8143 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8144 0, 0, 0, 0, 0, 0, 0, 0,
8145 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8146 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8147};
8148
7a697b8d 8149/* Check that the given address appears suitable for a fast
405f8e94 8150 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8151 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8152 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8153 middle of the tracepoint jump. On x86, it may be possible to use
8154 4-byte jumps with a 2-byte offset to a trampoline located in the
8155 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8156 of instruction to replace, and 0 if not, plus an explanatory
8157 string. */
8158
8159static int
6b940e6a 8160i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
281d762b 8161 std::string *msg)
7a697b8d
SS
8162{
8163 int len, jumplen;
7a697b8d 8164
405f8e94
SS
8165 /* Ask the target for the minimum instruction length supported. */
8166 jumplen = target_get_min_fast_tracepoint_insn_len ();
8167
8168 if (jumplen < 0)
8169 {
8170 /* If the target does not support the get_min_fast_tracepoint_insn_len
8171 operation, assume that fast tracepoints will always be implemented
8172 using 4-byte relative jumps on both x86 and x86-64. */
8173 jumplen = 5;
8174 }
8175 else if (jumplen == 0)
8176 {
8177 /* If the target does support get_min_fast_tracepoint_insn_len but
8178 returns zero, then the IPA has not loaded yet. In this case,
8179 we optimistically assume that truncated 2-byte relative jumps
8180 will be available on x86, and compensate later if this assumption
8181 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8182 jumps will always be used. */
8183 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8184 }
7a697b8d 8185
7a697b8d 8186 /* Check for fit. */
be85ce7d 8187 len = gdb_insn_length (gdbarch, addr);
405f8e94 8188
7a697b8d
SS
8189 if (len < jumplen)
8190 {
8191 /* Return a bit of target-specific detail to add to the caller's
8192 generic failure message. */
8193 if (msg)
281d762b
TT
8194 *msg = string_printf (_("; instruction is only %d bytes long, "
8195 "need at least %d bytes for the jump"),
8196 len, jumplen);
7a697b8d
SS
8197 return 0;
8198 }
405f8e94
SS
8199 else
8200 {
8201 if (msg)
281d762b 8202 msg->clear ();
405f8e94
SS
8203 return 1;
8204 }
7a697b8d
SS
8205}
8206
00d5215e
UW
8207/* Return a floating-point format for a floating-point variable of
8208 length LEN in bits. If non-NULL, NAME is the name of its type.
8209 If no suitable type is found, return NULL. */
8210
cb8c24b6 8211static const struct floatformat **
00d5215e
UW
8212i386_floatformat_for_type (struct gdbarch *gdbarch,
8213 const char *name, int len)
8214{
8215 if (len == 128 && name)
8216 if (strcmp (name, "__float128") == 0
8217 || strcmp (name, "_Float128") == 0
34d11c68
AB
8218 || strcmp (name, "complex _Float128") == 0
8219 || strcmp (name, "complex(kind=16)") == 0
e56798df
AKS
8220 || strcmp (name, "quad complex") == 0
8221 || strcmp (name, "real(kind=16)") == 0
8222 || strcmp (name, "real*16") == 0)
00d5215e
UW
8223 return floatformats_ia64_quad;
8224
8225 return default_floatformat_for_type (gdbarch, name, len);
8226}
8227
90884b2b
L
8228static int
8229i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8230 struct tdesc_arch_data *tdesc_data)
8231{
8232 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8233 const struct tdesc_feature *feature_core;
01f9f808
MS
8234
8235 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
1163a4b7 8236 *feature_avx512, *feature_pkeys, *feature_segments;
90884b2b
L
8237 int i, num_regs, valid_p;
8238
8239 if (! tdesc_has_registers (tdesc))
8240 return 0;
8241
8242 /* Get core registers. */
8243 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8244 if (feature_core == NULL)
8245 return 0;
90884b2b
L
8246
8247 /* Get SSE registers. */
c131fcee 8248 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8249
c131fcee
L
8250 /* Try AVX registers. */
8251 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8252
1dbcd68c
WT
8253 /* Try MPX registers. */
8254 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8255
01f9f808
MS
8256 /* Try AVX512 registers. */
8257 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8258
1163a4b7
JB
8259 /* Try segment base registers. */
8260 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8261
51547df6
MS
8262 /* Try PKEYS */
8263 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8264
90884b2b
L
8265 valid_p = 1;
8266
c131fcee 8267 /* The XCR0 bits. */
01f9f808
MS
8268 if (feature_avx512)
8269 {
8270 /* AVX512 register description requires AVX register description. */
8271 if (!feature_avx)
8272 return 0;
8273
a1fa17ee 8274 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8275
8276 /* It may have been set by OSABI initialization function. */
8277 if (tdep->k0_regnum < 0)
8278 {
8279 tdep->k_register_names = i386_k_names;
8280 tdep->k0_regnum = I386_K0_REGNUM;
8281 }
8282
8283 for (i = 0; i < I387_NUM_K_REGS; i++)
8284 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8285 tdep->k0_regnum + i,
8286 i386_k_names[i]);
8287
8288 if (tdep->num_zmm_regs == 0)
8289 {
8290 tdep->zmmh_register_names = i386_zmmh_names;
8291 tdep->num_zmm_regs = 8;
8292 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8293 }
8294
8295 for (i = 0; i < tdep->num_zmm_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->zmm0h_regnum + i,
8298 tdep->zmmh_register_names[i]);
8299
8300 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8301 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8302 tdep->xmm16_regnum + i,
8303 tdep->xmm_avx512_register_names[i]);
8304
8305 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8306 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8307 tdep->ymm16h_regnum + i,
8308 tdep->ymm16h_register_names[i]);
8309 }
c131fcee
L
8310 if (feature_avx)
8311 {
3a13a53b
L
8312 /* AVX register description requires SSE register description. */
8313 if (!feature_sse)
8314 return 0;
8315
01f9f808 8316 if (!feature_avx512)
df7e5265 8317 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8318
8319 /* It may have been set by OSABI initialization function. */
8320 if (tdep->num_ymm_regs == 0)
8321 {
8322 tdep->ymmh_register_names = i386_ymmh_names;
8323 tdep->num_ymm_regs = 8;
8324 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8325 }
8326
8327 for (i = 0; i < tdep->num_ymm_regs; i++)
8328 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8329 tdep->ymm0h_regnum + i,
8330 tdep->ymmh_register_names[i]);
8331 }
3a13a53b 8332 else if (feature_sse)
df7e5265 8333 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8334 else
8335 {
df7e5265 8336 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8337 tdep->num_xmm_regs = 0;
8338 }
c131fcee 8339
90884b2b
L
8340 num_regs = tdep->num_core_regs;
8341 for (i = 0; i < num_regs; i++)
8342 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8343 tdep->register_names[i]);
8344
3a13a53b
L
8345 if (feature_sse)
8346 {
8347 /* Need to include %mxcsr, so add one. */
8348 num_regs += tdep->num_xmm_regs + 1;
8349 for (; i < num_regs; i++)
8350 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8351 tdep->register_names[i]);
8352 }
90884b2b 8353
1dbcd68c
WT
8354 if (feature_mpx)
8355 {
df7e5265 8356 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8357
8358 if (tdep->bnd0r_regnum < 0)
8359 {
8360 tdep->mpx_register_names = i386_mpx_names;
8361 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8362 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8363 }
8364
8365 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8366 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8367 I387_BND0R_REGNUM (tdep) + i,
8368 tdep->mpx_register_names[i]);
8369 }
8370
1163a4b7
JB
8371 if (feature_segments)
8372 {
8373 if (tdep->fsbase_regnum < 0)
8374 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8375 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8376 tdep->fsbase_regnum, "fs_base");
8377 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8378 tdep->fsbase_regnum + 1, "gs_base");
8379 }
8380
51547df6
MS
8381 if (feature_pkeys)
8382 {
8383 tdep->xcr0 |= X86_XSTATE_PKRU;
8384 if (tdep->pkru_regnum < 0)
8385 {
8386 tdep->pkeys_register_names = i386_pkeys_names;
8387 tdep->pkru_regnum = I386_PKRU_REGNUM;
8388 tdep->num_pkeys_regs = 1;
8389 }
8390
8391 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8392 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8393 I387_PKRU_REGNUM (tdep) + i,
8394 tdep->pkeys_register_names[i]);
8395 }
8396
90884b2b
L
8397 return valid_p;
8398}
8399
2b4424c3
TT
8400\f
8401
8402/* Implement the type_align gdbarch function. */
8403
8404static ULONGEST
8405i386_type_align (struct gdbarch *gdbarch, struct type *type)
8406{
8407 type = check_typedef (type);
8408
8409 if (gdbarch_ptr_bit (gdbarch) == 32)
8410 {
78134374
SM
8411 if ((type->code () == TYPE_CODE_INT
8412 || type->code () == TYPE_CODE_FLT)
2b4424c3
TT
8413 && TYPE_LENGTH (type) > 4)
8414 return 4;
8415
8416 /* Handle x86's funny long double. */
78134374 8417 if (type->code () == TYPE_CODE_FLT
2b4424c3
TT
8418 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8419 return 4;
8420 }
8421
5561fc30 8422 return 0;
2b4424c3
TT
8423}
8424
7ad10968 8425\f
ad9eb1fd
DE
8426/* Note: This is called for both i386 and amd64. */
8427
7ad10968
HZ
8428static struct gdbarch *
8429i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8430{
8431 struct gdbarch_tdep *tdep;
8432 struct gdbarch *gdbarch;
90884b2b 8433 const struct target_desc *tdesc;
1ba53b71 8434 int mm0_regnum;
c131fcee 8435 int ymm0_regnum;
1dbcd68c
WT
8436 int bnd0_regnum;
8437 int num_bnd_cooked;
7ad10968
HZ
8438
8439 /* If there is already a candidate, use it. */
8440 arches = gdbarch_list_lookup_by_info (arches, &info);
8441 if (arches != NULL)
8442 return arches->gdbarch;
8443
ad9eb1fd 8444 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8445 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8446 gdbarch = gdbarch_alloc (&info, tdep);
8447
8448 /* General-purpose registers. */
7ad10968
HZ
8449 tdep->gregset_reg_offset = NULL;
8450 tdep->gregset_num_regs = I386_NUM_GREGS;
8451 tdep->sizeof_gregset = 0;
8452
8453 /* Floating-point registers. */
7ad10968 8454 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8455 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8456
8457 /* The default settings include the FPU registers, the MMX registers
8458 and the SSE registers. This can be overridden for a specific ABI
8459 by adjusting the members `st0_regnum', `mm0_regnum' and
8460 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8461 will show up in the output of "info all-registers". */
7ad10968
HZ
8462
8463 tdep->st0_regnum = I386_ST0_REGNUM;
8464
7ad10968
HZ
8465 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8466 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8467
8468 tdep->jb_pc_offset = -1;
8469 tdep->struct_return = pcc_struct_return;
8470 tdep->sigtramp_start = 0;
8471 tdep->sigtramp_end = 0;
8472 tdep->sigtramp_p = i386_sigtramp_p;
8473 tdep->sigcontext_addr = NULL;
8474 tdep->sc_reg_offset = NULL;
8475 tdep->sc_pc_offset = -1;
8476 tdep->sc_sp_offset = -1;
8477
c131fcee
L
8478 tdep->xsave_xcr0_offset = -1;
8479
cf648174
HZ
8480 tdep->record_regmap = i386_record_regmap;
8481
2b4424c3 8482 set_gdbarch_type_align (gdbarch, i386_type_align);
205c306f 8483
7ad10968
HZ
8484 /* The format used for `long double' on almost all i386 targets is
8485 the i387 extended floating-point format. In fact, of all targets
8486 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8487 on having a `long double' that's not `long' at all. */
8488 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8489
8490 /* Although the i387 extended floating-point has only 80 significant
8491 bits, a `long double' actually takes up 96, probably to enforce
8492 alignment. */
8493 set_gdbarch_long_double_bit (gdbarch, 96);
8494
2a67f09d
FW
8495 /* Support of bfloat16 format. */
8496 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8497
00d5215e
UW
8498 /* Support for floating-point data type variants. */
8499 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8500
7ad10968
HZ
8501 /* Register numbers of various important registers. */
8502 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8503 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8504 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8505 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8506
8507 /* NOTE: kettenis/20040418: GCC does have two possible register
8508 numbering schemes on the i386: dbx and SVR4. These schemes
8509 differ in how they number %ebp, %esp, %eflags, and the
8510 floating-point registers, and are implemented by the arrays
8511 dbx_register_map[] and svr4_dbx_register_map in
8512 gcc/config/i386.c. GCC also defines a third numbering scheme in
8513 gcc/config/i386.c, which it designates as the "default" register
8514 map used in 64bit mode. This last register numbering scheme is
8515 implemented in dbx64_register_map, and is used for AMD64; see
8516 amd64-tdep.c.
8517
8518 Currently, each GCC i386 target always uses the same register
8519 numbering scheme across all its supported debugging formats
8520 i.e. SDB (COFF), stabs and DWARF 2. This is because
8521 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8522 DBX_REGISTER_NUMBER macro which is defined by each target's
8523 respective config header in a manner independent of the requested
8524 output debugging format.
8525
8526 This does not match the arrangement below, which presumes that
8527 the SDB and stabs numbering schemes differ from the DWARF and
8528 DWARF 2 ones. The reason for this arrangement is that it is
8529 likely to get the numbering scheme for the target's
8530 default/native debug format right. For targets where GCC is the
8531 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8532 targets where the native toolchain uses a different numbering
8533 scheme for a particular debug format (stabs-in-ELF on Solaris)
8534 the defaults below will have to be overridden, like
8535 i386_elf_init_abi() does. */
8536
8537 /* Use the dbx register numbering scheme for stabs and COFF. */
8538 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8539 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8540
8541 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8542 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8543
8544 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8545 be in use on any of the supported i386 targets. */
8546
8547 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8548
8549 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8550
8551 /* Call dummy code. */
a9b8d892
JK
8552 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8553 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8554 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8555 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8556
8557 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8558 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8559 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8560
8561 set_gdbarch_return_value (gdbarch, i386_return_value);
8562
8563 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8564
8565 /* Stack grows downward. */
8566 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8567
04180708
YQ
8568 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8569 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8570
7ad10968
HZ
8571 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8572 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8573
8574 set_gdbarch_frame_args_skip (gdbarch, 8);
8575
7ad10968
HZ
8576 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8577
8578 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8579
8580 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8581
8582 /* Add the i386 register groups. */
8583 i386_add_reggroups (gdbarch);
90884b2b 8584 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8585
143985b7
AF
8586 /* Helper for function argument information. */
8587 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8588
06da04c6 8589 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8590 appended to the list first, so that it supercedes the DWARF
8591 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8592 currently fails). */
8593 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8594
8595 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8596 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8597 CFI info will be used if it is available. */
10458914 8598 dwarf2_append_unwinders (gdbarch);
6405b0a6 8599
acd5c798 8600 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8601
1ba53b71 8602 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8603 set_gdbarch_pseudo_register_read_value (gdbarch,
8604 i386_pseudo_register_read_value);
90884b2b 8605 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8606 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8607 i386_ax_pseudo_register_collect);
90884b2b
L
8608
8609 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8610 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8611
c131fcee
L
8612 /* Override the normal target description method to make the AVX
8613 upper halves anonymous. */
8614 set_gdbarch_register_name (gdbarch, i386_register_name);
8615
8616 /* Even though the default ABI only includes general-purpose registers,
8617 floating-point registers and the SSE registers, we have to leave a
01f9f808 8618 gap for the upper AVX, MPX and AVX512 registers. */
1163a4b7 8619 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
90884b2b 8620
ac04f72b
TT
8621 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8622
90884b2b
L
8623 /* Get the x86 target description from INFO. */
8624 tdesc = info.target_desc;
8625 if (! tdesc_has_registers (tdesc))
1163a4b7 8626 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
90884b2b
L
8627 tdep->tdesc = tdesc;
8628
8629 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8630 tdep->register_names = i386_register_names;
8631
c131fcee
L
8632 /* No upper YMM registers. */
8633 tdep->ymmh_register_names = NULL;
8634 tdep->ymm0h_regnum = -1;
8635
01f9f808
MS
8636 /* No upper ZMM registers. */
8637 tdep->zmmh_register_names = NULL;
8638 tdep->zmm0h_regnum = -1;
8639
8640 /* No high XMM registers. */
8641 tdep->xmm_avx512_register_names = NULL;
8642 tdep->xmm16_regnum = -1;
8643
8644 /* No upper YMM16-31 registers. */
8645 tdep->ymm16h_register_names = NULL;
8646 tdep->ymm16h_regnum = -1;
8647
1ba53b71
L
8648 tdep->num_byte_regs = 8;
8649 tdep->num_word_regs = 8;
8650 tdep->num_dword_regs = 0;
8651 tdep->num_mmx_regs = 8;
c131fcee 8652 tdep->num_ymm_regs = 0;
1ba53b71 8653
1dbcd68c
WT
8654 /* No MPX registers. */
8655 tdep->bnd0r_regnum = -1;
8656 tdep->bndcfgu_regnum = -1;
8657
01f9f808
MS
8658 /* No AVX512 registers. */
8659 tdep->k0_regnum = -1;
8660 tdep->num_zmm_regs = 0;
8661 tdep->num_ymm_avx512_regs = 0;
8662 tdep->num_xmm_avx512_regs = 0;
8663
51547df6
MS
8664 /* No PKEYS registers */
8665 tdep->pkru_regnum = -1;
8666 tdep->num_pkeys_regs = 0;
8667
1163a4b7
JB
8668 /* No segment base registers. */
8669 tdep->fsbase_regnum = -1;
8670
c1e1314d 8671 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
90884b2b 8672
dde08ee1
PA
8673 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8674
6710bf39
SS
8675 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8676
c2170eef
MM
8677 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8678 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8679 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8680
ad9eb1fd
DE
8681 /* Hook in ABI-specific overrides, if they have been registered.
8682 Note: If INFO specifies a 64 bit arch, this is where we turn
8683 a 32-bit i386 into a 64-bit amd64. */
c1e1314d 8684 info.tdesc_data = tdesc_data.get ();
4be87837 8685 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8686
c1e1314d 8687 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
c131fcee 8688 {
c131fcee
L
8689 xfree (tdep);
8690 gdbarch_free (gdbarch);
8691 return NULL;
8692 }
8693
1dbcd68c
WT
8694 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8695
1ba53b71
L
8696 /* Wire in pseudo registers. Number of pseudo registers may be
8697 changed. */
8698 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8699 + tdep->num_word_regs
8700 + tdep->num_dword_regs
c131fcee 8701 + tdep->num_mmx_regs
1dbcd68c 8702 + tdep->num_ymm_regs
01f9f808
MS
8703 + num_bnd_cooked
8704 + tdep->num_ymm_avx512_regs
8705 + tdep->num_zmm_regs));
1ba53b71 8706
90884b2b
L
8707 /* Target description may be changed. */
8708 tdesc = tdep->tdesc;
8709
c1e1314d 8710 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
90884b2b
L
8711
8712 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8713 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8714
1ba53b71
L
8715 /* Make %al the first pseudo-register. */
8716 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8717 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8718
c131fcee 8719 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8720 if (tdep->num_dword_regs)
8721 {
1c6272a6 8722 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8723 tdep->eax_regnum = ymm0_regnum;
8724 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8725 }
8726 else
8727 tdep->eax_regnum = -1;
8728
c131fcee
L
8729 mm0_regnum = ymm0_regnum;
8730 if (tdep->num_ymm_regs)
8731 {
1c6272a6 8732 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8733 tdep->ymm0_regnum = ymm0_regnum;
8734 mm0_regnum += tdep->num_ymm_regs;
8735 }
8736 else
8737 tdep->ymm0_regnum = -1;
8738
01f9f808
MS
8739 if (tdep->num_ymm_avx512_regs)
8740 {
8741 /* Support YMM16-31 pseudo registers if available. */
8742 tdep->ymm16_regnum = mm0_regnum;
8743 mm0_regnum += tdep->num_ymm_avx512_regs;
8744 }
8745 else
8746 tdep->ymm16_regnum = -1;
8747
8748 if (tdep->num_zmm_regs)
8749 {
8750 /* Support ZMM pseudo-register if it is available. */
8751 tdep->zmm0_regnum = mm0_regnum;
8752 mm0_regnum += tdep->num_zmm_regs;
8753 }
8754 else
8755 tdep->zmm0_regnum = -1;
8756
1dbcd68c 8757 bnd0_regnum = mm0_regnum;
1ba53b71
L
8758 if (tdep->num_mmx_regs != 0)
8759 {
1c6272a6 8760 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8761 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8762 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8763 }
8764 else
8765 tdep->mm0_regnum = -1;
8766
1dbcd68c
WT
8767 if (tdep->bnd0r_regnum > 0)
8768 tdep->bnd0_regnum = bnd0_regnum;
8769 else
8770 tdep-> bnd0_regnum = -1;
8771
06da04c6 8772 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8773 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8774 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8775 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8776
8446b36a
MK
8777 /* If we have a register mapping, enable the generic core file
8778 support, unless it has already been enabled. */
8779 if (tdep->gregset_reg_offset
8f0435f7 8780 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8781 set_gdbarch_iterate_over_regset_sections
8782 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8783
7a697b8d
SS
8784 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8785 i386_fast_tracepoint_valid_at);
8786
a62cc96e
AC
8787 return gdbarch;
8788}
8789
8201327c
MK
8790\f
8791
97de3545
JB
8792/* Return the target description for a specified XSAVE feature mask. */
8793
8794const struct target_desc *
1163a4b7 8795i386_target_description (uint64_t xcr0, bool segments)
97de3545 8796{
22916b07 8797 static target_desc *i386_tdescs \
1163a4b7 8798 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
8799 target_desc **tdesc;
8800
8801 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8802 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8803 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8804 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
1163a4b7
JB
8805 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8806 [segments ? 1 : 0];
22916b07
YQ
8807
8808 if (*tdesc == NULL)
1163a4b7 8809 *tdesc = i386_create_target_description (xcr0, false, segments);
22916b07
YQ
8810
8811 return *tdesc;
97de3545
JB
8812}
8813
29c1c244
WT
8814#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8815
8816/* Find the bound directory base address. */
8817
8818static unsigned long
8819i386_mpx_bd_base (void)
8820{
8821 struct regcache *rcache;
8822 struct gdbarch_tdep *tdep;
8823 ULONGEST ret;
8824 enum register_status regstatus;
29c1c244
WT
8825
8826 rcache = get_current_regcache ();
ac7936df 8827 tdep = gdbarch_tdep (rcache->arch ());
29c1c244
WT
8828
8829 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8830
8831 if (regstatus != REG_VALID)
8832 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8833
8834 return ret & MPX_BASE_MASK;
8835}
8836
012b3a21 8837int
29c1c244
WT
8838i386_mpx_enabled (void)
8839{
8840 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8841 const struct target_desc *tdesc = tdep->tdesc;
8842
8843 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8844}
8845
8846#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8847#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8848#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8849#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8850
8851/* Find the bound table entry given the pointer location and the base
8852 address of the table. */
8853
8854static CORE_ADDR
8855i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8856{
8857 CORE_ADDR offset1;
8858 CORE_ADDR offset2;
8859 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8860 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8861 CORE_ADDR bd_entry_addr;
8862 CORE_ADDR bt_addr;
8863 CORE_ADDR bd_entry;
8864 struct gdbarch *gdbarch = get_current_arch ();
8865 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8866
8867
8868 if (gdbarch_ptr_bit (gdbarch) == 64)
8869 {
966f0aef 8870 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8871 bd_ptr_r_shift = 20;
8872 bd_ptr_l_shift = 3;
8873 bt_select_r_shift = 3;
8874 bt_select_l_shift = 5;
966f0aef
WT
8875 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8876
8877 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8878 error (_("bound table examination not supported\
8879 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8880 }
8881 else
8882 {
8883 mpx_bd_mask = MPX_BD_MASK_32;
8884 bd_ptr_r_shift = 12;
8885 bd_ptr_l_shift = 2;
8886 bt_select_r_shift = 2;
8887 bt_select_l_shift = 4;
8888 bt_mask = MPX_BT_MASK_32;
8889 }
8890
8891 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8892 bd_entry_addr = bd_base + offset1;
8893 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8894
8895 if ((bd_entry & 0x1) == 0)
8896 error (_("Invalid bounds directory entry at %s."),
8897 paddress (get_current_arch (), bd_entry_addr));
8898
8899 /* Clearing status bit. */
8900 bd_entry--;
8901 bt_addr = bd_entry & ~bt_select_r_shift;
8902 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8903
8904 return bt_addr + offset2;
8905}
8906
8907/* Print routine for the mpx bounds. */
8908
8909static void
8910i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8911{
8912 struct ui_out *uiout = current_uiout;
34f8ac9f 8913 LONGEST size;
29c1c244
WT
8914 struct gdbarch *gdbarch = get_current_arch ();
8915 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8916 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8917
8918 if (bounds_in_map == 1)
8919 {
112e8700
SM
8920 uiout->text ("Null bounds on map:");
8921 uiout->text (" pointer value = ");
8922 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8923 uiout->text (".");
8924 uiout->text ("\n");
29c1c244
WT
8925 }
8926 else
8927 {
112e8700
SM
8928 uiout->text ("{lbound = ");
8929 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8930 uiout->text (", ubound = ");
29c1c244
WT
8931
8932 /* The upper bound is stored in 1's complement. */
112e8700
SM
8933 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8934 uiout->text ("}: pointer value = ");
8935 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8936
8937 if (gdbarch_ptr_bit (gdbarch) == 64)
8938 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8939 else
8940 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8941
8942 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8943 -1 represents in this sense full memory access, and there is no need
8944 one to the size. */
8945
8946 size = (size > -1 ? size + 1 : size);
112e8700 8947 uiout->text (", size = ");
33eca680 8948 uiout->field_string ("size", plongest (size));
29c1c244 8949
112e8700
SM
8950 uiout->text (", metadata = ");
8951 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8952 uiout->text ("\n");
29c1c244
WT
8953 }
8954}
8955
8956/* Implement the command "show mpx bound". */
8957
8958static void
c4a3e68e 8959i386_mpx_info_bounds (const char *args, int from_tty)
29c1c244
WT
8960{
8961 CORE_ADDR bd_base = 0;
8962 CORE_ADDR addr;
8963 CORE_ADDR bt_entry_addr = 0;
8964 CORE_ADDR bt_entry[4];
8965 int i;
8966 struct gdbarch *gdbarch = get_current_arch ();
8967 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8968
ae71e7b5
MR
8969 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8970 || !i386_mpx_enabled ())
118ca224 8971 {
bc504a31 8972 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8973 "supported on this target.\n"));
8974 return;
8975 }
29c1c244
WT
8976
8977 if (args == NULL)
118ca224
PP
8978 {
8979 printf_unfiltered (_("Address of pointer variable expected.\n"));
8980 return;
8981 }
29c1c244
WT
8982
8983 addr = parse_and_eval_address (args);
8984
8985 bd_base = i386_mpx_bd_base ();
8986 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8987
8988 memset (bt_entry, 0, sizeof (bt_entry));
8989
8990 for (i = 0; i < 4; i++)
8991 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8992 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8993 data_ptr_type);
8994
8995 i386_mpx_print_bounds (bt_entry);
8996}
8997
8998/* Implement the command "set mpx bound". */
8999
9000static void
c4a3e68e 9001i386_mpx_set_bounds (const char *args, int from_tty)
29c1c244
WT
9002{
9003 CORE_ADDR bd_base = 0;
9004 CORE_ADDR addr, lower, upper;
9005 CORE_ADDR bt_entry_addr = 0;
9006 CORE_ADDR bt_entry[2];
9007 const char *input = args;
9008 int i;
9009 struct gdbarch *gdbarch = get_current_arch ();
9010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9011 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9012
ae71e7b5
MR
9013 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9014 || !i386_mpx_enabled ())
bc504a31 9015 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
9016 on this target."));
9017
9018 if (args == NULL)
9019 error (_("Pointer value expected."));
9020
9021 addr = value_as_address (parse_to_comma_and_eval (&input));
9022
9023 if (input[0] == ',')
9024 ++input;
9025 if (input[0] == '\0')
9026 error (_("wrong number of arguments: missing lower and upper bound."));
9027 lower = value_as_address (parse_to_comma_and_eval (&input));
9028
9029 if (input[0] == ',')
9030 ++input;
9031 if (input[0] == '\0')
9032 error (_("Wrong number of arguments; Missing upper bound."));
9033 upper = value_as_address (parse_to_comma_and_eval (&input));
9034
9035 bd_base = i386_mpx_bd_base ();
9036 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9037 for (i = 0; i < 2; i++)
9038 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 9039 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
9040 data_ptr_type);
9041 bt_entry[0] = (uint64_t) lower;
9042 bt_entry[1] = ~(uint64_t) upper;
9043
9044 for (i = 0; i < 2; i++)
132874d7
AB
9045 write_memory_unsigned_integer (bt_entry_addr
9046 + i * TYPE_LENGTH (data_ptr_type),
9047 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
9048 bt_entry[i]);
9049}
9050
9051static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9052
6c265988 9053void _initialize_i386_tdep ();
c906108c 9054void
6c265988 9055_initialize_i386_tdep ()
c906108c 9056{
a62cc96e
AC
9057 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9058
fc338970 9059 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9060 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9061 &disassembly_flavor, _("\
9062Set the disassembly flavor."), _("\
9063Show the disassembly flavor."), _("\
9064The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9065 NULL,
9066 NULL, /* FIXME: i18n: */
9067 &setlist, &showlist);
8201327c
MK
9068
9069 /* Add the variable that controls the convention for returning
9070 structs. */
7ab04401
AC
9071 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9072 &struct_convention, _("\
9073Set the convention for returning small structs."), _("\
9074Show the convention for returning small structs."), _("\
9075Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9076is \"default\"."),
9077 NULL,
9078 NULL, /* FIXME: i18n: */
9079 &setlist, &showlist);
8201327c 9080
29c1c244
WT
9081 /* Add "mpx" prefix for the set commands. */
9082
0743fc83 9083 add_basic_prefix_cmd ("mpx", class_support, _("\
bc504a31 9084Set Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9085 &mpx_set_cmdlist, "set mpx ",
9086 0 /* allow-unknown */, &setlist);
29c1c244
WT
9087
9088 /* Add "mpx" prefix for the show commands. */
9089
0743fc83 9090 add_show_prefix_cmd ("mpx", class_support, _("\
bc504a31 9091Show Intel Memory Protection Extensions specific variables."),
0743fc83
TT
9092 &mpx_show_cmdlist, "show mpx ",
9093 0 /* allow-unknown */, &showlist);
29c1c244
WT
9094
9095 /* Add "bound" command for the show mpx commands list. */
9096
9097 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9098 "Show the memory bounds for a given array/pointer storage\
9099 in the bound table.",
9100 &mpx_show_cmdlist);
9101
9102 /* Add "bound" command for the set mpx commands list. */
9103
9104 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9105 "Set the memory bounds for a given array/pointer storage\
9106 in the bound table.",
9107 &mpx_set_cmdlist);
9108
05816f70 9109 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9110 i386_svr4_init_abi);
38c968cf 9111
209bd28e 9112 /* Initialize the i386-specific register groups. */
38c968cf 9113 i386_init_reggroups ();
90884b2b 9114
c8d5aac9
L
9115 /* Tell remote stub that we support XML target description. */
9116 register_remote_support_xml ("i386");
c906108c 9117}
This page took 2.591395 seconds and 4 git commands to generate.