* objdump.c (SFILE): Add size field.
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
CommitLineData
dd3b648e 1/* Target-machine dependent code for the Intel 960
18b46e7c 2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
dd3b648e
RP
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
99a7de40
JG
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
dd3b648e
RP
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
99a7de40 19along with this program; if not, write to the Free Software
6c9638b4 20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
dd3b648e 21
dd3b648e 22#include "defs.h"
dd3b648e
RP
23#include "symtab.h"
24#include "value.h"
25#include "frame.h"
48792545 26#include "floatformat.h"
98506620 27#include "target.h"
b607efe7 28#include "gdbcore.h"
dd3b648e 29
18b46e7c 30static CORE_ADDR next_insn PARAMS ((CORE_ADDR memaddr,
ff7116e2
SG
31 unsigned int *pword1,
32 unsigned int *pword2));
18b46e7c 33
98760eab
AC
34/* Does the specified function use the "struct returning" convention
35 or the "value returning" convention? The "value returning" convention
36 almost invariably returns the entire value in registers. The
37 "struct returning" convention often returns the entire value in
38 memory, and passes a pointer (out of or into the function) saying
39 where the value (is or should go).
40
41 Since this sometimes depends on whether it was compiled with GCC,
42 this is also an argument. This is used in call_function to build a
43 stack, and in value_being_returned to print return values.
44
45 On i960, a structure is returned in registers g0-g3, if it will fit.
46 If it's more than 16 bytes long, g13 pointed to it on entry. */
47
48int
49i960_use_struct_convention (gcc_p, type)
50 int gcc_p;
51 struct type *type;
52{
53 return (TYPE_LENGTH (type) > 16);
54}
55
dd3b648e
RP
56/* gdb960 is always running on a non-960 host. Check its characteristics.
57 This routine must be called as part of gdb initialization. */
58
59static void
60check_host()
61{
62 int i;
63
64 static struct typestruct {
65 int hostsize; /* Size of type on host */
66 int i960size; /* Size of type on i960 */
67 char *typename; /* Name of type, for error msg */
68 } types[] = {
69 { sizeof(short), 2, "short" },
70 { sizeof(int), 4, "int" },
71 { sizeof(long), 4, "long" },
72 { sizeof(float), 4, "float" },
73 { sizeof(double), 8, "double" },
74 { sizeof(char *), 4, "pointer" },
75 };
76#define TYPELEN (sizeof(types) / sizeof(struct typestruct))
77
78 /* Make sure that host type sizes are same as i960
79 */
80 for ( i = 0; i < TYPELEN; i++ ){
81 if ( types[i].hostsize != types[i].i960size ){
199b2450 82 printf_unfiltered("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
dd3b648e
RP
83 types[i].typename, types[i].i960size );
84 }
85
86 }
87}
88\f
89/* Examine an i960 function prologue, recording the addresses at which
90 registers are saved explicitly by the prologue code, and returning
91 the address of the first instruction after the prologue (but not
92 after the instruction at address LIMIT, as explained below).
93
94 LIMIT places an upper bound on addresses of the instructions to be
95 examined. If the prologue code scan reaches LIMIT, the scan is
96 aborted and LIMIT is returned. This is used, when examining the
97 prologue for the current frame, to keep examine_prologue () from
98 claiming that a given register has been saved when in fact the
99 instruction that saves it has not yet been executed. LIMIT is used
100 at other times to stop the scan when we hit code after the true
101 function prologue (e.g. for the first source line) which might
102 otherwise be mistaken for function prologue.
103
104 The format of the function prologue matched by this routine is
105 derived from examination of the source to gcc960 1.21, particularly
106 the routine i960_function_prologue (). A "regular expression" for
107 the function prologue is given below:
108
109 (lda LRn, g14
110 mov g14, g[0-7]
111 (mov 0, g14) | (lda 0, g14))?
112
113 (mov[qtl]? g[0-15], r[4-15])*
114 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
115 (st[qtl]? g[0-15], n(fp))*
116
117 (cmpobne 0, g14, LFn
118 mov sp, g14
119 lda 0x30(sp), sp
120 LFn: stq g0, (g14)
121 stq g4, 0x10(g14)
122 stq g8, 0x20(g14))?
123
124 (st g14, n(fp))?
125 (mov g13,r[4-15])?
126*/
127
128/* Macros for extracting fields from i960 instructions. */
129
130#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
131#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
132
133#define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
134#define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
135#define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
136#define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
137#define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
138
139/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
140 is not the address of a valid instruction, the address of the next
141 instruction beyond ADDR otherwise. *PWORD1 receives the first word
142 of the instruction, and (for two-word instructions), *PWORD2 receives
143 the second. */
144
145#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
146 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
147
148static CORE_ADDR
149examine_prologue (ip, limit, frame_addr, fsr)
150 register CORE_ADDR ip;
151 register CORE_ADDR limit;
669caa9c 152 CORE_ADDR frame_addr;
dd3b648e
RP
153 struct frame_saved_regs *fsr;
154{
155 register CORE_ADDR next_ip;
156 register int src, dst;
157 register unsigned int *pcode;
158 unsigned int insn1, insn2;
159 int size;
160 int within_leaf_prologue;
161 CORE_ADDR save_addr;
162 static unsigned int varargs_prologue_code [] =
163 {
164 0x3507a00c, /* cmpobne 0x0, g14, LFn */
165 0x5cf01601, /* mov sp, g14 */
166 0x8c086030, /* lda 0x30(sp), sp */
167 0xb2879000, /* LFn: stq g0, (g14) */
168 0xb2a7a010, /* stq g4, 0x10(g14) */
169 0xb2c7a020 /* stq g8, 0x20(g14) */
170 };
171
172 /* Accept a leaf procedure prologue code fragment if present.
173 Note that ip might point to either the leaf or non-leaf
174 entry point; we look for the non-leaf entry point first: */
175
176 within_leaf_prologue = 0;
177 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
178 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
179 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
180 {
181 within_leaf_prologue = 1;
182 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
183 }
184
185 /* Now look for the prologue code at a leaf entry point: */
186
187 if (next_ip
188 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
189 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
190 {
191 within_leaf_prologue = 1;
192 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
193 && (insn1 == 0x8cf00000 /* lda 0, g14 */
194 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
195 {
196 ip = next_ip;
197 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
198 within_leaf_prologue = 0;
199 }
200 }
201
202 /* If something that looks like the beginning of a leaf prologue
203 has been seen, but the remainder of the prologue is missing, bail.
204 We don't know what we've got. */
205
206 if (within_leaf_prologue)
207 return (ip);
208
209 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
210 This may cause us to mistake the moving of a register
211 parameter to a local register for the saving of a callee-saved
212 register, but that can't be helped, since with the
213 "-fcall-saved" flag, any register can be made callee-saved. */
214
215 while (next_ip
216 && (insn1 & 0xfc802fb0) == 0x5c000610
217 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
218 {
219 src = REG_SRC1 (insn1);
220 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
221 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
222 while (size--)
223 {
224 fsr->regs[src++] = save_addr;
225 save_addr += 4;
226 }
227 ip = next_ip;
228 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
229 }
230
231 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
232
233 if (next_ip &&
234 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
235 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
236 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
237 {
238 ip = next_ip;
239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
240 }
241
242 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
243 This may cause us to mistake the copying of a register
244 parameter to the frame for the saving of a callee-saved
245 register, but that can't be helped, since with the
246 "-fcall-saved" flag, any register can be made callee-saved.
247 We can, however, refuse to accept a save of register g14,
248 since that is matched explicitly below. */
249
250 while (next_ip &&
251 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
252 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
253 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
254 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
255 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
256 {
257 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
258 ? insn2 : MEMA_OFFSET (insn1));
259 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
260 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
261 while (size--)
262 {
263 fsr->regs[src++] = save_addr;
264 save_addr += 4;
265 }
266 ip = next_ip;
267 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
268 }
269
270 /* Accept the varargs prologue code if present. */
271
272 size = sizeof (varargs_prologue_code) / sizeof (int);
273 pcode = varargs_prologue_code;
274 while (size-- && next_ip && *pcode++ == insn1)
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
278 }
279
280 /* Accept an optional "st g14, n(fp)". */
281
282 if (next_ip &&
283 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
284 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
285 {
286 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
287 ? insn2 : MEMA_OFFSET (insn1));
288 ip = next_ip;
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
290 }
291
292 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
293 This is saving the address where a struct should be returned. */
294
295 if (next_ip
296 && (insn1 & 0xff802fbf) == 0x5c00061d
297 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
298 {
299 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
300 fsr->regs[G0_REGNUM+13] = save_addr;
301 ip = next_ip;
302#if 0 /* We'll need this once there is a subsequent instruction examined. */
303 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
304#endif
305 }
306
307 return (ip);
308}
309
310/* Given an ip value corresponding to the start of a function,
311 return the ip of the first instruction after the function
312 prologue. */
313
314CORE_ADDR
315skip_prologue (ip)
316 CORE_ADDR (ip);
317{
318 struct frame_saved_regs saved_regs_dummy;
319 struct symtab_and_line sal;
320 CORE_ADDR limit;
321
322 sal = find_pc_line (ip, 0);
323 limit = (sal.end) ? sal.end : 0xffffffff;
324
669caa9c 325 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
dd3b648e
RP
326}
327
328/* Put here the code to store, into a struct frame_saved_regs,
329 the addresses of the saved registers of frame described by FRAME_INFO.
330 This includes special registers such as pc and fp saved in special
331 ways in the stack frame. sp is even more special:
332 the address we return for it IS the sp for the next frame.
333
334 We cache the result of doing this in the frame_cache_obstack, since
335 it is fairly expensive. */
336
337void
338frame_find_saved_regs (fi, fsr)
339 struct frame_info *fi;
340 struct frame_saved_regs *fsr;
341{
342 register CORE_ADDR next_addr;
343 register CORE_ADDR *saved_regs;
344 register int regnum;
345 register struct frame_saved_regs *cache_fsr;
346 extern struct obstack frame_cache_obstack;
347 CORE_ADDR ip;
348 struct symtab_and_line sal;
349 CORE_ADDR limit;
350
351 if (!fi->fsr)
352 {
353 cache_fsr = (struct frame_saved_regs *)
354 obstack_alloc (&frame_cache_obstack,
355 sizeof (struct frame_saved_regs));
4ed97c9a 356 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
dd3b648e
RP
357 fi->fsr = cache_fsr;
358
359 /* Find the start and end of the function prologue. If the PC
360 is in the function prologue, we only consider the part that
361 has executed already. */
362
363 ip = get_pc_function_start (fi->pc);
364 sal = find_pc_line (ip, 0);
365 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
366
367 examine_prologue (ip, limit, fi->frame, cache_fsr);
368
369 /* Record the addresses at which the local registers are saved.
370 Strictly speaking, we should only do this for non-leaf procedures,
371 but no one will ever look at these values if it is a leaf procedure,
372 since local registers are always caller-saved. */
373
374 next_addr = (CORE_ADDR) fi->frame;
375 saved_regs = cache_fsr->regs;
376 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
377 {
378 *saved_regs++ = next_addr;
379 next_addr += 4;
380 }
381
382 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
383 }
384
385 *fsr = *fi->fsr;
386
387 /* Fetch the value of the sp from memory every time, since it
388 is conceivable that it has changed since the cache was flushed.
389 This unfortunately undoes much of the savings from caching the
390 saved register values. I suggest adding an argument to
391 get_frame_saved_regs () specifying the register number we're
392 interested in (or -1 for all registers). This would be passed
393 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
394 computation of saved register addresses (e.g., on the i960,
395 we don't have to examine the prologue to find local registers).
396 -- markf@wrs.com
397 FIXME, we don't need to refetch this, since the cache is cleared
398 every time the child process is restarted. If GDB itself
399 modifies SP, it has to clear the cache by hand (does it?). -gnu */
400
401 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
402}
403
404/* Return the address of the argument block for the frame
405 described by FI. Returns 0 if the address is unknown. */
406
407CORE_ADDR
408frame_args_address (fi, must_be_correct)
409 struct frame_info *fi;
410{
dd3b648e
RP
411 struct frame_saved_regs fsr;
412 CORE_ADDR ap;
413
414 /* If g14 was saved in the frame by the function prologue code, return
415 the saved value. If the frame is current and we are being sloppy,
416 return the value of g14. Otherwise, return zero. */
417
dd3b648e
RP
418 get_frame_saved_regs (fi, &fsr);
419 if (fsr.regs[G14_REGNUM])
420 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
669caa9c
SS
421 else
422 {
423 if (must_be_correct)
424 return 0; /* Don't cache this result */
425 if (get_next_frame (fi))
426 ap = 0;
427 else
428 ap = read_register (G14_REGNUM);
429 if (ap == 0)
430 ap = fi->frame;
431 }
dd3b648e
RP
432 fi->arg_pointer = ap; /* Cache it for next time */
433 return ap;
434}
435
436/* Return the address of the return struct for the frame
437 described by FI. Returns 0 if the address is unknown. */
438
439CORE_ADDR
440frame_struct_result_address (fi)
441 struct frame_info *fi;
442{
dd3b648e
RP
443 struct frame_saved_regs fsr;
444 CORE_ADDR ap;
445
446 /* If the frame is non-current, check to see if g14 was saved in the
447 frame by the function prologue code; return the saved value if so,
448 zero otherwise. If the frame is current, return the value of g14.
449
450 FIXME, shouldn't this use the saved value as long as we are past
451 the function prologue, and only use the current value if we have
452 no saved value and are at TOS? -- gnu@cygnus.com */
453
669caa9c
SS
454 if (get_next_frame (fi))
455 {
456 get_frame_saved_regs (fi, &fsr);
457 if (fsr.regs[G13_REGNUM])
458 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
459 else
460 ap = 0;
461 }
462 else
dd3b648e 463 ap = read_register (G13_REGNUM);
669caa9c 464
dd3b648e
RP
465 return ap;
466}
467
468/* Return address to which the currently executing leafproc will return,
469 or 0 if ip is not in a leafproc (or if we can't tell if it is).
470
471 Do this by finding the starting address of the routine in which ip lies.
472 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
473 is a leafproc and the return address is in register gx. Well, this is
474 true unless the return address points at a RET instruction in the current
475 procedure, which indicates that we have a 'dual entry' routine that
476 has been entered through the CALL entry point. */
477
478CORE_ADDR
479leafproc_return (ip)
480 CORE_ADDR ip; /* ip from currently executing function */
481{
1ab3bf1b 482 register struct minimal_symbol *msymbol;
dd3b648e
RP
483 char *p;
484 int dst;
485 unsigned int insn1, insn2;
486 CORE_ADDR return_addr;
dd3b648e 487
1ab3bf1b 488 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
dd3b648e 489 {
c398de0c 490 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
dd3b648e 491 {
81028ab0 492 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
dd3b648e
RP
493 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
494 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
495 {
496 /* Get the return address. If the "mov g14, gx"
497 instruction hasn't been executed yet, read
498 the return address from g14; otherwise, read it
499 from the register into which g14 was moved. */
500
81028ab0
FF
501 return_addr =
502 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
dd3b648e
RP
503 ? G14_REGNUM : dst);
504
505 /* We know we are in a leaf procedure, but we don't know
506 whether the caller actually did a "bal" to the ".lf"
507 entry point, or a normal "call" to the non-leaf entry
508 point one instruction before. In the latter case, the
509 return address will be the address of a "ret"
510 instruction within the procedure itself. We test for
511 this below. */
512
513 if (!next_insn (return_addr, &insn1, &insn2)
514 || (insn1 & 0xff000000) != 0xa000000 /* ret */
1ab3bf1b 515 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
dd3b648e
RP
516 return (return_addr);
517 }
518 }
519 }
520
521 return (0);
522}
523
524/* Immediately after a function call, return the saved pc.
525 Can't go through the frames for this because on some machines
526 the new frame is not set up until the new function executes
527 some instructions.
528 On the i960, the frame *is* set up immediately after the call,
529 unless the function is a leaf procedure. */
530
531CORE_ADDR
532saved_pc_after_call (frame)
669caa9c 533 struct frame_info *frame;
dd3b648e
RP
534{
535 CORE_ADDR saved_pc;
dd3b648e
RP
536
537 saved_pc = leafproc_return (get_frame_pc (frame));
538 if (!saved_pc)
539 saved_pc = FRAME_SAVED_PC (frame);
540
669caa9c 541 return saved_pc;
dd3b648e
RP
542}
543
544/* Discard from the stack the innermost frame,
545 restoring all saved registers. */
546
1c3cd1b0 547void
dd3b648e
RP
548pop_frame ()
549{
550 register struct frame_info *current_fi, *prev_fi;
551 register int i;
552 CORE_ADDR save_addr;
553 CORE_ADDR leaf_return_addr;
554 struct frame_saved_regs fsr;
555 char local_regs_buf[16 * 4];
556
669caa9c 557 current_fi = get_current_frame ();
dd3b648e
RP
558
559 /* First, undo what the hardware does when we return.
560 If this is a non-leaf procedure, restore local registers from
561 the save area in the calling frame. Otherwise, load the return
562 address obtained from leafproc_return () into the rip. */
563
564 leaf_return_addr = leafproc_return (current_fi->pc);
565 if (!leaf_return_addr)
566 {
567 /* Non-leaf procedure. Restore local registers, incl IP. */
669caa9c 568 prev_fi = get_prev_frame (current_fi);
dd3b648e
RP
569 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
570 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
571 sizeof (local_regs_buf));
572
573 /* Restore frame pointer. */
574 write_register (FP_REGNUM, prev_fi->frame);
575 }
576 else
577 {
578 /* Leaf procedure. Just restore the return address into the IP. */
579 write_register (RIP_REGNUM, leaf_return_addr);
580 }
581
582 /* Now restore any global regs that the current function had saved. */
583 get_frame_saved_regs (current_fi, &fsr);
584 for (i = G0_REGNUM; i < G14_REGNUM; i++)
585 {
586 if (save_addr = fsr.regs[i])
587 write_register (i, read_memory_integer (save_addr, 4));
588 }
589
590 /* Flush the frame cache, create a frame for the new innermost frame,
591 and make it the current frame. */
592
593 flush_cached_frames ();
dd3b648e
RP
594}
595
67ac9759
JK
596/* Given a 960 stop code (fault or trace), return the signal which
597 corresponds. */
dd3b648e 598
67ac9759
JK
599enum target_signal
600i960_fault_to_signal (fault)
601 int fault;
dd3b648e 602{
67ac9759
JK
603 switch (fault)
604 {
605 case 0: return TARGET_SIGNAL_BUS; /* parallel fault */
606 case 1: return TARGET_SIGNAL_UNKNOWN;
24a11a79 607 case 2: return TARGET_SIGNAL_ILL; /* operation fault */
67ac9759
JK
608 case 3: return TARGET_SIGNAL_FPE; /* arithmetic fault */
609 case 4: return TARGET_SIGNAL_FPE; /* floating point fault */
24a11a79 610
669caa9c
SS
611 /* constraint fault. This appears not to distinguish between
612 a range constraint fault (which should be SIGFPE) and a privileged
613 fault (which should be SIGILL). */
24a11a79
JK
614 case 5: return TARGET_SIGNAL_ILL;
615
67ac9759 616 case 6: return TARGET_SIGNAL_SEGV; /* virtual memory fault */
24a11a79 617
669caa9c
SS
618 /* protection fault. This is for an out-of-range argument to
619 "calls". I guess it also could be SIGILL. */
24a11a79
JK
620 case 7: return TARGET_SIGNAL_SEGV;
621
67ac9759
JK
622 case 8: return TARGET_SIGNAL_BUS; /* machine fault */
623 case 9: return TARGET_SIGNAL_BUS; /* structural fault */
24a11a79 624 case 0xa: return TARGET_SIGNAL_ILL; /* type fault */
67ac9759
JK
625 case 0xb: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
626 case 0xc: return TARGET_SIGNAL_BUS; /* process fault */
627 case 0xd: return TARGET_SIGNAL_SEGV; /* descriptor fault */
628 case 0xe: return TARGET_SIGNAL_BUS; /* event fault */
629 case 0xf: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
630 case 0x10: return TARGET_SIGNAL_TRAP; /* single-step trace */
631 case 0x11: return TARGET_SIGNAL_TRAP; /* branch trace */
632 case 0x12: return TARGET_SIGNAL_TRAP; /* call trace */
633 case 0x13: return TARGET_SIGNAL_TRAP; /* return trace */
634 case 0x14: return TARGET_SIGNAL_TRAP; /* pre-return trace */
635 case 0x15: return TARGET_SIGNAL_TRAP; /* supervisor call trace */
636 case 0x16: return TARGET_SIGNAL_TRAP; /* breakpoint trace */
637 default: return TARGET_SIGNAL_UNKNOWN;
638 }
dd3b648e
RP
639}
640
18b46e7c
SS
641/****************************************/
642/* MEM format */
643/****************************************/
644
645struct tabent {
646 char *name;
647 char numops;
648};
649
650static int /* returns instruction length: 4 or 8 */
651mem( memaddr, word1, word2, noprint )
652 unsigned long memaddr;
653 unsigned long word1, word2;
654 int noprint; /* If TRUE, return instruction length, but
655 don't output any text. */
656{
657 int i, j;
658 int len;
659 int mode;
660 int offset;
661 const char *reg1, *reg2, *reg3;
662
663 /* This lookup table is too sparse to make it worth typing in, but not
664 * so large as to make a sparse array necessary. We allocate the
665 * table at runtime, initialize all entries to empty, and copy the
666 * real ones in from an initialization table.
667 *
668 * NOTE: In this table, the meaning of 'numops' is:
669 * 1: single operand
670 * 2: 2 operands, load instruction
671 * -2: 2 operands, store instruction
672 */
673 static struct tabent *mem_tab = NULL;
674/* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
675#define MEM_MIN 0x80
676#define MEM_MAX 0xcf
677#define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
678
679 static struct { int opcode; char *name; char numops; } mem_init[] = {
680 0x80, "ldob", 2,
681 0x82, "stob", -2,
682 0x84, "bx", 1,
683 0x85, "balx", 2,
684 0x86, "callx", 1,
685 0x88, "ldos", 2,
686 0x8a, "stos", -2,
687 0x8c, "lda", 2,
688 0x90, "ld", 2,
689 0x92, "st", -2,
690 0x98, "ldl", 2,
691 0x9a, "stl", -2,
692 0xa0, "ldt", 2,
693 0xa2, "stt", -2,
694 0xb0, "ldq", 2,
695 0xb2, "stq", -2,
696 0xc0, "ldib", 2,
697 0xc2, "stib", -2,
698 0xc8, "ldis", 2,
699 0xca, "stis", -2,
700 0, NULL, 0
701 };
702
703 if ( mem_tab == NULL ){
704 mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
705 memset( mem_tab, '\0', MEM_SIZ );
706 for ( i = 0; mem_init[i].opcode != 0; i++ ){
707 j = mem_init[i].opcode - MEM_MIN;
708 mem_tab[j].name = mem_init[i].name;
709 mem_tab[j].numops = mem_init[i].numops;
710 }
711 }
712
713 i = ((word1 >> 24) & 0xff) - MEM_MIN;
714 mode = (word1 >> 10) & 0xf;
715
716 if ( (mem_tab[i].name != NULL) /* Valid instruction */
717 && ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
718 len = 8;
719 } else {
720 len = 4;
721 }
722
723 if ( noprint ){
724 return len;
725 }
726 abort ();
727}
728
729/* Read the i960 instruction at 'memaddr' and return the address of
730 the next instruction after that, or 0 if 'memaddr' is not the
731 address of a valid instruction. The first word of the instruction
732 is stored at 'pword1', and the second word, if any, is stored at
733 'pword2'. */
734
735static CORE_ADDR
736next_insn (memaddr, pword1, pword2)
ff7116e2 737 unsigned int *pword1, *pword2;
18b46e7c
SS
738 CORE_ADDR memaddr;
739{
740 int len;
741 char buf[8];
742
743 /* Read the two (potential) words of the instruction at once,
744 to eliminate the overhead of two calls to read_memory ().
745 FIXME: Loses if the first one is readable but the second is not
746 (e.g. last word of the segment). */
747
748 read_memory (memaddr, buf, 8);
749 *pword1 = extract_unsigned_integer (buf, 4);
750 *pword2 = extract_unsigned_integer (buf + 4, 4);
751
752 /* Divide instruction set into classes based on high 4 bits of opcode*/
753
754 switch ((*pword1 >> 28) & 0xf)
755 {
756 case 0x0:
757 case 0x1: /* ctrl */
758
759 case 0x2:
760 case 0x3: /* cobr */
761
762 case 0x5:
763 case 0x6:
764 case 0x7: /* reg */
765 len = 4;
766 break;
767
768 case 0x8:
769 case 0x9:
770 case 0xa:
771 case 0xb:
772 case 0xc:
773 len = mem (memaddr, *pword1, *pword2, 1);
774 break;
775
776 default: /* invalid instruction */
777 len = 0;
778 break;
779 }
780
781 if (len)
782 return memaddr + len;
783 else
784 return 0;
785}
dd3b648e 786
2e665cd3
DP
787/* 'start_frame' is a variable in the MON960 runtime startup routine
788 that contains the frame pointer of the 'start' routine (the routine
789 that calls 'main'). By reading its contents out of remote memory,
790 we can tell where the frame chain ends: backtraces should halt before
791 they display this frame. */
792
793int
794mon960_frame_chain_valid (chain, curframe)
b6960094 795 CORE_ADDR chain;
2e665cd3
DP
796 struct frame_info *curframe;
797{
798 struct symbol *sym;
799 struct minimal_symbol *msymbol;
800
801 /* crtmon960.o is an assembler module that is assumed to be linked
802 * first in an i80960 executable. It contains the true entry point;
803 * it performs startup up initialization and then calls 'main'.
804 *
805 * 'sf' is the name of a variable in crtmon960.o that is set
806 * during startup to the address of the first frame.
807 *
808 * 'a' is the address of that variable in 80960 memory.
809 */
810 static char sf[] = "start_frame";
811 CORE_ADDR a;
812
813
814 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
815 contain return status info in them. */
816 if ( chain == 0 ){
817 return 0;
818 }
819
820 sym = lookup_symbol(sf, 0, VAR_NAMESPACE, (int *)NULL,
821 (struct symtab **)NULL);
822 if ( sym != 0 ){
823 a = SYMBOL_VALUE (sym);
824 } else {
825 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
826 if (msymbol == NULL)
827 return 0;
828 a = SYMBOL_VALUE_ADDRESS (msymbol);
829 }
830
831 return ( chain != read_memory_integer(a,4) );
832}
833
976bb0be 834void
dd3b648e
RP
835_initialize_i960_tdep ()
836{
837 check_host ();
18b46e7c
SS
838
839 tm_print_insn = print_insn_i960;
dd3b648e 840}
This page took 0.369363 seconds and 4 git commands to generate.