Remove regcache_raw_supply
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
e2882c85 4 Copyright (C) 1999-2018 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d
KB
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
24#include "gdbcore.h"
4e052eda 25#include "regcache.h"
949df321 26#include "ia64-tdep.h"
10d6c8cd 27#include "linux-nat.h"
16461d7d
KB
28
29#include <signal.h>
5826e159 30#include "nat/gdb_ptrace.h"
2555fe1a 31#include "gdb_wait.h"
16461d7d
KB
32#ifdef HAVE_SYS_REG_H
33#include <sys/reg.h>
34#endif
287a334e 35#include <sys/syscall.h>
16461d7d
KB
36#include <sys/user.h>
37
38#include <asm/ptrace_offsets.h>
39#include <sys/procfs.h>
40
1777feb0 41/* Prototypes for supply_gregset etc. */
c60c0f5f
MS
42#include "gregset.h"
43
bcc0c096
SM
44#include "inf-ptrace.h"
45
f6ac5f3d
PA
46class ia64_linux_nat_target final : public linux_nat_target
47{
48public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
60 const struct target_desc *read_description () override;
61
62 /* Override watchpoint routines. */
63
64 /* The IA-64 architecture can step over a watch point (without
65 triggering it again) if the "dd" (data debug fault disable) bit
66 in the processor status word is set.
67
68 This PSR bit is set in
69 ia64_linux_nat_target::stopped_by_watchpoint when the code there
70 has determined that a hardware watchpoint has indeed been hit.
71 The CPU will then be able to execute one instruction without
72 triggering a watchpoint. */
57810aa7 73 bool have_steppable_watchpoint () { return 1; }
f6ac5f3d
PA
74
75 int can_use_hw_breakpoint (enum bptype, int, int) override;
57810aa7
PA
76 bool stopped_by_watchpoint () override;
77 bool stopped_data_address (CORE_ADDR *) override;
f6ac5f3d
PA
78 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
81 struct expression *) override;
135340af
PA
82 /* Override linux_nat_target low methods. */
83 void low_new_thread (struct lwp_info *lp) override;
84 bool low_status_is_event (int status) override;
f6ac5f3d
PA
85};
86
87static ia64_linux_nat_target the_ia64_linux_nat_target;
88
16461d7d
KB
89/* These must match the order of the register names.
90
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
93
94static int u_offsets[] =
95 {
96 /* general registers */
1777feb0 97 -1, /* gr0 not available; i.e, it's always zero. */
16461d7d
KB
98 PT_R1,
99 PT_R2,
100 PT_R3,
101 PT_R4,
102 PT_R5,
103 PT_R6,
104 PT_R7,
105 PT_R8,
106 PT_R9,
107 PT_R10,
108 PT_R11,
109 PT_R12,
110 PT_R13,
111 PT_R14,
112 PT_R15,
113 PT_R16,
114 PT_R17,
115 PT_R18,
116 PT_R19,
117 PT_R20,
118 PT_R21,
119 PT_R22,
120 PT_R23,
121 PT_R24,
122 PT_R25,
123 PT_R26,
124 PT_R27,
125 PT_R28,
126 PT_R29,
127 PT_R30,
128 PT_R31,
1777feb0 129 /* gr32 through gr127 not directly available via the ptrace interface. */
16461d7d
KB
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
1777feb0 137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
16461d7d
KB
138 PT_F2,
139 PT_F3,
140 PT_F4,
141 PT_F5,
142 PT_F6,
143 PT_F7,
144 PT_F8,
145 PT_F9,
146 PT_F10,
147 PT_F11,
148 PT_F12,
149 PT_F13,
150 PT_F14,
151 PT_F15,
152 PT_F16,
153 PT_F17,
154 PT_F18,
155 PT_F19,
156 PT_F20,
157 PT_F21,
158 PT_F22,
159 PT_F23,
160 PT_F24,
161 PT_F25,
162 PT_F26,
163 PT_F27,
164 PT_F28,
165 PT_F29,
166 PT_F30,
167 PT_F31,
168 PT_F32,
169 PT_F33,
170 PT_F34,
171 PT_F35,
172 PT_F36,
173 PT_F37,
174 PT_F38,
175 PT_F39,
176 PT_F40,
177 PT_F41,
178 PT_F42,
179 PT_F43,
180 PT_F44,
181 PT_F45,
182 PT_F46,
183 PT_F47,
184 PT_F48,
185 PT_F49,
186 PT_F50,
187 PT_F51,
188 PT_F52,
189 PT_F53,
190 PT_F54,
191 PT_F55,
192 PT_F56,
193 PT_F57,
194 PT_F58,
195 PT_F59,
196 PT_F60,
197 PT_F61,
198 PT_F62,
199 PT_F63,
200 PT_F64,
201 PT_F65,
202 PT_F66,
203 PT_F67,
204 PT_F68,
205 PT_F69,
206 PT_F70,
207 PT_F71,
208 PT_F72,
209 PT_F73,
210 PT_F74,
211 PT_F75,
212 PT_F76,
213 PT_F77,
214 PT_F78,
215 PT_F79,
216 PT_F80,
217 PT_F81,
218 PT_F82,
219 PT_F83,
220 PT_F84,
221 PT_F85,
222 PT_F86,
223 PT_F87,
224 PT_F88,
225 PT_F89,
226 PT_F90,
227 PT_F91,
228 PT_F92,
229 PT_F93,
230 PT_F94,
231 PT_F95,
232 PT_F96,
233 PT_F97,
234 PT_F98,
235 PT_F99,
236 PT_F100,
237 PT_F101,
238 PT_F102,
239 PT_F103,
240 PT_F104,
241 PT_F105,
242 PT_F106,
243 PT_F107,
244 PT_F108,
245 PT_F109,
246 PT_F110,
247 PT_F111,
248 PT_F112,
249 PT_F113,
250 PT_F114,
251 PT_F115,
252 PT_F116,
253 PT_F117,
254 PT_F118,
255 PT_F119,
256 PT_F120,
257 PT_F121,
258 PT_F122,
259 PT_F123,
260 PT_F124,
261 PT_F125,
262 PT_F126,
263 PT_F127,
1777feb0 264 /* Predicate registers - we don't fetch these individually. */
16461d7d
KB
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
274 PT_B0,
275 PT_B1,
276 PT_B2,
277 PT_B3,
278 PT_B4,
279 PT_B5,
280 PT_B6,
281 PT_B7,
1777feb0 282 /* Virtual frame pointer and virtual return address pointer. */
16461d7d
KB
283 -1, -1,
284 /* other registers */
285 PT_PR,
286 PT_CR_IIP, /* ip */
287 PT_CR_IPSR, /* psr */
9ac12c35 288 PT_CFM, /* cfm */
1777feb0 289 /* kernel registers not visible via ptrace interface (?) */
16461d7d
KB
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 /* hole */
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 PT_AR_RSC,
294 PT_AR_BSP,
295 PT_AR_BSPSTORE,
296 PT_AR_RNAT,
297 -1,
1777feb0 298 -1, /* Not available: FCR, IA32 floating control register. */
16461d7d
KB
299 -1, -1,
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
307 -1,
308 PT_AR_CCV,
309 -1, -1, -1,
310 PT_AR_UNAT,
311 -1, -1, -1,
312 PT_AR_FPSR,
313 -1, -1, -1,
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 PT_AR_PFS,
318 PT_AR_LC,
4a6510ba 319 PT_AR_EC,
16461d7d
KB
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326 -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
1777feb0 328 either rnat or unat or from memory. */
16461d7d
KB
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 };
346
74174d2e 347static CORE_ADDR
2685572f 348ia64_register_addr (struct gdbarch *gdbarch, int regno)
16461d7d
KB
349{
350 CORE_ADDR addr;
351
2685572f 352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
8a3fe4f8 353 error (_("Invalid register number %d."), regno);
16461d7d
KB
354
355 if (u_offsets[regno] == -1)
356 addr = 0;
357 else
358 addr = (CORE_ADDR) u_offsets[regno];
359
360 return addr;
361}
362
74174d2e 363static int
2685572f 364ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
16461d7d 365{
f57d151a 366 return regno < 0
2685572f 367 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 368 || u_offsets[regno] == -1;
16461d7d
KB
369}
370
74174d2e 371static int
2685572f 372ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
16461d7d
KB
373{
374 /* Rationale behind not permitting stores to bspstore...
375
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
381
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
390
92362027 391 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
401 back.) */
402
f57d151a 403 return regno < 0
2685572f 404 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 405 || u_offsets[regno] == -1
16461d7d
KB
406 || regno == IA64_BSPSTORE_REGNUM;
407}
408
409void
7f7fe91e 410supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
16461d7d
KB
411{
412 int regi;
7f7fe91e 413 const greg_t *regp = (const greg_t *) gregsetp;
16461d7d
KB
414
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
416 {
73e1c03f 417 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
16461d7d
KB
418 }
419
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
1777feb0 421 somehow... */
16461d7d 422
73e1c03f 423 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
16461d7d
KB
424
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
426 {
73e1c03f 427 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
16461d7d
KB
428 }
429
73e1c03f
SM
430 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
431 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
432 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
433 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
434 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
435 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
436 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
437 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
438 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
439 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
440 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
441 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
442 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
16461d7d
KB
443}
444
445void
7f7fe91e 446fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
16461d7d 447{
76d689a6
KB
448 int regi;
449 greg_t *regp = (greg_t *) gregsetp;
450
451#define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
7f7fe91e 453 regcache_raw_collect (regcache, _regi_, regp + _idx_)
76d689a6
KB
454
455 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
456 {
457 COPY_REG (regi - IA64_GR0_REGNUM, regi);
458 }
459
1777feb0 460 /* FIXME: NAT collection bits at index 32? */
76d689a6
KB
461
462 COPY_REG (33, IA64_PR_REGNUM);
463
464 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
465 {
466 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
467 }
468
469 COPY_REG (42, IA64_IP_REGNUM);
470 COPY_REG (43, IA64_CFM_REGNUM);
471 COPY_REG (44, IA64_PSR_REGNUM);
472 COPY_REG (45, IA64_RSC_REGNUM);
473 COPY_REG (46, IA64_BSP_REGNUM);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM);
475 COPY_REG (48, IA64_RNAT_REGNUM);
476 COPY_REG (49, IA64_CCV_REGNUM);
477 COPY_REG (50, IA64_UNAT_REGNUM);
478 COPY_REG (51, IA64_FPSR_REGNUM);
479 COPY_REG (52, IA64_PFS_REGNUM);
480 COPY_REG (53, IA64_LC_REGNUM);
481 COPY_REG (54, IA64_EC_REGNUM);
482}
483
484/* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
1777feb0 486 idea of the current floating point register values. */
76d689a6
KB
487
488void
7f7fe91e 489supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
76d689a6 490{
52f0bd74 491 int regi;
7f7fe91e 492 const char *from;
ca9b8b9c
PA
493 const gdb_byte f_zero[16] = { 0 };
494 const gdb_byte f_one[16] =
495 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
76d689a6 496
ca9b8b9c
PA
497 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
498 did the same. So ignore whatever might be recorded in fpregset_t
499 for fr0/fr1 and always supply their expected values. */
500
501 /* fr0 is always read as zero. */
73e1c03f 502 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
ca9b8b9c 503 /* fr1 is always read as one (1.0). */
73e1c03f 504 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
ca9b8b9c
PA
505
506 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
76d689a6 507 {
7f7fe91e 508 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
73e1c03f 509 regcache->raw_supply (regi, from);
76d689a6
KB
510 }
511}
512
513/* Given a pointer to a floating point register set in /proc format
514 (fpregset_t *), update the register specified by REGNO from gdb's idea
515 of the current floating point register set. If REGNO is -1, update
1777feb0 516 them all. */
76d689a6
KB
517
518void
7f7fe91e
UW
519fill_fpregset (const struct regcache *regcache,
520 fpregset_t *fpregsetp, int regno)
76d689a6
KB
521{
522 int regi;
76d689a6
KB
523
524 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
525 {
526 if ((regno == -1) || (regno == regi))
7f7fe91e 527 regcache_raw_collect (regcache, regi,
e0e25c6c 528 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 529 }
16461d7d 530}
acf7b9e1
KB
531
532#define IA64_PSR_DB (1UL << 24)
533#define IA64_PSR_DD (1UL << 39)
534
535static void
9f0bdab8 536enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1 537{
9f0bdab8 538 struct regcache *regcache = get_thread_regcache (ptid);
7b86a1b8 539 ULONGEST psr;
acf7b9e1 540
7b86a1b8 541 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1
KB
542 if (!(psr & IA64_PSR_DB))
543 {
544 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
1777feb0 545 watchpoints and breakpoints. */
7b86a1b8 546 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1
KB
547 }
548}
549
9f0bdab8 550static long debug_registers[8];
acf7b9e1
KB
551
552static void
39f77062 553store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
554{
555 int tid;
556
dfd4cc63 557 tid = ptid_get_lwp (ptid);
acf7b9e1 558 if (tid == 0)
dfd4cc63 559 tid = ptid_get_pid (ptid);
acf7b9e1 560
c5fa4245 561 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
562}
563
acf7b9e1 564static void
1777feb0
MS
565store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
566 long *dbr_mask)
acf7b9e1
KB
567{
568 if (dbr_addr)
39f77062 569 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 570 if (dbr_mask)
39f77062 571 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
572}
573
574static int
575is_power_of_2 (int val)
576{
577 int i, onecount;
578
579 onecount = 0;
580 for (i = 0; i < 8 * sizeof (val); i++)
581 if (val & (1 << i))
582 onecount++;
583
584 return onecount <= 1;
585}
586
f6ac5f3d
PA
587int
588ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
589 enum target_hw_bp_type type,
590 struct expression *cond)
acf7b9e1 591{
9f0bdab8 592 struct lwp_info *lp;
acf7b9e1
KB
593 int idx;
594 long dbr_addr, dbr_mask;
595 int max_watchpoints = 4;
596
597 if (len <= 0 || !is_power_of_2 (len))
598 return -1;
599
600 for (idx = 0; idx < max_watchpoints; idx++)
601 {
9f0bdab8 602 dbr_mask = debug_registers[idx * 2 + 1];
acf7b9e1
KB
603 if ((dbr_mask & (0x3UL << 62)) == 0)
604 {
1777feb0 605 /* Exit loop if both r and w bits clear. */
acf7b9e1
KB
606 break;
607 }
608 }
609
610 if (idx == max_watchpoints)
611 return -1;
612
613 dbr_addr = (long) addr;
614 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
615 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
f486487f 616 switch (type)
acf7b9e1
KB
617 {
618 case hw_write:
619 dbr_mask |= (1L << 62); /* Set w bit */
620 break;
621 case hw_read:
622 dbr_mask |= (1L << 63); /* Set r bit */
623 break;
624 case hw_access:
625 dbr_mask |= (3L << 62); /* Set both r and w bits */
626 break;
627 default:
628 return -1;
629 }
630
9f0bdab8
DJ
631 debug_registers[2 * idx] = dbr_addr;
632 debug_registers[2 * idx + 1] = dbr_mask;
4c38200f 633 ALL_LWPS (lp)
9f0bdab8 634 {
4c38200f
PA
635 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
636 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8 637 }
acf7b9e1
KB
638
639 return 0;
640}
641
f6ac5f3d
PA
642int
643ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
644 enum target_hw_bp_type type,
645 struct expression *cond)
acf7b9e1
KB
646{
647 int idx;
648 long dbr_addr, dbr_mask;
649 int max_watchpoints = 4;
650
651 if (len <= 0 || !is_power_of_2 (len))
652 return -1;
653
654 for (idx = 0; idx < max_watchpoints; idx++)
655 {
9f0bdab8
DJ
656 dbr_addr = debug_registers[2 * idx];
657 dbr_mask = debug_registers[2 * idx + 1];
acf7b9e1
KB
658 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
659 {
9f0bdab8 660 struct lwp_info *lp;
9f0bdab8
DJ
661
662 debug_registers[2 * idx] = 0;
663 debug_registers[2 * idx + 1] = 0;
acf7b9e1
KB
664 dbr_addr = 0;
665 dbr_mask = 0;
9f0bdab8 666
4c38200f
PA
667 ALL_LWPS (lp)
668 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
9f0bdab8 669
acf7b9e1
KB
670 return 0;
671 }
672 }
673 return -1;
674}
675
9f0bdab8 676static void
7b50312a 677ia64_linux_new_thread (struct lwp_info *lp)
9f0bdab8
DJ
678{
679 int i, any;
680
681 any = 0;
682 for (i = 0; i < 8; i++)
683 {
684 if (debug_registers[i] != 0)
685 any = 1;
7b50312a 686 store_debug_register (lp->ptid, i, debug_registers[i]);
9f0bdab8
DJ
687 }
688
689 if (any)
7b50312a 690 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8
DJ
691}
692
57810aa7 693bool
f6ac5f3d 694ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
acf7b9e1
KB
695{
696 CORE_ADDR psr;
f865ee35 697 siginfo_t siginfo;
594f7785 698 struct regcache *regcache = get_current_regcache ();
acf7b9e1 699
f865ee35 700 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 701 return false;
acf7b9e1 702
f865ee35
JK
703 if (siginfo.si_signo != SIGTRAP
704 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 705 return false;
acf7b9e1 706
7b86a1b8 707 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1 708 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
1777feb0 709 for the next instruction. */
7b86a1b8 710 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1 711
f865ee35 712 *addr_p = (CORE_ADDR) siginfo.si_addr;
57810aa7 713 return true;
4aa7a7f5
JJ
714}
715
57810aa7 716bool
f6ac5f3d 717ia64_linux_nat_target::stopped_by_watchpoint ()
4aa7a7f5
JJ
718{
719 CORE_ADDR addr;
f6ac5f3d 720 return stopped_data_address (&addr);
74174d2e
UW
721}
722
723static int
5461485a 724ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
f486487f
SM
725 enum bptype type,
726 int cnt, int othertype)
74174d2e
UW
727{
728 return 1;
729}
730
731
732/* Fetch register REGNUM from the inferior. */
733
734static void
56be3814 735ia64_linux_fetch_register (struct regcache *regcache, int regnum)
74174d2e 736{
ac7936df 737 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
738 CORE_ADDR addr;
739 size_t size;
740 PTRACE_TYPE_RET *buf;
bcc0c096
SM
741 pid_t pid;
742 int i;
74174d2e 743
5a75128f
JB
744 /* r0 cannot be fetched but is always zero. */
745 if (regnum == IA64_GR0_REGNUM)
746 {
747 const gdb_byte zero[8] = { 0 };
748
749 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
73e1c03f 750 regcache->raw_supply (regnum, zero);
5a75128f
JB
751 return;
752 }
753
ca9b8b9c
PA
754 /* fr0 cannot be fetched but is always zero. */
755 if (regnum == IA64_FR0_REGNUM)
756 {
757 const gdb_byte f_zero[16] = { 0 };
758
759 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
73e1c03f 760 regcache->raw_supply (regnum, f_zero);
ca9b8b9c
PA
761 return;
762 }
763
764 /* fr1 cannot be fetched but is always one (1.0). */
765 if (regnum == IA64_FR1_REGNUM)
766 {
767 const gdb_byte f_one[16] =
768 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
769
770 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
73e1c03f 771 regcache->raw_supply (regnum, f_one);
ca9b8b9c
PA
772 return;
773 }
774
2685572f 775 if (ia64_cannot_fetch_register (gdbarch, regnum))
74174d2e 776 {
73e1c03f 777 regcache->raw_supply (regnum, NULL);
74174d2e
UW
778 return;
779 }
780
222312d3 781 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
782
783 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 784 addr = ia64_register_addr (gdbarch, regnum);
088568da 785 size = register_size (gdbarch, regnum);
74174d2e
UW
786
787 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 788 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
789
790 /* Read the register contents from the inferior a chunk at a time. */
791 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
792 {
793 errno = 0;
794 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
795 if (errno != 0)
796 error (_("Couldn't read register %s (#%d): %s."),
088568da 797 gdbarch_register_name (gdbarch, regnum),
c9f4d572 798 regnum, safe_strerror (errno));
74174d2e
UW
799
800 addr += sizeof (PTRACE_TYPE_RET);
801 }
73e1c03f 802 regcache->raw_supply (regnum, buf);
74174d2e
UW
803}
804
805/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
806 for all registers. */
807
f6ac5f3d
PA
808void
809ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
74174d2e
UW
810{
811 if (regnum == -1)
088568da 812 for (regnum = 0;
ac7936df 813 regnum < gdbarch_num_regs (regcache->arch ());
088568da 814 regnum++)
56be3814 815 ia64_linux_fetch_register (regcache, regnum);
74174d2e 816 else
56be3814 817 ia64_linux_fetch_register (regcache, regnum);
74174d2e
UW
818}
819
820/* Store register REGNUM into the inferior. */
821
822static void
56be3814 823ia64_linux_store_register (const struct regcache *regcache, int regnum)
74174d2e 824{
ac7936df 825 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
826 CORE_ADDR addr;
827 size_t size;
828 PTRACE_TYPE_RET *buf;
bcc0c096
SM
829 pid_t pid;
830 int i;
74174d2e 831
2685572f 832 if (ia64_cannot_store_register (gdbarch, regnum))
74174d2e
UW
833 return;
834
222312d3 835 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
836
837 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 838 addr = ia64_register_addr (gdbarch, regnum);
088568da 839 size = register_size (gdbarch, regnum);
74174d2e
UW
840
841 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 842 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
843
844 /* Write the register contents into the inferior a chunk at a time. */
56be3814 845 regcache_raw_collect (regcache, regnum, buf);
74174d2e
UW
846 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
847 {
848 errno = 0;
849 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
850 if (errno != 0)
851 error (_("Couldn't write register %s (#%d): %s."),
088568da 852 gdbarch_register_name (gdbarch, regnum),
c9f4d572 853 regnum, safe_strerror (errno));
74174d2e
UW
854
855 addr += sizeof (PTRACE_TYPE_RET);
856 }
acf7b9e1 857}
287a334e 858
74174d2e
UW
859/* Store register REGNUM back into the inferior. If REGNUM is -1, do
860 this for all registers. */
861
f6ac5f3d
PA
862void
863ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
74174d2e
UW
864{
865 if (regnum == -1)
088568da 866 for (regnum = 0;
ac7936df 867 regnum < gdbarch_num_regs (regcache->arch ());
088568da 868 regnum++)
56be3814 869 ia64_linux_store_register (regcache, regnum);
74174d2e 870 else
56be3814 871 ia64_linux_store_register (regcache, regnum);
74174d2e
UW
872}
873
f6ac5f3d 874/* Implement the xfer_partial target_ops method. */
74174d2e 875
f6ac5f3d
PA
876enum target_xfer_status
877ia64_linux_nat_target::xfer_partial (enum target_object object,
878 const char *annex,
879 gdb_byte *readbuf, const gdb_byte *writebuf,
880 ULONGEST offset, ULONGEST len,
881 ULONGEST *xfered_len)
10d6c8cd 882{
475109d8
JB
883 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
884 {
d16461ae
PA
885 static long gate_table_size;
886 gdb_byte *tmp_buf;
887 long res;
888
889 /* Probe for the table size once. */
890 if (gate_table_size == 0)
891 gate_table_size = syscall (__NR_getunwind, NULL, 0);
892 if (gate_table_size < 0)
475109d8 893 return TARGET_XFER_E_IO;
d16461ae
PA
894
895 if (offset >= gate_table_size)
475109d8 896 return TARGET_XFER_EOF;
d16461ae 897
bfb0d950 898 tmp_buf = (gdb_byte *) alloca (gate_table_size);
d16461ae
PA
899 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
900 if (res < 0)
901 return TARGET_XFER_E_IO;
902 gdb_assert (res == gate_table_size);
903
904 if (offset + len > gate_table_size)
905 len = gate_table_size - offset;
906
907 memcpy (readbuf, tmp_buf + offset, len);
908 *xfered_len = len;
909 return TARGET_XFER_OK;
475109d8 910 }
10d6c8cd 911
f6ac5f3d
PA
912 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
913 offset, len, xfered_len);
10d6c8cd
DJ
914}
915
26ab7092
JK
916/* For break.b instruction ia64 CPU forgets the immediate value and generates
917 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
918 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
919 difference for the signals here. */
920
135340af
PA
921bool
922ia64_linux_nat_target::low_status_is_event (int status)
26ab7092
JK
923{
924 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
925 || WSTOPSIG (status) == SIGILL);
926}
927
10d6c8cd
DJ
928void
929_initialize_ia64_linux_nat (void)
287a334e 930{
10d6c8cd 931 /* Register the target. */
f6ac5f3d 932 linux_target = &the_ia64_linux_nat_target;
d9f719f1 933 add_inf_child_target (&the_ia64_linux_nat_target);
287a334e 934}
This page took 1.629281 seconds and 4 git commands to generate.