* dwarf2read.c (dwarf2_symbol_mark_computed): Fix formatting.
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
CommitLineData
16461d7d 1/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
ca557f44 2
6aba47ca 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
13547ab6 4 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
16461d7d
KB
22
23#include "defs.h"
24#include "inferior.h"
16461d7d 25#include "gdbcore.h"
8064c6ae 26#include "arch-utils.h"
16461d7d 27#include "floatformat.h"
e6bb342a 28#include "gdbtypes.h"
4e052eda 29#include "regcache.h"
004d836a
JJ
30#include "reggroups.h"
31#include "frame.h"
32#include "frame-base.h"
33#include "frame-unwind.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
bd1ce8ba 36#include "gdb_assert.h"
16461d7d
KB
37#include "objfiles.h"
38#include "elf/common.h" /* for DT_PLTGOT value */
244bc108 39#include "elf-bfd.h"
a89aa300 40#include "dis-asm.h"
7d9b040b 41#include "infcall.h"
b33e8514 42#include "osabi.h"
9fc9f5e2 43#include "ia64-tdep.h"
0d5de010 44#include "cp-abi.h"
16461d7d 45
968d1cb4 46#ifdef HAVE_LIBUNWIND_IA64_H
8973ff21 47#include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
968d1cb4
JJ
48#include "libunwind-frame.h"
49#include "libunwind-ia64.h"
c5a27d9c
JJ
50
51/* Note: KERNEL_START is supposed to be an address which is not going
52 to ever contain any valid unwind info. For ia64 linux, the choice
53 of 0xc000000000000000 is fairly safe since that's uncached space.
54
55 We use KERNEL_START as follows: after obtaining the kernel's
56 unwind table via getunwind(), we project its unwind data into
57 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
58 when ia64_access_mem() sees a memory access to this
59 address-range, we redirect it to ktab instead.
60
61 None of this hackery is needed with a modern kernel/libcs
62 which uses the kernel virtual DSO to provide access to the
63 kernel's unwind info. In that case, ktab_size remains 0 and
64 hence the value of KERNEL_START doesn't matter. */
65
66#define KERNEL_START 0xc000000000000000ULL
67
68static size_t ktab_size = 0;
69struct ia64_table_entry
70 {
71 uint64_t start_offset;
72 uint64_t end_offset;
73 uint64_t info_offset;
74 };
75
76static struct ia64_table_entry *ktab = NULL;
77
968d1cb4
JJ
78#endif
79
698cb3f0
KB
80/* An enumeration of the different IA-64 instruction types. */
81
16461d7d
KB
82typedef enum instruction_type
83{
84 A, /* Integer ALU ; I-unit or M-unit */
85 I, /* Non-ALU integer; I-unit */
86 M, /* Memory ; M-unit */
87 F, /* Floating-point ; F-unit */
88 B, /* Branch ; B-unit */
89 L, /* Extended (L+X) ; I-unit */
90 X, /* Extended (L+X) ; I-unit */
91 undefined /* undefined or reserved */
92} instruction_type;
93
94/* We represent IA-64 PC addresses as the value of the instruction
95 pointer or'd with some bit combination in the low nibble which
96 represents the slot number in the bundle addressed by the
97 instruction pointer. The problem is that the Linux kernel
98 multiplies its slot numbers (for exceptions) by one while the
99 disassembler multiplies its slot numbers by 6. In addition, I've
100 heard it said that the simulator uses 1 as the multiplier.
101
102 I've fixed the disassembler so that the bytes_per_line field will
103 be the slot multiplier. If bytes_per_line comes in as zero, it
104 is set to six (which is how it was set up initially). -- objdump
105 displays pretty disassembly dumps with this value. For our purposes,
106 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
107 never want to also display the raw bytes the way objdump does. */
108
109#define SLOT_MULTIPLIER 1
110
111/* Length in bytes of an instruction bundle */
112
113#define BUNDLE_LEN 16
114
16461d7d
KB
115static gdbarch_init_ftype ia64_gdbarch_init;
116
117static gdbarch_register_name_ftype ia64_register_name;
004d836a 118static gdbarch_register_type_ftype ia64_register_type;
16461d7d 119static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
16461d7d 120static gdbarch_skip_prologue_ftype ia64_skip_prologue;
64a5b29c 121static struct type *is_float_or_hfa_type (struct type *t);
b33e8514 122static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
16461d7d 123
004d836a
JJ
124static struct type *builtin_type_ia64_ext;
125
126#define NUM_IA64_RAW_REGS 462
16461d7d 127
16461d7d
KB
128static int sp_regnum = IA64_GR12_REGNUM;
129static int fp_regnum = IA64_VFP_REGNUM;
130static int lr_regnum = IA64_VRAP_REGNUM;
131
004d836a 132/* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
4afcc598 133 they may not be accessible via the ptrace register get/set interfaces. */
004d836a
JJ
134enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
135 V127_REGNUM = V32_REGNUM + 95,
136 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
16461d7d
KB
137
138/* Array of register names; There should be ia64_num_regs strings in
139 the initializer. */
140
141static char *ia64_register_names[] =
142{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
143 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
144 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
145 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
004d836a
JJ
146 "", "", "", "", "", "", "", "",
147 "", "", "", "", "", "", "", "",
148 "", "", "", "", "", "", "", "",
149 "", "", "", "", "", "", "", "",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
16461d7d
KB
158
159 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
160 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
161 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
162 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
163 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
164 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
165 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
166 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
167 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
168 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
169 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
170 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
171 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
172 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
173 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
174 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
175
004d836a
JJ
176 "", "", "", "", "", "", "", "",
177 "", "", "", "", "", "", "", "",
178 "", "", "", "", "", "", "", "",
179 "", "", "", "", "", "", "", "",
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
16461d7d
KB
184
185 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
186
187 "vfp", "vrap",
188
189 "pr", "ip", "psr", "cfm",
190
191 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
192 "", "", "", "", "", "", "", "",
193 "rsc", "bsp", "bspstore", "rnat",
194 "", "fcr", "", "",
195 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
196 "ccv", "", "", "", "unat", "", "", "",
197 "fpsr", "", "", "", "itc",
198 "", "", "", "", "", "", "", "", "", "",
199 "", "", "", "", "", "", "", "", "",
200 "pfs", "lc", "ec",
201 "", "", "", "", "", "", "", "", "", "",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "", "",
204 "", "", "", "", "", "", "", "", "", "",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "",
208 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
209 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
210 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
211 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
212 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
213 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
214 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
215 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
216 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
217 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
218 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
219 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
220 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
221 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
222 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
223 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
004d836a
JJ
224
225 "bof",
226
227 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
228 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
229 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
230 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
231 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
232 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
233 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
234 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
235 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
236 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
237 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
238 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
239
240 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
241 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
242 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
243 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
244 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
245 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
246 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
247 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
16461d7d
KB
248};
249
004d836a
JJ
250struct ia64_frame_cache
251{
252 CORE_ADDR base; /* frame pointer base for frame */
253 CORE_ADDR pc; /* function start pc for frame */
254 CORE_ADDR saved_sp; /* stack pointer for frame */
255 CORE_ADDR bsp; /* points at r32 for the current frame */
256 CORE_ADDR cfm; /* cfm value for current frame */
4afcc598 257 CORE_ADDR prev_cfm; /* cfm value for previous frame */
004d836a
JJ
258 int frameless;
259 int sof; /* Size of frame (decoded from cfm value) */
260 int sol; /* Size of locals (decoded from cfm value) */
261 int sor; /* Number of rotating registers. (decoded from cfm value) */
262 CORE_ADDR after_prologue;
263 /* Address of first instruction after the last
264 prologue instruction; Note that there may
265 be instructions from the function's body
266 intermingled with the prologue. */
267 int mem_stack_frame_size;
268 /* Size of the memory stack frame (may be zero),
269 or -1 if it has not been determined yet. */
270 int fp_reg; /* Register number (if any) used a frame pointer
244bc108 271 for this frame. 0 if no register is being used
16461d7d 272 as the frame pointer. */
004d836a
JJ
273
274 /* Saved registers. */
275 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
276
277};
244bc108 278
698cb3f0
KB
279#define SIGCONTEXT_REGISTER_ADDRESS \
280 (gdbarch_tdep (current_gdbarch)->sigcontext_register_address)
16461d7d 281
004d836a
JJ
282int
283ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
284 struct reggroup *group)
16461d7d 285{
004d836a
JJ
286 int vector_p;
287 int float_p;
288 int raw_p;
289 if (group == all_reggroup)
290 return 1;
291 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
292 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
293 raw_p = regnum < NUM_IA64_RAW_REGS;
294 if (group == float_reggroup)
295 return float_p;
296 if (group == vector_reggroup)
297 return vector_p;
298 if (group == general_reggroup)
299 return (!vector_p && !float_p);
300 if (group == save_reggroup || group == restore_reggroup)
301 return raw_p;
302 return 0;
16461d7d
KB
303}
304
004d836a
JJ
305static const char *
306ia64_register_name (int reg)
16461d7d 307{
004d836a 308 return ia64_register_names[reg];
16461d7d
KB
309}
310
004d836a
JJ
311struct type *
312ia64_register_type (struct gdbarch *arch, int reg)
16461d7d 313{
004d836a
JJ
314 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
315 return builtin_type_ia64_ext;
316 else
317 return builtin_type_long;
16461d7d
KB
318}
319
a78f21af 320static int
004d836a 321ia64_dwarf_reg_to_regnum (int reg)
16461d7d 322{
004d836a
JJ
323 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
324 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
325 return reg;
16461d7d
KB
326}
327
4afcc598 328static int
2fda21a6 329floatformat_valid (const struct floatformat *fmt, const void *from)
4afcc598
JJ
330{
331 return 1;
332}
333
16461d7d
KB
334const struct floatformat floatformat_ia64_ext =
335{
336 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
4afcc598 337 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid
16461d7d
KB
338};
339
8da61cc4
DJ
340const struct floatformat *floatformats_ia64_ext[2] =
341{
342 &floatformat_ia64_ext,
343 &floatformat_ia64_ext
344};
345
16461d7d
KB
346
347/* Extract ``len'' bits from an instruction bundle starting at
348 bit ``from''. */
349
244bc108 350static long long
16461d7d
KB
351extract_bit_field (char *bundle, int from, int len)
352{
353 long long result = 0LL;
354 int to = from + len;
355 int from_byte = from / 8;
356 int to_byte = to / 8;
357 unsigned char *b = (unsigned char *) bundle;
358 unsigned char c;
359 int lshift;
360 int i;
361
362 c = b[from_byte];
363 if (from_byte == to_byte)
364 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
365 result = c >> (from % 8);
366 lshift = 8 - (from % 8);
367
368 for (i = from_byte+1; i < to_byte; i++)
369 {
370 result |= ((long long) b[i]) << lshift;
371 lshift += 8;
372 }
373
374 if (from_byte < to_byte && (to % 8 != 0))
375 {
376 c = b[to_byte];
377 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
378 result |= ((long long) c) << lshift;
379 }
380
381 return result;
382}
383
384/* Replace the specified bits in an instruction bundle */
385
244bc108 386static void
16461d7d
KB
387replace_bit_field (char *bundle, long long val, int from, int len)
388{
389 int to = from + len;
390 int from_byte = from / 8;
391 int to_byte = to / 8;
392 unsigned char *b = (unsigned char *) bundle;
393 unsigned char c;
394
395 if (from_byte == to_byte)
396 {
397 unsigned char left, right;
398 c = b[from_byte];
399 left = (c >> (to % 8)) << (to % 8);
400 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
401 c = (unsigned char) (val & 0xff);
402 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
403 c |= right | left;
404 b[from_byte] = c;
405 }
406 else
407 {
408 int i;
409 c = b[from_byte];
410 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
411 c = c | (val << (from % 8));
412 b[from_byte] = c;
413 val >>= 8 - from % 8;
414
415 for (i = from_byte+1; i < to_byte; i++)
416 {
417 c = val & 0xff;
418 val >>= 8;
419 b[i] = c;
420 }
421
422 if (to % 8 != 0)
423 {
424 unsigned char cv = (unsigned char) val;
425 c = b[to_byte];
426 c = c >> (to % 8) << (to % 8);
427 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
428 b[to_byte] = c;
429 }
430 }
431}
432
433/* Return the contents of slot N (for N = 0, 1, or 2) in
434 and instruction bundle */
435
244bc108 436static long long
2fc3ac7e 437slotN_contents (char *bundle, int slotnum)
16461d7d
KB
438{
439 return extract_bit_field (bundle, 5+41*slotnum, 41);
440}
441
442/* Store an instruction in an instruction bundle */
443
244bc108 444static void
2fc3ac7e 445replace_slotN_contents (char *bundle, long long instr, int slotnum)
16461d7d
KB
446{
447 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
448}
449
64a5b29c 450static enum instruction_type template_encoding_table[32][3] =
16461d7d
KB
451{
452 { M, I, I }, /* 00 */
453 { M, I, I }, /* 01 */
454 { M, I, I }, /* 02 */
455 { M, I, I }, /* 03 */
456 { M, L, X }, /* 04 */
457 { M, L, X }, /* 05 */
458 { undefined, undefined, undefined }, /* 06 */
459 { undefined, undefined, undefined }, /* 07 */
460 { M, M, I }, /* 08 */
461 { M, M, I }, /* 09 */
462 { M, M, I }, /* 0A */
463 { M, M, I }, /* 0B */
464 { M, F, I }, /* 0C */
465 { M, F, I }, /* 0D */
466 { M, M, F }, /* 0E */
467 { M, M, F }, /* 0F */
468 { M, I, B }, /* 10 */
469 { M, I, B }, /* 11 */
470 { M, B, B }, /* 12 */
471 { M, B, B }, /* 13 */
472 { undefined, undefined, undefined }, /* 14 */
473 { undefined, undefined, undefined }, /* 15 */
474 { B, B, B }, /* 16 */
475 { B, B, B }, /* 17 */
476 { M, M, B }, /* 18 */
477 { M, M, B }, /* 19 */
478 { undefined, undefined, undefined }, /* 1A */
479 { undefined, undefined, undefined }, /* 1B */
480 { M, F, B }, /* 1C */
481 { M, F, B }, /* 1D */
482 { undefined, undefined, undefined }, /* 1E */
483 { undefined, undefined, undefined }, /* 1F */
484};
485
486/* Fetch and (partially) decode an instruction at ADDR and return the
487 address of the next instruction to fetch. */
488
489static CORE_ADDR
490fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
491{
492 char bundle[BUNDLE_LEN];
493 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
494 long long template;
495 int val;
496
c26e1c2b
KB
497 /* Warn about slot numbers greater than 2. We used to generate
498 an error here on the assumption that the user entered an invalid
499 address. But, sometimes GDB itself requests an invalid address.
500 This can (easily) happen when execution stops in a function for
501 which there are no symbols. The prologue scanner will attempt to
502 find the beginning of the function - if the nearest symbol
503 happens to not be aligned on a bundle boundary (16 bytes), the
504 resulting starting address will cause GDB to think that the slot
505 number is too large.
506
507 So we warn about it and set the slot number to zero. It is
508 not necessarily a fatal condition, particularly if debugging
509 at the assembly language level. */
16461d7d 510 if (slotnum > 2)
c26e1c2b 511 {
8a3fe4f8
AC
512 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
513 "Using slot 0 instead"));
c26e1c2b
KB
514 slotnum = 0;
515 }
16461d7d
KB
516
517 addr &= ~0x0f;
518
519 val = target_read_memory (addr, bundle, BUNDLE_LEN);
520
521 if (val != 0)
522 return 0;
523
524 *instr = slotN_contents (bundle, slotnum);
525 template = extract_bit_field (bundle, 0, 5);
526 *it = template_encoding_table[(int)template][slotnum];
527
64a5b29c 528 if (slotnum == 2 || (slotnum == 1 && *it == L))
16461d7d
KB
529 addr += 16;
530 else
531 addr += (slotnum + 1) * SLOT_MULTIPLIER;
532
533 return addr;
534}
535
536/* There are 5 different break instructions (break.i, break.b,
537 break.m, break.f, and break.x), but they all have the same
538 encoding. (The five bit template in the low five bits of the
539 instruction bundle distinguishes one from another.)
540
541 The runtime architecture manual specifies that break instructions
542 used for debugging purposes must have the upper two bits of the 21
543 bit immediate set to a 0 and a 1 respectively. A breakpoint
544 instruction encodes the most significant bit of its 21 bit
545 immediate at bit 36 of the 41 bit instruction. The penultimate msb
546 is at bit 25 which leads to the pattern below.
547
548 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
549 it turns out that 0x80000 was used as the syscall break in the early
550 simulators. So I changed the pattern slightly to do "break.i 0x080001"
551 instead. But that didn't work either (I later found out that this
552 pattern was used by the simulator that I was using.) So I ended up
553 using the pattern seen below. */
554
555#if 0
aaab4dba 556#define IA64_BREAKPOINT 0x00002000040LL
16461d7d 557#endif
aaab4dba 558#define IA64_BREAKPOINT 0x00003333300LL
16461d7d
KB
559
560static int
8181d85f 561ia64_memory_insert_breakpoint (struct bp_target_info *bp_tgt)
16461d7d 562{
8181d85f 563 CORE_ADDR addr = bp_tgt->placed_address;
16461d7d
KB
564 char bundle[BUNDLE_LEN];
565 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
566 long long instr;
567 int val;
126fa72d 568 int template;
16461d7d
KB
569
570 if (slotnum > 2)
8a3fe4f8 571 error (_("Can't insert breakpoint for slot numbers greater than 2."));
16461d7d
KB
572
573 addr &= ~0x0f;
574
575 val = target_read_memory (addr, bundle, BUNDLE_LEN);
126fa72d
PS
576
577 /* Check for L type instruction in 2nd slot, if present then
578 bump up the slot number to the 3rd slot */
579 template = extract_bit_field (bundle, 0, 5);
580 if (slotnum == 1 && template_encoding_table[template][1] == L)
581 {
582 slotnum = 2;
583 }
584
16461d7d 585 instr = slotN_contents (bundle, slotnum);
8181d85f
DJ
586 memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr));
587 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr);
aaab4dba 588 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
16461d7d
KB
589 if (val == 0)
590 target_write_memory (addr, bundle, BUNDLE_LEN);
591
592 return val;
593}
594
595static int
8181d85f 596ia64_memory_remove_breakpoint (struct bp_target_info *bp_tgt)
16461d7d 597{
8181d85f 598 CORE_ADDR addr = bp_tgt->placed_address;
16461d7d
KB
599 char bundle[BUNDLE_LEN];
600 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
601 long long instr;
602 int val;
126fa72d 603 int template;
16461d7d
KB
604
605 addr &= ~0x0f;
606
607 val = target_read_memory (addr, bundle, BUNDLE_LEN);
126fa72d
PS
608
609 /* Check for L type instruction in 2nd slot, if present then
610 bump up the slot number to the 3rd slot */
611 template = extract_bit_field (bundle, 0, 5);
612 if (slotnum == 1 && template_encoding_table[template][1] == L)
613 {
614 slotnum = 2;
615 }
616
8181d85f 617 memcpy (&instr, bp_tgt->shadow_contents, sizeof instr);
16461d7d
KB
618 replace_slotN_contents (bundle, instr, slotnum);
619 if (val == 0)
620 target_write_memory (addr, bundle, BUNDLE_LEN);
621
622 return val;
623}
624
625/* We don't really want to use this, but remote.c needs to call it in order
626 to figure out if Z-packets are supported or not. Oh, well. */
f4f9705a 627const unsigned char *
fba45db2 628ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
16461d7d
KB
629{
630 static unsigned char breakpoint[] =
631 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
632 *lenptr = sizeof (breakpoint);
633#if 0
634 *pcptr &= ~0x0f;
635#endif
636 return breakpoint;
637}
638
a78f21af 639static CORE_ADDR
39f77062 640ia64_read_pc (ptid_t ptid)
16461d7d 641{
39f77062
KB
642 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
643 CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid);
16461d7d
KB
644 int slot_num = (psr_value >> 41) & 3;
645
646 return pc_value | (slot_num * SLOT_MULTIPLIER);
647}
648
54a5c8d8 649void
39f77062 650ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid)
16461d7d
KB
651{
652 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
39f77062 653 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
16461d7d
KB
654 psr_value &= ~(3LL << 41);
655 psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41;
656
657 new_pc &= ~0xfLL;
658
39f77062
KB
659 write_register_pid (IA64_PSR_REGNUM, psr_value, ptid);
660 write_register_pid (IA64_IP_REGNUM, new_pc, ptid);
16461d7d
KB
661}
662
663#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
664
665/* Returns the address of the slot that's NSLOTS slots away from
666 the address ADDR. NSLOTS may be positive or negative. */
667static CORE_ADDR
668rse_address_add(CORE_ADDR addr, int nslots)
669{
670 CORE_ADDR new_addr;
671 int mandatory_nat_slots = nslots / 63;
672 int direction = nslots < 0 ? -1 : 1;
673
674 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
675
676 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
677 new_addr += 8 * direction;
678
679 if (IS_NaT_COLLECTION_ADDR(new_addr))
680 new_addr += 8 * direction;
681
682 return new_addr;
683}
684
004d836a
JJ
685static void
686ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
88d82102 687 int regnum, gdb_byte *buf)
16461d7d 688{
004d836a 689 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
244bc108 690 {
88d82102 691#ifdef HAVE_LIBUNWIND_IA64_H
c5a27d9c
JJ
692 /* First try and use the libunwind special reg accessor, otherwise fallback to
693 standard logic. */
694 if (!libunwind_is_initialized ()
45ecac4b 695 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
88d82102 696#endif
004d836a 697 {
c5a27d9c
JJ
698 /* The fallback position is to assume that r32-r127 are found sequentially
699 in memory starting at $bof. This isn't always true, but without libunwind,
700 this is the best we can do. */
701 ULONGEST cfm;
702 ULONGEST bsp;
703 CORE_ADDR reg;
704 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
705 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
706
707 /* The bsp points at the end of the register frame so we
708 subtract the size of frame from it to get start of register frame. */
709 bsp = rse_address_add (bsp, -(cfm & 0x7f));
710
711 if ((cfm & 0x7f) > regnum - V32_REGNUM)
712 {
713 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
714 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
715 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), reg);
716 }
717 else
718 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0);
004d836a 719 }
004d836a
JJ
720 }
721 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
722 {
723 ULONGEST unatN_val;
724 ULONGEST unat;
725 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
726 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
aa2a9a3c 727 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val);
004d836a
JJ
728 }
729 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
730 {
731 ULONGEST natN_val = 0;
732 ULONGEST bsp;
733 ULONGEST cfm;
734 CORE_ADDR gr_addr = 0;
735 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
736 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
737
738 /* The bsp points at the end of the register frame so we
739 subtract the size of frame from it to get start of register frame. */
740 bsp = rse_address_add (bsp, -(cfm & 0x7f));
741
742 if ((cfm & 0x7f) > regnum - V32_REGNUM)
743 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
744
745 if (gr_addr != 0)
746 {
747 /* Compute address of nat collection bits. */
748 CORE_ADDR nat_addr = gr_addr | 0x1f8;
749 CORE_ADDR nat_collection;
750 int nat_bit;
751 /* If our nat collection address is bigger than bsp, we have to get
752 the nat collection from rnat. Otherwise, we fetch the nat
753 collection from the computed address. */
754 if (nat_addr >= bsp)
755 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
756 else
757 nat_collection = read_memory_integer (nat_addr, 8);
758 nat_bit = (gr_addr >> 3) & 0x3f;
759 natN_val = (nat_collection >> nat_bit) & 1;
760 }
761
aa2a9a3c 762 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val);
244bc108 763 }
004d836a
JJ
764 else if (regnum == VBOF_REGNUM)
765 {
766 /* A virtual register frame start is provided for user convenience.
767 It can be calculated as the bsp - sof (sizeof frame). */
768 ULONGEST bsp, vbsp;
769 ULONGEST cfm;
770 CORE_ADDR reg;
771 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
772 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
773
774 /* The bsp points at the end of the register frame so we
775 subtract the size of frame from it to get beginning of frame. */
776 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
aa2a9a3c 777 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp);
004d836a
JJ
778 }
779 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
780 {
781 ULONGEST pr;
782 ULONGEST cfm;
783 ULONGEST prN_val;
784 CORE_ADDR reg;
785 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
786 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
787
788 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
789 {
790 /* Fetch predicate register rename base from current frame
791 marker for this frame. */
792 int rrb_pr = (cfm >> 32) & 0x3f;
793
794 /* Adjust the register number to account for register rotation. */
795 regnum = VP16_REGNUM
796 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
797 }
798 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
aa2a9a3c 799 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val);
004d836a
JJ
800 }
801 else
aa2a9a3c 802 memset (buf, 0, register_size (current_gdbarch, regnum));
16461d7d
KB
803}
804
004d836a
JJ
805static void
806ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
88d82102 807 int regnum, const gdb_byte *buf)
16461d7d 808{
004d836a 809 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
244bc108 810 {
004d836a
JJ
811 ULONGEST bsp;
812 ULONGEST cfm;
813 CORE_ADDR reg;
814 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
815 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
816
817 bsp = rse_address_add (bsp, -(cfm & 0x7f));
818
819 if ((cfm & 0x7f) > regnum - V32_REGNUM)
820 {
821 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
822 write_memory (reg_addr, (void *)buf, 8);
823 }
824 }
825 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
826 {
827 ULONGEST unatN_val, unat, unatN_mask;
828 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
aa2a9a3c 829 unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
004d836a
JJ
830 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
831 if (unatN_val == 0)
832 unat &= ~unatN_mask;
833 else if (unatN_val == 1)
834 unat |= unatN_mask;
835 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
836 }
837 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
838 {
839 ULONGEST natN_val;
840 ULONGEST bsp;
841 ULONGEST cfm;
842 CORE_ADDR gr_addr = 0;
843 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
844 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
845
846 /* The bsp points at the end of the register frame so we
847 subtract the size of frame from it to get start of register frame. */
848 bsp = rse_address_add (bsp, -(cfm & 0x7f));
849
850 if ((cfm & 0x7f) > regnum - V32_REGNUM)
851 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
852
aa2a9a3c 853 natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
004d836a
JJ
854
855 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
856 {
857 /* Compute address of nat collection bits. */
858 CORE_ADDR nat_addr = gr_addr | 0x1f8;
859 CORE_ADDR nat_collection;
860 int natN_bit = (gr_addr >> 3) & 0x3f;
861 ULONGEST natN_mask = (1LL << natN_bit);
862 /* If our nat collection address is bigger than bsp, we have to get
863 the nat collection from rnat. Otherwise, we fetch the nat
864 collection from the computed address. */
865 if (nat_addr >= bsp)
866 {
867 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
868 if (natN_val)
869 nat_collection |= natN_mask;
870 else
871 nat_collection &= ~natN_mask;
872 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
873 }
874 else
875 {
876 char nat_buf[8];
877 nat_collection = read_memory_integer (nat_addr, 8);
878 if (natN_val)
879 nat_collection |= natN_mask;
880 else
881 nat_collection &= ~natN_mask;
aa2a9a3c 882 store_unsigned_integer (nat_buf, register_size (current_gdbarch, regnum), nat_collection);
004d836a
JJ
883 write_memory (nat_addr, nat_buf, 8);
884 }
885 }
886 }
887 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
888 {
889 ULONGEST pr;
890 ULONGEST cfm;
891 ULONGEST prN_val;
892 ULONGEST prN_mask;
893
894 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
895 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
896
897 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
898 {
899 /* Fetch predicate register rename base from current frame
900 marker for this frame. */
901 int rrb_pr = (cfm >> 32) & 0x3f;
902
903 /* Adjust the register number to account for register rotation. */
904 regnum = VP16_REGNUM
905 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
906 }
aa2a9a3c 907 prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
004d836a
JJ
908 prN_mask = (1LL << (regnum - VP0_REGNUM));
909 if (prN_val == 0)
910 pr &= ~prN_mask;
911 else if (prN_val == 1)
912 pr |= prN_mask;
913 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
244bc108 914 }
16461d7d
KB
915}
916
004d836a
JJ
917/* The ia64 needs to convert between various ieee floating-point formats
918 and the special ia64 floating point register format. */
919
920static int
921ia64_convert_register_p (int regno, struct type *type)
922{
923 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM);
924}
925
926static void
927ia64_register_to_value (struct frame_info *frame, int regnum,
88d82102 928 struct type *valtype, gdb_byte *out)
004d836a
JJ
929{
930 char in[MAX_REGISTER_SIZE];
931 frame_register_read (frame, regnum, in);
932 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
933}
934
935static void
936ia64_value_to_register (struct frame_info *frame, int regnum,
88d82102 937 struct type *valtype, const gdb_byte *in)
004d836a
JJ
938{
939 char out[MAX_REGISTER_SIZE];
940 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
941 put_frame_register (frame, regnum, out);
942}
943
944
58ab00f9
KB
945/* Limit the number of skipped non-prologue instructions since examining
946 of the prologue is expensive. */
5ea2bd7f 947static int max_skip_non_prologue_insns = 40;
58ab00f9
KB
948
949/* Given PC representing the starting address of a function, and
950 LIM_PC which is the (sloppy) limit to which to scan when looking
951 for a prologue, attempt to further refine this limit by using
952 the line data in the symbol table. If successful, a better guess
953 on where the prologue ends is returned, otherwise the previous
954 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
955 which will be set to indicate whether the returned limit may be
956 used with no further scanning in the event that the function is
957 frameless. */
958
634aa483
AC
959/* FIXME: cagney/2004-02-14: This function and logic have largely been
960 superseded by skip_prologue_using_sal. */
961
58ab00f9
KB
962static CORE_ADDR
963refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
964{
965 struct symtab_and_line prologue_sal;
966 CORE_ADDR start_pc = pc;
967
968 /* Start off not trusting the limit. */
969 *trust_limit = 0;
970
971 prologue_sal = find_pc_line (pc, 0);
972 if (prologue_sal.line != 0)
973 {
974 int i;
975 CORE_ADDR addr = prologue_sal.end;
976
977 /* Handle the case in which compiler's optimizer/scheduler
978 has moved instructions into the prologue. We scan ahead
979 in the function looking for address ranges whose corresponding
980 line number is less than or equal to the first one that we
981 found for the function. (It can be less than when the
982 scheduler puts a body instruction before the first prologue
983 instruction.) */
984 for (i = 2 * max_skip_non_prologue_insns;
985 i > 0 && (lim_pc == 0 || addr < lim_pc);
986 i--)
987 {
988 struct symtab_and_line sal;
989
990 sal = find_pc_line (addr, 0);
991 if (sal.line == 0)
992 break;
993 if (sal.line <= prologue_sal.line
994 && sal.symtab == prologue_sal.symtab)
995 {
996 prologue_sal = sal;
997 }
998 addr = sal.end;
999 }
1000
1001 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1002 {
1003 lim_pc = prologue_sal.end;
1004 if (start_pc == get_pc_function_start (lim_pc))
1005 *trust_limit = 1;
1006 }
1007 }
1008 return lim_pc;
1009}
1010
16461d7d
KB
1011#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1012 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1013 || (14 <= (_regnum_) && (_regnum_) <= 31))
1014#define imm9(_instr_) \
1015 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1016 | (((_instr_) & 0x00008000000LL) >> 20) \
1017 | (((_instr_) & 0x00000001fc0LL) >> 6))
1018
004d836a
JJ
1019/* Allocate and initialize a frame cache. */
1020
1021static struct ia64_frame_cache *
1022ia64_alloc_frame_cache (void)
1023{
1024 struct ia64_frame_cache *cache;
1025 int i;
1026
1027 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1028
1029 /* Base address. */
1030 cache->base = 0;
1031 cache->pc = 0;
1032 cache->cfm = 0;
4afcc598 1033 cache->prev_cfm = 0;
004d836a
JJ
1034 cache->sof = 0;
1035 cache->sol = 0;
1036 cache->sor = 0;
1037 cache->bsp = 0;
1038 cache->fp_reg = 0;
1039 cache->frameless = 1;
1040
1041 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1042 cache->saved_regs[i] = 0;
1043
1044 return cache;
1045}
1046
16461d7d 1047static CORE_ADDR
004d836a 1048examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache)
16461d7d
KB
1049{
1050 CORE_ADDR next_pc;
1051 CORE_ADDR last_prologue_pc = pc;
16461d7d
KB
1052 instruction_type it;
1053 long long instr;
16461d7d
KB
1054 int cfm_reg = 0;
1055 int ret_reg = 0;
1056 int fp_reg = 0;
1057 int unat_save_reg = 0;
1058 int pr_save_reg = 0;
1059 int mem_stack_frame_size = 0;
1060 int spill_reg = 0;
1061 CORE_ADDR spill_addr = 0;
0927a22b
KB
1062 char instores[8];
1063 char infpstores[8];
5ea2bd7f 1064 char reg_contents[256];
58ab00f9 1065 int trust_limit;
004d836a
JJ
1066 int frameless = 1;
1067 int i;
1068 CORE_ADDR addr;
1069 char buf[8];
1070 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
0927a22b
KB
1071
1072 memset (instores, 0, sizeof instores);
1073 memset (infpstores, 0, sizeof infpstores);
5ea2bd7f 1074 memset (reg_contents, 0, sizeof reg_contents);
16461d7d 1075
004d836a
JJ
1076 if (cache->after_prologue != 0
1077 && cache->after_prologue <= lim_pc)
1078 return cache->after_prologue;
16461d7d 1079
58ab00f9 1080 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
16461d7d 1081 next_pc = fetch_instruction (pc, &it, &instr);
5ea2bd7f
JJ
1082
1083 /* We want to check if we have a recognizable function start before we
1084 look ahead for a prologue. */
16461d7d
KB
1085 if (pc < lim_pc && next_pc
1086 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1087 {
5ea2bd7f 1088 /* alloc - start of a regular function. */
16461d7d
KB
1089 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1090 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1091 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
16461d7d 1092 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
004d836a
JJ
1093
1094 /* Verify that the current cfm matches what we think is the
1095 function start. If we have somehow jumped within a function,
1096 we do not want to interpret the prologue and calculate the
1097 addresses of various registers such as the return address.
1098 We will instead treat the frame as frameless. */
1099 if (!next_frame ||
1100 (sof == (cache->cfm & 0x7f) &&
1101 sol == ((cache->cfm >> 7) & 0x7f)))
1102 frameless = 0;
1103
16461d7d
KB
1104 cfm_reg = rN;
1105 last_prologue_pc = next_pc;
1106 pc = next_pc;
1107 }
1108 else
58ab00f9 1109 {
5ea2bd7f
JJ
1110 /* Look for a leaf routine. */
1111 if (pc < lim_pc && next_pc
1112 && (it == I || it == M)
1113 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1114 {
1115 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1116 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1117 | ((instr & 0x001f8000000LL) >> 20)
1118 | ((instr & 0x000000fe000LL) >> 13));
1119 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1120 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1121 int qp = (int) (instr & 0x0000000003fLL);
1122 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1123 {
1124 /* mov r2, r12 - beginning of leaf routine */
1125 fp_reg = rN;
5ea2bd7f
JJ
1126 last_prologue_pc = next_pc;
1127 }
1128 }
1129
1130 /* If we don't recognize a regular function or leaf routine, we are
1131 done. */
1132 if (!fp_reg)
1133 {
1134 pc = lim_pc;
1135 if (trust_limit)
1136 last_prologue_pc = lim_pc;
1137 }
58ab00f9 1138 }
16461d7d
KB
1139
1140 /* Loop, looking for prologue instructions, keeping track of
1141 where preserved registers were spilled. */
1142 while (pc < lim_pc)
1143 {
1144 next_pc = fetch_instruction (pc, &it, &instr);
1145 if (next_pc == 0)
1146 break;
1147
594706e6 1148 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
0927a22b 1149 {
102d615a
JJ
1150 /* Exit loop upon hitting a non-nop branch instruction. */
1151 if (trust_limit)
1152 lim_pc = pc;
1153 break;
1154 }
1155 else if (((instr & 0x3fLL) != 0LL) &&
1156 (frameless || ret_reg != 0))
1157 {
1158 /* Exit loop upon hitting a predicated instruction if
1159 we already have the return register or if we are frameless. */
5ea2bd7f
JJ
1160 if (trust_limit)
1161 lim_pc = pc;
0927a22b
KB
1162 break;
1163 }
1164 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
16461d7d
KB
1165 {
1166 /* Move from BR */
1167 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1168 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1169 int qp = (int) (instr & 0x0000000003f);
1170
1171 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1172 {
1173 ret_reg = rN;
1174 last_prologue_pc = next_pc;
1175 }
1176 }
1177 else if ((it == I || it == M)
1178 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1179 {
1180 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1181 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1182 | ((instr & 0x001f8000000LL) >> 20)
1183 | ((instr & 0x000000fe000LL) >> 13));
1184 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1185 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1186 int qp = (int) (instr & 0x0000000003fLL);
1187
1188 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1189 {
1190 /* mov rN, r12 */
1191 fp_reg = rN;
1192 last_prologue_pc = next_pc;
1193 }
1194 else if (qp == 0 && rN == 12 && rM == 12)
1195 {
1196 /* adds r12, -mem_stack_frame_size, r12 */
1197 mem_stack_frame_size -= imm;
1198 last_prologue_pc = next_pc;
1199 }
1200 else if (qp == 0 && rN == 2
1201 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1202 {
004d836a
JJ
1203 char buf[MAX_REGISTER_SIZE];
1204 CORE_ADDR saved_sp = 0;
16461d7d
KB
1205 /* adds r2, spilloffset, rFramePointer
1206 or
1207 adds r2, spilloffset, r12
1208
1209 Get ready for stf.spill or st8.spill instructions.
1210 The address to start spilling at is loaded into r2.
1211 FIXME: Why r2? That's what gcc currently uses; it
1212 could well be different for other compilers. */
1213
1214 /* Hmm... whether or not this will work will depend on
1215 where the pc is. If it's still early in the prologue
1216 this'll be wrong. FIXME */
004d836a
JJ
1217 if (next_frame)
1218 {
1219 frame_unwind_register (next_frame, sp_regnum, buf);
1220 saved_sp = extract_unsigned_integer (buf, 8);
1221 }
1222 spill_addr = saved_sp
16461d7d
KB
1223 + (rM == 12 ? 0 : mem_stack_frame_size)
1224 + imm;
1225 spill_reg = rN;
1226 last_prologue_pc = next_pc;
1227 }
5ea2bd7f
JJ
1228 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] &&
1229 rN < 256 && imm == 0)
1230 {
1231 /* mov rN, rM where rM is an input register */
1232 reg_contents[rN] = rM;
1233 last_prologue_pc = next_pc;
1234 }
1235 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1236 rM == 2)
1237 {
1238 /* mov r12, r2 */
1239 last_prologue_pc = next_pc;
1240 break;
1241 }
16461d7d
KB
1242 }
1243 else if (it == M
1244 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1245 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1246 {
1247 /* stf.spill [rN] = fM, imm9
1248 or
1249 stf.spill [rN] = fM */
1250
1251 int imm = imm9(instr);
1252 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1253 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1254 int qp = (int) (instr & 0x0000000003fLL);
1255 if (qp == 0 && rN == spill_reg && spill_addr != 0
1256 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1257 {
004d836a 1258 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
16461d7d 1259
594706e6 1260 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
16461d7d
KB
1261 spill_addr += imm;
1262 else
1263 spill_addr = 0; /* last one; must be done */
1264 last_prologue_pc = next_pc;
1265 }
1266 }
1267 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1268 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1269 {
1270 /* mov.m rN = arM
1271 or
1272 mov.i rN = arM */
1273
1274 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1275 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1276 int qp = (int) (instr & 0x0000000003fLL);
1277 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1278 {
1279 /* We have something like "mov.m r3 = ar.unat". Remember the
1280 r3 (or whatever) and watch for a store of this register... */
1281 unat_save_reg = rN;
1282 last_prologue_pc = next_pc;
1283 }
1284 }
1285 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1286 {
1287 /* mov rN = pr */
1288 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1289 int qp = (int) (instr & 0x0000000003fLL);
1290 if (qp == 0 && isScratch (rN))
1291 {
1292 pr_save_reg = rN;
1293 last_prologue_pc = next_pc;
1294 }
1295 }
1296 else if (it == M
1297 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1298 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1299 {
1300 /* st8 [rN] = rM
1301 or
1302 st8 [rN] = rM, imm9 */
1303 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1304 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1305 int qp = (int) (instr & 0x0000000003fLL);
5ea2bd7f 1306 int indirect = rM < 256 ? reg_contents[rM] : 0;
16461d7d
KB
1307 if (qp == 0 && rN == spill_reg && spill_addr != 0
1308 && (rM == unat_save_reg || rM == pr_save_reg))
1309 {
1310 /* We've found a spill of either the UNAT register or the PR
1311 register. (Well, not exactly; what we've actually found is
1312 a spill of the register that UNAT or PR was moved to).
1313 Record that fact and move on... */
1314 if (rM == unat_save_reg)
1315 {
1316 /* Track UNAT register */
004d836a 1317 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
16461d7d
KB
1318 unat_save_reg = 0;
1319 }
1320 else
1321 {
1322 /* Track PR register */
004d836a 1323 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
16461d7d
KB
1324 pr_save_reg = 0;
1325 }
1326 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1327 /* st8 [rN] = rM, imm9 */
1328 spill_addr += imm9(instr);
1329 else
1330 spill_addr = 0; /* must be done spilling */
1331 last_prologue_pc = next_pc;
1332 }
0927a22b
KB
1333 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1334 {
1335 /* Allow up to one store of each input register. */
1336 instores[rM-32] = 1;
1337 last_prologue_pc = next_pc;
1338 }
5ea2bd7f
JJ
1339 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1340 !instores[indirect-32])
1341 {
1342 /* Allow an indirect store of an input register. */
1343 instores[indirect-32] = 1;
1344 last_prologue_pc = next_pc;
1345 }
0927a22b
KB
1346 }
1347 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1348 {
1349 /* One of
1350 st1 [rN] = rM
1351 st2 [rN] = rM
1352 st4 [rN] = rM
1353 st8 [rN] = rM
1354 Note that the st8 case is handled in the clause above.
1355
1356 Advance over stores of input registers. One store per input
1357 register is permitted. */
1358 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1359 int qp = (int) (instr & 0x0000000003fLL);
5ea2bd7f 1360 int indirect = rM < 256 ? reg_contents[rM] : 0;
0927a22b
KB
1361 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1362 {
1363 instores[rM-32] = 1;
1364 last_prologue_pc = next_pc;
1365 }
5ea2bd7f
JJ
1366 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1367 !instores[indirect-32])
1368 {
1369 /* Allow an indirect store of an input register. */
1370 instores[indirect-32] = 1;
1371 last_prologue_pc = next_pc;
1372 }
0927a22b
KB
1373 }
1374 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1375 {
1376 /* Either
1377 stfs [rN] = fM
1378 or
1379 stfd [rN] = fM
1380
1381 Advance over stores of floating point input registers. Again
1382 one store per register is permitted */
1383 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1384 int qp = (int) (instr & 0x0000000003fLL);
1385 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1386 {
1387 infpstores[fM-8] = 1;
1388 last_prologue_pc = next_pc;
1389 }
16461d7d
KB
1390 }
1391 else if (it == M
1392 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1393 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1394 {
1395 /* st8.spill [rN] = rM
1396 or
1397 st8.spill [rN] = rM, imm9 */
1398 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1399 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1400 int qp = (int) (instr & 0x0000000003fLL);
1401 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1402 {
1403 /* We've found a spill of one of the preserved general purpose
1404 regs. Record the spill address and advance the spill
1405 register if appropriate. */
004d836a 1406 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
16461d7d
KB
1407 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1408 /* st8.spill [rN] = rM, imm9 */
1409 spill_addr += imm9(instr);
1410 else
1411 spill_addr = 0; /* Done spilling */
1412 last_prologue_pc = next_pc;
1413 }
1414 }
16461d7d
KB
1415
1416 pc = next_pc;
1417 }
1418
004d836a
JJ
1419 /* If not frameless and we aren't called by skip_prologue, then we need to calculate
1420 registers for the previous frame which will be needed later. */
16461d7d 1421
004d836a 1422 if (!frameless && next_frame)
da50a4b7 1423 {
004d836a
JJ
1424 /* Extract the size of the rotating portion of the stack
1425 frame and the register rename base from the current
1426 frame marker. */
1427 cfm = cache->cfm;
1428 sor = cache->sor;
1429 sof = cache->sof;
1430 sol = cache->sol;
1431 rrb_gr = (cfm >> 18) & 0x7f;
1432
1433 /* Find the bof (beginning of frame). */
1434 bof = rse_address_add (cache->bsp, -sof);
1435
1436 for (i = 0, addr = bof;
1437 i < sof;
1438 i++, addr += 8)
1439 {
1440 if (IS_NaT_COLLECTION_ADDR (addr))
1441 {
1442 addr += 8;
1443 }
1444 if (i+32 == cfm_reg)
1445 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1446 if (i+32 == ret_reg)
1447 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1448 if (i+32 == fp_reg)
1449 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1450 }
16461d7d 1451
004d836a
JJ
1452 /* For the previous argument registers we require the previous bof.
1453 If we can't find the previous cfm, then we can do nothing. */
4afcc598 1454 cfm = 0;
004d836a
JJ
1455 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1456 {
1457 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
4afcc598
JJ
1458 }
1459 else if (cfm_reg != 0)
1460 {
1461 frame_unwind_register (next_frame, cfm_reg, buf);
1462 cfm = extract_unsigned_integer (buf, 8);
1463 }
1464 cache->prev_cfm = cfm;
1465
1466 if (cfm != 0)
1467 {
004d836a
JJ
1468 sor = ((cfm >> 14) & 0xf) * 8;
1469 sof = (cfm & 0x7f);
1470 sol = (cfm >> 7) & 0x7f;
1471 rrb_gr = (cfm >> 18) & 0x7f;
1472
1473 /* The previous bof only requires subtraction of the sol (size of locals)
1474 due to the overlap between output and input of subsequent frames. */
1475 bof = rse_address_add (bof, -sol);
1476
1477 for (i = 0, addr = bof;
1478 i < sof;
1479 i++, addr += 8)
1480 {
1481 if (IS_NaT_COLLECTION_ADDR (addr))
1482 {
1483 addr += 8;
1484 }
1485 if (i < sor)
1486 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1487 = addr;
1488 else
1489 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1490 }
1491
1492 }
1493 }
1494
5ea2bd7f
JJ
1495 /* Try and trust the lim_pc value whenever possible. */
1496 if (trust_limit && lim_pc >= last_prologue_pc)
004d836a
JJ
1497 last_prologue_pc = lim_pc;
1498
1499 cache->frameless = frameless;
1500 cache->after_prologue = last_prologue_pc;
1501 cache->mem_stack_frame_size = mem_stack_frame_size;
1502 cache->fp_reg = fp_reg;
5ea2bd7f 1503
16461d7d
KB
1504 return last_prologue_pc;
1505}
1506
1507CORE_ADDR
1508ia64_skip_prologue (CORE_ADDR pc)
1509{
004d836a
JJ
1510 struct ia64_frame_cache cache;
1511 cache.base = 0;
1512 cache.after_prologue = 0;
1513 cache.cfm = 0;
1514 cache.bsp = 0;
1515
1516 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1517 return examine_prologue (pc, pc+1024, 0, &cache);
16461d7d
KB
1518}
1519
004d836a
JJ
1520
1521/* Normal frames. */
1522
1523static struct ia64_frame_cache *
1524ia64_frame_cache (struct frame_info *next_frame, void **this_cache)
16461d7d 1525{
004d836a
JJ
1526 struct ia64_frame_cache *cache;
1527 char buf[8];
1528 CORE_ADDR cfm, sof, sol, bsp, psr;
1529 int i;
16461d7d 1530
004d836a
JJ
1531 if (*this_cache)
1532 return *this_cache;
16461d7d 1533
004d836a
JJ
1534 cache = ia64_alloc_frame_cache ();
1535 *this_cache = cache;
16461d7d 1536
004d836a
JJ
1537 frame_unwind_register (next_frame, sp_regnum, buf);
1538 cache->saved_sp = extract_unsigned_integer (buf, 8);
16461d7d 1539
004d836a
JJ
1540 /* We always want the bsp to point to the end of frame.
1541 This way, we can always get the beginning of frame (bof)
1542 by subtracting frame size. */
1543 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1544 cache->bsp = extract_unsigned_integer (buf, 8);
1545
1546 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1547 psr = extract_unsigned_integer (buf, 8);
1548
1549 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1550 cfm = extract_unsigned_integer (buf, 8);
1551
1552 cache->sof = (cfm & 0x7f);
1553 cache->sol = (cfm >> 7) & 0x7f;
1554 cache->sor = ((cfm >> 14) & 0xf) * 8;
1555
1556 cache->cfm = cfm;
1557
93d42b30 1558 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
004d836a
JJ
1559
1560 if (cache->pc != 0)
1561 examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache);
1562
1563 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1564
1565 return cache;
16461d7d
KB
1566}
1567
a78f21af 1568static void
004d836a
JJ
1569ia64_frame_this_id (struct frame_info *next_frame, void **this_cache,
1570 struct frame_id *this_id)
16461d7d 1571{
004d836a
JJ
1572 struct ia64_frame_cache *cache =
1573 ia64_frame_cache (next_frame, this_cache);
16461d7d 1574
c5a27d9c 1575 /* If outermost frame, mark with null frame id. */
004d836a 1576 if (cache->base == 0)
c5a27d9c
JJ
1577 (*this_id) = null_frame_id;
1578 else
1579 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
4afcc598
JJ
1580 if (gdbarch_debug >= 1)
1581 fprintf_unfiltered (gdb_stdlog,
78ced177
JJ
1582 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1583 paddr_nz (this_id->code_addr),
1584 paddr_nz (this_id->stack_addr),
1585 paddr_nz (cache->bsp), next_frame);
004d836a 1586}
244bc108 1587
004d836a
JJ
1588static void
1589ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1590 int regnum, int *optimizedp,
1591 enum lval_type *lvalp, CORE_ADDR *addrp,
88d82102 1592 int *realnump, gdb_byte *valuep)
004d836a
JJ
1593{
1594 struct ia64_frame_cache *cache =
1595 ia64_frame_cache (next_frame, this_cache);
1596 char dummy_valp[MAX_REGISTER_SIZE];
1597 char buf[8];
1598
1599 gdb_assert (regnum >= 0);
244bc108 1600
004d836a 1601 if (!target_has_registers)
8a3fe4f8 1602 error (_("No registers."));
244bc108 1603
004d836a
JJ
1604 *optimizedp = 0;
1605 *addrp = 0;
1606 *lvalp = not_lval;
1607 *realnump = -1;
244bc108 1608
004d836a
JJ
1609 /* Rather than check each time if valuep is non-null, supply a dummy buffer
1610 when valuep is not supplied. */
1611 if (!valuep)
1612 valuep = dummy_valp;
1613
aa2a9a3c 1614 memset (valuep, 0, register_size (current_gdbarch, regnum));
004d836a
JJ
1615
1616 if (regnum == SP_REGNUM)
16461d7d
KB
1617 {
1618 /* Handle SP values for all frames but the topmost. */
aa2a9a3c 1619 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
004d836a 1620 cache->base);
16461d7d
KB
1621 }
1622 else if (regnum == IA64_BSP_REGNUM)
1623 {
004d836a
JJ
1624 char cfm_valuep[MAX_REGISTER_SIZE];
1625 int cfm_optim;
1626 int cfm_realnum;
1627 enum lval_type cfm_lval;
1628 CORE_ADDR cfm_addr;
1629 CORE_ADDR bsp, prev_cfm, prev_bsp;
1630
1631 /* We want to calculate the previous bsp as the end of the previous register stack frame.
1632 This corresponds to what the hardware bsp register will be if we pop the frame
1633 back which is why we might have been called. We know the beginning of the current
aa2a9a3c 1634 frame is cache->bsp - cache->sof. This value in the previous frame points to
004d836a
JJ
1635 the start of the output registers. We can calculate the end of that frame by adding
1636 the size of output (sof (size of frame) - sol (size of locals)). */
1637 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1638 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
1639 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
1640
1641 bsp = rse_address_add (cache->bsp, -(cache->sof));
1642 prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1643
aa2a9a3c 1644 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
004d836a
JJ
1645 prev_bsp);
1646 }
1647 else if (regnum == IA64_CFM_REGNUM)
1648 {
4afcc598
JJ
1649 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1650
1651 if (addr != 0)
004d836a 1652 {
4afcc598
JJ
1653 *lvalp = lval_memory;
1654 *addrp = addr;
1655 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
004d836a 1656 }
4afcc598
JJ
1657 else if (cache->prev_cfm)
1658 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm);
1659 else if (cache->frameless)
004d836a 1660 {
4afcc598
JJ
1661 CORE_ADDR cfm = 0;
1662 frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep);
004d836a 1663 }
16461d7d
KB
1664 }
1665 else if (regnum == IA64_VFP_REGNUM)
1666 {
1667 /* If the function in question uses an automatic register (r32-r127)
1668 for the frame pointer, it'll be found by ia64_find_saved_register()
1669 above. If the function lacks one of these frame pointers, we can
004d836a
JJ
1670 still provide a value since we know the size of the frame. */
1671 CORE_ADDR vfp = cache->base;
aa2a9a3c 1672 store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp);
16461d7d 1673 }
004d836a 1674 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
16461d7d 1675 {
004d836a 1676 char pr_valuep[MAX_REGISTER_SIZE];
16461d7d 1677 int pr_optim;
004d836a 1678 int pr_realnum;
16461d7d
KB
1679 enum lval_type pr_lval;
1680 CORE_ADDR pr_addr;
004d836a
JJ
1681 ULONGEST prN_val;
1682 ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM,
1683 &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep);
1684 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
3a854e23
KB
1685 {
1686 /* Fetch predicate register rename base from current frame
004d836a
JJ
1687 marker for this frame. */
1688 int rrb_pr = (cache->cfm >> 32) & 0x3f;
3a854e23 1689
004d836a
JJ
1690 /* Adjust the register number to account for register rotation. */
1691 regnum = VP16_REGNUM
1692 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
3a854e23 1693 }
004d836a
JJ
1694 prN_val = extract_bit_field ((unsigned char *) pr_valuep,
1695 regnum - VP0_REGNUM, 1);
aa2a9a3c 1696 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val);
16461d7d
KB
1697 }
1698 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1699 {
004d836a 1700 char unat_valuep[MAX_REGISTER_SIZE];
16461d7d 1701 int unat_optim;
004d836a 1702 int unat_realnum;
16461d7d
KB
1703 enum lval_type unat_lval;
1704 CORE_ADDR unat_addr;
004d836a
JJ
1705 ULONGEST unatN_val;
1706 ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM,
1707 &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep);
1708 unatN_val = extract_bit_field ((unsigned char *) unat_valuep,
16461d7d 1709 regnum - IA64_NAT0_REGNUM, 1);
aa2a9a3c 1710 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
16461d7d 1711 unatN_val);
16461d7d
KB
1712 }
1713 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1714 {
1715 int natval = 0;
1716 /* Find address of general register corresponding to nat bit we're
004d836a
JJ
1717 interested in. */
1718 CORE_ADDR gr_addr;
244bc108 1719
004d836a
JJ
1720 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM
1721 + IA64_GR0_REGNUM];
1722 if (gr_addr != 0)
244bc108 1723 {
004d836a 1724 /* Compute address of nat collection bits. */
16461d7d 1725 CORE_ADDR nat_addr = gr_addr | 0x1f8;
004d836a 1726 CORE_ADDR bsp;
16461d7d
KB
1727 CORE_ADDR nat_collection;
1728 int nat_bit;
1729 /* If our nat collection address is bigger than bsp, we have to get
1730 the nat collection from rnat. Otherwise, we fetch the nat
004d836a
JJ
1731 collection from the computed address. */
1732 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1733 bsp = extract_unsigned_integer (buf, 8);
16461d7d 1734 if (nat_addr >= bsp)
004d836a
JJ
1735 {
1736 frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf);
1737 nat_collection = extract_unsigned_integer (buf, 8);
1738 }
16461d7d
KB
1739 else
1740 nat_collection = read_memory_integer (nat_addr, 8);
1741 nat_bit = (gr_addr >> 3) & 0x3f;
1742 natval = (nat_collection >> nat_bit) & 1;
1743 }
004d836a 1744
aa2a9a3c 1745 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval);
244bc108
KB
1746 }
1747 else if (regnum == IA64_IP_REGNUM)
1748 {
004d836a 1749 CORE_ADDR pc = 0;
4afcc598 1750 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
004d836a 1751
4afcc598 1752 if (addr != 0)
004d836a 1753 {
4afcc598
JJ
1754 *lvalp = lval_memory;
1755 *addrp = addr;
1756 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
004d836a
JJ
1757 pc = extract_unsigned_integer (buf, 8);
1758 }
4afcc598 1759 else if (cache->frameless)
004d836a 1760 {
4afcc598
JJ
1761 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1762 pc = extract_unsigned_integer (buf, 8);
244bc108 1763 }
004d836a
JJ
1764 pc &= ~0xf;
1765 store_unsigned_integer (valuep, 8, pc);
244bc108 1766 }
004d836a 1767 else if (regnum == IA64_PSR_REGNUM)
244bc108 1768 {
4afcc598
JJ
1769 /* We don't know how to get the complete previous PSR, but we need it for
1770 the slot information when we unwind the pc (pc is formed of IP register
1771 plus slot information from PSR). To get the previous slot information,
1772 we mask it off the return address. */
004d836a
JJ
1773 ULONGEST slot_num = 0;
1774 CORE_ADDR pc= 0;
1775 CORE_ADDR psr = 0;
4afcc598 1776 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
004d836a
JJ
1777
1778 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1779 psr = extract_unsigned_integer (buf, 8);
1780
4afcc598 1781 if (addr != 0)
244bc108 1782 {
4afcc598
JJ
1783 *lvalp = lval_memory;
1784 *addrp = addr;
1785 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
004d836a 1786 pc = extract_unsigned_integer (buf, 8);
244bc108 1787 }
4afcc598 1788 else if (cache->frameless)
004d836a 1789 {
4afcc598
JJ
1790 CORE_ADDR pc;
1791 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1792 pc = extract_unsigned_integer (buf, 8);
004d836a
JJ
1793 }
1794 psr &= ~(3LL << 41);
1795 slot_num = pc & 0x3LL;
1796 psr |= (CORE_ADDR)slot_num << 41;
1797 store_unsigned_integer (valuep, 8, psr);
1798 }
4afcc598
JJ
1799 else if (regnum == IA64_BR0_REGNUM)
1800 {
1801 CORE_ADDR br0 = 0;
1802 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
1803 if (addr != 0)
1804 {
1805 *lvalp = lval_memory;
1806 *addrp = addr;
1807 read_memory (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM));
1808 br0 = extract_unsigned_integer (buf, 8);
1809 }
1810 store_unsigned_integer (valuep, 8, br0);
1811 }
004d836a
JJ
1812 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
1813 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
1814 {
1815 CORE_ADDR addr = 0;
1816 if (regnum >= V32_REGNUM)
1817 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1818 addr = cache->saved_regs[regnum];
244bc108
KB
1819 if (addr != 0)
1820 {
004d836a
JJ
1821 *lvalp = lval_memory;
1822 *addrp = addr;
aa2a9a3c 1823 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
244bc108 1824 }
004d836a 1825 else if (cache->frameless)
244bc108 1826 {
004d836a
JJ
1827 char r_valuep[MAX_REGISTER_SIZE];
1828 int r_optim;
1829 int r_realnum;
1830 enum lval_type r_lval;
1831 CORE_ADDR r_addr;
1832 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1833 CORE_ADDR addr = 0;
1834 if (regnum >= V32_REGNUM)
1835 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1836 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1837 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1838 prev_cfm = extract_unsigned_integer (r_valuep, 8);
1839 ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM,
1840 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1841 prev_bsp = extract_unsigned_integer (r_valuep, 8);
1842 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1843
1844 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
1845 *lvalp = lval_memory;
1846 *addrp = addr;
aa2a9a3c 1847 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
244bc108 1848 }
16461d7d
KB
1849 }
1850 else
1851 {
004d836a 1852 CORE_ADDR addr = 0;
3a854e23
KB
1853 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1854 {
1855 /* Fetch floating point register rename base from current
004d836a
JJ
1856 frame marker for this frame. */
1857 int rrb_fr = (cache->cfm >> 25) & 0x7f;
3a854e23
KB
1858
1859 /* Adjust the floating point register number to account for
004d836a 1860 register rotation. */
3a854e23
KB
1861 regnum = IA64_FR32_REGNUM
1862 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1863 }
1864
004d836a
JJ
1865 /* If we have stored a memory address, access the register. */
1866 addr = cache->saved_regs[regnum];
1867 if (addr != 0)
1868 {
1869 *lvalp = lval_memory;
1870 *addrp = addr;
aa2a9a3c 1871 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
004d836a
JJ
1872 }
1873 /* Otherwise, punt and get the current value of the register. */
1874 else
1875 frame_unwind_register (next_frame, regnum, valuep);
16461d7d 1876 }
4afcc598
JJ
1877
1878 if (gdbarch_debug >= 1)
1879 fprintf_unfiltered (gdb_stdlog,
78ced177 1880 "regular prev register <%d> <%s> is 0x%s\n", regnum,
4afcc598 1881 (((unsigned) regnum <= IA64_NAT127_REGNUM)
78ced177
JJ
1882 ? ia64_register_names[regnum] : "r??"),
1883 paddr_nz (extract_unsigned_integer (valuep, 8)));
16461d7d 1884}
004d836a
JJ
1885
1886static const struct frame_unwind ia64_frame_unwind =
1887{
1888 NORMAL_FRAME,
1889 &ia64_frame_this_id,
1890 &ia64_frame_prev_register
1891};
1892
1893static const struct frame_unwind *
1894ia64_frame_sniffer (struct frame_info *next_frame)
1895{
1896 return &ia64_frame_unwind;
1897}
1898
1899/* Signal trampolines. */
1900
1901static void
1902ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache)
1903{
1904 if (SIGCONTEXT_REGISTER_ADDRESS)
1905 {
1906 int regno;
1907
1908 cache->saved_regs[IA64_VRAP_REGNUM] =
1909 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM);
1910 cache->saved_regs[IA64_CFM_REGNUM] =
1911 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM);
1912 cache->saved_regs[IA64_PSR_REGNUM] =
1913 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM);
004d836a 1914 cache->saved_regs[IA64_BSP_REGNUM] =
4afcc598 1915 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM);
004d836a
JJ
1916 cache->saved_regs[IA64_RNAT_REGNUM] =
1917 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM);
1918 cache->saved_regs[IA64_CCV_REGNUM] =
1919 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM);
1920 cache->saved_regs[IA64_UNAT_REGNUM] =
1921 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM);
1922 cache->saved_regs[IA64_FPSR_REGNUM] =
1923 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM);
1924 cache->saved_regs[IA64_PFS_REGNUM] =
1925 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM);
1926 cache->saved_regs[IA64_LC_REGNUM] =
1927 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM);
1928 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
4afcc598
JJ
1929 cache->saved_regs[regno] =
1930 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
004d836a
JJ
1931 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
1932 cache->saved_regs[regno] =
1933 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
932644f0 1934 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
004d836a
JJ
1935 cache->saved_regs[regno] =
1936 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
1937 }
1938}
1939
1940static struct ia64_frame_cache *
1941ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1942{
1943 struct ia64_frame_cache *cache;
1944 CORE_ADDR addr;
1945 char buf[8];
1946 int i;
1947
1948 if (*this_cache)
1949 return *this_cache;
1950
1951 cache = ia64_alloc_frame_cache ();
1952
1953 frame_unwind_register (next_frame, sp_regnum, buf);
4afcc598
JJ
1954 /* Note that frame size is hard-coded below. We cannot calculate it
1955 via prologue examination. */
1956 cache->base = extract_unsigned_integer (buf, 8) + 16;
1957
1958 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1959 cache->bsp = extract_unsigned_integer (buf, 8);
1960
1961 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1962 cache->cfm = extract_unsigned_integer (buf, 8);
1963 cache->sof = cache->cfm & 0x7f;
004d836a
JJ
1964
1965 ia64_sigtramp_frame_init_saved_regs (cache);
1966
1967 *this_cache = cache;
1968 return cache;
1969}
1970
1971static void
1972ia64_sigtramp_frame_this_id (struct frame_info *next_frame,
1973 void **this_cache, struct frame_id *this_id)
1974{
1975 struct ia64_frame_cache *cache =
1976 ia64_sigtramp_frame_cache (next_frame, this_cache);
1977
4afcc598
JJ
1978 (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp);
1979 if (gdbarch_debug >= 1)
1980 fprintf_unfiltered (gdb_stdlog,
78ced177
JJ
1981 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1982 paddr_nz (this_id->code_addr),
1983 paddr_nz (this_id->stack_addr),
1984 paddr_nz (cache->bsp), next_frame);
004d836a
JJ
1985}
1986
1987static void
1988ia64_sigtramp_frame_prev_register (struct frame_info *next_frame,
1989 void **this_cache,
1990 int regnum, int *optimizedp,
1991 enum lval_type *lvalp, CORE_ADDR *addrp,
88d82102 1992 int *realnump, gdb_byte *valuep)
004d836a 1993{
4afcc598
JJ
1994 char dummy_valp[MAX_REGISTER_SIZE];
1995 char buf[MAX_REGISTER_SIZE];
1996
1997 struct ia64_frame_cache *cache =
1998 ia64_sigtramp_frame_cache (next_frame, this_cache);
1999
2000 gdb_assert (regnum >= 0);
2001
2002 if (!target_has_registers)
8a3fe4f8 2003 error (_("No registers."));
4afcc598
JJ
2004
2005 *optimizedp = 0;
2006 *addrp = 0;
2007 *lvalp = not_lval;
2008 *realnump = -1;
2009
2010 /* Rather than check each time if valuep is non-null, supply a dummy buffer
2011 when valuep is not supplied. */
2012 if (!valuep)
2013 valuep = dummy_valp;
2014
2015 memset (valuep, 0, register_size (current_gdbarch, regnum));
2016
2017 if (regnum == IA64_IP_REGNUM)
2018 {
2019 CORE_ADDR pc = 0;
2020 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2021
2022 if (addr != 0)
2023 {
2024 *lvalp = lval_memory;
2025 *addrp = addr;
2026 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
2027 pc = extract_unsigned_integer (buf, 8);
2028 }
2029 pc &= ~0xf;
2030 store_unsigned_integer (valuep, 8, pc);
2031 }
2032 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
2033 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2034 {
2035 CORE_ADDR addr = 0;
2036 if (regnum >= V32_REGNUM)
2037 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2038 addr = cache->saved_regs[regnum];
2039 if (addr != 0)
2040 {
2041 *lvalp = lval_memory;
2042 *addrp = addr;
2043 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
2044 }
2045 }
2046 else
2047 {
2048 /* All other registers not listed above. */
2049 CORE_ADDR addr = cache->saved_regs[regnum];
2050 if (addr != 0)
2051 {
2052 *lvalp = lval_memory;
2053 *addrp = addr;
2054 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
2055 }
2056 }
004d836a 2057
4afcc598
JJ
2058 if (gdbarch_debug >= 1)
2059 fprintf_unfiltered (gdb_stdlog,
78ced177 2060 "sigtramp prev register <%s> is 0x%s\n",
c5a27d9c
JJ
2061 (regnum < IA64_GR32_REGNUM
2062 || (regnum > IA64_GR127_REGNUM
2063 && regnum < LAST_PSEUDO_REGNUM))
2064 ? ia64_register_names[regnum]
2065 : (regnum < LAST_PSEUDO_REGNUM
2066 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2067 : "OUT_OF_RANGE"),
78ced177 2068 paddr_nz (extract_unsigned_integer (valuep, 8)));
004d836a
JJ
2069}
2070
2071static const struct frame_unwind ia64_sigtramp_frame_unwind =
2072{
2073 SIGTRAMP_FRAME,
2074 ia64_sigtramp_frame_this_id,
2075 ia64_sigtramp_frame_prev_register
2076};
2077
2078static const struct frame_unwind *
2079ia64_sigtramp_frame_sniffer (struct frame_info *next_frame)
2080{
74174d2e
UW
2081 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
2082 if (tdep->pc_in_sigtramp)
2083 {
2084 CORE_ADDR pc = frame_pc_unwind (next_frame);
004d836a 2085
74174d2e
UW
2086 if (tdep->pc_in_sigtramp (pc))
2087 return &ia64_sigtramp_frame_unwind;
2088 }
004d836a
JJ
2089
2090 return NULL;
2091}
2092\f
2093
2094static CORE_ADDR
2095ia64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2096{
2097 struct ia64_frame_cache *cache =
2098 ia64_frame_cache (next_frame, this_cache);
2099
2100 return cache->base;
2101}
2102
2103static const struct frame_base ia64_frame_base =
2104{
2105 &ia64_frame_unwind,
2106 ia64_frame_base_address,
2107 ia64_frame_base_address,
2108 ia64_frame_base_address
2109};
16461d7d 2110
968d1cb4
JJ
2111#ifdef HAVE_LIBUNWIND_IA64_H
2112
2113struct ia64_unwind_table_entry
2114 {
2115 unw_word_t start_offset;
2116 unw_word_t end_offset;
2117 unw_word_t info_offset;
2118 };
2119
2120static __inline__ uint64_t
2121ia64_rse_slot_num (uint64_t addr)
2122{
2123 return (addr >> 3) & 0x3f;
2124}
2125
2126/* Skip over a designated number of registers in the backing
2127 store, remembering every 64th position is for NAT. */
2128static __inline__ uint64_t
2129ia64_rse_skip_regs (uint64_t addr, long num_regs)
2130{
2131 long delta = ia64_rse_slot_num(addr) + num_regs;
2132
2133 if (num_regs < 0)
2134 delta -= 0x3e;
2135 return addr + ((num_regs + delta/0x3f) << 3);
2136}
2137
2138/* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2139 number to a libunwind register number. */
2140static int
2141ia64_gdb2uw_regnum (int regnum)
2142{
2143 if (regnum == sp_regnum)
2144 return UNW_IA64_SP;
2145 else if (regnum == IA64_BSP_REGNUM)
2146 return UNW_IA64_BSP;
2147 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2148 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2149 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2150 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2151 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2152 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2153 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2154 return -1;
2155 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2156 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2157 else if (regnum == IA64_PR_REGNUM)
2158 return UNW_IA64_PR;
2159 else if (regnum == IA64_IP_REGNUM)
2160 return UNW_REG_IP;
2161 else if (regnum == IA64_CFM_REGNUM)
2162 return UNW_IA64_CFM;
2163 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2164 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2165 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2166 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2167 else
2168 return -1;
2169}
2170
2171/* Gdb libunwind-frame callback function to convert from a libunwind register
2172 number to a ia64 gdb register number. */
2173static int
2174ia64_uw2gdb_regnum (int uw_regnum)
2175{
2176 if (uw_regnum == UNW_IA64_SP)
2177 return sp_regnum;
2178 else if (uw_regnum == UNW_IA64_BSP)
2179 return IA64_BSP_REGNUM;
2180 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2181 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2182 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2183 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2184 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2185 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2186 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2187 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2188 else if (uw_regnum == UNW_IA64_PR)
2189 return IA64_PR_REGNUM;
2190 else if (uw_regnum == UNW_REG_IP)
2191 return IA64_IP_REGNUM;
2192 else if (uw_regnum == UNW_IA64_CFM)
2193 return IA64_CFM_REGNUM;
2194 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2195 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2196 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2197 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2198 else
2199 return -1;
2200}
2201
2202/* Gdb libunwind-frame callback function to reveal if register is a float
2203 register or not. */
2204static int
2205ia64_is_fpreg (int uw_regnum)
2206{
2207 return unw_is_fpreg (uw_regnum);
2208}
2209
2210/* Libunwind callback accessor function for general registers. */
2211static int
2212ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2213 int write, void *arg)
2214{
2215 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2216 unw_word_t bsp, sof, sol, cfm, psr, ip;
2217 struct frame_info *next_frame = arg;
2218 long new_sof, old_sof;
2219 char buf[MAX_REGISTER_SIZE];
2220
45ecac4b
UW
2221 /* We never call any libunwind routines that need to write registers. */
2222 gdb_assert (!write);
968d1cb4 2223
45ecac4b 2224 switch (uw_regnum)
968d1cb4 2225 {
45ecac4b
UW
2226 case UNW_REG_IP:
2227 /* Libunwind expects to see the pc value which means the slot number
2228 from the psr must be merged with the ip word address. */
2229 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
2230 ip = extract_unsigned_integer (buf, 8);
2231 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
2232 psr = extract_unsigned_integer (buf, 8);
2233 *val = ip | ((psr >> 41) & 0x3);
2234 break;
2235
2236 case UNW_IA64_AR_BSP:
2237 /* Libunwind expects to see the beginning of the current register
2238 frame so we must account for the fact that ptrace() will return a value
2239 for bsp that points *after* the current register frame. */
2240 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2241 bsp = extract_unsigned_integer (buf, 8);
2242 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2243 cfm = extract_unsigned_integer (buf, 8);
2244 sof = (cfm & 0x7f);
2245 *val = ia64_rse_skip_regs (bsp, -sof);
2246 break;
968d1cb4 2247
45ecac4b
UW
2248 case UNW_IA64_AR_BSPSTORE:
2249 /* Libunwind wants bspstore to be after the current register frame.
2250 This is what ptrace() and gdb treats as the regular bsp value. */
2251 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2252 *val = extract_unsigned_integer (buf, 8);
2253 break;
2254
2255 default:
2256 /* For all other registers, just unwind the value directly. */
2257 frame_unwind_register (next_frame, regnum, buf);
2258 *val = extract_unsigned_integer (buf, 8);
2259 break;
968d1cb4 2260 }
45ecac4b
UW
2261
2262 if (gdbarch_debug >= 1)
2263 fprintf_unfiltered (gdb_stdlog,
2264 " access_reg: from cache: %4s=0x%s\n",
2265 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2266 ? ia64_register_names[regnum] : "r??"),
2267 paddr_nz (*val));
968d1cb4
JJ
2268 return 0;
2269}
2270
2271/* Libunwind callback accessor function for floating-point registers. */
2272static int
2273ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2274 int write, void *arg)
2275{
2276 int regnum = ia64_uw2gdb_regnum (uw_regnum);
45ecac4b 2277 struct frame_info *next_frame = arg;
968d1cb4 2278
45ecac4b
UW
2279 /* We never call any libunwind routines that need to write registers. */
2280 gdb_assert (!write);
2281
2282 frame_unwind_register (next_frame, regnum, (char *) val);
2283
968d1cb4
JJ
2284 return 0;
2285}
2286
c5a27d9c
JJ
2287/* Libunwind callback accessor function for top-level rse registers. */
2288static int
2289ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2290 int write, void *arg)
2291{
2292 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2293 unw_word_t bsp, sof, sol, cfm, psr, ip;
45ecac4b 2294 struct regcache *regcache = arg;
c5a27d9c 2295 long new_sof, old_sof;
45ecac4b 2296 char buf[MAX_REGISTER_SIZE];
c5a27d9c 2297
45ecac4b
UW
2298 /* We never call any libunwind routines that need to write registers. */
2299 gdb_assert (!write);
c5a27d9c 2300
45ecac4b 2301 switch (uw_regnum)
c5a27d9c 2302 {
45ecac4b
UW
2303 case UNW_REG_IP:
2304 /* Libunwind expects to see the pc value which means the slot number
2305 from the psr must be merged with the ip word address. */
2306 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2307 ip = extract_unsigned_integer (buf, 8);
2308 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2309 psr = extract_unsigned_integer (buf, 8);
2310 *val = ip | ((psr >> 41) & 0x3);
2311 break;
c5a27d9c 2312
45ecac4b
UW
2313 case UNW_IA64_AR_BSP:
2314 /* Libunwind expects to see the beginning of the current register
2315 frame so we must account for the fact that ptrace() will return a value
2316 for bsp that points *after* the current register frame. */
2317 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2318 bsp = extract_unsigned_integer (buf, 8);
2319 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2320 cfm = extract_unsigned_integer (buf, 8);
2321 sof = (cfm & 0x7f);
2322 *val = ia64_rse_skip_regs (bsp, -sof);
2323 break;
c5a27d9c 2324
45ecac4b
UW
2325 case UNW_IA64_AR_BSPSTORE:
2326 /* Libunwind wants bspstore to be after the current register frame.
2327 This is what ptrace() and gdb treats as the regular bsp value. */
2328 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2329 *val = extract_unsigned_integer (buf, 8);
2330 break;
c5a27d9c 2331
45ecac4b
UW
2332 default:
2333 /* For all other registers, just unwind the value directly. */
2334 regcache_cooked_read (regcache, regnum, buf);
2335 *val = extract_unsigned_integer (buf, 8);
2336 break;
c5a27d9c
JJ
2337 }
2338
2339 if (gdbarch_debug >= 1)
2340 fprintf_unfiltered (gdb_stdlog,
2341 " access_rse_reg: from cache: %4s=0x%s\n",
2342 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2343 ? ia64_register_names[regnum] : "r??"),
2344 paddr_nz (*val));
2345
2346 return 0;
2347}
2348
45ecac4b
UW
2349/* Libunwind callback accessor function for top-level fp registers. */
2350static int
2351ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2352 unw_fpreg_t *val, int write, void *arg)
2353{
2354 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2355 struct regcache *regcache = arg;
2356
2357 /* We never call any libunwind routines that need to write registers. */
2358 gdb_assert (!write);
2359
2360 regcache_cooked_read (regcache, regnum, (char *) val);
2361
2362 return 0;
2363}
2364
968d1cb4
JJ
2365/* Libunwind callback accessor function for accessing memory. */
2366static int
2367ia64_access_mem (unw_addr_space_t as,
2368 unw_word_t addr, unw_word_t *val,
2369 int write, void *arg)
2370{
c5a27d9c
JJ
2371 if (addr - KERNEL_START < ktab_size)
2372 {
2373 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2374 + (addr - KERNEL_START));
2375
2376 if (write)
2377 *laddr = *val;
2378 else
2379 *val = *laddr;
2380 return 0;
2381 }
2382
968d1cb4
JJ
2383 /* XXX do we need to normalize byte-order here? */
2384 if (write)
2385 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2386 else
2387 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2388}
2389
2390/* Call low-level function to access the kernel unwind table. */
13547ab6
DJ
2391static LONGEST
2392getunwind_table (gdb_byte **buf_p)
968d1cb4
JJ
2393{
2394 LONGEST x;
c5a27d9c 2395
10d6c8cd
DJ
2396 /* FIXME drow/2005-09-10: This code used to call
2397 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2398 for the currently running ia64-linux kernel. That data should
2399 come from the core file and be accessed via the auxv vector; if
2400 we want to preserve fall back to the running kernel's table, then
2401 we should find a way to override the corefile layer's
2402 xfer_partial method. */
968d1cb4 2403
13547ab6
DJ
2404 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2405 NULL, buf_p);
2406
2407 return x;
968d1cb4 2408}
10d6c8cd 2409
968d1cb4
JJ
2410/* Get the kernel unwind table. */
2411static int
2412get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2413{
c5a27d9c 2414 static struct ia64_table_entry *etab;
968d1cb4 2415
c5a27d9c 2416 if (!ktab)
968d1cb4 2417 {
13547ab6 2418 gdb_byte *ktab_buf;
eeec829c 2419 LONGEST size;
13547ab6 2420
eeec829c
DJ
2421 size = getunwind_table (&ktab_buf);
2422 if (size <= 0)
13547ab6 2423 return -UNW_ENOINFO;
eeec829c
DJ
2424
2425 ktab = (struct ia64_table_entry *) ktab_buf;
2426 ktab_size = size;
13547ab6 2427
968d1cb4 2428 for (etab = ktab; etab->start_offset; ++etab)
c5a27d9c 2429 etab->info_offset += KERNEL_START;
968d1cb4
JJ
2430 }
2431
2432 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2433 return -UNW_ENOINFO;
2434
2435 di->format = UNW_INFO_FORMAT_TABLE;
2436 di->gp = 0;
2437 di->start_ip = ktab[0].start_offset;
2438 di->end_ip = etab[-1].end_offset;
2439 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2440 di->u.ti.segbase = 0;
2441 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2442 di->u.ti.table_data = (unw_word_t *) ktab;
2443
2444 if (gdbarch_debug >= 1)
2445 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
78ced177
JJ
2446 "segbase=0x%s, length=%s, gp=0x%s\n",
2447 (char *) di->u.ti.name_ptr,
2448 paddr_nz (di->u.ti.segbase),
2449 paddr_u (di->u.ti.table_len),
2450 paddr_nz (di->gp));
968d1cb4
JJ
2451 return 0;
2452}
2453
2454/* Find the unwind table entry for a specified address. */
2455static int
2456ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2457 unw_dyn_info_t *dip, void **buf)
2458{
2459 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2460 Elf_Internal_Ehdr *ehdr;
2461 unw_word_t segbase = 0;
2462 CORE_ADDR load_base;
2463 bfd *bfd;
2464 int i;
2465
2466 bfd = objfile->obfd;
2467
2468 ehdr = elf_tdata (bfd)->elf_header;
2469 phdr = elf_tdata (bfd)->phdr;
2470
2471 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2472
2473 for (i = 0; i < ehdr->e_phnum; ++i)
2474 {
2475 switch (phdr[i].p_type)
2476 {
2477 case PT_LOAD:
2478 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2479 < phdr[i].p_memsz)
2480 p_text = phdr + i;
2481 break;
2482
2483 case PT_IA_64_UNWIND:
2484 p_unwind = phdr + i;
2485 break;
2486
2487 default:
2488 break;
2489 }
2490 }
2491
c5a27d9c 2492 if (!p_text || !p_unwind)
968d1cb4
JJ
2493 return -UNW_ENOINFO;
2494
c5a27d9c
JJ
2495 /* Verify that the segment that contains the IP also contains
2496 the static unwind table. If not, we may be in the Linux kernel's
2497 DSO gate page in which case the unwind table is another segment.
2498 Otherwise, we are dealing with runtime-generated code, for which we
2499 have no info here. */
968d1cb4
JJ
2500 segbase = p_text->p_vaddr + load_base;
2501
c5a27d9c
JJ
2502 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2503 {
2504 int ok = 0;
2505 for (i = 0; i < ehdr->e_phnum; ++i)
2506 {
2507 if (phdr[i].p_type == PT_LOAD
2508 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2509 {
2510 ok = 1;
2511 /* Get the segbase from the section containing the
2512 libunwind table. */
2513 segbase = phdr[i].p_vaddr + load_base;
2514 }
2515 }
2516 if (!ok)
2517 return -UNW_ENOINFO;
2518 }
2519
2520 dip->start_ip = p_text->p_vaddr + load_base;
968d1cb4 2521 dip->end_ip = dip->start_ip + p_text->p_memsz;
b33e8514 2522 dip->gp = ia64_find_global_pointer (ip);
503ff15d
KB
2523 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2524 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2525 dip->u.rti.segbase = segbase;
2526 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2527 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
968d1cb4
JJ
2528
2529 return 0;
2530}
2531
2532/* Libunwind callback accessor function to acquire procedure unwind-info. */
2533static int
2534ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2535 int need_unwind_info, void *arg)
2536{
2537 struct obj_section *sec = find_pc_section (ip);
2538 unw_dyn_info_t di;
2539 int ret;
2540 void *buf = NULL;
2541
2542 if (!sec)
2543 {
2544 /* XXX This only works if the host and the target architecture are
2545 both ia64 and if the have (more or less) the same kernel
2546 version. */
2547 if (get_kernel_table (ip, &di) < 0)
2548 return -UNW_ENOINFO;
503ff15d
KB
2549
2550 if (gdbarch_debug >= 1)
78ced177
JJ
2551 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2552 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2553 "length=%s,data=0x%s)\n",
2554 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2555 paddr_nz (di.u.ti.segbase),
2556 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2557 paddr_nz (di.gp),
2558 paddr_u (di.u.ti.table_len),
2559 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
968d1cb4
JJ
2560 }
2561 else
2562 {
2563 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2564 if (ret < 0)
2565 return ret;
968d1cb4 2566
503ff15d 2567 if (gdbarch_debug >= 1)
78ced177
JJ
2568 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2569 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2570 "length=%s,data=0x%s)\n",
2571 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2572 paddr_nz (di.u.rti.segbase),
2573 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2574 paddr_nz (di.gp),
2575 paddr_u (di.u.rti.table_len),
2576 paddr_nz (di.u.rti.table_data));
503ff15d 2577 }
968d1cb4 2578
503ff15d
KB
2579 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2580 arg);
968d1cb4
JJ
2581
2582 /* We no longer need the dyn info storage so free it. */
2583 xfree (buf);
2584
2585 return ret;
2586}
2587
2588/* Libunwind callback accessor function for cleanup. */
2589static void
2590ia64_put_unwind_info (unw_addr_space_t as,
2591 unw_proc_info_t *pip, void *arg)
2592{
2593 /* Nothing required for now. */
2594}
2595
2596/* Libunwind callback accessor function to get head of the dynamic
2597 unwind-info registration list. */
2598static int
2599ia64_get_dyn_info_list (unw_addr_space_t as,
2600 unw_word_t *dilap, void *arg)
2601{
2602 struct obj_section *text_sec;
2603 struct objfile *objfile;
2604 unw_word_t ip, addr;
2605 unw_dyn_info_t di;
2606 int ret;
2607
2608 if (!libunwind_is_initialized ())
2609 return -UNW_ENOINFO;
2610
2611 for (objfile = object_files; objfile; objfile = objfile->next)
2612 {
2613 void *buf = NULL;
2614
2615 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2616 ip = text_sec->addr;
2617 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2618 if (ret >= 0)
2619 {
503ff15d 2620 addr = libunwind_find_dyn_list (as, &di, arg);
968d1cb4
JJ
2621 /* We no longer need the dyn info storage so free it. */
2622 xfree (buf);
2623
2624 if (addr)
2625 {
2626 if (gdbarch_debug >= 1)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "dynamic unwind table in objfile %s "
78ced177 2629 "at 0x%s (gp=0x%s)\n",
968d1cb4 2630 bfd_get_filename (objfile->obfd),
78ced177 2631 paddr_nz (addr), paddr_nz (di.gp));
968d1cb4
JJ
2632 *dilap = addr;
2633 return 0;
2634 }
2635 }
2636 }
2637 return -UNW_ENOINFO;
2638}
2639
2640
2641/* Frame interface functions for libunwind. */
2642
2643static void
2644ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache,
7166c4a9 2645 struct frame_id *this_id)
968d1cb4
JJ
2646{
2647 char buf[8];
2648 CORE_ADDR bsp;
2649 struct frame_id id;
c5a27d9c
JJ
2650 CORE_ADDR prev_ip, addr;
2651 int realnum, optimized;
2652 enum lval_type lval;
2653
968d1cb4
JJ
2654
2655 libunwind_frame_this_id (next_frame, this_cache, &id);
c5a27d9c
JJ
2656 if (frame_id_eq (id, null_frame_id))
2657 {
2658 (*this_id) = null_frame_id;
2659 return;
2660 }
968d1cb4 2661
c5a27d9c
JJ
2662 /* We must add the bsp as the special address for frame comparison
2663 purposes. */
968d1cb4
JJ
2664 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2665 bsp = extract_unsigned_integer (buf, 8);
2666
c5a27d9c
JJ
2667 /* If the previous frame pc value is 0, then we are at the end of the stack
2668 and don't want to unwind past this frame. We return a null frame_id to
2669 indicate this. */
2670 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
f1b4b38e
AS
2671 &optimized, &lval, &addr, &realnum, buf);
2672 prev_ip = extract_unsigned_integer (buf, 8);
c5a27d9c
JJ
2673
2674 if (prev_ip != 0)
2675 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2676 else
2677 (*this_id) = null_frame_id;
968d1cb4
JJ
2678
2679 if (gdbarch_debug >= 1)
2680 fprintf_unfiltered (gdb_stdlog,
78ced177
JJ
2681 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2682 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2683 paddr_nz (bsp), next_frame);
968d1cb4
JJ
2684}
2685
2686static void
2687ia64_libunwind_frame_prev_register (struct frame_info *next_frame,
2688 void **this_cache,
2689 int regnum, int *optimizedp,
2690 enum lval_type *lvalp, CORE_ADDR *addrp,
88d82102 2691 int *realnump, gdb_byte *valuep)
968d1cb4
JJ
2692{
2693 int reg = regnum;
2694
2695 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2696 reg = IA64_PR_REGNUM;
2697 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2698 reg = IA64_UNAT_REGNUM;
2699
2700 /* Let libunwind do most of the work. */
2701 libunwind_frame_prev_register (next_frame, this_cache, reg,
2702 optimizedp, lvalp, addrp, realnump, valuep);
2703
6672f2ae
AS
2704 /* No more to do if the value is not supposed to be supplied. */
2705 if (!valuep)
2706 return;
2707
968d1cb4
JJ
2708 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2709 {
2710 ULONGEST prN_val;
2711
2712 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2713 {
2714 int rrb_pr = 0;
2715 ULONGEST cfm;
2716 unsigned char buf[MAX_REGISTER_SIZE];
2717
2718 /* Fetch predicate register rename base from current frame
2719 marker for this frame. */
2720 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2721 cfm = extract_unsigned_integer (buf, 8);
2722 rrb_pr = (cfm >> 32) & 0x3f;
2723
2724 /* Adjust the register number to account for register rotation. */
2725 regnum = VP16_REGNUM
2726 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2727 }
2728 prN_val = extract_bit_field ((unsigned char *) valuep,
2729 regnum - VP0_REGNUM, 1);
2730 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val);
2731 }
2732 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2733 {
2734 ULONGEST unatN_val;
2735
2736 unatN_val = extract_bit_field ((unsigned char *) valuep,
2737 regnum - IA64_NAT0_REGNUM, 1);
2738 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
2739 unatN_val);
2740 }
2741 else if (regnum == IA64_BSP_REGNUM)
2742 {
2743 char cfm_valuep[MAX_REGISTER_SIZE];
2744 int cfm_optim;
2745 int cfm_realnum;
2746 enum lval_type cfm_lval;
2747 CORE_ADDR cfm_addr;
2748 CORE_ADDR bsp, prev_cfm, prev_bsp;
2749
2750 /* We want to calculate the previous bsp as the end of the previous register stack frame.
2751 This corresponds to what the hardware bsp register will be if we pop the frame
2752 back which is why we might have been called. We know that libunwind will pass us back
2753 the beginning of the current frame so we should just add sof to it. */
2754 prev_bsp = extract_unsigned_integer (valuep, 8);
2755 libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
2756 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
2757 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
2758 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2759
2760 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
2761 prev_bsp);
2762 }
2763
2764 if (gdbarch_debug >= 1)
2765 fprintf_unfiltered (gdb_stdlog,
78ced177 2766 "libunwind prev register <%s> is 0x%s\n",
c5a27d9c
JJ
2767 (regnum < IA64_GR32_REGNUM
2768 || (regnum > IA64_GR127_REGNUM
2769 && regnum < LAST_PSEUDO_REGNUM))
2770 ? ia64_register_names[regnum]
2771 : (regnum < LAST_PSEUDO_REGNUM
2772 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2773 : "OUT_OF_RANGE"),
78ced177 2774 paddr_nz (extract_unsigned_integer (valuep, 8)));
968d1cb4
JJ
2775}
2776
2777static const struct frame_unwind ia64_libunwind_frame_unwind =
2778{
2779 NORMAL_FRAME,
2780 ia64_libunwind_frame_this_id,
2781 ia64_libunwind_frame_prev_register
2782};
2783
2784static const struct frame_unwind *
2785ia64_libunwind_frame_sniffer (struct frame_info *next_frame)
2786{
2787 if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame))
2788 return &ia64_libunwind_frame_unwind;
2789
2790 return NULL;
2791}
2792
c5a27d9c
JJ
2793static void
2794ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
2795 struct frame_id *this_id)
2796{
2797 char buf[8];
2798 CORE_ADDR bsp;
2799 struct frame_id id;
2800 CORE_ADDR prev_ip;
2801
2802 libunwind_frame_this_id (next_frame, this_cache, &id);
2803 if (frame_id_eq (id, null_frame_id))
2804 {
2805 (*this_id) = null_frame_id;
2806 return;
2807 }
2808
2809 /* We must add the bsp as the special address for frame comparison
2810 purposes. */
2811 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2812 bsp = extract_unsigned_integer (buf, 8);
2813
2814 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2815 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2816
2817 if (gdbarch_debug >= 1)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2820 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2821 paddr_nz (bsp), next_frame);
2822}
2823
2824static void
2825ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame,
2826 void **this_cache,
2827 int regnum, int *optimizedp,
2828 enum lval_type *lvalp, CORE_ADDR *addrp,
88d82102 2829 int *realnump, gdb_byte *valuep)
c5a27d9c
JJ
2830
2831{
f1b4b38e 2832 gdb_byte buf[8];
c5a27d9c
JJ
2833 CORE_ADDR prev_ip, addr;
2834 int realnum, optimized;
2835 enum lval_type lval;
2836
2837
2838 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2839 method of getting previous registers. */
2840 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
f1b4b38e
AS
2841 &optimized, &lval, &addr, &realnum, buf);
2842 prev_ip = extract_unsigned_integer (buf, 8);
c5a27d9c
JJ
2843
2844 if (prev_ip == 0)
2845 {
2846 void *tmp_cache = NULL;
2847 ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp,
2848 addrp, realnump, valuep);
2849 }
2850 else
2851 ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp,
2852 addrp, realnump, valuep);
2853}
2854
2855static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2856{
2857 SIGTRAMP_FRAME,
2858 ia64_libunwind_sigtramp_frame_this_id,
2859 ia64_libunwind_sigtramp_frame_prev_register
2860};
2861
2862static const struct frame_unwind *
2863ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame)
2864{
2865 if (libunwind_is_initialized ())
2866 {
2867 if (libunwind_sigtramp_frame_sniffer (next_frame))
2868 return &ia64_libunwind_sigtramp_frame_unwind;
2869 return NULL;
2870 }
2871 else
2872 return ia64_sigtramp_frame_sniffer (next_frame);
2873}
2874
968d1cb4
JJ
2875/* Set of libunwind callback acccessor functions. */
2876static unw_accessors_t ia64_unw_accessors =
2877{
2878 ia64_find_proc_info_x,
2879 ia64_put_unwind_info,
2880 ia64_get_dyn_info_list,
2881 ia64_access_mem,
2882 ia64_access_reg,
2883 ia64_access_fpreg,
2884 /* resume */
2885 /* get_proc_name */
2886};
2887
c5a27d9c
JJ
2888/* Set of special libunwind callback acccessor functions specific for accessing
2889 the rse registers. At the top of the stack, we want libunwind to figure out
2890 how to read r32 - r127. Though usually they are found sequentially in memory
2891 starting from $bof, this is not always true. */
2892static unw_accessors_t ia64_unw_rse_accessors =
2893{
2894 ia64_find_proc_info_x,
2895 ia64_put_unwind_info,
2896 ia64_get_dyn_info_list,
2897 ia64_access_mem,
2898 ia64_access_rse_reg,
45ecac4b 2899 ia64_access_rse_fpreg,
c5a27d9c
JJ
2900 /* resume */
2901 /* get_proc_name */
2902};
2903
968d1cb4
JJ
2904/* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2905static struct libunwind_descr ia64_libunwind_descr =
2906{
2907 ia64_gdb2uw_regnum,
2908 ia64_uw2gdb_regnum,
2909 ia64_is_fpreg,
2910 &ia64_unw_accessors,
c5a27d9c 2911 &ia64_unw_rse_accessors,
968d1cb4
JJ
2912};
2913
2914#endif /* HAVE_LIBUNWIND_IA64_H */
2915
74055713
AC
2916/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
2917 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
2918 is the type (which is known to be struct, union or array). */
16461d7d
KB
2919int
2920ia64_use_struct_convention (int gcc_p, struct type *type)
2921{
64a5b29c
KB
2922 struct type *float_elt_type;
2923
2924 /* HFAs are structures (or arrays) consisting entirely of floating
2925 point values of the same length. Up to 8 of these are returned
2926 in registers. Don't use the struct convention when this is the
004d836a 2927 case. */
64a5b29c
KB
2928 float_elt_type = is_float_or_hfa_type (type);
2929 if (float_elt_type != NULL
2930 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2931 return 0;
2932
2933 /* Other structs of length 32 or less are returned in r8-r11.
004d836a 2934 Don't use the struct convention for those either. */
16461d7d
KB
2935 return TYPE_LENGTH (type) > 32;
2936}
2937
2938void
2d522557
AC
2939ia64_extract_return_value (struct type *type, struct regcache *regcache,
2940 gdb_byte *valbuf)
16461d7d 2941{
64a5b29c
KB
2942 struct type *float_elt_type;
2943
2944 float_elt_type = is_float_or_hfa_type (type);
2945 if (float_elt_type != NULL)
2946 {
004d836a 2947 char from[MAX_REGISTER_SIZE];
64a5b29c
KB
2948 int offset = 0;
2949 int regnum = IA64_FR8_REGNUM;
2950 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2951
2952 while (n-- > 0)
2953 {
004d836a
JJ
2954 regcache_cooked_read (regcache, regnum, from);
2955 convert_typed_floating (from, builtin_type_ia64_ext,
2956 (char *)valbuf + offset, float_elt_type);
64a5b29c
KB
2957 offset += TYPE_LENGTH (float_elt_type);
2958 regnum++;
2959 }
2960 }
16461d7d 2961 else
004d836a
JJ
2962 {
2963 ULONGEST val;
2964 int offset = 0;
2965 int regnum = IA64_GR8_REGNUM;
7b9ee6a8
DJ
2966 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
2967 IA64_GR8_REGNUM));
004d836a
JJ
2968 int n = TYPE_LENGTH (type) / reglen;
2969 int m = TYPE_LENGTH (type) % reglen;
16461d7d 2970
004d836a
JJ
2971 while (n-- > 0)
2972 {
2973 ULONGEST val;
2974 regcache_cooked_read_unsigned (regcache, regnum, &val);
2975 memcpy ((char *)valbuf + offset, &val, reglen);
2976 offset += reglen;
2977 regnum++;
2978 }
16461d7d 2979
004d836a
JJ
2980 if (m)
2981 {
2982 regcache_cooked_read_unsigned (regcache, regnum, &val);
2983 memcpy ((char *)valbuf + offset, &val, m);
2984 }
2985 }
16461d7d
KB
2986}
2987
2988CORE_ADDR
004d836a 2989ia64_extract_struct_value_address (struct regcache *regcache)
16461d7d 2990{
8a3fe4f8 2991 error (_("ia64_extract_struct_value_address called and cannot get struct value address"));
004d836a 2992 return 0;
16461d7d
KB
2993}
2994
16461d7d 2995
64a5b29c
KB
2996static int
2997is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
2998{
2999 switch (TYPE_CODE (t))
3000 {
3001 case TYPE_CODE_FLT:
3002 if (*etp)
3003 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3004 else
3005 {
3006 *etp = t;
3007 return 1;
3008 }
3009 break;
3010 case TYPE_CODE_ARRAY:
98f96ba1
KB
3011 return
3012 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3013 etp);
64a5b29c
KB
3014 break;
3015 case TYPE_CODE_STRUCT:
3016 {
3017 int i;
3018
3019 for (i = 0; i < TYPE_NFIELDS (t); i++)
98f96ba1
KB
3020 if (!is_float_or_hfa_type_recurse
3021 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
64a5b29c
KB
3022 return 0;
3023 return 1;
3024 }
3025 break;
3026 default:
3027 return 0;
3028 break;
3029 }
3030}
3031
3032/* Determine if the given type is one of the floating point types or
3033 and HFA (which is a struct, array, or combination thereof whose
004d836a 3034 bottom-most elements are all of the same floating point type). */
64a5b29c
KB
3035
3036static struct type *
3037is_float_or_hfa_type (struct type *t)
3038{
3039 struct type *et = 0;
3040
3041 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3042}
3043
3044
98f96ba1
KB
3045/* Return 1 if the alignment of T is such that the next even slot
3046 should be used. Return 0, if the next available slot should
3047 be used. (See section 8.5.1 of the IA-64 Software Conventions
004d836a 3048 and Runtime manual). */
98f96ba1
KB
3049
3050static int
3051slot_alignment_is_next_even (struct type *t)
3052{
3053 switch (TYPE_CODE (t))
3054 {
3055 case TYPE_CODE_INT:
3056 case TYPE_CODE_FLT:
3057 if (TYPE_LENGTH (t) > 8)
3058 return 1;
3059 else
3060 return 0;
3061 case TYPE_CODE_ARRAY:
3062 return
3063 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3064 case TYPE_CODE_STRUCT:
3065 {
3066 int i;
3067
3068 for (i = 0; i < TYPE_NFIELDS (t); i++)
3069 if (slot_alignment_is_next_even
3070 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3071 return 1;
3072 return 0;
3073 }
3074 default:
3075 return 0;
3076 }
3077}
3078
64a5b29c
KB
3079/* Attempt to find (and return) the global pointer for the given
3080 function.
3081
3082 This is a rather nasty bit of code searchs for the .dynamic section
3083 in the objfile corresponding to the pc of the function we're trying
3084 to call. Once it finds the addresses at which the .dynamic section
3085 lives in the child process, it scans the Elf64_Dyn entries for a
3086 DT_PLTGOT tag. If it finds one of these, the corresponding
3087 d_un.d_ptr value is the global pointer. */
3088
3089static CORE_ADDR
b33e8514 3090ia64_find_global_pointer (CORE_ADDR faddr)
64a5b29c 3091{
76d689a6 3092 struct obj_section *faddr_sect;
64a5b29c 3093
76d689a6
KB
3094 faddr_sect = find_pc_section (faddr);
3095 if (faddr_sect != NULL)
64a5b29c
KB
3096 {
3097 struct obj_section *osect;
3098
76d689a6 3099 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
64a5b29c
KB
3100 {
3101 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3102 break;
3103 }
3104
76d689a6 3105 if (osect < faddr_sect->objfile->sections_end)
64a5b29c
KB
3106 {
3107 CORE_ADDR addr;
3108
3109 addr = osect->addr;
3110 while (addr < osect->endaddr)
3111 {
3112 int status;
3113 LONGEST tag;
3114 char buf[8];
3115
3116 status = target_read_memory (addr, buf, sizeof (buf));
3117 if (status != 0)
3118 break;
3119 tag = extract_signed_integer (buf, sizeof (buf));
3120
3121 if (tag == DT_PLTGOT)
3122 {
3123 CORE_ADDR global_pointer;
3124
3125 status = target_read_memory (addr + 8, buf, sizeof (buf));
3126 if (status != 0)
3127 break;
7c0b4a20 3128 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
64a5b29c
KB
3129
3130 /* The payoff... */
3131 return global_pointer;
3132 }
3133
3134 if (tag == DT_NULL)
3135 break;
3136
3137 addr += 16;
3138 }
3139 }
3140 }
3141 return 0;
3142}
3143
3144/* Given a function's address, attempt to find (and return) the
3145 corresponding (canonical) function descriptor. Return 0 if
004d836a 3146 not found. */
64a5b29c
KB
3147static CORE_ADDR
3148find_extant_func_descr (CORE_ADDR faddr)
3149{
76d689a6 3150 struct obj_section *faddr_sect;
64a5b29c 3151
004d836a 3152 /* Return early if faddr is already a function descriptor. */
76d689a6
KB
3153 faddr_sect = find_pc_section (faddr);
3154 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
64a5b29c
KB
3155 return faddr;
3156
76d689a6 3157 if (faddr_sect != NULL)
64a5b29c 3158 {
76d689a6
KB
3159 struct obj_section *osect;
3160 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
64a5b29c
KB
3161 {
3162 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3163 break;
3164 }
3165
76d689a6 3166 if (osect < faddr_sect->objfile->sections_end)
64a5b29c
KB
3167 {
3168 CORE_ADDR addr;
3169
3170 addr = osect->addr;
3171 while (addr < osect->endaddr)
3172 {
3173 int status;
3174 LONGEST faddr2;
3175 char buf[8];
3176
3177 status = target_read_memory (addr, buf, sizeof (buf));
3178 if (status != 0)
3179 break;
3180 faddr2 = extract_signed_integer (buf, sizeof (buf));
3181
3182 if (faddr == faddr2)
3183 return addr;
3184
3185 addr += 16;
3186 }
3187 }
3188 }
3189 return 0;
3190}
3191
3192/* Attempt to find a function descriptor corresponding to the
3193 given address. If none is found, construct one on the
004d836a 3194 stack using the address at fdaptr. */
64a5b29c
KB
3195
3196static CORE_ADDR
3197find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr)
3198{
3199 CORE_ADDR fdesc;
3200
3201 fdesc = find_extant_func_descr (faddr);
3202
3203 if (fdesc == 0)
3204 {
3205 CORE_ADDR global_pointer;
3206 char buf[16];
3207
3208 fdesc = *fdaptr;
3209 *fdaptr += 16;
3210
b33e8514 3211 global_pointer = ia64_find_global_pointer (faddr);
64a5b29c
KB
3212
3213 if (global_pointer == 0)
3214 global_pointer = read_register (IA64_GR1_REGNUM);
3215
fbd9dcd3
AC
3216 store_unsigned_integer (buf, 8, faddr);
3217 store_unsigned_integer (buf + 8, 8, global_pointer);
64a5b29c
KB
3218
3219 write_memory (fdesc, buf, 16);
3220 }
3221
3222 return fdesc;
3223}
16461d7d 3224
af8b88dd
JJ
3225/* Use the following routine when printing out function pointers
3226 so the user can see the function address rather than just the
3227 function descriptor. */
3228static CORE_ADDR
e2d0e7eb
AC
3229ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3230 struct target_ops *targ)
af8b88dd
JJ
3231{
3232 struct obj_section *s;
3233
3234 s = find_pc_section (addr);
3235
3236 /* check if ADDR points to a function descriptor. */
3237 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3238 return read_memory_unsigned_integer (addr, 8);
3239
0d5de010
DJ
3240 /* There are also descriptors embedded in vtables. */
3241 if (s)
3242 {
3243 struct minimal_symbol *minsym;
3244
3245 minsym = lookup_minimal_symbol_by_pc (addr);
3246
3247 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3248 return read_memory_unsigned_integer (addr, 8);
3249 }
3250
af8b88dd
JJ
3251 return addr;
3252}
3253
a78f21af 3254static CORE_ADDR
004d836a
JJ
3255ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3256{
3257 return sp & ~0xfLL;
3258}
3259
3260static CORE_ADDR
7d9b040b 3261ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8dd5115e
AS
3262 struct regcache *regcache, CORE_ADDR bp_addr,
3263 int nargs, struct value **args, CORE_ADDR sp,
3264 int struct_return, CORE_ADDR struct_addr)
16461d7d
KB
3265{
3266 int argno;
ea7c478f 3267 struct value *arg;
16461d7d
KB
3268 struct type *type;
3269 int len, argoffset;
64a5b29c 3270 int nslots, rseslots, memslots, slotnum, nfuncargs;
16461d7d 3271 int floatreg;
004d836a 3272 CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr, pc, global_pointer;
7d9b040b 3273 CORE_ADDR func_addr = find_function_addr (function, NULL);
16461d7d
KB
3274
3275 nslots = 0;
64a5b29c 3276 nfuncargs = 0;
004d836a 3277 /* Count the number of slots needed for the arguments. */
16461d7d
KB
3278 for (argno = 0; argno < nargs; argno++)
3279 {
3280 arg = args[argno];
4991999e 3281 type = check_typedef (value_type (arg));
16461d7d
KB
3282 len = TYPE_LENGTH (type);
3283
98f96ba1 3284 if ((nslots & 1) && slot_alignment_is_next_even (type))
16461d7d
KB
3285 nslots++;
3286
64a5b29c
KB
3287 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3288 nfuncargs++;
3289
16461d7d
KB
3290 nslots += (len + 7) / 8;
3291 }
3292
004d836a 3293 /* Divvy up the slots between the RSE and the memory stack. */
16461d7d
KB
3294 rseslots = (nslots > 8) ? 8 : nslots;
3295 memslots = nslots - rseslots;
3296
004d836a
JJ
3297 /* Allocate a new RSE frame. */
3298 cfm = read_register (IA64_CFM_REGNUM);
16461d7d 3299
004d836a 3300 bsp = read_register (IA64_BSP_REGNUM);
16461d7d 3301 new_bsp = rse_address_add (bsp, rseslots);
004d836a 3302 write_register (IA64_BSP_REGNUM, new_bsp);
16461d7d 3303
004d836a 3304 pfs = read_register (IA64_PFS_REGNUM);
16461d7d
KB
3305 pfs &= 0xc000000000000000LL;
3306 pfs |= (cfm & 0xffffffffffffLL);
004d836a 3307 write_register (IA64_PFS_REGNUM, pfs);
16461d7d
KB
3308
3309 cfm &= 0xc000000000000000LL;
3310 cfm |= rseslots;
004d836a 3311 write_register (IA64_CFM_REGNUM, cfm);
16461d7d 3312
64a5b29c
KB
3313 /* We will attempt to find function descriptors in the .opd segment,
3314 but if we can't we'll construct them ourselves. That being the
004d836a 3315 case, we'll need to reserve space on the stack for them. */
64a5b29c
KB
3316 funcdescaddr = sp - nfuncargs * 16;
3317 funcdescaddr &= ~0xfLL;
3318
3319 /* Adjust the stack pointer to it's new value. The calling conventions
3320 require us to have 16 bytes of scratch, plus whatever space is
004d836a 3321 necessary for the memory slots and our function descriptors. */
64a5b29c 3322 sp = sp - 16 - (memslots + nfuncargs) * 8;
004d836a 3323 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
16461d7d 3324
64a5b29c
KB
3325 /* Place the arguments where they belong. The arguments will be
3326 either placed in the RSE backing store or on the memory stack.
3327 In addition, floating point arguments or HFAs are placed in
004d836a 3328 floating point registers. */
16461d7d
KB
3329 slotnum = 0;
3330 floatreg = IA64_FR8_REGNUM;
3331 for (argno = 0; argno < nargs; argno++)
3332 {
64a5b29c
KB
3333 struct type *float_elt_type;
3334
16461d7d 3335 arg = args[argno];
4991999e 3336 type = check_typedef (value_type (arg));
16461d7d 3337 len = TYPE_LENGTH (type);
64a5b29c 3338
004d836a 3339 /* Special handling for function parameters. */
64a5b29c
KB
3340 if (len == 8
3341 && TYPE_CODE (type) == TYPE_CODE_PTR
3342 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3343 {
3344 char val_buf[8];
3345
fbd9dcd3 3346 store_unsigned_integer (val_buf, 8,
0fd88904 3347 find_func_descr (extract_unsigned_integer (value_contents (arg), 8),
fbd9dcd3 3348 &funcdescaddr));
64a5b29c
KB
3349 if (slotnum < rseslots)
3350 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3351 else
3352 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3353 slotnum++;
3354 continue;
3355 }
3356
004d836a 3357 /* Normal slots. */
98f96ba1
KB
3358
3359 /* Skip odd slot if necessary... */
3360 if ((slotnum & 1) && slot_alignment_is_next_even (type))
16461d7d 3361 slotnum++;
98f96ba1 3362
16461d7d
KB
3363 argoffset = 0;
3364 while (len > 0)
3365 {
3366 char val_buf[8];
3367
3368 memset (val_buf, 0, 8);
0fd88904 3369 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
16461d7d
KB
3370
3371 if (slotnum < rseslots)
3372 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3373 else
3374 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3375
3376 argoffset += 8;
3377 len -= 8;
3378 slotnum++;
3379 }
64a5b29c 3380
004d836a 3381 /* Handle floating point types (including HFAs). */
64a5b29c
KB
3382 float_elt_type = is_float_or_hfa_type (type);
3383 if (float_elt_type != NULL)
3384 {
3385 argoffset = 0;
3386 len = TYPE_LENGTH (type);
3387 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3388 {
004d836a 3389 char to[MAX_REGISTER_SIZE];
0fd88904 3390 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
004d836a
JJ
3391 to, builtin_type_ia64_ext);
3392 regcache_cooked_write (regcache, floatreg, (void *)to);
64a5b29c
KB
3393 floatreg++;
3394 argoffset += TYPE_LENGTH (float_elt_type);
3395 len -= TYPE_LENGTH (float_elt_type);
3396 }
16461d7d
KB
3397 }
3398 }
3399
004d836a 3400 /* Store the struct return value in r8 if necessary. */
16461d7d
KB
3401 if (struct_return)
3402 {
004d836a 3403 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
16461d7d
KB
3404 }
3405
b33e8514 3406 global_pointer = ia64_find_global_pointer (func_addr);
8dd5115e 3407
004d836a
JJ
3408 if (global_pointer != 0)
3409 write_register (IA64_GR1_REGNUM, global_pointer);
a59fe496 3410
004d836a 3411 write_register (IA64_BR0_REGNUM, bp_addr);
16461d7d 3412
004d836a 3413 write_register (sp_regnum, sp);
16461d7d
KB
3414
3415 return sp;
3416}
3417
004d836a
JJ
3418static struct frame_id
3419ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
16461d7d 3420{
004d836a 3421 char buf[8];
4afcc598 3422 CORE_ADDR sp, bsp;
004d836a
JJ
3423
3424 frame_unwind_register (next_frame, sp_regnum, buf);
3425 sp = extract_unsigned_integer (buf, 8);
3426
4afcc598
JJ
3427 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
3428 bsp = extract_unsigned_integer (buf, 8);
3429
3430 if (gdbarch_debug >= 1)
3431 fprintf_unfiltered (gdb_stdlog,
78ced177
JJ
3432 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
3433 paddr_nz (frame_pc_unwind (next_frame)),
3434 paddr_nz (sp), paddr_nz (bsp));
4afcc598
JJ
3435
3436 return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp);
16461d7d
KB
3437}
3438
004d836a
JJ
3439static CORE_ADDR
3440ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
16461d7d 3441{
004d836a
JJ
3442 char buf[8];
3443 CORE_ADDR ip, psr, pc;
3444
3445 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3446 ip = extract_unsigned_integer (buf, 8);
3447 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3448 psr = extract_unsigned_integer (buf, 8);
3449
3450 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3451 return pc;
16461d7d
KB
3452}
3453
3454static void
88d82102
JJ
3455ia64_store_return_value (struct type *type, struct regcache *regcache,
3456 const gdb_byte *valbuf)
16461d7d 3457{
004d836a 3458 if (TYPE_CODE (type) == TYPE_CODE_FLT)
16461d7d 3459 {
004d836a
JJ
3460 char to[MAX_REGISTER_SIZE];
3461 convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext);
3462 regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to);
56be3814 3463 target_store_registers (regcache, IA64_FR8_REGNUM);
16461d7d
KB
3464 }
3465 else
004d836a 3466 regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf);
16461d7d
KB
3467}
3468
6926787d
AS
3469static int
3470ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3471{
3472 info->bytes_per_line = SLOT_MULTIPLIER;
3473 return print_insn_ia64 (memaddr, info);
3474}
3475
16461d7d
KB
3476static struct gdbarch *
3477ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3478{
3479 struct gdbarch *gdbarch;
244bc108 3480 struct gdbarch_tdep *tdep;
244bc108 3481
85bf2b91
JJ
3482 /* If there is already a candidate, use it. */
3483 arches = gdbarch_list_lookup_by_info (arches, &info);
3484 if (arches != NULL)
3485 return arches->gdbarch;
16461d7d 3486
244bc108
KB
3487 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3488 gdbarch = gdbarch_alloc (&info, tdep);
244bc108 3489
b33e8514 3490 tdep->sigcontext_register_address = 0;
74174d2e 3491 tdep->pc_in_sigtramp = 0;
698cb3f0 3492
004d836a
JJ
3493 /* Define the ia64 floating-point format to gdb. */
3494 builtin_type_ia64_ext =
3495 init_type (TYPE_CODE_FLT, 128 / 8,
3496 0, "builtin_type_ia64_ext", NULL);
8da61cc4 3497 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
004d836a 3498
5439edaa
AC
3499 /* According to the ia64 specs, instructions that store long double
3500 floats in memory use a long-double format different than that
3501 used in the floating registers. The memory format matches the
3502 x86 extended float format which is 80 bits. An OS may choose to
3503 use this format (e.g. GNU/Linux) or choose to use a different
3504 format for storing long doubles (e.g. HPUX). In the latter case,
3505 the setting of the format may be moved/overridden in an
3506 OS-specific tdep file. */
8da61cc4 3507 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
32edc941 3508
16461d7d
KB
3509 set_gdbarch_short_bit (gdbarch, 16);
3510 set_gdbarch_int_bit (gdbarch, 32);
3511 set_gdbarch_long_bit (gdbarch, 64);
3512 set_gdbarch_long_long_bit (gdbarch, 64);
3513 set_gdbarch_float_bit (gdbarch, 32);
3514 set_gdbarch_double_bit (gdbarch, 64);
33c08150 3515 set_gdbarch_long_double_bit (gdbarch, 128);
16461d7d
KB
3516 set_gdbarch_ptr_bit (gdbarch, 64);
3517
004d836a
JJ
3518 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3519 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
16461d7d 3520 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
698cb3f0 3521 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
16461d7d
KB
3522
3523 set_gdbarch_register_name (gdbarch, ia64_register_name);
004d836a
JJ
3524 /* FIXME: Following interface should not be needed, however, without it recurse.exp
3525 gets a number of extra failures. */
b1e29e33 3526 set_gdbarch_deprecated_register_size (gdbarch, 8);
004d836a 3527 set_gdbarch_register_type (gdbarch, ia64_register_type);
16461d7d 3528
004d836a
JJ
3529 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3530 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3531 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3532 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3533 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3534 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3535 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
16461d7d 3536
004d836a 3537 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
16461d7d 3538
b5622e8d 3539 set_gdbarch_deprecated_use_struct_convention (gdbarch, ia64_use_struct_convention);
004d836a 3540 set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value);
16461d7d 3541
004d836a 3542 set_gdbarch_store_return_value (gdbarch, ia64_store_return_value);
74055713 3543 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address);
16461d7d
KB
3544
3545 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3546 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3547 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3548 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
b33e8514 3549 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
16461d7d
KB
3550
3551 /* Settings for calling functions in the inferior. */
8dd5115e 3552 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
004d836a
JJ
3553 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3554 set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id);
16461d7d 3555
004d836a 3556 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
968d1cb4 3557#ifdef HAVE_LIBUNWIND_IA64_H
c5a27d9c 3558 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer);
968d1cb4
JJ
3559 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer);
3560 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
c5a27d9c
JJ
3561#else
3562 frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer);
968d1cb4 3563#endif
004d836a
JJ
3564 frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer);
3565 frame_base_set_default (gdbarch, &ia64_frame_base);
16461d7d
KB
3566
3567 /* Settings that should be unnecessary. */
3568 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3569
6926787d 3570 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
af8b88dd 3571 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
6926787d 3572
0d5de010
DJ
3573 /* The virtual table contains 16-byte descriptors, not pointers to
3574 descriptors. */
3575 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3576
b33e8514
AS
3577 /* Hook in ABI-specific overrides, if they have been registered. */
3578 gdbarch_init_osabi (info, gdbarch);
3579
16461d7d
KB
3580 return gdbarch;
3581}
3582
a78f21af
AC
3583extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3584
16461d7d
KB
3585void
3586_initialize_ia64_tdep (void)
3587{
b33e8514 3588 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
16461d7d 3589}
This page took 0.760001 seconds and 4 git commands to generate.