2003-11-23 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
7789c6f5 5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
8926118c 6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
603942cc 47#include "exec.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820 63static void delete_breakpoint_current_contents (void *);
c906108c 64
96baa820 65static void set_follow_fork_mode_command (char *arg, int from_tty,
488f131b 66 struct cmd_list_element *c);
7a292a7a 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a
SS
104
105/* This is true for configurations that may follow through execl() and
106 similar functions. At present this is only true for HP-UX native. */
107
108#ifndef MAY_FOLLOW_EXEC
109#define MAY_FOLLOW_EXEC (0)
c906108c
SS
110#endif
111
7a292a7a
SS
112static int may_follow_exec = MAY_FOLLOW_EXEC;
113
d4f3574e
SS
114/* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
ca557f44
AC
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
d4f3574e
SS
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
c906108c
SS
152
153#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
154#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
155#endif
156
c906108c
SS
157/* This function returns TRUE if pc is the address of an instruction
158 that lies within the dynamic linker (such as the event hook, or the
159 dld itself).
160
161 This function must be used only when a dynamic linker event has
162 been caught, and the inferior is being stepped out of the hook, or
163 undefined results are guaranteed. */
164
165#ifndef SOLIB_IN_DYNAMIC_LINKER
166#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
167#endif
168
169/* On MIPS16, a function that returns a floating point value may call
170 a library helper function to copy the return value to a floating point
171 register. The IGNORE_HELPER_CALL macro returns non-zero if we
172 should ignore (i.e. step over) this function call. */
173#ifndef IGNORE_HELPER_CALL
174#define IGNORE_HELPER_CALL(pc) 0
175#endif
176
177/* On some systems, the PC may be left pointing at an instruction that won't
178 actually be executed. This is usually indicated by a bit in the PSW. If
179 we find ourselves in such a state, then we step the target beyond the
180 nullified instruction before returning control to the user so as to avoid
181 confusion. */
182
183#ifndef INSTRUCTION_NULLIFIED
184#define INSTRUCTION_NULLIFIED 0
185#endif
186
c2c6d25f
JM
187/* We can't step off a permanent breakpoint in the ordinary way, because we
188 can't remove it. Instead, we have to advance the PC to the next
189 instruction. This macro should expand to a pointer to a function that
190 does that, or zero if we have no such function. If we don't have a
191 definition for it, we have to report an error. */
488f131b 192#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
193#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
194static void
c2d11a7d 195default_skip_permanent_breakpoint (void)
c2c6d25f 196{
255e7dbf 197 error ("\
c2c6d25f
JM
198The program is stopped at a permanent breakpoint, but GDB does not know\n\
199how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 200a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
201}
202#endif
488f131b 203
c2c6d25f 204
7a292a7a
SS
205/* Convert the #defines into values. This is temporary until wfi control
206 flow is completely sorted out. */
207
208#ifndef HAVE_STEPPABLE_WATCHPOINT
209#define HAVE_STEPPABLE_WATCHPOINT 0
210#else
211#undef HAVE_STEPPABLE_WATCHPOINT
212#define HAVE_STEPPABLE_WATCHPOINT 1
213#endif
214
692590c1
MS
215#ifndef CANNOT_STEP_HW_WATCHPOINTS
216#define CANNOT_STEP_HW_WATCHPOINTS 0
217#else
218#undef CANNOT_STEP_HW_WATCHPOINTS
219#define CANNOT_STEP_HW_WATCHPOINTS 1
220#endif
221
c906108c
SS
222/* Tables of how to react to signals; the user sets them. */
223
224static unsigned char *signal_stop;
225static unsigned char *signal_print;
226static unsigned char *signal_program;
227
228#define SET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 1; \
234 } while (0)
235
236#define UNSET_SIGS(nsigs,sigs,flags) \
237 do { \
238 int signum = (nsigs); \
239 while (signum-- > 0) \
240 if ((sigs)[signum]) \
241 (flags)[signum] = 0; \
242 } while (0)
243
39f77062
KB
244/* Value to pass to target_resume() to cause all threads to resume */
245
246#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
247
248/* Command list pointer for the "stop" placeholder. */
249
250static struct cmd_list_element *stop_command;
251
252/* Nonzero if breakpoints are now inserted in the inferior. */
253
254static int breakpoints_inserted;
255
256/* Function inferior was in as of last step command. */
257
258static struct symbol *step_start_function;
259
260/* Nonzero if we are expecting a trace trap and should proceed from it. */
261
262static int trap_expected;
263
264#ifdef SOLIB_ADD
265/* Nonzero if we want to give control to the user when we're notified
266 of shared library events by the dynamic linker. */
267static int stop_on_solib_events;
268#endif
269
270#ifdef HP_OS_BUG
271/* Nonzero if the next time we try to continue the inferior, it will
272 step one instruction and generate a spurious trace trap.
273 This is used to compensate for a bug in HP-UX. */
274
275static int trap_expected_after_continue;
276#endif
277
278/* Nonzero means expecting a trace trap
279 and should stop the inferior and return silently when it happens. */
280
281int stop_after_trap;
282
283/* Nonzero means expecting a trap and caller will handle it themselves.
284 It is used after attach, due to attaching to a process;
285 when running in the shell before the child program has been exec'd;
286 and when running some kinds of remote stuff (FIXME?). */
287
c0236d92 288enum stop_kind stop_soon;
c906108c
SS
289
290/* Nonzero if proceed is being used for a "finish" command or a similar
291 situation when stop_registers should be saved. */
292
293int proceed_to_finish;
294
295/* Save register contents here when about to pop a stack dummy frame,
296 if-and-only-if proceed_to_finish is set.
297 Thus this contains the return value from the called function (assuming
298 values are returned in a register). */
299
72cec141 300struct regcache *stop_registers;
c906108c
SS
301
302/* Nonzero if program stopped due to error trying to insert breakpoints. */
303
304static int breakpoints_failed;
305
306/* Nonzero after stop if current stack frame should be printed. */
307
308static int stop_print_frame;
309
310static struct breakpoint *step_resume_breakpoint = NULL;
311static struct breakpoint *through_sigtramp_breakpoint = NULL;
312
313/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
314 interactions with an inferior that is running a kernel function
315 (aka, a system call or "syscall"). wait_for_inferior therefore
316 may have a need to know when the inferior is in a syscall. This
317 is a count of the number of inferior threads which are known to
318 currently be running in a syscall. */
319static int number_of_threads_in_syscalls;
320
e02bc4cc
DS
321/* This is a cached copy of the pid/waitstatus of the last event
322 returned by target_wait()/target_wait_hook(). This information is
323 returned by get_last_target_status(). */
39f77062 324static ptid_t target_last_wait_ptid;
e02bc4cc
DS
325static struct target_waitstatus target_last_waitstatus;
326
c906108c
SS
327/* This is used to remember when a fork, vfork or exec event
328 was caught by a catchpoint, and thus the event is to be
329 followed at the next resume of the inferior, and not
330 immediately. */
331static struct
488f131b
JB
332{
333 enum target_waitkind kind;
334 struct
c906108c 335 {
488f131b 336 int parent_pid;
488f131b 337 int child_pid;
c906108c 338 }
488f131b
JB
339 fork_event;
340 char *execd_pathname;
341}
c906108c
SS
342pending_follow;
343
53904c9e 344static const char follow_fork_mode_ask[] = "ask";
53904c9e
AC
345static const char follow_fork_mode_child[] = "child";
346static const char follow_fork_mode_parent[] = "parent";
347
488f131b 348static const char *follow_fork_mode_kind_names[] = {
53904c9e 349 follow_fork_mode_ask,
53904c9e
AC
350 follow_fork_mode_child,
351 follow_fork_mode_parent,
352 NULL
ef346e04 353};
c906108c 354
53904c9e 355static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
356\f
357
6604731b 358static int
4ef3f3be 359follow_fork (void)
c906108c 360{
53904c9e 361 const char *follow_mode = follow_fork_mode_string;
6604731b 362 int follow_child = (follow_mode == follow_fork_mode_child);
c906108c
SS
363
364 /* Or, did the user not know, and want us to ask? */
e28d556f 365 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 366 {
8e65ff28
AC
367 internal_error (__FILE__, __LINE__,
368 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 369 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
370 }
371
6604731b 372 return target_follow_fork (follow_child);
c906108c
SS
373}
374
6604731b
DJ
375void
376follow_inferior_reset_breakpoints (void)
c906108c 377{
6604731b
DJ
378 /* Was there a step_resume breakpoint? (There was if the user
379 did a "next" at the fork() call.) If so, explicitly reset its
380 thread number.
381
382 step_resumes are a form of bp that are made to be per-thread.
383 Since we created the step_resume bp when the parent process
384 was being debugged, and now are switching to the child process,
385 from the breakpoint package's viewpoint, that's a switch of
386 "threads". We must update the bp's notion of which thread
387 it is for, or it'll be ignored when it triggers. */
388
389 if (step_resume_breakpoint)
390 breakpoint_re_set_thread (step_resume_breakpoint);
391
392 /* Reinsert all breakpoints in the child. The user may have set
393 breakpoints after catching the fork, in which case those
394 were never set in the child, but only in the parent. This makes
395 sure the inserted breakpoints match the breakpoint list. */
396
397 breakpoint_re_set ();
398 insert_breakpoints ();
c906108c 399}
c906108c 400
1adeb98a
FN
401/* EXECD_PATHNAME is assumed to be non-NULL. */
402
c906108c 403static void
96baa820 404follow_exec (int pid, char *execd_pathname)
c906108c 405{
c906108c 406 int saved_pid = pid;
7a292a7a
SS
407 struct target_ops *tgt;
408
409 if (!may_follow_exec)
410 return;
c906108c 411
c906108c
SS
412 /* This is an exec event that we actually wish to pay attention to.
413 Refresh our symbol table to the newly exec'd program, remove any
414 momentary bp's, etc.
415
416 If there are breakpoints, they aren't really inserted now,
417 since the exec() transformed our inferior into a fresh set
418 of instructions.
419
420 We want to preserve symbolic breakpoints on the list, since
421 we have hopes that they can be reset after the new a.out's
422 symbol table is read.
423
424 However, any "raw" breakpoints must be removed from the list
425 (e.g., the solib bp's), since their address is probably invalid
426 now.
427
428 And, we DON'T want to call delete_breakpoints() here, since
429 that may write the bp's "shadow contents" (the instruction
430 value that was overwritten witha TRAP instruction). Since
431 we now have a new a.out, those shadow contents aren't valid. */
432 update_breakpoints_after_exec ();
433
434 /* If there was one, it's gone now. We cannot truly step-to-next
435 statement through an exec(). */
436 step_resume_breakpoint = NULL;
437 step_range_start = 0;
438 step_range_end = 0;
439
440 /* If there was one, it's gone now. */
441 through_sigtramp_breakpoint = NULL;
442
443 /* What is this a.out's name? */
444 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
445
446 /* We've followed the inferior through an exec. Therefore, the
447 inferior has essentially been killed & reborn. */
7a292a7a
SS
448
449 /* First collect the run target in effect. */
450 tgt = find_run_target ();
451 /* If we can't find one, things are in a very strange state... */
452 if (tgt == NULL)
453 error ("Could find run target to save before following exec");
454
c906108c
SS
455 gdb_flush (gdb_stdout);
456 target_mourn_inferior ();
39f77062 457 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 458 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 459 push_target (tgt);
c906108c
SS
460
461 /* That a.out is now the one to use. */
462 exec_file_attach (execd_pathname, 0);
463
464 /* And also is where symbols can be found. */
1adeb98a 465 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
466
467 /* Reset the shared library package. This ensures that we get
468 a shlib event when the child reaches "_start", at which point
469 the dld will have had a chance to initialize the child. */
7a292a7a 470#if defined(SOLIB_RESTART)
c906108c 471 SOLIB_RESTART ();
7a292a7a
SS
472#endif
473#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 474 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 475#endif
c906108c
SS
476
477 /* Reinsert all breakpoints. (Those which were symbolic have
478 been reset to the proper address in the new a.out, thanks
479 to symbol_file_command...) */
480 insert_breakpoints ();
481
482 /* The next resume of this inferior should bring it to the shlib
483 startup breakpoints. (If the user had also set bp's on
484 "main" from the old (parent) process, then they'll auto-
485 matically get reset there in the new process.) */
c906108c
SS
486}
487
488/* Non-zero if we just simulating a single-step. This is needed
489 because we cannot remove the breakpoints in the inferior process
490 until after the `wait' in `wait_for_inferior'. */
491static int singlestep_breakpoints_inserted_p = 0;
492\f
493
494/* Things to clean up if we QUIT out of resume (). */
c906108c 495static void
74b7792f 496resume_cleanups (void *ignore)
c906108c
SS
497{
498 normal_stop ();
499}
500
53904c9e
AC
501static const char schedlock_off[] = "off";
502static const char schedlock_on[] = "on";
503static const char schedlock_step[] = "step";
504static const char *scheduler_mode = schedlock_off;
488f131b 505static const char *scheduler_enums[] = {
ef346e04
AC
506 schedlock_off,
507 schedlock_on,
508 schedlock_step,
509 NULL
510};
c906108c
SS
511
512static void
96baa820 513set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 514{
1868c04e
AC
515 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
516 the set command passed as a parameter. The clone operation will
517 include (BUG?) any ``set'' command callback, if present.
518 Commands like ``info set'' call all the ``show'' command
ce2826aa 519 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
520 ``set'', this includes callbacks belonging to ``set'' commands.
521 Making this worse, this only occures if add_show_from_set() is
522 called after add_cmd_sfunc() (BUG?). */
523 if (cmd_type (c) == set_cmd)
c906108c
SS
524 if (!target_can_lock_scheduler)
525 {
526 scheduler_mode = schedlock_off;
488f131b 527 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
528 }
529}
530
531
532/* Resume the inferior, but allow a QUIT. This is useful if the user
533 wants to interrupt some lengthy single-stepping operation
534 (for child processes, the SIGINT goes to the inferior, and so
535 we get a SIGINT random_signal, but for remote debugging and perhaps
536 other targets, that's not true).
537
538 STEP nonzero if we should step (zero to continue instead).
539 SIG is the signal to give the inferior (zero for none). */
540void
96baa820 541resume (int step, enum target_signal sig)
c906108c
SS
542{
543 int should_resume = 1;
74b7792f 544 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
545 QUIT;
546
ef5cf84e
MS
547 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
548
c906108c 549
692590c1
MS
550 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
551 over an instruction that causes a page fault without triggering
552 a hardware watchpoint. The kernel properly notices that it shouldn't
553 stop, because the hardware watchpoint is not triggered, but it forgets
554 the step request and continues the program normally.
555 Work around the problem by removing hardware watchpoints if a step is
556 requested, GDB will check for a hardware watchpoint trigger after the
557 step anyway. */
558 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
559 remove_hw_watchpoints ();
488f131b 560
692590c1 561
c2c6d25f
JM
562 /* Normally, by the time we reach `resume', the breakpoints are either
563 removed or inserted, as appropriate. The exception is if we're sitting
564 at a permanent breakpoint; we need to step over it, but permanent
565 breakpoints can't be removed. So we have to test for it here. */
566 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
567 SKIP_PERMANENT_BREAKPOINT ();
568
b0ed3589 569 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
570 {
571 /* Do it the hard way, w/temp breakpoints */
c5aa993b 572 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
573 /* ...and don't ask hardware to do it. */
574 step = 0;
575 /* and do not pull these breakpoints until after a `wait' in
576 `wait_for_inferior' */
577 singlestep_breakpoints_inserted_p = 1;
578 }
579
580 /* Handle any optimized stores to the inferior NOW... */
581#ifdef DO_DEFERRED_STORES
582 DO_DEFERRED_STORES;
583#endif
584
c906108c 585 /* If there were any forks/vforks/execs that were caught and are
6604731b 586 now to be followed, then do so. */
c906108c
SS
587 switch (pending_follow.kind)
588 {
6604731b
DJ
589 case TARGET_WAITKIND_FORKED:
590 case TARGET_WAITKIND_VFORKED:
c906108c 591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
592 if (follow_fork ())
593 should_resume = 0;
c906108c
SS
594 break;
595
6604731b 596 case TARGET_WAITKIND_EXECD:
c906108c 597 /* follow_exec is called as soon as the exec event is seen. */
6604731b 598 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
599 break;
600
601 default:
602 break;
603 }
c906108c
SS
604
605 /* Install inferior's terminal modes. */
606 target_terminal_inferior ();
607
608 if (should_resume)
609 {
39f77062 610 ptid_t resume_ptid;
dfcd3bfb 611
488f131b 612 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
613
614 if ((step || singlestep_breakpoints_inserted_p) &&
615 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 616 {
ef5cf84e
MS
617 /* Stepping past a breakpoint without inserting breakpoints.
618 Make sure only the current thread gets to step, so that
619 other threads don't sneak past breakpoints while they are
620 not inserted. */
c906108c 621
ef5cf84e 622 resume_ptid = inferior_ptid;
c906108c 623 }
ef5cf84e
MS
624
625 if ((scheduler_mode == schedlock_on) ||
488f131b 626 (scheduler_mode == schedlock_step &&
ef5cf84e 627 (step || singlestep_breakpoints_inserted_p)))
c906108c 628 {
ef5cf84e 629 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 630 resume_ptid = inferior_ptid;
c906108c 631 }
ef5cf84e 632
c4ed33b9
AC
633 if (CANNOT_STEP_BREAKPOINT)
634 {
635 /* Most targets can step a breakpoint instruction, thus
636 executing it normally. But if this one cannot, just
637 continue and we will hit it anyway. */
638 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
639 step = 0;
640 }
39f77062 641 target_resume (resume_ptid, step, sig);
c906108c
SS
642 }
643
644 discard_cleanups (old_cleanups);
645}
646\f
647
648/* Clear out all variables saying what to do when inferior is continued.
649 First do this, then set the ones you want, then call `proceed'. */
650
651void
96baa820 652clear_proceed_status (void)
c906108c
SS
653{
654 trap_expected = 0;
655 step_range_start = 0;
656 step_range_end = 0;
aa0cd9c1 657 step_frame_id = null_frame_id;
5fbbeb29 658 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 659 stop_after_trap = 0;
c0236d92 660 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
661 proceed_to_finish = 0;
662 breakpoint_proceeded = 1; /* We're about to proceed... */
663
664 /* Discard any remaining commands or status from previous stop. */
665 bpstat_clear (&stop_bpstat);
666}
667
ea67f13b
DJ
668/* This should be suitable for any targets that support threads. */
669
670static int
671prepare_to_proceed (void)
672{
673 ptid_t wait_ptid;
674 struct target_waitstatus wait_status;
675
676 /* Get the last target status returned by target_wait(). */
677 get_last_target_status (&wait_ptid, &wait_status);
678
679 /* Make sure we were stopped either at a breakpoint, or because
680 of a Ctrl-C. */
681 if (wait_status.kind != TARGET_WAITKIND_STOPPED
682 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
683 wait_status.value.sig != TARGET_SIGNAL_INT))
684 {
685 return 0;
686 }
687
688 if (!ptid_equal (wait_ptid, minus_one_ptid)
689 && !ptid_equal (inferior_ptid, wait_ptid))
690 {
691 /* Switched over from WAIT_PID. */
692 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
693
694 if (wait_pc != read_pc ())
695 {
696 /* Switch back to WAIT_PID thread. */
697 inferior_ptid = wait_ptid;
698
699 /* FIXME: This stuff came from switch_to_thread() in
700 thread.c (which should probably be a public function). */
701 flush_cached_frames ();
702 registers_changed ();
703 stop_pc = wait_pc;
704 select_frame (get_current_frame ());
705 }
706
707 /* We return 1 to indicate that there is a breakpoint here,
708 so we need to step over it before continuing to avoid
709 hitting it straight away. */
710 if (breakpoint_here_p (wait_pc))
711 return 1;
712 }
713
714 return 0;
715
716}
e4846b08
JJ
717
718/* Record the pc of the program the last time it stopped. This is
719 just used internally by wait_for_inferior, but need to be preserved
720 over calls to it and cleared when the inferior is started. */
721static CORE_ADDR prev_pc;
722
c906108c
SS
723/* Basic routine for continuing the program in various fashions.
724
725 ADDR is the address to resume at, or -1 for resume where stopped.
726 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 727 or -1 for act according to how it stopped.
c906108c 728 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
729 -1 means return after that and print nothing.
730 You should probably set various step_... variables
731 before calling here, if you are stepping.
c906108c
SS
732
733 You should call clear_proceed_status before calling proceed. */
734
735void
96baa820 736proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
737{
738 int oneproc = 0;
739
740 if (step > 0)
741 step_start_function = find_pc_function (read_pc ());
742 if (step < 0)
743 stop_after_trap = 1;
744
2acceee2 745 if (addr == (CORE_ADDR) -1)
c906108c
SS
746 {
747 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
748 step one instruction before inserting breakpoints
749 so that we do not stop right away (and report a second
c906108c
SS
750 hit at this breakpoint). */
751
752 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
753 oneproc = 1;
754
755#ifndef STEP_SKIPS_DELAY
756#define STEP_SKIPS_DELAY(pc) (0)
757#define STEP_SKIPS_DELAY_P (0)
758#endif
759 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
760 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
761 is slow (it needs to read memory from the target). */
c906108c
SS
762 if (STEP_SKIPS_DELAY_P
763 && breakpoint_here_p (read_pc () + 4)
764 && STEP_SKIPS_DELAY (read_pc ()))
765 oneproc = 1;
766 }
767 else
768 {
769 write_pc (addr);
c906108c
SS
770 }
771
c906108c
SS
772 /* In a multi-threaded task we may select another thread
773 and then continue or step.
774
775 But if the old thread was stopped at a breakpoint, it
776 will immediately cause another breakpoint stop without
777 any execution (i.e. it will report a breakpoint hit
778 incorrectly). So we must step over it first.
779
ea67f13b 780 prepare_to_proceed checks the current thread against the thread
c906108c
SS
781 that reported the most recent event. If a step-over is required
782 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
783 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
784 oneproc = 1;
c906108c
SS
785
786#ifdef HP_OS_BUG
787 if (trap_expected_after_continue)
788 {
789 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
790 the first instruction is executed. Force step one
791 instruction to clear this condition. This should not occur
792 if step is nonzero, but it is harmless in that case. */
c906108c
SS
793 oneproc = 1;
794 trap_expected_after_continue = 0;
795 }
796#endif /* HP_OS_BUG */
797
798 if (oneproc)
799 /* We will get a trace trap after one instruction.
800 Continue it automatically and insert breakpoints then. */
801 trap_expected = 1;
802 else
803 {
81d0cc19
GS
804 insert_breakpoints ();
805 /* If we get here there was no call to error() in
806 insert breakpoints -- so they were inserted. */
c906108c
SS
807 breakpoints_inserted = 1;
808 }
809
810 if (siggnal != TARGET_SIGNAL_DEFAULT)
811 stop_signal = siggnal;
812 /* If this signal should not be seen by program,
813 give it zero. Used for debugging signals. */
814 else if (!signal_program[stop_signal])
815 stop_signal = TARGET_SIGNAL_0;
816
817 annotate_starting ();
818
819 /* Make sure that output from GDB appears before output from the
820 inferior. */
821 gdb_flush (gdb_stdout);
822
e4846b08
JJ
823 /* Refresh prev_pc value just prior to resuming. This used to be
824 done in stop_stepping, however, setting prev_pc there did not handle
825 scenarios such as inferior function calls or returning from
826 a function via the return command. In those cases, the prev_pc
827 value was not set properly for subsequent commands. The prev_pc value
828 is used to initialize the starting line number in the ecs. With an
829 invalid value, the gdb next command ends up stopping at the position
830 represented by the next line table entry past our start position.
831 On platforms that generate one line table entry per line, this
832 is not a problem. However, on the ia64, the compiler generates
833 extraneous line table entries that do not increase the line number.
834 When we issue the gdb next command on the ia64 after an inferior call
835 or a return command, we often end up a few instructions forward, still
836 within the original line we started.
837
838 An attempt was made to have init_execution_control_state () refresh
839 the prev_pc value before calculating the line number. This approach
840 did not work because on platforms that use ptrace, the pc register
841 cannot be read unless the inferior is stopped. At that point, we
842 are not guaranteed the inferior is stopped and so the read_pc ()
843 call can fail. Setting the prev_pc value here ensures the value is
844 updated correctly when the inferior is stopped. */
845 prev_pc = read_pc ();
846
c906108c
SS
847 /* Resume inferior. */
848 resume (oneproc || step || bpstat_should_step (), stop_signal);
849
850 /* Wait for it to stop (if not standalone)
851 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
852 /* Do this only if we are not using the event loop, or if the target
853 does not support asynchronous execution. */
6426a772 854 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
855 {
856 wait_for_inferior ();
857 normal_stop ();
858 }
c906108c 859}
c906108c
SS
860\f
861
862/* Start remote-debugging of a machine over a serial link. */
96baa820 863
c906108c 864void
96baa820 865start_remote (void)
c906108c
SS
866{
867 init_thread_list ();
868 init_wait_for_inferior ();
c0236d92 869 stop_soon = STOP_QUIETLY;
c906108c 870 trap_expected = 0;
43ff13b4 871
6426a772
JM
872 /* Always go on waiting for the target, regardless of the mode. */
873 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 874 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
875 nothing is returned (instead of just blocking). Because of this,
876 targets expecting an immediate response need to, internally, set
877 things up so that the target_wait() is forced to eventually
878 timeout. */
879 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
880 differentiate to its caller what the state of the target is after
881 the initial open has been performed. Here we're assuming that
882 the target has stopped. It should be possible to eventually have
883 target_open() return to the caller an indication that the target
884 is currently running and GDB state should be set to the same as
885 for an async run. */
886 wait_for_inferior ();
887 normal_stop ();
c906108c
SS
888}
889
890/* Initialize static vars when a new inferior begins. */
891
892void
96baa820 893init_wait_for_inferior (void)
c906108c
SS
894{
895 /* These are meaningless until the first time through wait_for_inferior. */
896 prev_pc = 0;
c906108c
SS
897
898#ifdef HP_OS_BUG
899 trap_expected_after_continue = 0;
900#endif
901 breakpoints_inserted = 0;
902 breakpoint_init_inferior (inf_starting);
903
904 /* Don't confuse first call to proceed(). */
905 stop_signal = TARGET_SIGNAL_0;
906
907 /* The first resume is not following a fork/vfork/exec. */
908 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
909
910 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
911 number_of_threads_in_syscalls = 0;
912
913 clear_proceed_status ();
914}
915
916static void
96baa820 917delete_breakpoint_current_contents (void *arg)
c906108c
SS
918{
919 struct breakpoint **breakpointp = (struct breakpoint **) arg;
920 if (*breakpointp != NULL)
921 {
922 delete_breakpoint (*breakpointp);
923 *breakpointp = NULL;
924 }
925}
926\f
b83266a0
SS
927/* This enum encodes possible reasons for doing a target_wait, so that
928 wfi can call target_wait in one place. (Ultimately the call will be
929 moved out of the infinite loop entirely.) */
930
c5aa993b
JM
931enum infwait_states
932{
cd0fc7c3
SS
933 infwait_normal_state,
934 infwait_thread_hop_state,
935 infwait_nullified_state,
936 infwait_nonstep_watch_state
b83266a0
SS
937};
938
11cf8741
JM
939/* Why did the inferior stop? Used to print the appropriate messages
940 to the interface from within handle_inferior_event(). */
941enum inferior_stop_reason
942{
943 /* We don't know why. */
944 STOP_UNKNOWN,
945 /* Step, next, nexti, stepi finished. */
946 END_STEPPING_RANGE,
947 /* Found breakpoint. */
948 BREAKPOINT_HIT,
949 /* Inferior terminated by signal. */
950 SIGNAL_EXITED,
951 /* Inferior exited. */
952 EXITED,
953 /* Inferior received signal, and user asked to be notified. */
954 SIGNAL_RECEIVED
955};
956
cd0fc7c3
SS
957/* This structure contains what used to be local variables in
958 wait_for_inferior. Probably many of them can return to being
959 locals in handle_inferior_event. */
960
c5aa993b 961struct execution_control_state
488f131b
JB
962{
963 struct target_waitstatus ws;
964 struct target_waitstatus *wp;
965 int another_trap;
966 int random_signal;
967 CORE_ADDR stop_func_start;
968 CORE_ADDR stop_func_end;
969 char *stop_func_name;
970 struct symtab_and_line sal;
971 int remove_breakpoints_on_following_step;
972 int current_line;
973 struct symtab *current_symtab;
974 int handling_longjmp; /* FIXME */
975 ptid_t ptid;
976 ptid_t saved_inferior_ptid;
977 int update_step_sp;
978 int stepping_through_solib_after_catch;
979 bpstat stepping_through_solib_catchpoints;
980 int enable_hw_watchpoints_after_wait;
981 int stepping_through_sigtramp;
982 int new_thread_event;
983 struct target_waitstatus tmpstatus;
984 enum infwait_states infwait_state;
985 ptid_t waiton_ptid;
986 int wait_some_more;
987};
988
989void init_execution_control_state (struct execution_control_state *ecs);
990
991void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 992
104c1213 993static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 994static void step_into_function (struct execution_control_state *ecs);
d4f3574e 995static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
996static void stop_stepping (struct execution_control_state *ecs);
997static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 998static void keep_going (struct execution_control_state *ecs);
488f131b
JB
999static void print_stop_reason (enum inferior_stop_reason stop_reason,
1000 int stop_info);
104c1213 1001
cd0fc7c3
SS
1002/* Wait for control to return from inferior to debugger.
1003 If inferior gets a signal, we may decide to start it up again
1004 instead of returning. That is why there is a loop in this function.
1005 When this function actually returns it means the inferior
1006 should be left stopped and GDB should read more commands. */
1007
1008void
96baa820 1009wait_for_inferior (void)
cd0fc7c3
SS
1010{
1011 struct cleanup *old_cleanups;
1012 struct execution_control_state ecss;
1013 struct execution_control_state *ecs;
c906108c 1014
8601f500 1015 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1016 &step_resume_breakpoint);
1017 make_cleanup (delete_breakpoint_current_contents,
1018 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1019
1020 /* wfi still stays in a loop, so it's OK just to take the address of
1021 a local to get the ecs pointer. */
1022 ecs = &ecss;
1023
1024 /* Fill in with reasonable starting values. */
1025 init_execution_control_state (ecs);
1026
c906108c 1027 /* We'll update this if & when we switch to a new thread. */
39f77062 1028 previous_inferior_ptid = inferior_ptid;
c906108c 1029
cd0fc7c3
SS
1030 overlay_cache_invalid = 1;
1031
1032 /* We have to invalidate the registers BEFORE calling target_wait
1033 because they can be loaded from the target while in target_wait.
1034 This makes remote debugging a bit more efficient for those
1035 targets that provide critical registers as part of their normal
1036 status mechanism. */
1037
1038 registers_changed ();
b83266a0 1039
c906108c
SS
1040 while (1)
1041 {
cd0fc7c3 1042 if (target_wait_hook)
39f77062 1043 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1044 else
39f77062 1045 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1046
cd0fc7c3
SS
1047 /* Now figure out what to do with the result of the result. */
1048 handle_inferior_event (ecs);
c906108c 1049
cd0fc7c3
SS
1050 if (!ecs->wait_some_more)
1051 break;
1052 }
1053 do_cleanups (old_cleanups);
1054}
c906108c 1055
43ff13b4
JM
1056/* Asynchronous version of wait_for_inferior. It is called by the
1057 event loop whenever a change of state is detected on the file
1058 descriptor corresponding to the target. It can be called more than
1059 once to complete a single execution command. In such cases we need
1060 to keep the state in a global variable ASYNC_ECSS. If it is the
1061 last time that this function is called for a single execution
1062 command, then report to the user that the inferior has stopped, and
1063 do the necessary cleanups. */
1064
1065struct execution_control_state async_ecss;
1066struct execution_control_state *async_ecs;
1067
1068void
fba45db2 1069fetch_inferior_event (void *client_data)
43ff13b4
JM
1070{
1071 static struct cleanup *old_cleanups;
1072
c5aa993b 1073 async_ecs = &async_ecss;
43ff13b4
JM
1074
1075 if (!async_ecs->wait_some_more)
1076 {
488f131b 1077 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1078 &step_resume_breakpoint);
43ff13b4 1079 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1080 &through_sigtramp_breakpoint);
43ff13b4
JM
1081
1082 /* Fill in with reasonable starting values. */
1083 init_execution_control_state (async_ecs);
1084
43ff13b4 1085 /* We'll update this if & when we switch to a new thread. */
39f77062 1086 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1087
1088 overlay_cache_invalid = 1;
1089
1090 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1091 because they can be loaded from the target while in target_wait.
1092 This makes remote debugging a bit more efficient for those
1093 targets that provide critical registers as part of their normal
1094 status mechanism. */
43ff13b4
JM
1095
1096 registers_changed ();
1097 }
1098
1099 if (target_wait_hook)
488f131b
JB
1100 async_ecs->ptid =
1101 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1102 else
39f77062 1103 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1104
1105 /* Now figure out what to do with the result of the result. */
1106 handle_inferior_event (async_ecs);
1107
1108 if (!async_ecs->wait_some_more)
1109 {
adf40b2e 1110 /* Do only the cleanups that have been added by this
488f131b
JB
1111 function. Let the continuations for the commands do the rest,
1112 if there are any. */
43ff13b4
JM
1113 do_exec_cleanups (old_cleanups);
1114 normal_stop ();
c2d11a7d
JM
1115 if (step_multi && stop_step)
1116 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1117 else
1118 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1119 }
1120}
1121
cd0fc7c3
SS
1122/* Prepare an execution control state for looping through a
1123 wait_for_inferior-type loop. */
1124
1125void
96baa820 1126init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1127{
c2d11a7d 1128 /* ecs->another_trap? */
cd0fc7c3
SS
1129 ecs->random_signal = 0;
1130 ecs->remove_breakpoints_on_following_step = 0;
1131 ecs->handling_longjmp = 0; /* FIXME */
1132 ecs->update_step_sp = 0;
1133 ecs->stepping_through_solib_after_catch = 0;
1134 ecs->stepping_through_solib_catchpoints = NULL;
1135 ecs->enable_hw_watchpoints_after_wait = 0;
1136 ecs->stepping_through_sigtramp = 0;
1137 ecs->sal = find_pc_line (prev_pc, 0);
1138 ecs->current_line = ecs->sal.line;
1139 ecs->current_symtab = ecs->sal.symtab;
1140 ecs->infwait_state = infwait_normal_state;
39f77062 1141 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1142 ecs->wp = &(ecs->ws);
1143}
1144
a0b3c4fd 1145/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1146 sanity check. There should never be more than one step-resume
1147 breakpoint per thread, so we should never be setting a new
1148 step_resume_breakpoint when one is already active. */
a0b3c4fd 1149static void
96baa820 1150check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1151{
1152 if (step_resume_breakpoint)
488f131b
JB
1153 warning
1154 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1155}
1156
e02bc4cc
DS
1157/* Return the cached copy of the last pid/waitstatus returned by
1158 target_wait()/target_wait_hook(). The data is actually cached by
1159 handle_inferior_event(), which gets called immediately after
1160 target_wait()/target_wait_hook(). */
1161
1162void
488f131b 1163get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1164{
39f77062 1165 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1166 *status = target_last_waitstatus;
1167}
1168
dd80620e
MS
1169/* Switch thread contexts, maintaining "infrun state". */
1170
1171static void
1172context_switch (struct execution_control_state *ecs)
1173{
1174 /* Caution: it may happen that the new thread (or the old one!)
1175 is not in the thread list. In this case we must not attempt
1176 to "switch context", or we run the risk that our context may
1177 be lost. This may happen as a result of the target module
1178 mishandling thread creation. */
1179
1180 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1181 { /* Perform infrun state context switch: */
dd80620e 1182 /* Save infrun state for the old thread. */
0ce3d317 1183 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1184 trap_expected, step_resume_breakpoint,
488f131b 1185 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1186 step_range_end, &step_frame_id,
dd80620e
MS
1187 ecs->handling_longjmp, ecs->another_trap,
1188 ecs->stepping_through_solib_after_catch,
1189 ecs->stepping_through_solib_catchpoints,
1190 ecs->stepping_through_sigtramp,
488f131b 1191 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1192
1193 /* Load infrun state for the new thread. */
0ce3d317 1194 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1195 &trap_expected, &step_resume_breakpoint,
488f131b 1196 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1197 &step_range_end, &step_frame_id,
dd80620e
MS
1198 &ecs->handling_longjmp, &ecs->another_trap,
1199 &ecs->stepping_through_solib_after_catch,
1200 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1201 &ecs->stepping_through_sigtramp,
1202 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1203 }
1204 inferior_ptid = ecs->ptid;
1205}
1206
0ce3d317
AC
1207/* Wrapper for PC_IN_SIGTRAMP that takes care of the need to find the
1208 function's name.
1209
1210 In a classic example of "left hand VS right hand", "infrun.c" was
1211 trying to improve GDB's performance by caching the result of calls
1212 to calls to find_pc_partial_funtion, while at the same time
1213 find_pc_partial_function was also trying to ramp up performance by
1214 caching its most recent return value. The below makes the the
1215 function find_pc_partial_function solely responsibile for
1216 performance issues (the local cache that relied on a global
1217 variable - arrrggg - deleted).
1218
1219 Using the testsuite and gcov, it was found that dropping the local
1220 "infrun.c" cache and instead relying on find_pc_partial_function
1221 increased the number of calls to 12000 (from 10000), but the number
1222 of times find_pc_partial_function's cache missed (this is what
1223 matters) was only increased by only 4 (to 3569). (A quick back of
1224 envelope caculation suggests that the extra 2000 function calls
1225 @1000 extra instructions per call make the 1 MIP VAX testsuite run
1226 take two extra seconds, oops :-)
1227
1228 Long term, this function can be eliminated, replaced by the code:
1229 get_frame_type(current_frame()) == SIGTRAMP_FRAME (for new
1230 architectures this is very cheap). */
1231
1232static int
1233pc_in_sigtramp (CORE_ADDR pc)
1234{
1235 char *name;
1236 find_pc_partial_function (pc, &name, NULL, NULL);
1237 return PC_IN_SIGTRAMP (pc, name);
1238}
1239
dd80620e 1240
cd0fc7c3
SS
1241/* Given an execution control state that has been freshly filled in
1242 by an event from the inferior, figure out what it means and take
1243 appropriate action. */
c906108c 1244
cd0fc7c3 1245void
96baa820 1246handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1247{
d764a824 1248 CORE_ADDR real_stop_pc;
65e82032
AC
1249 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1250 thinking that the variable stepped_after_stopped_by_watchpoint
1251 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1252 defined in the file "config/pa/nm-hppah.h", accesses the variable
1253 indirectly. Mutter something rude about the HP merge. */
cd0fc7c3 1254 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1255 int sw_single_step_trap_p = 0;
cd0fc7c3 1256
e02bc4cc 1257 /* Cache the last pid/waitstatus. */
39f77062 1258 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1259 target_last_waitstatus = *ecs->wp;
1260
488f131b
JB
1261 switch (ecs->infwait_state)
1262 {
1263 case infwait_thread_hop_state:
1264 /* Cancel the waiton_ptid. */
1265 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1266 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1267 is serviced in this loop, below. */
1268 if (ecs->enable_hw_watchpoints_after_wait)
1269 {
1270 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1271 ecs->enable_hw_watchpoints_after_wait = 0;
1272 }
1273 stepped_after_stopped_by_watchpoint = 0;
1274 break;
b83266a0 1275
488f131b
JB
1276 case infwait_normal_state:
1277 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1278 is serviced in this loop, below. */
1279 if (ecs->enable_hw_watchpoints_after_wait)
1280 {
1281 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1282 ecs->enable_hw_watchpoints_after_wait = 0;
1283 }
1284 stepped_after_stopped_by_watchpoint = 0;
1285 break;
b83266a0 1286
488f131b 1287 case infwait_nullified_state:
65e82032 1288 stepped_after_stopped_by_watchpoint = 0;
488f131b 1289 break;
b83266a0 1290
488f131b
JB
1291 case infwait_nonstep_watch_state:
1292 insert_breakpoints ();
c906108c 1293
488f131b
JB
1294 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1295 handle things like signals arriving and other things happening
1296 in combination correctly? */
1297 stepped_after_stopped_by_watchpoint = 1;
1298 break;
65e82032
AC
1299
1300 default:
1301 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1302 }
1303 ecs->infwait_state = infwait_normal_state;
c906108c 1304
488f131b 1305 flush_cached_frames ();
c906108c 1306
488f131b 1307 /* If it's a new process, add it to the thread database */
c906108c 1308
488f131b
JB
1309 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1310 && !in_thread_list (ecs->ptid));
1311
1312 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1313 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1314 {
1315 add_thread (ecs->ptid);
c906108c 1316
488f131b
JB
1317 ui_out_text (uiout, "[New ");
1318 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1319 ui_out_text (uiout, "]\n");
c906108c
SS
1320
1321#if 0
488f131b
JB
1322 /* NOTE: This block is ONLY meant to be invoked in case of a
1323 "thread creation event"! If it is invoked for any other
1324 sort of event (such as a new thread landing on a breakpoint),
1325 the event will be discarded, which is almost certainly
1326 a bad thing!
1327
1328 To avoid this, the low-level module (eg. target_wait)
1329 should call in_thread_list and add_thread, so that the
1330 new thread is known by the time we get here. */
1331
1332 /* We may want to consider not doing a resume here in order
1333 to give the user a chance to play with the new thread.
1334 It might be good to make that a user-settable option. */
1335
1336 /* At this point, all threads are stopped (happens
1337 automatically in either the OS or the native code).
1338 Therefore we need to continue all threads in order to
1339 make progress. */
1340
1341 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1342 prepare_to_wait (ecs);
1343 return;
c906108c 1344#endif
488f131b 1345 }
c906108c 1346
488f131b
JB
1347 switch (ecs->ws.kind)
1348 {
1349 case TARGET_WAITKIND_LOADED:
1350 /* Ignore gracefully during startup of the inferior, as it
1351 might be the shell which has just loaded some objects,
1352 otherwise add the symbols for the newly loaded objects. */
c906108c 1353#ifdef SOLIB_ADD
c0236d92 1354 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1355 {
1356 /* Remove breakpoints, SOLIB_ADD might adjust
1357 breakpoint addresses via breakpoint_re_set. */
1358 if (breakpoints_inserted)
1359 remove_breakpoints ();
c906108c 1360
488f131b
JB
1361 /* Check for any newly added shared libraries if we're
1362 supposed to be adding them automatically. Switch
1363 terminal for any messages produced by
1364 breakpoint_re_set. */
1365 target_terminal_ours_for_output ();
603942cc 1366 SOLIB_ADD (NULL, 0, &exec_ops, auto_solib_add);
488f131b
JB
1367 target_terminal_inferior ();
1368
1369 /* Reinsert breakpoints and continue. */
1370 if (breakpoints_inserted)
1371 insert_breakpoints ();
1372 }
c906108c 1373#endif
488f131b
JB
1374 resume (0, TARGET_SIGNAL_0);
1375 prepare_to_wait (ecs);
1376 return;
c5aa993b 1377
488f131b
JB
1378 case TARGET_WAITKIND_SPURIOUS:
1379 resume (0, TARGET_SIGNAL_0);
1380 prepare_to_wait (ecs);
1381 return;
c5aa993b 1382
488f131b
JB
1383 case TARGET_WAITKIND_EXITED:
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1385 print_stop_reason (EXITED, ecs->ws.value.integer);
1386
1387 /* Record the exit code in the convenience variable $_exitcode, so
1388 that the user can inspect this again later. */
1389 set_internalvar (lookup_internalvar ("_exitcode"),
1390 value_from_longest (builtin_type_int,
1391 (LONGEST) ecs->ws.value.integer));
1392 gdb_flush (gdb_stdout);
1393 target_mourn_inferior ();
1394 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1395 stop_print_frame = 0;
1396 stop_stepping (ecs);
1397 return;
c5aa993b 1398
488f131b
JB
1399 case TARGET_WAITKIND_SIGNALLED:
1400 stop_print_frame = 0;
1401 stop_signal = ecs->ws.value.sig;
1402 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1403
488f131b
JB
1404 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1405 reach here unless the inferior is dead. However, for years
1406 target_kill() was called here, which hints that fatal signals aren't
1407 really fatal on some systems. If that's true, then some changes
1408 may be needed. */
1409 target_mourn_inferior ();
c906108c 1410
488f131b
JB
1411 print_stop_reason (SIGNAL_EXITED, stop_signal);
1412 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1413 stop_stepping (ecs);
1414 return;
c906108c 1415
488f131b
JB
1416 /* The following are the only cases in which we keep going;
1417 the above cases end in a continue or goto. */
1418 case TARGET_WAITKIND_FORKED:
deb3b17b 1419 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1420 stop_signal = TARGET_SIGNAL_TRAP;
1421 pending_follow.kind = ecs->ws.kind;
1422
8e7d2c16
DJ
1423 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1424 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1425
488f131b 1426 stop_pc = read_pc ();
675bf4cb
DJ
1427
1428 /* Assume that catchpoints are not really software breakpoints. If
1429 some future target implements them using software breakpoints then
1430 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1431 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1432 bpstat_stop_status will not decrement the PC. */
1433
1434 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1435
488f131b 1436 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1437
1438 /* If no catchpoint triggered for this, then keep going. */
1439 if (ecs->random_signal)
1440 {
1441 stop_signal = TARGET_SIGNAL_0;
1442 keep_going (ecs);
1443 return;
1444 }
488f131b
JB
1445 goto process_event_stop_test;
1446
1447 case TARGET_WAITKIND_EXECD:
1448 stop_signal = TARGET_SIGNAL_TRAP;
1449
7d2830a3
DJ
1450 /* NOTE drow/2002-12-05: This code should be pushed down into the
1451 target_wait function. Until then following vfork on HP/UX 10.20
1452 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1453 /* Is this a target which reports multiple exec events per actual
1454 call to exec()? (HP-UX using ptrace does, for example.) If so,
1455 ignore all but the last one. Just resume the exec'r, and wait
1456 for the next exec event. */
1457 if (inferior_ignoring_leading_exec_events)
1458 {
1459 inferior_ignoring_leading_exec_events--;
1460 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1461 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1462 parent_pid);
1463 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1464 prepare_to_wait (ecs);
1465 return;
1466 }
1467 inferior_ignoring_leading_exec_events =
1468 target_reported_exec_events_per_exec_call () - 1;
1469
1470 pending_follow.execd_pathname =
1471 savestring (ecs->ws.value.execd_pathname,
1472 strlen (ecs->ws.value.execd_pathname));
1473
488f131b
JB
1474 /* This causes the eventpoints and symbol table to be reset. Must
1475 do this now, before trying to determine whether to stop. */
1476 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1477 xfree (pending_follow.execd_pathname);
c906108c 1478
488f131b
JB
1479 stop_pc = read_pc_pid (ecs->ptid);
1480 ecs->saved_inferior_ptid = inferior_ptid;
1481 inferior_ptid = ecs->ptid;
675bf4cb
DJ
1482
1483 /* Assume that catchpoints are not really software breakpoints. If
1484 some future target implements them using software breakpoints then
1485 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1486 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1487 bpstat_stop_status will not decrement the PC. */
1488
1489 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1490
488f131b
JB
1491 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1492 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1493
1494 /* If no catchpoint triggered for this, then keep going. */
1495 if (ecs->random_signal)
1496 {
1497 stop_signal = TARGET_SIGNAL_0;
1498 keep_going (ecs);
1499 return;
1500 }
488f131b
JB
1501 goto process_event_stop_test;
1502
1503 /* These syscall events are returned on HP-UX, as part of its
1504 implementation of page-protection-based "hardware" watchpoints.
1505 HP-UX has unfortunate interactions between page-protections and
1506 some system calls. Our solution is to disable hardware watches
1507 when a system call is entered, and reenable them when the syscall
1508 completes. The downside of this is that we may miss the precise
1509 point at which a watched piece of memory is modified. "Oh well."
1510
1511 Note that we may have multiple threads running, which may each
1512 enter syscalls at roughly the same time. Since we don't have a
1513 good notion currently of whether a watched piece of memory is
1514 thread-private, we'd best not have any page-protections active
1515 when any thread is in a syscall. Thus, we only want to reenable
1516 hardware watches when no threads are in a syscall.
1517
1518 Also, be careful not to try to gather much state about a thread
1519 that's in a syscall. It's frequently a losing proposition. */
1520 case TARGET_WAITKIND_SYSCALL_ENTRY:
1521 number_of_threads_in_syscalls++;
1522 if (number_of_threads_in_syscalls == 1)
1523 {
1524 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1525 }
1526 resume (0, TARGET_SIGNAL_0);
1527 prepare_to_wait (ecs);
1528 return;
c906108c 1529
488f131b
JB
1530 /* Before examining the threads further, step this thread to
1531 get it entirely out of the syscall. (We get notice of the
1532 event when the thread is just on the verge of exiting a
1533 syscall. Stepping one instruction seems to get it back
1534 into user code.)
c906108c 1535
488f131b
JB
1536 Note that although the logical place to reenable h/w watches
1537 is here, we cannot. We cannot reenable them before stepping
1538 the thread (this causes the next wait on the thread to hang).
c4093a6a 1539
488f131b
JB
1540 Nor can we enable them after stepping until we've done a wait.
1541 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1542 here, which will be serviced immediately after the target
1543 is waited on. */
1544 case TARGET_WAITKIND_SYSCALL_RETURN:
1545 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1546
1547 if (number_of_threads_in_syscalls > 0)
1548 {
1549 number_of_threads_in_syscalls--;
1550 ecs->enable_hw_watchpoints_after_wait =
1551 (number_of_threads_in_syscalls == 0);
1552 }
1553 prepare_to_wait (ecs);
1554 return;
c906108c 1555
488f131b
JB
1556 case TARGET_WAITKIND_STOPPED:
1557 stop_signal = ecs->ws.value.sig;
1558 break;
c906108c 1559
488f131b
JB
1560 /* We had an event in the inferior, but we are not interested
1561 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1562 done what needs to be done, if anything.
1563
1564 One of the possible circumstances for this is when the
1565 inferior produces output for the console. The inferior has
1566 not stopped, and we are ignoring the event. Another possible
1567 circumstance is any event which the lower level knows will be
1568 reported multiple times without an intervening resume. */
488f131b 1569 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1570 prepare_to_wait (ecs);
488f131b
JB
1571 return;
1572 }
c906108c 1573
488f131b
JB
1574 /* We may want to consider not doing a resume here in order to give
1575 the user a chance to play with the new thread. It might be good
1576 to make that a user-settable option. */
c906108c 1577
488f131b
JB
1578 /* At this point, all threads are stopped (happens automatically in
1579 either the OS or the native code). Therefore we need to continue
1580 all threads in order to make progress. */
1581 if (ecs->new_thread_event)
1582 {
1583 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1584 prepare_to_wait (ecs);
1585 return;
1586 }
c906108c 1587
488f131b
JB
1588 stop_pc = read_pc_pid (ecs->ptid);
1589
1590 /* See if a thread hit a thread-specific breakpoint that was meant for
1591 another thread. If so, then step that thread past the breakpoint,
1592 and continue it. */
1593
1594 if (stop_signal == TARGET_SIGNAL_TRAP)
1595 {
f8d40ec8
JB
1596 /* Check if a regular breakpoint has been hit before checking
1597 for a potential single step breakpoint. Otherwise, GDB will
1598 not see this breakpoint hit when stepping onto breakpoints. */
1599 if (breakpoints_inserted
1600 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
488f131b 1601 {
c5aa993b 1602 ecs->random_signal = 0;
488f131b
JB
1603 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1604 ecs->ptid))
1605 {
1606 int remove_status;
1607
1608 /* Saw a breakpoint, but it was hit by the wrong thread.
1609 Just continue. */
1610 if (DECR_PC_AFTER_BREAK)
1611 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1612
1613 remove_status = remove_breakpoints ();
1614 /* Did we fail to remove breakpoints? If so, try
1615 to set the PC past the bp. (There's at least
1616 one situation in which we can fail to remove
1617 the bp's: On HP-UX's that use ttrace, we can't
1618 change the address space of a vforking child
1619 process until the child exits (well, okay, not
1620 then either :-) or execs. */
1621 if (remove_status != 0)
1622 {
1623 /* FIXME! This is obviously non-portable! */
1624 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1625 /* We need to restart all the threads now,
1626 * unles we're running in scheduler-locked mode.
1627 * Use currently_stepping to determine whether to
1628 * step or continue.
1629 */
1630 /* FIXME MVS: is there any reason not to call resume()? */
1631 if (scheduler_mode == schedlock_on)
1632 target_resume (ecs->ptid,
1633 currently_stepping (ecs), TARGET_SIGNAL_0);
1634 else
1635 target_resume (RESUME_ALL,
1636 currently_stepping (ecs), TARGET_SIGNAL_0);
1637 prepare_to_wait (ecs);
1638 return;
1639 }
1640 else
1641 { /* Single step */
1642 breakpoints_inserted = 0;
1643 if (!ptid_equal (inferior_ptid, ecs->ptid))
1644 context_switch (ecs);
1645 ecs->waiton_ptid = ecs->ptid;
1646 ecs->wp = &(ecs->ws);
1647 ecs->another_trap = 1;
1648
1649 ecs->infwait_state = infwait_thread_hop_state;
1650 keep_going (ecs);
1651 registers_changed ();
1652 return;
1653 }
1654 }
1655 }
f8d40ec8
JB
1656 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1657 {
c8edd8b4
JB
1658 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1659 compared to the value it would have if the system stepping
1660 capability was used. This allows the rest of the code in
1661 this function to use this address without having to worry
1662 whether software single step is in use or not. */
1663 if (DECR_PC_AFTER_BREAK)
1664 {
1665 stop_pc -= DECR_PC_AFTER_BREAK;
1666 write_pc_pid (stop_pc, ecs->ptid);
1667 }
1668
1669 sw_single_step_trap_p = 1;
f8d40ec8
JB
1670 ecs->random_signal = 0;
1671 }
488f131b
JB
1672 }
1673 else
1674 ecs->random_signal = 1;
c906108c 1675
488f131b
JB
1676 /* See if something interesting happened to the non-current thread. If
1677 so, then switch to that thread, and eventually give control back to
1678 the user.
1679
1680 Note that if there's any kind of pending follow (i.e., of a fork,
1681 vfork or exec), we don't want to do this now. Rather, we'll let
1682 the next resume handle it. */
1683 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1684 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1685 {
1686 int printed = 0;
1687
1688 /* If it's a random signal for a non-current thread, notify user
1689 if he's expressed an interest. */
1690 if (ecs->random_signal && signal_print[stop_signal])
1691 {
c906108c
SS
1692/* ??rehrauer: I don't understand the rationale for this code. If the
1693 inferior will stop as a result of this signal, then the act of handling
1694 the stop ought to print a message that's couches the stoppage in user
1695 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1696 won't stop as a result of the signal -- i.e., if the signal is merely
1697 a side-effect of something GDB's doing "under the covers" for the
1698 user, such as stepping threads over a breakpoint they shouldn't stop
1699 for -- then the message seems to be a serious annoyance at best.
1700
1701 For now, remove the message altogether. */
1702#if 0
488f131b
JB
1703 printed = 1;
1704 target_terminal_ours_for_output ();
1705 printf_filtered ("\nProgram received signal %s, %s.\n",
1706 target_signal_to_name (stop_signal),
1707 target_signal_to_string (stop_signal));
1708 gdb_flush (gdb_stdout);
c906108c 1709#endif
488f131b 1710 }
c906108c 1711
488f131b
JB
1712 /* If it's not SIGTRAP and not a signal we want to stop for, then
1713 continue the thread. */
c906108c 1714
488f131b
JB
1715 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1716 {
1717 if (printed)
1718 target_terminal_inferior ();
c906108c 1719
488f131b
JB
1720 /* Clear the signal if it should not be passed. */
1721 if (signal_program[stop_signal] == 0)
1722 stop_signal = TARGET_SIGNAL_0;
c906108c 1723
488f131b
JB
1724 target_resume (ecs->ptid, 0, stop_signal);
1725 prepare_to_wait (ecs);
1726 return;
1727 }
c906108c 1728
488f131b
JB
1729 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1730 and fall into the rest of wait_for_inferior(). */
c5aa993b 1731
488f131b 1732 context_switch (ecs);
c5aa993b 1733
488f131b
JB
1734 if (context_hook)
1735 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1736
488f131b
JB
1737 flush_cached_frames ();
1738 }
c906108c 1739
488f131b
JB
1740 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1741 {
1742 /* Pull the single step breakpoints out of the target. */
1743 SOFTWARE_SINGLE_STEP (0, 0);
1744 singlestep_breakpoints_inserted_p = 0;
1745 }
c906108c 1746
488f131b
JB
1747 /* If PC is pointing at a nullified instruction, then step beyond
1748 it so that the user won't be confused when GDB appears to be ready
1749 to execute it. */
c906108c 1750
488f131b
JB
1751 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1752 if (INSTRUCTION_NULLIFIED)
1753 {
1754 registers_changed ();
1755 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1756
488f131b
JB
1757 /* We may have received a signal that we want to pass to
1758 the inferior; therefore, we must not clobber the waitstatus
1759 in WS. */
c906108c 1760
488f131b
JB
1761 ecs->infwait_state = infwait_nullified_state;
1762 ecs->waiton_ptid = ecs->ptid;
1763 ecs->wp = &(ecs->tmpstatus);
1764 prepare_to_wait (ecs);
1765 return;
1766 }
c906108c 1767
488f131b
JB
1768 /* It may not be necessary to disable the watchpoint to stop over
1769 it. For example, the PA can (with some kernel cooperation)
1770 single step over a watchpoint without disabling the watchpoint. */
1771 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1772 {
1773 resume (1, 0);
1774 prepare_to_wait (ecs);
1775 return;
1776 }
c906108c 1777
488f131b
JB
1778 /* It is far more common to need to disable a watchpoint to step
1779 the inferior over it. FIXME. What else might a debug
1780 register or page protection watchpoint scheme need here? */
1781 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1782 {
1783 /* At this point, we are stopped at an instruction which has
1784 attempted to write to a piece of memory under control of
1785 a watchpoint. The instruction hasn't actually executed
1786 yet. If we were to evaluate the watchpoint expression
1787 now, we would get the old value, and therefore no change
1788 would seem to have occurred.
1789
1790 In order to make watchpoints work `right', we really need
1791 to complete the memory write, and then evaluate the
1792 watchpoint expression. The following code does that by
1793 removing the watchpoint (actually, all watchpoints and
1794 breakpoints), single-stepping the target, re-inserting
1795 watchpoints, and then falling through to let normal
1796 single-step processing handle proceed. Since this
1797 includes evaluating watchpoints, things will come to a
1798 stop in the correct manner. */
1799
1800 if (DECR_PC_AFTER_BREAK)
1801 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1802
488f131b
JB
1803 remove_breakpoints ();
1804 registers_changed ();
1805 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1806
488f131b
JB
1807 ecs->waiton_ptid = ecs->ptid;
1808 ecs->wp = &(ecs->ws);
1809 ecs->infwait_state = infwait_nonstep_watch_state;
1810 prepare_to_wait (ecs);
1811 return;
1812 }
1813
1814 /* It may be possible to simply continue after a watchpoint. */
1815 if (HAVE_CONTINUABLE_WATCHPOINT)
1816 STOPPED_BY_WATCHPOINT (ecs->ws);
1817
1818 ecs->stop_func_start = 0;
1819 ecs->stop_func_end = 0;
1820 ecs->stop_func_name = 0;
1821 /* Don't care about return value; stop_func_start and stop_func_name
1822 will both be 0 if it doesn't work. */
1823 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1824 &ecs->stop_func_start, &ecs->stop_func_end);
1825 ecs->stop_func_start += FUNCTION_START_OFFSET;
1826 ecs->another_trap = 0;
1827 bpstat_clear (&stop_bpstat);
1828 stop_step = 0;
1829 stop_stack_dummy = 0;
1830 stop_print_frame = 1;
1831 ecs->random_signal = 0;
1832 stopped_by_random_signal = 0;
1833 breakpoints_failed = 0;
1834
1835 /* Look at the cause of the stop, and decide what to do.
1836 The alternatives are:
1837 1) break; to really stop and return to the debugger,
1838 2) drop through to start up again
1839 (set ecs->another_trap to 1 to single step once)
1840 3) set ecs->random_signal to 1, and the decision between 1 and 2
1841 will be made according to the signal handling tables. */
1842
1843 /* First, distinguish signals caused by the debugger from signals
1844 that have to do with the program's own actions.
1845 Note that breakpoint insns may cause SIGTRAP or SIGILL
1846 or SIGEMT, depending on the operating system version.
1847 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1848 and change it to SIGTRAP. */
1849
1850 if (stop_signal == TARGET_SIGNAL_TRAP
1851 || (breakpoints_inserted &&
1852 (stop_signal == TARGET_SIGNAL_ILL
c54cfec8 1853 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1854 || stop_soon == STOP_QUIETLY
1855 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1856 {
1857 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1858 {
1859 stop_print_frame = 0;
1860 stop_stepping (ecs);
1861 return;
1862 }
c54cfec8
EZ
1863
1864 /* This is originated from start_remote(), start_inferior() and
1865 shared libraries hook functions. */
c0236d92 1866 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1867 {
1868 stop_stepping (ecs);
1869 return;
1870 }
1871
c54cfec8
EZ
1872 /* This originates from attach_command(). We need to overwrite
1873 the stop_signal here, because some kernels don't ignore a
1874 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1875 See more comments in inferior.h. */
c0236d92 1876 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1877 {
1878 stop_stepping (ecs);
1879 if (stop_signal == TARGET_SIGNAL_STOP)
1880 stop_signal = TARGET_SIGNAL_0;
1881 return;
1882 }
1883
488f131b
JB
1884 /* Don't even think about breakpoints
1885 if just proceeded over a breakpoint.
1886
1887 However, if we are trying to proceed over a breakpoint
1888 and end up in sigtramp, then through_sigtramp_breakpoint
1889 will be set and we should check whether we've hit the
1890 step breakpoint. */
1891 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1892 && through_sigtramp_breakpoint == NULL)
1893 bpstat_clear (&stop_bpstat);
1894 else
1895 {
1896 /* See if there is a breakpoint at the current PC. */
1897
1898 /* The second argument of bpstat_stop_status is meant to help
1899 distinguish between a breakpoint trap and a singlestep trap.
1900 This is only important on targets where DECR_PC_AFTER_BREAK
1901 is non-zero. The prev_pc test is meant to distinguish between
1902 singlestepping a trap instruction, and singlestepping thru a
3e6564e1
JB
1903 jump to the instruction following a trap instruction.
1904
1905 Therefore, pass TRUE if our reason for stopping is
1906 something other than hitting a breakpoint. We do this by
1907 checking that either: we detected earlier a software single
1908 step trap or, 1) stepping is going on and 2) we didn't hit
1909 a breakpoint in a signal handler without an intervening stop
1910 in sigtramp, which is detected by a new stack pointer value
1911 below any usual function calling stack adjustments. */
238617f6
JB
1912 stop_bpstat =
1913 bpstat_stop_status
1914 (&stop_pc,
c8edd8b4
JB
1915 sw_single_step_trap_p
1916 || (currently_stepping (ecs)
1917 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1918 && !(step_range_end
1919 && INNER_THAN (read_sp (), (step_sp - 16)))));
488f131b
JB
1920 /* Following in case break condition called a
1921 function. */
1922 stop_print_frame = 1;
1923 }
1924
73dd234f
AC
1925 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1926 at one stage in the past included checks for an inferior
1927 function call's call dummy's return breakpoint. The original
1928 comment, that went with the test, read:
1929
1930 ``End of a stack dummy. Some systems (e.g. Sony news) give
1931 another signal besides SIGTRAP, so check here as well as
1932 above.''
1933
1934 If someone ever tries to get get call dummys on a
1935 non-executable stack to work (where the target would stop
1936 with something like a SIGSEG), then those tests might need to
1937 be re-instated. Given, however, that the tests were only
1938 enabled when momentary breakpoints were not being used, I
1939 suspect that it won't be the case. */
1940
488f131b
JB
1941 if (stop_signal == TARGET_SIGNAL_TRAP)
1942 ecs->random_signal
1943 = !(bpstat_explains_signal (stop_bpstat)
1944 || trap_expected
488f131b 1945 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1946 else
1947 {
73dd234f 1948 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1949 if (!ecs->random_signal)
1950 stop_signal = TARGET_SIGNAL_TRAP;
1951 }
1952 }
1953
1954 /* When we reach this point, we've pretty much decided
1955 that the reason for stopping must've been a random
1956 (unexpected) signal. */
1957
1958 else
1959 ecs->random_signal = 1;
488f131b 1960
04e68871 1961process_event_stop_test:
488f131b
JB
1962 /* For the program's own signals, act according to
1963 the signal handling tables. */
1964
1965 if (ecs->random_signal)
1966 {
1967 /* Signal not for debugging purposes. */
1968 int printed = 0;
1969
1970 stopped_by_random_signal = 1;
1971
1972 if (signal_print[stop_signal])
1973 {
1974 printed = 1;
1975 target_terminal_ours_for_output ();
1976 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1977 }
1978 if (signal_stop[stop_signal])
1979 {
1980 stop_stepping (ecs);
1981 return;
1982 }
1983 /* If not going to stop, give terminal back
1984 if we took it away. */
1985 else if (printed)
1986 target_terminal_inferior ();
1987
1988 /* Clear the signal if it should not be passed. */
1989 if (signal_program[stop_signal] == 0)
1990 stop_signal = TARGET_SIGNAL_0;
1991
1992 /* I'm not sure whether this needs to be check_sigtramp2 or
1993 whether it could/should be keep_going.
1994
1995 This used to jump to step_over_function if we are stepping,
1996 which is wrong.
1997
1998 Suppose the user does a `next' over a function call, and while
1999 that call is in progress, the inferior receives a signal for
2000 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2001 that case, when we reach this point, there is already a
2002 step-resume breakpoint established, right where it should be:
2003 immediately after the function call the user is "next"-ing
2004 over. If we call step_over_function now, two bad things
2005 happen:
2006
2007 - we'll create a new breakpoint, at wherever the current
2008 frame's return address happens to be. That could be
2009 anywhere, depending on what function call happens to be on
2010 the top of the stack at that point. Point is, it's probably
2011 not where we need it.
2012
2013 - the existing step-resume breakpoint (which is at the correct
2014 address) will get orphaned: step_resume_breakpoint will point
2015 to the new breakpoint, and the old step-resume breakpoint
2016 will never be cleaned up.
2017
2018 The old behavior was meant to help HP-UX single-step out of
2019 sigtramps. It would place the new breakpoint at prev_pc, which
2020 was certainly wrong. I don't know the details there, so fixing
2021 this probably breaks that. As with anything else, it's up to
2022 the HP-UX maintainer to furnish a fix that doesn't break other
2023 platforms. --JimB, 20 May 1999 */
2024 check_sigtramp2 (ecs);
2025 keep_going (ecs);
2026 return;
2027 }
2028
2029 /* Handle cases caused by hitting a breakpoint. */
2030 {
2031 CORE_ADDR jmp_buf_pc;
2032 struct bpstat_what what;
2033
2034 what = bpstat_what (stop_bpstat);
2035
2036 if (what.call_dummy)
2037 {
2038 stop_stack_dummy = 1;
2039#ifdef HP_OS_BUG
2040 trap_expected_after_continue = 1;
2041#endif
c5aa993b 2042 }
c906108c 2043
488f131b 2044 switch (what.main_action)
c5aa993b 2045 {
488f131b
JB
2046 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2047 /* If we hit the breakpoint at longjmp, disable it for the
2048 duration of this command. Then, install a temporary
2049 breakpoint at the target of the jmp_buf. */
2050 disable_longjmp_breakpoint ();
2051 remove_breakpoints ();
2052 breakpoints_inserted = 0;
2053 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2054 {
488f131b 2055 keep_going (ecs);
104c1213 2056 return;
c5aa993b 2057 }
488f131b
JB
2058
2059 /* Need to blow away step-resume breakpoint, as it
2060 interferes with us */
2061 if (step_resume_breakpoint != NULL)
104c1213 2062 {
488f131b 2063 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2064 }
488f131b
JB
2065 /* Not sure whether we need to blow this away too, but probably
2066 it is like the step-resume breakpoint. */
2067 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2068 {
488f131b
JB
2069 delete_breakpoint (through_sigtramp_breakpoint);
2070 through_sigtramp_breakpoint = NULL;
c5aa993b 2071 }
c906108c 2072
488f131b
JB
2073#if 0
2074 /* FIXME - Need to implement nested temporary breakpoints */
2075 if (step_over_calls > 0)
2076 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2077 else
488f131b 2078#endif /* 0 */
818dd999 2079 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2080 ecs->handling_longjmp = 1; /* FIXME */
2081 keep_going (ecs);
2082 return;
c906108c 2083
488f131b
JB
2084 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2085 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2086 remove_breakpoints ();
2087 breakpoints_inserted = 0;
2088#if 0
2089 /* FIXME - Need to implement nested temporary breakpoints */
2090 if (step_over_calls
aa0cd9c1
AC
2091 && (frame_id_inner (get_frame_id (get_current_frame ()),
2092 step_frame_id)))
c5aa993b 2093 {
488f131b 2094 ecs->another_trap = 1;
d4f3574e
SS
2095 keep_going (ecs);
2096 return;
c5aa993b 2097 }
488f131b
JB
2098#endif /* 0 */
2099 disable_longjmp_breakpoint ();
2100 ecs->handling_longjmp = 0; /* FIXME */
2101 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2102 break;
2103 /* else fallthrough */
2104
2105 case BPSTAT_WHAT_SINGLE:
2106 if (breakpoints_inserted)
c5aa993b 2107 {
488f131b 2108 remove_breakpoints ();
c5aa993b 2109 }
488f131b
JB
2110 breakpoints_inserted = 0;
2111 ecs->another_trap = 1;
2112 /* Still need to check other stuff, at least the case
2113 where we are stepping and step out of the right range. */
2114 break;
c906108c 2115
488f131b
JB
2116 case BPSTAT_WHAT_STOP_NOISY:
2117 stop_print_frame = 1;
c906108c 2118
488f131b
JB
2119 /* We are about to nuke the step_resume_breakpoint and
2120 through_sigtramp_breakpoint via the cleanup chain, so
2121 no need to worry about it here. */
c5aa993b 2122
488f131b
JB
2123 stop_stepping (ecs);
2124 return;
c5aa993b 2125
488f131b
JB
2126 case BPSTAT_WHAT_STOP_SILENT:
2127 stop_print_frame = 0;
c5aa993b 2128
488f131b
JB
2129 /* We are about to nuke the step_resume_breakpoint and
2130 through_sigtramp_breakpoint via the cleanup chain, so
2131 no need to worry about it here. */
c5aa993b 2132
488f131b 2133 stop_stepping (ecs);
e441088d 2134 return;
c5aa993b 2135
488f131b
JB
2136 case BPSTAT_WHAT_STEP_RESUME:
2137 /* This proably demands a more elegant solution, but, yeah
2138 right...
c5aa993b 2139
488f131b
JB
2140 This function's use of the simple variable
2141 step_resume_breakpoint doesn't seem to accomodate
2142 simultaneously active step-resume bp's, although the
2143 breakpoint list certainly can.
c5aa993b 2144
488f131b
JB
2145 If we reach here and step_resume_breakpoint is already
2146 NULL, then apparently we have multiple active
2147 step-resume bp's. We'll just delete the breakpoint we
2148 stopped at, and carry on.
2149
2150 Correction: what the code currently does is delete a
2151 step-resume bp, but it makes no effort to ensure that
2152 the one deleted is the one currently stopped at. MVS */
c5aa993b 2153
488f131b
JB
2154 if (step_resume_breakpoint == NULL)
2155 {
2156 step_resume_breakpoint =
2157 bpstat_find_step_resume_breakpoint (stop_bpstat);
2158 }
2159 delete_step_resume_breakpoint (&step_resume_breakpoint);
2160 break;
2161
2162 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2163 if (through_sigtramp_breakpoint)
2164 delete_breakpoint (through_sigtramp_breakpoint);
2165 through_sigtramp_breakpoint = NULL;
2166
2167 /* If were waiting for a trap, hitting the step_resume_break
2168 doesn't count as getting it. */
2169 if (trap_expected)
2170 ecs->another_trap = 1;
2171 break;
2172
2173 case BPSTAT_WHAT_CHECK_SHLIBS:
2174 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2175#ifdef SOLIB_ADD
c906108c 2176 {
488f131b
JB
2177 /* Remove breakpoints, we eventually want to step over the
2178 shlib event breakpoint, and SOLIB_ADD might adjust
2179 breakpoint addresses via breakpoint_re_set. */
2180 if (breakpoints_inserted)
2181 remove_breakpoints ();
c5aa993b 2182 breakpoints_inserted = 0;
488f131b
JB
2183
2184 /* Check for any newly added shared libraries if we're
2185 supposed to be adding them automatically. Switch
2186 terminal for any messages produced by
2187 breakpoint_re_set. */
2188 target_terminal_ours_for_output ();
603942cc 2189 SOLIB_ADD (NULL, 0, &exec_ops, auto_solib_add);
488f131b
JB
2190 target_terminal_inferior ();
2191
2192 /* Try to reenable shared library breakpoints, additional
2193 code segments in shared libraries might be mapped in now. */
2194 re_enable_breakpoints_in_shlibs ();
2195
2196 /* If requested, stop when the dynamic linker notifies
2197 gdb of events. This allows the user to get control
2198 and place breakpoints in initializer routines for
2199 dynamically loaded objects (among other things). */
2200 if (stop_on_solib_events)
d4f3574e 2201 {
488f131b 2202 stop_stepping (ecs);
d4f3574e
SS
2203 return;
2204 }
c5aa993b 2205
488f131b
JB
2206 /* If we stopped due to an explicit catchpoint, then the
2207 (see above) call to SOLIB_ADD pulled in any symbols
2208 from a newly-loaded library, if appropriate.
2209
2210 We do want the inferior to stop, but not where it is
2211 now, which is in the dynamic linker callback. Rather,
2212 we would like it stop in the user's program, just after
2213 the call that caused this catchpoint to trigger. That
2214 gives the user a more useful vantage from which to
2215 examine their program's state. */
2216 else if (what.main_action ==
2217 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2218 {
488f131b
JB
2219 /* ??rehrauer: If I could figure out how to get the
2220 right return PC from here, we could just set a temp
2221 breakpoint and resume. I'm not sure we can without
2222 cracking open the dld's shared libraries and sniffing
2223 their unwind tables and text/data ranges, and that's
2224 not a terribly portable notion.
2225
2226 Until that time, we must step the inferior out of the
2227 dld callback, and also out of the dld itself (and any
2228 code or stubs in libdld.sl, such as "shl_load" and
2229 friends) until we reach non-dld code. At that point,
2230 we can stop stepping. */
2231 bpstat_get_triggered_catchpoints (stop_bpstat,
2232 &ecs->
2233 stepping_through_solib_catchpoints);
2234 ecs->stepping_through_solib_after_catch = 1;
2235
2236 /* Be sure to lift all breakpoints, so the inferior does
2237 actually step past this point... */
2238 ecs->another_trap = 1;
2239 break;
c906108c 2240 }
c5aa993b 2241 else
c5aa993b 2242 {
488f131b 2243 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2244 ecs->another_trap = 1;
488f131b 2245 break;
c5aa993b 2246 }
488f131b
JB
2247 }
2248#endif
2249 break;
c906108c 2250
488f131b
JB
2251 case BPSTAT_WHAT_LAST:
2252 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2253
488f131b
JB
2254 case BPSTAT_WHAT_KEEP_CHECKING:
2255 break;
2256 }
2257 }
c906108c 2258
488f131b
JB
2259 /* We come here if we hit a breakpoint but should not
2260 stop for it. Possibly we also were stepping
2261 and should stop for that. So fall through and
2262 test for stepping. But, if not stepping,
2263 do not stop. */
c906108c 2264
488f131b
JB
2265 /* Are we stepping to get the inferior out of the dynamic
2266 linker's hook (and possibly the dld itself) after catching
2267 a shlib event? */
2268 if (ecs->stepping_through_solib_after_catch)
2269 {
2270#if defined(SOLIB_ADD)
2271 /* Have we reached our destination? If not, keep going. */
2272 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2273 {
2274 ecs->another_trap = 1;
2275 keep_going (ecs);
104c1213 2276 return;
488f131b
JB
2277 }
2278#endif
2279 /* Else, stop and report the catchpoint(s) whose triggering
2280 caused us to begin stepping. */
2281 ecs->stepping_through_solib_after_catch = 0;
2282 bpstat_clear (&stop_bpstat);
2283 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2284 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2285 stop_print_frame = 1;
2286 stop_stepping (ecs);
2287 return;
2288 }
c906108c 2289
488f131b
JB
2290 if (step_resume_breakpoint)
2291 {
2292 /* Having a step-resume breakpoint overrides anything
2293 else having to do with stepping commands until
2294 that breakpoint is reached. */
2295 /* I'm not sure whether this needs to be check_sigtramp2 or
2296 whether it could/should be keep_going. */
2297 check_sigtramp2 (ecs);
2298 keep_going (ecs);
2299 return;
2300 }
c5aa993b 2301
488f131b
JB
2302 if (step_range_end == 0)
2303 {
2304 /* Likewise if we aren't even stepping. */
2305 /* I'm not sure whether this needs to be check_sigtramp2 or
2306 whether it could/should be keep_going. */
2307 check_sigtramp2 (ecs);
2308 keep_going (ecs);
2309 return;
2310 }
c5aa993b 2311
488f131b 2312 /* If stepping through a line, keep going if still within it.
c906108c 2313
488f131b
JB
2314 Note that step_range_end is the address of the first instruction
2315 beyond the step range, and NOT the address of the last instruction
2316 within it! */
2317 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2318 {
2319 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2320 So definately need to check for sigtramp here. */
2321 check_sigtramp2 (ecs);
2322 keep_going (ecs);
2323 return;
2324 }
c5aa993b 2325
488f131b 2326 /* We stepped out of the stepping range. */
c906108c 2327
488f131b
JB
2328 /* If we are stepping at the source level and entered the runtime
2329 loader dynamic symbol resolution code, we keep on single stepping
2330 until we exit the run time loader code and reach the callee's
2331 address. */
2332 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2333 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2334 {
4c8c40e6
MK
2335 CORE_ADDR pc_after_resolver =
2336 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2337
488f131b
JB
2338 if (pc_after_resolver)
2339 {
2340 /* Set up a step-resume breakpoint at the address
2341 indicated by SKIP_SOLIB_RESOLVER. */
2342 struct symtab_and_line sr_sal;
fe39c653 2343 init_sal (&sr_sal);
488f131b
JB
2344 sr_sal.pc = pc_after_resolver;
2345
2346 check_for_old_step_resume_breakpoint ();
2347 step_resume_breakpoint =
818dd999 2348 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2349 if (breakpoints_inserted)
2350 insert_breakpoints ();
c5aa993b 2351 }
c906108c 2352
488f131b
JB
2353 keep_going (ecs);
2354 return;
2355 }
c906108c 2356
488f131b
JB
2357 /* We can't update step_sp every time through the loop, because
2358 reading the stack pointer would slow down stepping too much.
2359 But we can update it every time we leave the step range. */
2360 ecs->update_step_sp = 1;
c906108c 2361
488f131b 2362 /* Did we just take a signal? */
0ce3d317
AC
2363 if (pc_in_sigtramp (stop_pc)
2364 && !pc_in_sigtramp (prev_pc)
488f131b
JB
2365 && INNER_THAN (read_sp (), step_sp))
2366 {
2367 /* We've just taken a signal; go until we are back to
2368 the point where we took it and one more. */
c906108c 2369
488f131b
JB
2370 /* Note: The test above succeeds not only when we stepped
2371 into a signal handler, but also when we step past the last
2372 statement of a signal handler and end up in the return stub
2373 of the signal handler trampoline. To distinguish between
2374 these two cases, check that the frame is INNER_THAN the
2375 previous one below. pai/1997-09-11 */
c5aa993b 2376
c5aa993b 2377
c5aa993b 2378 {
aa0cd9c1 2379 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2380
aa0cd9c1 2381 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2382 {
2383 /* We have just taken a signal; go until we are back to
2384 the point where we took it and one more. */
c906108c 2385
488f131b
JB
2386 /* This code is needed at least in the following case:
2387 The user types "next" and then a signal arrives (before
2388 the "next" is done). */
d4f3574e 2389
488f131b
JB
2390 /* Note that if we are stopped at a breakpoint, then we need
2391 the step_resume breakpoint to override any breakpoints at
2392 the same location, so that we will still step over the
2393 breakpoint even though the signal happened. */
d4f3574e 2394 struct symtab_and_line sr_sal;
d4f3574e 2395
fe39c653 2396 init_sal (&sr_sal);
488f131b
JB
2397 sr_sal.symtab = NULL;
2398 sr_sal.line = 0;
2399 sr_sal.pc = prev_pc;
2400 /* We could probably be setting the frame to
aa0cd9c1 2401 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2402 check_for_old_step_resume_breakpoint ();
2403 step_resume_breakpoint =
818dd999 2404 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2405 if (breakpoints_inserted)
2406 insert_breakpoints ();
2407 }
488f131b
JB
2408 else
2409 {
2410 /* We just stepped out of a signal handler and into
2411 its calling trampoline.
2412
2413 Normally, we'd call step_over_function from
2414 here, but for some reason GDB can't unwind the
2415 stack correctly to find the real PC for the point
2416 user code where the signal trampoline will return
2417 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2418 But signal trampolines are pretty small stubs of
2419 code, anyway, so it's OK instead to just
2420 single-step out. Note: assuming such trampolines
2421 don't exhibit recursion on any platform... */
2422 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2423 &ecs->stop_func_start,
2424 &ecs->stop_func_end);
2425 /* Readjust stepping range */
2426 step_range_start = ecs->stop_func_start;
2427 step_range_end = ecs->stop_func_end;
2428 ecs->stepping_through_sigtramp = 1;
2429 }
d4f3574e 2430 }
c906108c 2431
c906108c 2432
488f131b
JB
2433 /* If this is stepi or nexti, make sure that the stepping range
2434 gets us past that instruction. */
2435 if (step_range_end == 1)
2436 /* FIXME: Does this run afoul of the code below which, if
2437 we step into the middle of a line, resets the stepping
2438 range? */
2439 step_range_end = (step_range_start = prev_pc) + 1;
2440
2441 ecs->remove_breakpoints_on_following_step = 1;
2442 keep_going (ecs);
2443 return;
2444 }
c906108c 2445
9407de8e
DJ
2446 if (((stop_pc == ecs->stop_func_start /* Quick test */
2447 || in_prologue (stop_pc, ecs->stop_func_start))
2448 && !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
488f131b
JB
2449 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2450 || ecs->stop_func_name == 0)
2451 {
2452 /* It's a subroutine call. */
c906108c 2453
488f131b
JB
2454 if ((step_over_calls == STEP_OVER_NONE)
2455 || ((step_range_end == 1)
2456 && in_prologue (prev_pc, ecs->stop_func_start)))
2457 {
2458 /* I presume that step_over_calls is only 0 when we're
2459 supposed to be stepping at the assembly language level
2460 ("stepi"). Just stop. */
2461 /* Also, maybe we just did a "nexti" inside a prolog,
2462 so we thought it was a subroutine call but it was not.
2463 Stop as well. FENN */
2464 stop_step = 1;
2465 print_stop_reason (END_STEPPING_RANGE, 0);
2466 stop_stepping (ecs);
2467 return;
2468 }
c906108c 2469
488f131b 2470 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
c5aa993b 2471 {
488f131b
JB
2472 /* We're doing a "next". */
2473
0ce3d317 2474 if (pc_in_sigtramp (stop_pc)
aa0cd9c1
AC
2475 && frame_id_inner (step_frame_id,
2476 frame_id_build (read_sp (), 0)))
488f131b
JB
2477 /* We stepped out of a signal handler, and into its
2478 calling trampoline. This is misdetected as a
2479 subroutine call, but stepping over the signal
aa0cd9c1
AC
2480 trampoline isn't such a bad idea. In order to do that,
2481 we have to ignore the value in step_frame_id, since
2482 that doesn't represent the frame that'll reach when we
2483 return from the signal trampoline. Otherwise we'll
2484 probably continue to the end of the program. */
2485 step_frame_id = null_frame_id;
488f131b
JB
2486
2487 step_over_function (ecs);
2488 keep_going (ecs);
2489 return;
2490 }
c906108c 2491
488f131b
JB
2492 /* If we are in a function call trampoline (a stub between
2493 the calling routine and the real function), locate the real
2494 function. That's what tells us (a) whether we want to step
2495 into it at all, and (b) what prologue we want to run to
2496 the end of, if we do step into it. */
f636b87d
AF
2497 real_stop_pc = skip_language_trampoline (stop_pc);
2498 if (real_stop_pc == 0)
2499 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
d764a824
AF
2500 if (real_stop_pc != 0)
2501 ecs->stop_func_start = real_stop_pc;
c906108c 2502
488f131b
JB
2503 /* If we have line number information for the function we
2504 are thinking of stepping into, step into it.
c906108c 2505
488f131b
JB
2506 If there are several symtabs at that PC (e.g. with include
2507 files), just want to know whether *any* of them have line
2508 numbers. find_pc_line handles this. */
c5aa993b 2509 {
488f131b 2510 struct symtab_and_line tmp_sal;
c906108c 2511
488f131b
JB
2512 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2513 if (tmp_sal.line != 0)
d4f3574e 2514 {
488f131b 2515 step_into_function (ecs);
d4f3574e
SS
2516 return;
2517 }
488f131b 2518 }
c5aa993b 2519
488f131b
JB
2520 /* If we have no line number and the step-stop-if-no-debug
2521 is set, we stop the step so that the user has a chance to
2522 switch in assembly mode. */
2523 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
c5aa993b 2524 {
488f131b
JB
2525 stop_step = 1;
2526 print_stop_reason (END_STEPPING_RANGE, 0);
2527 stop_stepping (ecs);
2528 return;
c906108c 2529 }
5fbbeb29 2530
488f131b
JB
2531 step_over_function (ecs);
2532 keep_going (ecs);
2533 return;
c906108c 2534
488f131b 2535 }
c906108c 2536
488f131b 2537 /* We've wandered out of the step range. */
c906108c 2538
488f131b 2539 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2540
488f131b
JB
2541 if (step_range_end == 1)
2542 {
2543 /* It is stepi or nexti. We always want to stop stepping after
2544 one instruction. */
2545 stop_step = 1;
2546 print_stop_reason (END_STEPPING_RANGE, 0);
2547 stop_stepping (ecs);
2548 return;
2549 }
c906108c 2550
488f131b
JB
2551 /* If we're in the return path from a shared library trampoline,
2552 we want to proceed through the trampoline when stepping. */
2553 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2554 {
488f131b 2555 /* Determine where this trampoline returns. */
d764a824 2556 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2557
488f131b 2558 /* Only proceed through if we know where it's going. */
d764a824 2559 if (real_stop_pc)
488f131b
JB
2560 {
2561 /* And put the step-breakpoint there and go until there. */
2562 struct symtab_and_line sr_sal;
2563
fe39c653 2564 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2565 sr_sal.pc = real_stop_pc;
488f131b
JB
2566 sr_sal.section = find_pc_overlay (sr_sal.pc);
2567 /* Do not specify what the fp should be when we stop
2568 since on some machines the prologue
2569 is where the new fp value is established. */
2570 check_for_old_step_resume_breakpoint ();
2571 step_resume_breakpoint =
818dd999 2572 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2573 if (breakpoints_inserted)
2574 insert_breakpoints ();
c906108c 2575
488f131b
JB
2576 /* Restart without fiddling with the step ranges or
2577 other state. */
2578 keep_going (ecs);
2579 return;
2580 }
2581 }
c906108c 2582
488f131b
JB
2583 if (ecs->sal.line == 0)
2584 {
2585 /* We have no line number information. That means to stop
2586 stepping (does this always happen right after one instruction,
2587 when we do "s" in a function with no line numbers,
2588 or can this happen as a result of a return or longjmp?). */
2589 stop_step = 1;
2590 print_stop_reason (END_STEPPING_RANGE, 0);
2591 stop_stepping (ecs);
2592 return;
2593 }
c906108c 2594
488f131b
JB
2595 if ((stop_pc == ecs->sal.pc)
2596 && (ecs->current_line != ecs->sal.line
2597 || ecs->current_symtab != ecs->sal.symtab))
2598 {
2599 /* We are at the start of a different line. So stop. Note that
2600 we don't stop if we step into the middle of a different line.
2601 That is said to make things like for (;;) statements work
2602 better. */
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
c906108c 2608
488f131b 2609 /* We aren't done stepping.
c906108c 2610
488f131b
JB
2611 Optimize by setting the stepping range to the line.
2612 (We might not be in the original line, but if we entered a
2613 new line in mid-statement, we continue stepping. This makes
2614 things like for(;;) statements work better.) */
c906108c 2615
488f131b 2616 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2617 {
488f131b
JB
2618 /* If this is the last line of the function, don't keep stepping
2619 (it would probably step us out of the function).
2620 This is particularly necessary for a one-line function,
2621 in which after skipping the prologue we better stop even though
2622 we will be in mid-line. */
2623 stop_step = 1;
2624 print_stop_reason (END_STEPPING_RANGE, 0);
2625 stop_stepping (ecs);
2626 return;
c5aa993b 2627 }
488f131b
JB
2628 step_range_start = ecs->sal.pc;
2629 step_range_end = ecs->sal.end;
aa0cd9c1 2630 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2631 ecs->current_line = ecs->sal.line;
2632 ecs->current_symtab = ecs->sal.symtab;
2633
aa0cd9c1
AC
2634 /* In the case where we just stepped out of a function into the
2635 middle of a line of the caller, continue stepping, but
2636 step_frame_id must be modified to current frame */
65815ea1
AC
2637#if 0
2638 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2639 generous. It will trigger on things like a step into a frameless
2640 stackless leaf function. I think the logic should instead look
2641 at the unwound frame ID has that should give a more robust
2642 indication of what happened. */
2643 if (step-ID == current-ID)
2644 still stepping in same function;
2645 else if (step-ID == unwind (current-ID))
2646 stepped into a function;
2647 else
2648 stepped out of a function;
2649 /* Of course this assumes that the frame ID unwind code is robust
2650 and we're willing to introduce frame unwind logic into this
ce2826aa 2651 function. Fortunately, those days are nearly upon us. */
65815ea1 2652#endif
488f131b 2653 {
aa0cd9c1
AC
2654 struct frame_id current_frame = get_frame_id (get_current_frame ());
2655 if (!(frame_id_inner (current_frame, step_frame_id)))
2656 step_frame_id = current_frame;
488f131b 2657 }
c906108c 2658
488f131b 2659 keep_going (ecs);
104c1213
JM
2660}
2661
2662/* Are we in the middle of stepping? */
2663
2664static int
2665currently_stepping (struct execution_control_state *ecs)
2666{
2667 return ((through_sigtramp_breakpoint == NULL
2668 && !ecs->handling_longjmp
2669 && ((step_range_end && step_resume_breakpoint == NULL)
2670 || trap_expected))
2671 || ecs->stepping_through_solib_after_catch
2672 || bpstat_should_step ());
2673}
c906108c 2674
104c1213
JM
2675static void
2676check_sigtramp2 (struct execution_control_state *ecs)
2677{
2678 if (trap_expected
0ce3d317
AC
2679 && pc_in_sigtramp (stop_pc)
2680 && !pc_in_sigtramp (prev_pc)
104c1213
JM
2681 && INNER_THAN (read_sp (), step_sp))
2682 {
2683 /* What has happened here is that we have just stepped the
488f131b
JB
2684 inferior with a signal (because it is a signal which
2685 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2686
488f131b
JB
2687 So we need to set a step_resume_break_address breakpoint and
2688 continue until we hit it, and then step. FIXME: This should
2689 be more enduring than a step_resume breakpoint; we should
2690 know that we will later need to keep going rather than
2691 re-hitting the breakpoint here (see the testsuite,
2692 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2693
2694 struct symtab_and_line sr_sal;
2695
fe39c653 2696 init_sal (&sr_sal); /* initialize to zeroes */
104c1213
JM
2697 sr_sal.pc = prev_pc;
2698 sr_sal.section = find_pc_overlay (sr_sal.pc);
2699 /* We perhaps could set the frame if we kept track of what the
488f131b 2700 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213 2701 through_sigtramp_breakpoint =
818dd999 2702 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
104c1213
JM
2703 if (breakpoints_inserted)
2704 insert_breakpoints ();
cd0fc7c3 2705
104c1213
JM
2706 ecs->remove_breakpoints_on_following_step = 1;
2707 ecs->another_trap = 1;
2708 }
2709}
2710
c2c6d25f
JM
2711/* Subroutine call with source code we should not step over. Do step
2712 to the first line of code in it. */
2713
2714static void
2715step_into_function (struct execution_control_state *ecs)
2716{
2717 struct symtab *s;
2718 struct symtab_and_line sr_sal;
2719
2720 s = find_pc_symtab (stop_pc);
2721 if (s && s->language != language_asm)
2722 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2723
2724 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2725 /* Use the step_resume_break to step until the end of the prologue,
2726 even if that involves jumps (as it seems to on the vax under
2727 4.2). */
2728 /* If the prologue ends in the middle of a source line, continue to
2729 the end of that source line (if it is still within the function).
2730 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2731 if (ecs->sal.end
2732 && ecs->sal.pc != ecs->stop_func_start
2733 && ecs->sal.end < ecs->stop_func_end)
2734 ecs->stop_func_start = ecs->sal.end;
c2c6d25f
JM
2735
2736 if (ecs->stop_func_start == stop_pc)
2737 {
2738 /* We are already there: stop now. */
2739 stop_step = 1;
488f131b 2740 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2741 stop_stepping (ecs);
2742 return;
2743 }
2744 else
2745 {
2746 /* Put the step-breakpoint there and go until there. */
fe39c653 2747 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2748 sr_sal.pc = ecs->stop_func_start;
2749 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2750 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2751 some machines the prologue is where the new fp value is
2752 established. */
c2c6d25f
JM
2753 check_for_old_step_resume_breakpoint ();
2754 step_resume_breakpoint =
818dd999 2755 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2756 if (breakpoints_inserted)
2757 insert_breakpoints ();
2758
2759 /* And make sure stepping stops right away then. */
2760 step_range_end = step_range_start;
2761 }
2762 keep_going (ecs);
2763}
d4f3574e
SS
2764
2765/* We've just entered a callee, and we wish to resume until it returns
2766 to the caller. Setting a step_resume breakpoint on the return
2767 address will catch a return from the callee.
2768
2769 However, if the callee is recursing, we want to be careful not to
2770 catch returns of those recursive calls, but only of THIS instance
2771 of the call.
2772
2773 To do this, we set the step_resume bp's frame to our current
aa0cd9c1 2774 caller's frame (step_frame_id, which is set by the "next" or
d4f3574e
SS
2775 "until" command, before execution begins). */
2776
2777static void
2778step_over_function (struct execution_control_state *ecs)
2779{
2780 struct symtab_and_line sr_sal;
2781
fe39c653 2782 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2783
2784 /* NOTE: cagney/2003-04-06:
2785
2786 At this point the equality get_frame_pc() == get_frame_func()
2787 should hold. This may make it possible for this code to tell the
2788 frame where it's function is, instead of the reverse. This would
2789 avoid the need to search for the frame's function, which can get
2790 very messy when there is no debug info available (look at the
2791 heuristic find pc start code found in targets like the MIPS). */
2792
6913c89a 2793 /* NOTE: cagney/2003-04-06:
4443bd83 2794
6913c89a 2795 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2796
2797 - provide a very light weight equivalent to frame_unwind_pc()
2798 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2799
2800 - avoid handling the case where the PC hasn't been saved in the
2801 prologue analyzer
2802
ce2826aa 2803 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2804 get_frame_id() and that is guarenteed to trigger the prologue
2805 analyzer.
2806
2807 The `correct fix' is for the prologe analyzer to handle the case
2808 where the prologue is incomplete (PC in prologue) and,
2809 consequently, the return pc has not yet been saved. It should be
2810 noted that the prologue analyzer needs to handle this case
2811 anyway: frameless leaf functions that don't save the return PC;
2812 single stepping through a prologue.
2813
2814 The d10v handles all this by bailing out of the prologue analsis
2815 when it reaches the current instruction. */
2816
6913c89a
AC
2817 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2818 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2819 else
2820 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2821 sr_sal.section = find_pc_overlay (sr_sal.pc);
2822
2823 check_for_old_step_resume_breakpoint ();
2824 step_resume_breakpoint =
818dd999
AC
2825 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2826 bp_step_resume);
d4f3574e 2827
aa0cd9c1
AC
2828 if (frame_id_p (step_frame_id)
2829 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
818dd999 2830 step_resume_breakpoint->frame_id = step_frame_id;
d4f3574e
SS
2831
2832 if (breakpoints_inserted)
2833 insert_breakpoints ();
2834}
2835
104c1213
JM
2836static void
2837stop_stepping (struct execution_control_state *ecs)
2838{
cd0fc7c3
SS
2839 /* Let callers know we don't want to wait for the inferior anymore. */
2840 ecs->wait_some_more = 0;
2841}
2842
d4f3574e
SS
2843/* This function handles various cases where we need to continue
2844 waiting for the inferior. */
2845/* (Used to be the keep_going: label in the old wait_for_inferior) */
2846
2847static void
2848keep_going (struct execution_control_state *ecs)
2849{
d4f3574e 2850 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2851 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2852
2853 if (ecs->update_step_sp)
2854 step_sp = read_sp ();
2855 ecs->update_step_sp = 0;
2856
2857 /* If we did not do break;, it means we should keep running the
2858 inferior and not return to debugger. */
2859
2860 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2861 {
2862 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2863 the inferior, else we'd have done a break above) and we
2864 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2865 resume (currently_stepping (ecs), stop_signal);
2866 }
2867 else
2868 {
2869 /* Either the trap was not expected, but we are continuing
488f131b
JB
2870 anyway (the user asked that this signal be passed to the
2871 child)
2872 -- or --
2873 The signal was SIGTRAP, e.g. it was our signal, but we
2874 decided we should resume from it.
d4f3574e 2875
488f131b 2876 We're going to run this baby now!
d4f3574e 2877
488f131b
JB
2878 Insert breakpoints now, unless we are trying to one-proceed
2879 past a breakpoint. */
d4f3574e 2880 /* If we've just finished a special step resume and we don't
488f131b 2881 want to hit a breakpoint, pull em out. */
d4f3574e
SS
2882 if (step_resume_breakpoint == NULL
2883 && through_sigtramp_breakpoint == NULL
2884 && ecs->remove_breakpoints_on_following_step)
2885 {
2886 ecs->remove_breakpoints_on_following_step = 0;
2887 remove_breakpoints ();
2888 breakpoints_inserted = 0;
2889 }
2890 else if (!breakpoints_inserted &&
2891 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2892 {
2893 breakpoints_failed = insert_breakpoints ();
2894 if (breakpoints_failed)
2895 {
2896 stop_stepping (ecs);
2897 return;
2898 }
2899 breakpoints_inserted = 1;
2900 }
2901
2902 trap_expected = ecs->another_trap;
2903
2904 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2905 specifies that such a signal should be delivered to the
2906 target program).
2907
2908 Typically, this would occure when a user is debugging a
2909 target monitor on a simulator: the target monitor sets a
2910 breakpoint; the simulator encounters this break-point and
2911 halts the simulation handing control to GDB; GDB, noteing
2912 that the break-point isn't valid, returns control back to the
2913 simulator; the simulator then delivers the hardware
2914 equivalent of a SIGNAL_TRAP to the program being debugged. */
2915
2916 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2917 stop_signal = TARGET_SIGNAL_0;
2918
2919#ifdef SHIFT_INST_REGS
2920 /* I'm not sure when this following segment applies. I do know,
488f131b
JB
2921 now, that we shouldn't rewrite the regs when we were stopped
2922 by a random signal from the inferior process. */
d4f3574e 2923 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
488f131b 2924 (this is only used on the 88k). */
d4f3574e
SS
2925
2926 if (!bpstat_explains_signal (stop_bpstat)
488f131b 2927 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
d4f3574e
SS
2928 SHIFT_INST_REGS ();
2929#endif /* SHIFT_INST_REGS */
2930
2931 resume (currently_stepping (ecs), stop_signal);
2932 }
2933
488f131b 2934 prepare_to_wait (ecs);
d4f3574e
SS
2935}
2936
104c1213
JM
2937/* This function normally comes after a resume, before
2938 handle_inferior_event exits. It takes care of any last bits of
2939 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2940
104c1213
JM
2941static void
2942prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2943{
104c1213
JM
2944 if (ecs->infwait_state == infwait_normal_state)
2945 {
2946 overlay_cache_invalid = 1;
2947
2948 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2949 target_wait because they can be loaded from the target while
2950 in target_wait. This makes remote debugging a bit more
2951 efficient for those targets that provide critical registers
2952 as part of their normal status mechanism. */
104c1213
JM
2953
2954 registers_changed ();
39f77062 2955 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2956 ecs->wp = &(ecs->ws);
2957 }
2958 /* This is the old end of the while loop. Let everybody know we
2959 want to wait for the inferior some more and get called again
2960 soon. */
2961 ecs->wait_some_more = 1;
c906108c 2962}
11cf8741
JM
2963
2964/* Print why the inferior has stopped. We always print something when
2965 the inferior exits, or receives a signal. The rest of the cases are
2966 dealt with later on in normal_stop() and print_it_typical(). Ideally
2967 there should be a call to this function from handle_inferior_event()
2968 each time stop_stepping() is called.*/
2969static void
2970print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2971{
2972 switch (stop_reason)
2973 {
2974 case STOP_UNKNOWN:
2975 /* We don't deal with these cases from handle_inferior_event()
2976 yet. */
2977 break;
2978 case END_STEPPING_RANGE:
2979 /* We are done with a step/next/si/ni command. */
2980 /* For now print nothing. */
fb40c209 2981 /* Print a message only if not in the middle of doing a "step n"
488f131b 2982 operation for n > 1 */
fb40c209 2983 if (!step_multi || !stop_step)
9dc5e2a9 2984 if (ui_out_is_mi_like_p (uiout))
fb40c209 2985 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2986 break;
2987 case BREAKPOINT_HIT:
2988 /* We found a breakpoint. */
2989 /* For now print nothing. */
2990 break;
2991 case SIGNAL_EXITED:
2992 /* The inferior was terminated by a signal. */
8b93c638 2993 annotate_signalled ();
9dc5e2a9 2994 if (ui_out_is_mi_like_p (uiout))
fb40c209 2995 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2996 ui_out_text (uiout, "\nProgram terminated with signal ");
2997 annotate_signal_name ();
488f131b
JB
2998 ui_out_field_string (uiout, "signal-name",
2999 target_signal_to_name (stop_info));
8b93c638
JM
3000 annotate_signal_name_end ();
3001 ui_out_text (uiout, ", ");
3002 annotate_signal_string ();
488f131b
JB
3003 ui_out_field_string (uiout, "signal-meaning",
3004 target_signal_to_string (stop_info));
8b93c638
JM
3005 annotate_signal_string_end ();
3006 ui_out_text (uiout, ".\n");
3007 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3008 break;
3009 case EXITED:
3010 /* The inferior program is finished. */
8b93c638
JM
3011 annotate_exited (stop_info);
3012 if (stop_info)
3013 {
9dc5e2a9 3014 if (ui_out_is_mi_like_p (uiout))
fb40c209 3015 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3016 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3017 ui_out_field_fmt (uiout, "exit-code", "0%o",
3018 (unsigned int) stop_info);
8b93c638
JM
3019 ui_out_text (uiout, ".\n");
3020 }
3021 else
3022 {
9dc5e2a9 3023 if (ui_out_is_mi_like_p (uiout))
fb40c209 3024 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3025 ui_out_text (uiout, "\nProgram exited normally.\n");
3026 }
11cf8741
JM
3027 break;
3028 case SIGNAL_RECEIVED:
3029 /* Signal received. The signal table tells us to print about
3030 it. */
8b93c638
JM
3031 annotate_signal ();
3032 ui_out_text (uiout, "\nProgram received signal ");
3033 annotate_signal_name ();
84c6c83c
KS
3034 if (ui_out_is_mi_like_p (uiout))
3035 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3036 ui_out_field_string (uiout, "signal-name",
3037 target_signal_to_name (stop_info));
8b93c638
JM
3038 annotate_signal_name_end ();
3039 ui_out_text (uiout, ", ");
3040 annotate_signal_string ();
488f131b
JB
3041 ui_out_field_string (uiout, "signal-meaning",
3042 target_signal_to_string (stop_info));
8b93c638
JM
3043 annotate_signal_string_end ();
3044 ui_out_text (uiout, ".\n");
11cf8741
JM
3045 break;
3046 default:
8e65ff28
AC
3047 internal_error (__FILE__, __LINE__,
3048 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3049 break;
3050 }
3051}
c906108c 3052\f
43ff13b4 3053
c906108c
SS
3054/* Here to return control to GDB when the inferior stops for real.
3055 Print appropriate messages, remove breakpoints, give terminal our modes.
3056
3057 STOP_PRINT_FRAME nonzero means print the executing frame
3058 (pc, function, args, file, line number and line text).
3059 BREAKPOINTS_FAILED nonzero means stop was due to error
3060 attempting to insert breakpoints. */
3061
3062void
96baa820 3063normal_stop (void)
c906108c 3064{
73b65bb0
DJ
3065 struct target_waitstatus last;
3066 ptid_t last_ptid;
3067
3068 get_last_target_status (&last_ptid, &last);
3069
c906108c
SS
3070 /* As with the notification of thread events, we want to delay
3071 notifying the user that we've switched thread context until
3072 the inferior actually stops.
3073
73b65bb0
DJ
3074 There's no point in saying anything if the inferior has exited.
3075 Note that SIGNALLED here means "exited with a signal", not
3076 "received a signal". */
488f131b 3077 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3078 && target_has_execution
3079 && last.kind != TARGET_WAITKIND_SIGNALLED
3080 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3081 {
3082 target_terminal_ours_for_output ();
c3f6f71d 3083 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3084 target_pid_or_tid_to_str (inferior_ptid));
3085 previous_inferior_ptid = inferior_ptid;
c906108c 3086 }
c906108c
SS
3087
3088 /* Make sure that the current_frame's pc is correct. This
3089 is a correction for setting up the frame info before doing
3090 DECR_PC_AFTER_BREAK */
b87efeee
AC
3091 if (target_has_execution)
3092 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3093 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3094 frame code to check for this and sort out any resultant mess.
3095 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3096 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3097
c906108c
SS
3098 if (target_has_execution && breakpoints_inserted)
3099 {
3100 if (remove_breakpoints ())
3101 {
3102 target_terminal_ours_for_output ();
3103 printf_filtered ("Cannot remove breakpoints because ");
3104 printf_filtered ("program is no longer writable.\n");
3105 printf_filtered ("It might be running in another process.\n");
3106 printf_filtered ("Further execution is probably impossible.\n");
3107 }
3108 }
3109 breakpoints_inserted = 0;
3110
3111 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3112 Delete any breakpoint that is to be deleted at the next stop. */
3113
3114 breakpoint_auto_delete (stop_bpstat);
3115
3116 /* If an auto-display called a function and that got a signal,
3117 delete that auto-display to avoid an infinite recursion. */
3118
3119 if (stopped_by_random_signal)
3120 disable_current_display ();
3121
3122 /* Don't print a message if in the middle of doing a "step n"
3123 operation for n > 1 */
3124 if (step_multi && stop_step)
3125 goto done;
3126
3127 target_terminal_ours ();
3128
5913bcb0
AC
3129 /* Look up the hook_stop and run it (CLI internally handles problem
3130 of stop_command's pre-hook not existing). */
3131 if (stop_command)
3132 catch_errors (hook_stop_stub, stop_command,
3133 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3134
3135 if (!target_has_stack)
3136 {
3137
3138 goto done;
3139 }
3140
3141 /* Select innermost stack frame - i.e., current frame is frame 0,
3142 and current location is based on that.
3143 Don't do this on return from a stack dummy routine,
3144 or if the program has exited. */
3145
3146 if (!stop_stack_dummy)
3147 {
0f7d239c 3148 select_frame (get_current_frame ());
c906108c
SS
3149
3150 /* Print current location without a level number, if
c5aa993b
JM
3151 we have changed functions or hit a breakpoint.
3152 Print source line if we have one.
3153 bpstat_print() contains the logic deciding in detail
3154 what to print, based on the event(s) that just occurred. */
c906108c 3155
6e7f8b9c 3156 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3157 {
3158 int bpstat_ret;
3159 int source_flag;
917317f4 3160 int do_frame_printing = 1;
c906108c
SS
3161
3162 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3163 switch (bpstat_ret)
3164 {
3165 case PRINT_UNKNOWN:
aa0cd9c1
AC
3166 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3167 (or should) carry around the function and does (or
3168 should) use that when doing a frame comparison. */
917317f4 3169 if (stop_step
aa0cd9c1
AC
3170 && frame_id_eq (step_frame_id,
3171 get_frame_id (get_current_frame ()))
917317f4 3172 && step_start_function == find_pc_function (stop_pc))
488f131b 3173 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3174 else
488f131b 3175 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3176 break;
3177 case PRINT_SRC_AND_LOC:
488f131b 3178 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3179 break;
3180 case PRINT_SRC_ONLY:
c5394b80 3181 source_flag = SRC_LINE;
917317f4
JM
3182 break;
3183 case PRINT_NOTHING:
488f131b 3184 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3185 do_frame_printing = 0;
3186 break;
3187 default:
488f131b 3188 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3189 }
fb40c209 3190 /* For mi, have the same behavior every time we stop:
488f131b 3191 print everything but the source line. */
9dc5e2a9 3192 if (ui_out_is_mi_like_p (uiout))
fb40c209 3193 source_flag = LOC_AND_ADDRESS;
c906108c 3194
9dc5e2a9 3195 if (ui_out_is_mi_like_p (uiout))
39f77062 3196 ui_out_field_int (uiout, "thread-id",
488f131b 3197 pid_to_thread_id (inferior_ptid));
c906108c
SS
3198 /* The behavior of this routine with respect to the source
3199 flag is:
c5394b80
JM
3200 SRC_LINE: Print only source line
3201 LOCATION: Print only location
3202 SRC_AND_LOC: Print location and source line */
917317f4 3203 if (do_frame_printing)
7789c6f5 3204 print_stack_frame (deprecated_selected_frame, -1, source_flag);
c906108c
SS
3205
3206 /* Display the auto-display expressions. */
3207 do_displays ();
3208 }
3209 }
3210
3211 /* Save the function value return registers, if we care.
3212 We might be about to restore their previous contents. */
3213 if (proceed_to_finish)
72cec141
AC
3214 /* NB: The copy goes through to the target picking up the value of
3215 all the registers. */
3216 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3217
3218 if (stop_stack_dummy)
3219 {
dbe9fe58
AC
3220 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3221 ends with a setting of the current frame, so we can use that
3222 next. */
3223 frame_pop (get_current_frame ());
c906108c 3224 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3225 Can't rely on restore_inferior_status because that only gets
3226 called if we don't stop in the called function. */
c906108c 3227 stop_pc = read_pc ();
0f7d239c 3228 select_frame (get_current_frame ());
c906108c
SS
3229 }
3230
c906108c
SS
3231done:
3232 annotate_stopped ();
06600e06 3233 observer_notify_normal_stop ();
c906108c
SS
3234}
3235
3236static int
96baa820 3237hook_stop_stub (void *cmd)
c906108c 3238{
5913bcb0 3239 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3240 return (0);
3241}
3242\f
c5aa993b 3243int
96baa820 3244signal_stop_state (int signo)
c906108c
SS
3245{
3246 return signal_stop[signo];
3247}
3248
c5aa993b 3249int
96baa820 3250signal_print_state (int signo)
c906108c
SS
3251{
3252 return signal_print[signo];
3253}
3254
c5aa993b 3255int
96baa820 3256signal_pass_state (int signo)
c906108c
SS
3257{
3258 return signal_program[signo];
3259}
3260
488f131b 3261int
7bda5e4a 3262signal_stop_update (int signo, int state)
d4f3574e
SS
3263{
3264 int ret = signal_stop[signo];
3265 signal_stop[signo] = state;
3266 return ret;
3267}
3268
488f131b 3269int
7bda5e4a 3270signal_print_update (int signo, int state)
d4f3574e
SS
3271{
3272 int ret = signal_print[signo];
3273 signal_print[signo] = state;
3274 return ret;
3275}
3276
488f131b 3277int
7bda5e4a 3278signal_pass_update (int signo, int state)
d4f3574e
SS
3279{
3280 int ret = signal_program[signo];
3281 signal_program[signo] = state;
3282 return ret;
3283}
3284
c906108c 3285static void
96baa820 3286sig_print_header (void)
c906108c
SS
3287{
3288 printf_filtered ("\
3289Signal Stop\tPrint\tPass to program\tDescription\n");
3290}
3291
3292static void
96baa820 3293sig_print_info (enum target_signal oursig)
c906108c
SS
3294{
3295 char *name = target_signal_to_name (oursig);
3296 int name_padding = 13 - strlen (name);
96baa820 3297
c906108c
SS
3298 if (name_padding <= 0)
3299 name_padding = 0;
3300
3301 printf_filtered ("%s", name);
488f131b 3302 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3303 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3304 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3305 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3306 printf_filtered ("%s\n", target_signal_to_string (oursig));
3307}
3308
3309/* Specify how various signals in the inferior should be handled. */
3310
3311static void
96baa820 3312handle_command (char *args, int from_tty)
c906108c
SS
3313{
3314 char **argv;
3315 int digits, wordlen;
3316 int sigfirst, signum, siglast;
3317 enum target_signal oursig;
3318 int allsigs;
3319 int nsigs;
3320 unsigned char *sigs;
3321 struct cleanup *old_chain;
3322
3323 if (args == NULL)
3324 {
3325 error_no_arg ("signal to handle");
3326 }
3327
3328 /* Allocate and zero an array of flags for which signals to handle. */
3329
3330 nsigs = (int) TARGET_SIGNAL_LAST;
3331 sigs = (unsigned char *) alloca (nsigs);
3332 memset (sigs, 0, nsigs);
3333
3334 /* Break the command line up into args. */
3335
3336 argv = buildargv (args);
3337 if (argv == NULL)
3338 {
3339 nomem (0);
3340 }
7a292a7a 3341 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3342
3343 /* Walk through the args, looking for signal oursigs, signal names, and
3344 actions. Signal numbers and signal names may be interspersed with
3345 actions, with the actions being performed for all signals cumulatively
3346 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3347
3348 while (*argv != NULL)
3349 {
3350 wordlen = strlen (*argv);
3351 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3352 {;
3353 }
3354 allsigs = 0;
3355 sigfirst = siglast = -1;
3356
3357 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3358 {
3359 /* Apply action to all signals except those used by the
3360 debugger. Silently skip those. */
3361 allsigs = 1;
3362 sigfirst = 0;
3363 siglast = nsigs - 1;
3364 }
3365 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3366 {
3367 SET_SIGS (nsigs, sigs, signal_stop);
3368 SET_SIGS (nsigs, sigs, signal_print);
3369 }
3370 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3371 {
3372 UNSET_SIGS (nsigs, sigs, signal_program);
3373 }
3374 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3375 {
3376 SET_SIGS (nsigs, sigs, signal_print);
3377 }
3378 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3379 {
3380 SET_SIGS (nsigs, sigs, signal_program);
3381 }
3382 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3383 {
3384 UNSET_SIGS (nsigs, sigs, signal_stop);
3385 }
3386 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3387 {
3388 SET_SIGS (nsigs, sigs, signal_program);
3389 }
3390 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3391 {
3392 UNSET_SIGS (nsigs, sigs, signal_print);
3393 UNSET_SIGS (nsigs, sigs, signal_stop);
3394 }
3395 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3396 {
3397 UNSET_SIGS (nsigs, sigs, signal_program);
3398 }
3399 else if (digits > 0)
3400 {
3401 /* It is numeric. The numeric signal refers to our own
3402 internal signal numbering from target.h, not to host/target
3403 signal number. This is a feature; users really should be
3404 using symbolic names anyway, and the common ones like
3405 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3406
3407 sigfirst = siglast = (int)
3408 target_signal_from_command (atoi (*argv));
3409 if ((*argv)[digits] == '-')
3410 {
3411 siglast = (int)
3412 target_signal_from_command (atoi ((*argv) + digits + 1));
3413 }
3414 if (sigfirst > siglast)
3415 {
3416 /* Bet he didn't figure we'd think of this case... */
3417 signum = sigfirst;
3418 sigfirst = siglast;
3419 siglast = signum;
3420 }
3421 }
3422 else
3423 {
3424 oursig = target_signal_from_name (*argv);
3425 if (oursig != TARGET_SIGNAL_UNKNOWN)
3426 {
3427 sigfirst = siglast = (int) oursig;
3428 }
3429 else
3430 {
3431 /* Not a number and not a recognized flag word => complain. */
3432 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3433 }
3434 }
3435
3436 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3437 which signals to apply actions to. */
c906108c
SS
3438
3439 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3440 {
3441 switch ((enum target_signal) signum)
3442 {
3443 case TARGET_SIGNAL_TRAP:
3444 case TARGET_SIGNAL_INT:
3445 if (!allsigs && !sigs[signum])
3446 {
3447 if (query ("%s is used by the debugger.\n\
488f131b 3448Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3449 {
3450 sigs[signum] = 1;
3451 }
3452 else
3453 {
3454 printf_unfiltered ("Not confirmed, unchanged.\n");
3455 gdb_flush (gdb_stdout);
3456 }
3457 }
3458 break;
3459 case TARGET_SIGNAL_0:
3460 case TARGET_SIGNAL_DEFAULT:
3461 case TARGET_SIGNAL_UNKNOWN:
3462 /* Make sure that "all" doesn't print these. */
3463 break;
3464 default:
3465 sigs[signum] = 1;
3466 break;
3467 }
3468 }
3469
3470 argv++;
3471 }
3472
39f77062 3473 target_notice_signals (inferior_ptid);
c906108c
SS
3474
3475 if (from_tty)
3476 {
3477 /* Show the results. */
3478 sig_print_header ();
3479 for (signum = 0; signum < nsigs; signum++)
3480 {
3481 if (sigs[signum])
3482 {
3483 sig_print_info (signum);
3484 }
3485 }
3486 }
3487
3488 do_cleanups (old_chain);
3489}
3490
3491static void
96baa820 3492xdb_handle_command (char *args, int from_tty)
c906108c
SS
3493{
3494 char **argv;
3495 struct cleanup *old_chain;
3496
3497 /* Break the command line up into args. */
3498
3499 argv = buildargv (args);
3500 if (argv == NULL)
3501 {
3502 nomem (0);
3503 }
7a292a7a 3504 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3505 if (argv[1] != (char *) NULL)
3506 {
3507 char *argBuf;
3508 int bufLen;
3509
3510 bufLen = strlen (argv[0]) + 20;
3511 argBuf = (char *) xmalloc (bufLen);
3512 if (argBuf)
3513 {
3514 int validFlag = 1;
3515 enum target_signal oursig;
3516
3517 oursig = target_signal_from_name (argv[0]);
3518 memset (argBuf, 0, bufLen);
3519 if (strcmp (argv[1], "Q") == 0)
3520 sprintf (argBuf, "%s %s", argv[0], "noprint");
3521 else
3522 {
3523 if (strcmp (argv[1], "s") == 0)
3524 {
3525 if (!signal_stop[oursig])
3526 sprintf (argBuf, "%s %s", argv[0], "stop");
3527 else
3528 sprintf (argBuf, "%s %s", argv[0], "nostop");
3529 }
3530 else if (strcmp (argv[1], "i") == 0)
3531 {
3532 if (!signal_program[oursig])
3533 sprintf (argBuf, "%s %s", argv[0], "pass");
3534 else
3535 sprintf (argBuf, "%s %s", argv[0], "nopass");
3536 }
3537 else if (strcmp (argv[1], "r") == 0)
3538 {
3539 if (!signal_print[oursig])
3540 sprintf (argBuf, "%s %s", argv[0], "print");
3541 else
3542 sprintf (argBuf, "%s %s", argv[0], "noprint");
3543 }
3544 else
3545 validFlag = 0;
3546 }
3547 if (validFlag)
3548 handle_command (argBuf, from_tty);
3549 else
3550 printf_filtered ("Invalid signal handling flag.\n");
3551 if (argBuf)
b8c9b27d 3552 xfree (argBuf);
c906108c
SS
3553 }
3554 }
3555 do_cleanups (old_chain);
3556}
3557
3558/* Print current contents of the tables set by the handle command.
3559 It is possible we should just be printing signals actually used
3560 by the current target (but for things to work right when switching
3561 targets, all signals should be in the signal tables). */
3562
3563static void
96baa820 3564signals_info (char *signum_exp, int from_tty)
c906108c
SS
3565{
3566 enum target_signal oursig;
3567 sig_print_header ();
3568
3569 if (signum_exp)
3570 {
3571 /* First see if this is a symbol name. */
3572 oursig = target_signal_from_name (signum_exp);
3573 if (oursig == TARGET_SIGNAL_UNKNOWN)
3574 {
3575 /* No, try numeric. */
3576 oursig =
bb518678 3577 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3578 }
3579 sig_print_info (oursig);
3580 return;
3581 }
3582
3583 printf_filtered ("\n");
3584 /* These ugly casts brought to you by the native VAX compiler. */
3585 for (oursig = TARGET_SIGNAL_FIRST;
3586 (int) oursig < (int) TARGET_SIGNAL_LAST;
3587 oursig = (enum target_signal) ((int) oursig + 1))
3588 {
3589 QUIT;
3590
3591 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3592 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3593 sig_print_info (oursig);
3594 }
3595
3596 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3597}
3598\f
7a292a7a
SS
3599struct inferior_status
3600{
3601 enum target_signal stop_signal;
3602 CORE_ADDR stop_pc;
3603 bpstat stop_bpstat;
3604 int stop_step;
3605 int stop_stack_dummy;
3606 int stopped_by_random_signal;
3607 int trap_expected;
3608 CORE_ADDR step_range_start;
3609 CORE_ADDR step_range_end;
aa0cd9c1 3610 struct frame_id step_frame_id;
5fbbeb29 3611 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3612 CORE_ADDR step_resume_break_address;
3613 int stop_after_trap;
c0236d92 3614 int stop_soon;
72cec141 3615 struct regcache *stop_registers;
7a292a7a
SS
3616
3617 /* These are here because if call_function_by_hand has written some
3618 registers and then decides to call error(), we better not have changed
3619 any registers. */
72cec141 3620 struct regcache *registers;
7a292a7a 3621
101dcfbe
AC
3622 /* A frame unique identifier. */
3623 struct frame_id selected_frame_id;
3624
7a292a7a
SS
3625 int breakpoint_proceeded;
3626 int restore_stack_info;
3627 int proceed_to_finish;
3628};
3629
7a292a7a 3630void
96baa820
JM
3631write_inferior_status_register (struct inferior_status *inf_status, int regno,
3632 LONGEST val)
7a292a7a 3633{
12c266ea 3634 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3635 void *buf = alloca (size);
3636 store_signed_integer (buf, size, val);
0818c12a 3637 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3638}
3639
c906108c
SS
3640/* Save all of the information associated with the inferior<==>gdb
3641 connection. INF_STATUS is a pointer to a "struct inferior_status"
3642 (defined in inferior.h). */
3643
7a292a7a 3644struct inferior_status *
96baa820 3645save_inferior_status (int restore_stack_info)
c906108c 3646{
72cec141 3647 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3648
c906108c
SS
3649 inf_status->stop_signal = stop_signal;
3650 inf_status->stop_pc = stop_pc;
3651 inf_status->stop_step = stop_step;
3652 inf_status->stop_stack_dummy = stop_stack_dummy;
3653 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3654 inf_status->trap_expected = trap_expected;
3655 inf_status->step_range_start = step_range_start;
3656 inf_status->step_range_end = step_range_end;
aa0cd9c1 3657 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3658 inf_status->step_over_calls = step_over_calls;
3659 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3660 inf_status->stop_soon = stop_soon;
c906108c
SS
3661 /* Save original bpstat chain here; replace it with copy of chain.
3662 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3663 hand them back the original chain when restore_inferior_status is
3664 called. */
c906108c
SS
3665 inf_status->stop_bpstat = stop_bpstat;
3666 stop_bpstat = bpstat_copy (stop_bpstat);
3667 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3668 inf_status->restore_stack_info = restore_stack_info;
3669 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3670
72cec141 3671 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3672
72cec141 3673 inf_status->registers = regcache_dup (current_regcache);
c906108c 3674
7a424e99 3675 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3676 return inf_status;
c906108c
SS
3677}
3678
c906108c 3679static int
96baa820 3680restore_selected_frame (void *args)
c906108c 3681{
488f131b 3682 struct frame_id *fid = (struct frame_id *) args;
c906108c 3683 struct frame_info *frame;
c906108c 3684
101dcfbe 3685 frame = frame_find_by_id (*fid);
c906108c 3686
aa0cd9c1
AC
3687 /* If inf_status->selected_frame_id is NULL, there was no previously
3688 selected frame. */
101dcfbe 3689 if (frame == NULL)
c906108c
SS
3690 {
3691 warning ("Unable to restore previously selected frame.\n");
3692 return 0;
3693 }
3694
0f7d239c 3695 select_frame (frame);
c906108c
SS
3696
3697 return (1);
3698}
3699
3700void
96baa820 3701restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3702{
3703 stop_signal = inf_status->stop_signal;
3704 stop_pc = inf_status->stop_pc;
3705 stop_step = inf_status->stop_step;
3706 stop_stack_dummy = inf_status->stop_stack_dummy;
3707 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3708 trap_expected = inf_status->trap_expected;
3709 step_range_start = inf_status->step_range_start;
3710 step_range_end = inf_status->step_range_end;
aa0cd9c1 3711 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3712 step_over_calls = inf_status->step_over_calls;
3713 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3714 stop_soon = inf_status->stop_soon;
c906108c
SS
3715 bpstat_clear (&stop_bpstat);
3716 stop_bpstat = inf_status->stop_bpstat;
3717 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3718 proceed_to_finish = inf_status->proceed_to_finish;
3719
72cec141
AC
3720 /* FIXME: Is the restore of stop_registers always needed. */
3721 regcache_xfree (stop_registers);
3722 stop_registers = inf_status->stop_registers;
c906108c
SS
3723
3724 /* The inferior can be gone if the user types "print exit(0)"
3725 (and perhaps other times). */
3726 if (target_has_execution)
72cec141
AC
3727 /* NB: The register write goes through to the target. */
3728 regcache_cpy (current_regcache, inf_status->registers);
3729 regcache_xfree (inf_status->registers);
c906108c 3730
c906108c
SS
3731 /* FIXME: If we are being called after stopping in a function which
3732 is called from gdb, we should not be trying to restore the
3733 selected frame; it just prints a spurious error message (The
3734 message is useful, however, in detecting bugs in gdb (like if gdb
3735 clobbers the stack)). In fact, should we be restoring the
3736 inferior status at all in that case? . */
3737
3738 if (target_has_stack && inf_status->restore_stack_info)
3739 {
c906108c 3740 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3741 walking the stack might encounter a garbage pointer and
3742 error() trying to dereference it. */
488f131b
JB
3743 if (catch_errors
3744 (restore_selected_frame, &inf_status->selected_frame_id,
3745 "Unable to restore previously selected frame:\n",
3746 RETURN_MASK_ERROR) == 0)
c906108c
SS
3747 /* Error in restoring the selected frame. Select the innermost
3748 frame. */
0f7d239c 3749 select_frame (get_current_frame ());
c906108c
SS
3750
3751 }
c906108c 3752
72cec141 3753 xfree (inf_status);
7a292a7a 3754}
c906108c 3755
74b7792f
AC
3756static void
3757do_restore_inferior_status_cleanup (void *sts)
3758{
3759 restore_inferior_status (sts);
3760}
3761
3762struct cleanup *
3763make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3764{
3765 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3766}
3767
c906108c 3768void
96baa820 3769discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3770{
3771 /* See save_inferior_status for info on stop_bpstat. */
3772 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3773 regcache_xfree (inf_status->registers);
3774 regcache_xfree (inf_status->stop_registers);
3775 xfree (inf_status);
7a292a7a
SS
3776}
3777
47932f85
DJ
3778int
3779inferior_has_forked (int pid, int *child_pid)
3780{
3781 struct target_waitstatus last;
3782 ptid_t last_ptid;
3783
3784 get_last_target_status (&last_ptid, &last);
3785
3786 if (last.kind != TARGET_WAITKIND_FORKED)
3787 return 0;
3788
3789 if (ptid_get_pid (last_ptid) != pid)
3790 return 0;
3791
3792 *child_pid = last.value.related_pid;
3793 return 1;
3794}
3795
3796int
3797inferior_has_vforked (int pid, int *child_pid)
3798{
3799 struct target_waitstatus last;
3800 ptid_t last_ptid;
3801
3802 get_last_target_status (&last_ptid, &last);
3803
3804 if (last.kind != TARGET_WAITKIND_VFORKED)
3805 return 0;
3806
3807 if (ptid_get_pid (last_ptid) != pid)
3808 return 0;
3809
3810 *child_pid = last.value.related_pid;
3811 return 1;
3812}
3813
3814int
3815inferior_has_execd (int pid, char **execd_pathname)
3816{
3817 struct target_waitstatus last;
3818 ptid_t last_ptid;
3819
3820 get_last_target_status (&last_ptid, &last);
3821
3822 if (last.kind != TARGET_WAITKIND_EXECD)
3823 return 0;
3824
3825 if (ptid_get_pid (last_ptid) != pid)
3826 return 0;
3827
3828 *execd_pathname = xstrdup (last.value.execd_pathname);
3829 return 1;
3830}
3831
ca6724c1
KB
3832/* Oft used ptids */
3833ptid_t null_ptid;
3834ptid_t minus_one_ptid;
3835
3836/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3837
ca6724c1
KB
3838ptid_t
3839ptid_build (int pid, long lwp, long tid)
3840{
3841 ptid_t ptid;
3842
3843 ptid.pid = pid;
3844 ptid.lwp = lwp;
3845 ptid.tid = tid;
3846 return ptid;
3847}
3848
3849/* Create a ptid from just a pid. */
3850
3851ptid_t
3852pid_to_ptid (int pid)
3853{
3854 return ptid_build (pid, 0, 0);
3855}
3856
3857/* Fetch the pid (process id) component from a ptid. */
3858
3859int
3860ptid_get_pid (ptid_t ptid)
3861{
3862 return ptid.pid;
3863}
3864
3865/* Fetch the lwp (lightweight process) component from a ptid. */
3866
3867long
3868ptid_get_lwp (ptid_t ptid)
3869{
3870 return ptid.lwp;
3871}
3872
3873/* Fetch the tid (thread id) component from a ptid. */
3874
3875long
3876ptid_get_tid (ptid_t ptid)
3877{
3878 return ptid.tid;
3879}
3880
3881/* ptid_equal() is used to test equality of two ptids. */
3882
3883int
3884ptid_equal (ptid_t ptid1, ptid_t ptid2)
3885{
3886 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3887 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3888}
3889
3890/* restore_inferior_ptid() will be used by the cleanup machinery
3891 to restore the inferior_ptid value saved in a call to
3892 save_inferior_ptid(). */
ce696e05
KB
3893
3894static void
3895restore_inferior_ptid (void *arg)
3896{
3897 ptid_t *saved_ptid_ptr = arg;
3898 inferior_ptid = *saved_ptid_ptr;
3899 xfree (arg);
3900}
3901
3902/* Save the value of inferior_ptid so that it may be restored by a
3903 later call to do_cleanups(). Returns the struct cleanup pointer
3904 needed for later doing the cleanup. */
3905
3906struct cleanup *
3907save_inferior_ptid (void)
3908{
3909 ptid_t *saved_ptid_ptr;
3910
3911 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3912 *saved_ptid_ptr = inferior_ptid;
3913 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3914}
c5aa993b 3915\f
488f131b 3916
7a292a7a 3917static void
96baa820 3918build_infrun (void)
7a292a7a 3919{
72cec141 3920 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3921}
c906108c 3922
c906108c 3923void
96baa820 3924_initialize_infrun (void)
c906108c 3925{
52f0bd74
AC
3926 int i;
3927 int numsigs;
c906108c
SS
3928 struct cmd_list_element *c;
3929
0f71a2f6
JM
3930 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3931 register_gdbarch_swap (NULL, 0, build_infrun);
3932
c906108c
SS
3933 add_info ("signals", signals_info,
3934 "What debugger does when program gets various signals.\n\
3935Specify a signal as argument to print info on that signal only.");
3936 add_info_alias ("handle", "signals", 0);
3937
3938 add_com ("handle", class_run, handle_command,
3939 concat ("Specify how to handle a signal.\n\
3940Args are signals and actions to apply to those signals.\n\
3941Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3942from 1-15 are allowed for compatibility with old versions of GDB.\n\
3943Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3944The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3945used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3946\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3947Stop means reenter debugger if this signal happens (implies print).\n\
3948Print means print a message if this signal happens.\n\
3949Pass means let program see this signal; otherwise program doesn't know.\n\
3950Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3951Pass and Stop may be combined.", NULL));
3952 if (xdb_commands)
3953 {
3954 add_com ("lz", class_info, signals_info,
3955 "What debugger does when program gets various signals.\n\
3956Specify a signal as argument to print info on that signal only.");
3957 add_com ("z", class_run, xdb_handle_command,
3958 concat ("Specify how to handle a signal.\n\
3959Args are signals and actions to apply to those signals.\n\
3960Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3961from 1-15 are allowed for compatibility with old versions of GDB.\n\
3962Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3963The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3964used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3965\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3966nopass), \"Q\" (noprint)\n\
3967Stop means reenter debugger if this signal happens (implies print).\n\
3968Print means print a message if this signal happens.\n\
3969Pass means let program see this signal; otherwise program doesn't know.\n\
3970Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3971Pass and Stop may be combined.", NULL));
3972 }
3973
3974 if (!dbx_commands)
488f131b
JB
3975 stop_command =
3976 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3977This allows you to set a list of commands to be run each time execution\n\
3978of the program stops.", &cmdlist);
3979
3980 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3981 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3982 signal_print = (unsigned char *)
3983 xmalloc (sizeof (signal_print[0]) * numsigs);
3984 signal_program = (unsigned char *)
3985 xmalloc (sizeof (signal_program[0]) * numsigs);
3986 for (i = 0; i < numsigs; i++)
3987 {
3988 signal_stop[i] = 1;
3989 signal_print[i] = 1;
3990 signal_program[i] = 1;
3991 }
3992
3993 /* Signals caused by debugger's own actions
3994 should not be given to the program afterwards. */
3995 signal_program[TARGET_SIGNAL_TRAP] = 0;
3996 signal_program[TARGET_SIGNAL_INT] = 0;
3997
3998 /* Signals that are not errors should not normally enter the debugger. */
3999 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4000 signal_print[TARGET_SIGNAL_ALRM] = 0;
4001 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4002 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4003 signal_stop[TARGET_SIGNAL_PROF] = 0;
4004 signal_print[TARGET_SIGNAL_PROF] = 0;
4005 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4006 signal_print[TARGET_SIGNAL_CHLD] = 0;
4007 signal_stop[TARGET_SIGNAL_IO] = 0;
4008 signal_print[TARGET_SIGNAL_IO] = 0;
4009 signal_stop[TARGET_SIGNAL_POLL] = 0;
4010 signal_print[TARGET_SIGNAL_POLL] = 0;
4011 signal_stop[TARGET_SIGNAL_URG] = 0;
4012 signal_print[TARGET_SIGNAL_URG] = 0;
4013 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4014 signal_print[TARGET_SIGNAL_WINCH] = 0;
4015
cd0fc7c3
SS
4016 /* These signals are used internally by user-level thread
4017 implementations. (See signal(5) on Solaris.) Like the above
4018 signals, a healthy program receives and handles them as part of
4019 its normal operation. */
4020 signal_stop[TARGET_SIGNAL_LWP] = 0;
4021 signal_print[TARGET_SIGNAL_LWP] = 0;
4022 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4023 signal_print[TARGET_SIGNAL_WAITING] = 0;
4024 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4025 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4026
c906108c
SS
4027#ifdef SOLIB_ADD
4028 add_show_from_set
4029 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4030 (char *) &stop_on_solib_events,
4031 "Set stopping for shared library events.\n\
4032If nonzero, gdb will give control to the user when the dynamic linker\n\
4033notifies gdb of shared library events. The most common event of interest\n\
488f131b 4034to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4035#endif
4036
4037 c = add_set_enum_cmd ("follow-fork-mode",
4038 class_run,
488f131b 4039 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4040/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4041 kernel problem. It's also not terribly useful without a GUI to
4042 help the user drive two debuggers. So for now, I'm disabling
4043 the "both" option. */
c5aa993b
JM
4044/* "Set debugger response to a program call of fork \
4045 or vfork.\n\
4046 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4047 parent - the original process is debugged after a fork\n\
4048 child - the new process is debugged after a fork\n\
4049 both - both the parent and child are debugged after a fork\n\
4050 ask - the debugger will ask for one of the above choices\n\
4051 For \"both\", another copy of the debugger will be started to follow\n\
4052 the new child process. The original debugger will continue to follow\n\
4053 the original parent process. To distinguish their prompts, the\n\
4054 debugger copy's prompt will be changed.\n\
4055 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4056 By default, the debugger will follow the parent process.",
4057 */
c906108c
SS
4058 "Set debugger response to a program call of fork \
4059or vfork.\n\
4060A fork or vfork creates a new process. follow-fork-mode can be:\n\
4061 parent - the original process is debugged after a fork\n\
4062 child - the new process is debugged after a fork\n\
4063 ask - the debugger will ask for one of the above choices\n\
4064For \"parent\" or \"child\", the unfollowed process will run free.\n\
488f131b 4065By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4066 add_show_from_set (c, &showlist);
4067
488f131b 4068 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4069 &scheduler_mode, /* current mode */
c906108c
SS
4070 "Set mode for locking scheduler during execution.\n\
4071off == no locking (threads may preempt at any time)\n\
4072on == full locking (no thread except the current thread may run)\n\
4073step == scheduler locked during every single-step operation.\n\
4074 In this mode, no other thread may run during a step command.\n\
488f131b 4075 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4076
9f60d481 4077 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4078 add_show_from_set (c, &showlist);
5fbbeb29
CF
4079
4080 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4081 var_boolean, (char *) &step_stop_if_no_debug,
4082 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4083function without debug line information will stop at the first\n\
4084instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4085the step command stops at a different source line.", &setlist);
5fbbeb29 4086 add_show_from_set (c, &showlist);
ca6724c1
KB
4087
4088 /* ptid initializations */
4089 null_ptid = ptid_build (0, 0, 0);
4090 minus_one_ptid = ptid_build (-1, 0, 0);
4091 inferior_ptid = null_ptid;
4092 target_last_wait_ptid = minus_one_ptid;
c906108c 4093}
This page took 0.544888 seconds and 4 git commands to generate.