ld: don't use ia64 register name in expression of pr16322 test
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
6f259a23 461 target_terminal_ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
6f259a23
DB
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
d83ad864
DB
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
6f259a23
DB
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
d83ad864
DB
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
6f259a23
DB
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
d83ad864
DB
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642}
643
e58b0e63
PA
644/* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
6604731b 648static int
4ef3f3be 649follow_fork (void)
c906108c 650{
ea1dd7bc 651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
4e3990f4
DE
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 660 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
17b2616c 664 struct interp *command_interp = NULL;
e58b0e63
PA
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
8358c15c
JK
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
16c381f0
JK
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
186c406b
TT
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 716 command_interp = tp->control.command_interp;
e58b0e63
PA
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
16c381f0
JK
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
186c406b 727 delete_exception_resume_breakpoint (tp);
17b2616c 728 tp->control.command_interp = NULL;
e58b0e63
PA
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
d83ad864
DB
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
e09875d4 749 tp = find_thread_ptid (parent);
e58b0e63
PA
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
1777feb0 757 /* If we followed the child, switch to it... */
e58b0e63
PA
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
8358c15c
JK
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
16c381f0
JK
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
186c406b
TT
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
17b2616c 774 tp->control.command_interp = command_interp;
e58b0e63
PA
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
3e43a32a
MS
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
e58b0e63
PA
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
c906108c 805
e58b0e63 806 return should_resume;
c906108c
SS
807}
808
d83ad864 809static void
6604731b 810follow_inferior_reset_breakpoints (void)
c906108c 811{
4e1c45ea
PA
812 struct thread_info *tp = inferior_thread ();
813
6604731b
DJ
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
6604731b
DJ
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
8358c15c 827 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
6604731b 832
a1aa2221 833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 834 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
186c406b 839
6604731b
DJ
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
c906108c 847}
c906108c 848
6c95b8df
PA
849/* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852static int
853proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855{
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
a493e3e2 862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
70509625 870 clear_proceed_status (0);
a493e3e2 871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
872 }
873
874 return 0;
875}
876
877/* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880static void
881handle_vfork_child_exec_or_exit (int exec)
882{
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
1777feb0 900 /* follow-fork child, detach-on-fork on. */
6c95b8df 901
68c9da30
PA
902 inf->vfork_parent->pending_detach = 0;
903
f50f4e56
PA
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
6c95b8df
PA
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
6f259a23 938 target_terminal_ours_for_output ();
6c95b8df
PA
939
940 if (exec)
6f259a23
DB
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
6c95b8df 947 else
6f259a23
DB
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
6c95b8df
PA
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
7dcd53a0 1005 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1011 inferior. */
6c95b8df
PA
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
3e43a32a
MS
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
1777feb0 1060/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
3a3e9ee3 1063follow_exec (ptid_t pid, char *execd_pathname)
c906108c 1064{
4e1c45ea 1065 struct thread_info *th = inferior_thread ();
6c95b8df 1066 struct inferior *inf = current_inferior ();
7a292a7a 1067
c906108c
SS
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1777feb0 1087 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1088
1089 mark_breakpoints_out ();
1090
c906108c
SS
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 1094 statement through an exec(). */
8358c15c 1095 th->control.step_resume_breakpoint = NULL;
186c406b 1096 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1097 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
c906108c 1100
a75724bc
PA
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1777feb0 1109 /* What is this a.out's name? */
6c95b8df
PA
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
c906108c
SS
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1115 inferior has essentially been killed & reborn. */
7a292a7a 1116
c906108c 1117 gdb_flush (gdb_stdout);
6ca15a4b
PA
1118
1119 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
abbb1732 1126
e85a822c
DJ
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
c906108c 1131
cce9b6bf
PA
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
6c95b8df
PA
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
6c95b8df
PA
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
9107fc8d
PA
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
6c95b8df
PA
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1777feb0 1170 /* That a.out is now the one to use. */
6c95b8df
PA
1171 exec_file_attach (execd_pathname, 0);
1172
c1e56572
JK
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
7dcd53a0
TT
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1181 NULL, 0);
1182
7dcd53a0
TT
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
c906108c 1185
9107fc8d
PA
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
268a4a75 1194 solib_create_inferior_hook (0);
c906108c 1195
4efc6507
DE
1196 jit_inferior_created_hook ();
1197
c1e56572
JK
1198 breakpoint_re_set ();
1199
c906108c
SS
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1777feb0 1202 to symbol_file_command...). */
c906108c
SS
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1777feb0 1208 matically get reset there in the new process.). */
c906108c
SS
1209}
1210
963f9c80 1211/* Info about an instruction that is being stepped over. */
31e77af2
PA
1212
1213struct step_over_info
1214{
963f9c80
PA
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
31e77af2 1219 struct address_space *aspace;
31e77af2 1220 CORE_ADDR address;
963f9c80
PA
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
31e77af2
PA
1225};
1226
1227/* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251static struct step_over_info step_over_info;
1252
1253/* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256static void
963f9c80
PA
1257set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
31e77af2
PA
1259{
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
963f9c80 1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1263}
1264
1265/* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268static void
1269clear_step_over_info (void)
1270{
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
963f9c80 1273 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1274}
1275
7f89fd65 1276/* See infrun.h. */
31e77af2
PA
1277
1278int
1279stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281{
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286}
1287
963f9c80
PA
1288/* See infrun.h. */
1289
1290int
1291stepping_past_nonsteppable_watchpoint (void)
1292{
1293 return step_over_info.nonsteppable_watchpoint_p;
1294}
1295
6cc83d2a
PA
1296/* Returns true if step-over info is valid. */
1297
1298static int
1299step_over_info_valid_p (void)
1300{
963f9c80
PA
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1303}
1304
c906108c 1305\f
237fc4c9
PA
1306/* Displaced stepping. */
1307
1308/* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
237fc4c9
PA
1394struct displaced_step_request
1395{
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398};
1399
fc1cf338
PA
1400/* Per-inferior displaced stepping state. */
1401struct displaced_step_inferior_state
1402{
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431};
1432
1433/* The list of states of processes involved in displaced stepping
1434 presently. */
1435static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437/* Get the displaced stepping state of process PID. */
1438
1439static struct displaced_step_inferior_state *
1440get_displaced_stepping_state (int pid)
1441{
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451}
1452
1453/* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457static struct displaced_step_inferior_state *
1458add_displaced_stepping_state (int pid)
1459{
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
237fc4c9 1467
fc1cf338
PA
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
237fc4c9 1472
fc1cf338
PA
1473 return state;
1474}
1475
a42244db
YQ
1476/* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480struct displaced_step_closure*
1481get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482{
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492}
1493
fc1cf338 1494/* Remove the displaced stepping state of process PID. */
237fc4c9 1495
fc1cf338
PA
1496static void
1497remove_displaced_stepping_state (int pid)
1498{
1499 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1500
fc1cf338
PA
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517}
1518
1519static void
1520infrun_inferior_exit (struct inferior *inf)
1521{
1522 remove_displaced_stepping_state (inf->pid);
1523}
237fc4c9 1524
fff08868
HZ
1525/* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
72d0e2c5 1533static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1534
237fc4c9
PA
1535static void
1536show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539{
72d0e2c5 1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1544 value, non_stop ? "on" : "off");
1545 else
3e43a32a
MS
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1549}
1550
fff08868
HZ
1551/* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
237fc4c9
PA
1554static int
1555use_displaced_stepping (struct gdbarch *gdbarch)
1556{
72d0e2c5
YQ
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1560 && find_record_target () == NULL);
237fc4c9
PA
1561}
1562
1563/* Clean out any stray displaced stepping state. */
1564static void
fc1cf338 1565displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1566{
1567 /* Indicate that there is no cleanup pending. */
fc1cf338 1568 displaced->step_ptid = null_ptid;
237fc4c9 1569
fc1cf338 1570 if (displaced->step_closure)
237fc4c9 1571 {
fc1cf338
PA
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
237fc4c9
PA
1575 }
1576}
1577
1578static void
fc1cf338 1579displaced_step_clear_cleanup (void *arg)
237fc4c9 1580{
fc1cf338
PA
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
237fc4c9
PA
1584}
1585
1586/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587void
1588displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591{
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597}
1598
1599/* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613static int
1614displaced_step_prepare (ptid_t ptid)
1615{
ad53cd71 1616 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1617 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
fc1cf338 1623 struct displaced_step_inferior_state *displaced;
9e529e1d 1624 int status;
237fc4c9
PA
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
c1e36e3e
PA
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
fc1cf338
PA
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
237fc4c9 1638
fc1cf338
PA
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
fc1cf338 1656 if (displaced->step_request_queue)
237fc4c9 1657 {
fc1cf338 1658 for (req = displaced->step_request_queue;
237fc4c9
PA
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
fc1cf338 1665 displaced->step_request_queue = new_req;
237fc4c9
PA
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
ad53cd71
PA
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
fc1cf338 1688 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1689 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1690 &displaced->step_saved_copy);
9e529e1d
JK
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1697 if (debug_displaced)
1698 {
5af949e3
UW
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
fc1cf338
PA
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
237fc4c9
PA
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1707 original, copy, regcache);
237fc4c9
PA
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
9f5a595d
UW
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
fc1cf338
PA
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
9f5a595d 1719
fc1cf338 1720 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1721
1722 /* Resume execution at the copy. */
515630c5 1723 regcache_write_pc (regcache, copy);
237fc4c9 1724
ad53cd71
PA
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
237fc4c9
PA
1728
1729 if (debug_displaced)
5af949e3
UW
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
237fc4c9 1732
237fc4c9
PA
1733 return 1;
1734}
1735
237fc4c9 1736static void
3e43a32a
MS
1737write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
237fc4c9
PA
1739{
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1741
237fc4c9
PA
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745}
1746
e2d96639
YQ
1747/* Restore the contents of the copy area for thread PTID. */
1748
1749static void
1750displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752{
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762}
1763
237fc4c9 1764static void
2ea28649 1765displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1766{
1767 struct cleanup *old_cleanups;
fc1cf338
PA
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
237fc4c9
PA
1774
1775 /* Was this event for the pid we displaced? */
fc1cf338
PA
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1778 return;
1779
fc1cf338 1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1781
e2d96639 1782 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1783
1784 /* Did the instruction complete successfully? */
a493e3e2 1785 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1786 {
1787 /* Fix up the resulting state. */
fc1cf338
PA
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
515630c5
UW
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1800
fc1cf338 1801 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1802 regcache_write_pc (regcache, pc);
237fc4c9
PA
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
fc1cf338 1807 displaced->step_ptid = null_ptid;
1c5cfe86 1808
237fc4c9 1809 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
237fc4c9
PA
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
5af949e3 1816 struct regcache *regcache;
929dfd4f 1817 struct gdbarch *gdbarch;
1c5cfe86 1818 CORE_ADDR actual_pc;
6c95b8df 1819 struct address_space *aspace;
237fc4c9 1820
fc1cf338 1821 head = displaced->step_request_queue;
237fc4c9 1822 ptid = head->ptid;
fc1cf338 1823 displaced->step_request_queue = head->next;
237fc4c9
PA
1824 xfree (head);
1825
ad53cd71
PA
1826 context_switch (ptid);
1827
5af949e3
UW
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
6c95b8df 1830 aspace = get_regcache_aspace (regcache);
1c5cfe86 1831
6c95b8df 1832 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1833 {
1c5cfe86
PA
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
929dfd4f
JB
1841 gdbarch = get_regcache_arch (regcache);
1842
1c5cfe86
PA
1843 if (debug_displaced)
1844 {
929dfd4f 1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1846 gdb_byte buf[4];
1847
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
fc1cf338
PA
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
a493e3e2 1856 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1857 else
a493e3e2 1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1859
1860 /* Done, we're stepping a thread. */
1861 break;
ad53cd71 1862 }
1c5cfe86
PA
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
16c381f0 1870 tp->control.trap_expected = 0;
1c5cfe86
PA
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
ad53cd71 1874
1c5cfe86 1875 if (debug_displaced)
3e43a32a 1876 fprintf_unfiltered (gdb_stdlog,
27d2932e 1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1878 target_pid_to_str (tp->ptid), step);
1879
a493e3e2
PA
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
237fc4c9
PA
1886 }
1887}
1888
5231c1fd
PA
1889/* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891static void
1892infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893{
1894 struct displaced_step_request *it;
fc1cf338 1895 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
fc1cf338
PA
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
5231c1fd
PA
1911}
1912
237fc4c9
PA
1913\f
1914/* Resuming. */
c906108c
SS
1915
1916/* Things to clean up if we QUIT out of resume (). */
c906108c 1917static void
74b7792f 1918resume_cleanups (void *ignore)
c906108c 1919{
34b7e8a6
PA
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1922
c906108c
SS
1923 normal_stop ();
1924}
1925
53904c9e
AC
1926static const char schedlock_off[] = "off";
1927static const char schedlock_on[] = "on";
1928static const char schedlock_step[] = "step";
40478521 1929static const char *const scheduler_enums[] = {
ef346e04
AC
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934};
920d2a44
AC
1935static const char *scheduler_mode = schedlock_off;
1936static void
1937show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939{
3e43a32a
MS
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
920d2a44
AC
1943 value);
1944}
c906108c
SS
1945
1946static void
96baa820 1947set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1948{
eefe576e
AC
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
c906108c
SS
1954}
1955
d4db2f36
PA
1956/* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959int sched_multi = 0;
1960
2facfe5c
DD
1961/* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967static int
1968maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969{
1970 int hw_step = 1;
1971
f02253f1
HZ
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
99e40580 1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1975 {
99e40580 1976 hw_step = 0;
2facfe5c
DD
1977 }
1978 return hw_step;
1979}
c906108c 1980
09cee04b
PA
1981ptid_t
1982user_visible_resume_ptid (int step)
1983{
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
03d46957 2001 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
70509625
PA
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
09cee04b
PA
2013 return resume_ptid;
2014}
2015
c906108c
SS
2016/* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024void
2ea28649 2025resume (int step, enum gdb_signal sig)
c906108c 2026{
74b7792f 2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2030 struct thread_info *tp = inferior_thread ();
515630c5 2031 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2032 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2033 ptid_t resume_ptid;
a09dd441
PA
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
c7e8a53c 2041
af48d08f
PA
2042 tp->stepped_breakpoint = 0;
2043
c906108c
SS
2044 QUIT;
2045
74609e71
YQ
2046 if (current_inferior ()->waiting_for_vfork_done)
2047 {
48f9886d
PA
2048 /* Don't try to single-step a vfork parent that is waiting for
2049 the child to get out of the shared memory region (by exec'ing
2050 or exiting). This is particularly important on software
2051 single-step archs, as the child process would trip on the
2052 software single step breakpoint inserted for the parent
2053 process. Since the parent will not actually execute any
2054 instruction until the child is out of the shared region (such
2055 are vfork's semantics), it is safe to simply continue it.
2056 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2057 the parent, and tell it to `keep_going', which automatically
2058 re-sets it stepping. */
74609e71
YQ
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: resume : clear step\n");
a09dd441 2062 step = 0;
74609e71
YQ
2063 }
2064
527159b7 2065 if (debug_infrun)
237fc4c9 2066 fprintf_unfiltered (gdb_stdlog,
c9737c08 2067 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2068 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2069 step, gdb_signal_to_symbol_string (sig),
2070 tp->control.trap_expected,
0d9a9a5f
PA
2071 target_pid_to_str (inferior_ptid),
2072 paddress (gdbarch, pc));
c906108c 2073
c2c6d25f
JM
2074 /* Normally, by the time we reach `resume', the breakpoints are either
2075 removed or inserted, as appropriate. The exception is if we're sitting
2076 at a permanent breakpoint; we need to step over it, but permanent
2077 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2078 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2079 {
af48d08f
PA
2080 if (sig != GDB_SIGNAL_0)
2081 {
2082 /* We have a signal to pass to the inferior. The resume
2083 may, or may not take us to the signal handler. If this
2084 is a step, we'll need to stop in the signal handler, if
2085 there's one, (if the target supports stepping into
2086 handlers), or in the next mainline instruction, if
2087 there's no handler. If this is a continue, we need to be
2088 sure to run the handler with all breakpoints inserted.
2089 In all cases, set a breakpoint at the current address
2090 (where the handler returns to), and once that breakpoint
2091 is hit, resume skipping the permanent breakpoint. If
2092 that breakpoint isn't hit, then we've stepped into the
2093 signal handler (or hit some other event). We'll delete
2094 the step-resume breakpoint then. */
2095
2096 if (debug_infrun)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "infrun: resume: skipping permanent breakpoint, "
2099 "deliver signal first\n");
2100
2101 clear_step_over_info ();
2102 tp->control.trap_expected = 0;
2103
2104 if (tp->control.step_resume_breakpoint == NULL)
2105 {
2106 /* Set a "high-priority" step-resume, as we don't want
2107 user breakpoints at PC to trigger (again) when this
2108 hits. */
2109 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2110 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2111
2112 tp->step_after_step_resume_breakpoint = step;
2113 }
2114
2115 insert_breakpoints ();
2116 }
2117 else
2118 {
2119 /* There's no signal to pass, we can go ahead and skip the
2120 permanent breakpoint manually. */
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resume: skipping permanent breakpoint\n");
2124 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2125 /* Update pc to reflect the new address from which we will
2126 execute instructions. */
2127 pc = regcache_read_pc (regcache);
2128
2129 if (step)
2130 {
2131 /* We've already advanced the PC, so the stepping part
2132 is done. Now we need to arrange for a trap to be
2133 reported to handle_inferior_event. Set a breakpoint
2134 at the current PC, and run to it. Don't update
2135 prev_pc, because if we end in
2136 switch_back_to_stepping, we want the "expected thread
2137 advanced also" branch to be taken. IOW, we don't
2138 want this thread to step further from PC
2139 (overstep). */
2140 insert_single_step_breakpoint (gdbarch, aspace, pc);
2141 insert_breakpoints ();
2142
2143 tp->suspend.stop_signal = GDB_SIGNAL_0;
2144 /* We're continuing with all breakpoints inserted. It's
2145 safe to let the target bypass signals. */
2146 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2147 /* ... and safe to let other threads run, according to
2148 schedlock. */
2149 resume_ptid = user_visible_resume_ptid (entry_step);
2150 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2151 discard_cleanups (old_cleanups);
2152 return;
2153 }
2154 }
6d350bb5 2155 }
c2c6d25f 2156
c1e36e3e
PA
2157 /* If we have a breakpoint to step over, make sure to do a single
2158 step only. Same if we have software watchpoints. */
2159 if (tp->control.trap_expected || bpstat_should_step ())
2160 tp->control.may_range_step = 0;
2161
237fc4c9
PA
2162 /* If enabled, step over breakpoints by executing a copy of the
2163 instruction at a different address.
2164
2165 We can't use displaced stepping when we have a signal to deliver;
2166 the comments for displaced_step_prepare explain why. The
2167 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2168 signals' explain what we do instead.
2169
2170 We can't use displaced stepping when we are waiting for vfork_done
2171 event, displaced stepping breaks the vfork child similarly as single
2172 step software breakpoint. */
515630c5 2173 if (use_displaced_stepping (gdbarch)
36728e82 2174 && tp->control.trap_expected
a493e3e2 2175 && sig == GDB_SIGNAL_0
74609e71 2176 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2177 {
fc1cf338
PA
2178 struct displaced_step_inferior_state *displaced;
2179
237fc4c9 2180 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2181 {
2182 /* Got placed in displaced stepping queue. Will be resumed
2183 later when all the currently queued displaced stepping
251bde03
PA
2184 requests finish. The thread is not executing at this
2185 point, and the call to set_executing will be made later.
2186 But we need to call set_running here, since from the
2187 user/frontend's point of view, threads were set running.
2188 Unless we're calling an inferior function, as in that
2189 case we pretend the inferior doesn't run at all. */
2190 if (!tp->control.in_infcall)
a09dd441 2191 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2192 discard_cleanups (old_cleanups);
2193 return;
2194 }
99e40580 2195
ca7781d2
LM
2196 /* Update pc to reflect the new address from which we will execute
2197 instructions due to displaced stepping. */
2198 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2199
fc1cf338 2200 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2201 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2202 displaced->step_closure);
237fc4c9
PA
2203 }
2204
2facfe5c 2205 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2206 else if (step)
2facfe5c 2207 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2208
30852783
UW
2209 /* Currently, our software single-step implementation leads to different
2210 results than hardware single-stepping in one situation: when stepping
2211 into delivering a signal which has an associated signal handler,
2212 hardware single-step will stop at the first instruction of the handler,
2213 while software single-step will simply skip execution of the handler.
2214
2215 For now, this difference in behavior is accepted since there is no
2216 easy way to actually implement single-stepping into a signal handler
2217 without kernel support.
2218
2219 However, there is one scenario where this difference leads to follow-on
2220 problems: if we're stepping off a breakpoint by removing all breakpoints
2221 and then single-stepping. In this case, the software single-step
2222 behavior means that even if there is a *breakpoint* in the signal
2223 handler, GDB still would not stop.
2224
2225 Fortunately, we can at least fix this particular issue. We detect
2226 here the case where we are about to deliver a signal while software
2227 single-stepping with breakpoints removed. In this situation, we
2228 revert the decisions to remove all breakpoints and insert single-
2229 step breakpoints, and instead we install a step-resume breakpoint
2230 at the current address, deliver the signal without stepping, and
2231 once we arrive back at the step-resume breakpoint, actually step
2232 over the breakpoint we originally wanted to step over. */
34b7e8a6 2233 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2234 && sig != GDB_SIGNAL_0
2235 && step_over_info_valid_p ())
30852783
UW
2236 {
2237 /* If we have nested signals or a pending signal is delivered
2238 immediately after a handler returns, might might already have
2239 a step-resume breakpoint set on the earlier handler. We cannot
2240 set another step-resume breakpoint; just continue on until the
2241 original breakpoint is hit. */
2242 if (tp->control.step_resume_breakpoint == NULL)
2243 {
2c03e5be 2244 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2245 tp->step_after_step_resume_breakpoint = 1;
2246 }
2247
34b7e8a6 2248 delete_single_step_breakpoints (tp);
30852783 2249
31e77af2 2250 clear_step_over_info ();
30852783 2251 tp->control.trap_expected = 0;
31e77af2
PA
2252
2253 insert_breakpoints ();
30852783
UW
2254 }
2255
b0f16a3e
SM
2256 /* If STEP is set, it's a request to use hardware stepping
2257 facilities. But in that case, we should never
2258 use singlestep breakpoint. */
34b7e8a6 2259 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2260
b0f16a3e
SM
2261 /* Decide the set of threads to ask the target to resume. Start
2262 by assuming everything will be resumed, than narrow the set
2263 by applying increasingly restricting conditions. */
a09dd441 2264 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2265
251bde03
PA
2266 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2267 (e.g., we might need to step over a breakpoint), from the
2268 user/frontend's point of view, all threads in RESUME_PTID are now
2269 running. Unless we're calling an inferior function, as in that
2270 case pretend we inferior doesn't run at all. */
2271 if (!tp->control.in_infcall)
2272 set_running (resume_ptid, 1);
2273
b0f16a3e 2274 /* Maybe resume a single thread after all. */
34b7e8a6 2275 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2276 && tp->control.trap_expected)
2277 {
2278 /* We're allowing a thread to run past a breakpoint it has
2279 hit, by single-stepping the thread with the breakpoint
2280 removed. In which case, we need to single-step only this
2281 thread, and keep others stopped, as they can miss this
2282 breakpoint if allowed to run. */
2283 resume_ptid = inferior_ptid;
2284 }
d4db2f36 2285
7f5ef605
PA
2286 if (execution_direction != EXEC_REVERSE
2287 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2288 {
7f5ef605
PA
2289 /* The only case we currently need to step a breakpoint
2290 instruction is when we have a signal to deliver. See
2291 handle_signal_stop where we handle random signals that could
2292 take out us out of the stepping range. Normally, in that
2293 case we end up continuing (instead of stepping) over the
2294 signal handler with a breakpoint at PC, but there are cases
2295 where we should _always_ single-step, even if we have a
2296 step-resume breakpoint, like when a software watchpoint is
2297 set. Assuming single-stepping and delivering a signal at the
2298 same time would takes us to the signal handler, then we could
2299 have removed the breakpoint at PC to step over it. However,
2300 some hardware step targets (like e.g., Mac OS) can't step
2301 into signal handlers, and for those, we need to leave the
2302 breakpoint at PC inserted, as otherwise if the handler
2303 recurses and executes PC again, it'll miss the breakpoint.
2304 So we leave the breakpoint inserted anyway, but we need to
2305 record that we tried to step a breakpoint instruction, so
2306 that adjust_pc_after_break doesn't end up confused. */
2307 gdb_assert (sig != GDB_SIGNAL_0);
2308
2309 tp->stepped_breakpoint = 1;
2310
b0f16a3e
SM
2311 /* Most targets can step a breakpoint instruction, thus
2312 executing it normally. But if this one cannot, just
2313 continue and we will hit it anyway. */
7f5ef605 2314 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2315 step = 0;
2316 }
ef5cf84e 2317
b0f16a3e
SM
2318 if (debug_displaced
2319 && use_displaced_stepping (gdbarch)
2320 && tp->control.trap_expected)
2321 {
2322 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2323 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2324 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2325 gdb_byte buf[4];
2326
2327 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2328 paddress (resume_gdbarch, actual_pc));
2329 read_memory (actual_pc, buf, sizeof (buf));
2330 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2331 }
237fc4c9 2332
b0f16a3e
SM
2333 if (tp->control.may_range_step)
2334 {
2335 /* If we're resuming a thread with the PC out of the step
2336 range, then we're doing some nested/finer run control
2337 operation, like stepping the thread out of the dynamic
2338 linker or the displaced stepping scratch pad. We
2339 shouldn't have allowed a range step then. */
2340 gdb_assert (pc_in_thread_step_range (pc, tp));
2341 }
c1e36e3e 2342
b0f16a3e
SM
2343 /* Install inferior's terminal modes. */
2344 target_terminal_inferior ();
2345
2346 /* Avoid confusing the next resume, if the next stop/resume
2347 happens to apply to another thread. */
2348 tp->suspend.stop_signal = GDB_SIGNAL_0;
2349
2350 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2351 removed breakpoints because we are stepping over one (in any
2352 thread), we need to receive all signals to avoid accidentally
2353 skipping a breakpoint during execution of a signal handler. */
2354 if (step_over_info_valid_p ())
b0f16a3e
SM
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2358
b0f16a3e 2359 target_resume (resume_ptid, step, sig);
c906108c
SS
2360
2361 discard_cleanups (old_cleanups);
2362}
2363\f
237fc4c9 2364/* Proceeding. */
c906108c
SS
2365
2366/* Clear out all variables saying what to do when inferior is continued.
2367 First do this, then set the ones you want, then call `proceed'. */
2368
a7212384
UW
2369static void
2370clear_proceed_status_thread (struct thread_info *tp)
c906108c 2371{
a7212384
UW
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: clear_proceed_status_thread (%s)\n",
2375 target_pid_to_str (tp->ptid));
d6b48e9c 2376
70509625
PA
2377 /* If this signal should not be seen by program, give it zero.
2378 Used for debugging signals. */
2379 if (!signal_pass_state (tp->suspend.stop_signal))
2380 tp->suspend.stop_signal = GDB_SIGNAL_0;
2381
16c381f0
JK
2382 tp->control.trap_expected = 0;
2383 tp->control.step_range_start = 0;
2384 tp->control.step_range_end = 0;
c1e36e3e 2385 tp->control.may_range_step = 0;
16c381f0
JK
2386 tp->control.step_frame_id = null_frame_id;
2387 tp->control.step_stack_frame_id = null_frame_id;
2388 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2389 tp->stop_requested = 0;
4e1c45ea 2390
16c381f0 2391 tp->control.stop_step = 0;
32400beb 2392
16c381f0 2393 tp->control.proceed_to_finish = 0;
414c69f7 2394
17b2616c
PA
2395 tp->control.command_interp = NULL;
2396
a7212384 2397 /* Discard any remaining commands or status from previous stop. */
16c381f0 2398 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2399}
32400beb 2400
a7212384 2401void
70509625 2402clear_proceed_status (int step)
a7212384 2403{
6c95b8df
PA
2404 if (!non_stop)
2405 {
70509625
PA
2406 struct thread_info *tp;
2407 ptid_t resume_ptid;
2408
2409 resume_ptid = user_visible_resume_ptid (step);
2410
2411 /* In all-stop mode, delete the per-thread status of all threads
2412 we're about to resume, implicitly and explicitly. */
2413 ALL_NON_EXITED_THREADS (tp)
2414 {
2415 if (!ptid_match (tp->ptid, resume_ptid))
2416 continue;
2417 clear_proceed_status_thread (tp);
2418 }
6c95b8df
PA
2419 }
2420
a7212384
UW
2421 if (!ptid_equal (inferior_ptid, null_ptid))
2422 {
2423 struct inferior *inferior;
2424
2425 if (non_stop)
2426 {
6c95b8df
PA
2427 /* If in non-stop mode, only delete the per-thread status of
2428 the current thread. */
a7212384
UW
2429 clear_proceed_status_thread (inferior_thread ());
2430 }
6c95b8df 2431
d6b48e9c 2432 inferior = current_inferior ();
16c381f0 2433 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2434 }
2435
c906108c 2436 stop_after_trap = 0;
f3b1572e 2437
31e77af2
PA
2438 clear_step_over_info ();
2439
f3b1572e 2440 observer_notify_about_to_proceed ();
c906108c 2441
d5c31457
UW
2442 if (stop_registers)
2443 {
2444 regcache_xfree (stop_registers);
2445 stop_registers = NULL;
2446 }
c906108c
SS
2447}
2448
99619bea
PA
2449/* Returns true if TP is still stopped at a breakpoint that needs
2450 stepping-over in order to make progress. If the breakpoint is gone
2451 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2452
2453static int
99619bea
PA
2454thread_still_needs_step_over (struct thread_info *tp)
2455{
2456 if (tp->stepping_over_breakpoint)
2457 {
2458 struct regcache *regcache = get_thread_regcache (tp->ptid);
2459
2460 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2461 regcache_read_pc (regcache))
2462 == ordinary_breakpoint_here)
99619bea
PA
2463 return 1;
2464
2465 tp->stepping_over_breakpoint = 0;
2466 }
2467
2468 return 0;
2469}
2470
483805cf
PA
2471/* Returns true if scheduler locking applies. STEP indicates whether
2472 we're about to do a step/next-like command to a thread. */
2473
2474static int
2475schedlock_applies (int step)
2476{
2477 return (scheduler_mode == schedlock_on
2478 || (scheduler_mode == schedlock_step
2479 && step));
2480}
2481
99619bea
PA
2482/* Look a thread other than EXCEPT that has previously reported a
2483 breakpoint event, and thus needs a step-over in order to make
2484 progress. Returns NULL is none is found. STEP indicates whether
2485 we're about to step the current thread, in order to decide whether
2486 "set scheduler-locking step" applies. */
2487
2488static struct thread_info *
2489find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2490{
99619bea 2491 struct thread_info *tp, *current;
5a437975
DE
2492
2493 /* With non-stop mode on, threads are always handled individually. */
2494 gdb_assert (! non_stop);
ea67f13b 2495
99619bea 2496 current = inferior_thread ();
d4db2f36 2497
99619bea
PA
2498 /* If scheduler locking applies, we can avoid iterating over all
2499 threads. */
483805cf 2500 if (schedlock_applies (step))
ea67f13b 2501 {
99619bea
PA
2502 if (except != current
2503 && thread_still_needs_step_over (current))
2504 return current;
515630c5 2505
99619bea
PA
2506 return NULL;
2507 }
0d9a9a5f 2508
034f788c 2509 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2510 {
2511 /* Ignore the EXCEPT thread. */
2512 if (tp == except)
2513 continue;
2514 /* Ignore threads of processes we're not resuming. */
2515 if (!sched_multi
2516 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2517 continue;
2518
2519 if (thread_still_needs_step_over (tp))
2520 return tp;
ea67f13b
DJ
2521 }
2522
99619bea 2523 return NULL;
ea67f13b 2524}
e4846b08 2525
c906108c
SS
2526/* Basic routine for continuing the program in various fashions.
2527
2528 ADDR is the address to resume at, or -1 for resume where stopped.
2529 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2530 or -1 for act according to how it stopped.
c906108c 2531 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2532 -1 means return after that and print nothing.
2533 You should probably set various step_... variables
2534 before calling here, if you are stepping.
c906108c
SS
2535
2536 You should call clear_proceed_status before calling proceed. */
2537
2538void
2ea28649 2539proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2540{
e58b0e63
PA
2541 struct regcache *regcache;
2542 struct gdbarch *gdbarch;
4e1c45ea 2543 struct thread_info *tp;
e58b0e63 2544 CORE_ADDR pc;
6c95b8df 2545 struct address_space *aspace;
c906108c 2546
e58b0e63
PA
2547 /* If we're stopped at a fork/vfork, follow the branch set by the
2548 "set follow-fork-mode" command; otherwise, we'll just proceed
2549 resuming the current thread. */
2550 if (!follow_fork ())
2551 {
2552 /* The target for some reason decided not to resume. */
2553 normal_stop ();
f148b27e
PA
2554 if (target_can_async_p ())
2555 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2556 return;
2557 }
2558
842951eb
PA
2559 /* We'll update this if & when we switch to a new thread. */
2560 previous_inferior_ptid = inferior_ptid;
2561
e58b0e63
PA
2562 regcache = get_current_regcache ();
2563 gdbarch = get_regcache_arch (regcache);
6c95b8df 2564 aspace = get_regcache_aspace (regcache);
e58b0e63 2565 pc = regcache_read_pc (regcache);
2adfaa28 2566 tp = inferior_thread ();
e58b0e63 2567
c906108c 2568 if (step > 0)
515630c5 2569 step_start_function = find_pc_function (pc);
c906108c
SS
2570 if (step < 0)
2571 stop_after_trap = 1;
2572
99619bea
PA
2573 /* Fill in with reasonable starting values. */
2574 init_thread_stepping_state (tp);
2575
2acceee2 2576 if (addr == (CORE_ADDR) -1)
c906108c 2577 {
af48d08f
PA
2578 if (pc == stop_pc
2579 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2580 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2581 /* There is a breakpoint at the address we will resume at,
2582 step one instruction before inserting breakpoints so that
2583 we do not stop right away (and report a second hit at this
b2175913
MS
2584 breakpoint).
2585
2586 Note, we don't do this in reverse, because we won't
2587 actually be executing the breakpoint insn anyway.
2588 We'll be (un-)executing the previous instruction. */
99619bea 2589 tp->stepping_over_breakpoint = 1;
515630c5
UW
2590 else if (gdbarch_single_step_through_delay_p (gdbarch)
2591 && gdbarch_single_step_through_delay (gdbarch,
2592 get_current_frame ()))
3352ef37
AC
2593 /* We stepped onto an instruction that needs to be stepped
2594 again before re-inserting the breakpoint, do so. */
99619bea 2595 tp->stepping_over_breakpoint = 1;
c906108c
SS
2596 }
2597 else
2598 {
515630c5 2599 regcache_write_pc (regcache, addr);
c906108c
SS
2600 }
2601
70509625
PA
2602 if (siggnal != GDB_SIGNAL_DEFAULT)
2603 tp->suspend.stop_signal = siggnal;
2604
17b2616c
PA
2605 /* Record the interpreter that issued the execution command that
2606 caused this thread to resume. If the top level interpreter is
2607 MI/async, and the execution command was a CLI command
2608 (next/step/etc.), we'll want to print stop event output to the MI
2609 console channel (the stepped-to line, etc.), as if the user
2610 entered the execution command on a real GDB console. */
2611 inferior_thread ()->control.command_interp = command_interp ();
2612
527159b7 2613 if (debug_infrun)
8a9de0e4 2614 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2615 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2616 paddress (gdbarch, addr),
2617 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2618
94cc34af
PA
2619 if (non_stop)
2620 /* In non-stop, each thread is handled individually. The context
2621 must already be set to the right thread here. */
2622 ;
2623 else
2624 {
99619bea
PA
2625 struct thread_info *step_over;
2626
94cc34af
PA
2627 /* In a multi-threaded task we may select another thread and
2628 then continue or step.
c906108c 2629
94cc34af
PA
2630 But if the old thread was stopped at a breakpoint, it will
2631 immediately cause another breakpoint stop without any
2632 execution (i.e. it will report a breakpoint hit incorrectly).
2633 So we must step over it first.
c906108c 2634
99619bea
PA
2635 Look for a thread other than the current (TP) that reported a
2636 breakpoint hit and hasn't been resumed yet since. */
2637 step_over = find_thread_needs_step_over (step, tp);
2638 if (step_over != NULL)
2adfaa28 2639 {
99619bea
PA
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "infrun: need to step-over [%s] first\n",
2643 target_pid_to_str (step_over->ptid));
2644
2645 /* Store the prev_pc for the stepping thread too, needed by
2646 switch_back_to_stepping thread. */
2647 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2648 switch_to_thread (step_over->ptid);
2649 tp = step_over;
2adfaa28 2650 }
94cc34af 2651 }
c906108c 2652
31e77af2
PA
2653 /* If we need to step over a breakpoint, and we're not using
2654 displaced stepping to do so, insert all breakpoints (watchpoints,
2655 etc.) but the one we're stepping over, step one instruction, and
2656 then re-insert the breakpoint when that step is finished. */
99619bea 2657 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2658 {
31e77af2
PA
2659 struct regcache *regcache = get_current_regcache ();
2660
2661 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2662 regcache_read_pc (regcache), 0);
30852783 2663 }
31e77af2
PA
2664 else
2665 clear_step_over_info ();
30852783 2666
31e77af2 2667 insert_breakpoints ();
30852783 2668
99619bea
PA
2669 tp->control.trap_expected = tp->stepping_over_breakpoint;
2670
c906108c
SS
2671 annotate_starting ();
2672
2673 /* Make sure that output from GDB appears before output from the
2674 inferior. */
2675 gdb_flush (gdb_stdout);
2676
e4846b08 2677 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2678 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2679 scenarios such as inferior function calls or returning from
2680 a function via the return command. In those cases, the prev_pc
2681 value was not set properly for subsequent commands. The prev_pc value
2682 is used to initialize the starting line number in the ecs. With an
2683 invalid value, the gdb next command ends up stopping at the position
2684 represented by the next line table entry past our start position.
2685 On platforms that generate one line table entry per line, this
2686 is not a problem. However, on the ia64, the compiler generates
2687 extraneous line table entries that do not increase the line number.
2688 When we issue the gdb next command on the ia64 after an inferior call
2689 or a return command, we often end up a few instructions forward, still
2690 within the original line we started.
2691
d5cd6034
JB
2692 An attempt was made to refresh the prev_pc at the same time the
2693 execution_control_state is initialized (for instance, just before
2694 waiting for an inferior event). But this approach did not work
2695 because of platforms that use ptrace, where the pc register cannot
2696 be read unless the inferior is stopped. At that point, we are not
2697 guaranteed the inferior is stopped and so the regcache_read_pc() call
2698 can fail. Setting the prev_pc value here ensures the value is updated
2699 correctly when the inferior is stopped. */
4e1c45ea 2700 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2701
c906108c 2702 /* Resume inferior. */
99619bea 2703 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2704 tp->suspend.stop_signal);
c906108c
SS
2705
2706 /* Wait for it to stop (if not standalone)
2707 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2708 /* Do this only if we are not using the event loop, or if the target
1777feb0 2709 does not support asynchronous execution. */
362646f5 2710 if (!target_can_async_p ())
43ff13b4 2711 {
e4c8541f 2712 wait_for_inferior ();
43ff13b4
JM
2713 normal_stop ();
2714 }
c906108c 2715}
c906108c
SS
2716\f
2717
2718/* Start remote-debugging of a machine over a serial link. */
96baa820 2719
c906108c 2720void
8621d6a9 2721start_remote (int from_tty)
c906108c 2722{
d6b48e9c 2723 struct inferior *inferior;
d6b48e9c
PA
2724
2725 inferior = current_inferior ();
16c381f0 2726 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2727
1777feb0 2728 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2729 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2730 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2731 nothing is returned (instead of just blocking). Because of this,
2732 targets expecting an immediate response need to, internally, set
2733 things up so that the target_wait() is forced to eventually
1777feb0 2734 timeout. */
6426a772
JM
2735 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2736 differentiate to its caller what the state of the target is after
2737 the initial open has been performed. Here we're assuming that
2738 the target has stopped. It should be possible to eventually have
2739 target_open() return to the caller an indication that the target
2740 is currently running and GDB state should be set to the same as
1777feb0 2741 for an async run. */
e4c8541f 2742 wait_for_inferior ();
8621d6a9
DJ
2743
2744 /* Now that the inferior has stopped, do any bookkeeping like
2745 loading shared libraries. We want to do this before normal_stop,
2746 so that the displayed frame is up to date. */
2747 post_create_inferior (&current_target, from_tty);
2748
6426a772 2749 normal_stop ();
c906108c
SS
2750}
2751
2752/* Initialize static vars when a new inferior begins. */
2753
2754void
96baa820 2755init_wait_for_inferior (void)
c906108c
SS
2756{
2757 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2758
c906108c
SS
2759 breakpoint_init_inferior (inf_starting);
2760
70509625 2761 clear_proceed_status (0);
9f976b41 2762
ca005067 2763 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2764
842951eb 2765 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2766
edb3359d
DJ
2767 /* Discard any skipped inlined frames. */
2768 clear_inline_frame_state (minus_one_ptid);
c906108c 2769}
237fc4c9 2770
c906108c 2771\f
0d1e5fa7
PA
2772/* Data to be passed around while handling an event. This data is
2773 discarded between events. */
c5aa993b 2774struct execution_control_state
488f131b 2775{
0d1e5fa7 2776 ptid_t ptid;
4e1c45ea
PA
2777 /* The thread that got the event, if this was a thread event; NULL
2778 otherwise. */
2779 struct thread_info *event_thread;
2780
488f131b 2781 struct target_waitstatus ws;
7e324e48 2782 int stop_func_filled_in;
488f131b
JB
2783 CORE_ADDR stop_func_start;
2784 CORE_ADDR stop_func_end;
2c02bd72 2785 const char *stop_func_name;
488f131b 2786 int wait_some_more;
4f5d7f63 2787
2adfaa28
PA
2788 /* True if the event thread hit the single-step breakpoint of
2789 another thread. Thus the event doesn't cause a stop, the thread
2790 needs to be single-stepped past the single-step breakpoint before
2791 we can switch back to the original stepping thread. */
2792 int hit_singlestep_breakpoint;
488f131b
JB
2793};
2794
ec9499be 2795static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2796
568d6575
UW
2797static void handle_step_into_function (struct gdbarch *gdbarch,
2798 struct execution_control_state *ecs);
2799static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2800 struct execution_control_state *ecs);
4f5d7f63 2801static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2802static void check_exception_resume (struct execution_control_state *,
28106bc2 2803 struct frame_info *);
611c83ae 2804
bdc36728 2805static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2806static void stop_waiting (struct execution_control_state *ecs);
104c1213 2807static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2808static void keep_going (struct execution_control_state *ecs);
94c57d6a 2809static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2810static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2811
252fbfc8
PA
2812/* Callback for iterate over threads. If the thread is stopped, but
2813 the user/frontend doesn't know about that yet, go through
2814 normal_stop, as if the thread had just stopped now. ARG points at
2815 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2816 ptid_is_pid(PTID) is true, applies to all threads of the process
2817 pointed at by PTID. Otherwise, apply only to the thread pointed by
2818 PTID. */
2819
2820static int
2821infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2822{
2823 ptid_t ptid = * (ptid_t *) arg;
2824
2825 if ((ptid_equal (info->ptid, ptid)
2826 || ptid_equal (minus_one_ptid, ptid)
2827 || (ptid_is_pid (ptid)
2828 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2829 && is_running (info->ptid)
2830 && !is_executing (info->ptid))
2831 {
2832 struct cleanup *old_chain;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835
2836 memset (ecs, 0, sizeof (*ecs));
2837
2838 old_chain = make_cleanup_restore_current_thread ();
2839
f15cb84a
YQ
2840 overlay_cache_invalid = 1;
2841 /* Flush target cache before starting to handle each event.
2842 Target was running and cache could be stale. This is just a
2843 heuristic. Running threads may modify target memory, but we
2844 don't get any event. */
2845 target_dcache_invalidate ();
2846
252fbfc8
PA
2847 /* Go through handle_inferior_event/normal_stop, so we always
2848 have consistent output as if the stop event had been
2849 reported. */
2850 ecs->ptid = info->ptid;
e09875d4 2851 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2852 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2853 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2854
2855 handle_inferior_event (ecs);
2856
2857 if (!ecs->wait_some_more)
2858 {
2859 struct thread_info *tp;
2860
2861 normal_stop ();
2862
fa4cd53f 2863 /* Finish off the continuations. */
252fbfc8 2864 tp = inferior_thread ();
fa4cd53f
PA
2865 do_all_intermediate_continuations_thread (tp, 1);
2866 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2867 }
2868
2869 do_cleanups (old_chain);
2870 }
2871
2872 return 0;
2873}
2874
2875/* This function is attached as a "thread_stop_requested" observer.
2876 Cleanup local state that assumed the PTID was to be resumed, and
2877 report the stop to the frontend. */
2878
2c0b251b 2879static void
252fbfc8
PA
2880infrun_thread_stop_requested (ptid_t ptid)
2881{
fc1cf338 2882 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2883
2884 /* PTID was requested to stop. Remove it from the displaced
2885 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2886
2887 for (displaced = displaced_step_inferior_states;
2888 displaced;
2889 displaced = displaced->next)
252fbfc8 2890 {
fc1cf338 2891 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2892
fc1cf338
PA
2893 it = displaced->step_request_queue;
2894 prev_next_p = &displaced->step_request_queue;
2895 while (it)
252fbfc8 2896 {
fc1cf338
PA
2897 if (ptid_match (it->ptid, ptid))
2898 {
2899 *prev_next_p = it->next;
2900 it->next = NULL;
2901 xfree (it);
2902 }
252fbfc8 2903 else
fc1cf338
PA
2904 {
2905 prev_next_p = &it->next;
2906 }
252fbfc8 2907
fc1cf338 2908 it = *prev_next_p;
252fbfc8 2909 }
252fbfc8
PA
2910 }
2911
2912 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2913}
2914
a07daef3
PA
2915static void
2916infrun_thread_thread_exit (struct thread_info *tp, int silent)
2917{
2918 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2919 nullify_last_target_wait_ptid ();
2920}
2921
0cbcdb96
PA
2922/* Delete the step resume, single-step and longjmp/exception resume
2923 breakpoints of TP. */
4e1c45ea 2924
0cbcdb96
PA
2925static void
2926delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2927{
0cbcdb96
PA
2928 delete_step_resume_breakpoint (tp);
2929 delete_exception_resume_breakpoint (tp);
34b7e8a6 2930 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2931}
2932
0cbcdb96
PA
2933/* If the target still has execution, call FUNC for each thread that
2934 just stopped. In all-stop, that's all the non-exited threads; in
2935 non-stop, that's the current thread, only. */
2936
2937typedef void (*for_each_just_stopped_thread_callback_func)
2938 (struct thread_info *tp);
4e1c45ea
PA
2939
2940static void
0cbcdb96 2941for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2942{
0cbcdb96 2943 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2944 return;
2945
2946 if (non_stop)
2947 {
0cbcdb96
PA
2948 /* If in non-stop mode, only the current thread stopped. */
2949 func (inferior_thread ());
4e1c45ea
PA
2950 }
2951 else
0cbcdb96
PA
2952 {
2953 struct thread_info *tp;
2954
2955 /* In all-stop mode, all threads have stopped. */
2956 ALL_NON_EXITED_THREADS (tp)
2957 {
2958 func (tp);
2959 }
2960 }
2961}
2962
2963/* Delete the step resume and longjmp/exception resume breakpoints of
2964 the threads that just stopped. */
2965
2966static void
2967delete_just_stopped_threads_infrun_breakpoints (void)
2968{
2969 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2970}
2971
2972/* Delete the single-step breakpoints of the threads that just
2973 stopped. */
7c16b83e 2974
34b7e8a6
PA
2975static void
2976delete_just_stopped_threads_single_step_breakpoints (void)
2977{
2978 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2979}
2980
1777feb0 2981/* A cleanup wrapper. */
4e1c45ea
PA
2982
2983static void
0cbcdb96 2984delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 2985{
0cbcdb96 2986 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
2987}
2988
223698f8
DE
2989/* Pretty print the results of target_wait, for debugging purposes. */
2990
2991static void
2992print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2993 const struct target_waitstatus *ws)
2994{
2995 char *status_string = target_waitstatus_to_string (ws);
2996 struct ui_file *tmp_stream = mem_fileopen ();
2997 char *text;
223698f8
DE
2998
2999 /* The text is split over several lines because it was getting too long.
3000 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3001 output as a unit; we want only one timestamp printed if debug_timestamp
3002 is set. */
3003
3004 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
3005 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3006 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3007 fprintf_unfiltered (tmp_stream,
3008 " [%s]", target_pid_to_str (waiton_ptid));
3009 fprintf_unfiltered (tmp_stream, ", status) =\n");
3010 fprintf_unfiltered (tmp_stream,
3011 "infrun: %d [%s],\n",
dfd4cc63
LM
3012 ptid_get_pid (result_ptid),
3013 target_pid_to_str (result_ptid));
223698f8
DE
3014 fprintf_unfiltered (tmp_stream,
3015 "infrun: %s\n",
3016 status_string);
3017
759ef836 3018 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3019
3020 /* This uses %s in part to handle %'s in the text, but also to avoid
3021 a gcc error: the format attribute requires a string literal. */
3022 fprintf_unfiltered (gdb_stdlog, "%s", text);
3023
3024 xfree (status_string);
3025 xfree (text);
3026 ui_file_delete (tmp_stream);
3027}
3028
24291992
PA
3029/* Prepare and stabilize the inferior for detaching it. E.g.,
3030 detaching while a thread is displaced stepping is a recipe for
3031 crashing it, as nothing would readjust the PC out of the scratch
3032 pad. */
3033
3034void
3035prepare_for_detach (void)
3036{
3037 struct inferior *inf = current_inferior ();
3038 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3039 struct cleanup *old_chain_1;
3040 struct displaced_step_inferior_state *displaced;
3041
3042 displaced = get_displaced_stepping_state (inf->pid);
3043
3044 /* Is any thread of this process displaced stepping? If not,
3045 there's nothing else to do. */
3046 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3047 return;
3048
3049 if (debug_infrun)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "displaced-stepping in-process while detaching");
3052
3053 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3054 inf->detaching = 1;
3055
3056 while (!ptid_equal (displaced->step_ptid, null_ptid))
3057 {
3058 struct cleanup *old_chain_2;
3059 struct execution_control_state ecss;
3060 struct execution_control_state *ecs;
3061
3062 ecs = &ecss;
3063 memset (ecs, 0, sizeof (*ecs));
3064
3065 overlay_cache_invalid = 1;
f15cb84a
YQ
3066 /* Flush target cache before starting to handle each event.
3067 Target was running and cache could be stale. This is just a
3068 heuristic. Running threads may modify target memory, but we
3069 don't get any event. */
3070 target_dcache_invalidate ();
24291992 3071
24291992
PA
3072 if (deprecated_target_wait_hook)
3073 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3074 else
3075 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3076
3077 if (debug_infrun)
3078 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3079
3080 /* If an error happens while handling the event, propagate GDB's
3081 knowledge of the executing state to the frontend/user running
3082 state. */
3e43a32a
MS
3083 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3084 &minus_one_ptid);
24291992
PA
3085
3086 /* Now figure out what to do with the result of the result. */
3087 handle_inferior_event (ecs);
3088
3089 /* No error, don't finish the state yet. */
3090 discard_cleanups (old_chain_2);
3091
3092 /* Breakpoints and watchpoints are not installed on the target
3093 at this point, and signals are passed directly to the
3094 inferior, so this must mean the process is gone. */
3095 if (!ecs->wait_some_more)
3096 {
3097 discard_cleanups (old_chain_1);
3098 error (_("Program exited while detaching"));
3099 }
3100 }
3101
3102 discard_cleanups (old_chain_1);
3103}
3104
cd0fc7c3 3105/* Wait for control to return from inferior to debugger.
ae123ec6 3106
cd0fc7c3
SS
3107 If inferior gets a signal, we may decide to start it up again
3108 instead of returning. That is why there is a loop in this function.
3109 When this function actually returns it means the inferior
3110 should be left stopped and GDB should read more commands. */
3111
3112void
e4c8541f 3113wait_for_inferior (void)
cd0fc7c3
SS
3114{
3115 struct cleanup *old_cleanups;
c906108c 3116
527159b7 3117 if (debug_infrun)
ae123ec6 3118 fprintf_unfiltered
e4c8541f 3119 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3120
0cbcdb96
PA
3121 old_cleanups
3122 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3123 NULL);
cd0fc7c3 3124
c906108c
SS
3125 while (1)
3126 {
ae25568b
PA
3127 struct execution_control_state ecss;
3128 struct execution_control_state *ecs = &ecss;
29f49a6a 3129 struct cleanup *old_chain;
963f9c80 3130 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3131
ae25568b
PA
3132 memset (ecs, 0, sizeof (*ecs));
3133
ec9499be 3134 overlay_cache_invalid = 1;
ec9499be 3135
f15cb84a
YQ
3136 /* Flush target cache before starting to handle each event.
3137 Target was running and cache could be stale. This is just a
3138 heuristic. Running threads may modify target memory, but we
3139 don't get any event. */
3140 target_dcache_invalidate ();
3141
9a4105ab 3142 if (deprecated_target_wait_hook)
47608cb1 3143 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3144 else
47608cb1 3145 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3146
f00150c9 3147 if (debug_infrun)
223698f8 3148 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3149
29f49a6a
PA
3150 /* If an error happens while handling the event, propagate GDB's
3151 knowledge of the executing state to the frontend/user running
3152 state. */
3153 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3154
cd0fc7c3
SS
3155 /* Now figure out what to do with the result of the result. */
3156 handle_inferior_event (ecs);
c906108c 3157
29f49a6a
PA
3158 /* No error, don't finish the state yet. */
3159 discard_cleanups (old_chain);
3160
cd0fc7c3
SS
3161 if (!ecs->wait_some_more)
3162 break;
3163 }
4e1c45ea 3164
cd0fc7c3
SS
3165 do_cleanups (old_cleanups);
3166}
c906108c 3167
d3d4baed
PA
3168/* Cleanup that reinstalls the readline callback handler, if the
3169 target is running in the background. If while handling the target
3170 event something triggered a secondary prompt, like e.g., a
3171 pagination prompt, we'll have removed the callback handler (see
3172 gdb_readline_wrapper_line). Need to do this as we go back to the
3173 event loop, ready to process further input. Note this has no
3174 effect if the handler hasn't actually been removed, because calling
3175 rl_callback_handler_install resets the line buffer, thus losing
3176 input. */
3177
3178static void
3179reinstall_readline_callback_handler_cleanup (void *arg)
3180{
6c400b59
PA
3181 if (!interpreter_async)
3182 {
3183 /* We're not going back to the top level event loop yet. Don't
3184 install the readline callback, as it'd prep the terminal,
3185 readline-style (raw, noecho) (e.g., --batch). We'll install
3186 it the next time the prompt is displayed, when we're ready
3187 for input. */
3188 return;
3189 }
3190
d3d4baed
PA
3191 if (async_command_editing_p && !sync_execution)
3192 gdb_rl_callback_handler_reinstall ();
3193}
3194
1777feb0 3195/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3196 event loop whenever a change of state is detected on the file
1777feb0
MS
3197 descriptor corresponding to the target. It can be called more than
3198 once to complete a single execution command. In such cases we need
3199 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3200 that this function is called for a single execution command, then
3201 report to the user that the inferior has stopped, and do the
1777feb0 3202 necessary cleanups. */
43ff13b4
JM
3203
3204void
fba45db2 3205fetch_inferior_event (void *client_data)
43ff13b4 3206{
0d1e5fa7 3207 struct execution_control_state ecss;
a474d7c2 3208 struct execution_control_state *ecs = &ecss;
4f8d22e3 3209 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3210 struct cleanup *ts_old_chain;
4f8d22e3 3211 int was_sync = sync_execution;
0f641c01 3212 int cmd_done = 0;
963f9c80 3213 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3214
0d1e5fa7
PA
3215 memset (ecs, 0, sizeof (*ecs));
3216
d3d4baed
PA
3217 /* End up with readline processing input, if necessary. */
3218 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3219
c5187ac6
PA
3220 /* We're handling a live event, so make sure we're doing live
3221 debugging. If we're looking at traceframes while the target is
3222 running, we're going to need to get back to that mode after
3223 handling the event. */
3224 if (non_stop)
3225 {
3226 make_cleanup_restore_current_traceframe ();
e6e4e701 3227 set_current_traceframe (-1);
c5187ac6
PA
3228 }
3229
4f8d22e3
PA
3230 if (non_stop)
3231 /* In non-stop mode, the user/frontend should not notice a thread
3232 switch due to internal events. Make sure we reverse to the
3233 user selected thread and frame after handling the event and
3234 running any breakpoint commands. */
3235 make_cleanup_restore_current_thread ();
3236
ec9499be 3237 overlay_cache_invalid = 1;
f15cb84a
YQ
3238 /* Flush target cache before starting to handle each event. Target
3239 was running and cache could be stale. This is just a heuristic.
3240 Running threads may modify target memory, but we don't get any
3241 event. */
3242 target_dcache_invalidate ();
3dd5b83d 3243
32231432
PA
3244 make_cleanup_restore_integer (&execution_direction);
3245 execution_direction = target_execution_direction ();
3246
9a4105ab 3247 if (deprecated_target_wait_hook)
a474d7c2 3248 ecs->ptid =
47608cb1 3249 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3250 else
47608cb1 3251 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3252
f00150c9 3253 if (debug_infrun)
223698f8 3254 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3255
29f49a6a
PA
3256 /* If an error happens while handling the event, propagate GDB's
3257 knowledge of the executing state to the frontend/user running
3258 state. */
3259 if (!non_stop)
3260 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3261 else
3262 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3263
353d1d73
JK
3264 /* Get executed before make_cleanup_restore_current_thread above to apply
3265 still for the thread which has thrown the exception. */
3266 make_bpstat_clear_actions_cleanup ();
3267
7c16b83e
PA
3268 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3269
43ff13b4 3270 /* Now figure out what to do with the result of the result. */
a474d7c2 3271 handle_inferior_event (ecs);
43ff13b4 3272
a474d7c2 3273 if (!ecs->wait_some_more)
43ff13b4 3274 {
c9657e70 3275 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3276
0cbcdb96 3277 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3278
d6b48e9c 3279 /* We may not find an inferior if this was a process exit. */
16c381f0 3280 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3281 normal_stop ();
3282
af679fd0 3283 if (target_has_execution
0e5bf2a8 3284 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3285 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3286 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3287 && ecs->event_thread->step_multi
16c381f0 3288 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3289 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3290 else
0f641c01
PA
3291 {
3292 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3293 cmd_done = 1;
3294 }
43ff13b4 3295 }
4f8d22e3 3296
29f49a6a
PA
3297 /* No error, don't finish the thread states yet. */
3298 discard_cleanups (ts_old_chain);
3299
4f8d22e3
PA
3300 /* Revert thread and frame. */
3301 do_cleanups (old_chain);
3302
3303 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3304 restore the prompt (a synchronous execution command has finished,
3305 and we're ready for input). */
b4a14fd0 3306 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3307 observer_notify_sync_execution_done ();
0f641c01
PA
3308
3309 if (cmd_done
3310 && !was_sync
3311 && exec_done_display_p
3312 && (ptid_equal (inferior_ptid, null_ptid)
3313 || !is_running (inferior_ptid)))
3314 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3315}
3316
edb3359d
DJ
3317/* Record the frame and location we're currently stepping through. */
3318void
3319set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3320{
3321 struct thread_info *tp = inferior_thread ();
3322
16c381f0
JK
3323 tp->control.step_frame_id = get_frame_id (frame);
3324 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3325
3326 tp->current_symtab = sal.symtab;
3327 tp->current_line = sal.line;
3328}
3329
0d1e5fa7
PA
3330/* Clear context switchable stepping state. */
3331
3332void
4e1c45ea 3333init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3334{
7f5ef605 3335 tss->stepped_breakpoint = 0;
0d1e5fa7 3336 tss->stepping_over_breakpoint = 0;
963f9c80 3337 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3338 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3339}
3340
c32c64b7
DE
3341/* Set the cached copy of the last ptid/waitstatus. */
3342
3343static void
3344set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3345{
3346 target_last_wait_ptid = ptid;
3347 target_last_waitstatus = status;
3348}
3349
e02bc4cc 3350/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3351 target_wait()/deprecated_target_wait_hook(). The data is actually
3352 cached by handle_inferior_event(), which gets called immediately
3353 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3354
3355void
488f131b 3356get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3357{
39f77062 3358 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3359 *status = target_last_waitstatus;
3360}
3361
ac264b3b
MS
3362void
3363nullify_last_target_wait_ptid (void)
3364{
3365 target_last_wait_ptid = minus_one_ptid;
3366}
3367
dcf4fbde 3368/* Switch thread contexts. */
dd80620e
MS
3369
3370static void
0d1e5fa7 3371context_switch (ptid_t ptid)
dd80620e 3372{
4b51d87b 3373 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3374 {
3375 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3376 target_pid_to_str (inferior_ptid));
3377 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3378 target_pid_to_str (ptid));
fd48f117
DJ
3379 }
3380
0d1e5fa7 3381 switch_to_thread (ptid);
dd80620e
MS
3382}
3383
4fa8626c
DJ
3384static void
3385adjust_pc_after_break (struct execution_control_state *ecs)
3386{
24a73cce
UW
3387 struct regcache *regcache;
3388 struct gdbarch *gdbarch;
6c95b8df 3389 struct address_space *aspace;
118e6252 3390 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3391
4fa8626c
DJ
3392 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3393 we aren't, just return.
9709f61c
DJ
3394
3395 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3396 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3397 implemented by software breakpoints should be handled through the normal
3398 breakpoint layer.
8fb3e588 3399
4fa8626c
DJ
3400 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3401 different signals (SIGILL or SIGEMT for instance), but it is less
3402 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3403 gdbarch_decr_pc_after_break. I don't know any specific target that
3404 generates these signals at breakpoints (the code has been in GDB since at
3405 least 1992) so I can not guess how to handle them here.
8fb3e588 3406
e6cf7916
UW
3407 In earlier versions of GDB, a target with
3408 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3409 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3410 target with both of these set in GDB history, and it seems unlikely to be
3411 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3412
3413 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3414 return;
3415
a493e3e2 3416 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3417 return;
3418
4058b839
PA
3419 /* In reverse execution, when a breakpoint is hit, the instruction
3420 under it has already been de-executed. The reported PC always
3421 points at the breakpoint address, so adjusting it further would
3422 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3423 architecture:
3424
3425 B1 0x08000000 : INSN1
3426 B2 0x08000001 : INSN2
3427 0x08000002 : INSN3
3428 PC -> 0x08000003 : INSN4
3429
3430 Say you're stopped at 0x08000003 as above. Reverse continuing
3431 from that point should hit B2 as below. Reading the PC when the
3432 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3433 been de-executed already.
3434
3435 B1 0x08000000 : INSN1
3436 B2 PC -> 0x08000001 : INSN2
3437 0x08000002 : INSN3
3438 0x08000003 : INSN4
3439
3440 We can't apply the same logic as for forward execution, because
3441 we would wrongly adjust the PC to 0x08000000, since there's a
3442 breakpoint at PC - 1. We'd then report a hit on B1, although
3443 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3444 behaviour. */
3445 if (execution_direction == EXEC_REVERSE)
3446 return;
3447
24a73cce
UW
3448 /* If this target does not decrement the PC after breakpoints, then
3449 we have nothing to do. */
3450 regcache = get_thread_regcache (ecs->ptid);
3451 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3452
3453 decr_pc = target_decr_pc_after_break (gdbarch);
3454 if (decr_pc == 0)
24a73cce
UW
3455 return;
3456
6c95b8df
PA
3457 aspace = get_regcache_aspace (regcache);
3458
8aad930b
AC
3459 /* Find the location where (if we've hit a breakpoint) the
3460 breakpoint would be. */
118e6252 3461 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3462
1c5cfe86
PA
3463 /* Check whether there actually is a software breakpoint inserted at
3464 that location.
3465
3466 If in non-stop mode, a race condition is possible where we've
3467 removed a breakpoint, but stop events for that breakpoint were
3468 already queued and arrive later. To suppress those spurious
3469 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3470 and retire them after a number of stop events are reported. */
6c95b8df
PA
3471 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3472 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3473 {
77f9e713 3474 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3475
8213266a 3476 if (record_full_is_used ())
77f9e713 3477 record_full_gdb_operation_disable_set ();
96429cc8 3478
1c0fdd0e
UW
3479 /* When using hardware single-step, a SIGTRAP is reported for both
3480 a completed single-step and a software breakpoint. Need to
3481 differentiate between the two, as the latter needs adjusting
3482 but the former does not.
3483
3484 The SIGTRAP can be due to a completed hardware single-step only if
3485 - we didn't insert software single-step breakpoints
3486 - the thread to be examined is still the current thread
3487 - this thread is currently being stepped
3488
3489 If any of these events did not occur, we must have stopped due
3490 to hitting a software breakpoint, and have to back up to the
3491 breakpoint address.
3492
3493 As a special case, we could have hardware single-stepped a
3494 software breakpoint. In this case (prev_pc == breakpoint_pc),
3495 we also need to back up to the breakpoint address. */
3496
34b7e8a6 3497 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
1c0fdd0e 3498 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea 3499 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3500 || (ecs->event_thread->stepped_breakpoint
3501 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3502 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3503
77f9e713 3504 do_cleanups (old_cleanups);
8aad930b 3505 }
4fa8626c
DJ
3506}
3507
edb3359d
DJ
3508static int
3509stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3510{
3511 for (frame = get_prev_frame (frame);
3512 frame != NULL;
3513 frame = get_prev_frame (frame))
3514 {
3515 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3516 return 1;
3517 if (get_frame_type (frame) != INLINE_FRAME)
3518 break;
3519 }
3520
3521 return 0;
3522}
3523
a96d9b2e
SDJ
3524/* Auxiliary function that handles syscall entry/return events.
3525 It returns 1 if the inferior should keep going (and GDB
3526 should ignore the event), or 0 if the event deserves to be
3527 processed. */
ca2163eb 3528
a96d9b2e 3529static int
ca2163eb 3530handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3531{
ca2163eb 3532 struct regcache *regcache;
ca2163eb
PA
3533 int syscall_number;
3534
3535 if (!ptid_equal (ecs->ptid, inferior_ptid))
3536 context_switch (ecs->ptid);
3537
3538 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3539 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3540 stop_pc = regcache_read_pc (regcache);
3541
a96d9b2e
SDJ
3542 if (catch_syscall_enabled () > 0
3543 && catching_syscall_number (syscall_number) > 0)
3544 {
3545 if (debug_infrun)
3546 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3547 syscall_number);
a96d9b2e 3548
16c381f0 3549 ecs->event_thread->control.stop_bpstat
6c95b8df 3550 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3551 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3552
ce12b012 3553 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3554 {
3555 /* Catchpoint hit. */
ca2163eb
PA
3556 return 0;
3557 }
a96d9b2e 3558 }
ca2163eb
PA
3559
3560 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3561 keep_going (ecs);
3562 return 1;
a96d9b2e
SDJ
3563}
3564
7e324e48
GB
3565/* Lazily fill in the execution_control_state's stop_func_* fields. */
3566
3567static void
3568fill_in_stop_func (struct gdbarch *gdbarch,
3569 struct execution_control_state *ecs)
3570{
3571 if (!ecs->stop_func_filled_in)
3572 {
3573 /* Don't care about return value; stop_func_start and stop_func_name
3574 will both be 0 if it doesn't work. */
3575 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3576 &ecs->stop_func_start, &ecs->stop_func_end);
3577 ecs->stop_func_start
3578 += gdbarch_deprecated_function_start_offset (gdbarch);
3579
591a12a1
UW
3580 if (gdbarch_skip_entrypoint_p (gdbarch))
3581 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3582 ecs->stop_func_start);
3583
7e324e48
GB
3584 ecs->stop_func_filled_in = 1;
3585 }
3586}
3587
4f5d7f63
PA
3588
3589/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3590
3591static enum stop_kind
3592get_inferior_stop_soon (ptid_t ptid)
3593{
c9657e70 3594 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3595
3596 gdb_assert (inf != NULL);
3597 return inf->control.stop_soon;
3598}
3599
05ba8510
PA
3600/* Given an execution control state that has been freshly filled in by
3601 an event from the inferior, figure out what it means and take
3602 appropriate action.
3603
3604 The alternatives are:
3605
22bcd14b 3606 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3607 debugger.
3608
3609 2) keep_going and return; to wait for the next event (set
3610 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3611 once). */
c906108c 3612
ec9499be 3613static void
96baa820 3614handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3615{
d6b48e9c
PA
3616 enum stop_kind stop_soon;
3617
28736962
PA
3618 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3619 {
3620 /* We had an event in the inferior, but we are not interested in
3621 handling it at this level. The lower layers have already
3622 done what needs to be done, if anything.
3623
3624 One of the possible circumstances for this is when the
3625 inferior produces output for the console. The inferior has
3626 not stopped, and we are ignoring the event. Another possible
3627 circumstance is any event which the lower level knows will be
3628 reported multiple times without an intervening resume. */
3629 if (debug_infrun)
3630 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3631 prepare_to_wait (ecs);
3632 return;
3633 }
3634
0e5bf2a8
PA
3635 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3636 && target_can_async_p () && !sync_execution)
3637 {
3638 /* There were no unwaited-for children left in the target, but,
3639 we're not synchronously waiting for events either. Just
3640 ignore. Otherwise, if we were running a synchronous
3641 execution command, we need to cancel it and give the user
3642 back the terminal. */
3643 if (debug_infrun)
3644 fprintf_unfiltered (gdb_stdlog,
3645 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3646 prepare_to_wait (ecs);
3647 return;
3648 }
3649
1777feb0 3650 /* Cache the last pid/waitstatus. */
c32c64b7 3651 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3652
ca005067 3653 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3654 stop_stack_dummy = STOP_NONE;
ca005067 3655
0e5bf2a8
PA
3656 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3657 {
3658 /* No unwaited-for children left. IOW, all resumed children
3659 have exited. */
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3662
3663 stop_print_frame = 0;
22bcd14b 3664 stop_waiting (ecs);
0e5bf2a8
PA
3665 return;
3666 }
3667
8c90c137 3668 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3669 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3670 {
3671 ecs->event_thread = find_thread_ptid (ecs->ptid);
3672 /* If it's a new thread, add it to the thread database. */
3673 if (ecs->event_thread == NULL)
3674 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3675
3676 /* Disable range stepping. If the next step request could use a
3677 range, this will be end up re-enabled then. */
3678 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3679 }
88ed393a
JK
3680
3681 /* Dependent on valid ECS->EVENT_THREAD. */
3682 adjust_pc_after_break (ecs);
3683
3684 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3685 reinit_frame_cache ();
3686
28736962
PA
3687 breakpoint_retire_moribund ();
3688
2b009048
DJ
3689 /* First, distinguish signals caused by the debugger from signals
3690 that have to do with the program's own actions. Note that
3691 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3692 on the operating system version. Here we detect when a SIGILL or
3693 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3694 something similar for SIGSEGV, since a SIGSEGV will be generated
3695 when we're trying to execute a breakpoint instruction on a
3696 non-executable stack. This happens for call dummy breakpoints
3697 for architectures like SPARC that place call dummies on the
3698 stack. */
2b009048 3699 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3700 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3701 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3702 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3703 {
de0a0249
UW
3704 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3705
3706 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3707 regcache_read_pc (regcache)))
3708 {
3709 if (debug_infrun)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3712 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3713 }
2b009048
DJ
3714 }
3715
28736962
PA
3716 /* Mark the non-executing threads accordingly. In all-stop, all
3717 threads of all processes are stopped when we get any event
3718 reported. In non-stop mode, only the event thread stops. If
3719 we're handling a process exit in non-stop mode, there's nothing
3720 to do, as threads of the dead process are gone, and threads of
3721 any other process were left running. */
3722 if (!non_stop)
3723 set_executing (minus_one_ptid, 0);
3724 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3725 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3726 set_executing (ecs->ptid, 0);
8c90c137 3727
488f131b
JB
3728 switch (ecs->ws.kind)
3729 {
3730 case TARGET_WAITKIND_LOADED:
527159b7 3731 if (debug_infrun)
8a9de0e4 3732 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3733 if (!ptid_equal (ecs->ptid, inferior_ptid))
3734 context_switch (ecs->ptid);
b0f4b84b
DJ
3735 /* Ignore gracefully during startup of the inferior, as it might
3736 be the shell which has just loaded some objects, otherwise
3737 add the symbols for the newly loaded objects. Also ignore at
3738 the beginning of an attach or remote session; we will query
3739 the full list of libraries once the connection is
3740 established. */
4f5d7f63
PA
3741
3742 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3743 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3744 {
edcc5120
TT
3745 struct regcache *regcache;
3746
edcc5120
TT
3747 regcache = get_thread_regcache (ecs->ptid);
3748
3749 handle_solib_event ();
3750
3751 ecs->event_thread->control.stop_bpstat
3752 = bpstat_stop_status (get_regcache_aspace (regcache),
3753 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3754
ce12b012 3755 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3756 {
3757 /* A catchpoint triggered. */
94c57d6a
PA
3758 process_event_stop_test (ecs);
3759 return;
edcc5120 3760 }
488f131b 3761
b0f4b84b
DJ
3762 /* If requested, stop when the dynamic linker notifies
3763 gdb of events. This allows the user to get control
3764 and place breakpoints in initializer routines for
3765 dynamically loaded objects (among other things). */
a493e3e2 3766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3767 if (stop_on_solib_events)
3768 {
55409f9d
DJ
3769 /* Make sure we print "Stopped due to solib-event" in
3770 normal_stop. */
3771 stop_print_frame = 1;
3772
22bcd14b 3773 stop_waiting (ecs);
b0f4b84b
DJ
3774 return;
3775 }
488f131b 3776 }
b0f4b84b
DJ
3777
3778 /* If we are skipping through a shell, or through shared library
3779 loading that we aren't interested in, resume the program. If
5c09a2c5 3780 we're running the program normally, also resume. */
b0f4b84b
DJ
3781 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3782 {
74960c60
VP
3783 /* Loading of shared libraries might have changed breakpoint
3784 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3785 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3786 insert_breakpoints ();
a493e3e2 3787 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3788 prepare_to_wait (ecs);
3789 return;
3790 }
3791
5c09a2c5
PA
3792 /* But stop if we're attaching or setting up a remote
3793 connection. */
3794 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3795 || stop_soon == STOP_QUIETLY_REMOTE)
3796 {
3797 if (debug_infrun)
3798 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3799 stop_waiting (ecs);
5c09a2c5
PA
3800 return;
3801 }
3802
3803 internal_error (__FILE__, __LINE__,
3804 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3805
488f131b 3806 case TARGET_WAITKIND_SPURIOUS:
527159b7 3807 if (debug_infrun)
8a9de0e4 3808 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3809 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3810 context_switch (ecs->ptid);
a493e3e2 3811 resume (0, GDB_SIGNAL_0);
488f131b
JB
3812 prepare_to_wait (ecs);
3813 return;
c5aa993b 3814
488f131b 3815 case TARGET_WAITKIND_EXITED:
940c3c06 3816 case TARGET_WAITKIND_SIGNALLED:
527159b7 3817 if (debug_infrun)
940c3c06
PA
3818 {
3819 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3820 fprintf_unfiltered (gdb_stdlog,
3821 "infrun: TARGET_WAITKIND_EXITED\n");
3822 else
3823 fprintf_unfiltered (gdb_stdlog,
3824 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3825 }
3826
fb66883a 3827 inferior_ptid = ecs->ptid;
c9657e70 3828 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3829 set_current_program_space (current_inferior ()->pspace);
3830 handle_vfork_child_exec_or_exit (0);
1777feb0 3831 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3832
0c557179
SDJ
3833 /* Clearing any previous state of convenience variables. */
3834 clear_exit_convenience_vars ();
3835
940c3c06
PA
3836 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3837 {
3838 /* Record the exit code in the convenience variable $_exitcode, so
3839 that the user can inspect this again later. */
3840 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3841 (LONGEST) ecs->ws.value.integer);
3842
3843 /* Also record this in the inferior itself. */
3844 current_inferior ()->has_exit_code = 1;
3845 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3846
98eb56a4
PA
3847 /* Support the --return-child-result option. */
3848 return_child_result_value = ecs->ws.value.integer;
3849
fd664c91 3850 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3851 }
3852 else
0c557179
SDJ
3853 {
3854 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3855 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3856
3857 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3858 {
3859 /* Set the value of the internal variable $_exitsignal,
3860 which holds the signal uncaught by the inferior. */
3861 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3862 gdbarch_gdb_signal_to_target (gdbarch,
3863 ecs->ws.value.sig));
3864 }
3865 else
3866 {
3867 /* We don't have access to the target's method used for
3868 converting between signal numbers (GDB's internal
3869 representation <-> target's representation).
3870 Therefore, we cannot do a good job at displaying this
3871 information to the user. It's better to just warn
3872 her about it (if infrun debugging is enabled), and
3873 give up. */
3874 if (debug_infrun)
3875 fprintf_filtered (gdb_stdlog, _("\
3876Cannot fill $_exitsignal with the correct signal number.\n"));
3877 }
3878
fd664c91 3879 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3880 }
8cf64490 3881
488f131b
JB
3882 gdb_flush (gdb_stdout);
3883 target_mourn_inferior ();
488f131b 3884 stop_print_frame = 0;
22bcd14b 3885 stop_waiting (ecs);
488f131b 3886 return;
c5aa993b 3887
488f131b 3888 /* The following are the only cases in which we keep going;
1777feb0 3889 the above cases end in a continue or goto. */
488f131b 3890 case TARGET_WAITKIND_FORKED:
deb3b17b 3891 case TARGET_WAITKIND_VFORKED:
527159b7 3892 if (debug_infrun)
fed708ed
PA
3893 {
3894 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3895 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3896 else
3897 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3898 }
c906108c 3899
e2d96639
YQ
3900 /* Check whether the inferior is displaced stepping. */
3901 {
3902 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3903 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3904 struct displaced_step_inferior_state *displaced
3905 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3906
3907 /* If checking displaced stepping is supported, and thread
3908 ecs->ptid is displaced stepping. */
3909 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3910 {
3911 struct inferior *parent_inf
c9657e70 3912 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
3913 struct regcache *child_regcache;
3914 CORE_ADDR parent_pc;
3915
3916 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3917 indicating that the displaced stepping of syscall instruction
3918 has been done. Perform cleanup for parent process here. Note
3919 that this operation also cleans up the child process for vfork,
3920 because their pages are shared. */
a493e3e2 3921 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3922
3923 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3924 {
3925 /* Restore scratch pad for child process. */
3926 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3927 }
3928
3929 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3930 the child's PC is also within the scratchpad. Set the child's PC
3931 to the parent's PC value, which has already been fixed up.
3932 FIXME: we use the parent's aspace here, although we're touching
3933 the child, because the child hasn't been added to the inferior
3934 list yet at this point. */
3935
3936 child_regcache
3937 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3938 gdbarch,
3939 parent_inf->aspace);
3940 /* Read PC value of parent process. */
3941 parent_pc = regcache_read_pc (regcache);
3942
3943 if (debug_displaced)
3944 fprintf_unfiltered (gdb_stdlog,
3945 "displaced: write child pc from %s to %s\n",
3946 paddress (gdbarch,
3947 regcache_read_pc (child_regcache)),
3948 paddress (gdbarch, parent_pc));
3949
3950 regcache_write_pc (child_regcache, parent_pc);
3951 }
3952 }
3953
5a2901d9 3954 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3955 context_switch (ecs->ptid);
5a2901d9 3956
b242c3c2
PA
3957 /* Immediately detach breakpoints from the child before there's
3958 any chance of letting the user delete breakpoints from the
3959 breakpoint lists. If we don't do this early, it's easy to
3960 leave left over traps in the child, vis: "break foo; catch
3961 fork; c; <fork>; del; c; <child calls foo>". We only follow
3962 the fork on the last `continue', and by that time the
3963 breakpoint at "foo" is long gone from the breakpoint table.
3964 If we vforked, then we don't need to unpatch here, since both
3965 parent and child are sharing the same memory pages; we'll
3966 need to unpatch at follow/detach time instead to be certain
3967 that new breakpoints added between catchpoint hit time and
3968 vfork follow are detached. */
3969 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3970 {
b242c3c2
PA
3971 /* This won't actually modify the breakpoint list, but will
3972 physically remove the breakpoints from the child. */
d80ee84f 3973 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3974 }
3975
34b7e8a6 3976 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 3977
e58b0e63
PA
3978 /* In case the event is caught by a catchpoint, remember that
3979 the event is to be followed at the next resume of the thread,
3980 and not immediately. */
3981 ecs->event_thread->pending_follow = ecs->ws;
3982
fb14de7b 3983 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3984
16c381f0 3985 ecs->event_thread->control.stop_bpstat
6c95b8df 3986 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3987 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3988
ce12b012
PA
3989 /* If no catchpoint triggered for this, then keep going. Note
3990 that we're interested in knowing the bpstat actually causes a
3991 stop, not just if it may explain the signal. Software
3992 watchpoints, for example, always appear in the bpstat. */
3993 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3994 {
6c95b8df
PA
3995 ptid_t parent;
3996 ptid_t child;
e58b0e63 3997 int should_resume;
3e43a32a
MS
3998 int follow_child
3999 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4000
a493e3e2 4001 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4002
4003 should_resume = follow_fork ();
4004
6c95b8df
PA
4005 parent = ecs->ptid;
4006 child = ecs->ws.value.related_pid;
4007
4008 /* In non-stop mode, also resume the other branch. */
4009 if (non_stop && !detach_fork)
4010 {
4011 if (follow_child)
4012 switch_to_thread (parent);
4013 else
4014 switch_to_thread (child);
4015
4016 ecs->event_thread = inferior_thread ();
4017 ecs->ptid = inferior_ptid;
4018 keep_going (ecs);
4019 }
4020
4021 if (follow_child)
4022 switch_to_thread (child);
4023 else
4024 switch_to_thread (parent);
4025
e58b0e63
PA
4026 ecs->event_thread = inferior_thread ();
4027 ecs->ptid = inferior_ptid;
4028
4029 if (should_resume)
4030 keep_going (ecs);
4031 else
22bcd14b 4032 stop_waiting (ecs);
04e68871
DJ
4033 return;
4034 }
94c57d6a
PA
4035 process_event_stop_test (ecs);
4036 return;
488f131b 4037
6c95b8df
PA
4038 case TARGET_WAITKIND_VFORK_DONE:
4039 /* Done with the shared memory region. Re-insert breakpoints in
4040 the parent, and keep going. */
4041
4042 if (debug_infrun)
3e43a32a
MS
4043 fprintf_unfiltered (gdb_stdlog,
4044 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4045
4046 if (!ptid_equal (ecs->ptid, inferior_ptid))
4047 context_switch (ecs->ptid);
4048
4049 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4050 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4051 /* This also takes care of reinserting breakpoints in the
4052 previously locked inferior. */
4053 keep_going (ecs);
4054 return;
4055
488f131b 4056 case TARGET_WAITKIND_EXECD:
527159b7 4057 if (debug_infrun)
fc5261f2 4058 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4059
5a2901d9 4060 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4061 context_switch (ecs->ptid);
5a2901d9 4062
fb14de7b 4063 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4064
6c95b8df
PA
4065 /* Do whatever is necessary to the parent branch of the vfork. */
4066 handle_vfork_child_exec_or_exit (1);
4067
795e548f
PA
4068 /* This causes the eventpoints and symbol table to be reset.
4069 Must do this now, before trying to determine whether to
4070 stop. */
71b43ef8 4071 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4072
16c381f0 4073 ecs->event_thread->control.stop_bpstat
6c95b8df 4074 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4075 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4076
71b43ef8
PA
4077 /* Note that this may be referenced from inside
4078 bpstat_stop_status above, through inferior_has_execd. */
4079 xfree (ecs->ws.value.execd_pathname);
4080 ecs->ws.value.execd_pathname = NULL;
4081
04e68871 4082 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4083 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4084 {
a493e3e2 4085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4086 keep_going (ecs);
4087 return;
4088 }
94c57d6a
PA
4089 process_event_stop_test (ecs);
4090 return;
488f131b 4091
b4dc5ffa
MK
4092 /* Be careful not to try to gather much state about a thread
4093 that's in a syscall. It's frequently a losing proposition. */
488f131b 4094 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4095 if (debug_infrun)
3e43a32a
MS
4096 fprintf_unfiltered (gdb_stdlog,
4097 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4098 /* Getting the current syscall number. */
94c57d6a
PA
4099 if (handle_syscall_event (ecs) == 0)
4100 process_event_stop_test (ecs);
4101 return;
c906108c 4102
488f131b
JB
4103 /* Before examining the threads further, step this thread to
4104 get it entirely out of the syscall. (We get notice of the
4105 event when the thread is just on the verge of exiting a
4106 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4107 into user code.) */
488f131b 4108 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4109 if (debug_infrun)
3e43a32a
MS
4110 fprintf_unfiltered (gdb_stdlog,
4111 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4112 if (handle_syscall_event (ecs) == 0)
4113 process_event_stop_test (ecs);
4114 return;
c906108c 4115
488f131b 4116 case TARGET_WAITKIND_STOPPED:
527159b7 4117 if (debug_infrun)
8a9de0e4 4118 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4119 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4120 handle_signal_stop (ecs);
4121 return;
c906108c 4122
b2175913 4123 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4124 if (debug_infrun)
4125 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4126 /* Reverse execution: target ran out of history info. */
eab402df 4127
34b7e8a6 4128 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4129 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4130 observer_notify_no_history ();
22bcd14b 4131 stop_waiting (ecs);
b2175913 4132 return;
488f131b 4133 }
4f5d7f63
PA
4134}
4135
4136/* Come here when the program has stopped with a signal. */
4137
4138static void
4139handle_signal_stop (struct execution_control_state *ecs)
4140{
4141 struct frame_info *frame;
4142 struct gdbarch *gdbarch;
4143 int stopped_by_watchpoint;
4144 enum stop_kind stop_soon;
4145 int random_signal;
c906108c 4146
f0407826
DE
4147 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4148
4149 /* Do we need to clean up the state of a thread that has
4150 completed a displaced single-step? (Doing so usually affects
4151 the PC, so do it here, before we set stop_pc.) */
4152 displaced_step_fixup (ecs->ptid,
4153 ecs->event_thread->suspend.stop_signal);
4154
4155 /* If we either finished a single-step or hit a breakpoint, but
4156 the user wanted this thread to be stopped, pretend we got a
4157 SIG0 (generic unsignaled stop). */
4158 if (ecs->event_thread->stop_requested
4159 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4160 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4161
515630c5 4162 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4163
527159b7 4164 if (debug_infrun)
237fc4c9 4165 {
5af949e3
UW
4166 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4167 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4168 struct cleanup *old_chain = save_inferior_ptid ();
4169
4170 inferior_ptid = ecs->ptid;
5af949e3
UW
4171
4172 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4173 paddress (gdbarch, stop_pc));
d92524f1 4174 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4175 {
4176 CORE_ADDR addr;
abbb1732 4177
237fc4c9
PA
4178 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4179
4180 if (target_stopped_data_address (&current_target, &addr))
4181 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4182 "infrun: stopped data address = %s\n",
4183 paddress (gdbarch, addr));
237fc4c9
PA
4184 else
4185 fprintf_unfiltered (gdb_stdlog,
4186 "infrun: (no data address available)\n");
4187 }
7f82dfc7
JK
4188
4189 do_cleanups (old_chain);
237fc4c9 4190 }
527159b7 4191
36fa8042
PA
4192 /* This is originated from start_remote(), start_inferior() and
4193 shared libraries hook functions. */
4194 stop_soon = get_inferior_stop_soon (ecs->ptid);
4195 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4196 {
4197 if (!ptid_equal (ecs->ptid, inferior_ptid))
4198 context_switch (ecs->ptid);
4199 if (debug_infrun)
4200 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4201 stop_print_frame = 1;
22bcd14b 4202 stop_waiting (ecs);
36fa8042
PA
4203 return;
4204 }
4205
4206 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4207 && stop_after_trap)
4208 {
4209 if (!ptid_equal (ecs->ptid, inferior_ptid))
4210 context_switch (ecs->ptid);
4211 if (debug_infrun)
4212 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4213 stop_print_frame = 0;
22bcd14b 4214 stop_waiting (ecs);
36fa8042
PA
4215 return;
4216 }
4217
4218 /* This originates from attach_command(). We need to overwrite
4219 the stop_signal here, because some kernels don't ignore a
4220 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4221 See more comments in inferior.h. On the other hand, if we
4222 get a non-SIGSTOP, report it to the user - assume the backend
4223 will handle the SIGSTOP if it should show up later.
4224
4225 Also consider that the attach is complete when we see a
4226 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4227 target extended-remote report it instead of a SIGSTOP
4228 (e.g. gdbserver). We already rely on SIGTRAP being our
4229 signal, so this is no exception.
4230
4231 Also consider that the attach is complete when we see a
4232 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4233 the target to stop all threads of the inferior, in case the
4234 low level attach operation doesn't stop them implicitly. If
4235 they weren't stopped implicitly, then the stub will report a
4236 GDB_SIGNAL_0, meaning: stopped for no particular reason
4237 other than GDB's request. */
4238 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4239 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4240 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4241 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4242 {
4243 stop_print_frame = 1;
22bcd14b 4244 stop_waiting (ecs);
36fa8042
PA
4245 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4246 return;
4247 }
4248
488f131b 4249 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4250 so, then switch to that thread. */
4251 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4252 {
527159b7 4253 if (debug_infrun)
8a9de0e4 4254 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4255
0d1e5fa7 4256 context_switch (ecs->ptid);
c5aa993b 4257
9a4105ab
AC
4258 if (deprecated_context_hook)
4259 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4260 }
c906108c 4261
568d6575
UW
4262 /* At this point, get hold of the now-current thread's frame. */
4263 frame = get_current_frame ();
4264 gdbarch = get_frame_arch (frame);
4265
2adfaa28 4266 /* Pull the single step breakpoints out of the target. */
af48d08f 4267 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4268 {
af48d08f
PA
4269 struct regcache *regcache;
4270 struct address_space *aspace;
4271 CORE_ADDR pc;
2adfaa28 4272
af48d08f
PA
4273 regcache = get_thread_regcache (ecs->ptid);
4274 aspace = get_regcache_aspace (regcache);
4275 pc = regcache_read_pc (regcache);
34b7e8a6 4276
af48d08f
PA
4277 /* However, before doing so, if this single-step breakpoint was
4278 actually for another thread, set this thread up for moving
4279 past it. */
4280 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4281 aspace, pc))
4282 {
4283 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4284 {
4285 if (debug_infrun)
4286 {
4287 fprintf_unfiltered (gdb_stdlog,
af48d08f 4288 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4289 "single-step breakpoint\n",
4290 target_pid_to_str (ecs->ptid));
2adfaa28 4291 }
af48d08f
PA
4292 ecs->hit_singlestep_breakpoint = 1;
4293 }
4294 }
4295 else
4296 {
4297 if (debug_infrun)
4298 {
4299 fprintf_unfiltered (gdb_stdlog,
4300 "infrun: [%s] hit its "
4301 "single-step breakpoint\n",
4302 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4303 }
4304 }
488f131b 4305 }
af48d08f 4306 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4307
963f9c80
PA
4308 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4309 && ecs->event_thread->control.trap_expected
4310 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4311 stopped_by_watchpoint = 0;
4312 else
4313 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4314
4315 /* If necessary, step over this watchpoint. We'll be back to display
4316 it in a moment. */
4317 if (stopped_by_watchpoint
d92524f1 4318 && (target_have_steppable_watchpoint
568d6575 4319 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4320 {
488f131b
JB
4321 /* At this point, we are stopped at an instruction which has
4322 attempted to write to a piece of memory under control of
4323 a watchpoint. The instruction hasn't actually executed
4324 yet. If we were to evaluate the watchpoint expression
4325 now, we would get the old value, and therefore no change
4326 would seem to have occurred.
4327
4328 In order to make watchpoints work `right', we really need
4329 to complete the memory write, and then evaluate the
d983da9c
DJ
4330 watchpoint expression. We do this by single-stepping the
4331 target.
4332
7f89fd65 4333 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4334 it. For example, the PA can (with some kernel cooperation)
4335 single step over a watchpoint without disabling the watchpoint.
4336
4337 It is far more common to need to disable a watchpoint to step
4338 the inferior over it. If we have non-steppable watchpoints,
4339 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4340 disable all watchpoints.
4341
4342 Any breakpoint at PC must also be stepped over -- if there's
4343 one, it will have already triggered before the watchpoint
4344 triggered, and we either already reported it to the user, or
4345 it didn't cause a stop and we called keep_going. In either
4346 case, if there was a breakpoint at PC, we must be trying to
4347 step past it. */
4348 ecs->event_thread->stepping_over_watchpoint = 1;
4349 keep_going (ecs);
488f131b
JB
4350 return;
4351 }
4352
4e1c45ea 4353 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4354 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4355 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4356 ecs->event_thread->control.stop_step = 0;
488f131b 4357 stop_print_frame = 1;
488f131b 4358 stopped_by_random_signal = 0;
488f131b 4359
edb3359d
DJ
4360 /* Hide inlined functions starting here, unless we just performed stepi or
4361 nexti. After stepi and nexti, always show the innermost frame (not any
4362 inline function call sites). */
16c381f0 4363 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4364 {
4365 struct address_space *aspace =
4366 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4367
4368 /* skip_inline_frames is expensive, so we avoid it if we can
4369 determine that the address is one where functions cannot have
4370 been inlined. This improves performance with inferiors that
4371 load a lot of shared libraries, because the solib event
4372 breakpoint is defined as the address of a function (i.e. not
4373 inline). Note that we have to check the previous PC as well
4374 as the current one to catch cases when we have just
4375 single-stepped off a breakpoint prior to reinstating it.
4376 Note that we're assuming that the code we single-step to is
4377 not inline, but that's not definitive: there's nothing
4378 preventing the event breakpoint function from containing
4379 inlined code, and the single-step ending up there. If the
4380 user had set a breakpoint on that inlined code, the missing
4381 skip_inline_frames call would break things. Fortunately
4382 that's an extremely unlikely scenario. */
09ac7c10 4383 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4384 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4385 && ecs->event_thread->control.trap_expected
4386 && pc_at_non_inline_function (aspace,
4387 ecs->event_thread->prev_pc,
09ac7c10 4388 &ecs->ws)))
1c5a993e
MR
4389 {
4390 skip_inline_frames (ecs->ptid);
4391
4392 /* Re-fetch current thread's frame in case that invalidated
4393 the frame cache. */
4394 frame = get_current_frame ();
4395 gdbarch = get_frame_arch (frame);
4396 }
0574c78f 4397 }
edb3359d 4398
a493e3e2 4399 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4400 && ecs->event_thread->control.trap_expected
568d6575 4401 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4402 && currently_stepping (ecs->event_thread))
3352ef37 4403 {
b50d7442 4404 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4405 also on an instruction that needs to be stepped multiple
1777feb0 4406 times before it's been fully executing. E.g., architectures
3352ef37
AC
4407 with a delay slot. It needs to be stepped twice, once for
4408 the instruction and once for the delay slot. */
4409 int step_through_delay
568d6575 4410 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4411
527159b7 4412 if (debug_infrun && step_through_delay)
8a9de0e4 4413 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4414 if (ecs->event_thread->control.step_range_end == 0
4415 && step_through_delay)
3352ef37
AC
4416 {
4417 /* The user issued a continue when stopped at a breakpoint.
4418 Set up for another trap and get out of here. */
4e1c45ea 4419 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4420 keep_going (ecs);
4421 return;
4422 }
4423 else if (step_through_delay)
4424 {
4425 /* The user issued a step when stopped at a breakpoint.
4426 Maybe we should stop, maybe we should not - the delay
4427 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4428 case, don't decide that here, just set
4429 ecs->stepping_over_breakpoint, making sure we
4430 single-step again before breakpoints are re-inserted. */
4e1c45ea 4431 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4432 }
4433 }
4434
ab04a2af
TT
4435 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4436 handles this event. */
4437 ecs->event_thread->control.stop_bpstat
4438 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4439 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4440
ab04a2af
TT
4441 /* Following in case break condition called a
4442 function. */
4443 stop_print_frame = 1;
73dd234f 4444
ab04a2af
TT
4445 /* This is where we handle "moribund" watchpoints. Unlike
4446 software breakpoints traps, hardware watchpoint traps are
4447 always distinguishable from random traps. If no high-level
4448 watchpoint is associated with the reported stop data address
4449 anymore, then the bpstat does not explain the signal ---
4450 simply make sure to ignore it if `stopped_by_watchpoint' is
4451 set. */
4452
4453 if (debug_infrun
4454 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4455 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4456 GDB_SIGNAL_TRAP)
ab04a2af
TT
4457 && stopped_by_watchpoint)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: no user watchpoint explains "
4460 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4461
bac7d97b 4462 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4463 at one stage in the past included checks for an inferior
4464 function call's call dummy's return breakpoint. The original
4465 comment, that went with the test, read:
03cebad2 4466
ab04a2af
TT
4467 ``End of a stack dummy. Some systems (e.g. Sony news) give
4468 another signal besides SIGTRAP, so check here as well as
4469 above.''
73dd234f 4470
ab04a2af
TT
4471 If someone ever tries to get call dummys on a
4472 non-executable stack to work (where the target would stop
4473 with something like a SIGSEGV), then those tests might need
4474 to be re-instated. Given, however, that the tests were only
4475 enabled when momentary breakpoints were not being used, I
4476 suspect that it won't be the case.
488f131b 4477
ab04a2af
TT
4478 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4479 be necessary for call dummies on a non-executable stack on
4480 SPARC. */
488f131b 4481
bac7d97b 4482 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4483 random_signal
4484 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4485 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4486
4487 /* If not, perhaps stepping/nexting can. */
4488 if (random_signal)
4489 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4490 && currently_stepping (ecs->event_thread));
ab04a2af 4491
2adfaa28
PA
4492 /* Perhaps the thread hit a single-step breakpoint of _another_
4493 thread. Single-step breakpoints are transparent to the
4494 breakpoints module. */
4495 if (random_signal)
4496 random_signal = !ecs->hit_singlestep_breakpoint;
4497
bac7d97b
PA
4498 /* No? Perhaps we got a moribund watchpoint. */
4499 if (random_signal)
4500 random_signal = !stopped_by_watchpoint;
ab04a2af 4501
488f131b
JB
4502 /* For the program's own signals, act according to
4503 the signal handling tables. */
4504
ce12b012 4505 if (random_signal)
488f131b
JB
4506 {
4507 /* Signal not for debugging purposes. */
c9657e70 4508 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4509 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4510
527159b7 4511 if (debug_infrun)
c9737c08
PA
4512 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4513 gdb_signal_to_symbol_string (stop_signal));
527159b7 4514
488f131b
JB
4515 stopped_by_random_signal = 1;
4516
252fbfc8
PA
4517 /* Always stop on signals if we're either just gaining control
4518 of the program, or the user explicitly requested this thread
4519 to remain stopped. */
d6b48e9c 4520 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4521 || ecs->event_thread->stop_requested
24291992 4522 || (!inf->detaching
16c381f0 4523 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4524 {
22bcd14b 4525 stop_waiting (ecs);
488f131b
JB
4526 return;
4527 }
b57bacec
PA
4528
4529 /* Notify observers the signal has "handle print" set. Note we
4530 returned early above if stopping; normal_stop handles the
4531 printing in that case. */
4532 if (signal_print[ecs->event_thread->suspend.stop_signal])
4533 {
4534 /* The signal table tells us to print about this signal. */
4535 target_terminal_ours_for_output ();
4536 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4537 target_terminal_inferior ();
4538 }
488f131b
JB
4539
4540 /* Clear the signal if it should not be passed. */
16c381f0 4541 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4542 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4543
fb14de7b 4544 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4545 && ecs->event_thread->control.trap_expected
8358c15c 4546 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4547 {
4548 /* We were just starting a new sequence, attempting to
4549 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4550 Instead this signal arrives. This signal will take us out
68f53502
AC
4551 of the stepping range so GDB needs to remember to, when
4552 the signal handler returns, resume stepping off that
4553 breakpoint. */
4554 /* To simplify things, "continue" is forced to use the same
4555 code paths as single-step - set a breakpoint at the
4556 signal return address and then, once hit, step off that
4557 breakpoint. */
237fc4c9
PA
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog,
4560 "infrun: signal arrived while stepping over "
4561 "breakpoint\n");
d3169d93 4562
2c03e5be 4563 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4564 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4565 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4566 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4567
4568 /* If we were nexting/stepping some other thread, switch to
4569 it, so that we don't continue it, losing control. */
4570 if (!switch_back_to_stepped_thread (ecs))
4571 keep_going (ecs);
9d799f85 4572 return;
68f53502 4573 }
9d799f85 4574
e5f8a7cc
PA
4575 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4576 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4577 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4578 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4579 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4580 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4581 {
4582 /* The inferior is about to take a signal that will take it
4583 out of the single step range. Set a breakpoint at the
4584 current PC (which is presumably where the signal handler
4585 will eventually return) and then allow the inferior to
4586 run free.
4587
4588 Note that this is only needed for a signal delivered
4589 while in the single-step range. Nested signals aren't a
4590 problem as they eventually all return. */
237fc4c9
PA
4591 if (debug_infrun)
4592 fprintf_unfiltered (gdb_stdlog,
4593 "infrun: signal may take us out of "
4594 "single-step range\n");
4595
2c03e5be 4596 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4597 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4598 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4599 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4600 keep_going (ecs);
4601 return;
d303a6c7 4602 }
9d799f85
AC
4603
4604 /* Note: step_resume_breakpoint may be non-NULL. This occures
4605 when either there's a nested signal, or when there's a
4606 pending signal enabled just as the signal handler returns
4607 (leaving the inferior at the step-resume-breakpoint without
4608 actually executing it). Either way continue until the
4609 breakpoint is really hit. */
c447ac0b
PA
4610
4611 if (!switch_back_to_stepped_thread (ecs))
4612 {
4613 if (debug_infrun)
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: random signal, keep going\n");
4616
4617 keep_going (ecs);
4618 }
4619 return;
488f131b 4620 }
94c57d6a
PA
4621
4622 process_event_stop_test (ecs);
4623}
4624
4625/* Come here when we've got some debug event / signal we can explain
4626 (IOW, not a random signal), and test whether it should cause a
4627 stop, or whether we should resume the inferior (transparently).
4628 E.g., could be a breakpoint whose condition evaluates false; we
4629 could be still stepping within the line; etc. */
4630
4631static void
4632process_event_stop_test (struct execution_control_state *ecs)
4633{
4634 struct symtab_and_line stop_pc_sal;
4635 struct frame_info *frame;
4636 struct gdbarch *gdbarch;
cdaa5b73
PA
4637 CORE_ADDR jmp_buf_pc;
4638 struct bpstat_what what;
94c57d6a 4639
cdaa5b73 4640 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4641
cdaa5b73
PA
4642 frame = get_current_frame ();
4643 gdbarch = get_frame_arch (frame);
fcf3daef 4644
cdaa5b73 4645 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4646
cdaa5b73
PA
4647 if (what.call_dummy)
4648 {
4649 stop_stack_dummy = what.call_dummy;
4650 }
186c406b 4651
cdaa5b73
PA
4652 /* If we hit an internal event that triggers symbol changes, the
4653 current frame will be invalidated within bpstat_what (e.g., if we
4654 hit an internal solib event). Re-fetch it. */
4655 frame = get_current_frame ();
4656 gdbarch = get_frame_arch (frame);
e2e4d78b 4657
cdaa5b73
PA
4658 switch (what.main_action)
4659 {
4660 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4661 /* If we hit the breakpoint at longjmp while stepping, we
4662 install a momentary breakpoint at the target of the
4663 jmp_buf. */
186c406b 4664
cdaa5b73
PA
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog,
4667 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4668
cdaa5b73 4669 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4670
cdaa5b73
PA
4671 if (what.is_longjmp)
4672 {
4673 struct value *arg_value;
4674
4675 /* If we set the longjmp breakpoint via a SystemTap probe,
4676 then use it to extract the arguments. The destination PC
4677 is the third argument to the probe. */
4678 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4679 if (arg_value)
8fa0c4f8
AA
4680 {
4681 jmp_buf_pc = value_as_address (arg_value);
4682 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4683 }
cdaa5b73
PA
4684 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4685 || !gdbarch_get_longjmp_target (gdbarch,
4686 frame, &jmp_buf_pc))
e2e4d78b 4687 {
cdaa5b73
PA
4688 if (debug_infrun)
4689 fprintf_unfiltered (gdb_stdlog,
4690 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4691 "(!gdbarch_get_longjmp_target)\n");
4692 keep_going (ecs);
4693 return;
e2e4d78b 4694 }
e2e4d78b 4695
cdaa5b73
PA
4696 /* Insert a breakpoint at resume address. */
4697 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4698 }
4699 else
4700 check_exception_resume (ecs, frame);
4701 keep_going (ecs);
4702 return;
e81a37f7 4703
cdaa5b73
PA
4704 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4705 {
4706 struct frame_info *init_frame;
e81a37f7 4707
cdaa5b73 4708 /* There are several cases to consider.
c906108c 4709
cdaa5b73
PA
4710 1. The initiating frame no longer exists. In this case we
4711 must stop, because the exception or longjmp has gone too
4712 far.
2c03e5be 4713
cdaa5b73
PA
4714 2. The initiating frame exists, and is the same as the
4715 current frame. We stop, because the exception or longjmp
4716 has been caught.
2c03e5be 4717
cdaa5b73
PA
4718 3. The initiating frame exists and is different from the
4719 current frame. This means the exception or longjmp has
4720 been caught beneath the initiating frame, so keep going.
c906108c 4721
cdaa5b73
PA
4722 4. longjmp breakpoint has been placed just to protect
4723 against stale dummy frames and user is not interested in
4724 stopping around longjmps. */
c5aa993b 4725
cdaa5b73
PA
4726 if (debug_infrun)
4727 fprintf_unfiltered (gdb_stdlog,
4728 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4729
cdaa5b73
PA
4730 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4731 != NULL);
4732 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4733
cdaa5b73
PA
4734 if (what.is_longjmp)
4735 {
b67a2c6f 4736 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4737
cdaa5b73 4738 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4739 {
cdaa5b73
PA
4740 /* Case 4. */
4741 keep_going (ecs);
4742 return;
e5ef252a 4743 }
cdaa5b73 4744 }
c5aa993b 4745
cdaa5b73 4746 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4747
cdaa5b73
PA
4748 if (init_frame)
4749 {
4750 struct frame_id current_id
4751 = get_frame_id (get_current_frame ());
4752 if (frame_id_eq (current_id,
4753 ecs->event_thread->initiating_frame))
4754 {
4755 /* Case 2. Fall through. */
4756 }
4757 else
4758 {
4759 /* Case 3. */
4760 keep_going (ecs);
4761 return;
4762 }
68f53502 4763 }
488f131b 4764
cdaa5b73
PA
4765 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4766 exists. */
4767 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4768
bdc36728 4769 end_stepping_range (ecs);
cdaa5b73
PA
4770 }
4771 return;
e5ef252a 4772
cdaa5b73
PA
4773 case BPSTAT_WHAT_SINGLE:
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4776 ecs->event_thread->stepping_over_breakpoint = 1;
4777 /* Still need to check other stuff, at least the case where we
4778 are stepping and step out of the right range. */
4779 break;
e5ef252a 4780
cdaa5b73
PA
4781 case BPSTAT_WHAT_STEP_RESUME:
4782 if (debug_infrun)
4783 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4784
cdaa5b73
PA
4785 delete_step_resume_breakpoint (ecs->event_thread);
4786 if (ecs->event_thread->control.proceed_to_finish
4787 && execution_direction == EXEC_REVERSE)
4788 {
4789 struct thread_info *tp = ecs->event_thread;
4790
4791 /* We are finishing a function in reverse, and just hit the
4792 step-resume breakpoint at the start address of the
4793 function, and we're almost there -- just need to back up
4794 by one more single-step, which should take us back to the
4795 function call. */
4796 tp->control.step_range_start = tp->control.step_range_end = 1;
4797 keep_going (ecs);
e5ef252a 4798 return;
cdaa5b73
PA
4799 }
4800 fill_in_stop_func (gdbarch, ecs);
4801 if (stop_pc == ecs->stop_func_start
4802 && execution_direction == EXEC_REVERSE)
4803 {
4804 /* We are stepping over a function call in reverse, and just
4805 hit the step-resume breakpoint at the start address of
4806 the function. Go back to single-stepping, which should
4807 take us back to the function call. */
4808 ecs->event_thread->stepping_over_breakpoint = 1;
4809 keep_going (ecs);
4810 return;
4811 }
4812 break;
e5ef252a 4813
cdaa5b73
PA
4814 case BPSTAT_WHAT_STOP_NOISY:
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4817 stop_print_frame = 1;
e5ef252a 4818
99619bea
PA
4819 /* Assume the thread stopped for a breapoint. We'll still check
4820 whether a/the breakpoint is there when the thread is next
4821 resumed. */
4822 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4823
22bcd14b 4824 stop_waiting (ecs);
cdaa5b73 4825 return;
e5ef252a 4826
cdaa5b73
PA
4827 case BPSTAT_WHAT_STOP_SILENT:
4828 if (debug_infrun)
4829 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4830 stop_print_frame = 0;
e5ef252a 4831
99619bea
PA
4832 /* Assume the thread stopped for a breapoint. We'll still check
4833 whether a/the breakpoint is there when the thread is next
4834 resumed. */
4835 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4836 stop_waiting (ecs);
cdaa5b73
PA
4837 return;
4838
4839 case BPSTAT_WHAT_HP_STEP_RESUME:
4840 if (debug_infrun)
4841 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4842
4843 delete_step_resume_breakpoint (ecs->event_thread);
4844 if (ecs->event_thread->step_after_step_resume_breakpoint)
4845 {
4846 /* Back when the step-resume breakpoint was inserted, we
4847 were trying to single-step off a breakpoint. Go back to
4848 doing that. */
4849 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4850 ecs->event_thread->stepping_over_breakpoint = 1;
4851 keep_going (ecs);
4852 return;
e5ef252a 4853 }
cdaa5b73
PA
4854 break;
4855
4856 case BPSTAT_WHAT_KEEP_CHECKING:
4857 break;
e5ef252a 4858 }
c906108c 4859
af48d08f
PA
4860 /* If we stepped a permanent breakpoint and we had a high priority
4861 step-resume breakpoint for the address we stepped, but we didn't
4862 hit it, then we must have stepped into the signal handler. The
4863 step-resume was only necessary to catch the case of _not_
4864 stepping into the handler, so delete it, and fall through to
4865 checking whether the step finished. */
4866 if (ecs->event_thread->stepped_breakpoint)
4867 {
4868 struct breakpoint *sr_bp
4869 = ecs->event_thread->control.step_resume_breakpoint;
4870
4871 if (sr_bp->loc->permanent
4872 && sr_bp->type == bp_hp_step_resume
4873 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4874 {
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: stepped permanent breakpoint, stopped in "
4878 "handler\n");
4879 delete_step_resume_breakpoint (ecs->event_thread);
4880 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4881 }
4882 }
4883
cdaa5b73
PA
4884 /* We come here if we hit a breakpoint but should not stop for it.
4885 Possibly we also were stepping and should stop for that. So fall
4886 through and test for stepping. But, if not stepping, do not
4887 stop. */
c906108c 4888
a7212384
UW
4889 /* In all-stop mode, if we're currently stepping but have stopped in
4890 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4891 if (switch_back_to_stepped_thread (ecs))
4892 return;
776f04fa 4893
8358c15c 4894 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4895 {
527159b7 4896 if (debug_infrun)
d3169d93
DJ
4897 fprintf_unfiltered (gdb_stdlog,
4898 "infrun: step-resume breakpoint is inserted\n");
527159b7 4899
488f131b
JB
4900 /* Having a step-resume breakpoint overrides anything
4901 else having to do with stepping commands until
4902 that breakpoint is reached. */
488f131b
JB
4903 keep_going (ecs);
4904 return;
4905 }
c5aa993b 4906
16c381f0 4907 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4908 {
527159b7 4909 if (debug_infrun)
8a9de0e4 4910 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4911 /* Likewise if we aren't even stepping. */
488f131b
JB
4912 keep_going (ecs);
4913 return;
4914 }
c5aa993b 4915
4b7703ad
JB
4916 /* Re-fetch current thread's frame in case the code above caused
4917 the frame cache to be re-initialized, making our FRAME variable
4918 a dangling pointer. */
4919 frame = get_current_frame ();
628fe4e4 4920 gdbarch = get_frame_arch (frame);
7e324e48 4921 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4922
488f131b 4923 /* If stepping through a line, keep going if still within it.
c906108c 4924
488f131b
JB
4925 Note that step_range_end is the address of the first instruction
4926 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4927 within it!
4928
4929 Note also that during reverse execution, we may be stepping
4930 through a function epilogue and therefore must detect when
4931 the current-frame changes in the middle of a line. */
4932
ce4c476a 4933 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4934 && (execution_direction != EXEC_REVERSE
388a8562 4935 || frame_id_eq (get_frame_id (frame),
16c381f0 4936 ecs->event_thread->control.step_frame_id)))
488f131b 4937 {
527159b7 4938 if (debug_infrun)
5af949e3
UW
4939 fprintf_unfiltered
4940 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4941 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4942 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4943
c1e36e3e
PA
4944 /* Tentatively re-enable range stepping; `resume' disables it if
4945 necessary (e.g., if we're stepping over a breakpoint or we
4946 have software watchpoints). */
4947 ecs->event_thread->control.may_range_step = 1;
4948
b2175913
MS
4949 /* When stepping backward, stop at beginning of line range
4950 (unless it's the function entry point, in which case
4951 keep going back to the call point). */
16c381f0 4952 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4953 && stop_pc != ecs->stop_func_start
4954 && execution_direction == EXEC_REVERSE)
bdc36728 4955 end_stepping_range (ecs);
b2175913
MS
4956 else
4957 keep_going (ecs);
4958
488f131b
JB
4959 return;
4960 }
c5aa993b 4961
488f131b 4962 /* We stepped out of the stepping range. */
c906108c 4963
488f131b 4964 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4965 loader dynamic symbol resolution code...
4966
4967 EXEC_FORWARD: we keep on single stepping until we exit the run
4968 time loader code and reach the callee's address.
4969
4970 EXEC_REVERSE: we've already executed the callee (backward), and
4971 the runtime loader code is handled just like any other
4972 undebuggable function call. Now we need only keep stepping
4973 backward through the trampoline code, and that's handled further
4974 down, so there is nothing for us to do here. */
4975
4976 if (execution_direction != EXEC_REVERSE
16c381f0 4977 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4978 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4979 {
4c8c40e6 4980 CORE_ADDR pc_after_resolver =
568d6575 4981 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4982
527159b7 4983 if (debug_infrun)
3e43a32a
MS
4984 fprintf_unfiltered (gdb_stdlog,
4985 "infrun: stepped into dynsym resolve code\n");
527159b7 4986
488f131b
JB
4987 if (pc_after_resolver)
4988 {
4989 /* Set up a step-resume breakpoint at the address
4990 indicated by SKIP_SOLIB_RESOLVER. */
4991 struct symtab_and_line sr_sal;
abbb1732 4992
fe39c653 4993 init_sal (&sr_sal);
488f131b 4994 sr_sal.pc = pc_after_resolver;
6c95b8df 4995 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4996
a6d9a66e
UW
4997 insert_step_resume_breakpoint_at_sal (gdbarch,
4998 sr_sal, null_frame_id);
c5aa993b 4999 }
c906108c 5000
488f131b
JB
5001 keep_going (ecs);
5002 return;
5003 }
c906108c 5004
16c381f0
JK
5005 if (ecs->event_thread->control.step_range_end != 1
5006 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5007 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5008 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5009 {
527159b7 5010 if (debug_infrun)
3e43a32a
MS
5011 fprintf_unfiltered (gdb_stdlog,
5012 "infrun: stepped into signal trampoline\n");
42edda50 5013 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5014 a signal trampoline (either by a signal being delivered or by
5015 the signal handler returning). Just single-step until the
5016 inferior leaves the trampoline (either by calling the handler
5017 or returning). */
488f131b
JB
5018 keep_going (ecs);
5019 return;
5020 }
c906108c 5021
14132e89
MR
5022 /* If we're in the return path from a shared library trampoline,
5023 we want to proceed through the trampoline when stepping. */
5024 /* macro/2012-04-25: This needs to come before the subroutine
5025 call check below as on some targets return trampolines look
5026 like subroutine calls (MIPS16 return thunks). */
5027 if (gdbarch_in_solib_return_trampoline (gdbarch,
5028 stop_pc, ecs->stop_func_name)
5029 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5030 {
5031 /* Determine where this trampoline returns. */
5032 CORE_ADDR real_stop_pc;
5033
5034 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5035
5036 if (debug_infrun)
5037 fprintf_unfiltered (gdb_stdlog,
5038 "infrun: stepped into solib return tramp\n");
5039
5040 /* Only proceed through if we know where it's going. */
5041 if (real_stop_pc)
5042 {
5043 /* And put the step-breakpoint there and go until there. */
5044 struct symtab_and_line sr_sal;
5045
5046 init_sal (&sr_sal); /* initialize to zeroes */
5047 sr_sal.pc = real_stop_pc;
5048 sr_sal.section = find_pc_overlay (sr_sal.pc);
5049 sr_sal.pspace = get_frame_program_space (frame);
5050
5051 /* Do not specify what the fp should be when we stop since
5052 on some machines the prologue is where the new fp value
5053 is established. */
5054 insert_step_resume_breakpoint_at_sal (gdbarch,
5055 sr_sal, null_frame_id);
5056
5057 /* Restart without fiddling with the step ranges or
5058 other state. */
5059 keep_going (ecs);
5060 return;
5061 }
5062 }
5063
c17eaafe
DJ
5064 /* Check for subroutine calls. The check for the current frame
5065 equalling the step ID is not necessary - the check of the
5066 previous frame's ID is sufficient - but it is a common case and
5067 cheaper than checking the previous frame's ID.
14e60db5
DJ
5068
5069 NOTE: frame_id_eq will never report two invalid frame IDs as
5070 being equal, so to get into this block, both the current and
5071 previous frame must have valid frame IDs. */
005ca36a
JB
5072 /* The outer_frame_id check is a heuristic to detect stepping
5073 through startup code. If we step over an instruction which
5074 sets the stack pointer from an invalid value to a valid value,
5075 we may detect that as a subroutine call from the mythical
5076 "outermost" function. This could be fixed by marking
5077 outermost frames as !stack_p,code_p,special_p. Then the
5078 initial outermost frame, before sp was valid, would
ce6cca6d 5079 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5080 for more. */
edb3359d 5081 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5082 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5083 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5084 ecs->event_thread->control.step_stack_frame_id)
5085 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
5086 outer_frame_id)
5087 || step_start_function != find_pc_function (stop_pc))))
488f131b 5088 {
95918acb 5089 CORE_ADDR real_stop_pc;
8fb3e588 5090
527159b7 5091 if (debug_infrun)
8a9de0e4 5092 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5093
b7a084be 5094 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5095 {
5096 /* I presume that step_over_calls is only 0 when we're
5097 supposed to be stepping at the assembly language level
5098 ("stepi"). Just stop. */
388a8562 5099 /* And this works the same backward as frontward. MVS */
bdc36728 5100 end_stepping_range (ecs);
95918acb
AC
5101 return;
5102 }
8fb3e588 5103
388a8562
MS
5104 /* Reverse stepping through solib trampolines. */
5105
5106 if (execution_direction == EXEC_REVERSE
16c381f0 5107 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5108 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5109 || (ecs->stop_func_start == 0
5110 && in_solib_dynsym_resolve_code (stop_pc))))
5111 {
5112 /* Any solib trampoline code can be handled in reverse
5113 by simply continuing to single-step. We have already
5114 executed the solib function (backwards), and a few
5115 steps will take us back through the trampoline to the
5116 caller. */
5117 keep_going (ecs);
5118 return;
5119 }
5120
16c381f0 5121 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5122 {
b2175913
MS
5123 /* We're doing a "next".
5124
5125 Normal (forward) execution: set a breakpoint at the
5126 callee's return address (the address at which the caller
5127 will resume).
5128
5129 Reverse (backward) execution. set the step-resume
5130 breakpoint at the start of the function that we just
5131 stepped into (backwards), and continue to there. When we
6130d0b7 5132 get there, we'll need to single-step back to the caller. */
b2175913
MS
5133
5134 if (execution_direction == EXEC_REVERSE)
5135 {
acf9414f
JK
5136 /* If we're already at the start of the function, we've either
5137 just stepped backward into a single instruction function,
5138 or stepped back out of a signal handler to the first instruction
5139 of the function. Just keep going, which will single-step back
5140 to the caller. */
58c48e72 5141 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5142 {
5143 struct symtab_and_line sr_sal;
5144
5145 /* Normal function call return (static or dynamic). */
5146 init_sal (&sr_sal);
5147 sr_sal.pc = ecs->stop_func_start;
5148 sr_sal.pspace = get_frame_program_space (frame);
5149 insert_step_resume_breakpoint_at_sal (gdbarch,
5150 sr_sal, null_frame_id);
5151 }
b2175913
MS
5152 }
5153 else
568d6575 5154 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5155
8567c30f
AC
5156 keep_going (ecs);
5157 return;
5158 }
a53c66de 5159
95918acb 5160 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5161 calling routine and the real function), locate the real
5162 function. That's what tells us (a) whether we want to step
5163 into it at all, and (b) what prologue we want to run to the
5164 end of, if we do step into it. */
568d6575 5165 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5166 if (real_stop_pc == 0)
568d6575 5167 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5168 if (real_stop_pc != 0)
5169 ecs->stop_func_start = real_stop_pc;
8fb3e588 5170
db5f024e 5171 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5172 {
5173 struct symtab_and_line sr_sal;
abbb1732 5174
1b2bfbb9
RC
5175 init_sal (&sr_sal);
5176 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5177 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5178
a6d9a66e
UW
5179 insert_step_resume_breakpoint_at_sal (gdbarch,
5180 sr_sal, null_frame_id);
8fb3e588
AC
5181 keep_going (ecs);
5182 return;
1b2bfbb9
RC
5183 }
5184
95918acb 5185 /* If we have line number information for the function we are
1bfeeb0f
JL
5186 thinking of stepping into and the function isn't on the skip
5187 list, step into it.
95918acb 5188
8fb3e588
AC
5189 If there are several symtabs at that PC (e.g. with include
5190 files), just want to know whether *any* of them have line
5191 numbers. find_pc_line handles this. */
95918acb
AC
5192 {
5193 struct symtab_and_line tmp_sal;
8fb3e588 5194
95918acb 5195 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5196 if (tmp_sal.line != 0
85817405
JK
5197 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5198 &tmp_sal))
95918acb 5199 {
b2175913 5200 if (execution_direction == EXEC_REVERSE)
568d6575 5201 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5202 else
568d6575 5203 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5204 return;
5205 }
5206 }
5207
5208 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5209 set, we stop the step so that the user has a chance to switch
5210 in assembly mode. */
16c381f0 5211 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5212 && step_stop_if_no_debug)
95918acb 5213 {
bdc36728 5214 end_stepping_range (ecs);
95918acb
AC
5215 return;
5216 }
5217
b2175913
MS
5218 if (execution_direction == EXEC_REVERSE)
5219 {
acf9414f
JK
5220 /* If we're already at the start of the function, we've either just
5221 stepped backward into a single instruction function without line
5222 number info, or stepped back out of a signal handler to the first
5223 instruction of the function without line number info. Just keep
5224 going, which will single-step back to the caller. */
5225 if (ecs->stop_func_start != stop_pc)
5226 {
5227 /* Set a breakpoint at callee's start address.
5228 From there we can step once and be back in the caller. */
5229 struct symtab_and_line sr_sal;
abbb1732 5230
acf9414f
JK
5231 init_sal (&sr_sal);
5232 sr_sal.pc = ecs->stop_func_start;
5233 sr_sal.pspace = get_frame_program_space (frame);
5234 insert_step_resume_breakpoint_at_sal (gdbarch,
5235 sr_sal, null_frame_id);
5236 }
b2175913
MS
5237 }
5238 else
5239 /* Set a breakpoint at callee's return address (the address
5240 at which the caller will resume). */
568d6575 5241 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5242
95918acb 5243 keep_going (ecs);
488f131b 5244 return;
488f131b 5245 }
c906108c 5246
fdd654f3
MS
5247 /* Reverse stepping through solib trampolines. */
5248
5249 if (execution_direction == EXEC_REVERSE
16c381f0 5250 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5251 {
5252 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5253 || (ecs->stop_func_start == 0
5254 && in_solib_dynsym_resolve_code (stop_pc)))
5255 {
5256 /* Any solib trampoline code can be handled in reverse
5257 by simply continuing to single-step. We have already
5258 executed the solib function (backwards), and a few
5259 steps will take us back through the trampoline to the
5260 caller. */
5261 keep_going (ecs);
5262 return;
5263 }
5264 else if (in_solib_dynsym_resolve_code (stop_pc))
5265 {
5266 /* Stepped backward into the solib dynsym resolver.
5267 Set a breakpoint at its start and continue, then
5268 one more step will take us out. */
5269 struct symtab_and_line sr_sal;
abbb1732 5270
fdd654f3
MS
5271 init_sal (&sr_sal);
5272 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5273 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5274 insert_step_resume_breakpoint_at_sal (gdbarch,
5275 sr_sal, null_frame_id);
5276 keep_going (ecs);
5277 return;
5278 }
5279 }
5280
2afb61aa 5281 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5282
1b2bfbb9
RC
5283 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5284 the trampoline processing logic, however, there are some trampolines
5285 that have no names, so we should do trampoline handling first. */
16c381f0 5286 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5287 && ecs->stop_func_name == NULL
2afb61aa 5288 && stop_pc_sal.line == 0)
1b2bfbb9 5289 {
527159b7 5290 if (debug_infrun)
3e43a32a
MS
5291 fprintf_unfiltered (gdb_stdlog,
5292 "infrun: stepped into undebuggable function\n");
527159b7 5293
1b2bfbb9 5294 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5295 undebuggable function (where there is no debugging information
5296 and no line number corresponding to the address where the
1b2bfbb9
RC
5297 inferior stopped). Since we want to skip this kind of code,
5298 we keep going until the inferior returns from this
14e60db5
DJ
5299 function - unless the user has asked us not to (via
5300 set step-mode) or we no longer know how to get back
5301 to the call site. */
5302 if (step_stop_if_no_debug
c7ce8faa 5303 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5304 {
5305 /* If we have no line number and the step-stop-if-no-debug
5306 is set, we stop the step so that the user has a chance to
5307 switch in assembly mode. */
bdc36728 5308 end_stepping_range (ecs);
1b2bfbb9
RC
5309 return;
5310 }
5311 else
5312 {
5313 /* Set a breakpoint at callee's return address (the address
5314 at which the caller will resume). */
568d6575 5315 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5316 keep_going (ecs);
5317 return;
5318 }
5319 }
5320
16c381f0 5321 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5322 {
5323 /* It is stepi or nexti. We always want to stop stepping after
5324 one instruction. */
527159b7 5325 if (debug_infrun)
8a9de0e4 5326 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5327 end_stepping_range (ecs);
1b2bfbb9
RC
5328 return;
5329 }
5330
2afb61aa 5331 if (stop_pc_sal.line == 0)
488f131b
JB
5332 {
5333 /* We have no line number information. That means to stop
5334 stepping (does this always happen right after one instruction,
5335 when we do "s" in a function with no line numbers,
5336 or can this happen as a result of a return or longjmp?). */
527159b7 5337 if (debug_infrun)
8a9de0e4 5338 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5339 end_stepping_range (ecs);
488f131b
JB
5340 return;
5341 }
c906108c 5342
edb3359d
DJ
5343 /* Look for "calls" to inlined functions, part one. If the inline
5344 frame machinery detected some skipped call sites, we have entered
5345 a new inline function. */
5346
5347 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5348 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5349 && inline_skipped_frames (ecs->ptid))
5350 {
5351 struct symtab_and_line call_sal;
5352
5353 if (debug_infrun)
5354 fprintf_unfiltered (gdb_stdlog,
5355 "infrun: stepped into inlined function\n");
5356
5357 find_frame_sal (get_current_frame (), &call_sal);
5358
16c381f0 5359 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5360 {
5361 /* For "step", we're going to stop. But if the call site
5362 for this inlined function is on the same source line as
5363 we were previously stepping, go down into the function
5364 first. Otherwise stop at the call site. */
5365
5366 if (call_sal.line == ecs->event_thread->current_line
5367 && call_sal.symtab == ecs->event_thread->current_symtab)
5368 step_into_inline_frame (ecs->ptid);
5369
bdc36728 5370 end_stepping_range (ecs);
edb3359d
DJ
5371 return;
5372 }
5373 else
5374 {
5375 /* For "next", we should stop at the call site if it is on a
5376 different source line. Otherwise continue through the
5377 inlined function. */
5378 if (call_sal.line == ecs->event_thread->current_line
5379 && call_sal.symtab == ecs->event_thread->current_symtab)
5380 keep_going (ecs);
5381 else
bdc36728 5382 end_stepping_range (ecs);
edb3359d
DJ
5383 return;
5384 }
5385 }
5386
5387 /* Look for "calls" to inlined functions, part two. If we are still
5388 in the same real function we were stepping through, but we have
5389 to go further up to find the exact frame ID, we are stepping
5390 through a more inlined call beyond its call site. */
5391
5392 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5393 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5394 ecs->event_thread->control.step_frame_id)
edb3359d 5395 && stepped_in_from (get_current_frame (),
16c381f0 5396 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5397 {
5398 if (debug_infrun)
5399 fprintf_unfiltered (gdb_stdlog,
5400 "infrun: stepping through inlined function\n");
5401
16c381f0 5402 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5403 keep_going (ecs);
5404 else
bdc36728 5405 end_stepping_range (ecs);
edb3359d
DJ
5406 return;
5407 }
5408
2afb61aa 5409 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5410 && (ecs->event_thread->current_line != stop_pc_sal.line
5411 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5412 {
5413 /* We are at the start of a different line. So stop. Note that
5414 we don't stop if we step into the middle of a different line.
5415 That is said to make things like for (;;) statements work
5416 better. */
527159b7 5417 if (debug_infrun)
3e43a32a
MS
5418 fprintf_unfiltered (gdb_stdlog,
5419 "infrun: stepped to a different line\n");
bdc36728 5420 end_stepping_range (ecs);
488f131b
JB
5421 return;
5422 }
c906108c 5423
488f131b 5424 /* We aren't done stepping.
c906108c 5425
488f131b
JB
5426 Optimize by setting the stepping range to the line.
5427 (We might not be in the original line, but if we entered a
5428 new line in mid-statement, we continue stepping. This makes
5429 things like for(;;) statements work better.) */
c906108c 5430
16c381f0
JK
5431 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5432 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5433 ecs->event_thread->control.may_range_step = 1;
edb3359d 5434 set_step_info (frame, stop_pc_sal);
488f131b 5435
527159b7 5436 if (debug_infrun)
8a9de0e4 5437 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5438 keep_going (ecs);
104c1213
JM
5439}
5440
c447ac0b
PA
5441/* In all-stop mode, if we're currently stepping but have stopped in
5442 some other thread, we may need to switch back to the stepped
5443 thread. Returns true we set the inferior running, false if we left
5444 it stopped (and the event needs further processing). */
5445
5446static int
5447switch_back_to_stepped_thread (struct execution_control_state *ecs)
5448{
5449 if (!non_stop)
5450 {
5451 struct thread_info *tp;
99619bea 5452 struct thread_info *stepping_thread;
483805cf 5453 struct thread_info *step_over;
99619bea
PA
5454
5455 /* If any thread is blocked on some internal breakpoint, and we
5456 simply need to step over that breakpoint to get it going
5457 again, do that first. */
5458
5459 /* However, if we see an event for the stepping thread, then we
5460 know all other threads have been moved past their breakpoints
5461 already. Let the caller check whether the step is finished,
5462 etc., before deciding to move it past a breakpoint. */
5463 if (ecs->event_thread->control.step_range_end != 0)
5464 return 0;
5465
5466 /* Check if the current thread is blocked on an incomplete
5467 step-over, interrupted by a random signal. */
5468 if (ecs->event_thread->control.trap_expected
5469 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5470 {
99619bea
PA
5471 if (debug_infrun)
5472 {
5473 fprintf_unfiltered (gdb_stdlog,
5474 "infrun: need to finish step-over of [%s]\n",
5475 target_pid_to_str (ecs->event_thread->ptid));
5476 }
5477 keep_going (ecs);
5478 return 1;
5479 }
2adfaa28 5480
99619bea
PA
5481 /* Check if the current thread is blocked by a single-step
5482 breakpoint of another thread. */
5483 if (ecs->hit_singlestep_breakpoint)
5484 {
5485 if (debug_infrun)
5486 {
5487 fprintf_unfiltered (gdb_stdlog,
5488 "infrun: need to step [%s] over single-step "
5489 "breakpoint\n",
5490 target_pid_to_str (ecs->ptid));
5491 }
5492 keep_going (ecs);
5493 return 1;
5494 }
5495
483805cf
PA
5496 /* Otherwise, we no longer expect a trap in the current thread.
5497 Clear the trap_expected flag before switching back -- this is
5498 what keep_going does as well, if we call it. */
5499 ecs->event_thread->control.trap_expected = 0;
5500
70509625
PA
5501 /* Likewise, clear the signal if it should not be passed. */
5502 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5503 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5504
483805cf
PA
5505 /* If scheduler locking applies even if not stepping, there's no
5506 need to walk over threads. Above we've checked whether the
5507 current thread is stepping. If some other thread not the
5508 event thread is stepping, then it must be that scheduler
5509 locking is not in effect. */
5510 if (schedlock_applies (0))
5511 return 0;
5512
5513 /* Look for the stepping/nexting thread, and check if any other
5514 thread other than the stepping thread needs to start a
5515 step-over. Do all step-overs before actually proceeding with
5516 step/next/etc. */
5517 stepping_thread = NULL;
5518 step_over = NULL;
034f788c 5519 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5520 {
5521 /* Ignore threads of processes we're not resuming. */
5522 if (!sched_multi
5523 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5524 continue;
5525
5526 /* When stepping over a breakpoint, we lock all threads
5527 except the one that needs to move past the breakpoint.
5528 If a non-event thread has this set, the "incomplete
5529 step-over" check above should have caught it earlier. */
5530 gdb_assert (!tp->control.trap_expected);
5531
5532 /* Did we find the stepping thread? */
5533 if (tp->control.step_range_end)
5534 {
5535 /* Yep. There should only one though. */
5536 gdb_assert (stepping_thread == NULL);
5537
5538 /* The event thread is handled at the top, before we
5539 enter this loop. */
5540 gdb_assert (tp != ecs->event_thread);
5541
5542 /* If some thread other than the event thread is
5543 stepping, then scheduler locking can't be in effect,
5544 otherwise we wouldn't have resumed the current event
5545 thread in the first place. */
35420406 5546 gdb_assert (!schedlock_applies (currently_stepping (tp)));
483805cf
PA
5547
5548 stepping_thread = tp;
5549 }
5550 else if (thread_still_needs_step_over (tp))
5551 {
5552 step_over = tp;
5553
5554 /* At the top we've returned early if the event thread
5555 is stepping. If some other thread not the event
5556 thread is stepping, then scheduler locking can't be
5557 in effect, and we can resume this thread. No need to
5558 keep looking for the stepping thread then. */
5559 break;
5560 }
5561 }
99619bea 5562
483805cf 5563 if (step_over != NULL)
99619bea 5564 {
483805cf 5565 tp = step_over;
99619bea 5566 if (debug_infrun)
c447ac0b 5567 {
99619bea
PA
5568 fprintf_unfiltered (gdb_stdlog,
5569 "infrun: need to step-over [%s]\n",
5570 target_pid_to_str (tp->ptid));
c447ac0b
PA
5571 }
5572
483805cf 5573 /* Only the stepping thread should have this set. */
99619bea
PA
5574 gdb_assert (tp->control.step_range_end == 0);
5575
99619bea
PA
5576 ecs->ptid = tp->ptid;
5577 ecs->event_thread = tp;
5578 switch_to_thread (ecs->ptid);
5579 keep_going (ecs);
5580 return 1;
5581 }
5582
483805cf 5583 if (stepping_thread != NULL)
99619bea
PA
5584 {
5585 struct frame_info *frame;
5586 struct gdbarch *gdbarch;
5587
483805cf
PA
5588 tp = stepping_thread;
5589
c447ac0b
PA
5590 /* If the stepping thread exited, then don't try to switch
5591 back and resume it, which could fail in several different
5592 ways depending on the target. Instead, just keep going.
5593
5594 We can find a stepping dead thread in the thread list in
5595 two cases:
5596
5597 - The target supports thread exit events, and when the
5598 target tries to delete the thread from the thread list,
5599 inferior_ptid pointed at the exiting thread. In such
5600 case, calling delete_thread does not really remove the
5601 thread from the list; instead, the thread is left listed,
5602 with 'exited' state.
5603
5604 - The target's debug interface does not support thread
5605 exit events, and so we have no idea whatsoever if the
5606 previously stepping thread is still alive. For that
5607 reason, we need to synchronously query the target
5608 now. */
5609 if (is_exited (tp->ptid)
5610 || !target_thread_alive (tp->ptid))
5611 {
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: not switching back to "
5615 "stepped thread, it has vanished\n");
5616
5617 delete_thread (tp->ptid);
5618 keep_going (ecs);
5619 return 1;
5620 }
5621
c447ac0b
PA
5622 if (debug_infrun)
5623 fprintf_unfiltered (gdb_stdlog,
5624 "infrun: switching back to stepped thread\n");
5625
5626 ecs->event_thread = tp;
5627 ecs->ptid = tp->ptid;
5628 context_switch (ecs->ptid);
2adfaa28
PA
5629
5630 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5631 frame = get_current_frame ();
5632 gdbarch = get_frame_arch (frame);
5633
5634 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5635 changed, then that thread has trapped or been signaled,
5636 but the event has not been reported to GDB yet. Re-poll
5637 the target looking for this particular thread's event
5638 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5639
5640 - setting a break at the current PC
5641 - resuming that particular thread, only (by setting
5642 trap expected)
5643
5644 This prevents us continuously moving the single-step
5645 breakpoint forward, one instruction at a time,
5646 overstepping. */
5647
af48d08f 5648 if (stop_pc != tp->prev_pc)
2adfaa28
PA
5649 {
5650 if (debug_infrun)
5651 fprintf_unfiltered (gdb_stdlog,
5652 "infrun: expected thread advanced also\n");
5653
7c16b83e
PA
5654 /* Clear the info of the previous step-over, as it's no
5655 longer valid. It's what keep_going would do too, if
5656 we called it. Must do this before trying to insert
5657 the sss breakpoint, otherwise if we were previously
5658 trying to step over this exact address in another
5659 thread, the breakpoint ends up not installed. */
5660 clear_step_over_info ();
5661
2adfaa28
PA
5662 insert_single_step_breakpoint (get_frame_arch (frame),
5663 get_frame_address_space (frame),
5664 stop_pc);
2adfaa28 5665 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5666
5667 resume (0, GDB_SIGNAL_0);
5668 prepare_to_wait (ecs);
5669 }
5670 else
5671 {
5672 if (debug_infrun)
5673 fprintf_unfiltered (gdb_stdlog,
5674 "infrun: expected thread still "
5675 "hasn't advanced\n");
5676 keep_going (ecs);
5677 }
5678
c447ac0b
PA
5679 return 1;
5680 }
5681 }
5682 return 0;
5683}
5684
b3444185 5685/* Is thread TP in the middle of single-stepping? */
104c1213 5686
a289b8f6 5687static int
b3444185 5688currently_stepping (struct thread_info *tp)
a7212384 5689{
8358c15c
JK
5690 return ((tp->control.step_range_end
5691 && tp->control.step_resume_breakpoint == NULL)
5692 || tp->control.trap_expected
af48d08f 5693 || tp->stepped_breakpoint
8358c15c 5694 || bpstat_should_step ());
a7212384
UW
5695}
5696
b2175913
MS
5697/* Inferior has stepped into a subroutine call with source code that
5698 we should not step over. Do step to the first line of code in
5699 it. */
c2c6d25f
JM
5700
5701static void
568d6575
UW
5702handle_step_into_function (struct gdbarch *gdbarch,
5703 struct execution_control_state *ecs)
c2c6d25f 5704{
43f3e411 5705 struct compunit_symtab *cust;
2afb61aa 5706 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5707
7e324e48
GB
5708 fill_in_stop_func (gdbarch, ecs);
5709
43f3e411
DE
5710 cust = find_pc_compunit_symtab (stop_pc);
5711 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5712 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5713 ecs->stop_func_start);
c2c6d25f 5714
2afb61aa 5715 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5716 /* Use the step_resume_break to step until the end of the prologue,
5717 even if that involves jumps (as it seems to on the vax under
5718 4.2). */
5719 /* If the prologue ends in the middle of a source line, continue to
5720 the end of that source line (if it is still within the function).
5721 Otherwise, just go to end of prologue. */
2afb61aa
PA
5722 if (stop_func_sal.end
5723 && stop_func_sal.pc != ecs->stop_func_start
5724 && stop_func_sal.end < ecs->stop_func_end)
5725 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5726
2dbd5e30
KB
5727 /* Architectures which require breakpoint adjustment might not be able
5728 to place a breakpoint at the computed address. If so, the test
5729 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5730 ecs->stop_func_start to an address at which a breakpoint may be
5731 legitimately placed.
8fb3e588 5732
2dbd5e30
KB
5733 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5734 made, GDB will enter an infinite loop when stepping through
5735 optimized code consisting of VLIW instructions which contain
5736 subinstructions corresponding to different source lines. On
5737 FR-V, it's not permitted to place a breakpoint on any but the
5738 first subinstruction of a VLIW instruction. When a breakpoint is
5739 set, GDB will adjust the breakpoint address to the beginning of
5740 the VLIW instruction. Thus, we need to make the corresponding
5741 adjustment here when computing the stop address. */
8fb3e588 5742
568d6575 5743 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5744 {
5745 ecs->stop_func_start
568d6575 5746 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5747 ecs->stop_func_start);
2dbd5e30
KB
5748 }
5749
c2c6d25f
JM
5750 if (ecs->stop_func_start == stop_pc)
5751 {
5752 /* We are already there: stop now. */
bdc36728 5753 end_stepping_range (ecs);
c2c6d25f
JM
5754 return;
5755 }
5756 else
5757 {
5758 /* Put the step-breakpoint there and go until there. */
fe39c653 5759 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5760 sr_sal.pc = ecs->stop_func_start;
5761 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5762 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5763
c2c6d25f 5764 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5765 some machines the prologue is where the new fp value is
5766 established. */
a6d9a66e 5767 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5768
5769 /* And make sure stepping stops right away then. */
16c381f0
JK
5770 ecs->event_thread->control.step_range_end
5771 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5772 }
5773 keep_going (ecs);
5774}
d4f3574e 5775
b2175913
MS
5776/* Inferior has stepped backward into a subroutine call with source
5777 code that we should not step over. Do step to the beginning of the
5778 last line of code in it. */
5779
5780static void
568d6575
UW
5781handle_step_into_function_backward (struct gdbarch *gdbarch,
5782 struct execution_control_state *ecs)
b2175913 5783{
43f3e411 5784 struct compunit_symtab *cust;
167e4384 5785 struct symtab_and_line stop_func_sal;
b2175913 5786
7e324e48
GB
5787 fill_in_stop_func (gdbarch, ecs);
5788
43f3e411
DE
5789 cust = find_pc_compunit_symtab (stop_pc);
5790 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5791 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5792 ecs->stop_func_start);
5793
5794 stop_func_sal = find_pc_line (stop_pc, 0);
5795
5796 /* OK, we're just going to keep stepping here. */
5797 if (stop_func_sal.pc == stop_pc)
5798 {
5799 /* We're there already. Just stop stepping now. */
bdc36728 5800 end_stepping_range (ecs);
b2175913
MS
5801 }
5802 else
5803 {
5804 /* Else just reset the step range and keep going.
5805 No step-resume breakpoint, they don't work for
5806 epilogues, which can have multiple entry paths. */
16c381f0
JK
5807 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5808 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5809 keep_going (ecs);
5810 }
5811 return;
5812}
5813
d3169d93 5814/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5815 This is used to both functions and to skip over code. */
5816
5817static void
2c03e5be
PA
5818insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5819 struct symtab_and_line sr_sal,
5820 struct frame_id sr_id,
5821 enum bptype sr_type)
44cbf7b5 5822{
611c83ae
PA
5823 /* There should never be more than one step-resume or longjmp-resume
5824 breakpoint per thread, so we should never be setting a new
44cbf7b5 5825 step_resume_breakpoint when one is already active. */
8358c15c 5826 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5827 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5828
5829 if (debug_infrun)
5830 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5831 "infrun: inserting step-resume breakpoint at %s\n",
5832 paddress (gdbarch, sr_sal.pc));
d3169d93 5833
8358c15c 5834 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5835 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5836}
5837
9da8c2a0 5838void
2c03e5be
PA
5839insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5840 struct symtab_and_line sr_sal,
5841 struct frame_id sr_id)
5842{
5843 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5844 sr_sal, sr_id,
5845 bp_step_resume);
44cbf7b5 5846}
7ce450bd 5847
2c03e5be
PA
5848/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5849 This is used to skip a potential signal handler.
7ce450bd 5850
14e60db5
DJ
5851 This is called with the interrupted function's frame. The signal
5852 handler, when it returns, will resume the interrupted function at
5853 RETURN_FRAME.pc. */
d303a6c7
AC
5854
5855static void
2c03e5be 5856insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5857{
5858 struct symtab_and_line sr_sal;
a6d9a66e 5859 struct gdbarch *gdbarch;
d303a6c7 5860
f4c1edd8 5861 gdb_assert (return_frame != NULL);
d303a6c7
AC
5862 init_sal (&sr_sal); /* initialize to zeros */
5863
a6d9a66e 5864 gdbarch = get_frame_arch (return_frame);
568d6575 5865 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5866 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5867 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5868
2c03e5be
PA
5869 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5870 get_stack_frame_id (return_frame),
5871 bp_hp_step_resume);
d303a6c7
AC
5872}
5873
2c03e5be
PA
5874/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5875 is used to skip a function after stepping into it (for "next" or if
5876 the called function has no debugging information).
14e60db5
DJ
5877
5878 The current function has almost always been reached by single
5879 stepping a call or return instruction. NEXT_FRAME belongs to the
5880 current function, and the breakpoint will be set at the caller's
5881 resume address.
5882
5883 This is a separate function rather than reusing
2c03e5be 5884 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5885 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5886 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5887
5888static void
5889insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5890{
5891 struct symtab_and_line sr_sal;
a6d9a66e 5892 struct gdbarch *gdbarch;
14e60db5
DJ
5893
5894 /* We shouldn't have gotten here if we don't know where the call site
5895 is. */
c7ce8faa 5896 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5897
5898 init_sal (&sr_sal); /* initialize to zeros */
5899
a6d9a66e 5900 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5901 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5902 frame_unwind_caller_pc (next_frame));
14e60db5 5903 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5904 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5905
a6d9a66e 5906 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5907 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5908}
5909
611c83ae
PA
5910/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5911 new breakpoint at the target of a jmp_buf. The handling of
5912 longjmp-resume uses the same mechanisms used for handling
5913 "step-resume" breakpoints. */
5914
5915static void
a6d9a66e 5916insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5917{
e81a37f7
TT
5918 /* There should never be more than one longjmp-resume breakpoint per
5919 thread, so we should never be setting a new
611c83ae 5920 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5921 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5922
5923 if (debug_infrun)
5924 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5925 "infrun: inserting longjmp-resume breakpoint at %s\n",
5926 paddress (gdbarch, pc));
611c83ae 5927
e81a37f7 5928 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5929 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5930}
5931
186c406b
TT
5932/* Insert an exception resume breakpoint. TP is the thread throwing
5933 the exception. The block B is the block of the unwinder debug hook
5934 function. FRAME is the frame corresponding to the call to this
5935 function. SYM is the symbol of the function argument holding the
5936 target PC of the exception. */
5937
5938static void
5939insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5940 const struct block *b,
186c406b
TT
5941 struct frame_info *frame,
5942 struct symbol *sym)
5943{
bfd189b1 5944 volatile struct gdb_exception e;
186c406b
TT
5945
5946 /* We want to ignore errors here. */
5947 TRY_CATCH (e, RETURN_MASK_ERROR)
5948 {
5949 struct symbol *vsym;
5950 struct value *value;
5951 CORE_ADDR handler;
5952 struct breakpoint *bp;
5953
5954 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5955 value = read_var_value (vsym, frame);
5956 /* If the value was optimized out, revert to the old behavior. */
5957 if (! value_optimized_out (value))
5958 {
5959 handler = value_as_address (value);
5960
5961 if (debug_infrun)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: exception resume at %lx\n",
5964 (unsigned long) handler);
5965
5966 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5967 handler, bp_exception_resume);
c70a6932
JK
5968
5969 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5970 frame = NULL;
5971
186c406b
TT
5972 bp->thread = tp->num;
5973 inferior_thread ()->control.exception_resume_breakpoint = bp;
5974 }
5975 }
5976}
5977
28106bc2
SDJ
5978/* A helper for check_exception_resume that sets an
5979 exception-breakpoint based on a SystemTap probe. */
5980
5981static void
5982insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5983 const struct bound_probe *probe,
28106bc2
SDJ
5984 struct frame_info *frame)
5985{
5986 struct value *arg_value;
5987 CORE_ADDR handler;
5988 struct breakpoint *bp;
5989
5990 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5991 if (!arg_value)
5992 return;
5993
5994 handler = value_as_address (arg_value);
5995
5996 if (debug_infrun)
5997 fprintf_unfiltered (gdb_stdlog,
5998 "infrun: exception resume at %s\n",
6bac7473 5999 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6000 handler));
6001
6002 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6003 handler, bp_exception_resume);
6004 bp->thread = tp->num;
6005 inferior_thread ()->control.exception_resume_breakpoint = bp;
6006}
6007
186c406b
TT
6008/* This is called when an exception has been intercepted. Check to
6009 see whether the exception's destination is of interest, and if so,
6010 set an exception resume breakpoint there. */
6011
6012static void
6013check_exception_resume (struct execution_control_state *ecs,
28106bc2 6014 struct frame_info *frame)
186c406b 6015{
bfd189b1 6016 volatile struct gdb_exception e;
729662a5 6017 struct bound_probe probe;
28106bc2
SDJ
6018 struct symbol *func;
6019
6020 /* First see if this exception unwinding breakpoint was set via a
6021 SystemTap probe point. If so, the probe has two arguments: the
6022 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6023 set a breakpoint there. */
6bac7473 6024 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6025 if (probe.probe)
28106bc2 6026 {
729662a5 6027 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6028 return;
6029 }
6030
6031 func = get_frame_function (frame);
6032 if (!func)
6033 return;
186c406b
TT
6034
6035 TRY_CATCH (e, RETURN_MASK_ERROR)
6036 {
3977b71f 6037 const struct block *b;
8157b174 6038 struct block_iterator iter;
186c406b
TT
6039 struct symbol *sym;
6040 int argno = 0;
6041
6042 /* The exception breakpoint is a thread-specific breakpoint on
6043 the unwinder's debug hook, declared as:
6044
6045 void _Unwind_DebugHook (void *cfa, void *handler);
6046
6047 The CFA argument indicates the frame to which control is
6048 about to be transferred. HANDLER is the destination PC.
6049
6050 We ignore the CFA and set a temporary breakpoint at HANDLER.
6051 This is not extremely efficient but it avoids issues in gdb
6052 with computing the DWARF CFA, and it also works even in weird
6053 cases such as throwing an exception from inside a signal
6054 handler. */
6055
6056 b = SYMBOL_BLOCK_VALUE (func);
6057 ALL_BLOCK_SYMBOLS (b, iter, sym)
6058 {
6059 if (!SYMBOL_IS_ARGUMENT (sym))
6060 continue;
6061
6062 if (argno == 0)
6063 ++argno;
6064 else
6065 {
6066 insert_exception_resume_breakpoint (ecs->event_thread,
6067 b, frame, sym);
6068 break;
6069 }
6070 }
6071 }
6072}
6073
104c1213 6074static void
22bcd14b 6075stop_waiting (struct execution_control_state *ecs)
104c1213 6076{
527159b7 6077 if (debug_infrun)
22bcd14b 6078 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6079
31e77af2
PA
6080 clear_step_over_info ();
6081
cd0fc7c3
SS
6082 /* Let callers know we don't want to wait for the inferior anymore. */
6083 ecs->wait_some_more = 0;
6084}
6085
a9ba6bae
PA
6086/* Called when we should continue running the inferior, because the
6087 current event doesn't cause a user visible stop. This does the
6088 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6089
6090static void
6091keep_going (struct execution_control_state *ecs)
6092{
c4dbc9af
PA
6093 /* Make sure normal_stop is called if we get a QUIT handled before
6094 reaching resume. */
6095 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6096
d4f3574e 6097 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6098 ecs->event_thread->prev_pc
6099 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6100
16c381f0 6101 if (ecs->event_thread->control.trap_expected
a493e3e2 6102 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6103 {
a9ba6bae
PA
6104 /* We haven't yet gotten our trap, and either: intercepted a
6105 non-signal event (e.g., a fork); or took a signal which we
6106 are supposed to pass through to the inferior. Simply
6107 continue. */
c4dbc9af 6108 discard_cleanups (old_cleanups);
2020b7ab 6109 resume (currently_stepping (ecs->event_thread),
16c381f0 6110 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6111 }
6112 else
6113 {
31e77af2
PA
6114 volatile struct gdb_exception e;
6115 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6116 int remove_bp;
6117 int remove_wps;
31e77af2 6118
d4f3574e 6119 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6120 anyway (if we got a signal, the user asked it be passed to
6121 the child)
6122 -- or --
6123 We got our expected trap, but decided we should resume from
6124 it.
d4f3574e 6125
a9ba6bae 6126 We're going to run this baby now!
d4f3574e 6127
c36b740a
VP
6128 Note that insert_breakpoints won't try to re-insert
6129 already inserted breakpoints. Therefore, we don't
6130 care if breakpoints were already inserted, or not. */
a9ba6bae 6131
31e77af2
PA
6132 /* If we need to step over a breakpoint, and we're not using
6133 displaced stepping to do so, insert all breakpoints
6134 (watchpoints, etc.) but the one we're stepping over, step one
6135 instruction, and then re-insert the breakpoint when that step
6136 is finished. */
963f9c80
PA
6137
6138 remove_bp = (ecs->hit_singlestep_breakpoint
6139 || thread_still_needs_step_over (ecs->event_thread));
6140 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6141 && !target_have_steppable_watchpoint);
6142
6143 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6144 {
31e77af2 6145 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6146 regcache_read_pc (regcache), remove_wps);
45e8c884 6147 }
963f9c80
PA
6148 else if (remove_wps)
6149 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6150 else
31e77af2 6151 clear_step_over_info ();
abbb1732 6152
31e77af2
PA
6153 /* Stop stepping if inserting breakpoints fails. */
6154 TRY_CATCH (e, RETURN_MASK_ERROR)
6155 {
6156 insert_breakpoints ();
6157 }
6158 if (e.reason < 0)
6159 {
6160 exception_print (gdb_stderr, e);
22bcd14b 6161 stop_waiting (ecs);
31e77af2 6162 return;
d4f3574e
SS
6163 }
6164
963f9c80 6165 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6166
a9ba6bae
PA
6167 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6168 explicitly specifies that such a signal should be delivered
6169 to the target program). Typically, that would occur when a
6170 user is debugging a target monitor on a simulator: the target
6171 monitor sets a breakpoint; the simulator encounters this
6172 breakpoint and halts the simulation handing control to GDB;
6173 GDB, noting that the stop address doesn't map to any known
6174 breakpoint, returns control back to the simulator; the
6175 simulator then delivers the hardware equivalent of a
6176 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6177 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6178 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6179 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6180
c4dbc9af 6181 discard_cleanups (old_cleanups);
2020b7ab 6182 resume (currently_stepping (ecs->event_thread),
16c381f0 6183 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6184 }
6185
488f131b 6186 prepare_to_wait (ecs);
d4f3574e
SS
6187}
6188
104c1213
JM
6189/* This function normally comes after a resume, before
6190 handle_inferior_event exits. It takes care of any last bits of
6191 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6192
104c1213
JM
6193static void
6194prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6195{
527159b7 6196 if (debug_infrun)
8a9de0e4 6197 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6198
104c1213
JM
6199 /* This is the old end of the while loop. Let everybody know we
6200 want to wait for the inferior some more and get called again
6201 soon. */
6202 ecs->wait_some_more = 1;
c906108c 6203}
11cf8741 6204
fd664c91 6205/* We are done with the step range of a step/next/si/ni command.
b57bacec 6206 Called once for each n of a "step n" operation. */
fd664c91
PA
6207
6208static void
bdc36728 6209end_stepping_range (struct execution_control_state *ecs)
fd664c91 6210{
bdc36728 6211 ecs->event_thread->control.stop_step = 1;
bdc36728 6212 stop_waiting (ecs);
fd664c91
PA
6213}
6214
33d62d64
JK
6215/* Several print_*_reason functions to print why the inferior has stopped.
6216 We always print something when the inferior exits, or receives a signal.
6217 The rest of the cases are dealt with later on in normal_stop and
6218 print_it_typical. Ideally there should be a call to one of these
6219 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6220 stop_waiting is called.
33d62d64 6221
fd664c91
PA
6222 Note that we don't call these directly, instead we delegate that to
6223 the interpreters, through observers. Interpreters then call these
6224 with whatever uiout is right. */
33d62d64 6225
fd664c91
PA
6226void
6227print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6228{
fd664c91 6229 /* For CLI-like interpreters, print nothing. */
33d62d64 6230
fd664c91
PA
6231 if (ui_out_is_mi_like_p (uiout))
6232 {
6233 ui_out_field_string (uiout, "reason",
6234 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6235 }
6236}
33d62d64 6237
fd664c91
PA
6238void
6239print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6240{
33d62d64
JK
6241 annotate_signalled ();
6242 if (ui_out_is_mi_like_p (uiout))
6243 ui_out_field_string
6244 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6245 ui_out_text (uiout, "\nProgram terminated with signal ");
6246 annotate_signal_name ();
6247 ui_out_field_string (uiout, "signal-name",
2ea28649 6248 gdb_signal_to_name (siggnal));
33d62d64
JK
6249 annotate_signal_name_end ();
6250 ui_out_text (uiout, ", ");
6251 annotate_signal_string ();
6252 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6253 gdb_signal_to_string (siggnal));
33d62d64
JK
6254 annotate_signal_string_end ();
6255 ui_out_text (uiout, ".\n");
6256 ui_out_text (uiout, "The program no longer exists.\n");
6257}
6258
fd664c91
PA
6259void
6260print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6261{
fda326dd
TT
6262 struct inferior *inf = current_inferior ();
6263 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6264
33d62d64
JK
6265 annotate_exited (exitstatus);
6266 if (exitstatus)
6267 {
6268 if (ui_out_is_mi_like_p (uiout))
6269 ui_out_field_string (uiout, "reason",
6270 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6271 ui_out_text (uiout, "[Inferior ");
6272 ui_out_text (uiout, plongest (inf->num));
6273 ui_out_text (uiout, " (");
6274 ui_out_text (uiout, pidstr);
6275 ui_out_text (uiout, ") exited with code ");
33d62d64 6276 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6277 ui_out_text (uiout, "]\n");
33d62d64
JK
6278 }
6279 else
11cf8741 6280 {
9dc5e2a9 6281 if (ui_out_is_mi_like_p (uiout))
034dad6f 6282 ui_out_field_string
33d62d64 6283 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6284 ui_out_text (uiout, "[Inferior ");
6285 ui_out_text (uiout, plongest (inf->num));
6286 ui_out_text (uiout, " (");
6287 ui_out_text (uiout, pidstr);
6288 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6289 }
33d62d64
JK
6290}
6291
fd664c91
PA
6292void
6293print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6294{
6295 annotate_signal ();
6296
a493e3e2 6297 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6298 {
6299 struct thread_info *t = inferior_thread ();
6300
6301 ui_out_text (uiout, "\n[");
6302 ui_out_field_string (uiout, "thread-name",
6303 target_pid_to_str (t->ptid));
6304 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6305 ui_out_text (uiout, " stopped");
6306 }
6307 else
6308 {
6309 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6310 annotate_signal_name ();
33d62d64
JK
6311 if (ui_out_is_mi_like_p (uiout))
6312 ui_out_field_string
6313 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6314 ui_out_field_string (uiout, "signal-name",
2ea28649 6315 gdb_signal_to_name (siggnal));
8b93c638
JM
6316 annotate_signal_name_end ();
6317 ui_out_text (uiout, ", ");
6318 annotate_signal_string ();
488f131b 6319 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6320 gdb_signal_to_string (siggnal));
8b93c638 6321 annotate_signal_string_end ();
33d62d64
JK
6322 }
6323 ui_out_text (uiout, ".\n");
6324}
252fbfc8 6325
fd664c91
PA
6326void
6327print_no_history_reason (struct ui_out *uiout)
33d62d64 6328{
fd664c91 6329 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6330}
43ff13b4 6331
0c7e1a46
PA
6332/* Print current location without a level number, if we have changed
6333 functions or hit a breakpoint. Print source line if we have one.
6334 bpstat_print contains the logic deciding in detail what to print,
6335 based on the event(s) that just occurred. */
6336
6337void
6338print_stop_event (struct target_waitstatus *ws)
6339{
6340 int bpstat_ret;
6341 int source_flag;
6342 int do_frame_printing = 1;
6343 struct thread_info *tp = inferior_thread ();
6344
6345 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6346 switch (bpstat_ret)
6347 {
6348 case PRINT_UNKNOWN:
6349 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6350 should) carry around the function and does (or should) use
6351 that when doing a frame comparison. */
6352 if (tp->control.stop_step
6353 && frame_id_eq (tp->control.step_frame_id,
6354 get_frame_id (get_current_frame ()))
6355 && step_start_function == find_pc_function (stop_pc))
6356 {
6357 /* Finished step, just print source line. */
6358 source_flag = SRC_LINE;
6359 }
6360 else
6361 {
6362 /* Print location and source line. */
6363 source_flag = SRC_AND_LOC;
6364 }
6365 break;
6366 case PRINT_SRC_AND_LOC:
6367 /* Print location and source line. */
6368 source_flag = SRC_AND_LOC;
6369 break;
6370 case PRINT_SRC_ONLY:
6371 source_flag = SRC_LINE;
6372 break;
6373 case PRINT_NOTHING:
6374 /* Something bogus. */
6375 source_flag = SRC_LINE;
6376 do_frame_printing = 0;
6377 break;
6378 default:
6379 internal_error (__FILE__, __LINE__, _("Unknown value."));
6380 }
6381
6382 /* The behavior of this routine with respect to the source
6383 flag is:
6384 SRC_LINE: Print only source line
6385 LOCATION: Print only location
6386 SRC_AND_LOC: Print location and source line. */
6387 if (do_frame_printing)
6388 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6389
6390 /* Display the auto-display expressions. */
6391 do_displays ();
6392}
6393
c906108c
SS
6394/* Here to return control to GDB when the inferior stops for real.
6395 Print appropriate messages, remove breakpoints, give terminal our modes.
6396
6397 STOP_PRINT_FRAME nonzero means print the executing frame
6398 (pc, function, args, file, line number and line text).
6399 BREAKPOINTS_FAILED nonzero means stop was due to error
6400 attempting to insert breakpoints. */
6401
6402void
96baa820 6403normal_stop (void)
c906108c 6404{
73b65bb0
DJ
6405 struct target_waitstatus last;
6406 ptid_t last_ptid;
29f49a6a 6407 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6408
6409 get_last_target_status (&last_ptid, &last);
6410
29f49a6a
PA
6411 /* If an exception is thrown from this point on, make sure to
6412 propagate GDB's knowledge of the executing state to the
6413 frontend/user running state. A QUIT is an easy exception to see
6414 here, so do this before any filtered output. */
c35b1492
PA
6415 if (!non_stop)
6416 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6417 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6418 && last.kind != TARGET_WAITKIND_EXITED
6419 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6420 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6421
b57bacec
PA
6422 /* As we're presenting a stop, and potentially removing breakpoints,
6423 update the thread list so we can tell whether there are threads
6424 running on the target. With target remote, for example, we can
6425 only learn about new threads when we explicitly update the thread
6426 list. Do this before notifying the interpreters about signal
6427 stops, end of stepping ranges, etc., so that the "new thread"
6428 output is emitted before e.g., "Program received signal FOO",
6429 instead of after. */
6430 update_thread_list ();
6431
6432 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6433 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6434
c906108c
SS
6435 /* As with the notification of thread events, we want to delay
6436 notifying the user that we've switched thread context until
6437 the inferior actually stops.
6438
73b65bb0
DJ
6439 There's no point in saying anything if the inferior has exited.
6440 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6441 "received a signal".
6442
6443 Also skip saying anything in non-stop mode. In that mode, as we
6444 don't want GDB to switch threads behind the user's back, to avoid
6445 races where the user is typing a command to apply to thread x,
6446 but GDB switches to thread y before the user finishes entering
6447 the command, fetch_inferior_event installs a cleanup to restore
6448 the current thread back to the thread the user had selected right
6449 after this event is handled, so we're not really switching, only
6450 informing of a stop. */
4f8d22e3
PA
6451 if (!non_stop
6452 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6453 && target_has_execution
6454 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6455 && last.kind != TARGET_WAITKIND_EXITED
6456 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6457 {
6458 target_terminal_ours_for_output ();
a3f17187 6459 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6460 target_pid_to_str (inferior_ptid));
b8fa951a 6461 annotate_thread_changed ();
39f77062 6462 previous_inferior_ptid = inferior_ptid;
c906108c 6463 }
c906108c 6464
0e5bf2a8
PA
6465 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6466 {
6467 gdb_assert (sync_execution || !target_can_async_p ());
6468
6469 target_terminal_ours_for_output ();
6470 printf_filtered (_("No unwaited-for children left.\n"));
6471 }
6472
b57bacec 6473 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6474 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6475 {
6476 if (remove_breakpoints ())
6477 {
6478 target_terminal_ours_for_output ();
3e43a32a
MS
6479 printf_filtered (_("Cannot remove breakpoints because "
6480 "program is no longer writable.\nFurther "
6481 "execution is probably impossible.\n"));
c906108c
SS
6482 }
6483 }
c906108c 6484
c906108c
SS
6485 /* If an auto-display called a function and that got a signal,
6486 delete that auto-display to avoid an infinite recursion. */
6487
6488 if (stopped_by_random_signal)
6489 disable_current_display ();
6490
b57bacec 6491 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6492 if (target_has_execution
6493 && last.kind != TARGET_WAITKIND_SIGNALLED
6494 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6495 && inferior_thread ()->control.stop_step)
b57bacec 6496 {
31cc0b80 6497 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6498 n > 1 */
6499 if (inferior_thread ()->step_multi)
6500 goto done;
6501
6502 observer_notify_end_stepping_range ();
6503 }
c906108c
SS
6504
6505 target_terminal_ours ();
0f641c01 6506 async_enable_stdin ();
c906108c 6507
7abfe014
DJ
6508 /* Set the current source location. This will also happen if we
6509 display the frame below, but the current SAL will be incorrect
6510 during a user hook-stop function. */
d729566a 6511 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6512 set_current_sal_from_frame (get_current_frame ());
7abfe014 6513
251bde03
PA
6514 /* Let the user/frontend see the threads as stopped, but do nothing
6515 if the thread was running an infcall. We may be e.g., evaluating
6516 a breakpoint condition. In that case, the thread had state
6517 THREAD_RUNNING before the infcall, and shall remain set to
6518 running, all without informing the user/frontend about state
6519 transition changes. If this is actually a call command, then the
6520 thread was originally already stopped, so there's no state to
6521 finish either. */
6522 if (target_has_execution && inferior_thread ()->control.in_infcall)
6523 discard_cleanups (old_chain);
6524 else
6525 do_cleanups (old_chain);
dd7e2d2b
PA
6526
6527 /* Look up the hook_stop and run it (CLI internally handles problem
6528 of stop_command's pre-hook not existing). */
6529 if (stop_command)
6530 catch_errors (hook_stop_stub, stop_command,
6531 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6532
d729566a 6533 if (!has_stack_frames ())
d51fd4c8 6534 goto done;
c906108c 6535
32400beb
PA
6536 if (last.kind == TARGET_WAITKIND_SIGNALLED
6537 || last.kind == TARGET_WAITKIND_EXITED)
6538 goto done;
6539
c906108c
SS
6540 /* Select innermost stack frame - i.e., current frame is frame 0,
6541 and current location is based on that.
6542 Don't do this on return from a stack dummy routine,
1777feb0 6543 or if the program has exited. */
c906108c
SS
6544
6545 if (!stop_stack_dummy)
6546 {
0f7d239c 6547 select_frame (get_current_frame ());
c906108c 6548
d01a8610
AS
6549 /* If --batch-silent is enabled then there's no need to print the current
6550 source location, and to try risks causing an error message about
6551 missing source files. */
6552 if (stop_print_frame && !batch_silent)
0c7e1a46 6553 print_stop_event (&last);
c906108c
SS
6554 }
6555
6556 /* Save the function value return registers, if we care.
6557 We might be about to restore their previous contents. */
9da8c2a0
PA
6558 if (inferior_thread ()->control.proceed_to_finish
6559 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6560 {
6561 /* This should not be necessary. */
6562 if (stop_registers)
6563 regcache_xfree (stop_registers);
6564
6565 /* NB: The copy goes through to the target picking up the value of
6566 all the registers. */
6567 stop_registers = regcache_dup (get_current_regcache ());
6568 }
c906108c 6569
aa7d318d 6570 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6571 {
b89667eb
DE
6572 /* Pop the empty frame that contains the stack dummy.
6573 This also restores inferior state prior to the call
16c381f0 6574 (struct infcall_suspend_state). */
b89667eb 6575 struct frame_info *frame = get_current_frame ();
abbb1732 6576
b89667eb
DE
6577 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6578 frame_pop (frame);
3e43a32a
MS
6579 /* frame_pop() calls reinit_frame_cache as the last thing it
6580 does which means there's currently no selected frame. We
6581 don't need to re-establish a selected frame if the dummy call
6582 returns normally, that will be done by
6583 restore_infcall_control_state. However, we do have to handle
6584 the case where the dummy call is returning after being
6585 stopped (e.g. the dummy call previously hit a breakpoint).
6586 We can't know which case we have so just always re-establish
6587 a selected frame here. */
0f7d239c 6588 select_frame (get_current_frame ());
c906108c
SS
6589 }
6590
c906108c
SS
6591done:
6592 annotate_stopped ();
41d2bdb4
PA
6593
6594 /* Suppress the stop observer if we're in the middle of:
6595
6596 - a step n (n > 1), as there still more steps to be done.
6597
6598 - a "finish" command, as the observer will be called in
6599 finish_command_continuation, so it can include the inferior
6600 function's return value.
6601
6602 - calling an inferior function, as we pretend we inferior didn't
6603 run at all. The return value of the call is handled by the
6604 expression evaluator, through call_function_by_hand. */
6605
6606 if (!target_has_execution
6607 || last.kind == TARGET_WAITKIND_SIGNALLED
6608 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6609 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6610 || (!(inferior_thread ()->step_multi
6611 && inferior_thread ()->control.stop_step)
16c381f0
JK
6612 && !(inferior_thread ()->control.stop_bpstat
6613 && inferior_thread ()->control.proceed_to_finish)
6614 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6615 {
6616 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6617 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6618 stop_print_frame);
347bddb7 6619 else
1d33d6ba 6620 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6621 }
347bddb7 6622
48844aa6
PA
6623 if (target_has_execution)
6624 {
6625 if (last.kind != TARGET_WAITKIND_SIGNALLED
6626 && last.kind != TARGET_WAITKIND_EXITED)
6627 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6628 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6629 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6630 }
6c95b8df
PA
6631
6632 /* Try to get rid of automatically added inferiors that are no
6633 longer needed. Keeping those around slows down things linearly.
6634 Note that this never removes the current inferior. */
6635 prune_inferiors ();
c906108c
SS
6636}
6637
6638static int
96baa820 6639hook_stop_stub (void *cmd)
c906108c 6640{
5913bcb0 6641 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6642 return (0);
6643}
6644\f
c5aa993b 6645int
96baa820 6646signal_stop_state (int signo)
c906108c 6647{
d6b48e9c 6648 return signal_stop[signo];
c906108c
SS
6649}
6650
c5aa993b 6651int
96baa820 6652signal_print_state (int signo)
c906108c
SS
6653{
6654 return signal_print[signo];
6655}
6656
c5aa993b 6657int
96baa820 6658signal_pass_state (int signo)
c906108c
SS
6659{
6660 return signal_program[signo];
6661}
6662
2455069d
UW
6663static void
6664signal_cache_update (int signo)
6665{
6666 if (signo == -1)
6667 {
a493e3e2 6668 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6669 signal_cache_update (signo);
6670
6671 return;
6672 }
6673
6674 signal_pass[signo] = (signal_stop[signo] == 0
6675 && signal_print[signo] == 0
ab04a2af
TT
6676 && signal_program[signo] == 1
6677 && signal_catch[signo] == 0);
2455069d
UW
6678}
6679
488f131b 6680int
7bda5e4a 6681signal_stop_update (int signo, int state)
d4f3574e
SS
6682{
6683 int ret = signal_stop[signo];
abbb1732 6684
d4f3574e 6685 signal_stop[signo] = state;
2455069d 6686 signal_cache_update (signo);
d4f3574e
SS
6687 return ret;
6688}
6689
488f131b 6690int
7bda5e4a 6691signal_print_update (int signo, int state)
d4f3574e
SS
6692{
6693 int ret = signal_print[signo];
abbb1732 6694
d4f3574e 6695 signal_print[signo] = state;
2455069d 6696 signal_cache_update (signo);
d4f3574e
SS
6697 return ret;
6698}
6699
488f131b 6700int
7bda5e4a 6701signal_pass_update (int signo, int state)
d4f3574e
SS
6702{
6703 int ret = signal_program[signo];
abbb1732 6704
d4f3574e 6705 signal_program[signo] = state;
2455069d 6706 signal_cache_update (signo);
d4f3574e
SS
6707 return ret;
6708}
6709
ab04a2af
TT
6710/* Update the global 'signal_catch' from INFO and notify the
6711 target. */
6712
6713void
6714signal_catch_update (const unsigned int *info)
6715{
6716 int i;
6717
6718 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6719 signal_catch[i] = info[i] > 0;
6720 signal_cache_update (-1);
6721 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6722}
6723
c906108c 6724static void
96baa820 6725sig_print_header (void)
c906108c 6726{
3e43a32a
MS
6727 printf_filtered (_("Signal Stop\tPrint\tPass "
6728 "to program\tDescription\n"));
c906108c
SS
6729}
6730
6731static void
2ea28649 6732sig_print_info (enum gdb_signal oursig)
c906108c 6733{
2ea28649 6734 const char *name = gdb_signal_to_name (oursig);
c906108c 6735 int name_padding = 13 - strlen (name);
96baa820 6736
c906108c
SS
6737 if (name_padding <= 0)
6738 name_padding = 0;
6739
6740 printf_filtered ("%s", name);
488f131b 6741 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6742 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6743 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6744 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6745 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6746}
6747
6748/* Specify how various signals in the inferior should be handled. */
6749
6750static void
96baa820 6751handle_command (char *args, int from_tty)
c906108c
SS
6752{
6753 char **argv;
6754 int digits, wordlen;
6755 int sigfirst, signum, siglast;
2ea28649 6756 enum gdb_signal oursig;
c906108c
SS
6757 int allsigs;
6758 int nsigs;
6759 unsigned char *sigs;
6760 struct cleanup *old_chain;
6761
6762 if (args == NULL)
6763 {
e2e0b3e5 6764 error_no_arg (_("signal to handle"));
c906108c
SS
6765 }
6766
1777feb0 6767 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6768
a493e3e2 6769 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6770 sigs = (unsigned char *) alloca (nsigs);
6771 memset (sigs, 0, nsigs);
6772
1777feb0 6773 /* Break the command line up into args. */
c906108c 6774
d1a41061 6775 argv = gdb_buildargv (args);
7a292a7a 6776 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6777
6778 /* Walk through the args, looking for signal oursigs, signal names, and
6779 actions. Signal numbers and signal names may be interspersed with
6780 actions, with the actions being performed for all signals cumulatively
1777feb0 6781 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6782
6783 while (*argv != NULL)
6784 {
6785 wordlen = strlen (*argv);
6786 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6787 {;
6788 }
6789 allsigs = 0;
6790 sigfirst = siglast = -1;
6791
6792 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6793 {
6794 /* Apply action to all signals except those used by the
1777feb0 6795 debugger. Silently skip those. */
c906108c
SS
6796 allsigs = 1;
6797 sigfirst = 0;
6798 siglast = nsigs - 1;
6799 }
6800 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6801 {
6802 SET_SIGS (nsigs, sigs, signal_stop);
6803 SET_SIGS (nsigs, sigs, signal_print);
6804 }
6805 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6806 {
6807 UNSET_SIGS (nsigs, sigs, signal_program);
6808 }
6809 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6810 {
6811 SET_SIGS (nsigs, sigs, signal_print);
6812 }
6813 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6814 {
6815 SET_SIGS (nsigs, sigs, signal_program);
6816 }
6817 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6818 {
6819 UNSET_SIGS (nsigs, sigs, signal_stop);
6820 }
6821 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6822 {
6823 SET_SIGS (nsigs, sigs, signal_program);
6824 }
6825 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6826 {
6827 UNSET_SIGS (nsigs, sigs, signal_print);
6828 UNSET_SIGS (nsigs, sigs, signal_stop);
6829 }
6830 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6831 {
6832 UNSET_SIGS (nsigs, sigs, signal_program);
6833 }
6834 else if (digits > 0)
6835 {
6836 /* It is numeric. The numeric signal refers to our own
6837 internal signal numbering from target.h, not to host/target
6838 signal number. This is a feature; users really should be
6839 using symbolic names anyway, and the common ones like
6840 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6841
6842 sigfirst = siglast = (int)
2ea28649 6843 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6844 if ((*argv)[digits] == '-')
6845 {
6846 siglast = (int)
2ea28649 6847 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6848 }
6849 if (sigfirst > siglast)
6850 {
1777feb0 6851 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6852 signum = sigfirst;
6853 sigfirst = siglast;
6854 siglast = signum;
6855 }
6856 }
6857 else
6858 {
2ea28649 6859 oursig = gdb_signal_from_name (*argv);
a493e3e2 6860 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6861 {
6862 sigfirst = siglast = (int) oursig;
6863 }
6864 else
6865 {
6866 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6867 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6868 }
6869 }
6870
6871 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6872 which signals to apply actions to. */
c906108c
SS
6873
6874 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6875 {
2ea28649 6876 switch ((enum gdb_signal) signum)
c906108c 6877 {
a493e3e2
PA
6878 case GDB_SIGNAL_TRAP:
6879 case GDB_SIGNAL_INT:
c906108c
SS
6880 if (!allsigs && !sigs[signum])
6881 {
9e2f0ad4 6882 if (query (_("%s is used by the debugger.\n\
3e43a32a 6883Are you sure you want to change it? "),
2ea28649 6884 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6885 {
6886 sigs[signum] = 1;
6887 }
6888 else
6889 {
a3f17187 6890 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6891 gdb_flush (gdb_stdout);
6892 }
6893 }
6894 break;
a493e3e2
PA
6895 case GDB_SIGNAL_0:
6896 case GDB_SIGNAL_DEFAULT:
6897 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6898 /* Make sure that "all" doesn't print these. */
6899 break;
6900 default:
6901 sigs[signum] = 1;
6902 break;
6903 }
6904 }
6905
6906 argv++;
6907 }
6908
3a031f65
PA
6909 for (signum = 0; signum < nsigs; signum++)
6910 if (sigs[signum])
6911 {
2455069d 6912 signal_cache_update (-1);
a493e3e2
PA
6913 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6914 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6915
3a031f65
PA
6916 if (from_tty)
6917 {
6918 /* Show the results. */
6919 sig_print_header ();
6920 for (; signum < nsigs; signum++)
6921 if (sigs[signum])
6922 sig_print_info (signum);
6923 }
6924
6925 break;
6926 }
c906108c
SS
6927
6928 do_cleanups (old_chain);
6929}
6930
de0bea00
MF
6931/* Complete the "handle" command. */
6932
6933static VEC (char_ptr) *
6934handle_completer (struct cmd_list_element *ignore,
6f937416 6935 const char *text, const char *word)
de0bea00
MF
6936{
6937 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6938 static const char * const keywords[] =
6939 {
6940 "all",
6941 "stop",
6942 "ignore",
6943 "print",
6944 "pass",
6945 "nostop",
6946 "noignore",
6947 "noprint",
6948 "nopass",
6949 NULL,
6950 };
6951
6952 vec_signals = signal_completer (ignore, text, word);
6953 vec_keywords = complete_on_enum (keywords, word, word);
6954
6955 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6956 VEC_free (char_ptr, vec_signals);
6957 VEC_free (char_ptr, vec_keywords);
6958 return return_val;
6959}
6960
c906108c 6961static void
96baa820 6962xdb_handle_command (char *args, int from_tty)
c906108c
SS
6963{
6964 char **argv;
6965 struct cleanup *old_chain;
6966
d1a41061
PP
6967 if (args == NULL)
6968 error_no_arg (_("xdb command"));
6969
1777feb0 6970 /* Break the command line up into args. */
c906108c 6971
d1a41061 6972 argv = gdb_buildargv (args);
7a292a7a 6973 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6974 if (argv[1] != (char *) NULL)
6975 {
6976 char *argBuf;
6977 int bufLen;
6978
6979 bufLen = strlen (argv[0]) + 20;
6980 argBuf = (char *) xmalloc (bufLen);
6981 if (argBuf)
6982 {
6983 int validFlag = 1;
2ea28649 6984 enum gdb_signal oursig;
c906108c 6985
2ea28649 6986 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6987 memset (argBuf, 0, bufLen);
6988 if (strcmp (argv[1], "Q") == 0)
6989 sprintf (argBuf, "%s %s", argv[0], "noprint");
6990 else
6991 {
6992 if (strcmp (argv[1], "s") == 0)
6993 {
6994 if (!signal_stop[oursig])
6995 sprintf (argBuf, "%s %s", argv[0], "stop");
6996 else
6997 sprintf (argBuf, "%s %s", argv[0], "nostop");
6998 }
6999 else if (strcmp (argv[1], "i") == 0)
7000 {
7001 if (!signal_program[oursig])
7002 sprintf (argBuf, "%s %s", argv[0], "pass");
7003 else
7004 sprintf (argBuf, "%s %s", argv[0], "nopass");
7005 }
7006 else if (strcmp (argv[1], "r") == 0)
7007 {
7008 if (!signal_print[oursig])
7009 sprintf (argBuf, "%s %s", argv[0], "print");
7010 else
7011 sprintf (argBuf, "%s %s", argv[0], "noprint");
7012 }
7013 else
7014 validFlag = 0;
7015 }
7016 if (validFlag)
7017 handle_command (argBuf, from_tty);
7018 else
a3f17187 7019 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 7020 if (argBuf)
b8c9b27d 7021 xfree (argBuf);
c906108c
SS
7022 }
7023 }
7024 do_cleanups (old_chain);
7025}
7026
2ea28649
PA
7027enum gdb_signal
7028gdb_signal_from_command (int num)
ed01b82c
PA
7029{
7030 if (num >= 1 && num <= 15)
2ea28649 7031 return (enum gdb_signal) num;
ed01b82c
PA
7032 error (_("Only signals 1-15 are valid as numeric signals.\n\
7033Use \"info signals\" for a list of symbolic signals."));
7034}
7035
c906108c
SS
7036/* Print current contents of the tables set by the handle command.
7037 It is possible we should just be printing signals actually used
7038 by the current target (but for things to work right when switching
7039 targets, all signals should be in the signal tables). */
7040
7041static void
96baa820 7042signals_info (char *signum_exp, int from_tty)
c906108c 7043{
2ea28649 7044 enum gdb_signal oursig;
abbb1732 7045
c906108c
SS
7046 sig_print_header ();
7047
7048 if (signum_exp)
7049 {
7050 /* First see if this is a symbol name. */
2ea28649 7051 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7052 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7053 {
7054 /* No, try numeric. */
7055 oursig =
2ea28649 7056 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7057 }
7058 sig_print_info (oursig);
7059 return;
7060 }
7061
7062 printf_filtered ("\n");
7063 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7064 for (oursig = GDB_SIGNAL_FIRST;
7065 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7066 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7067 {
7068 QUIT;
7069
a493e3e2
PA
7070 if (oursig != GDB_SIGNAL_UNKNOWN
7071 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7072 sig_print_info (oursig);
7073 }
7074
3e43a32a
MS
7075 printf_filtered (_("\nUse the \"handle\" command "
7076 "to change these tables.\n"));
c906108c 7077}
4aa995e1 7078
c709acd1
PA
7079/* Check if it makes sense to read $_siginfo from the current thread
7080 at this point. If not, throw an error. */
7081
7082static void
7083validate_siginfo_access (void)
7084{
7085 /* No current inferior, no siginfo. */
7086 if (ptid_equal (inferior_ptid, null_ptid))
7087 error (_("No thread selected."));
7088
7089 /* Don't try to read from a dead thread. */
7090 if (is_exited (inferior_ptid))
7091 error (_("The current thread has terminated"));
7092
7093 /* ... or from a spinning thread. */
7094 if (is_running (inferior_ptid))
7095 error (_("Selected thread is running."));
7096}
7097
4aa995e1
PA
7098/* The $_siginfo convenience variable is a bit special. We don't know
7099 for sure the type of the value until we actually have a chance to
7a9dd1b2 7100 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7101 also dependent on which thread you have selected.
7102
7103 1. making $_siginfo be an internalvar that creates a new value on
7104 access.
7105
7106 2. making the value of $_siginfo be an lval_computed value. */
7107
7108/* This function implements the lval_computed support for reading a
7109 $_siginfo value. */
7110
7111static void
7112siginfo_value_read (struct value *v)
7113{
7114 LONGEST transferred;
7115
c709acd1
PA
7116 validate_siginfo_access ();
7117
4aa995e1
PA
7118 transferred =
7119 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7120 NULL,
7121 value_contents_all_raw (v),
7122 value_offset (v),
7123 TYPE_LENGTH (value_type (v)));
7124
7125 if (transferred != TYPE_LENGTH (value_type (v)))
7126 error (_("Unable to read siginfo"));
7127}
7128
7129/* This function implements the lval_computed support for writing a
7130 $_siginfo value. */
7131
7132static void
7133siginfo_value_write (struct value *v, struct value *fromval)
7134{
7135 LONGEST transferred;
7136
c709acd1
PA
7137 validate_siginfo_access ();
7138
4aa995e1
PA
7139 transferred = target_write (&current_target,
7140 TARGET_OBJECT_SIGNAL_INFO,
7141 NULL,
7142 value_contents_all_raw (fromval),
7143 value_offset (v),
7144 TYPE_LENGTH (value_type (fromval)));
7145
7146 if (transferred != TYPE_LENGTH (value_type (fromval)))
7147 error (_("Unable to write siginfo"));
7148}
7149
c8f2448a 7150static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7151 {
7152 siginfo_value_read,
7153 siginfo_value_write
7154 };
7155
7156/* Return a new value with the correct type for the siginfo object of
78267919
UW
7157 the current thread using architecture GDBARCH. Return a void value
7158 if there's no object available. */
4aa995e1 7159
2c0b251b 7160static struct value *
22d2b532
SDJ
7161siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7162 void *ignore)
4aa995e1 7163{
4aa995e1 7164 if (target_has_stack
78267919
UW
7165 && !ptid_equal (inferior_ptid, null_ptid)
7166 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7167 {
78267919 7168 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7169
78267919 7170 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7171 }
7172
78267919 7173 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7174}
7175
c906108c 7176\f
16c381f0
JK
7177/* infcall_suspend_state contains state about the program itself like its
7178 registers and any signal it received when it last stopped.
7179 This state must be restored regardless of how the inferior function call
7180 ends (either successfully, or after it hits a breakpoint or signal)
7181 if the program is to properly continue where it left off. */
7182
7183struct infcall_suspend_state
7a292a7a 7184{
16c381f0 7185 struct thread_suspend_state thread_suspend;
dd80ea3c 7186#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7187 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7188#endif
16c381f0
JK
7189
7190 /* Other fields: */
7a292a7a 7191 CORE_ADDR stop_pc;
b89667eb 7192 struct regcache *registers;
1736ad11 7193
35515841 7194 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7195 struct gdbarch *siginfo_gdbarch;
7196
7197 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7198 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7199 content would be invalid. */
7200 gdb_byte *siginfo_data;
b89667eb
DE
7201};
7202
16c381f0
JK
7203struct infcall_suspend_state *
7204save_infcall_suspend_state (void)
b89667eb 7205{
16c381f0 7206 struct infcall_suspend_state *inf_state;
b89667eb 7207 struct thread_info *tp = inferior_thread ();
974a734b 7208#if 0
16c381f0 7209 struct inferior *inf = current_inferior ();
974a734b 7210#endif
1736ad11
JK
7211 struct regcache *regcache = get_current_regcache ();
7212 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7213 gdb_byte *siginfo_data = NULL;
7214
7215 if (gdbarch_get_siginfo_type_p (gdbarch))
7216 {
7217 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7218 size_t len = TYPE_LENGTH (type);
7219 struct cleanup *back_to;
7220
7221 siginfo_data = xmalloc (len);
7222 back_to = make_cleanup (xfree, siginfo_data);
7223
7224 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7225 siginfo_data, 0, len) == len)
7226 discard_cleanups (back_to);
7227 else
7228 {
7229 /* Errors ignored. */
7230 do_cleanups (back_to);
7231 siginfo_data = NULL;
7232 }
7233 }
7234
41bf6aca 7235 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7236
7237 if (siginfo_data)
7238 {
7239 inf_state->siginfo_gdbarch = gdbarch;
7240 inf_state->siginfo_data = siginfo_data;
7241 }
b89667eb 7242
16c381f0 7243 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7244#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7245 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7246#endif
16c381f0 7247
35515841 7248 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7249 GDB_SIGNAL_0 anyway. */
7250 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7251
b89667eb
DE
7252 inf_state->stop_pc = stop_pc;
7253
1736ad11 7254 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7255
7256 return inf_state;
7257}
7258
7259/* Restore inferior session state to INF_STATE. */
7260
7261void
16c381f0 7262restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7263{
7264 struct thread_info *tp = inferior_thread ();
974a734b 7265#if 0
16c381f0 7266 struct inferior *inf = current_inferior ();
974a734b 7267#endif
1736ad11
JK
7268 struct regcache *regcache = get_current_regcache ();
7269 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7270
16c381f0 7271 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7272#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7273 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7274#endif
16c381f0 7275
b89667eb
DE
7276 stop_pc = inf_state->stop_pc;
7277
1736ad11
JK
7278 if (inf_state->siginfo_gdbarch == gdbarch)
7279 {
7280 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7281
7282 /* Errors ignored. */
7283 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7284 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7285 }
7286
b89667eb
DE
7287 /* The inferior can be gone if the user types "print exit(0)"
7288 (and perhaps other times). */
7289 if (target_has_execution)
7290 /* NB: The register write goes through to the target. */
1736ad11 7291 regcache_cpy (regcache, inf_state->registers);
803b5f95 7292
16c381f0 7293 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7294}
7295
7296static void
16c381f0 7297do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7298{
16c381f0 7299 restore_infcall_suspend_state (state);
b89667eb
DE
7300}
7301
7302struct cleanup *
16c381f0
JK
7303make_cleanup_restore_infcall_suspend_state
7304 (struct infcall_suspend_state *inf_state)
b89667eb 7305{
16c381f0 7306 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7307}
7308
7309void
16c381f0 7310discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7311{
7312 regcache_xfree (inf_state->registers);
803b5f95 7313 xfree (inf_state->siginfo_data);
b89667eb
DE
7314 xfree (inf_state);
7315}
7316
7317struct regcache *
16c381f0 7318get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7319{
7320 return inf_state->registers;
7321}
7322
16c381f0
JK
7323/* infcall_control_state contains state regarding gdb's control of the
7324 inferior itself like stepping control. It also contains session state like
7325 the user's currently selected frame. */
b89667eb 7326
16c381f0 7327struct infcall_control_state
b89667eb 7328{
16c381f0
JK
7329 struct thread_control_state thread_control;
7330 struct inferior_control_state inferior_control;
d82142e2
JK
7331
7332 /* Other fields: */
7333 enum stop_stack_kind stop_stack_dummy;
7334 int stopped_by_random_signal;
7a292a7a 7335 int stop_after_trap;
7a292a7a 7336
b89667eb 7337 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7338 struct frame_id selected_frame_id;
7a292a7a
SS
7339};
7340
c906108c 7341/* Save all of the information associated with the inferior<==>gdb
b89667eb 7342 connection. */
c906108c 7343
16c381f0
JK
7344struct infcall_control_state *
7345save_infcall_control_state (void)
c906108c 7346{
16c381f0 7347 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7348 struct thread_info *tp = inferior_thread ();
d6b48e9c 7349 struct inferior *inf = current_inferior ();
7a292a7a 7350
16c381f0
JK
7351 inf_status->thread_control = tp->control;
7352 inf_status->inferior_control = inf->control;
d82142e2 7353
8358c15c 7354 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7355 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7356
16c381f0
JK
7357 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7358 chain. If caller's caller is walking the chain, they'll be happier if we
7359 hand them back the original chain when restore_infcall_control_state is
7360 called. */
7361 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7362
7363 /* Other fields: */
7364 inf_status->stop_stack_dummy = stop_stack_dummy;
7365 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7366 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7367
206415a3 7368 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7369
7a292a7a 7370 return inf_status;
c906108c
SS
7371}
7372
c906108c 7373static int
96baa820 7374restore_selected_frame (void *args)
c906108c 7375{
488f131b 7376 struct frame_id *fid = (struct frame_id *) args;
c906108c 7377 struct frame_info *frame;
c906108c 7378
101dcfbe 7379 frame = frame_find_by_id (*fid);
c906108c 7380
aa0cd9c1
AC
7381 /* If inf_status->selected_frame_id is NULL, there was no previously
7382 selected frame. */
101dcfbe 7383 if (frame == NULL)
c906108c 7384 {
8a3fe4f8 7385 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7386 return 0;
7387 }
7388
0f7d239c 7389 select_frame (frame);
c906108c
SS
7390
7391 return (1);
7392}
7393
b89667eb
DE
7394/* Restore inferior session state to INF_STATUS. */
7395
c906108c 7396void
16c381f0 7397restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7398{
4e1c45ea 7399 struct thread_info *tp = inferior_thread ();
d6b48e9c 7400 struct inferior *inf = current_inferior ();
4e1c45ea 7401
8358c15c
JK
7402 if (tp->control.step_resume_breakpoint)
7403 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7404
5b79abe7
TT
7405 if (tp->control.exception_resume_breakpoint)
7406 tp->control.exception_resume_breakpoint->disposition
7407 = disp_del_at_next_stop;
7408
d82142e2 7409 /* Handle the bpstat_copy of the chain. */
16c381f0 7410 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7411
16c381f0
JK
7412 tp->control = inf_status->thread_control;
7413 inf->control = inf_status->inferior_control;
d82142e2
JK
7414
7415 /* Other fields: */
7416 stop_stack_dummy = inf_status->stop_stack_dummy;
7417 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7418 stop_after_trap = inf_status->stop_after_trap;
c906108c 7419
b89667eb 7420 if (target_has_stack)
c906108c 7421 {
c906108c 7422 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7423 walking the stack might encounter a garbage pointer and
7424 error() trying to dereference it. */
488f131b
JB
7425 if (catch_errors
7426 (restore_selected_frame, &inf_status->selected_frame_id,
7427 "Unable to restore previously selected frame:\n",
7428 RETURN_MASK_ERROR) == 0)
c906108c
SS
7429 /* Error in restoring the selected frame. Select the innermost
7430 frame. */
0f7d239c 7431 select_frame (get_current_frame ());
c906108c 7432 }
c906108c 7433
72cec141 7434 xfree (inf_status);
7a292a7a 7435}
c906108c 7436
74b7792f 7437static void
16c381f0 7438do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7439{
16c381f0 7440 restore_infcall_control_state (sts);
74b7792f
AC
7441}
7442
7443struct cleanup *
16c381f0
JK
7444make_cleanup_restore_infcall_control_state
7445 (struct infcall_control_state *inf_status)
74b7792f 7446{
16c381f0 7447 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7448}
7449
c906108c 7450void
16c381f0 7451discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7452{
8358c15c
JK
7453 if (inf_status->thread_control.step_resume_breakpoint)
7454 inf_status->thread_control.step_resume_breakpoint->disposition
7455 = disp_del_at_next_stop;
7456
5b79abe7
TT
7457 if (inf_status->thread_control.exception_resume_breakpoint)
7458 inf_status->thread_control.exception_resume_breakpoint->disposition
7459 = disp_del_at_next_stop;
7460
1777feb0 7461 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7462 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7463
72cec141 7464 xfree (inf_status);
7a292a7a 7465}
b89667eb 7466\f
ca6724c1
KB
7467/* restore_inferior_ptid() will be used by the cleanup machinery
7468 to restore the inferior_ptid value saved in a call to
7469 save_inferior_ptid(). */
ce696e05
KB
7470
7471static void
7472restore_inferior_ptid (void *arg)
7473{
7474 ptid_t *saved_ptid_ptr = arg;
abbb1732 7475
ce696e05
KB
7476 inferior_ptid = *saved_ptid_ptr;
7477 xfree (arg);
7478}
7479
7480/* Save the value of inferior_ptid so that it may be restored by a
7481 later call to do_cleanups(). Returns the struct cleanup pointer
7482 needed for later doing the cleanup. */
7483
7484struct cleanup *
7485save_inferior_ptid (void)
7486{
7487 ptid_t *saved_ptid_ptr;
7488
7489 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7490 *saved_ptid_ptr = inferior_ptid;
7491 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7492}
0c557179 7493
7f89fd65 7494/* See infrun.h. */
0c557179
SDJ
7495
7496void
7497clear_exit_convenience_vars (void)
7498{
7499 clear_internalvar (lookup_internalvar ("_exitsignal"));
7500 clear_internalvar (lookup_internalvar ("_exitcode"));
7501}
c5aa993b 7502\f
488f131b 7503
b2175913
MS
7504/* User interface for reverse debugging:
7505 Set exec-direction / show exec-direction commands
7506 (returns error unless target implements to_set_exec_direction method). */
7507
32231432 7508int execution_direction = EXEC_FORWARD;
b2175913
MS
7509static const char exec_forward[] = "forward";
7510static const char exec_reverse[] = "reverse";
7511static const char *exec_direction = exec_forward;
40478521 7512static const char *const exec_direction_names[] = {
b2175913
MS
7513 exec_forward,
7514 exec_reverse,
7515 NULL
7516};
7517
7518static void
7519set_exec_direction_func (char *args, int from_tty,
7520 struct cmd_list_element *cmd)
7521{
7522 if (target_can_execute_reverse)
7523 {
7524 if (!strcmp (exec_direction, exec_forward))
7525 execution_direction = EXEC_FORWARD;
7526 else if (!strcmp (exec_direction, exec_reverse))
7527 execution_direction = EXEC_REVERSE;
7528 }
8bbed405
MS
7529 else
7530 {
7531 exec_direction = exec_forward;
7532 error (_("Target does not support this operation."));
7533 }
b2175913
MS
7534}
7535
7536static void
7537show_exec_direction_func (struct ui_file *out, int from_tty,
7538 struct cmd_list_element *cmd, const char *value)
7539{
7540 switch (execution_direction) {
7541 case EXEC_FORWARD:
7542 fprintf_filtered (out, _("Forward.\n"));
7543 break;
7544 case EXEC_REVERSE:
7545 fprintf_filtered (out, _("Reverse.\n"));
7546 break;
b2175913 7547 default:
d8b34453
PA
7548 internal_error (__FILE__, __LINE__,
7549 _("bogus execution_direction value: %d"),
7550 (int) execution_direction);
b2175913
MS
7551 }
7552}
7553
d4db2f36
PA
7554static void
7555show_schedule_multiple (struct ui_file *file, int from_tty,
7556 struct cmd_list_element *c, const char *value)
7557{
3e43a32a
MS
7558 fprintf_filtered (file, _("Resuming the execution of threads "
7559 "of all processes is %s.\n"), value);
d4db2f36 7560}
ad52ddc6 7561
22d2b532
SDJ
7562/* Implementation of `siginfo' variable. */
7563
7564static const struct internalvar_funcs siginfo_funcs =
7565{
7566 siginfo_make_value,
7567 NULL,
7568 NULL
7569};
7570
c906108c 7571void
96baa820 7572_initialize_infrun (void)
c906108c 7573{
52f0bd74
AC
7574 int i;
7575 int numsigs;
de0bea00 7576 struct cmd_list_element *c;
c906108c 7577
1bedd215
AC
7578 add_info ("signals", signals_info, _("\
7579What debugger does when program gets various signals.\n\
7580Specify a signal as argument to print info on that signal only."));
c906108c
SS
7581 add_info_alias ("handle", "signals", 0);
7582
de0bea00 7583 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7584Specify how to handle signals.\n\
486c7739 7585Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7586Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7587If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7588will be displayed instead.\n\
7589\n\
c906108c
SS
7590Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7591from 1-15 are allowed for compatibility with old versions of GDB.\n\
7592Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7593The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7594used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7595\n\
1bedd215 7596Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7597\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7598Stop means reenter debugger if this signal happens (implies print).\n\
7599Print means print a message if this signal happens.\n\
7600Pass means let program see this signal; otherwise program doesn't know.\n\
7601Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7602Pass and Stop may be combined.\n\
7603\n\
7604Multiple signals may be specified. Signal numbers and signal names\n\
7605may be interspersed with actions, with the actions being performed for\n\
7606all signals cumulatively specified."));
de0bea00 7607 set_cmd_completer (c, handle_completer);
486c7739 7608
c906108c
SS
7609 if (xdb_commands)
7610 {
1bedd215
AC
7611 add_com ("lz", class_info, signals_info, _("\
7612What debugger does when program gets various signals.\n\
7613Specify a signal as argument to print info on that signal only."));
7614 add_com ("z", class_run, xdb_handle_command, _("\
7615Specify how to handle a signal.\n\
c906108c
SS
7616Args are signals and actions to apply to those signals.\n\
7617Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7618from 1-15 are allowed for compatibility with old versions of GDB.\n\
7619Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7620The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7621used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7622Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7623\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7624nopass), \"Q\" (noprint)\n\
7625Stop means reenter debugger if this signal happens (implies print).\n\
7626Print means print a message if this signal happens.\n\
7627Pass means let program see this signal; otherwise program doesn't know.\n\
7628Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7629Pass and Stop may be combined."));
c906108c
SS
7630 }
7631
7632 if (!dbx_commands)
1a966eab
AC
7633 stop_command = add_cmd ("stop", class_obscure,
7634 not_just_help_class_command, _("\
7635There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7636This allows you to set a list of commands to be run each time execution\n\
1a966eab 7637of the program stops."), &cmdlist);
c906108c 7638
ccce17b0 7639 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7640Set inferior debugging."), _("\
7641Show inferior debugging."), _("\
7642When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7643 NULL,
7644 show_debug_infrun,
7645 &setdebuglist, &showdebuglist);
527159b7 7646
3e43a32a
MS
7647 add_setshow_boolean_cmd ("displaced", class_maintenance,
7648 &debug_displaced, _("\
237fc4c9
PA
7649Set displaced stepping debugging."), _("\
7650Show displaced stepping debugging."), _("\
7651When non-zero, displaced stepping specific debugging is enabled."),
7652 NULL,
7653 show_debug_displaced,
7654 &setdebuglist, &showdebuglist);
7655
ad52ddc6
PA
7656 add_setshow_boolean_cmd ("non-stop", no_class,
7657 &non_stop_1, _("\
7658Set whether gdb controls the inferior in non-stop mode."), _("\
7659Show whether gdb controls the inferior in non-stop mode."), _("\
7660When debugging a multi-threaded program and this setting is\n\
7661off (the default, also called all-stop mode), when one thread stops\n\
7662(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7663all other threads in the program while you interact with the thread of\n\
7664interest. When you continue or step a thread, you can allow the other\n\
7665threads to run, or have them remain stopped, but while you inspect any\n\
7666thread's state, all threads stop.\n\
7667\n\
7668In non-stop mode, when one thread stops, other threads can continue\n\
7669to run freely. You'll be able to step each thread independently,\n\
7670leave it stopped or free to run as needed."),
7671 set_non_stop,
7672 show_non_stop,
7673 &setlist,
7674 &showlist);
7675
a493e3e2 7676 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7677 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7678 signal_print = (unsigned char *)
7679 xmalloc (sizeof (signal_print[0]) * numsigs);
7680 signal_program = (unsigned char *)
7681 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7682 signal_catch = (unsigned char *)
7683 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7684 signal_pass = (unsigned char *)
4395285e 7685 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7686 for (i = 0; i < numsigs; i++)
7687 {
7688 signal_stop[i] = 1;
7689 signal_print[i] = 1;
7690 signal_program[i] = 1;
ab04a2af 7691 signal_catch[i] = 0;
c906108c
SS
7692 }
7693
7694 /* Signals caused by debugger's own actions
7695 should not be given to the program afterwards. */
a493e3e2
PA
7696 signal_program[GDB_SIGNAL_TRAP] = 0;
7697 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7698
7699 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7700 signal_stop[GDB_SIGNAL_ALRM] = 0;
7701 signal_print[GDB_SIGNAL_ALRM] = 0;
7702 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7703 signal_print[GDB_SIGNAL_VTALRM] = 0;
7704 signal_stop[GDB_SIGNAL_PROF] = 0;
7705 signal_print[GDB_SIGNAL_PROF] = 0;
7706 signal_stop[GDB_SIGNAL_CHLD] = 0;
7707 signal_print[GDB_SIGNAL_CHLD] = 0;
7708 signal_stop[GDB_SIGNAL_IO] = 0;
7709 signal_print[GDB_SIGNAL_IO] = 0;
7710 signal_stop[GDB_SIGNAL_POLL] = 0;
7711 signal_print[GDB_SIGNAL_POLL] = 0;
7712 signal_stop[GDB_SIGNAL_URG] = 0;
7713 signal_print[GDB_SIGNAL_URG] = 0;
7714 signal_stop[GDB_SIGNAL_WINCH] = 0;
7715 signal_print[GDB_SIGNAL_WINCH] = 0;
7716 signal_stop[GDB_SIGNAL_PRIO] = 0;
7717 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7718
cd0fc7c3
SS
7719 /* These signals are used internally by user-level thread
7720 implementations. (See signal(5) on Solaris.) Like the above
7721 signals, a healthy program receives and handles them as part of
7722 its normal operation. */
a493e3e2
PA
7723 signal_stop[GDB_SIGNAL_LWP] = 0;
7724 signal_print[GDB_SIGNAL_LWP] = 0;
7725 signal_stop[GDB_SIGNAL_WAITING] = 0;
7726 signal_print[GDB_SIGNAL_WAITING] = 0;
7727 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7728 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7729
2455069d
UW
7730 /* Update cached state. */
7731 signal_cache_update (-1);
7732
85c07804
AC
7733 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7734 &stop_on_solib_events, _("\
7735Set stopping for shared library events."), _("\
7736Show stopping for shared library events."), _("\
c906108c
SS
7737If nonzero, gdb will give control to the user when the dynamic linker\n\
7738notifies gdb of shared library events. The most common event of interest\n\
85c07804 7739to the user would be loading/unloading of a new library."),
f9e14852 7740 set_stop_on_solib_events,
920d2a44 7741 show_stop_on_solib_events,
85c07804 7742 &setlist, &showlist);
c906108c 7743
7ab04401
AC
7744 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7745 follow_fork_mode_kind_names,
7746 &follow_fork_mode_string, _("\
7747Set debugger response to a program call of fork or vfork."), _("\
7748Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7749A fork or vfork creates a new process. follow-fork-mode can be:\n\
7750 parent - the original process is debugged after a fork\n\
7751 child - the new process is debugged after a fork\n\
ea1dd7bc 7752The unfollowed process will continue to run.\n\
7ab04401
AC
7753By default, the debugger will follow the parent process."),
7754 NULL,
920d2a44 7755 show_follow_fork_mode_string,
7ab04401
AC
7756 &setlist, &showlist);
7757
6c95b8df
PA
7758 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7759 follow_exec_mode_names,
7760 &follow_exec_mode_string, _("\
7761Set debugger response to a program call of exec."), _("\
7762Show debugger response to a program call of exec."), _("\
7763An exec call replaces the program image of a process.\n\
7764\n\
7765follow-exec-mode can be:\n\
7766\n\
cce7e648 7767 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7768to this new inferior. The program the process was running before\n\
7769the exec call can be restarted afterwards by restarting the original\n\
7770inferior.\n\
7771\n\
7772 same - the debugger keeps the process bound to the same inferior.\n\
7773The new executable image replaces the previous executable loaded in\n\
7774the inferior. Restarting the inferior after the exec call restarts\n\
7775the executable the process was running after the exec call.\n\
7776\n\
7777By default, the debugger will use the same inferior."),
7778 NULL,
7779 show_follow_exec_mode_string,
7780 &setlist, &showlist);
7781
7ab04401
AC
7782 add_setshow_enum_cmd ("scheduler-locking", class_run,
7783 scheduler_enums, &scheduler_mode, _("\
7784Set mode for locking scheduler during execution."), _("\
7785Show mode for locking scheduler during execution."), _("\
c906108c
SS
7786off == no locking (threads may preempt at any time)\n\
7787on == full locking (no thread except the current thread may run)\n\
7788step == scheduler locked during every single-step operation.\n\
7789 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7790 Other threads may run while stepping over a function call ('next')."),
7791 set_schedlock_func, /* traps on target vector */
920d2a44 7792 show_scheduler_mode,
7ab04401 7793 &setlist, &showlist);
5fbbeb29 7794
d4db2f36
PA
7795 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7796Set mode for resuming threads of all processes."), _("\
7797Show mode for resuming threads of all processes."), _("\
7798When on, execution commands (such as 'continue' or 'next') resume all\n\
7799threads of all processes. When off (which is the default), execution\n\
7800commands only resume the threads of the current process. The set of\n\
7801threads that are resumed is further refined by the scheduler-locking\n\
7802mode (see help set scheduler-locking)."),
7803 NULL,
7804 show_schedule_multiple,
7805 &setlist, &showlist);
7806
5bf193a2
AC
7807 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7808Set mode of the step operation."), _("\
7809Show mode of the step operation."), _("\
7810When set, doing a step over a function without debug line information\n\
7811will stop at the first instruction of that function. Otherwise, the\n\
7812function is skipped and the step command stops at a different source line."),
7813 NULL,
920d2a44 7814 show_step_stop_if_no_debug,
5bf193a2 7815 &setlist, &showlist);
ca6724c1 7816
72d0e2c5
YQ
7817 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7818 &can_use_displaced_stepping, _("\
237fc4c9
PA
7819Set debugger's willingness to use displaced stepping."), _("\
7820Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7821If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7822supported by the target architecture. If off, gdb will not use displaced\n\
7823stepping to step over breakpoints, even if such is supported by the target\n\
7824architecture. If auto (which is the default), gdb will use displaced stepping\n\
7825if the target architecture supports it and non-stop mode is active, but will not\n\
7826use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7827 NULL,
7828 show_can_use_displaced_stepping,
7829 &setlist, &showlist);
237fc4c9 7830
b2175913
MS
7831 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7832 &exec_direction, _("Set direction of execution.\n\
7833Options are 'forward' or 'reverse'."),
7834 _("Show direction of execution (forward/reverse)."),
7835 _("Tells gdb whether to execute forward or backward."),
7836 set_exec_direction_func, show_exec_direction_func,
7837 &setlist, &showlist);
7838
6c95b8df
PA
7839 /* Set/show detach-on-fork: user-settable mode. */
7840
7841 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7842Set whether gdb will detach the child of a fork."), _("\
7843Show whether gdb will detach the child of a fork."), _("\
7844Tells gdb whether to detach the child of a fork."),
7845 NULL, NULL, &setlist, &showlist);
7846
03583c20
UW
7847 /* Set/show disable address space randomization mode. */
7848
7849 add_setshow_boolean_cmd ("disable-randomization", class_support,
7850 &disable_randomization, _("\
7851Set disabling of debuggee's virtual address space randomization."), _("\
7852Show disabling of debuggee's virtual address space randomization."), _("\
7853When this mode is on (which is the default), randomization of the virtual\n\
7854address space is disabled. Standalone programs run with the randomization\n\
7855enabled by default on some platforms."),
7856 &set_disable_randomization,
7857 &show_disable_randomization,
7858 &setlist, &showlist);
7859
ca6724c1 7860 /* ptid initializations */
ca6724c1
KB
7861 inferior_ptid = null_ptid;
7862 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7863
7864 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7865 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7866 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7867 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7868
7869 /* Explicitly create without lookup, since that tries to create a
7870 value with a void typed value, and when we get here, gdbarch
7871 isn't initialized yet. At this point, we're quite sure there
7872 isn't another convenience variable of the same name. */
22d2b532 7873 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7874
7875 add_setshow_boolean_cmd ("observer", no_class,
7876 &observer_mode_1, _("\
7877Set whether gdb controls the inferior in observer mode."), _("\
7878Show whether gdb controls the inferior in observer mode."), _("\
7879In observer mode, GDB can get data from the inferior, but not\n\
7880affect its execution. Registers and memory may not be changed,\n\
7881breakpoints may not be set, and the program cannot be interrupted\n\
7882or signalled."),
7883 set_observer_mode,
7884 show_observer_mode,
7885 &setlist,
7886 &showlist);
c906108c 7887}
This page took 2.000411 seconds and 4 git commands to generate.