Create target sections for user-added symbol files.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
488f131b 2422 int random_signal;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b
JB
2427 int wait_some_more;
2428};
2429
ec9499be 2430static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2431
568d6575
UW
2432static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
186c406b 2436static void check_exception_resume (struct execution_control_state *,
28106bc2 2437 struct frame_info *);
611c83ae 2438
104c1213
JM
2439static void stop_stepping (struct execution_control_state *ecs);
2440static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2441static void keep_going (struct execution_control_state *ecs);
94c57d6a 2442static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2443static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2444
252fbfc8
PA
2445/* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453static int
2454infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455{
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
252fbfc8
PA
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
e09875d4 2477 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2479 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
fa4cd53f 2489 /* Finish off the continuations. */
252fbfc8 2490 tp = inferior_thread ();
fa4cd53f
PA
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499}
2500
2501/* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2c0b251b 2505static void
252fbfc8
PA
2506infrun_thread_stop_requested (ptid_t ptid)
2507{
fc1cf338 2508 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
252fbfc8 2516 {
fc1cf338 2517 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2518
fc1cf338
PA
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
252fbfc8 2522 {
fc1cf338
PA
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
252fbfc8 2529 else
fc1cf338
PA
2530 {
2531 prev_next_p = &it->next;
2532 }
252fbfc8 2533
fc1cf338 2534 it = *prev_next_p;
252fbfc8 2535 }
252fbfc8
PA
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539}
2540
a07daef3
PA
2541static void
2542infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543{
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546}
2547
4e1c45ea
PA
2548/* Callback for iterate_over_threads. */
2549
2550static int
2551delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552{
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
186c406b 2557 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2558 return 0;
2559}
2560
2561/* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565static void
2566delete_step_thread_step_resume_breakpoint (void)
2567{
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
abbb1732 2580
4e1c45ea 2581 delete_step_resume_breakpoint (tp);
186c406b 2582 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588}
2589
1777feb0 2590/* A cleanup wrapper. */
4e1c45ea
PA
2591
2592static void
2593delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594{
2595 delete_step_thread_step_resume_breakpoint ();
2596}
2597
223698f8
DE
2598/* Pretty print the results of target_wait, for debugging purposes. */
2599
2600static void
2601print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603{
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
223698f8
DE
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
dfd4cc63
LM
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
223698f8
DE
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
759ef836 2627 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636}
2637
24291992
PA
2638/* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643void
2644prepare_for_detach (void)
2645{
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
24291992
PA
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
3e43a32a
MS
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
24291992
PA
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707}
2708
cd0fc7c3 2709/* Wait for control to return from inferior to debugger.
ae123ec6 2710
cd0fc7c3
SS
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716void
e4c8541f 2717wait_for_inferior (void)
cd0fc7c3
SS
2718{
2719 struct cleanup *old_cleanups;
c906108c 2720
527159b7 2721 if (debug_infrun)
ae123ec6 2722 fprintf_unfiltered
e4c8541f 2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2724
4e1c45ea
PA
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2727
c906108c
SS
2728 while (1)
2729 {
ae25568b
PA
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2732 struct cleanup *old_chain;
2733
ae25568b
PA
2734 memset (ecs, 0, sizeof (*ecs));
2735
ec9499be 2736 overlay_cache_invalid = 1;
ec9499be 2737
9a4105ab 2738 if (deprecated_target_wait_hook)
47608cb1 2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2740 else
47608cb1 2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2742
f00150c9 2743 if (debug_infrun)
223698f8 2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2745
29f49a6a
PA
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
cd0fc7c3
SS
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
c906108c 2753
29f49a6a
PA
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
cd0fc7c3
SS
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
4e1c45ea 2760
cd0fc7c3
SS
2761 do_cleanups (old_cleanups);
2762}
c906108c 2763
1777feb0 2764/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2765 event loop whenever a change of state is detected on the file
1777feb0
MS
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
1777feb0 2771 necessary cleanups. */
43ff13b4
JM
2772
2773void
fba45db2 2774fetch_inferior_event (void *client_data)
43ff13b4 2775{
0d1e5fa7 2776 struct execution_control_state ecss;
a474d7c2 2777 struct execution_control_state *ecs = &ecss;
4f8d22e3 2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2779 struct cleanup *ts_old_chain;
4f8d22e3 2780 int was_sync = sync_execution;
0f641c01 2781 int cmd_done = 0;
43ff13b4 2782
0d1e5fa7
PA
2783 memset (ecs, 0, sizeof (*ecs));
2784
c5187ac6
PA
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
e6e4e701 2792 set_current_traceframe (-1);
c5187ac6
PA
2793 }
2794
4f8d22e3
PA
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
ec9499be 2802 overlay_cache_invalid = 1;
3dd5b83d 2803
32231432
PA
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
9a4105ab 2807 if (deprecated_target_wait_hook)
a474d7c2 2808 ecs->ptid =
47608cb1 2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2810 else
47608cb1 2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2812
f00150c9 2813 if (debug_infrun)
223698f8 2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2815
29f49a6a
PA
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
353d1d73
JK
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
43ff13b4 2828 /* Now figure out what to do with the result of the result. */
a474d7c2 2829 handle_inferior_event (ecs);
43ff13b4 2830
a474d7c2 2831 if (!ecs->wait_some_more)
43ff13b4 2832 {
d6b48e9c
PA
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
4e1c45ea 2835 delete_step_thread_step_resume_breakpoint ();
f107f563 2836
d6b48e9c 2837 /* We may not find an inferior if this was a process exit. */
16c381f0 2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2839 normal_stop ();
2840
af679fd0 2841 if (target_has_execution
0e5bf2a8 2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
16c381f0 2846 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
0f641c01
PA
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
43ff13b4 2853 }
4f8d22e3 2854
29f49a6a
PA
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
4f8d22e3
PA
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
b4a14fd0 2864 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2865 display_gdb_prompt (0);
0f641c01
PA
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2873}
2874
edb3359d
DJ
2875/* Record the frame and location we're currently stepping through. */
2876void
2877set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878{
2879 struct thread_info *tp = inferior_thread ();
2880
16c381f0
JK
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886}
2887
0d1e5fa7
PA
2888/* Clear context switchable stepping state. */
2889
2890void
4e1c45ea 2891init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2892{
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2895}
2896
e02bc4cc 2897/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2901
2902void
488f131b 2903get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2904{
39f77062 2905 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2906 *status = target_last_waitstatus;
2907}
2908
ac264b3b
MS
2909void
2910nullify_last_target_wait_ptid (void)
2911{
2912 target_last_wait_ptid = minus_one_ptid;
2913}
2914
dcf4fbde 2915/* Switch thread contexts. */
dd80620e
MS
2916
2917static void
0d1e5fa7 2918context_switch (ptid_t ptid)
dd80620e 2919{
4b51d87b 2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2925 target_pid_to_str (ptid));
fd48f117
DJ
2926 }
2927
0d1e5fa7 2928 switch_to_thread (ptid);
dd80620e
MS
2929}
2930
4fa8626c
DJ
2931static void
2932adjust_pc_after_break (struct execution_control_state *ecs)
2933{
24a73cce
UW
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
6c95b8df 2936 struct address_space *aspace;
8aad930b 2937 CORE_ADDR breakpoint_pc;
4fa8626c 2938
4fa8626c
DJ
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
9709f61c
DJ
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
8fb3e588 2946
4fa8626c
DJ
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
8fb3e588 2953
e6cf7916
UW
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
a493e3e2 2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2964 return;
2965
4058b839
PA
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
24a73cce
UW
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
6c95b8df
PA
3002 aspace = get_regcache_aspace (regcache);
3003
8aad930b
AC
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
515630c5
UW
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3008
1c5cfe86
PA
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
6c95b8df
PA
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3019 {
77f9e713 3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3021
96429cc8 3022 if (RECORD_IS_USED)
77f9e713 3023 record_full_gdb_operation_disable_set ();
96429cc8 3024
1c0fdd0e
UW
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3047 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3048
77f9e713 3049 do_cleanups (old_cleanups);
8aad930b 3050 }
4fa8626c
DJ
3051}
3052
7a76f5b8 3053static void
0d1e5fa7
PA
3054init_infwait_state (void)
3055{
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058}
3059
edb3359d
DJ
3060static int
3061stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062{
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074}
3075
a96d9b2e
SDJ
3076/* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
ca2163eb 3080
a96d9b2e 3081static int
ca2163eb 3082handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3083{
ca2163eb 3084 struct regcache *regcache;
ca2163eb
PA
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3091 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3092 stop_pc = regcache_read_pc (regcache);
3093
a96d9b2e
SDJ
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
ab04a2af
TT
3097 enum bpstat_signal_value sval;
3098
a96d9b2e
SDJ
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
a96d9b2e 3102
16c381f0 3103 ecs->event_thread->control.stop_bpstat
6c95b8df 3104 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3105 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3106
427cd150
TT
3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3108 GDB_SIGNAL_TRAP);
ab04a2af 3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3110
ca2163eb
PA
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
a493e3e2 3114 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3115 return 0;
3116 }
a96d9b2e 3117 }
ca2163eb
PA
3118
3119 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3120 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3121 keep_going (ecs);
3122 return 1;
a96d9b2e
SDJ
3123}
3124
7e324e48
GB
3125/* Lazily fill in the execution_control_state's stop_func_* fields. */
3126
3127static void
3128fill_in_stop_func (struct gdbarch *gdbarch,
3129 struct execution_control_state *ecs)
3130{
3131 if (!ecs->stop_func_filled_in)
3132 {
3133 /* Don't care about return value; stop_func_start and stop_func_name
3134 will both be 0 if it doesn't work. */
3135 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3136 &ecs->stop_func_start, &ecs->stop_func_end);
3137 ecs->stop_func_start
3138 += gdbarch_deprecated_function_start_offset (gdbarch);
3139
3140 ecs->stop_func_filled_in = 1;
3141 }
3142}
3143
cd0fc7c3
SS
3144/* Given an execution control state that has been freshly filled in
3145 by an event from the inferior, figure out what it means and take
3146 appropriate action. */
c906108c 3147
ec9499be 3148static void
96baa820 3149handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3150{
568d6575
UW
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
d983da9c
DJ
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
d6b48e9c
PA
3155 enum stop_kind stop_soon;
3156
28736962
PA
3157 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3158 {
3159 /* We had an event in the inferior, but we are not interested in
3160 handling it at this level. The lower layers have already
3161 done what needs to be done, if anything.
3162
3163 One of the possible circumstances for this is when the
3164 inferior produces output for the console. The inferior has
3165 not stopped, and we are ignoring the event. Another possible
3166 circumstance is any event which the lower level knows will be
3167 reported multiple times without an intervening resume. */
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3170 prepare_to_wait (ecs);
3171 return;
3172 }
3173
0e5bf2a8
PA
3174 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3175 && target_can_async_p () && !sync_execution)
3176 {
3177 /* There were no unwaited-for children left in the target, but,
3178 we're not synchronously waiting for events either. Just
3179 ignore. Otherwise, if we were running a synchronous
3180 execution command, we need to cancel it and give the user
3181 back the terminal. */
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3185 prepare_to_wait (ecs);
3186 return;
3187 }
3188
d6b48e9c 3189 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3190 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3191 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3192 {
3193 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3194
d6b48e9c 3195 gdb_assert (inf);
16c381f0 3196 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3197 }
3198 else
3199 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3200
1777feb0 3201 /* Cache the last pid/waitstatus. */
39f77062 3202 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3203 target_last_waitstatus = ecs->ws;
e02bc4cc 3204
ca005067 3205 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3206 stop_stack_dummy = STOP_NONE;
ca005067 3207
0e5bf2a8
PA
3208 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3209 {
3210 /* No unwaited-for children left. IOW, all resumed children
3211 have exited. */
3212 if (debug_infrun)
3213 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3214
3215 stop_print_frame = 0;
3216 stop_stepping (ecs);
3217 return;
3218 }
3219
8c90c137 3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3222 {
3223 ecs->event_thread = find_thread_ptid (ecs->ptid);
3224 /* If it's a new thread, add it to the thread database. */
3225 if (ecs->event_thread == NULL)
3226 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3227
3228 /* Disable range stepping. If the next step request could use a
3229 range, this will be end up re-enabled then. */
3230 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3231 }
88ed393a
JK
3232
3233 /* Dependent on valid ECS->EVENT_THREAD. */
3234 adjust_pc_after_break (ecs);
3235
3236 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3237 reinit_frame_cache ();
3238
28736962
PA
3239 breakpoint_retire_moribund ();
3240
2b009048
DJ
3241 /* First, distinguish signals caused by the debugger from signals
3242 that have to do with the program's own actions. Note that
3243 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244 on the operating system version. Here we detect when a SIGILL or
3245 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3246 something similar for SIGSEGV, since a SIGSEGV will be generated
3247 when we're trying to execute a breakpoint instruction on a
3248 non-executable stack. This happens for call dummy breakpoints
3249 for architectures like SPARC that place call dummies on the
3250 stack. */
2b009048 3251 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3252 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3255 {
de0a0249
UW
3256 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257
3258 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 regcache_read_pc (regcache)))
3260 {
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3264 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3265 }
2b009048
DJ
3266 }
3267
28736962
PA
3268 /* Mark the non-executing threads accordingly. In all-stop, all
3269 threads of all processes are stopped when we get any event
3270 reported. In non-stop mode, only the event thread stops. If
3271 we're handling a process exit in non-stop mode, there's nothing
3272 to do, as threads of the dead process are gone, and threads of
3273 any other process were left running. */
3274 if (!non_stop)
3275 set_executing (minus_one_ptid, 0);
3276 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3278 set_executing (ecs->ptid, 0);
8c90c137 3279
0d1e5fa7 3280 switch (infwait_state)
488f131b
JB
3281 {
3282 case infwait_thread_hop_state:
527159b7 3283 if (debug_infrun)
8a9de0e4 3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3285 break;
b83266a0 3286
488f131b 3287 case infwait_normal_state:
527159b7 3288 if (debug_infrun)
8a9de0e4 3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3290 break;
3291
3292 case infwait_step_watch_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: infwait_step_watch_state\n");
3296
3297 stepped_after_stopped_by_watchpoint = 1;
488f131b 3298 break;
b83266a0 3299
488f131b 3300 case infwait_nonstep_watch_state:
527159b7 3301 if (debug_infrun)
8a9de0e4
AC
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_nonstep_watch_state\n");
488f131b 3304 insert_breakpoints ();
c906108c 3305
488f131b
JB
3306 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3307 handle things like signals arriving and other things happening
3308 in combination correctly? */
3309 stepped_after_stopped_by_watchpoint = 1;
3310 break;
65e82032
AC
3311
3312 default:
e2e0b3e5 3313 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3314 }
ec9499be 3315
0d1e5fa7 3316 infwait_state = infwait_normal_state;
ec9499be 3317 waiton_ptid = pid_to_ptid (-1);
c906108c 3318
488f131b
JB
3319 switch (ecs->ws.kind)
3320 {
3321 case TARGET_WAITKIND_LOADED:
527159b7 3322 if (debug_infrun)
8a9de0e4 3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3324 /* Ignore gracefully during startup of the inferior, as it might
3325 be the shell which has just loaded some objects, otherwise
3326 add the symbols for the newly loaded objects. Also ignore at
3327 the beginning of an attach or remote session; we will query
3328 the full list of libraries once the connection is
3329 established. */
c0236d92 3330 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3331 {
edcc5120 3332 struct regcache *regcache;
ab04a2af 3333 enum bpstat_signal_value sval;
edcc5120
TT
3334
3335 if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 context_switch (ecs->ptid);
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3344
3345 sval
427cd150
TT
3346 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3347 GDB_SIGNAL_TRAP);
ab04a2af 3348 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3349
3350 if (!ecs->random_signal)
3351 {
3352 /* A catchpoint triggered. */
a493e3e2 3353 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3354 process_event_stop_test (ecs);
3355 return;
edcc5120 3356 }
488f131b 3357
b0f4b84b
DJ
3358 /* If requested, stop when the dynamic linker notifies
3359 gdb of events. This allows the user to get control
3360 and place breakpoints in initializer routines for
3361 dynamically loaded objects (among other things). */
a493e3e2 3362 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3363 if (stop_on_solib_events)
3364 {
55409f9d
DJ
3365 /* Make sure we print "Stopped due to solib-event" in
3366 normal_stop. */
3367 stop_print_frame = 1;
3368
b0f4b84b
DJ
3369 stop_stepping (ecs);
3370 return;
3371 }
488f131b 3372 }
b0f4b84b
DJ
3373
3374 /* If we are skipping through a shell, or through shared library
3375 loading that we aren't interested in, resume the program. If
3376 we're running the program normally, also resume. But stop if
3377 we're attaching or setting up a remote connection. */
3378 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3379 {
8b3ee56d
PA
3380 if (!ptid_equal (ecs->ptid, inferior_ptid))
3381 context_switch (ecs->ptid);
3382
74960c60
VP
3383 /* Loading of shared libraries might have changed breakpoint
3384 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3385 if (stop_soon == NO_STOP_QUIETLY
3386 && !breakpoints_always_inserted_mode ())
74960c60 3387 insert_breakpoints ();
a493e3e2 3388 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3389 prepare_to_wait (ecs);
3390 return;
3391 }
3392
3393 break;
c5aa993b 3394
488f131b 3395 case TARGET_WAITKIND_SPURIOUS:
527159b7 3396 if (debug_infrun)
8a9de0e4 3397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3398 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3399 context_switch (ecs->ptid);
a493e3e2 3400 resume (0, GDB_SIGNAL_0);
488f131b
JB
3401 prepare_to_wait (ecs);
3402 return;
c5aa993b 3403
488f131b 3404 case TARGET_WAITKIND_EXITED:
940c3c06 3405 case TARGET_WAITKIND_SIGNALLED:
527159b7 3406 if (debug_infrun)
940c3c06
PA
3407 {
3408 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: TARGET_WAITKIND_EXITED\n");
3411 else
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3414 }
3415
fb66883a 3416 inferior_ptid = ecs->ptid;
6c95b8df
PA
3417 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3418 set_current_program_space (current_inferior ()->pspace);
3419 handle_vfork_child_exec_or_exit (0);
1777feb0 3420 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3421
0c557179
SDJ
3422 /* Clearing any previous state of convenience variables. */
3423 clear_exit_convenience_vars ();
3424
940c3c06
PA
3425 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3426 {
3427 /* Record the exit code in the convenience variable $_exitcode, so
3428 that the user can inspect this again later. */
3429 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3430 (LONGEST) ecs->ws.value.integer);
3431
3432 /* Also record this in the inferior itself. */
3433 current_inferior ()->has_exit_code = 1;
3434 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3435
940c3c06
PA
3436 print_exited_reason (ecs->ws.value.integer);
3437 }
3438 else
0c557179
SDJ
3439 {
3440 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3442
3443 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3444 {
3445 /* Set the value of the internal variable $_exitsignal,
3446 which holds the signal uncaught by the inferior. */
3447 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3448 gdbarch_gdb_signal_to_target (gdbarch,
3449 ecs->ws.value.sig));
3450 }
3451 else
3452 {
3453 /* We don't have access to the target's method used for
3454 converting between signal numbers (GDB's internal
3455 representation <-> target's representation).
3456 Therefore, we cannot do a good job at displaying this
3457 information to the user. It's better to just warn
3458 her about it (if infrun debugging is enabled), and
3459 give up. */
3460 if (debug_infrun)
3461 fprintf_filtered (gdb_stdlog, _("\
3462Cannot fill $_exitsignal with the correct signal number.\n"));
3463 }
3464
3465 print_signal_exited_reason (ecs->ws.value.sig);
3466 }
8cf64490 3467
488f131b
JB
3468 gdb_flush (gdb_stdout);
3469 target_mourn_inferior ();
1c0fdd0e 3470 singlestep_breakpoints_inserted_p = 0;
d03285ec 3471 cancel_single_step_breakpoints ();
488f131b
JB
3472 stop_print_frame = 0;
3473 stop_stepping (ecs);
3474 return;
c5aa993b 3475
488f131b 3476 /* The following are the only cases in which we keep going;
1777feb0 3477 the above cases end in a continue or goto. */
488f131b 3478 case TARGET_WAITKIND_FORKED:
deb3b17b 3479 case TARGET_WAITKIND_VFORKED:
527159b7 3480 if (debug_infrun)
fed708ed
PA
3481 {
3482 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3483 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3484 else
3485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3486 }
c906108c 3487
e2d96639
YQ
3488 /* Check whether the inferior is displaced stepping. */
3489 {
3490 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3491 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3492 struct displaced_step_inferior_state *displaced
3493 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3494
3495 /* If checking displaced stepping is supported, and thread
3496 ecs->ptid is displaced stepping. */
3497 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3498 {
3499 struct inferior *parent_inf
3500 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3501 struct regcache *child_regcache;
3502 CORE_ADDR parent_pc;
3503
3504 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3505 indicating that the displaced stepping of syscall instruction
3506 has been done. Perform cleanup for parent process here. Note
3507 that this operation also cleans up the child process for vfork,
3508 because their pages are shared. */
a493e3e2 3509 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3510
3511 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3512 {
3513 /* Restore scratch pad for child process. */
3514 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3515 }
3516
3517 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3518 the child's PC is also within the scratchpad. Set the child's PC
3519 to the parent's PC value, which has already been fixed up.
3520 FIXME: we use the parent's aspace here, although we're touching
3521 the child, because the child hasn't been added to the inferior
3522 list yet at this point. */
3523
3524 child_regcache
3525 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3526 gdbarch,
3527 parent_inf->aspace);
3528 /* Read PC value of parent process. */
3529 parent_pc = regcache_read_pc (regcache);
3530
3531 if (debug_displaced)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "displaced: write child pc from %s to %s\n",
3534 paddress (gdbarch,
3535 regcache_read_pc (child_regcache)),
3536 paddress (gdbarch, parent_pc));
3537
3538 regcache_write_pc (child_regcache, parent_pc);
3539 }
3540 }
3541
5a2901d9 3542 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3543 context_switch (ecs->ptid);
5a2901d9 3544
b242c3c2
PA
3545 /* Immediately detach breakpoints from the child before there's
3546 any chance of letting the user delete breakpoints from the
3547 breakpoint lists. If we don't do this early, it's easy to
3548 leave left over traps in the child, vis: "break foo; catch
3549 fork; c; <fork>; del; c; <child calls foo>". We only follow
3550 the fork on the last `continue', and by that time the
3551 breakpoint at "foo" is long gone from the breakpoint table.
3552 If we vforked, then we don't need to unpatch here, since both
3553 parent and child are sharing the same memory pages; we'll
3554 need to unpatch at follow/detach time instead to be certain
3555 that new breakpoints added between catchpoint hit time and
3556 vfork follow are detached. */
3557 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3558 {
b242c3c2
PA
3559 /* This won't actually modify the breakpoint list, but will
3560 physically remove the breakpoints from the child. */
d80ee84f 3561 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3562 }
3563
d03285ec
UW
3564 if (singlestep_breakpoints_inserted_p)
3565 {
1777feb0 3566 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3567 remove_single_step_breakpoints ();
3568 singlestep_breakpoints_inserted_p = 0;
3569 }
3570
e58b0e63
PA
3571 /* In case the event is caught by a catchpoint, remember that
3572 the event is to be followed at the next resume of the thread,
3573 and not immediately. */
3574 ecs->event_thread->pending_follow = ecs->ws;
3575
fb14de7b 3576 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3577
16c381f0 3578 ecs->event_thread->control.stop_bpstat
6c95b8df 3579 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3580 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3581
67822962
PA
3582 /* Note that we're interested in knowing the bpstat actually
3583 causes a stop, not just if it may explain the signal.
3584 Software watchpoints, for example, always appear in the
3585 bpstat. */
16c381f0
JK
3586 ecs->random_signal
3587 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3588
3589 /* If no catchpoint triggered for this, then keep going. */
3590 if (ecs->random_signal)
3591 {
6c95b8df
PA
3592 ptid_t parent;
3593 ptid_t child;
e58b0e63 3594 int should_resume;
3e43a32a
MS
3595 int follow_child
3596 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3597
a493e3e2 3598 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3599
3600 should_resume = follow_fork ();
3601
6c95b8df
PA
3602 parent = ecs->ptid;
3603 child = ecs->ws.value.related_pid;
3604
3605 /* In non-stop mode, also resume the other branch. */
3606 if (non_stop && !detach_fork)
3607 {
3608 if (follow_child)
3609 switch_to_thread (parent);
3610 else
3611 switch_to_thread (child);
3612
3613 ecs->event_thread = inferior_thread ();
3614 ecs->ptid = inferior_ptid;
3615 keep_going (ecs);
3616 }
3617
3618 if (follow_child)
3619 switch_to_thread (child);
3620 else
3621 switch_to_thread (parent);
3622
e58b0e63
PA
3623 ecs->event_thread = inferior_thread ();
3624 ecs->ptid = inferior_ptid;
3625
3626 if (should_resume)
3627 keep_going (ecs);
3628 else
3629 stop_stepping (ecs);
04e68871
DJ
3630 return;
3631 }
a493e3e2 3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3633 process_event_stop_test (ecs);
3634 return;
488f131b 3635
6c95b8df
PA
3636 case TARGET_WAITKIND_VFORK_DONE:
3637 /* Done with the shared memory region. Re-insert breakpoints in
3638 the parent, and keep going. */
3639
3640 if (debug_infrun)
3e43a32a
MS
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3643
3644 if (!ptid_equal (ecs->ptid, inferior_ptid))
3645 context_switch (ecs->ptid);
3646
3647 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3648 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3649 /* This also takes care of reinserting breakpoints in the
3650 previously locked inferior. */
3651 keep_going (ecs);
3652 return;
3653
488f131b 3654 case TARGET_WAITKIND_EXECD:
527159b7 3655 if (debug_infrun)
fc5261f2 3656 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3657
5a2901d9 3658 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3659 context_switch (ecs->ptid);
5a2901d9 3660
d03285ec
UW
3661 singlestep_breakpoints_inserted_p = 0;
3662 cancel_single_step_breakpoints ();
3663
fb14de7b 3664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3665
6c95b8df
PA
3666 /* Do whatever is necessary to the parent branch of the vfork. */
3667 handle_vfork_child_exec_or_exit (1);
3668
795e548f
PA
3669 /* This causes the eventpoints and symbol table to be reset.
3670 Must do this now, before trying to determine whether to
3671 stop. */
71b43ef8 3672 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3673
16c381f0 3674 ecs->event_thread->control.stop_bpstat
6c95b8df 3675 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3676 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3677 ecs->random_signal
427cd150
TT
3678 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3679 GDB_SIGNAL_TRAP)
ab04a2af 3680 == BPSTAT_SIGNAL_NO);
795e548f 3681
71b43ef8
PA
3682 /* Note that this may be referenced from inside
3683 bpstat_stop_status above, through inferior_has_execd. */
3684 xfree (ecs->ws.value.execd_pathname);
3685 ecs->ws.value.execd_pathname = NULL;
3686
04e68871
DJ
3687 /* If no catchpoint triggered for this, then keep going. */
3688 if (ecs->random_signal)
3689 {
a493e3e2 3690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3691 keep_going (ecs);
3692 return;
3693 }
a493e3e2 3694 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3695 process_event_stop_test (ecs);
3696 return;
488f131b 3697
b4dc5ffa
MK
3698 /* Be careful not to try to gather much state about a thread
3699 that's in a syscall. It's frequently a losing proposition. */
488f131b 3700 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3701 if (debug_infrun)
3e43a32a
MS
3702 fprintf_unfiltered (gdb_stdlog,
3703 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3704 /* Getting the current syscall number. */
94c57d6a
PA
3705 if (handle_syscall_event (ecs) == 0)
3706 process_event_stop_test (ecs);
3707 return;
c906108c 3708
488f131b
JB
3709 /* Before examining the threads further, step this thread to
3710 get it entirely out of the syscall. (We get notice of the
3711 event when the thread is just on the verge of exiting a
3712 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3713 into user code.) */
488f131b 3714 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3715 if (debug_infrun)
3e43a32a
MS
3716 fprintf_unfiltered (gdb_stdlog,
3717 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3718 if (handle_syscall_event (ecs) == 0)
3719 process_event_stop_test (ecs);
3720 return;
c906108c 3721
488f131b 3722 case TARGET_WAITKIND_STOPPED:
527159b7 3723 if (debug_infrun)
8a9de0e4 3724 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3725 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3726 break;
c906108c 3727
b2175913 3728 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3729 if (debug_infrun)
3730 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3731 /* Reverse execution: target ran out of history info. */
eab402df
PA
3732
3733 /* Pull the single step breakpoints out of the target. */
3734 if (singlestep_breakpoints_inserted_p)
3735 {
3736 if (!ptid_equal (ecs->ptid, inferior_ptid))
3737 context_switch (ecs->ptid);
3738 remove_single_step_breakpoints ();
3739 singlestep_breakpoints_inserted_p = 0;
3740 }
fb14de7b 3741 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3742 print_no_history_reason ();
b2175913
MS
3743 stop_stepping (ecs);
3744 return;
488f131b 3745 }
c906108c 3746
2020b7ab 3747 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3748 {
3749 /* Do we need to clean up the state of a thread that has
3750 completed a displaced single-step? (Doing so usually affects
3751 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3752 displaced_step_fixup (ecs->ptid,
3753 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3754
3755 /* If we either finished a single-step or hit a breakpoint, but
3756 the user wanted this thread to be stopped, pretend we got a
3757 SIG0 (generic unsignaled stop). */
3758
3759 if (ecs->event_thread->stop_requested
a493e3e2
PA
3760 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3761 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3762 }
237fc4c9 3763
515630c5 3764 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3765
527159b7 3766 if (debug_infrun)
237fc4c9 3767 {
5af949e3
UW
3768 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3770 struct cleanup *old_chain = save_inferior_ptid ();
3771
3772 inferior_ptid = ecs->ptid;
5af949e3
UW
3773
3774 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3775 paddress (gdbarch, stop_pc));
d92524f1 3776 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3777 {
3778 CORE_ADDR addr;
abbb1732 3779
237fc4c9
PA
3780 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3781
3782 if (target_stopped_data_address (&current_target, &addr))
3783 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3784 "infrun: stopped data address = %s\n",
3785 paddress (gdbarch, addr));
237fc4c9
PA
3786 else
3787 fprintf_unfiltered (gdb_stdlog,
3788 "infrun: (no data address available)\n");
3789 }
7f82dfc7
JK
3790
3791 do_cleanups (old_chain);
237fc4c9 3792 }
527159b7 3793
9f976b41
DJ
3794 if (stepping_past_singlestep_breakpoint)
3795 {
1c0fdd0e 3796 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3797 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3798 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3799
3800 stepping_past_singlestep_breakpoint = 0;
3801
3802 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3803 breakpoint, or stopped for some other reason. It would be nice if
3804 we could tell, but we can't reliably. */
a493e3e2 3805 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3806 {
527159b7 3807 if (debug_infrun)
3e43a32a
MS
3808 fprintf_unfiltered (gdb_stdlog,
3809 "infrun: stepping_past_"
3810 "singlestep_breakpoint\n");
9f976b41 3811 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3812 if (!ptid_equal (ecs->ptid, inferior_ptid))
3813 context_switch (ecs->ptid);
e0cd558a 3814 remove_single_step_breakpoints ();
9f976b41
DJ
3815 singlestep_breakpoints_inserted_p = 0;
3816
16c381f0 3817 ecs->event_thread->control.trap_expected = 0;
9f976b41 3818
0d1e5fa7 3819 context_switch (saved_singlestep_ptid);
9a4105ab 3820 if (deprecated_context_hook)
de9f1b68 3821 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3822
a493e3e2 3823 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3824 prepare_to_wait (ecs);
3825 return;
3826 }
3827 }
3828
ca67fcb8 3829 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3830 {
94cc34af
PA
3831 /* In non-stop mode, there's never a deferred_step_ptid set. */
3832 gdb_assert (!non_stop);
3833
6a6b96b9
UW
3834 /* If we stopped for some other reason than single-stepping, ignore
3835 the fact that we were supposed to switch back. */
a493e3e2 3836 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3837 {
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3840 "infrun: handling deferred step\n");
6a6b96b9
UW
3841
3842 /* Pull the single step breakpoints out of the target. */
3843 if (singlestep_breakpoints_inserted_p)
3844 {
8b3ee56d
PA
3845 if (!ptid_equal (ecs->ptid, inferior_ptid))
3846 context_switch (ecs->ptid);
6a6b96b9
UW
3847 remove_single_step_breakpoints ();
3848 singlestep_breakpoints_inserted_p = 0;
3849 }
3850
cd3da28e
PA
3851 ecs->event_thread->control.trap_expected = 0;
3852
d25f45d9 3853 context_switch (deferred_step_ptid);
ca67fcb8 3854 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3855 /* Suppress spurious "Switching to ..." message. */
3856 previous_inferior_ptid = inferior_ptid;
3857
a493e3e2 3858 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3859 prepare_to_wait (ecs);
3860 return;
3861 }
ca67fcb8
VP
3862
3863 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3864 }
3865
488f131b
JB
3866 /* See if a thread hit a thread-specific breakpoint that was meant for
3867 another thread. If so, then step that thread past the breakpoint,
3868 and continue it. */
3869
a493e3e2 3870 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3871 {
9f976b41 3872 int thread_hop_needed = 0;
cf00dfa7
VP
3873 struct address_space *aspace =
3874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3875
f8d40ec8 3876 /* Check if a regular breakpoint has been hit before checking
1777feb0 3877 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3878 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3879 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3880 {
6c95b8df 3881 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3882 thread_hop_needed = 1;
3883 }
1c0fdd0e 3884 else if (singlestep_breakpoints_inserted_p)
9f976b41 3885 {
fd48f117
DJ
3886 /* We have not context switched yet, so this should be true
3887 no matter which thread hit the singlestep breakpoint. */
3888 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3891 "trap for %s\n",
3892 target_pid_to_str (ecs->ptid));
3893
9f976b41
DJ
3894 /* The call to in_thread_list is necessary because PTIDs sometimes
3895 change when we go from single-threaded to multi-threaded. If
3896 the singlestep_ptid is still in the list, assume that it is
3897 really different from ecs->ptid. */
3898 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3899 && in_thread_list (singlestep_ptid))
3900 {
fd48f117
DJ
3901 /* If the PC of the thread we were trying to single-step
3902 has changed, discard this event (which we were going
3903 to ignore anyway), and pretend we saw that thread
3904 trap. This prevents us continuously moving the
3905 single-step breakpoint forward, one instruction at a
3906 time. If the PC has changed, then the thread we were
3907 trying to single-step has trapped or been signalled,
3908 but the event has not been reported to GDB yet.
3909
3910 There might be some cases where this loses signal
3911 information, if a signal has arrived at exactly the
3912 same time that the PC changed, but this is the best
3913 we can do with the information available. Perhaps we
3914 should arrange to report all events for all threads
3915 when they stop, or to re-poll the remote looking for
3916 this particular thread (i.e. temporarily enable
3917 schedlock). */
515630c5
UW
3918
3919 CORE_ADDR new_singlestep_pc
3920 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3921
3922 if (new_singlestep_pc != singlestep_pc)
fd48f117 3923 {
2ea28649 3924 enum gdb_signal stop_signal;
2020b7ab 3925
fd48f117
DJ
3926 if (debug_infrun)
3927 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3928 " but expected thread advanced also\n");
3929
3930 /* The current context still belongs to
3931 singlestep_ptid. Don't swap here, since that's
3932 the context we want to use. Just fudge our
3933 state and continue. */
16c381f0 3934 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3935 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3936 ecs->ptid = singlestep_ptid;
e09875d4 3937 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3938 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3939 stop_pc = new_singlestep_pc;
fd48f117
DJ
3940 }
3941 else
3942 {
3943 if (debug_infrun)
3944 fprintf_unfiltered (gdb_stdlog,
3945 "infrun: unexpected thread\n");
3946
3947 thread_hop_needed = 1;
3948 stepping_past_singlestep_breakpoint = 1;
3949 saved_singlestep_ptid = singlestep_ptid;
3950 }
9f976b41
DJ
3951 }
3952 }
3953
3954 if (thread_hop_needed)
8fb3e588 3955 {
9f5a595d 3956 struct regcache *thread_regcache;
237fc4c9 3957 int remove_status = 0;
8fb3e588 3958
527159b7 3959 if (debug_infrun)
8a9de0e4 3960 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3961
b3444185
PA
3962 /* Switch context before touching inferior memory, the
3963 previous thread may have exited. */
3964 if (!ptid_equal (inferior_ptid, ecs->ptid))
3965 context_switch (ecs->ptid);
3966
8fb3e588 3967 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3968 Just continue. */
8fb3e588 3969
1c0fdd0e 3970 if (singlestep_breakpoints_inserted_p)
488f131b 3971 {
1777feb0 3972 /* Pull the single step breakpoints out of the target. */
e0cd558a 3973 remove_single_step_breakpoints ();
8fb3e588
AC
3974 singlestep_breakpoints_inserted_p = 0;
3975 }
3976
237fc4c9
PA
3977 /* If the arch can displace step, don't remove the
3978 breakpoints. */
9f5a595d
UW
3979 thread_regcache = get_thread_regcache (ecs->ptid);
3980 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3981 remove_status = remove_breakpoints ();
3982
8fb3e588
AC
3983 /* Did we fail to remove breakpoints? If so, try
3984 to set the PC past the bp. (There's at least
3985 one situation in which we can fail to remove
3986 the bp's: On HP-UX's that use ttrace, we can't
3987 change the address space of a vforking child
3988 process until the child exits (well, okay, not
1777feb0 3989 then either :-) or execs. */
8fb3e588 3990 if (remove_status != 0)
9d9cd7ac 3991 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3992 else
3993 { /* Single step */
94cc34af
PA
3994 if (!non_stop)
3995 {
3996 /* Only need to require the next event from this
3997 thread in all-stop mode. */
3998 waiton_ptid = ecs->ptid;
3999 infwait_state = infwait_thread_hop_state;
4000 }
8fb3e588 4001
4e1c45ea 4002 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4003 keep_going (ecs);
8fb3e588
AC
4004 return;
4005 }
488f131b
JB
4006 }
4007 }
c906108c 4008
488f131b 4009 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4010 so, then switch to that thread. */
4011 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4012 {
527159b7 4013 if (debug_infrun)
8a9de0e4 4014 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4015
0d1e5fa7 4016 context_switch (ecs->ptid);
c5aa993b 4017
9a4105ab
AC
4018 if (deprecated_context_hook)
4019 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4020 }
c906108c 4021
568d6575
UW
4022 /* At this point, get hold of the now-current thread's frame. */
4023 frame = get_current_frame ();
4024 gdbarch = get_frame_arch (frame);
4025
1c0fdd0e 4026 if (singlestep_breakpoints_inserted_p)
488f131b 4027 {
1777feb0 4028 /* Pull the single step breakpoints out of the target. */
e0cd558a 4029 remove_single_step_breakpoints ();
488f131b
JB
4030 singlestep_breakpoints_inserted_p = 0;
4031 }
c906108c 4032
d983da9c
DJ
4033 if (stepped_after_stopped_by_watchpoint)
4034 stopped_by_watchpoint = 0;
4035 else
4036 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4037
4038 /* If necessary, step over this watchpoint. We'll be back to display
4039 it in a moment. */
4040 if (stopped_by_watchpoint
d92524f1 4041 && (target_have_steppable_watchpoint
568d6575 4042 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4043 {
488f131b
JB
4044 /* At this point, we are stopped at an instruction which has
4045 attempted to write to a piece of memory under control of
4046 a watchpoint. The instruction hasn't actually executed
4047 yet. If we were to evaluate the watchpoint expression
4048 now, we would get the old value, and therefore no change
4049 would seem to have occurred.
4050
4051 In order to make watchpoints work `right', we really need
4052 to complete the memory write, and then evaluate the
d983da9c
DJ
4053 watchpoint expression. We do this by single-stepping the
4054 target.
4055
4056 It may not be necessary to disable the watchpoint to stop over
4057 it. For example, the PA can (with some kernel cooperation)
4058 single step over a watchpoint without disabling the watchpoint.
4059
4060 It is far more common to need to disable a watchpoint to step
4061 the inferior over it. If we have non-steppable watchpoints,
4062 we must disable the current watchpoint; it's simplest to
4063 disable all watchpoints and breakpoints. */
2facfe5c
DD
4064 int hw_step = 1;
4065
d92524f1 4066 if (!target_have_steppable_watchpoint)
2455069d
UW
4067 {
4068 remove_breakpoints ();
4069 /* See comment in resume why we need to stop bypassing signals
4070 while breakpoints have been removed. */
4071 target_pass_signals (0, NULL);
4072 }
2facfe5c 4073 /* Single step */
568d6575 4074 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4075 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4076 waiton_ptid = ecs->ptid;
d92524f1 4077 if (target_have_steppable_watchpoint)
0d1e5fa7 4078 infwait_state = infwait_step_watch_state;
d983da9c 4079 else
0d1e5fa7 4080 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4081 prepare_to_wait (ecs);
4082 return;
4083 }
4084
4e1c45ea 4085 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4086 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4087 ecs->event_thread->control.stop_step = 0;
488f131b 4088 stop_print_frame = 1;
488f131b 4089 stopped_by_random_signal = 0;
488f131b 4090
edb3359d
DJ
4091 /* Hide inlined functions starting here, unless we just performed stepi or
4092 nexti. After stepi and nexti, always show the innermost frame (not any
4093 inline function call sites). */
16c381f0 4094 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4095 {
4096 struct address_space *aspace =
4097 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4098
4099 /* skip_inline_frames is expensive, so we avoid it if we can
4100 determine that the address is one where functions cannot have
4101 been inlined. This improves performance with inferiors that
4102 load a lot of shared libraries, because the solib event
4103 breakpoint is defined as the address of a function (i.e. not
4104 inline). Note that we have to check the previous PC as well
4105 as the current one to catch cases when we have just
4106 single-stepped off a breakpoint prior to reinstating it.
4107 Note that we're assuming that the code we single-step to is
4108 not inline, but that's not definitive: there's nothing
4109 preventing the event breakpoint function from containing
4110 inlined code, and the single-step ending up there. If the
4111 user had set a breakpoint on that inlined code, the missing
4112 skip_inline_frames call would break things. Fortunately
4113 that's an extremely unlikely scenario. */
09ac7c10 4114 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4115 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4116 && ecs->event_thread->control.trap_expected
4117 && pc_at_non_inline_function (aspace,
4118 ecs->event_thread->prev_pc,
09ac7c10 4119 &ecs->ws)))
1c5a993e
MR
4120 {
4121 skip_inline_frames (ecs->ptid);
4122
4123 /* Re-fetch current thread's frame in case that invalidated
4124 the frame cache. */
4125 frame = get_current_frame ();
4126 gdbarch = get_frame_arch (frame);
4127 }
0574c78f 4128 }
edb3359d 4129
a493e3e2 4130 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4131 && ecs->event_thread->control.trap_expected
568d6575 4132 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4133 && currently_stepping (ecs->event_thread))
3352ef37 4134 {
b50d7442 4135 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4136 also on an instruction that needs to be stepped multiple
1777feb0 4137 times before it's been fully executing. E.g., architectures
3352ef37
AC
4138 with a delay slot. It needs to be stepped twice, once for
4139 the instruction and once for the delay slot. */
4140 int step_through_delay
568d6575 4141 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4142
527159b7 4143 if (debug_infrun && step_through_delay)
8a9de0e4 4144 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4145 if (ecs->event_thread->control.step_range_end == 0
4146 && step_through_delay)
3352ef37
AC
4147 {
4148 /* The user issued a continue when stopped at a breakpoint.
4149 Set up for another trap and get out of here. */
4e1c45ea 4150 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4151 keep_going (ecs);
4152 return;
4153 }
4154 else if (step_through_delay)
4155 {
4156 /* The user issued a step when stopped at a breakpoint.
4157 Maybe we should stop, maybe we should not - the delay
4158 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4159 case, don't decide that here, just set
4160 ecs->stepping_over_breakpoint, making sure we
4161 single-step again before breakpoints are re-inserted. */
4e1c45ea 4162 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4163 }
4164 }
4165
488f131b
JB
4166 /* Look at the cause of the stop, and decide what to do.
4167 The alternatives are:
0d1e5fa7
PA
4168 1) stop_stepping and return; to really stop and return to the debugger,
4169 2) keep_going and return to start up again
4e1c45ea 4170 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4171 3) set ecs->random_signal to 1, and the decision between 1 and 2
4172 will be made according to the signal handling tables. */
4173
a493e3e2 4174 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4175 && stop_after_trap)
488f131b 4176 {
ab04a2af
TT
4177 if (debug_infrun)
4178 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4179 stop_print_frame = 0;
4180 stop_stepping (ecs);
4181 return;
4182 }
488f131b 4183
ab04a2af
TT
4184 /* This is originated from start_remote(), start_inferior() and
4185 shared libraries hook functions. */
4186 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4187 {
4188 if (debug_infrun)
4189 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4190 stop_stepping (ecs);
4191 return;
4192 }
c54cfec8 4193
ab04a2af
TT
4194 /* This originates from attach_command(). We need to overwrite
4195 the stop_signal here, because some kernels don't ignore a
4196 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4197 See more comments in inferior.h. On the other hand, if we
4198 get a non-SIGSTOP, report it to the user - assume the backend
4199 will handle the SIGSTOP if it should show up later.
4200
4201 Also consider that the attach is complete when we see a
4202 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4203 target extended-remote report it instead of a SIGSTOP
4204 (e.g. gdbserver). We already rely on SIGTRAP being our
4205 signal, so this is no exception.
4206
4207 Also consider that the attach is complete when we see a
4208 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4209 the target to stop all threads of the inferior, in case the
4210 low level attach operation doesn't stop them implicitly. If
4211 they weren't stopped implicitly, then the stub will report a
4212 GDB_SIGNAL_0, meaning: stopped for no particular reason
4213 other than GDB's request. */
4214 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4215 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4216 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4217 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4218 {
4219 stop_stepping (ecs);
4220 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4221 return;
4222 }
6c95b8df 4223
ab04a2af
TT
4224 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4225 handles this event. */
4226 ecs->event_thread->control.stop_bpstat
4227 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4228 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4229
ab04a2af
TT
4230 /* Following in case break condition called a
4231 function. */
4232 stop_print_frame = 1;
73dd234f 4233
ab04a2af
TT
4234 /* This is where we handle "moribund" watchpoints. Unlike
4235 software breakpoints traps, hardware watchpoint traps are
4236 always distinguishable from random traps. If no high-level
4237 watchpoint is associated with the reported stop data address
4238 anymore, then the bpstat does not explain the signal ---
4239 simply make sure to ignore it if `stopped_by_watchpoint' is
4240 set. */
4241
4242 if (debug_infrun
4243 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4244 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4245 GDB_SIGNAL_TRAP)
ab04a2af
TT
4246 == BPSTAT_SIGNAL_NO)
4247 && stopped_by_watchpoint)
4248 fprintf_unfiltered (gdb_stdlog,
4249 "infrun: no user watchpoint explains "
4250 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4251
ab04a2af
TT
4252 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4253 at one stage in the past included checks for an inferior
4254 function call's call dummy's return breakpoint. The original
4255 comment, that went with the test, read:
03cebad2 4256
ab04a2af
TT
4257 ``End of a stack dummy. Some systems (e.g. Sony news) give
4258 another signal besides SIGTRAP, so check here as well as
4259 above.''
73dd234f 4260
ab04a2af
TT
4261 If someone ever tries to get call dummys on a
4262 non-executable stack to work (where the target would stop
4263 with something like a SIGSEGV), then those tests might need
4264 to be re-instated. Given, however, that the tests were only
4265 enabled when momentary breakpoints were not being used, I
4266 suspect that it won't be the case.
488f131b 4267
ab04a2af
TT
4268 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4269 be necessary for call dummies on a non-executable stack on
4270 SPARC. */
488f131b 4271
ab04a2af
TT
4272 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4273 ecs->random_signal
427cd150
TT
4274 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4275 GDB_SIGNAL_TRAP)
ab04a2af
TT
4276 != BPSTAT_SIGNAL_NO)
4277 || stopped_by_watchpoint
4278 || ecs->event_thread->control.trap_expected
4279 || (ecs->event_thread->control.step_range_end
4280 && (ecs->event_thread->control.step_resume_breakpoint
4281 == NULL)));
488f131b 4282 else
ab04a2af
TT
4283 {
4284 enum bpstat_signal_value sval;
4285
427cd150
TT
4286 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4287 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4288 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4289
4290 if (sval == BPSTAT_SIGNAL_HIDE)
4291 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4292 }
488f131b
JB
4293
4294 /* For the program's own signals, act according to
4295 the signal handling tables. */
4296
4297 if (ecs->random_signal)
4298 {
4299 /* Signal not for debugging purposes. */
4300 int printed = 0;
24291992 4301 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4302 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4303
527159b7 4304 if (debug_infrun)
c9737c08
PA
4305 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4306 gdb_signal_to_symbol_string (stop_signal));
527159b7 4307
488f131b
JB
4308 stopped_by_random_signal = 1;
4309
16c381f0 4310 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4311 {
4312 printed = 1;
4313 target_terminal_ours_for_output ();
16c381f0
JK
4314 print_signal_received_reason
4315 (ecs->event_thread->suspend.stop_signal);
488f131b 4316 }
252fbfc8
PA
4317 /* Always stop on signals if we're either just gaining control
4318 of the program, or the user explicitly requested this thread
4319 to remain stopped. */
d6b48e9c 4320 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4321 || ecs->event_thread->stop_requested
24291992 4322 || (!inf->detaching
16c381f0 4323 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4324 {
4325 stop_stepping (ecs);
4326 return;
4327 }
4328 /* If not going to stop, give terminal back
4329 if we took it away. */
4330 else if (printed)
4331 target_terminal_inferior ();
4332
4333 /* Clear the signal if it should not be passed. */
16c381f0 4334 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4335 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4336
fb14de7b 4337 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4338 && ecs->event_thread->control.trap_expected
8358c15c 4339 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4340 {
4341 /* We were just starting a new sequence, attempting to
4342 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4343 Instead this signal arrives. This signal will take us out
68f53502
AC
4344 of the stepping range so GDB needs to remember to, when
4345 the signal handler returns, resume stepping off that
4346 breakpoint. */
4347 /* To simplify things, "continue" is forced to use the same
4348 code paths as single-step - set a breakpoint at the
4349 signal return address and then, once hit, step off that
4350 breakpoint. */
237fc4c9
PA
4351 if (debug_infrun)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "infrun: signal arrived while stepping over "
4354 "breakpoint\n");
d3169d93 4355
2c03e5be 4356 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4357 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4359 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4360 keep_going (ecs);
4361 return;
68f53502 4362 }
9d799f85 4363
16c381f0 4364 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4365 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4366 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4367 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4368 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4369 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4370 {
4371 /* The inferior is about to take a signal that will take it
4372 out of the single step range. Set a breakpoint at the
4373 current PC (which is presumably where the signal handler
4374 will eventually return) and then allow the inferior to
4375 run free.
4376
4377 Note that this is only needed for a signal delivered
4378 while in the single-step range. Nested signals aren't a
4379 problem as they eventually all return. */
237fc4c9
PA
4380 if (debug_infrun)
4381 fprintf_unfiltered (gdb_stdlog,
4382 "infrun: signal may take us out of "
4383 "single-step range\n");
4384
2c03e5be 4385 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4386 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4387 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4388 keep_going (ecs);
4389 return;
d303a6c7 4390 }
9d799f85
AC
4391
4392 /* Note: step_resume_breakpoint may be non-NULL. This occures
4393 when either there's a nested signal, or when there's a
4394 pending signal enabled just as the signal handler returns
4395 (leaving the inferior at the step-resume-breakpoint without
4396 actually executing it). Either way continue until the
4397 breakpoint is really hit. */
c447ac0b
PA
4398
4399 if (!switch_back_to_stepped_thread (ecs))
4400 {
4401 if (debug_infrun)
4402 fprintf_unfiltered (gdb_stdlog,
4403 "infrun: random signal, keep going\n");
4404
4405 keep_going (ecs);
4406 }
4407 return;
488f131b 4408 }
94c57d6a
PA
4409
4410 process_event_stop_test (ecs);
4411}
4412
4413/* Come here when we've got some debug event / signal we can explain
4414 (IOW, not a random signal), and test whether it should cause a
4415 stop, or whether we should resume the inferior (transparently).
4416 E.g., could be a breakpoint whose condition evaluates false; we
4417 could be still stepping within the line; etc. */
4418
4419static void
4420process_event_stop_test (struct execution_control_state *ecs)
4421{
4422 struct symtab_and_line stop_pc_sal;
4423 struct frame_info *frame;
4424 struct gdbarch *gdbarch;
cdaa5b73
PA
4425 CORE_ADDR jmp_buf_pc;
4426 struct bpstat_what what;
94c57d6a 4427
cdaa5b73 4428 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4429
cdaa5b73
PA
4430 frame = get_current_frame ();
4431 gdbarch = get_frame_arch (frame);
fcf3daef 4432
cdaa5b73 4433 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4434
cdaa5b73
PA
4435 if (what.call_dummy)
4436 {
4437 stop_stack_dummy = what.call_dummy;
4438 }
186c406b 4439
cdaa5b73
PA
4440 /* If we hit an internal event that triggers symbol changes, the
4441 current frame will be invalidated within bpstat_what (e.g., if we
4442 hit an internal solib event). Re-fetch it. */
4443 frame = get_current_frame ();
4444 gdbarch = get_frame_arch (frame);
e2e4d78b 4445
cdaa5b73
PA
4446 switch (what.main_action)
4447 {
4448 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4449 /* If we hit the breakpoint at longjmp while stepping, we
4450 install a momentary breakpoint at the target of the
4451 jmp_buf. */
186c406b 4452
cdaa5b73
PA
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4456
cdaa5b73 4457 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4458
cdaa5b73
PA
4459 if (what.is_longjmp)
4460 {
4461 struct value *arg_value;
4462
4463 /* If we set the longjmp breakpoint via a SystemTap probe,
4464 then use it to extract the arguments. The destination PC
4465 is the third argument to the probe. */
4466 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4467 if (arg_value)
4468 jmp_buf_pc = value_as_address (arg_value);
4469 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4470 || !gdbarch_get_longjmp_target (gdbarch,
4471 frame, &jmp_buf_pc))
e2e4d78b 4472 {
cdaa5b73
PA
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog,
4475 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4476 "(!gdbarch_get_longjmp_target)\n");
4477 keep_going (ecs);
4478 return;
e2e4d78b 4479 }
e2e4d78b 4480
cdaa5b73
PA
4481 /* Insert a breakpoint at resume address. */
4482 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4483 }
4484 else
4485 check_exception_resume (ecs, frame);
4486 keep_going (ecs);
4487 return;
e81a37f7 4488
cdaa5b73
PA
4489 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4490 {
4491 struct frame_info *init_frame;
e81a37f7 4492
cdaa5b73 4493 /* There are several cases to consider.
c906108c 4494
cdaa5b73
PA
4495 1. The initiating frame no longer exists. In this case we
4496 must stop, because the exception or longjmp has gone too
4497 far.
2c03e5be 4498
cdaa5b73
PA
4499 2. The initiating frame exists, and is the same as the
4500 current frame. We stop, because the exception or longjmp
4501 has been caught.
2c03e5be 4502
cdaa5b73
PA
4503 3. The initiating frame exists and is different from the
4504 current frame. This means the exception or longjmp has
4505 been caught beneath the initiating frame, so keep going.
c906108c 4506
cdaa5b73
PA
4507 4. longjmp breakpoint has been placed just to protect
4508 against stale dummy frames and user is not interested in
4509 stopping around longjmps. */
c5aa993b 4510
cdaa5b73
PA
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog,
4513 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4514
cdaa5b73
PA
4515 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4516 != NULL);
4517 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4518
cdaa5b73
PA
4519 if (what.is_longjmp)
4520 {
4521 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4522
cdaa5b73 4523 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4524 {
cdaa5b73
PA
4525 /* Case 4. */
4526 keep_going (ecs);
4527 return;
e5ef252a 4528 }
cdaa5b73 4529 }
c5aa993b 4530
cdaa5b73 4531 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4532
cdaa5b73
PA
4533 if (init_frame)
4534 {
4535 struct frame_id current_id
4536 = get_frame_id (get_current_frame ());
4537 if (frame_id_eq (current_id,
4538 ecs->event_thread->initiating_frame))
4539 {
4540 /* Case 2. Fall through. */
4541 }
4542 else
4543 {
4544 /* Case 3. */
4545 keep_going (ecs);
4546 return;
4547 }
68f53502 4548 }
488f131b 4549
cdaa5b73
PA
4550 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4551 exists. */
4552 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4553
cdaa5b73
PA
4554 ecs->event_thread->control.stop_step = 1;
4555 print_end_stepping_range_reason ();
4556 stop_stepping (ecs);
4557 }
4558 return;
e5ef252a 4559
cdaa5b73
PA
4560 case BPSTAT_WHAT_SINGLE:
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4563 ecs->event_thread->stepping_over_breakpoint = 1;
4564 /* Still need to check other stuff, at least the case where we
4565 are stepping and step out of the right range. */
4566 break;
e5ef252a 4567
cdaa5b73
PA
4568 case BPSTAT_WHAT_STEP_RESUME:
4569 if (debug_infrun)
4570 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4571
cdaa5b73
PA
4572 delete_step_resume_breakpoint (ecs->event_thread);
4573 if (ecs->event_thread->control.proceed_to_finish
4574 && execution_direction == EXEC_REVERSE)
4575 {
4576 struct thread_info *tp = ecs->event_thread;
4577
4578 /* We are finishing a function in reverse, and just hit the
4579 step-resume breakpoint at the start address of the
4580 function, and we're almost there -- just need to back up
4581 by one more single-step, which should take us back to the
4582 function call. */
4583 tp->control.step_range_start = tp->control.step_range_end = 1;
4584 keep_going (ecs);
e5ef252a 4585 return;
cdaa5b73
PA
4586 }
4587 fill_in_stop_func (gdbarch, ecs);
4588 if (stop_pc == ecs->stop_func_start
4589 && execution_direction == EXEC_REVERSE)
4590 {
4591 /* We are stepping over a function call in reverse, and just
4592 hit the step-resume breakpoint at the start address of
4593 the function. Go back to single-stepping, which should
4594 take us back to the function call. */
4595 ecs->event_thread->stepping_over_breakpoint = 1;
4596 keep_going (ecs);
4597 return;
4598 }
4599 break;
e5ef252a 4600
cdaa5b73
PA
4601 case BPSTAT_WHAT_STOP_NOISY:
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4604 stop_print_frame = 1;
e5ef252a 4605
cdaa5b73
PA
4606 /* We are about to nuke the step_resume_breakpointt via the
4607 cleanup chain, so no need to worry about it here. */
e5ef252a 4608
cdaa5b73
PA
4609 stop_stepping (ecs);
4610 return;
e5ef252a 4611
cdaa5b73
PA
4612 case BPSTAT_WHAT_STOP_SILENT:
4613 if (debug_infrun)
4614 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4615 stop_print_frame = 0;
e5ef252a 4616
cdaa5b73
PA
4617 /* We are about to nuke the step_resume_breakpoin via the
4618 cleanup chain, so no need to worry about it here. */
e5ef252a 4619
cdaa5b73
PA
4620 stop_stepping (ecs);
4621 return;
4622
4623 case BPSTAT_WHAT_HP_STEP_RESUME:
4624 if (debug_infrun)
4625 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4626
4627 delete_step_resume_breakpoint (ecs->event_thread);
4628 if (ecs->event_thread->step_after_step_resume_breakpoint)
4629 {
4630 /* Back when the step-resume breakpoint was inserted, we
4631 were trying to single-step off a breakpoint. Go back to
4632 doing that. */
4633 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4634 ecs->event_thread->stepping_over_breakpoint = 1;
4635 keep_going (ecs);
4636 return;
e5ef252a 4637 }
cdaa5b73
PA
4638 break;
4639
4640 case BPSTAT_WHAT_KEEP_CHECKING:
4641 break;
e5ef252a 4642 }
c906108c 4643
cdaa5b73
PA
4644 /* We come here if we hit a breakpoint but should not stop for it.
4645 Possibly we also were stepping and should stop for that. So fall
4646 through and test for stepping. But, if not stepping, do not
4647 stop. */
c906108c 4648
a7212384
UW
4649 /* In all-stop mode, if we're currently stepping but have stopped in
4650 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4651 if (switch_back_to_stepped_thread (ecs))
4652 return;
776f04fa 4653
8358c15c 4654 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4655 {
527159b7 4656 if (debug_infrun)
d3169d93
DJ
4657 fprintf_unfiltered (gdb_stdlog,
4658 "infrun: step-resume breakpoint is inserted\n");
527159b7 4659
488f131b
JB
4660 /* Having a step-resume breakpoint overrides anything
4661 else having to do with stepping commands until
4662 that breakpoint is reached. */
488f131b
JB
4663 keep_going (ecs);
4664 return;
4665 }
c5aa993b 4666
16c381f0 4667 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4668 {
527159b7 4669 if (debug_infrun)
8a9de0e4 4670 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4671 /* Likewise if we aren't even stepping. */
488f131b
JB
4672 keep_going (ecs);
4673 return;
4674 }
c5aa993b 4675
4b7703ad
JB
4676 /* Re-fetch current thread's frame in case the code above caused
4677 the frame cache to be re-initialized, making our FRAME variable
4678 a dangling pointer. */
4679 frame = get_current_frame ();
628fe4e4 4680 gdbarch = get_frame_arch (frame);
7e324e48 4681 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4682
488f131b 4683 /* If stepping through a line, keep going if still within it.
c906108c 4684
488f131b
JB
4685 Note that step_range_end is the address of the first instruction
4686 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4687 within it!
4688
4689 Note also that during reverse execution, we may be stepping
4690 through a function epilogue and therefore must detect when
4691 the current-frame changes in the middle of a line. */
4692
ce4c476a 4693 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4694 && (execution_direction != EXEC_REVERSE
388a8562 4695 || frame_id_eq (get_frame_id (frame),
16c381f0 4696 ecs->event_thread->control.step_frame_id)))
488f131b 4697 {
527159b7 4698 if (debug_infrun)
5af949e3
UW
4699 fprintf_unfiltered
4700 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4701 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4702 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4703
c1e36e3e
PA
4704 /* Tentatively re-enable range stepping; `resume' disables it if
4705 necessary (e.g., if we're stepping over a breakpoint or we
4706 have software watchpoints). */
4707 ecs->event_thread->control.may_range_step = 1;
4708
b2175913
MS
4709 /* When stepping backward, stop at beginning of line range
4710 (unless it's the function entry point, in which case
4711 keep going back to the call point). */
16c381f0 4712 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4713 && stop_pc != ecs->stop_func_start
4714 && execution_direction == EXEC_REVERSE)
4715 {
16c381f0 4716 ecs->event_thread->control.stop_step = 1;
33d62d64 4717 print_end_stepping_range_reason ();
b2175913
MS
4718 stop_stepping (ecs);
4719 }
4720 else
4721 keep_going (ecs);
4722
488f131b
JB
4723 return;
4724 }
c5aa993b 4725
488f131b 4726 /* We stepped out of the stepping range. */
c906108c 4727
488f131b 4728 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4729 loader dynamic symbol resolution code...
4730
4731 EXEC_FORWARD: we keep on single stepping until we exit the run
4732 time loader code and reach the callee's address.
4733
4734 EXEC_REVERSE: we've already executed the callee (backward), and
4735 the runtime loader code is handled just like any other
4736 undebuggable function call. Now we need only keep stepping
4737 backward through the trampoline code, and that's handled further
4738 down, so there is nothing for us to do here. */
4739
4740 if (execution_direction != EXEC_REVERSE
16c381f0 4741 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4742 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4743 {
4c8c40e6 4744 CORE_ADDR pc_after_resolver =
568d6575 4745 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4746
527159b7 4747 if (debug_infrun)
3e43a32a
MS
4748 fprintf_unfiltered (gdb_stdlog,
4749 "infrun: stepped into dynsym resolve code\n");
527159b7 4750
488f131b
JB
4751 if (pc_after_resolver)
4752 {
4753 /* Set up a step-resume breakpoint at the address
4754 indicated by SKIP_SOLIB_RESOLVER. */
4755 struct symtab_and_line sr_sal;
abbb1732 4756
fe39c653 4757 init_sal (&sr_sal);
488f131b 4758 sr_sal.pc = pc_after_resolver;
6c95b8df 4759 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4760
a6d9a66e
UW
4761 insert_step_resume_breakpoint_at_sal (gdbarch,
4762 sr_sal, null_frame_id);
c5aa993b 4763 }
c906108c 4764
488f131b
JB
4765 keep_going (ecs);
4766 return;
4767 }
c906108c 4768
16c381f0
JK
4769 if (ecs->event_thread->control.step_range_end != 1
4770 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4771 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4772 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4773 {
527159b7 4774 if (debug_infrun)
3e43a32a
MS
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: stepped into signal trampoline\n");
42edda50 4777 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4778 a signal trampoline (either by a signal being delivered or by
4779 the signal handler returning). Just single-step until the
4780 inferior leaves the trampoline (either by calling the handler
4781 or returning). */
488f131b
JB
4782 keep_going (ecs);
4783 return;
4784 }
c906108c 4785
14132e89
MR
4786 /* If we're in the return path from a shared library trampoline,
4787 we want to proceed through the trampoline when stepping. */
4788 /* macro/2012-04-25: This needs to come before the subroutine
4789 call check below as on some targets return trampolines look
4790 like subroutine calls (MIPS16 return thunks). */
4791 if (gdbarch_in_solib_return_trampoline (gdbarch,
4792 stop_pc, ecs->stop_func_name)
4793 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4794 {
4795 /* Determine where this trampoline returns. */
4796 CORE_ADDR real_stop_pc;
4797
4798 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4799
4800 if (debug_infrun)
4801 fprintf_unfiltered (gdb_stdlog,
4802 "infrun: stepped into solib return tramp\n");
4803
4804 /* Only proceed through if we know where it's going. */
4805 if (real_stop_pc)
4806 {
4807 /* And put the step-breakpoint there and go until there. */
4808 struct symtab_and_line sr_sal;
4809
4810 init_sal (&sr_sal); /* initialize to zeroes */
4811 sr_sal.pc = real_stop_pc;
4812 sr_sal.section = find_pc_overlay (sr_sal.pc);
4813 sr_sal.pspace = get_frame_program_space (frame);
4814
4815 /* Do not specify what the fp should be when we stop since
4816 on some machines the prologue is where the new fp value
4817 is established. */
4818 insert_step_resume_breakpoint_at_sal (gdbarch,
4819 sr_sal, null_frame_id);
4820
4821 /* Restart without fiddling with the step ranges or
4822 other state. */
4823 keep_going (ecs);
4824 return;
4825 }
4826 }
4827
c17eaafe
DJ
4828 /* Check for subroutine calls. The check for the current frame
4829 equalling the step ID is not necessary - the check of the
4830 previous frame's ID is sufficient - but it is a common case and
4831 cheaper than checking the previous frame's ID.
14e60db5
DJ
4832
4833 NOTE: frame_id_eq will never report two invalid frame IDs as
4834 being equal, so to get into this block, both the current and
4835 previous frame must have valid frame IDs. */
005ca36a
JB
4836 /* The outer_frame_id check is a heuristic to detect stepping
4837 through startup code. If we step over an instruction which
4838 sets the stack pointer from an invalid value to a valid value,
4839 we may detect that as a subroutine call from the mythical
4840 "outermost" function. This could be fixed by marking
4841 outermost frames as !stack_p,code_p,special_p. Then the
4842 initial outermost frame, before sp was valid, would
ce6cca6d 4843 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4844 for more. */
edb3359d 4845 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4846 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4847 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4848 ecs->event_thread->control.step_stack_frame_id)
4849 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4850 outer_frame_id)
4851 || step_start_function != find_pc_function (stop_pc))))
488f131b 4852 {
95918acb 4853 CORE_ADDR real_stop_pc;
8fb3e588 4854
527159b7 4855 if (debug_infrun)
8a9de0e4 4856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4857
16c381f0
JK
4858 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4859 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4860 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4861 ecs->stop_func_start)))
95918acb
AC
4862 {
4863 /* I presume that step_over_calls is only 0 when we're
4864 supposed to be stepping at the assembly language level
4865 ("stepi"). Just stop. */
4866 /* Also, maybe we just did a "nexti" inside a prolog, so we
4867 thought it was a subroutine call but it was not. Stop as
4868 well. FENN */
388a8562 4869 /* And this works the same backward as frontward. MVS */
16c381f0 4870 ecs->event_thread->control.stop_step = 1;
33d62d64 4871 print_end_stepping_range_reason ();
95918acb
AC
4872 stop_stepping (ecs);
4873 return;
4874 }
8fb3e588 4875
388a8562
MS
4876 /* Reverse stepping through solib trampolines. */
4877
4878 if (execution_direction == EXEC_REVERSE
16c381f0 4879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4881 || (ecs->stop_func_start == 0
4882 && in_solib_dynsym_resolve_code (stop_pc))))
4883 {
4884 /* Any solib trampoline code can be handled in reverse
4885 by simply continuing to single-step. We have already
4886 executed the solib function (backwards), and a few
4887 steps will take us back through the trampoline to the
4888 caller. */
4889 keep_going (ecs);
4890 return;
4891 }
4892
16c381f0 4893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4894 {
b2175913
MS
4895 /* We're doing a "next".
4896
4897 Normal (forward) execution: set a breakpoint at the
4898 callee's return address (the address at which the caller
4899 will resume).
4900
4901 Reverse (backward) execution. set the step-resume
4902 breakpoint at the start of the function that we just
4903 stepped into (backwards), and continue to there. When we
6130d0b7 4904 get there, we'll need to single-step back to the caller. */
b2175913
MS
4905
4906 if (execution_direction == EXEC_REVERSE)
4907 {
acf9414f
JK
4908 /* If we're already at the start of the function, we've either
4909 just stepped backward into a single instruction function,
4910 or stepped back out of a signal handler to the first instruction
4911 of the function. Just keep going, which will single-step back
4912 to the caller. */
58c48e72 4913 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4914 {
4915 struct symtab_and_line sr_sal;
4916
4917 /* Normal function call return (static or dynamic). */
4918 init_sal (&sr_sal);
4919 sr_sal.pc = ecs->stop_func_start;
4920 sr_sal.pspace = get_frame_program_space (frame);
4921 insert_step_resume_breakpoint_at_sal (gdbarch,
4922 sr_sal, null_frame_id);
4923 }
b2175913
MS
4924 }
4925 else
568d6575 4926 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4927
8567c30f
AC
4928 keep_going (ecs);
4929 return;
4930 }
a53c66de 4931
95918acb 4932 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4933 calling routine and the real function), locate the real
4934 function. That's what tells us (a) whether we want to step
4935 into it at all, and (b) what prologue we want to run to the
4936 end of, if we do step into it. */
568d6575 4937 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4938 if (real_stop_pc == 0)
568d6575 4939 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4940 if (real_stop_pc != 0)
4941 ecs->stop_func_start = real_stop_pc;
8fb3e588 4942
db5f024e 4943 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4944 {
4945 struct symtab_and_line sr_sal;
abbb1732 4946
1b2bfbb9
RC
4947 init_sal (&sr_sal);
4948 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4949 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4950
a6d9a66e
UW
4951 insert_step_resume_breakpoint_at_sal (gdbarch,
4952 sr_sal, null_frame_id);
8fb3e588
AC
4953 keep_going (ecs);
4954 return;
1b2bfbb9
RC
4955 }
4956
95918acb 4957 /* If we have line number information for the function we are
1bfeeb0f
JL
4958 thinking of stepping into and the function isn't on the skip
4959 list, step into it.
95918acb 4960
8fb3e588
AC
4961 If there are several symtabs at that PC (e.g. with include
4962 files), just want to know whether *any* of them have line
4963 numbers. find_pc_line handles this. */
95918acb
AC
4964 {
4965 struct symtab_and_line tmp_sal;
8fb3e588 4966
95918acb 4967 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4968 if (tmp_sal.line != 0
85817405
JK
4969 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4970 &tmp_sal))
95918acb 4971 {
b2175913 4972 if (execution_direction == EXEC_REVERSE)
568d6575 4973 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4974 else
568d6575 4975 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4976 return;
4977 }
4978 }
4979
4980 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4981 set, we stop the step so that the user has a chance to switch
4982 in assembly mode. */
16c381f0 4983 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4984 && step_stop_if_no_debug)
95918acb 4985 {
16c381f0 4986 ecs->event_thread->control.stop_step = 1;
33d62d64 4987 print_end_stepping_range_reason ();
95918acb
AC
4988 stop_stepping (ecs);
4989 return;
4990 }
4991
b2175913
MS
4992 if (execution_direction == EXEC_REVERSE)
4993 {
acf9414f
JK
4994 /* If we're already at the start of the function, we've either just
4995 stepped backward into a single instruction function without line
4996 number info, or stepped back out of a signal handler to the first
4997 instruction of the function without line number info. Just keep
4998 going, which will single-step back to the caller. */
4999 if (ecs->stop_func_start != stop_pc)
5000 {
5001 /* Set a breakpoint at callee's start address.
5002 From there we can step once and be back in the caller. */
5003 struct symtab_and_line sr_sal;
abbb1732 5004
acf9414f
JK
5005 init_sal (&sr_sal);
5006 sr_sal.pc = ecs->stop_func_start;
5007 sr_sal.pspace = get_frame_program_space (frame);
5008 insert_step_resume_breakpoint_at_sal (gdbarch,
5009 sr_sal, null_frame_id);
5010 }
b2175913
MS
5011 }
5012 else
5013 /* Set a breakpoint at callee's return address (the address
5014 at which the caller will resume). */
568d6575 5015 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5016
95918acb 5017 keep_going (ecs);
488f131b 5018 return;
488f131b 5019 }
c906108c 5020
fdd654f3
MS
5021 /* Reverse stepping through solib trampolines. */
5022
5023 if (execution_direction == EXEC_REVERSE
16c381f0 5024 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5025 {
5026 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5027 || (ecs->stop_func_start == 0
5028 && in_solib_dynsym_resolve_code (stop_pc)))
5029 {
5030 /* Any solib trampoline code can be handled in reverse
5031 by simply continuing to single-step. We have already
5032 executed the solib function (backwards), and a few
5033 steps will take us back through the trampoline to the
5034 caller. */
5035 keep_going (ecs);
5036 return;
5037 }
5038 else if (in_solib_dynsym_resolve_code (stop_pc))
5039 {
5040 /* Stepped backward into the solib dynsym resolver.
5041 Set a breakpoint at its start and continue, then
5042 one more step will take us out. */
5043 struct symtab_and_line sr_sal;
abbb1732 5044
fdd654f3
MS
5045 init_sal (&sr_sal);
5046 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5047 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5048 insert_step_resume_breakpoint_at_sal (gdbarch,
5049 sr_sal, null_frame_id);
5050 keep_going (ecs);
5051 return;
5052 }
5053 }
5054
2afb61aa 5055 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5056
1b2bfbb9
RC
5057 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5058 the trampoline processing logic, however, there are some trampolines
5059 that have no names, so we should do trampoline handling first. */
16c381f0 5060 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5061 && ecs->stop_func_name == NULL
2afb61aa 5062 && stop_pc_sal.line == 0)
1b2bfbb9 5063 {
527159b7 5064 if (debug_infrun)
3e43a32a
MS
5065 fprintf_unfiltered (gdb_stdlog,
5066 "infrun: stepped into undebuggable function\n");
527159b7 5067
1b2bfbb9 5068 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5069 undebuggable function (where there is no debugging information
5070 and no line number corresponding to the address where the
1b2bfbb9
RC
5071 inferior stopped). Since we want to skip this kind of code,
5072 we keep going until the inferior returns from this
14e60db5
DJ
5073 function - unless the user has asked us not to (via
5074 set step-mode) or we no longer know how to get back
5075 to the call site. */
5076 if (step_stop_if_no_debug
c7ce8faa 5077 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5078 {
5079 /* If we have no line number and the step-stop-if-no-debug
5080 is set, we stop the step so that the user has a chance to
5081 switch in assembly mode. */
16c381f0 5082 ecs->event_thread->control.stop_step = 1;
33d62d64 5083 print_end_stepping_range_reason ();
1b2bfbb9
RC
5084 stop_stepping (ecs);
5085 return;
5086 }
5087 else
5088 {
5089 /* Set a breakpoint at callee's return address (the address
5090 at which the caller will resume). */
568d6575 5091 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5092 keep_going (ecs);
5093 return;
5094 }
5095 }
5096
16c381f0 5097 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5098 {
5099 /* It is stepi or nexti. We always want to stop stepping after
5100 one instruction. */
527159b7 5101 if (debug_infrun)
8a9de0e4 5102 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5103 ecs->event_thread->control.stop_step = 1;
33d62d64 5104 print_end_stepping_range_reason ();
1b2bfbb9
RC
5105 stop_stepping (ecs);
5106 return;
5107 }
5108
2afb61aa 5109 if (stop_pc_sal.line == 0)
488f131b
JB
5110 {
5111 /* We have no line number information. That means to stop
5112 stepping (does this always happen right after one instruction,
5113 when we do "s" in a function with no line numbers,
5114 or can this happen as a result of a return or longjmp?). */
527159b7 5115 if (debug_infrun)
8a9de0e4 5116 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5117 ecs->event_thread->control.stop_step = 1;
33d62d64 5118 print_end_stepping_range_reason ();
488f131b
JB
5119 stop_stepping (ecs);
5120 return;
5121 }
c906108c 5122
edb3359d
DJ
5123 /* Look for "calls" to inlined functions, part one. If the inline
5124 frame machinery detected some skipped call sites, we have entered
5125 a new inline function. */
5126
5127 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5128 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5129 && inline_skipped_frames (ecs->ptid))
5130 {
5131 struct symtab_and_line call_sal;
5132
5133 if (debug_infrun)
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: stepped into inlined function\n");
5136
5137 find_frame_sal (get_current_frame (), &call_sal);
5138
16c381f0 5139 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5140 {
5141 /* For "step", we're going to stop. But if the call site
5142 for this inlined function is on the same source line as
5143 we were previously stepping, go down into the function
5144 first. Otherwise stop at the call site. */
5145
5146 if (call_sal.line == ecs->event_thread->current_line
5147 && call_sal.symtab == ecs->event_thread->current_symtab)
5148 step_into_inline_frame (ecs->ptid);
5149
16c381f0 5150 ecs->event_thread->control.stop_step = 1;
33d62d64 5151 print_end_stepping_range_reason ();
edb3359d
DJ
5152 stop_stepping (ecs);
5153 return;
5154 }
5155 else
5156 {
5157 /* For "next", we should stop at the call site if it is on a
5158 different source line. Otherwise continue through the
5159 inlined function. */
5160 if (call_sal.line == ecs->event_thread->current_line
5161 && call_sal.symtab == ecs->event_thread->current_symtab)
5162 keep_going (ecs);
5163 else
5164 {
16c381f0 5165 ecs->event_thread->control.stop_step = 1;
33d62d64 5166 print_end_stepping_range_reason ();
edb3359d
DJ
5167 stop_stepping (ecs);
5168 }
5169 return;
5170 }
5171 }
5172
5173 /* Look for "calls" to inlined functions, part two. If we are still
5174 in the same real function we were stepping through, but we have
5175 to go further up to find the exact frame ID, we are stepping
5176 through a more inlined call beyond its call site. */
5177
5178 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5179 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5180 ecs->event_thread->control.step_frame_id)
edb3359d 5181 && stepped_in_from (get_current_frame (),
16c381f0 5182 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5183 {
5184 if (debug_infrun)
5185 fprintf_unfiltered (gdb_stdlog,
5186 "infrun: stepping through inlined function\n");
5187
16c381f0 5188 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5189 keep_going (ecs);
5190 else
5191 {
16c381f0 5192 ecs->event_thread->control.stop_step = 1;
33d62d64 5193 print_end_stepping_range_reason ();
edb3359d
DJ
5194 stop_stepping (ecs);
5195 }
5196 return;
5197 }
5198
2afb61aa 5199 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5200 && (ecs->event_thread->current_line != stop_pc_sal.line
5201 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5202 {
5203 /* We are at the start of a different line. So stop. Note that
5204 we don't stop if we step into the middle of a different line.
5205 That is said to make things like for (;;) statements work
5206 better. */
527159b7 5207 if (debug_infrun)
3e43a32a
MS
5208 fprintf_unfiltered (gdb_stdlog,
5209 "infrun: stepped to a different line\n");
16c381f0 5210 ecs->event_thread->control.stop_step = 1;
33d62d64 5211 print_end_stepping_range_reason ();
488f131b
JB
5212 stop_stepping (ecs);
5213 return;
5214 }
c906108c 5215
488f131b 5216 /* We aren't done stepping.
c906108c 5217
488f131b
JB
5218 Optimize by setting the stepping range to the line.
5219 (We might not be in the original line, but if we entered a
5220 new line in mid-statement, we continue stepping. This makes
5221 things like for(;;) statements work better.) */
c906108c 5222
16c381f0
JK
5223 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5224 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5225 ecs->event_thread->control.may_range_step = 1;
edb3359d 5226 set_step_info (frame, stop_pc_sal);
488f131b 5227
527159b7 5228 if (debug_infrun)
8a9de0e4 5229 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5230 keep_going (ecs);
104c1213
JM
5231}
5232
c447ac0b
PA
5233/* In all-stop mode, if we're currently stepping but have stopped in
5234 some other thread, we may need to switch back to the stepped
5235 thread. Returns true we set the inferior running, false if we left
5236 it stopped (and the event needs further processing). */
5237
5238static int
5239switch_back_to_stepped_thread (struct execution_control_state *ecs)
5240{
5241 if (!non_stop)
5242 {
5243 struct thread_info *tp;
5244
5245 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5246 ecs->event_thread);
5247 if (tp)
5248 {
5249 /* However, if the current thread is blocked on some internal
5250 breakpoint, and we simply need to step over that breakpoint
5251 to get it going again, do that first. */
5252 if ((ecs->event_thread->control.trap_expected
5253 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5254 || ecs->event_thread->stepping_over_breakpoint)
5255 {
5256 keep_going (ecs);
5257 return 1;
5258 }
5259
5260 /* If the stepping thread exited, then don't try to switch
5261 back and resume it, which could fail in several different
5262 ways depending on the target. Instead, just keep going.
5263
5264 We can find a stepping dead thread in the thread list in
5265 two cases:
5266
5267 - The target supports thread exit events, and when the
5268 target tries to delete the thread from the thread list,
5269 inferior_ptid pointed at the exiting thread. In such
5270 case, calling delete_thread does not really remove the
5271 thread from the list; instead, the thread is left listed,
5272 with 'exited' state.
5273
5274 - The target's debug interface does not support thread
5275 exit events, and so we have no idea whatsoever if the
5276 previously stepping thread is still alive. For that
5277 reason, we need to synchronously query the target
5278 now. */
5279 if (is_exited (tp->ptid)
5280 || !target_thread_alive (tp->ptid))
5281 {
5282 if (debug_infrun)
5283 fprintf_unfiltered (gdb_stdlog,
5284 "infrun: not switching back to "
5285 "stepped thread, it has vanished\n");
5286
5287 delete_thread (tp->ptid);
5288 keep_going (ecs);
5289 return 1;
5290 }
5291
5292 /* Otherwise, we no longer expect a trap in the current thread.
5293 Clear the trap_expected flag before switching back -- this is
5294 what keep_going would do as well, if we called it. */
5295 ecs->event_thread->control.trap_expected = 0;
5296
5297 if (debug_infrun)
5298 fprintf_unfiltered (gdb_stdlog,
5299 "infrun: switching back to stepped thread\n");
5300
5301 ecs->event_thread = tp;
5302 ecs->ptid = tp->ptid;
5303 context_switch (ecs->ptid);
5304 keep_going (ecs);
5305 return 1;
5306 }
5307 }
5308 return 0;
5309}
5310
b3444185 5311/* Is thread TP in the middle of single-stepping? */
104c1213 5312
a289b8f6 5313static int
b3444185 5314currently_stepping (struct thread_info *tp)
a7212384 5315{
8358c15c
JK
5316 return ((tp->control.step_range_end
5317 && tp->control.step_resume_breakpoint == NULL)
5318 || tp->control.trap_expected
8358c15c 5319 || bpstat_should_step ());
a7212384
UW
5320}
5321
b3444185
PA
5322/* Returns true if any thread *but* the one passed in "data" is in the
5323 middle of stepping or of handling a "next". */
a7212384 5324
104c1213 5325static int
b3444185 5326currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5327{
b3444185
PA
5328 if (tp == data)
5329 return 0;
5330
16c381f0 5331 return (tp->control.step_range_end
ede1849f 5332 || tp->control.trap_expected);
104c1213 5333}
c906108c 5334
b2175913
MS
5335/* Inferior has stepped into a subroutine call with source code that
5336 we should not step over. Do step to the first line of code in
5337 it. */
c2c6d25f
JM
5338
5339static void
568d6575
UW
5340handle_step_into_function (struct gdbarch *gdbarch,
5341 struct execution_control_state *ecs)
c2c6d25f
JM
5342{
5343 struct symtab *s;
2afb61aa 5344 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5345
7e324e48
GB
5346 fill_in_stop_func (gdbarch, ecs);
5347
c2c6d25f
JM
5348 s = find_pc_symtab (stop_pc);
5349 if (s && s->language != language_asm)
568d6575 5350 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5351 ecs->stop_func_start);
c2c6d25f 5352
2afb61aa 5353 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5354 /* Use the step_resume_break to step until the end of the prologue,
5355 even if that involves jumps (as it seems to on the vax under
5356 4.2). */
5357 /* If the prologue ends in the middle of a source line, continue to
5358 the end of that source line (if it is still within the function).
5359 Otherwise, just go to end of prologue. */
2afb61aa
PA
5360 if (stop_func_sal.end
5361 && stop_func_sal.pc != ecs->stop_func_start
5362 && stop_func_sal.end < ecs->stop_func_end)
5363 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5364
2dbd5e30
KB
5365 /* Architectures which require breakpoint adjustment might not be able
5366 to place a breakpoint at the computed address. If so, the test
5367 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5368 ecs->stop_func_start to an address at which a breakpoint may be
5369 legitimately placed.
8fb3e588 5370
2dbd5e30
KB
5371 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5372 made, GDB will enter an infinite loop when stepping through
5373 optimized code consisting of VLIW instructions which contain
5374 subinstructions corresponding to different source lines. On
5375 FR-V, it's not permitted to place a breakpoint on any but the
5376 first subinstruction of a VLIW instruction. When a breakpoint is
5377 set, GDB will adjust the breakpoint address to the beginning of
5378 the VLIW instruction. Thus, we need to make the corresponding
5379 adjustment here when computing the stop address. */
8fb3e588 5380
568d6575 5381 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5382 {
5383 ecs->stop_func_start
568d6575 5384 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5385 ecs->stop_func_start);
2dbd5e30
KB
5386 }
5387
c2c6d25f
JM
5388 if (ecs->stop_func_start == stop_pc)
5389 {
5390 /* We are already there: stop now. */
16c381f0 5391 ecs->event_thread->control.stop_step = 1;
33d62d64 5392 print_end_stepping_range_reason ();
c2c6d25f
JM
5393 stop_stepping (ecs);
5394 return;
5395 }
5396 else
5397 {
5398 /* Put the step-breakpoint there and go until there. */
fe39c653 5399 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5400 sr_sal.pc = ecs->stop_func_start;
5401 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5402 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5403
c2c6d25f 5404 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5405 some machines the prologue is where the new fp value is
5406 established. */
a6d9a66e 5407 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5408
5409 /* And make sure stepping stops right away then. */
16c381f0
JK
5410 ecs->event_thread->control.step_range_end
5411 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5412 }
5413 keep_going (ecs);
5414}
d4f3574e 5415
b2175913
MS
5416/* Inferior has stepped backward into a subroutine call with source
5417 code that we should not step over. Do step to the beginning of the
5418 last line of code in it. */
5419
5420static void
568d6575
UW
5421handle_step_into_function_backward (struct gdbarch *gdbarch,
5422 struct execution_control_state *ecs)
b2175913
MS
5423{
5424 struct symtab *s;
167e4384 5425 struct symtab_and_line stop_func_sal;
b2175913 5426
7e324e48
GB
5427 fill_in_stop_func (gdbarch, ecs);
5428
b2175913
MS
5429 s = find_pc_symtab (stop_pc);
5430 if (s && s->language != language_asm)
568d6575 5431 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5432 ecs->stop_func_start);
5433
5434 stop_func_sal = find_pc_line (stop_pc, 0);
5435
5436 /* OK, we're just going to keep stepping here. */
5437 if (stop_func_sal.pc == stop_pc)
5438 {
5439 /* We're there already. Just stop stepping now. */
16c381f0 5440 ecs->event_thread->control.stop_step = 1;
33d62d64 5441 print_end_stepping_range_reason ();
b2175913
MS
5442 stop_stepping (ecs);
5443 }
5444 else
5445 {
5446 /* Else just reset the step range and keep going.
5447 No step-resume breakpoint, they don't work for
5448 epilogues, which can have multiple entry paths. */
16c381f0
JK
5449 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5450 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5451 keep_going (ecs);
5452 }
5453 return;
5454}
5455
d3169d93 5456/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5457 This is used to both functions and to skip over code. */
5458
5459static void
2c03e5be
PA
5460insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5461 struct symtab_and_line sr_sal,
5462 struct frame_id sr_id,
5463 enum bptype sr_type)
44cbf7b5 5464{
611c83ae
PA
5465 /* There should never be more than one step-resume or longjmp-resume
5466 breakpoint per thread, so we should never be setting a new
44cbf7b5 5467 step_resume_breakpoint when one is already active. */
8358c15c 5468 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5469 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5470
5471 if (debug_infrun)
5472 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5473 "infrun: inserting step-resume breakpoint at %s\n",
5474 paddress (gdbarch, sr_sal.pc));
d3169d93 5475
8358c15c 5476 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5477 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5478}
5479
9da8c2a0 5480void
2c03e5be
PA
5481insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5482 struct symtab_and_line sr_sal,
5483 struct frame_id sr_id)
5484{
5485 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5486 sr_sal, sr_id,
5487 bp_step_resume);
44cbf7b5 5488}
7ce450bd 5489
2c03e5be
PA
5490/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5491 This is used to skip a potential signal handler.
7ce450bd 5492
14e60db5
DJ
5493 This is called with the interrupted function's frame. The signal
5494 handler, when it returns, will resume the interrupted function at
5495 RETURN_FRAME.pc. */
d303a6c7
AC
5496
5497static void
2c03e5be 5498insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5499{
5500 struct symtab_and_line sr_sal;
a6d9a66e 5501 struct gdbarch *gdbarch;
d303a6c7 5502
f4c1edd8 5503 gdb_assert (return_frame != NULL);
d303a6c7
AC
5504 init_sal (&sr_sal); /* initialize to zeros */
5505
a6d9a66e 5506 gdbarch = get_frame_arch (return_frame);
568d6575 5507 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5508 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5509 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5510
2c03e5be
PA
5511 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5512 get_stack_frame_id (return_frame),
5513 bp_hp_step_resume);
d303a6c7
AC
5514}
5515
2c03e5be
PA
5516/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5517 is used to skip a function after stepping into it (for "next" or if
5518 the called function has no debugging information).
14e60db5
DJ
5519
5520 The current function has almost always been reached by single
5521 stepping a call or return instruction. NEXT_FRAME belongs to the
5522 current function, and the breakpoint will be set at the caller's
5523 resume address.
5524
5525 This is a separate function rather than reusing
2c03e5be 5526 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5527 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5528 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5529
5530static void
5531insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5532{
5533 struct symtab_and_line sr_sal;
a6d9a66e 5534 struct gdbarch *gdbarch;
14e60db5
DJ
5535
5536 /* We shouldn't have gotten here if we don't know where the call site
5537 is. */
c7ce8faa 5538 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5539
5540 init_sal (&sr_sal); /* initialize to zeros */
5541
a6d9a66e 5542 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5543 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5544 frame_unwind_caller_pc (next_frame));
14e60db5 5545 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5546 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5547
a6d9a66e 5548 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5549 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5550}
5551
611c83ae
PA
5552/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5553 new breakpoint at the target of a jmp_buf. The handling of
5554 longjmp-resume uses the same mechanisms used for handling
5555 "step-resume" breakpoints. */
5556
5557static void
a6d9a66e 5558insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5559{
e81a37f7
TT
5560 /* There should never be more than one longjmp-resume breakpoint per
5561 thread, so we should never be setting a new
611c83ae 5562 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5563 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5564
5565 if (debug_infrun)
5566 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5567 "infrun: inserting longjmp-resume breakpoint at %s\n",
5568 paddress (gdbarch, pc));
611c83ae 5569
e81a37f7 5570 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5571 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5572}
5573
186c406b
TT
5574/* Insert an exception resume breakpoint. TP is the thread throwing
5575 the exception. The block B is the block of the unwinder debug hook
5576 function. FRAME is the frame corresponding to the call to this
5577 function. SYM is the symbol of the function argument holding the
5578 target PC of the exception. */
5579
5580static void
5581insert_exception_resume_breakpoint (struct thread_info *tp,
5582 struct block *b,
5583 struct frame_info *frame,
5584 struct symbol *sym)
5585{
bfd189b1 5586 volatile struct gdb_exception e;
186c406b
TT
5587
5588 /* We want to ignore errors here. */
5589 TRY_CATCH (e, RETURN_MASK_ERROR)
5590 {
5591 struct symbol *vsym;
5592 struct value *value;
5593 CORE_ADDR handler;
5594 struct breakpoint *bp;
5595
5596 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5597 value = read_var_value (vsym, frame);
5598 /* If the value was optimized out, revert to the old behavior. */
5599 if (! value_optimized_out (value))
5600 {
5601 handler = value_as_address (value);
5602
5603 if (debug_infrun)
5604 fprintf_unfiltered (gdb_stdlog,
5605 "infrun: exception resume at %lx\n",
5606 (unsigned long) handler);
5607
5608 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5609 handler, bp_exception_resume);
c70a6932
JK
5610
5611 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5612 frame = NULL;
5613
186c406b
TT
5614 bp->thread = tp->num;
5615 inferior_thread ()->control.exception_resume_breakpoint = bp;
5616 }
5617 }
5618}
5619
28106bc2
SDJ
5620/* A helper for check_exception_resume that sets an
5621 exception-breakpoint based on a SystemTap probe. */
5622
5623static void
5624insert_exception_resume_from_probe (struct thread_info *tp,
5625 const struct probe *probe,
28106bc2
SDJ
5626 struct frame_info *frame)
5627{
5628 struct value *arg_value;
5629 CORE_ADDR handler;
5630 struct breakpoint *bp;
5631
5632 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5633 if (!arg_value)
5634 return;
5635
5636 handler = value_as_address (arg_value);
5637
5638 if (debug_infrun)
5639 fprintf_unfiltered (gdb_stdlog,
5640 "infrun: exception resume at %s\n",
6bac7473 5641 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5642 handler));
5643
5644 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5645 handler, bp_exception_resume);
5646 bp->thread = tp->num;
5647 inferior_thread ()->control.exception_resume_breakpoint = bp;
5648}
5649
186c406b
TT
5650/* This is called when an exception has been intercepted. Check to
5651 see whether the exception's destination is of interest, and if so,
5652 set an exception resume breakpoint there. */
5653
5654static void
5655check_exception_resume (struct execution_control_state *ecs,
28106bc2 5656 struct frame_info *frame)
186c406b 5657{
bfd189b1 5658 volatile struct gdb_exception e;
28106bc2
SDJ
5659 const struct probe *probe;
5660 struct symbol *func;
5661
5662 /* First see if this exception unwinding breakpoint was set via a
5663 SystemTap probe point. If so, the probe has two arguments: the
5664 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5665 set a breakpoint there. */
6bac7473 5666 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5667 if (probe)
5668 {
6bac7473 5669 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5670 return;
5671 }
5672
5673 func = get_frame_function (frame);
5674 if (!func)
5675 return;
186c406b
TT
5676
5677 TRY_CATCH (e, RETURN_MASK_ERROR)
5678 {
5679 struct block *b;
8157b174 5680 struct block_iterator iter;
186c406b
TT
5681 struct symbol *sym;
5682 int argno = 0;
5683
5684 /* The exception breakpoint is a thread-specific breakpoint on
5685 the unwinder's debug hook, declared as:
5686
5687 void _Unwind_DebugHook (void *cfa, void *handler);
5688
5689 The CFA argument indicates the frame to which control is
5690 about to be transferred. HANDLER is the destination PC.
5691
5692 We ignore the CFA and set a temporary breakpoint at HANDLER.
5693 This is not extremely efficient but it avoids issues in gdb
5694 with computing the DWARF CFA, and it also works even in weird
5695 cases such as throwing an exception from inside a signal
5696 handler. */
5697
5698 b = SYMBOL_BLOCK_VALUE (func);
5699 ALL_BLOCK_SYMBOLS (b, iter, sym)
5700 {
5701 if (!SYMBOL_IS_ARGUMENT (sym))
5702 continue;
5703
5704 if (argno == 0)
5705 ++argno;
5706 else
5707 {
5708 insert_exception_resume_breakpoint (ecs->event_thread,
5709 b, frame, sym);
5710 break;
5711 }
5712 }
5713 }
5714}
5715
104c1213
JM
5716static void
5717stop_stepping (struct execution_control_state *ecs)
5718{
527159b7 5719 if (debug_infrun)
8a9de0e4 5720 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5721
cd0fc7c3
SS
5722 /* Let callers know we don't want to wait for the inferior anymore. */
5723 ecs->wait_some_more = 0;
5724}
5725
a9ba6bae
PA
5726/* Called when we should continue running the inferior, because the
5727 current event doesn't cause a user visible stop. This does the
5728 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5729
5730static void
5731keep_going (struct execution_control_state *ecs)
5732{
c4dbc9af
PA
5733 /* Make sure normal_stop is called if we get a QUIT handled before
5734 reaching resume. */
5735 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5736
d4f3574e 5737 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5738 ecs->event_thread->prev_pc
5739 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5740
16c381f0 5741 if (ecs->event_thread->control.trap_expected
a493e3e2 5742 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5743 {
a9ba6bae
PA
5744 /* We haven't yet gotten our trap, and either: intercepted a
5745 non-signal event (e.g., a fork); or took a signal which we
5746 are supposed to pass through to the inferior. Simply
5747 continue. */
c4dbc9af 5748 discard_cleanups (old_cleanups);
2020b7ab 5749 resume (currently_stepping (ecs->event_thread),
16c381f0 5750 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5751 }
5752 else
5753 {
5754 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5755 anyway (if we got a signal, the user asked it be passed to
5756 the child)
5757 -- or --
5758 We got our expected trap, but decided we should resume from
5759 it.
d4f3574e 5760
a9ba6bae 5761 We're going to run this baby now!
d4f3574e 5762
c36b740a
VP
5763 Note that insert_breakpoints won't try to re-insert
5764 already inserted breakpoints. Therefore, we don't
5765 care if breakpoints were already inserted, or not. */
a9ba6bae 5766
4e1c45ea 5767 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5768 {
9f5a595d 5769 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5770
9f5a595d 5771 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5772 {
5773 /* Since we can't do a displaced step, we have to remove
5774 the breakpoint while we step it. To keep things
5775 simple, we remove them all. */
5776 remove_breakpoints ();
5777 }
45e8c884
VP
5778 }
5779 else
d4f3574e 5780 {
bfd189b1 5781 volatile struct gdb_exception e;
abbb1732 5782
a9ba6bae 5783 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5784 TRY_CATCH (e, RETURN_MASK_ERROR)
5785 {
5786 insert_breakpoints ();
5787 }
5788 if (e.reason < 0)
d4f3574e 5789 {
97bd5475 5790 exception_print (gdb_stderr, e);
d4f3574e
SS
5791 stop_stepping (ecs);
5792 return;
5793 }
d4f3574e
SS
5794 }
5795
16c381f0
JK
5796 ecs->event_thread->control.trap_expected
5797 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5798
a9ba6bae
PA
5799 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5800 explicitly specifies that such a signal should be delivered
5801 to the target program). Typically, that would occur when a
5802 user is debugging a target monitor on a simulator: the target
5803 monitor sets a breakpoint; the simulator encounters this
5804 breakpoint and halts the simulation handing control to GDB;
5805 GDB, noting that the stop address doesn't map to any known
5806 breakpoint, returns control back to the simulator; the
5807 simulator then delivers the hardware equivalent of a
5808 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5809 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5810 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5811 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5812
c4dbc9af 5813 discard_cleanups (old_cleanups);
2020b7ab 5814 resume (currently_stepping (ecs->event_thread),
16c381f0 5815 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5816 }
5817
488f131b 5818 prepare_to_wait (ecs);
d4f3574e
SS
5819}
5820
104c1213
JM
5821/* This function normally comes after a resume, before
5822 handle_inferior_event exits. It takes care of any last bits of
5823 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5824
104c1213
JM
5825static void
5826prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5827{
527159b7 5828 if (debug_infrun)
8a9de0e4 5829 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5830
104c1213
JM
5831 /* This is the old end of the while loop. Let everybody know we
5832 want to wait for the inferior some more and get called again
5833 soon. */
5834 ecs->wait_some_more = 1;
c906108c 5835}
11cf8741 5836
33d62d64
JK
5837/* Several print_*_reason functions to print why the inferior has stopped.
5838 We always print something when the inferior exits, or receives a signal.
5839 The rest of the cases are dealt with later on in normal_stop and
5840 print_it_typical. Ideally there should be a call to one of these
5841 print_*_reason functions functions from handle_inferior_event each time
5842 stop_stepping is called. */
5843
5844/* Print why the inferior has stopped.
5845 We are done with a step/next/si/ni command, print why the inferior has
5846 stopped. For now print nothing. Print a message only if not in the middle
5847 of doing a "step n" operation for n > 1. */
5848
5849static void
5850print_end_stepping_range_reason (void)
5851{
16c381f0
JK
5852 if ((!inferior_thread ()->step_multi
5853 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5854 && ui_out_is_mi_like_p (current_uiout))
5855 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5856 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5857}
5858
5859/* The inferior was terminated by a signal, print why it stopped. */
5860
11cf8741 5861static void
2ea28649 5862print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5863{
79a45e25
PA
5864 struct ui_out *uiout = current_uiout;
5865
33d62d64
JK
5866 annotate_signalled ();
5867 if (ui_out_is_mi_like_p (uiout))
5868 ui_out_field_string
5869 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5870 ui_out_text (uiout, "\nProgram terminated with signal ");
5871 annotate_signal_name ();
5872 ui_out_field_string (uiout, "signal-name",
2ea28649 5873 gdb_signal_to_name (siggnal));
33d62d64
JK
5874 annotate_signal_name_end ();
5875 ui_out_text (uiout, ", ");
5876 annotate_signal_string ();
5877 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5878 gdb_signal_to_string (siggnal));
33d62d64
JK
5879 annotate_signal_string_end ();
5880 ui_out_text (uiout, ".\n");
5881 ui_out_text (uiout, "The program no longer exists.\n");
5882}
5883
5884/* The inferior program is finished, print why it stopped. */
5885
5886static void
5887print_exited_reason (int exitstatus)
5888{
fda326dd
TT
5889 struct inferior *inf = current_inferior ();
5890 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5891 struct ui_out *uiout = current_uiout;
fda326dd 5892
33d62d64
JK
5893 annotate_exited (exitstatus);
5894 if (exitstatus)
5895 {
5896 if (ui_out_is_mi_like_p (uiout))
5897 ui_out_field_string (uiout, "reason",
5898 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5899 ui_out_text (uiout, "[Inferior ");
5900 ui_out_text (uiout, plongest (inf->num));
5901 ui_out_text (uiout, " (");
5902 ui_out_text (uiout, pidstr);
5903 ui_out_text (uiout, ") exited with code ");
33d62d64 5904 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5905 ui_out_text (uiout, "]\n");
33d62d64
JK
5906 }
5907 else
11cf8741 5908 {
9dc5e2a9 5909 if (ui_out_is_mi_like_p (uiout))
034dad6f 5910 ui_out_field_string
33d62d64 5911 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5912 ui_out_text (uiout, "[Inferior ");
5913 ui_out_text (uiout, plongest (inf->num));
5914 ui_out_text (uiout, " (");
5915 ui_out_text (uiout, pidstr);
5916 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5917 }
5918 /* Support the --return-child-result option. */
5919 return_child_result_value = exitstatus;
5920}
5921
5922/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5923 tells us to print about it. */
33d62d64
JK
5924
5925static void
2ea28649 5926print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5927{
79a45e25
PA
5928 struct ui_out *uiout = current_uiout;
5929
33d62d64
JK
5930 annotate_signal ();
5931
a493e3e2 5932 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5933 {
5934 struct thread_info *t = inferior_thread ();
5935
5936 ui_out_text (uiout, "\n[");
5937 ui_out_field_string (uiout, "thread-name",
5938 target_pid_to_str (t->ptid));
5939 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5940 ui_out_text (uiout, " stopped");
5941 }
5942 else
5943 {
5944 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5945 annotate_signal_name ();
33d62d64
JK
5946 if (ui_out_is_mi_like_p (uiout))
5947 ui_out_field_string
5948 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5949 ui_out_field_string (uiout, "signal-name",
2ea28649 5950 gdb_signal_to_name (siggnal));
8b93c638
JM
5951 annotate_signal_name_end ();
5952 ui_out_text (uiout, ", ");
5953 annotate_signal_string ();
488f131b 5954 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5955 gdb_signal_to_string (siggnal));
8b93c638 5956 annotate_signal_string_end ();
33d62d64
JK
5957 }
5958 ui_out_text (uiout, ".\n");
5959}
252fbfc8 5960
33d62d64
JK
5961/* Reverse execution: target ran out of history info, print why the inferior
5962 has stopped. */
252fbfc8 5963
33d62d64
JK
5964static void
5965print_no_history_reason (void)
5966{
79a45e25 5967 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5968}
43ff13b4 5969
c906108c
SS
5970/* Here to return control to GDB when the inferior stops for real.
5971 Print appropriate messages, remove breakpoints, give terminal our modes.
5972
5973 STOP_PRINT_FRAME nonzero means print the executing frame
5974 (pc, function, args, file, line number and line text).
5975 BREAKPOINTS_FAILED nonzero means stop was due to error
5976 attempting to insert breakpoints. */
5977
5978void
96baa820 5979normal_stop (void)
c906108c 5980{
73b65bb0
DJ
5981 struct target_waitstatus last;
5982 ptid_t last_ptid;
29f49a6a 5983 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5984
5985 get_last_target_status (&last_ptid, &last);
5986
29f49a6a
PA
5987 /* If an exception is thrown from this point on, make sure to
5988 propagate GDB's knowledge of the executing state to the
5989 frontend/user running state. A QUIT is an easy exception to see
5990 here, so do this before any filtered output. */
c35b1492
PA
5991 if (!non_stop)
5992 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5993 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5994 && last.kind != TARGET_WAITKIND_EXITED
5995 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5996 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5997
4f8d22e3
PA
5998 /* In non-stop mode, we don't want GDB to switch threads behind the
5999 user's back, to avoid races where the user is typing a command to
6000 apply to thread x, but GDB switches to thread y before the user
6001 finishes entering the command. */
6002
c906108c
SS
6003 /* As with the notification of thread events, we want to delay
6004 notifying the user that we've switched thread context until
6005 the inferior actually stops.
6006
73b65bb0
DJ
6007 There's no point in saying anything if the inferior has exited.
6008 Note that SIGNALLED here means "exited with a signal", not
6009 "received a signal". */
4f8d22e3
PA
6010 if (!non_stop
6011 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6012 && target_has_execution
6013 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6014 && last.kind != TARGET_WAITKIND_EXITED
6015 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6016 {
6017 target_terminal_ours_for_output ();
a3f17187 6018 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6019 target_pid_to_str (inferior_ptid));
b8fa951a 6020 annotate_thread_changed ();
39f77062 6021 previous_inferior_ptid = inferior_ptid;
c906108c 6022 }
c906108c 6023
0e5bf2a8
PA
6024 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6025 {
6026 gdb_assert (sync_execution || !target_can_async_p ());
6027
6028 target_terminal_ours_for_output ();
6029 printf_filtered (_("No unwaited-for children left.\n"));
6030 }
6031
74960c60 6032 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6033 {
6034 if (remove_breakpoints ())
6035 {
6036 target_terminal_ours_for_output ();
3e43a32a
MS
6037 printf_filtered (_("Cannot remove breakpoints because "
6038 "program is no longer writable.\nFurther "
6039 "execution is probably impossible.\n"));
c906108c
SS
6040 }
6041 }
c906108c 6042
c906108c
SS
6043 /* If an auto-display called a function and that got a signal,
6044 delete that auto-display to avoid an infinite recursion. */
6045
6046 if (stopped_by_random_signal)
6047 disable_current_display ();
6048
6049 /* Don't print a message if in the middle of doing a "step n"
6050 operation for n > 1 */
af679fd0
PA
6051 if (target_has_execution
6052 && last.kind != TARGET_WAITKIND_SIGNALLED
6053 && last.kind != TARGET_WAITKIND_EXITED
6054 && inferior_thread ()->step_multi
16c381f0 6055 && inferior_thread ()->control.stop_step)
c906108c
SS
6056 goto done;
6057
6058 target_terminal_ours ();
0f641c01 6059 async_enable_stdin ();
c906108c 6060
7abfe014
DJ
6061 /* Set the current source location. This will also happen if we
6062 display the frame below, but the current SAL will be incorrect
6063 during a user hook-stop function. */
d729566a 6064 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6065 set_current_sal_from_frame (get_current_frame (), 1);
6066
dd7e2d2b
PA
6067 /* Let the user/frontend see the threads as stopped. */
6068 do_cleanups (old_chain);
6069
6070 /* Look up the hook_stop and run it (CLI internally handles problem
6071 of stop_command's pre-hook not existing). */
6072 if (stop_command)
6073 catch_errors (hook_stop_stub, stop_command,
6074 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6075
d729566a 6076 if (!has_stack_frames ())
d51fd4c8 6077 goto done;
c906108c 6078
32400beb
PA
6079 if (last.kind == TARGET_WAITKIND_SIGNALLED
6080 || last.kind == TARGET_WAITKIND_EXITED)
6081 goto done;
6082
c906108c
SS
6083 /* Select innermost stack frame - i.e., current frame is frame 0,
6084 and current location is based on that.
6085 Don't do this on return from a stack dummy routine,
1777feb0 6086 or if the program has exited. */
c906108c
SS
6087
6088 if (!stop_stack_dummy)
6089 {
0f7d239c 6090 select_frame (get_current_frame ());
c906108c
SS
6091
6092 /* Print current location without a level number, if
c5aa993b
JM
6093 we have changed functions or hit a breakpoint.
6094 Print source line if we have one.
6095 bpstat_print() contains the logic deciding in detail
1777feb0 6096 what to print, based on the event(s) that just occurred. */
c906108c 6097
d01a8610
AS
6098 /* If --batch-silent is enabled then there's no need to print the current
6099 source location, and to try risks causing an error message about
6100 missing source files. */
6101 if (stop_print_frame && !batch_silent)
c906108c
SS
6102 {
6103 int bpstat_ret;
6104 int source_flag;
917317f4 6105 int do_frame_printing = 1;
347bddb7 6106 struct thread_info *tp = inferior_thread ();
c906108c 6107
36dfb11c 6108 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6109 switch (bpstat_ret)
6110 {
6111 case PRINT_UNKNOWN:
aa0cd9c1 6112 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6113 (or should) carry around the function and does (or
6114 should) use that when doing a frame comparison. */
16c381f0
JK
6115 if (tp->control.stop_step
6116 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6117 get_frame_id (get_current_frame ()))
917317f4 6118 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6119 source_flag = SRC_LINE; /* Finished step, just
6120 print source line. */
917317f4 6121 else
1777feb0
MS
6122 source_flag = SRC_AND_LOC; /* Print location and
6123 source line. */
917317f4
JM
6124 break;
6125 case PRINT_SRC_AND_LOC:
1777feb0
MS
6126 source_flag = SRC_AND_LOC; /* Print location and
6127 source line. */
917317f4
JM
6128 break;
6129 case PRINT_SRC_ONLY:
c5394b80 6130 source_flag = SRC_LINE;
917317f4
JM
6131 break;
6132 case PRINT_NOTHING:
488f131b 6133 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6134 do_frame_printing = 0;
6135 break;
6136 default:
e2e0b3e5 6137 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6138 }
c906108c
SS
6139
6140 /* The behavior of this routine with respect to the source
6141 flag is:
c5394b80
JM
6142 SRC_LINE: Print only source line
6143 LOCATION: Print only location
1777feb0 6144 SRC_AND_LOC: Print location and source line. */
917317f4 6145 if (do_frame_printing)
08d72866 6146 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6147
6148 /* Display the auto-display expressions. */
6149 do_displays ();
6150 }
6151 }
6152
6153 /* Save the function value return registers, if we care.
6154 We might be about to restore their previous contents. */
9da8c2a0
PA
6155 if (inferior_thread ()->control.proceed_to_finish
6156 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6157 {
6158 /* This should not be necessary. */
6159 if (stop_registers)
6160 regcache_xfree (stop_registers);
6161
6162 /* NB: The copy goes through to the target picking up the value of
6163 all the registers. */
6164 stop_registers = regcache_dup (get_current_regcache ());
6165 }
c906108c 6166
aa7d318d 6167 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6168 {
b89667eb
DE
6169 /* Pop the empty frame that contains the stack dummy.
6170 This also restores inferior state prior to the call
16c381f0 6171 (struct infcall_suspend_state). */
b89667eb 6172 struct frame_info *frame = get_current_frame ();
abbb1732 6173
b89667eb
DE
6174 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6175 frame_pop (frame);
3e43a32a
MS
6176 /* frame_pop() calls reinit_frame_cache as the last thing it
6177 does which means there's currently no selected frame. We
6178 don't need to re-establish a selected frame if the dummy call
6179 returns normally, that will be done by
6180 restore_infcall_control_state. However, we do have to handle
6181 the case where the dummy call is returning after being
6182 stopped (e.g. the dummy call previously hit a breakpoint).
6183 We can't know which case we have so just always re-establish
6184 a selected frame here. */
0f7d239c 6185 select_frame (get_current_frame ());
c906108c
SS
6186 }
6187
c906108c
SS
6188done:
6189 annotate_stopped ();
41d2bdb4
PA
6190
6191 /* Suppress the stop observer if we're in the middle of:
6192
6193 - a step n (n > 1), as there still more steps to be done.
6194
6195 - a "finish" command, as the observer will be called in
6196 finish_command_continuation, so it can include the inferior
6197 function's return value.
6198
6199 - calling an inferior function, as we pretend we inferior didn't
6200 run at all. The return value of the call is handled by the
6201 expression evaluator, through call_function_by_hand. */
6202
6203 if (!target_has_execution
6204 || last.kind == TARGET_WAITKIND_SIGNALLED
6205 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6206 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6207 || (!(inferior_thread ()->step_multi
6208 && inferior_thread ()->control.stop_step)
16c381f0
JK
6209 && !(inferior_thread ()->control.stop_bpstat
6210 && inferior_thread ()->control.proceed_to_finish)
6211 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6212 {
6213 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6214 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6215 stop_print_frame);
347bddb7 6216 else
1d33d6ba 6217 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6218 }
347bddb7 6219
48844aa6
PA
6220 if (target_has_execution)
6221 {
6222 if (last.kind != TARGET_WAITKIND_SIGNALLED
6223 && last.kind != TARGET_WAITKIND_EXITED)
6224 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6225 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6226 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6227 }
6c95b8df
PA
6228
6229 /* Try to get rid of automatically added inferiors that are no
6230 longer needed. Keeping those around slows down things linearly.
6231 Note that this never removes the current inferior. */
6232 prune_inferiors ();
c906108c
SS
6233}
6234
6235static int
96baa820 6236hook_stop_stub (void *cmd)
c906108c 6237{
5913bcb0 6238 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6239 return (0);
6240}
6241\f
c5aa993b 6242int
96baa820 6243signal_stop_state (int signo)
c906108c 6244{
d6b48e9c 6245 return signal_stop[signo];
c906108c
SS
6246}
6247
c5aa993b 6248int
96baa820 6249signal_print_state (int signo)
c906108c
SS
6250{
6251 return signal_print[signo];
6252}
6253
c5aa993b 6254int
96baa820 6255signal_pass_state (int signo)
c906108c
SS
6256{
6257 return signal_program[signo];
6258}
6259
2455069d
UW
6260static void
6261signal_cache_update (int signo)
6262{
6263 if (signo == -1)
6264 {
a493e3e2 6265 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6266 signal_cache_update (signo);
6267
6268 return;
6269 }
6270
6271 signal_pass[signo] = (signal_stop[signo] == 0
6272 && signal_print[signo] == 0
ab04a2af
TT
6273 && signal_program[signo] == 1
6274 && signal_catch[signo] == 0);
2455069d
UW
6275}
6276
488f131b 6277int
7bda5e4a 6278signal_stop_update (int signo, int state)
d4f3574e
SS
6279{
6280 int ret = signal_stop[signo];
abbb1732 6281
d4f3574e 6282 signal_stop[signo] = state;
2455069d 6283 signal_cache_update (signo);
d4f3574e
SS
6284 return ret;
6285}
6286
488f131b 6287int
7bda5e4a 6288signal_print_update (int signo, int state)
d4f3574e
SS
6289{
6290 int ret = signal_print[signo];
abbb1732 6291
d4f3574e 6292 signal_print[signo] = state;
2455069d 6293 signal_cache_update (signo);
d4f3574e
SS
6294 return ret;
6295}
6296
488f131b 6297int
7bda5e4a 6298signal_pass_update (int signo, int state)
d4f3574e
SS
6299{
6300 int ret = signal_program[signo];
abbb1732 6301
d4f3574e 6302 signal_program[signo] = state;
2455069d 6303 signal_cache_update (signo);
d4f3574e
SS
6304 return ret;
6305}
6306
ab04a2af
TT
6307/* Update the global 'signal_catch' from INFO and notify the
6308 target. */
6309
6310void
6311signal_catch_update (const unsigned int *info)
6312{
6313 int i;
6314
6315 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6316 signal_catch[i] = info[i] > 0;
6317 signal_cache_update (-1);
6318 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6319}
6320
c906108c 6321static void
96baa820 6322sig_print_header (void)
c906108c 6323{
3e43a32a
MS
6324 printf_filtered (_("Signal Stop\tPrint\tPass "
6325 "to program\tDescription\n"));
c906108c
SS
6326}
6327
6328static void
2ea28649 6329sig_print_info (enum gdb_signal oursig)
c906108c 6330{
2ea28649 6331 const char *name = gdb_signal_to_name (oursig);
c906108c 6332 int name_padding = 13 - strlen (name);
96baa820 6333
c906108c
SS
6334 if (name_padding <= 0)
6335 name_padding = 0;
6336
6337 printf_filtered ("%s", name);
488f131b 6338 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6339 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6340 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6341 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6342 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6343}
6344
6345/* Specify how various signals in the inferior should be handled. */
6346
6347static void
96baa820 6348handle_command (char *args, int from_tty)
c906108c
SS
6349{
6350 char **argv;
6351 int digits, wordlen;
6352 int sigfirst, signum, siglast;
2ea28649 6353 enum gdb_signal oursig;
c906108c
SS
6354 int allsigs;
6355 int nsigs;
6356 unsigned char *sigs;
6357 struct cleanup *old_chain;
6358
6359 if (args == NULL)
6360 {
e2e0b3e5 6361 error_no_arg (_("signal to handle"));
c906108c
SS
6362 }
6363
1777feb0 6364 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6365
a493e3e2 6366 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6367 sigs = (unsigned char *) alloca (nsigs);
6368 memset (sigs, 0, nsigs);
6369
1777feb0 6370 /* Break the command line up into args. */
c906108c 6371
d1a41061 6372 argv = gdb_buildargv (args);
7a292a7a 6373 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6374
6375 /* Walk through the args, looking for signal oursigs, signal names, and
6376 actions. Signal numbers and signal names may be interspersed with
6377 actions, with the actions being performed for all signals cumulatively
1777feb0 6378 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6379
6380 while (*argv != NULL)
6381 {
6382 wordlen = strlen (*argv);
6383 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6384 {;
6385 }
6386 allsigs = 0;
6387 sigfirst = siglast = -1;
6388
6389 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6390 {
6391 /* Apply action to all signals except those used by the
1777feb0 6392 debugger. Silently skip those. */
c906108c
SS
6393 allsigs = 1;
6394 sigfirst = 0;
6395 siglast = nsigs - 1;
6396 }
6397 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6398 {
6399 SET_SIGS (nsigs, sigs, signal_stop);
6400 SET_SIGS (nsigs, sigs, signal_print);
6401 }
6402 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6403 {
6404 UNSET_SIGS (nsigs, sigs, signal_program);
6405 }
6406 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6407 {
6408 SET_SIGS (nsigs, sigs, signal_print);
6409 }
6410 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6411 {
6412 SET_SIGS (nsigs, sigs, signal_program);
6413 }
6414 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6415 {
6416 UNSET_SIGS (nsigs, sigs, signal_stop);
6417 }
6418 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6419 {
6420 SET_SIGS (nsigs, sigs, signal_program);
6421 }
6422 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6423 {
6424 UNSET_SIGS (nsigs, sigs, signal_print);
6425 UNSET_SIGS (nsigs, sigs, signal_stop);
6426 }
6427 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6428 {
6429 UNSET_SIGS (nsigs, sigs, signal_program);
6430 }
6431 else if (digits > 0)
6432 {
6433 /* It is numeric. The numeric signal refers to our own
6434 internal signal numbering from target.h, not to host/target
6435 signal number. This is a feature; users really should be
6436 using symbolic names anyway, and the common ones like
6437 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6438
6439 sigfirst = siglast = (int)
2ea28649 6440 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6441 if ((*argv)[digits] == '-')
6442 {
6443 siglast = (int)
2ea28649 6444 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6445 }
6446 if (sigfirst > siglast)
6447 {
1777feb0 6448 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6449 signum = sigfirst;
6450 sigfirst = siglast;
6451 siglast = signum;
6452 }
6453 }
6454 else
6455 {
2ea28649 6456 oursig = gdb_signal_from_name (*argv);
a493e3e2 6457 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6458 {
6459 sigfirst = siglast = (int) oursig;
6460 }
6461 else
6462 {
6463 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6464 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6465 }
6466 }
6467
6468 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6469 which signals to apply actions to. */
c906108c
SS
6470
6471 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6472 {
2ea28649 6473 switch ((enum gdb_signal) signum)
c906108c 6474 {
a493e3e2
PA
6475 case GDB_SIGNAL_TRAP:
6476 case GDB_SIGNAL_INT:
c906108c
SS
6477 if (!allsigs && !sigs[signum])
6478 {
9e2f0ad4 6479 if (query (_("%s is used by the debugger.\n\
3e43a32a 6480Are you sure you want to change it? "),
2ea28649 6481 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6482 {
6483 sigs[signum] = 1;
6484 }
6485 else
6486 {
a3f17187 6487 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6488 gdb_flush (gdb_stdout);
6489 }
6490 }
6491 break;
a493e3e2
PA
6492 case GDB_SIGNAL_0:
6493 case GDB_SIGNAL_DEFAULT:
6494 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6495 /* Make sure that "all" doesn't print these. */
6496 break;
6497 default:
6498 sigs[signum] = 1;
6499 break;
6500 }
6501 }
6502
6503 argv++;
6504 }
6505
3a031f65
PA
6506 for (signum = 0; signum < nsigs; signum++)
6507 if (sigs[signum])
6508 {
2455069d 6509 signal_cache_update (-1);
a493e3e2
PA
6510 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6511 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6512
3a031f65
PA
6513 if (from_tty)
6514 {
6515 /* Show the results. */
6516 sig_print_header ();
6517 for (; signum < nsigs; signum++)
6518 if (sigs[signum])
6519 sig_print_info (signum);
6520 }
6521
6522 break;
6523 }
c906108c
SS
6524
6525 do_cleanups (old_chain);
6526}
6527
de0bea00
MF
6528/* Complete the "handle" command. */
6529
6530static VEC (char_ptr) *
6531handle_completer (struct cmd_list_element *ignore,
6f937416 6532 const char *text, const char *word)
de0bea00
MF
6533{
6534 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6535 static const char * const keywords[] =
6536 {
6537 "all",
6538 "stop",
6539 "ignore",
6540 "print",
6541 "pass",
6542 "nostop",
6543 "noignore",
6544 "noprint",
6545 "nopass",
6546 NULL,
6547 };
6548
6549 vec_signals = signal_completer (ignore, text, word);
6550 vec_keywords = complete_on_enum (keywords, word, word);
6551
6552 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6553 VEC_free (char_ptr, vec_signals);
6554 VEC_free (char_ptr, vec_keywords);
6555 return return_val;
6556}
6557
c906108c 6558static void
96baa820 6559xdb_handle_command (char *args, int from_tty)
c906108c
SS
6560{
6561 char **argv;
6562 struct cleanup *old_chain;
6563
d1a41061
PP
6564 if (args == NULL)
6565 error_no_arg (_("xdb command"));
6566
1777feb0 6567 /* Break the command line up into args. */
c906108c 6568
d1a41061 6569 argv = gdb_buildargv (args);
7a292a7a 6570 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6571 if (argv[1] != (char *) NULL)
6572 {
6573 char *argBuf;
6574 int bufLen;
6575
6576 bufLen = strlen (argv[0]) + 20;
6577 argBuf = (char *) xmalloc (bufLen);
6578 if (argBuf)
6579 {
6580 int validFlag = 1;
2ea28649 6581 enum gdb_signal oursig;
c906108c 6582
2ea28649 6583 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6584 memset (argBuf, 0, bufLen);
6585 if (strcmp (argv[1], "Q") == 0)
6586 sprintf (argBuf, "%s %s", argv[0], "noprint");
6587 else
6588 {
6589 if (strcmp (argv[1], "s") == 0)
6590 {
6591 if (!signal_stop[oursig])
6592 sprintf (argBuf, "%s %s", argv[0], "stop");
6593 else
6594 sprintf (argBuf, "%s %s", argv[0], "nostop");
6595 }
6596 else if (strcmp (argv[1], "i") == 0)
6597 {
6598 if (!signal_program[oursig])
6599 sprintf (argBuf, "%s %s", argv[0], "pass");
6600 else
6601 sprintf (argBuf, "%s %s", argv[0], "nopass");
6602 }
6603 else if (strcmp (argv[1], "r") == 0)
6604 {
6605 if (!signal_print[oursig])
6606 sprintf (argBuf, "%s %s", argv[0], "print");
6607 else
6608 sprintf (argBuf, "%s %s", argv[0], "noprint");
6609 }
6610 else
6611 validFlag = 0;
6612 }
6613 if (validFlag)
6614 handle_command (argBuf, from_tty);
6615 else
a3f17187 6616 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6617 if (argBuf)
b8c9b27d 6618 xfree (argBuf);
c906108c
SS
6619 }
6620 }
6621 do_cleanups (old_chain);
6622}
6623
2ea28649
PA
6624enum gdb_signal
6625gdb_signal_from_command (int num)
ed01b82c
PA
6626{
6627 if (num >= 1 && num <= 15)
2ea28649 6628 return (enum gdb_signal) num;
ed01b82c
PA
6629 error (_("Only signals 1-15 are valid as numeric signals.\n\
6630Use \"info signals\" for a list of symbolic signals."));
6631}
6632
c906108c
SS
6633/* Print current contents of the tables set by the handle command.
6634 It is possible we should just be printing signals actually used
6635 by the current target (but for things to work right when switching
6636 targets, all signals should be in the signal tables). */
6637
6638static void
96baa820 6639signals_info (char *signum_exp, int from_tty)
c906108c 6640{
2ea28649 6641 enum gdb_signal oursig;
abbb1732 6642
c906108c
SS
6643 sig_print_header ();
6644
6645 if (signum_exp)
6646 {
6647 /* First see if this is a symbol name. */
2ea28649 6648 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6649 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6650 {
6651 /* No, try numeric. */
6652 oursig =
2ea28649 6653 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6654 }
6655 sig_print_info (oursig);
6656 return;
6657 }
6658
6659 printf_filtered ("\n");
6660 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6661 for (oursig = GDB_SIGNAL_FIRST;
6662 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6663 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6664 {
6665 QUIT;
6666
a493e3e2
PA
6667 if (oursig != GDB_SIGNAL_UNKNOWN
6668 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6669 sig_print_info (oursig);
6670 }
6671
3e43a32a
MS
6672 printf_filtered (_("\nUse the \"handle\" command "
6673 "to change these tables.\n"));
c906108c 6674}
4aa995e1 6675
c709acd1
PA
6676/* Check if it makes sense to read $_siginfo from the current thread
6677 at this point. If not, throw an error. */
6678
6679static void
6680validate_siginfo_access (void)
6681{
6682 /* No current inferior, no siginfo. */
6683 if (ptid_equal (inferior_ptid, null_ptid))
6684 error (_("No thread selected."));
6685
6686 /* Don't try to read from a dead thread. */
6687 if (is_exited (inferior_ptid))
6688 error (_("The current thread has terminated"));
6689
6690 /* ... or from a spinning thread. */
6691 if (is_running (inferior_ptid))
6692 error (_("Selected thread is running."));
6693}
6694
4aa995e1
PA
6695/* The $_siginfo convenience variable is a bit special. We don't know
6696 for sure the type of the value until we actually have a chance to
7a9dd1b2 6697 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6698 also dependent on which thread you have selected.
6699
6700 1. making $_siginfo be an internalvar that creates a new value on
6701 access.
6702
6703 2. making the value of $_siginfo be an lval_computed value. */
6704
6705/* This function implements the lval_computed support for reading a
6706 $_siginfo value. */
6707
6708static void
6709siginfo_value_read (struct value *v)
6710{
6711 LONGEST transferred;
6712
c709acd1
PA
6713 validate_siginfo_access ();
6714
4aa995e1
PA
6715 transferred =
6716 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6717 NULL,
6718 value_contents_all_raw (v),
6719 value_offset (v),
6720 TYPE_LENGTH (value_type (v)));
6721
6722 if (transferred != TYPE_LENGTH (value_type (v)))
6723 error (_("Unable to read siginfo"));
6724}
6725
6726/* This function implements the lval_computed support for writing a
6727 $_siginfo value. */
6728
6729static void
6730siginfo_value_write (struct value *v, struct value *fromval)
6731{
6732 LONGEST transferred;
6733
c709acd1
PA
6734 validate_siginfo_access ();
6735
4aa995e1
PA
6736 transferred = target_write (&current_target,
6737 TARGET_OBJECT_SIGNAL_INFO,
6738 NULL,
6739 value_contents_all_raw (fromval),
6740 value_offset (v),
6741 TYPE_LENGTH (value_type (fromval)));
6742
6743 if (transferred != TYPE_LENGTH (value_type (fromval)))
6744 error (_("Unable to write siginfo"));
6745}
6746
c8f2448a 6747static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6748 {
6749 siginfo_value_read,
6750 siginfo_value_write
6751 };
6752
6753/* Return a new value with the correct type for the siginfo object of
78267919
UW
6754 the current thread using architecture GDBARCH. Return a void value
6755 if there's no object available. */
4aa995e1 6756
2c0b251b 6757static struct value *
22d2b532
SDJ
6758siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6759 void *ignore)
4aa995e1 6760{
4aa995e1 6761 if (target_has_stack
78267919
UW
6762 && !ptid_equal (inferior_ptid, null_ptid)
6763 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6764 {
78267919 6765 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6766
78267919 6767 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6768 }
6769
78267919 6770 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6771}
6772
c906108c 6773\f
16c381f0
JK
6774/* infcall_suspend_state contains state about the program itself like its
6775 registers and any signal it received when it last stopped.
6776 This state must be restored regardless of how the inferior function call
6777 ends (either successfully, or after it hits a breakpoint or signal)
6778 if the program is to properly continue where it left off. */
6779
6780struct infcall_suspend_state
7a292a7a 6781{
16c381f0 6782 struct thread_suspend_state thread_suspend;
dd80ea3c 6783#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6784 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6785#endif
16c381f0
JK
6786
6787 /* Other fields: */
7a292a7a 6788 CORE_ADDR stop_pc;
b89667eb 6789 struct regcache *registers;
1736ad11 6790
35515841 6791 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6792 struct gdbarch *siginfo_gdbarch;
6793
6794 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6795 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6796 content would be invalid. */
6797 gdb_byte *siginfo_data;
b89667eb
DE
6798};
6799
16c381f0
JK
6800struct infcall_suspend_state *
6801save_infcall_suspend_state (void)
b89667eb 6802{
16c381f0 6803 struct infcall_suspend_state *inf_state;
b89667eb 6804 struct thread_info *tp = inferior_thread ();
974a734b 6805#if 0
16c381f0 6806 struct inferior *inf = current_inferior ();
974a734b 6807#endif
1736ad11
JK
6808 struct regcache *regcache = get_current_regcache ();
6809 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6810 gdb_byte *siginfo_data = NULL;
6811
6812 if (gdbarch_get_siginfo_type_p (gdbarch))
6813 {
6814 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6815 size_t len = TYPE_LENGTH (type);
6816 struct cleanup *back_to;
6817
6818 siginfo_data = xmalloc (len);
6819 back_to = make_cleanup (xfree, siginfo_data);
6820
6821 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6822 siginfo_data, 0, len) == len)
6823 discard_cleanups (back_to);
6824 else
6825 {
6826 /* Errors ignored. */
6827 do_cleanups (back_to);
6828 siginfo_data = NULL;
6829 }
6830 }
6831
16c381f0 6832 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6833
6834 if (siginfo_data)
6835 {
6836 inf_state->siginfo_gdbarch = gdbarch;
6837 inf_state->siginfo_data = siginfo_data;
6838 }
b89667eb 6839
16c381f0 6840 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6841#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6842 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6843#endif
16c381f0 6844
35515841 6845 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6846 GDB_SIGNAL_0 anyway. */
6847 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6848
b89667eb
DE
6849 inf_state->stop_pc = stop_pc;
6850
1736ad11 6851 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6852
6853 return inf_state;
6854}
6855
6856/* Restore inferior session state to INF_STATE. */
6857
6858void
16c381f0 6859restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6860{
6861 struct thread_info *tp = inferior_thread ();
974a734b 6862#if 0
16c381f0 6863 struct inferior *inf = current_inferior ();
974a734b 6864#endif
1736ad11
JK
6865 struct regcache *regcache = get_current_regcache ();
6866 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6867
16c381f0 6868 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6869#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6870 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6871#endif
16c381f0 6872
b89667eb
DE
6873 stop_pc = inf_state->stop_pc;
6874
1736ad11
JK
6875 if (inf_state->siginfo_gdbarch == gdbarch)
6876 {
6877 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6878
6879 /* Errors ignored. */
6880 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6881 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6882 }
6883
b89667eb
DE
6884 /* The inferior can be gone if the user types "print exit(0)"
6885 (and perhaps other times). */
6886 if (target_has_execution)
6887 /* NB: The register write goes through to the target. */
1736ad11 6888 regcache_cpy (regcache, inf_state->registers);
803b5f95 6889
16c381f0 6890 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6891}
6892
6893static void
16c381f0 6894do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6895{
16c381f0 6896 restore_infcall_suspend_state (state);
b89667eb
DE
6897}
6898
6899struct cleanup *
16c381f0
JK
6900make_cleanup_restore_infcall_suspend_state
6901 (struct infcall_suspend_state *inf_state)
b89667eb 6902{
16c381f0 6903 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6904}
6905
6906void
16c381f0 6907discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6908{
6909 regcache_xfree (inf_state->registers);
803b5f95 6910 xfree (inf_state->siginfo_data);
b89667eb
DE
6911 xfree (inf_state);
6912}
6913
6914struct regcache *
16c381f0 6915get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6916{
6917 return inf_state->registers;
6918}
6919
16c381f0
JK
6920/* infcall_control_state contains state regarding gdb's control of the
6921 inferior itself like stepping control. It also contains session state like
6922 the user's currently selected frame. */
b89667eb 6923
16c381f0 6924struct infcall_control_state
b89667eb 6925{
16c381f0
JK
6926 struct thread_control_state thread_control;
6927 struct inferior_control_state inferior_control;
d82142e2
JK
6928
6929 /* Other fields: */
6930 enum stop_stack_kind stop_stack_dummy;
6931 int stopped_by_random_signal;
7a292a7a 6932 int stop_after_trap;
7a292a7a 6933
b89667eb 6934 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6935 struct frame_id selected_frame_id;
7a292a7a
SS
6936};
6937
c906108c 6938/* Save all of the information associated with the inferior<==>gdb
b89667eb 6939 connection. */
c906108c 6940
16c381f0
JK
6941struct infcall_control_state *
6942save_infcall_control_state (void)
c906108c 6943{
16c381f0 6944 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6945 struct thread_info *tp = inferior_thread ();
d6b48e9c 6946 struct inferior *inf = current_inferior ();
7a292a7a 6947
16c381f0
JK
6948 inf_status->thread_control = tp->control;
6949 inf_status->inferior_control = inf->control;
d82142e2 6950
8358c15c 6951 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6952 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6953
16c381f0
JK
6954 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6955 chain. If caller's caller is walking the chain, they'll be happier if we
6956 hand them back the original chain when restore_infcall_control_state is
6957 called. */
6958 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6959
6960 /* Other fields: */
6961 inf_status->stop_stack_dummy = stop_stack_dummy;
6962 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6963 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6964
206415a3 6965 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6966
7a292a7a 6967 return inf_status;
c906108c
SS
6968}
6969
c906108c 6970static int
96baa820 6971restore_selected_frame (void *args)
c906108c 6972{
488f131b 6973 struct frame_id *fid = (struct frame_id *) args;
c906108c 6974 struct frame_info *frame;
c906108c 6975
101dcfbe 6976 frame = frame_find_by_id (*fid);
c906108c 6977
aa0cd9c1
AC
6978 /* If inf_status->selected_frame_id is NULL, there was no previously
6979 selected frame. */
101dcfbe 6980 if (frame == NULL)
c906108c 6981 {
8a3fe4f8 6982 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6983 return 0;
6984 }
6985
0f7d239c 6986 select_frame (frame);
c906108c
SS
6987
6988 return (1);
6989}
6990
b89667eb
DE
6991/* Restore inferior session state to INF_STATUS. */
6992
c906108c 6993void
16c381f0 6994restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6995{
4e1c45ea 6996 struct thread_info *tp = inferior_thread ();
d6b48e9c 6997 struct inferior *inf = current_inferior ();
4e1c45ea 6998
8358c15c
JK
6999 if (tp->control.step_resume_breakpoint)
7000 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7001
5b79abe7
TT
7002 if (tp->control.exception_resume_breakpoint)
7003 tp->control.exception_resume_breakpoint->disposition
7004 = disp_del_at_next_stop;
7005
d82142e2 7006 /* Handle the bpstat_copy of the chain. */
16c381f0 7007 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7008
16c381f0
JK
7009 tp->control = inf_status->thread_control;
7010 inf->control = inf_status->inferior_control;
d82142e2
JK
7011
7012 /* Other fields: */
7013 stop_stack_dummy = inf_status->stop_stack_dummy;
7014 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7015 stop_after_trap = inf_status->stop_after_trap;
c906108c 7016
b89667eb 7017 if (target_has_stack)
c906108c 7018 {
c906108c 7019 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7020 walking the stack might encounter a garbage pointer and
7021 error() trying to dereference it. */
488f131b
JB
7022 if (catch_errors
7023 (restore_selected_frame, &inf_status->selected_frame_id,
7024 "Unable to restore previously selected frame:\n",
7025 RETURN_MASK_ERROR) == 0)
c906108c
SS
7026 /* Error in restoring the selected frame. Select the innermost
7027 frame. */
0f7d239c 7028 select_frame (get_current_frame ());
c906108c 7029 }
c906108c 7030
72cec141 7031 xfree (inf_status);
7a292a7a 7032}
c906108c 7033
74b7792f 7034static void
16c381f0 7035do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7036{
16c381f0 7037 restore_infcall_control_state (sts);
74b7792f
AC
7038}
7039
7040struct cleanup *
16c381f0
JK
7041make_cleanup_restore_infcall_control_state
7042 (struct infcall_control_state *inf_status)
74b7792f 7043{
16c381f0 7044 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7045}
7046
c906108c 7047void
16c381f0 7048discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7049{
8358c15c
JK
7050 if (inf_status->thread_control.step_resume_breakpoint)
7051 inf_status->thread_control.step_resume_breakpoint->disposition
7052 = disp_del_at_next_stop;
7053
5b79abe7
TT
7054 if (inf_status->thread_control.exception_resume_breakpoint)
7055 inf_status->thread_control.exception_resume_breakpoint->disposition
7056 = disp_del_at_next_stop;
7057
1777feb0 7058 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7059 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7060
72cec141 7061 xfree (inf_status);
7a292a7a 7062}
b89667eb 7063\f
0723dbf5
PA
7064int
7065ptid_match (ptid_t ptid, ptid_t filter)
7066{
0723dbf5
PA
7067 if (ptid_equal (filter, minus_one_ptid))
7068 return 1;
7069 if (ptid_is_pid (filter)
7070 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7071 return 1;
7072 else if (ptid_equal (ptid, filter))
7073 return 1;
7074
7075 return 0;
7076}
7077
ca6724c1
KB
7078/* restore_inferior_ptid() will be used by the cleanup machinery
7079 to restore the inferior_ptid value saved in a call to
7080 save_inferior_ptid(). */
ce696e05
KB
7081
7082static void
7083restore_inferior_ptid (void *arg)
7084{
7085 ptid_t *saved_ptid_ptr = arg;
abbb1732 7086
ce696e05
KB
7087 inferior_ptid = *saved_ptid_ptr;
7088 xfree (arg);
7089}
7090
7091/* Save the value of inferior_ptid so that it may be restored by a
7092 later call to do_cleanups(). Returns the struct cleanup pointer
7093 needed for later doing the cleanup. */
7094
7095struct cleanup *
7096save_inferior_ptid (void)
7097{
7098 ptid_t *saved_ptid_ptr;
7099
7100 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7101 *saved_ptid_ptr = inferior_ptid;
7102 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7103}
0c557179
SDJ
7104
7105/* See inferior.h. */
7106
7107void
7108clear_exit_convenience_vars (void)
7109{
7110 clear_internalvar (lookup_internalvar ("_exitsignal"));
7111 clear_internalvar (lookup_internalvar ("_exitcode"));
7112}
c5aa993b 7113\f
488f131b 7114
b2175913
MS
7115/* User interface for reverse debugging:
7116 Set exec-direction / show exec-direction commands
7117 (returns error unless target implements to_set_exec_direction method). */
7118
32231432 7119int execution_direction = EXEC_FORWARD;
b2175913
MS
7120static const char exec_forward[] = "forward";
7121static const char exec_reverse[] = "reverse";
7122static const char *exec_direction = exec_forward;
40478521 7123static const char *const exec_direction_names[] = {
b2175913
MS
7124 exec_forward,
7125 exec_reverse,
7126 NULL
7127};
7128
7129static void
7130set_exec_direction_func (char *args, int from_tty,
7131 struct cmd_list_element *cmd)
7132{
7133 if (target_can_execute_reverse)
7134 {
7135 if (!strcmp (exec_direction, exec_forward))
7136 execution_direction = EXEC_FORWARD;
7137 else if (!strcmp (exec_direction, exec_reverse))
7138 execution_direction = EXEC_REVERSE;
7139 }
8bbed405
MS
7140 else
7141 {
7142 exec_direction = exec_forward;
7143 error (_("Target does not support this operation."));
7144 }
b2175913
MS
7145}
7146
7147static void
7148show_exec_direction_func (struct ui_file *out, int from_tty,
7149 struct cmd_list_element *cmd, const char *value)
7150{
7151 switch (execution_direction) {
7152 case EXEC_FORWARD:
7153 fprintf_filtered (out, _("Forward.\n"));
7154 break;
7155 case EXEC_REVERSE:
7156 fprintf_filtered (out, _("Reverse.\n"));
7157 break;
b2175913 7158 default:
d8b34453
PA
7159 internal_error (__FILE__, __LINE__,
7160 _("bogus execution_direction value: %d"),
7161 (int) execution_direction);
b2175913
MS
7162 }
7163}
7164
d4db2f36
PA
7165static void
7166show_schedule_multiple (struct ui_file *file, int from_tty,
7167 struct cmd_list_element *c, const char *value)
7168{
3e43a32a
MS
7169 fprintf_filtered (file, _("Resuming the execution of threads "
7170 "of all processes is %s.\n"), value);
d4db2f36 7171}
ad52ddc6 7172
22d2b532
SDJ
7173/* Implementation of `siginfo' variable. */
7174
7175static const struct internalvar_funcs siginfo_funcs =
7176{
7177 siginfo_make_value,
7178 NULL,
7179 NULL
7180};
7181
c906108c 7182void
96baa820 7183_initialize_infrun (void)
c906108c 7184{
52f0bd74
AC
7185 int i;
7186 int numsigs;
de0bea00 7187 struct cmd_list_element *c;
c906108c 7188
1bedd215
AC
7189 add_info ("signals", signals_info, _("\
7190What debugger does when program gets various signals.\n\
7191Specify a signal as argument to print info on that signal only."));
c906108c
SS
7192 add_info_alias ("handle", "signals", 0);
7193
de0bea00 7194 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7195Specify how to handle signals.\n\
486c7739 7196Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7197Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7198If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7199will be displayed instead.\n\
7200\n\
c906108c
SS
7201Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7202from 1-15 are allowed for compatibility with old versions of GDB.\n\
7203Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7204The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7205used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7206\n\
1bedd215 7207Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7208\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7209Stop means reenter debugger if this signal happens (implies print).\n\
7210Print means print a message if this signal happens.\n\
7211Pass means let program see this signal; otherwise program doesn't know.\n\
7212Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7213Pass and Stop may be combined.\n\
7214\n\
7215Multiple signals may be specified. Signal numbers and signal names\n\
7216may be interspersed with actions, with the actions being performed for\n\
7217all signals cumulatively specified."));
de0bea00 7218 set_cmd_completer (c, handle_completer);
486c7739 7219
c906108c
SS
7220 if (xdb_commands)
7221 {
1bedd215
AC
7222 add_com ("lz", class_info, signals_info, _("\
7223What debugger does when program gets various signals.\n\
7224Specify a signal as argument to print info on that signal only."));
7225 add_com ("z", class_run, xdb_handle_command, _("\
7226Specify how to handle a signal.\n\
c906108c
SS
7227Args are signals and actions to apply to those signals.\n\
7228Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7229from 1-15 are allowed for compatibility with old versions of GDB.\n\
7230Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7231The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7232used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7233Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7234\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7235nopass), \"Q\" (noprint)\n\
7236Stop means reenter debugger if this signal happens (implies print).\n\
7237Print means print a message if this signal happens.\n\
7238Pass means let program see this signal; otherwise program doesn't know.\n\
7239Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7240Pass and Stop may be combined."));
c906108c
SS
7241 }
7242
7243 if (!dbx_commands)
1a966eab
AC
7244 stop_command = add_cmd ("stop", class_obscure,
7245 not_just_help_class_command, _("\
7246There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7247This allows you to set a list of commands to be run each time execution\n\
1a966eab 7248of the program stops."), &cmdlist);
c906108c 7249
ccce17b0 7250 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7251Set inferior debugging."), _("\
7252Show inferior debugging."), _("\
7253When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7254 NULL,
7255 show_debug_infrun,
7256 &setdebuglist, &showdebuglist);
527159b7 7257
3e43a32a
MS
7258 add_setshow_boolean_cmd ("displaced", class_maintenance,
7259 &debug_displaced, _("\
237fc4c9
PA
7260Set displaced stepping debugging."), _("\
7261Show displaced stepping debugging."), _("\
7262When non-zero, displaced stepping specific debugging is enabled."),
7263 NULL,
7264 show_debug_displaced,
7265 &setdebuglist, &showdebuglist);
7266
ad52ddc6
PA
7267 add_setshow_boolean_cmd ("non-stop", no_class,
7268 &non_stop_1, _("\
7269Set whether gdb controls the inferior in non-stop mode."), _("\
7270Show whether gdb controls the inferior in non-stop mode."), _("\
7271When debugging a multi-threaded program and this setting is\n\
7272off (the default, also called all-stop mode), when one thread stops\n\
7273(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7274all other threads in the program while you interact with the thread of\n\
7275interest. When you continue or step a thread, you can allow the other\n\
7276threads to run, or have them remain stopped, but while you inspect any\n\
7277thread's state, all threads stop.\n\
7278\n\
7279In non-stop mode, when one thread stops, other threads can continue\n\
7280to run freely. You'll be able to step each thread independently,\n\
7281leave it stopped or free to run as needed."),
7282 set_non_stop,
7283 show_non_stop,
7284 &setlist,
7285 &showlist);
7286
a493e3e2 7287 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7288 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7289 signal_print = (unsigned char *)
7290 xmalloc (sizeof (signal_print[0]) * numsigs);
7291 signal_program = (unsigned char *)
7292 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7293 signal_catch = (unsigned char *)
7294 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7295 signal_pass = (unsigned char *)
7296 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7297 for (i = 0; i < numsigs; i++)
7298 {
7299 signal_stop[i] = 1;
7300 signal_print[i] = 1;
7301 signal_program[i] = 1;
ab04a2af 7302 signal_catch[i] = 0;
c906108c
SS
7303 }
7304
7305 /* Signals caused by debugger's own actions
7306 should not be given to the program afterwards. */
a493e3e2
PA
7307 signal_program[GDB_SIGNAL_TRAP] = 0;
7308 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7309
7310 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7311 signal_stop[GDB_SIGNAL_ALRM] = 0;
7312 signal_print[GDB_SIGNAL_ALRM] = 0;
7313 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7314 signal_print[GDB_SIGNAL_VTALRM] = 0;
7315 signal_stop[GDB_SIGNAL_PROF] = 0;
7316 signal_print[GDB_SIGNAL_PROF] = 0;
7317 signal_stop[GDB_SIGNAL_CHLD] = 0;
7318 signal_print[GDB_SIGNAL_CHLD] = 0;
7319 signal_stop[GDB_SIGNAL_IO] = 0;
7320 signal_print[GDB_SIGNAL_IO] = 0;
7321 signal_stop[GDB_SIGNAL_POLL] = 0;
7322 signal_print[GDB_SIGNAL_POLL] = 0;
7323 signal_stop[GDB_SIGNAL_URG] = 0;
7324 signal_print[GDB_SIGNAL_URG] = 0;
7325 signal_stop[GDB_SIGNAL_WINCH] = 0;
7326 signal_print[GDB_SIGNAL_WINCH] = 0;
7327 signal_stop[GDB_SIGNAL_PRIO] = 0;
7328 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7329
cd0fc7c3
SS
7330 /* These signals are used internally by user-level thread
7331 implementations. (See signal(5) on Solaris.) Like the above
7332 signals, a healthy program receives and handles them as part of
7333 its normal operation. */
a493e3e2
PA
7334 signal_stop[GDB_SIGNAL_LWP] = 0;
7335 signal_print[GDB_SIGNAL_LWP] = 0;
7336 signal_stop[GDB_SIGNAL_WAITING] = 0;
7337 signal_print[GDB_SIGNAL_WAITING] = 0;
7338 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7339 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7340
2455069d
UW
7341 /* Update cached state. */
7342 signal_cache_update (-1);
7343
85c07804
AC
7344 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7345 &stop_on_solib_events, _("\
7346Set stopping for shared library events."), _("\
7347Show stopping for shared library events."), _("\
c906108c
SS
7348If nonzero, gdb will give control to the user when the dynamic linker\n\
7349notifies gdb of shared library events. The most common event of interest\n\
85c07804 7350to the user would be loading/unloading of a new library."),
f9e14852 7351 set_stop_on_solib_events,
920d2a44 7352 show_stop_on_solib_events,
85c07804 7353 &setlist, &showlist);
c906108c 7354
7ab04401
AC
7355 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7356 follow_fork_mode_kind_names,
7357 &follow_fork_mode_string, _("\
7358Set debugger response to a program call of fork or vfork."), _("\
7359Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7360A fork or vfork creates a new process. follow-fork-mode can be:\n\
7361 parent - the original process is debugged after a fork\n\
7362 child - the new process is debugged after a fork\n\
ea1dd7bc 7363The unfollowed process will continue to run.\n\
7ab04401
AC
7364By default, the debugger will follow the parent process."),
7365 NULL,
920d2a44 7366 show_follow_fork_mode_string,
7ab04401
AC
7367 &setlist, &showlist);
7368
6c95b8df
PA
7369 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7370 follow_exec_mode_names,
7371 &follow_exec_mode_string, _("\
7372Set debugger response to a program call of exec."), _("\
7373Show debugger response to a program call of exec."), _("\
7374An exec call replaces the program image of a process.\n\
7375\n\
7376follow-exec-mode can be:\n\
7377\n\
cce7e648 7378 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7379to this new inferior. The program the process was running before\n\
7380the exec call can be restarted afterwards by restarting the original\n\
7381inferior.\n\
7382\n\
7383 same - the debugger keeps the process bound to the same inferior.\n\
7384The new executable image replaces the previous executable loaded in\n\
7385the inferior. Restarting the inferior after the exec call restarts\n\
7386the executable the process was running after the exec call.\n\
7387\n\
7388By default, the debugger will use the same inferior."),
7389 NULL,
7390 show_follow_exec_mode_string,
7391 &setlist, &showlist);
7392
7ab04401
AC
7393 add_setshow_enum_cmd ("scheduler-locking", class_run,
7394 scheduler_enums, &scheduler_mode, _("\
7395Set mode for locking scheduler during execution."), _("\
7396Show mode for locking scheduler during execution."), _("\
c906108c
SS
7397off == no locking (threads may preempt at any time)\n\
7398on == full locking (no thread except the current thread may run)\n\
7399step == scheduler locked during every single-step operation.\n\
7400 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7401 Other threads may run while stepping over a function call ('next')."),
7402 set_schedlock_func, /* traps on target vector */
920d2a44 7403 show_scheduler_mode,
7ab04401 7404 &setlist, &showlist);
5fbbeb29 7405
d4db2f36
PA
7406 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7407Set mode for resuming threads of all processes."), _("\
7408Show mode for resuming threads of all processes."), _("\
7409When on, execution commands (such as 'continue' or 'next') resume all\n\
7410threads of all processes. When off (which is the default), execution\n\
7411commands only resume the threads of the current process. The set of\n\
7412threads that are resumed is further refined by the scheduler-locking\n\
7413mode (see help set scheduler-locking)."),
7414 NULL,
7415 show_schedule_multiple,
7416 &setlist, &showlist);
7417
5bf193a2
AC
7418 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7419Set mode of the step operation."), _("\
7420Show mode of the step operation."), _("\
7421When set, doing a step over a function without debug line information\n\
7422will stop at the first instruction of that function. Otherwise, the\n\
7423function is skipped and the step command stops at a different source line."),
7424 NULL,
920d2a44 7425 show_step_stop_if_no_debug,
5bf193a2 7426 &setlist, &showlist);
ca6724c1 7427
72d0e2c5
YQ
7428 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7429 &can_use_displaced_stepping, _("\
237fc4c9
PA
7430Set debugger's willingness to use displaced stepping."), _("\
7431Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7432If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7433supported by the target architecture. If off, gdb will not use displaced\n\
7434stepping to step over breakpoints, even if such is supported by the target\n\
7435architecture. If auto (which is the default), gdb will use displaced stepping\n\
7436if the target architecture supports it and non-stop mode is active, but will not\n\
7437use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7438 NULL,
7439 show_can_use_displaced_stepping,
7440 &setlist, &showlist);
237fc4c9 7441
b2175913
MS
7442 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7443 &exec_direction, _("Set direction of execution.\n\
7444Options are 'forward' or 'reverse'."),
7445 _("Show direction of execution (forward/reverse)."),
7446 _("Tells gdb whether to execute forward or backward."),
7447 set_exec_direction_func, show_exec_direction_func,
7448 &setlist, &showlist);
7449
6c95b8df
PA
7450 /* Set/show detach-on-fork: user-settable mode. */
7451
7452 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7453Set whether gdb will detach the child of a fork."), _("\
7454Show whether gdb will detach the child of a fork."), _("\
7455Tells gdb whether to detach the child of a fork."),
7456 NULL, NULL, &setlist, &showlist);
7457
03583c20
UW
7458 /* Set/show disable address space randomization mode. */
7459
7460 add_setshow_boolean_cmd ("disable-randomization", class_support,
7461 &disable_randomization, _("\
7462Set disabling of debuggee's virtual address space randomization."), _("\
7463Show disabling of debuggee's virtual address space randomization."), _("\
7464When this mode is on (which is the default), randomization of the virtual\n\
7465address space is disabled. Standalone programs run with the randomization\n\
7466enabled by default on some platforms."),
7467 &set_disable_randomization,
7468 &show_disable_randomization,
7469 &setlist, &showlist);
7470
ca6724c1 7471 /* ptid initializations */
ca6724c1
KB
7472 inferior_ptid = null_ptid;
7473 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7474
7475 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7476 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7477 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7478 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7479
7480 /* Explicitly create without lookup, since that tries to create a
7481 value with a void typed value, and when we get here, gdbarch
7482 isn't initialized yet. At this point, we're quite sure there
7483 isn't another convenience variable of the same name. */
22d2b532 7484 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7485
7486 add_setshow_boolean_cmd ("observer", no_class,
7487 &observer_mode_1, _("\
7488Set whether gdb controls the inferior in observer mode."), _("\
7489Show whether gdb controls the inferior in observer mode."), _("\
7490In observer mode, GDB can get data from the inferior, but not\n\
7491affect its execution. Registers and memory may not be changed,\n\
7492breakpoints may not be set, and the program cannot be interrupted\n\
7493or signalled."),
7494 set_observer_mode,
7495 show_observer_mode,
7496 &setlist,
7497 &showlist);
c906108c 7498}
This page took 1.723768 seconds and 4 git commands to generate.