2005-05-26 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2
MK
48#include "solib.h"
49
9f976b41 50#include "gdb_assert.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
ea67f13b
DJ
81static int prepare_to_proceed (void);
82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
c906108c
SS
85int inferior_ignoring_startup_exec_events = 0;
86int inferior_ignoring_leading_exec_events = 0;
87
5fbbeb29
CF
88/* When set, stop the 'step' command if we enter a function which has
89 no line number information. The normal behavior is that we step
90 over such function. */
91int step_stop_if_no_debug = 0;
920d2a44
AC
92static void
93show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95{
96 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
97}
5fbbeb29 98
43ff13b4 99/* In asynchronous mode, but simulating synchronous execution. */
96baa820 100
43ff13b4
JM
101int sync_execution = 0;
102
c906108c
SS
103/* wait_for_inferior and normal_stop use this to notify the user
104 when the inferior stopped in a different thread than it had been
96baa820
JM
105 running in. */
106
39f77062 107static ptid_t previous_inferior_ptid;
7a292a7a
SS
108
109/* This is true for configurations that may follow through execl() and
110 similar functions. At present this is only true for HP-UX native. */
111
112#ifndef MAY_FOLLOW_EXEC
113#define MAY_FOLLOW_EXEC (0)
c906108c
SS
114#endif
115
7a292a7a
SS
116static int may_follow_exec = MAY_FOLLOW_EXEC;
117
527159b7 118static int debug_infrun = 0;
920d2a44
AC
119static void
120show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
124}
527159b7 125
d4f3574e
SS
126/* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
133
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
137 dynamic linker.
138
ca557f44
AC
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
144 function call.
d4f3574e
SS
145
146 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
151
152 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
155
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
163 inferior's state. */
c906108c 164
c906108c
SS
165/* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
167 dld itself).
168
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
172
173#ifndef SOLIB_IN_DYNAMIC_LINKER
174#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175#endif
176
c2c6d25f
JM
177/* We can't step off a permanent breakpoint in the ordinary way, because we
178 can't remove it. Instead, we have to advance the PC to the next
179 instruction. This macro should expand to a pointer to a function that
180 does that, or zero if we have no such function. If we don't have a
181 definition for it, we have to report an error. */
488f131b 182#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
183#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
184static void
c2d11a7d 185default_skip_permanent_breakpoint (void)
c2c6d25f 186{
8a3fe4f8 187 error (_("\
c2c6d25f
JM
188The program is stopped at a permanent breakpoint, but GDB does not know\n\
189how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 190a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
191}
192#endif
488f131b 193
c2c6d25f 194
7a292a7a
SS
195/* Convert the #defines into values. This is temporary until wfi control
196 flow is completely sorted out. */
197
198#ifndef HAVE_STEPPABLE_WATCHPOINT
199#define HAVE_STEPPABLE_WATCHPOINT 0
200#else
201#undef HAVE_STEPPABLE_WATCHPOINT
202#define HAVE_STEPPABLE_WATCHPOINT 1
203#endif
204
692590c1
MS
205#ifndef CANNOT_STEP_HW_WATCHPOINTS
206#define CANNOT_STEP_HW_WATCHPOINTS 0
207#else
208#undef CANNOT_STEP_HW_WATCHPOINTS
209#define CANNOT_STEP_HW_WATCHPOINTS 1
210#endif
211
c906108c
SS
212/* Tables of how to react to signals; the user sets them. */
213
214static unsigned char *signal_stop;
215static unsigned char *signal_print;
216static unsigned char *signal_program;
217
218#define SET_SIGS(nsigs,sigs,flags) \
219 do { \
220 int signum = (nsigs); \
221 while (signum-- > 0) \
222 if ((sigs)[signum]) \
223 (flags)[signum] = 1; \
224 } while (0)
225
226#define UNSET_SIGS(nsigs,sigs,flags) \
227 do { \
228 int signum = (nsigs); \
229 while (signum-- > 0) \
230 if ((sigs)[signum]) \
231 (flags)[signum] = 0; \
232 } while (0)
233
39f77062
KB
234/* Value to pass to target_resume() to cause all threads to resume */
235
236#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
237
238/* Command list pointer for the "stop" placeholder. */
239
240static struct cmd_list_element *stop_command;
241
242/* Nonzero if breakpoints are now inserted in the inferior. */
243
244static int breakpoints_inserted;
245
246/* Function inferior was in as of last step command. */
247
248static struct symbol *step_start_function;
249
250/* Nonzero if we are expecting a trace trap and should proceed from it. */
251
252static int trap_expected;
253
c906108c
SS
254/* Nonzero if we want to give control to the user when we're notified
255 of shared library events by the dynamic linker. */
256static int stop_on_solib_events;
920d2a44
AC
257static void
258show_stop_on_solib_events (struct ui_file *file, int from_tty,
259 struct cmd_list_element *c, const char *value)
260{
261 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
262 value);
263}
c906108c 264
c906108c
SS
265/* Nonzero means expecting a trace trap
266 and should stop the inferior and return silently when it happens. */
267
268int stop_after_trap;
269
270/* Nonzero means expecting a trap and caller will handle it themselves.
271 It is used after attach, due to attaching to a process;
272 when running in the shell before the child program has been exec'd;
273 and when running some kinds of remote stuff (FIXME?). */
274
c0236d92 275enum stop_kind stop_soon;
c906108c
SS
276
277/* Nonzero if proceed is being used for a "finish" command or a similar
278 situation when stop_registers should be saved. */
279
280int proceed_to_finish;
281
282/* Save register contents here when about to pop a stack dummy frame,
283 if-and-only-if proceed_to_finish is set.
284 Thus this contains the return value from the called function (assuming
285 values are returned in a register). */
286
72cec141 287struct regcache *stop_registers;
c906108c
SS
288
289/* Nonzero if program stopped due to error trying to insert breakpoints. */
290
291static int breakpoints_failed;
292
293/* Nonzero after stop if current stack frame should be printed. */
294
295static int stop_print_frame;
296
297static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 298
e02bc4cc 299/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
300 returned by target_wait()/deprecated_target_wait_hook(). This
301 information is returned by get_last_target_status(). */
39f77062 302static ptid_t target_last_wait_ptid;
e02bc4cc
DS
303static struct target_waitstatus target_last_waitstatus;
304
c906108c
SS
305/* This is used to remember when a fork, vfork or exec event
306 was caught by a catchpoint, and thus the event is to be
307 followed at the next resume of the inferior, and not
308 immediately. */
309static struct
488f131b
JB
310{
311 enum target_waitkind kind;
312 struct
c906108c 313 {
488f131b 314 int parent_pid;
488f131b 315 int child_pid;
c906108c 316 }
488f131b
JB
317 fork_event;
318 char *execd_pathname;
319}
c906108c
SS
320pending_follow;
321
53904c9e
AC
322static const char follow_fork_mode_child[] = "child";
323static const char follow_fork_mode_parent[] = "parent";
324
488f131b 325static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
326 follow_fork_mode_child,
327 follow_fork_mode_parent,
328 NULL
ef346e04 329};
c906108c 330
53904c9e 331static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
332static void
333show_follow_fork_mode_string (struct ui_file *file, int from_tty,
334 struct cmd_list_element *c, const char *value)
335{
336 fprintf_filtered (file, _("\
337Debugger response to a program call of fork or vfork is \"%s\".\n"),
338 value);
339}
c906108c
SS
340\f
341
6604731b 342static int
4ef3f3be 343follow_fork (void)
c906108c 344{
ea1dd7bc 345 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 346
6604731b 347 return target_follow_fork (follow_child);
c906108c
SS
348}
349
6604731b
DJ
350void
351follow_inferior_reset_breakpoints (void)
c906108c 352{
6604731b
DJ
353 /* Was there a step_resume breakpoint? (There was if the user
354 did a "next" at the fork() call.) If so, explicitly reset its
355 thread number.
356
357 step_resumes are a form of bp that are made to be per-thread.
358 Since we created the step_resume bp when the parent process
359 was being debugged, and now are switching to the child process,
360 from the breakpoint package's viewpoint, that's a switch of
361 "threads". We must update the bp's notion of which thread
362 it is for, or it'll be ignored when it triggers. */
363
364 if (step_resume_breakpoint)
365 breakpoint_re_set_thread (step_resume_breakpoint);
366
367 /* Reinsert all breakpoints in the child. The user may have set
368 breakpoints after catching the fork, in which case those
369 were never set in the child, but only in the parent. This makes
370 sure the inserted breakpoints match the breakpoint list. */
371
372 breakpoint_re_set ();
373 insert_breakpoints ();
c906108c 374}
c906108c 375
1adeb98a
FN
376/* EXECD_PATHNAME is assumed to be non-NULL. */
377
c906108c 378static void
96baa820 379follow_exec (int pid, char *execd_pathname)
c906108c 380{
c906108c 381 int saved_pid = pid;
7a292a7a
SS
382 struct target_ops *tgt;
383
384 if (!may_follow_exec)
385 return;
c906108c 386
c906108c
SS
387 /* This is an exec event that we actually wish to pay attention to.
388 Refresh our symbol table to the newly exec'd program, remove any
389 momentary bp's, etc.
390
391 If there are breakpoints, they aren't really inserted now,
392 since the exec() transformed our inferior into a fresh set
393 of instructions.
394
395 We want to preserve symbolic breakpoints on the list, since
396 we have hopes that they can be reset after the new a.out's
397 symbol table is read.
398
399 However, any "raw" breakpoints must be removed from the list
400 (e.g., the solib bp's), since their address is probably invalid
401 now.
402
403 And, we DON'T want to call delete_breakpoints() here, since
404 that may write the bp's "shadow contents" (the instruction
405 value that was overwritten witha TRAP instruction). Since
406 we now have a new a.out, those shadow contents aren't valid. */
407 update_breakpoints_after_exec ();
408
409 /* If there was one, it's gone now. We cannot truly step-to-next
410 statement through an exec(). */
411 step_resume_breakpoint = NULL;
412 step_range_start = 0;
413 step_range_end = 0;
414
c906108c 415 /* What is this a.out's name? */
a3f17187 416 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
417
418 /* We've followed the inferior through an exec. Therefore, the
419 inferior has essentially been killed & reborn. */
7a292a7a
SS
420
421 /* First collect the run target in effect. */
422 tgt = find_run_target ();
423 /* If we can't find one, things are in a very strange state... */
424 if (tgt == NULL)
8a3fe4f8 425 error (_("Could find run target to save before following exec"));
7a292a7a 426
c906108c
SS
427 gdb_flush (gdb_stdout);
428 target_mourn_inferior ();
39f77062 429 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 430 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 431 push_target (tgt);
c906108c
SS
432
433 /* That a.out is now the one to use. */
434 exec_file_attach (execd_pathname, 0);
435
436 /* And also is where symbols can be found. */
1adeb98a 437 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
438
439 /* Reset the shared library package. This ensures that we get
440 a shlib event when the child reaches "_start", at which point
441 the dld will have had a chance to initialize the child. */
7a292a7a 442#if defined(SOLIB_RESTART)
c906108c 443 SOLIB_RESTART ();
7a292a7a
SS
444#endif
445#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 446 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
447#else
448 solib_create_inferior_hook ();
7a292a7a 449#endif
c906108c
SS
450
451 /* Reinsert all breakpoints. (Those which were symbolic have
452 been reset to the proper address in the new a.out, thanks
453 to symbol_file_command...) */
454 insert_breakpoints ();
455
456 /* The next resume of this inferior should bring it to the shlib
457 startup breakpoints. (If the user had also set bp's on
458 "main" from the old (parent) process, then they'll auto-
459 matically get reset there in the new process.) */
c906108c
SS
460}
461
462/* Non-zero if we just simulating a single-step. This is needed
463 because we cannot remove the breakpoints in the inferior process
464 until after the `wait' in `wait_for_inferior'. */
465static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
466
467/* The thread we inserted single-step breakpoints for. */
468static ptid_t singlestep_ptid;
469
470/* If another thread hit the singlestep breakpoint, we save the original
471 thread here so that we can resume single-stepping it later. */
472static ptid_t saved_singlestep_ptid;
473static int stepping_past_singlestep_breakpoint;
c906108c
SS
474\f
475
476/* Things to clean up if we QUIT out of resume (). */
c906108c 477static void
74b7792f 478resume_cleanups (void *ignore)
c906108c
SS
479{
480 normal_stop ();
481}
482
53904c9e
AC
483static const char schedlock_off[] = "off";
484static const char schedlock_on[] = "on";
485static const char schedlock_step[] = "step";
488f131b 486static const char *scheduler_enums[] = {
ef346e04
AC
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491};
920d2a44
AC
492static const char *scheduler_mode = schedlock_off;
493static void
494show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496{
497 fprintf_filtered (file, _("\
498Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500}
c906108c
SS
501
502static void
96baa820 503set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 504{
eefe576e
AC
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
c906108c
SS
510}
511
512
513/* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521void
96baa820 522resume (int step, enum target_signal sig)
c906108c
SS
523{
524 int should_resume = 1;
74b7792f 525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
526 QUIT;
527
527159b7 528 if (debug_infrun)
8a9de0e4
AC
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
527159b7 531
ef5cf84e
MS
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
c906108c 534
692590c1
MS
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
543 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
544 remove_hw_watchpoints ();
488f131b 545
692590c1 546
c2c6d25f
JM
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
552 SKIP_PERMANENT_BREAKPOINT ();
553
b0ed3589 554 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
555 {
556 /* Do it the hard way, w/temp breakpoints */
c5aa993b 557 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
558 /* ...and don't ask hardware to do it. */
559 step = 0;
560 /* and do not pull these breakpoints until after a `wait' in
561 `wait_for_inferior' */
562 singlestep_breakpoints_inserted_p = 1;
9f976b41 563 singlestep_ptid = inferior_ptid;
c906108c
SS
564 }
565
c906108c 566 /* If there were any forks/vforks/execs that were caught and are
6604731b 567 now to be followed, then do so. */
c906108c
SS
568 switch (pending_follow.kind)
569 {
6604731b
DJ
570 case TARGET_WAITKIND_FORKED:
571 case TARGET_WAITKIND_VFORKED:
c906108c 572 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
573 if (follow_fork ())
574 should_resume = 0;
c906108c
SS
575 break;
576
6604731b 577 case TARGET_WAITKIND_EXECD:
c906108c 578 /* follow_exec is called as soon as the exec event is seen. */
6604731b 579 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
580 break;
581
582 default:
583 break;
584 }
c906108c
SS
585
586 /* Install inferior's terminal modes. */
587 target_terminal_inferior ();
588
589 if (should_resume)
590 {
39f77062 591 ptid_t resume_ptid;
dfcd3bfb 592
488f131b 593 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 594
8fb3e588
AC
595 if ((step || singlestep_breakpoints_inserted_p)
596 && (stepping_past_singlestep_breakpoint
597 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 598 {
ef5cf84e
MS
599 /* Stepping past a breakpoint without inserting breakpoints.
600 Make sure only the current thread gets to step, so that
601 other threads don't sneak past breakpoints while they are
602 not inserted. */
c906108c 603
ef5cf84e 604 resume_ptid = inferior_ptid;
c906108c 605 }
ef5cf84e 606
8fb3e588
AC
607 if ((scheduler_mode == schedlock_on)
608 || (scheduler_mode == schedlock_step
609 && (step || singlestep_breakpoints_inserted_p)))
c906108c 610 {
ef5cf84e 611 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 612 resume_ptid = inferior_ptid;
c906108c 613 }
ef5cf84e 614
c4ed33b9
AC
615 if (CANNOT_STEP_BREAKPOINT)
616 {
617 /* Most targets can step a breakpoint instruction, thus
618 executing it normally. But if this one cannot, just
619 continue and we will hit it anyway. */
620 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
621 step = 0;
622 }
39f77062 623 target_resume (resume_ptid, step, sig);
c906108c
SS
624 }
625
626 discard_cleanups (old_cleanups);
627}
628\f
629
630/* Clear out all variables saying what to do when inferior is continued.
631 First do this, then set the ones you want, then call `proceed'. */
632
633void
96baa820 634clear_proceed_status (void)
c906108c
SS
635{
636 trap_expected = 0;
637 step_range_start = 0;
638 step_range_end = 0;
aa0cd9c1 639 step_frame_id = null_frame_id;
5fbbeb29 640 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 641 stop_after_trap = 0;
c0236d92 642 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
643 proceed_to_finish = 0;
644 breakpoint_proceeded = 1; /* We're about to proceed... */
645
646 /* Discard any remaining commands or status from previous stop. */
647 bpstat_clear (&stop_bpstat);
648}
649
ea67f13b
DJ
650/* This should be suitable for any targets that support threads. */
651
652static int
653prepare_to_proceed (void)
654{
655 ptid_t wait_ptid;
656 struct target_waitstatus wait_status;
657
658 /* Get the last target status returned by target_wait(). */
659 get_last_target_status (&wait_ptid, &wait_status);
660
661 /* Make sure we were stopped either at a breakpoint, or because
662 of a Ctrl-C. */
663 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
664 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
665 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
666 {
667 return 0;
668 }
669
670 if (!ptid_equal (wait_ptid, minus_one_ptid)
671 && !ptid_equal (inferior_ptid, wait_ptid))
672 {
673 /* Switched over from WAIT_PID. */
674 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
675
676 if (wait_pc != read_pc ())
677 {
678 /* Switch back to WAIT_PID thread. */
679 inferior_ptid = wait_ptid;
680
681 /* FIXME: This stuff came from switch_to_thread() in
682 thread.c (which should probably be a public function). */
683 flush_cached_frames ();
684 registers_changed ();
685 stop_pc = wait_pc;
686 select_frame (get_current_frame ());
687 }
688
8fb3e588
AC
689 /* We return 1 to indicate that there is a breakpoint here,
690 so we need to step over it before continuing to avoid
691 hitting it straight away. */
692 if (breakpoint_here_p (wait_pc))
693 return 1;
ea67f13b
DJ
694 }
695
696 return 0;
8fb3e588 697
ea67f13b 698}
e4846b08
JJ
699
700/* Record the pc of the program the last time it stopped. This is
701 just used internally by wait_for_inferior, but need to be preserved
702 over calls to it and cleared when the inferior is started. */
703static CORE_ADDR prev_pc;
704
c906108c
SS
705/* Basic routine for continuing the program in various fashions.
706
707 ADDR is the address to resume at, or -1 for resume where stopped.
708 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 709 or -1 for act according to how it stopped.
c906108c 710 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
711 -1 means return after that and print nothing.
712 You should probably set various step_... variables
713 before calling here, if you are stepping.
c906108c
SS
714
715 You should call clear_proceed_status before calling proceed. */
716
717void
96baa820 718proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
719{
720 int oneproc = 0;
721
722 if (step > 0)
723 step_start_function = find_pc_function (read_pc ());
724 if (step < 0)
725 stop_after_trap = 1;
726
2acceee2 727 if (addr == (CORE_ADDR) -1)
c906108c 728 {
c906108c 729 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
730 /* There is a breakpoint at the address we will resume at,
731 step one instruction before inserting breakpoints so that
732 we do not stop right away (and report a second hit at this
733 breakpoint). */
c906108c 734 oneproc = 1;
3352ef37
AC
735 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
736 && gdbarch_single_step_through_delay (current_gdbarch,
737 get_current_frame ()))
738 /* We stepped onto an instruction that needs to be stepped
739 again before re-inserting the breakpoint, do so. */
c906108c
SS
740 oneproc = 1;
741 }
742 else
743 {
744 write_pc (addr);
c906108c
SS
745 }
746
527159b7 747 if (debug_infrun)
8a9de0e4
AC
748 fprintf_unfiltered (gdb_stdlog,
749 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
750 paddr_nz (addr), siggnal, step);
527159b7 751
c906108c
SS
752 /* In a multi-threaded task we may select another thread
753 and then continue or step.
754
755 But if the old thread was stopped at a breakpoint, it
756 will immediately cause another breakpoint stop without
757 any execution (i.e. it will report a breakpoint hit
758 incorrectly). So we must step over it first.
759
ea67f13b 760 prepare_to_proceed checks the current thread against the thread
c906108c
SS
761 that reported the most recent event. If a step-over is required
762 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
763 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
764 oneproc = 1;
c906108c 765
c906108c
SS
766 if (oneproc)
767 /* We will get a trace trap after one instruction.
768 Continue it automatically and insert breakpoints then. */
769 trap_expected = 1;
770 else
771 {
81d0cc19
GS
772 insert_breakpoints ();
773 /* If we get here there was no call to error() in
8fb3e588 774 insert breakpoints -- so they were inserted. */
c906108c
SS
775 breakpoints_inserted = 1;
776 }
777
778 if (siggnal != TARGET_SIGNAL_DEFAULT)
779 stop_signal = siggnal;
780 /* If this signal should not be seen by program,
781 give it zero. Used for debugging signals. */
782 else if (!signal_program[stop_signal])
783 stop_signal = TARGET_SIGNAL_0;
784
785 annotate_starting ();
786
787 /* Make sure that output from GDB appears before output from the
788 inferior. */
789 gdb_flush (gdb_stdout);
790
e4846b08
JJ
791 /* Refresh prev_pc value just prior to resuming. This used to be
792 done in stop_stepping, however, setting prev_pc there did not handle
793 scenarios such as inferior function calls or returning from
794 a function via the return command. In those cases, the prev_pc
795 value was not set properly for subsequent commands. The prev_pc value
796 is used to initialize the starting line number in the ecs. With an
797 invalid value, the gdb next command ends up stopping at the position
798 represented by the next line table entry past our start position.
799 On platforms that generate one line table entry per line, this
800 is not a problem. However, on the ia64, the compiler generates
801 extraneous line table entries that do not increase the line number.
802 When we issue the gdb next command on the ia64 after an inferior call
803 or a return command, we often end up a few instructions forward, still
804 within the original line we started.
805
806 An attempt was made to have init_execution_control_state () refresh
807 the prev_pc value before calculating the line number. This approach
808 did not work because on platforms that use ptrace, the pc register
809 cannot be read unless the inferior is stopped. At that point, we
810 are not guaranteed the inferior is stopped and so the read_pc ()
811 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 812 updated correctly when the inferior is stopped. */
e4846b08
JJ
813 prev_pc = read_pc ();
814
c906108c
SS
815 /* Resume inferior. */
816 resume (oneproc || step || bpstat_should_step (), stop_signal);
817
818 /* Wait for it to stop (if not standalone)
819 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
820 /* Do this only if we are not using the event loop, or if the target
821 does not support asynchronous execution. */
362646f5 822 if (!target_can_async_p ())
43ff13b4
JM
823 {
824 wait_for_inferior ();
825 normal_stop ();
826 }
c906108c 827}
c906108c
SS
828\f
829
830/* Start remote-debugging of a machine over a serial link. */
96baa820 831
c906108c 832void
96baa820 833start_remote (void)
c906108c
SS
834{
835 init_thread_list ();
836 init_wait_for_inferior ();
c0236d92 837 stop_soon = STOP_QUIETLY;
c906108c 838 trap_expected = 0;
43ff13b4 839
6426a772
JM
840 /* Always go on waiting for the target, regardless of the mode. */
841 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 842 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
843 nothing is returned (instead of just blocking). Because of this,
844 targets expecting an immediate response need to, internally, set
845 things up so that the target_wait() is forced to eventually
846 timeout. */
847 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
848 differentiate to its caller what the state of the target is after
849 the initial open has been performed. Here we're assuming that
850 the target has stopped. It should be possible to eventually have
851 target_open() return to the caller an indication that the target
852 is currently running and GDB state should be set to the same as
853 for an async run. */
854 wait_for_inferior ();
855 normal_stop ();
c906108c
SS
856}
857
858/* Initialize static vars when a new inferior begins. */
859
860void
96baa820 861init_wait_for_inferior (void)
c906108c
SS
862{
863 /* These are meaningless until the first time through wait_for_inferior. */
864 prev_pc = 0;
c906108c 865
c906108c
SS
866 breakpoints_inserted = 0;
867 breakpoint_init_inferior (inf_starting);
868
869 /* Don't confuse first call to proceed(). */
870 stop_signal = TARGET_SIGNAL_0;
871
872 /* The first resume is not following a fork/vfork/exec. */
873 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 874
c906108c 875 clear_proceed_status ();
9f976b41
DJ
876
877 stepping_past_singlestep_breakpoint = 0;
c906108c 878}
c906108c 879\f
b83266a0
SS
880/* This enum encodes possible reasons for doing a target_wait, so that
881 wfi can call target_wait in one place. (Ultimately the call will be
882 moved out of the infinite loop entirely.) */
883
c5aa993b
JM
884enum infwait_states
885{
cd0fc7c3
SS
886 infwait_normal_state,
887 infwait_thread_hop_state,
cd0fc7c3 888 infwait_nonstep_watch_state
b83266a0
SS
889};
890
11cf8741
JM
891/* Why did the inferior stop? Used to print the appropriate messages
892 to the interface from within handle_inferior_event(). */
893enum inferior_stop_reason
894{
895 /* We don't know why. */
896 STOP_UNKNOWN,
897 /* Step, next, nexti, stepi finished. */
898 END_STEPPING_RANGE,
899 /* Found breakpoint. */
900 BREAKPOINT_HIT,
901 /* Inferior terminated by signal. */
902 SIGNAL_EXITED,
903 /* Inferior exited. */
904 EXITED,
905 /* Inferior received signal, and user asked to be notified. */
906 SIGNAL_RECEIVED
907};
908
cd0fc7c3
SS
909/* This structure contains what used to be local variables in
910 wait_for_inferior. Probably many of them can return to being
911 locals in handle_inferior_event. */
912
c5aa993b 913struct execution_control_state
488f131b
JB
914{
915 struct target_waitstatus ws;
916 struct target_waitstatus *wp;
917 int another_trap;
918 int random_signal;
919 CORE_ADDR stop_func_start;
920 CORE_ADDR stop_func_end;
921 char *stop_func_name;
922 struct symtab_and_line sal;
488f131b
JB
923 int current_line;
924 struct symtab *current_symtab;
925 int handling_longjmp; /* FIXME */
926 ptid_t ptid;
927 ptid_t saved_inferior_ptid;
68f53502 928 int step_after_step_resume_breakpoint;
488f131b
JB
929 int stepping_through_solib_after_catch;
930 bpstat stepping_through_solib_catchpoints;
488f131b
JB
931 int new_thread_event;
932 struct target_waitstatus tmpstatus;
933 enum infwait_states infwait_state;
934 ptid_t waiton_ptid;
935 int wait_some_more;
936};
937
938void init_execution_control_state (struct execution_control_state *ecs);
939
940void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 941
c2c6d25f 942static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
943static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
944static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
945 struct frame_id sr_id);
104c1213
JM
946static void stop_stepping (struct execution_control_state *ecs);
947static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 948static void keep_going (struct execution_control_state *ecs);
488f131b
JB
949static void print_stop_reason (enum inferior_stop_reason stop_reason,
950 int stop_info);
104c1213 951
cd0fc7c3
SS
952/* Wait for control to return from inferior to debugger.
953 If inferior gets a signal, we may decide to start it up again
954 instead of returning. That is why there is a loop in this function.
955 When this function actually returns it means the inferior
956 should be left stopped and GDB should read more commands. */
957
958void
96baa820 959wait_for_inferior (void)
cd0fc7c3
SS
960{
961 struct cleanup *old_cleanups;
962 struct execution_control_state ecss;
963 struct execution_control_state *ecs;
c906108c 964
527159b7 965 if (debug_infrun)
8a9de0e4 966 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 967
8601f500 968 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 969 &step_resume_breakpoint);
cd0fc7c3
SS
970
971 /* wfi still stays in a loop, so it's OK just to take the address of
972 a local to get the ecs pointer. */
973 ecs = &ecss;
974
975 /* Fill in with reasonable starting values. */
976 init_execution_control_state (ecs);
977
c906108c 978 /* We'll update this if & when we switch to a new thread. */
39f77062 979 previous_inferior_ptid = inferior_ptid;
c906108c 980
cd0fc7c3
SS
981 overlay_cache_invalid = 1;
982
983 /* We have to invalidate the registers BEFORE calling target_wait
984 because they can be loaded from the target while in target_wait.
985 This makes remote debugging a bit more efficient for those
986 targets that provide critical registers as part of their normal
987 status mechanism. */
988
989 registers_changed ();
b83266a0 990
c906108c
SS
991 while (1)
992 {
9a4105ab
AC
993 if (deprecated_target_wait_hook)
994 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 995 else
39f77062 996 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 997
cd0fc7c3
SS
998 /* Now figure out what to do with the result of the result. */
999 handle_inferior_event (ecs);
c906108c 1000
cd0fc7c3
SS
1001 if (!ecs->wait_some_more)
1002 break;
1003 }
1004 do_cleanups (old_cleanups);
1005}
c906108c 1006
43ff13b4
JM
1007/* Asynchronous version of wait_for_inferior. It is called by the
1008 event loop whenever a change of state is detected on the file
1009 descriptor corresponding to the target. It can be called more than
1010 once to complete a single execution command. In such cases we need
1011 to keep the state in a global variable ASYNC_ECSS. If it is the
1012 last time that this function is called for a single execution
1013 command, then report to the user that the inferior has stopped, and
1014 do the necessary cleanups. */
1015
1016struct execution_control_state async_ecss;
1017struct execution_control_state *async_ecs;
1018
1019void
fba45db2 1020fetch_inferior_event (void *client_data)
43ff13b4
JM
1021{
1022 static struct cleanup *old_cleanups;
1023
c5aa993b 1024 async_ecs = &async_ecss;
43ff13b4
JM
1025
1026 if (!async_ecs->wait_some_more)
1027 {
488f131b 1028 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1029 &step_resume_breakpoint);
43ff13b4
JM
1030
1031 /* Fill in with reasonable starting values. */
1032 init_execution_control_state (async_ecs);
1033
43ff13b4 1034 /* We'll update this if & when we switch to a new thread. */
39f77062 1035 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1036
1037 overlay_cache_invalid = 1;
1038
1039 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1040 because they can be loaded from the target while in target_wait.
1041 This makes remote debugging a bit more efficient for those
1042 targets that provide critical registers as part of their normal
1043 status mechanism. */
43ff13b4
JM
1044
1045 registers_changed ();
1046 }
1047
9a4105ab 1048 if (deprecated_target_wait_hook)
488f131b 1049 async_ecs->ptid =
9a4105ab 1050 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1051 else
39f77062 1052 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1053
1054 /* Now figure out what to do with the result of the result. */
1055 handle_inferior_event (async_ecs);
1056
1057 if (!async_ecs->wait_some_more)
1058 {
adf40b2e 1059 /* Do only the cleanups that have been added by this
488f131b
JB
1060 function. Let the continuations for the commands do the rest,
1061 if there are any. */
43ff13b4
JM
1062 do_exec_cleanups (old_cleanups);
1063 normal_stop ();
c2d11a7d
JM
1064 if (step_multi && stop_step)
1065 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1066 else
1067 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1068 }
1069}
1070
cd0fc7c3
SS
1071/* Prepare an execution control state for looping through a
1072 wait_for_inferior-type loop. */
1073
1074void
96baa820 1075init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1076{
c2d11a7d 1077 /* ecs->another_trap? */
cd0fc7c3 1078 ecs->random_signal = 0;
68f53502 1079 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1080 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1081 ecs->stepping_through_solib_after_catch = 0;
1082 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1083 ecs->sal = find_pc_line (prev_pc, 0);
1084 ecs->current_line = ecs->sal.line;
1085 ecs->current_symtab = ecs->sal.symtab;
1086 ecs->infwait_state = infwait_normal_state;
39f77062 1087 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1088 ecs->wp = &(ecs->ws);
1089}
1090
e02bc4cc 1091/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1092 target_wait()/deprecated_target_wait_hook(). The data is actually
1093 cached by handle_inferior_event(), which gets called immediately
1094 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1095
1096void
488f131b 1097get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1098{
39f77062 1099 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1100 *status = target_last_waitstatus;
1101}
1102
dd80620e
MS
1103/* Switch thread contexts, maintaining "infrun state". */
1104
1105static void
1106context_switch (struct execution_control_state *ecs)
1107{
1108 /* Caution: it may happen that the new thread (or the old one!)
1109 is not in the thread list. In this case we must not attempt
1110 to "switch context", or we run the risk that our context may
1111 be lost. This may happen as a result of the target module
1112 mishandling thread creation. */
1113
1114 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1115 { /* Perform infrun state context switch: */
dd80620e 1116 /* Save infrun state for the old thread. */
0ce3d317 1117 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1118 trap_expected, step_resume_breakpoint,
15960608 1119 step_range_start,
aa0cd9c1 1120 step_range_end, &step_frame_id,
dd80620e
MS
1121 ecs->handling_longjmp, ecs->another_trap,
1122 ecs->stepping_through_solib_after_catch,
1123 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1124 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1125
1126 /* Load infrun state for the new thread. */
0ce3d317 1127 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1128 &trap_expected, &step_resume_breakpoint,
15960608 1129 &step_range_start,
aa0cd9c1 1130 &step_range_end, &step_frame_id,
dd80620e
MS
1131 &ecs->handling_longjmp, &ecs->another_trap,
1132 &ecs->stepping_through_solib_after_catch,
1133 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1134 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1135 }
1136 inferior_ptid = ecs->ptid;
1137}
1138
4fa8626c
DJ
1139static void
1140adjust_pc_after_break (struct execution_control_state *ecs)
1141{
8aad930b 1142 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1143
1144 /* If this target does not decrement the PC after breakpoints, then
1145 we have nothing to do. */
1146 if (DECR_PC_AFTER_BREAK == 0)
1147 return;
1148
1149 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1150 we aren't, just return.
9709f61c
DJ
1151
1152 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1153 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1154 by software breakpoints should be handled through the normal breakpoint
1155 layer.
8fb3e588 1156
4fa8626c
DJ
1157 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1158 different signals (SIGILL or SIGEMT for instance), but it is less
1159 clear where the PC is pointing afterwards. It may not match
1160 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1161 these signals at breakpoints (the code has been in GDB since at least
1162 1992) so I can not guess how to handle them here.
8fb3e588 1163
4fa8626c
DJ
1164 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1165 would have the PC after hitting a watchpoint affected by
1166 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1167 in GDB history, and it seems unlikely to be correct, so
1168 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1169
1170 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1171 return;
1172
1173 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1174 return;
1175
8aad930b
AC
1176 /* Find the location where (if we've hit a breakpoint) the
1177 breakpoint would be. */
1178 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1179
1180 if (SOFTWARE_SINGLE_STEP_P ())
1181 {
1182 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1183 an inserted breakpoint. This actually makes things
1184 easier. */
8aad930b
AC
1185 if (singlestep_breakpoints_inserted_p)
1186 /* When software single stepping, the instruction at [prev_pc]
1187 is never a breakpoint, but the instruction following
1188 [prev_pc] (in program execution order) always is. Assume
1189 that following instruction was reached and hence a software
1190 breakpoint was hit. */
1191 write_pc_pid (breakpoint_pc, ecs->ptid);
1192 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1193 /* The inferior was free running (i.e., no single-step
1194 breakpoints inserted) and it hit a software breakpoint. */
1195 write_pc_pid (breakpoint_pc, ecs->ptid);
1196 }
1197 else
1198 {
1199 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1200 both a completed single-step and a software breakpoint. Need
1201 to differentiate between the two as the latter needs
1202 adjusting but the former does not. */
8aad930b
AC
1203 if (currently_stepping (ecs))
1204 {
1205 if (prev_pc == breakpoint_pc
1206 && software_breakpoint_inserted_here_p (breakpoint_pc))
1207 /* Hardware single-stepped a software breakpoint (as
1208 occures when the inferior is resumed with PC pointing
1209 at not-yet-hit software breakpoint). Since the
1210 breakpoint really is executed, the inferior needs to be
1211 backed up to the breakpoint address. */
1212 write_pc_pid (breakpoint_pc, ecs->ptid);
1213 }
1214 else
1215 {
1216 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1217 /* The inferior was free running (i.e., no hardware
1218 single-step and no possibility of a false SIGTRAP) and
1219 hit a software breakpoint. */
1220 write_pc_pid (breakpoint_pc, ecs->ptid);
1221 }
1222 }
4fa8626c
DJ
1223}
1224
cd0fc7c3
SS
1225/* Given an execution control state that has been freshly filled in
1226 by an event from the inferior, figure out what it means and take
1227 appropriate action. */
c906108c 1228
7270d8f2
OF
1229int stepped_after_stopped_by_watchpoint;
1230
cd0fc7c3 1231void
96baa820 1232handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1233{
8bbde302
BE
1234 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1235 that the variable stepped_after_stopped_by_watchpoint isn't used,
1236 then you're wrong! See remote.c:remote_stopped_data_address. */
1237
c8edd8b4 1238 int sw_single_step_trap_p = 0;
8fb3e588 1239 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1240
e02bc4cc 1241 /* Cache the last pid/waitstatus. */
39f77062 1242 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1243 target_last_waitstatus = *ecs->wp;
1244
4fa8626c
DJ
1245 adjust_pc_after_break (ecs);
1246
488f131b
JB
1247 switch (ecs->infwait_state)
1248 {
1249 case infwait_thread_hop_state:
527159b7 1250 if (debug_infrun)
8a9de0e4 1251 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1252 /* Cancel the waiton_ptid. */
1253 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1254 break;
b83266a0 1255
488f131b 1256 case infwait_normal_state:
527159b7 1257 if (debug_infrun)
8a9de0e4 1258 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1259 stepped_after_stopped_by_watchpoint = 0;
1260 break;
b83266a0 1261
488f131b 1262 case infwait_nonstep_watch_state:
527159b7 1263 if (debug_infrun)
8a9de0e4
AC
1264 fprintf_unfiltered (gdb_stdlog,
1265 "infrun: infwait_nonstep_watch_state\n");
488f131b 1266 insert_breakpoints ();
c906108c 1267
488f131b
JB
1268 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1269 handle things like signals arriving and other things happening
1270 in combination correctly? */
1271 stepped_after_stopped_by_watchpoint = 1;
1272 break;
65e82032
AC
1273
1274 default:
e2e0b3e5 1275 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1276 }
1277 ecs->infwait_state = infwait_normal_state;
c906108c 1278
488f131b 1279 flush_cached_frames ();
c906108c 1280
488f131b 1281 /* If it's a new process, add it to the thread database */
c906108c 1282
488f131b 1283 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1284 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1285 && !in_thread_list (ecs->ptid));
1286
1287 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1288 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1289 {
1290 add_thread (ecs->ptid);
c906108c 1291
488f131b
JB
1292 ui_out_text (uiout, "[New ");
1293 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1294 ui_out_text (uiout, "]\n");
488f131b 1295 }
c906108c 1296
488f131b
JB
1297 switch (ecs->ws.kind)
1298 {
1299 case TARGET_WAITKIND_LOADED:
527159b7 1300 if (debug_infrun)
8a9de0e4 1301 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1302 /* Ignore gracefully during startup of the inferior, as it
1303 might be the shell which has just loaded some objects,
1304 otherwise add the symbols for the newly loaded objects. */
c906108c 1305#ifdef SOLIB_ADD
c0236d92 1306 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1307 {
1308 /* Remove breakpoints, SOLIB_ADD might adjust
1309 breakpoint addresses via breakpoint_re_set. */
1310 if (breakpoints_inserted)
1311 remove_breakpoints ();
c906108c 1312
488f131b
JB
1313 /* Check for any newly added shared libraries if we're
1314 supposed to be adding them automatically. Switch
1315 terminal for any messages produced by
1316 breakpoint_re_set. */
1317 target_terminal_ours_for_output ();
aff6338a 1318 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1319 stack's section table is kept up-to-date. Architectures,
1320 (e.g., PPC64), use the section table to perform
1321 operations such as address => section name and hence
1322 require the table to contain all sections (including
1323 those found in shared libraries). */
aff6338a 1324 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1325 exec_ops to SOLIB_ADD. This is because current GDB is
1326 only tooled to propagate section_table changes out from
1327 the "current_target" (see target_resize_to_sections), and
1328 not up from the exec stratum. This, of course, isn't
1329 right. "infrun.c" should only interact with the
1330 exec/process stratum, instead relying on the target stack
1331 to propagate relevant changes (stop, section table
1332 changed, ...) up to other layers. */
aff6338a 1333 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1334 target_terminal_inferior ();
1335
1336 /* Reinsert breakpoints and continue. */
1337 if (breakpoints_inserted)
1338 insert_breakpoints ();
1339 }
c906108c 1340#endif
488f131b
JB
1341 resume (0, TARGET_SIGNAL_0);
1342 prepare_to_wait (ecs);
1343 return;
c5aa993b 1344
488f131b 1345 case TARGET_WAITKIND_SPURIOUS:
527159b7 1346 if (debug_infrun)
8a9de0e4 1347 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1348 resume (0, TARGET_SIGNAL_0);
1349 prepare_to_wait (ecs);
1350 return;
c5aa993b 1351
488f131b 1352 case TARGET_WAITKIND_EXITED:
527159b7 1353 if (debug_infrun)
8a9de0e4 1354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1355 target_terminal_ours (); /* Must do this before mourn anyway */
1356 print_stop_reason (EXITED, ecs->ws.value.integer);
1357
1358 /* Record the exit code in the convenience variable $_exitcode, so
1359 that the user can inspect this again later. */
1360 set_internalvar (lookup_internalvar ("_exitcode"),
1361 value_from_longest (builtin_type_int,
1362 (LONGEST) ecs->ws.value.integer));
1363 gdb_flush (gdb_stdout);
1364 target_mourn_inferior ();
1365 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1366 stop_print_frame = 0;
1367 stop_stepping (ecs);
1368 return;
c5aa993b 1369
488f131b 1370 case TARGET_WAITKIND_SIGNALLED:
527159b7 1371 if (debug_infrun)
8a9de0e4 1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1373 stop_print_frame = 0;
1374 stop_signal = ecs->ws.value.sig;
1375 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1376
488f131b
JB
1377 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1378 reach here unless the inferior is dead. However, for years
1379 target_kill() was called here, which hints that fatal signals aren't
1380 really fatal on some systems. If that's true, then some changes
1381 may be needed. */
1382 target_mourn_inferior ();
c906108c 1383
488f131b
JB
1384 print_stop_reason (SIGNAL_EXITED, stop_signal);
1385 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1386 stop_stepping (ecs);
1387 return;
c906108c 1388
488f131b
JB
1389 /* The following are the only cases in which we keep going;
1390 the above cases end in a continue or goto. */
1391 case TARGET_WAITKIND_FORKED:
deb3b17b 1392 case TARGET_WAITKIND_VFORKED:
527159b7 1393 if (debug_infrun)
8a9de0e4 1394 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1395 stop_signal = TARGET_SIGNAL_TRAP;
1396 pending_follow.kind = ecs->ws.kind;
1397
8e7d2c16
DJ
1398 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1399 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1400
488f131b 1401 stop_pc = read_pc ();
675bf4cb 1402
00d4360e 1403 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1404
488f131b 1405 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1406
1407 /* If no catchpoint triggered for this, then keep going. */
1408 if (ecs->random_signal)
1409 {
1410 stop_signal = TARGET_SIGNAL_0;
1411 keep_going (ecs);
1412 return;
1413 }
488f131b
JB
1414 goto process_event_stop_test;
1415
1416 case TARGET_WAITKIND_EXECD:
527159b7 1417 if (debug_infrun)
8a9de0e4 1418 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1419 stop_signal = TARGET_SIGNAL_TRAP;
1420
7d2830a3 1421 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1422 target_wait function. Until then following vfork on HP/UX 10.20
1423 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1424 /* Is this a target which reports multiple exec events per actual
1425 call to exec()? (HP-UX using ptrace does, for example.) If so,
1426 ignore all but the last one. Just resume the exec'r, and wait
1427 for the next exec event. */
1428 if (inferior_ignoring_leading_exec_events)
1429 {
1430 inferior_ignoring_leading_exec_events--;
1431 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1432 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1433 parent_pid);
1434 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1435 prepare_to_wait (ecs);
1436 return;
1437 }
1438 inferior_ignoring_leading_exec_events =
1439 target_reported_exec_events_per_exec_call () - 1;
1440
1441 pending_follow.execd_pathname =
1442 savestring (ecs->ws.value.execd_pathname,
1443 strlen (ecs->ws.value.execd_pathname));
1444
488f131b
JB
1445 /* This causes the eventpoints and symbol table to be reset. Must
1446 do this now, before trying to determine whether to stop. */
1447 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1448 xfree (pending_follow.execd_pathname);
c906108c 1449
488f131b
JB
1450 stop_pc = read_pc_pid (ecs->ptid);
1451 ecs->saved_inferior_ptid = inferior_ptid;
1452 inferior_ptid = ecs->ptid;
675bf4cb 1453
00d4360e 1454 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1455
488f131b
JB
1456 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1457 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1458
1459 /* If no catchpoint triggered for this, then keep going. */
1460 if (ecs->random_signal)
1461 {
1462 stop_signal = TARGET_SIGNAL_0;
1463 keep_going (ecs);
1464 return;
1465 }
488f131b
JB
1466 goto process_event_stop_test;
1467
b4dc5ffa
MK
1468 /* Be careful not to try to gather much state about a thread
1469 that's in a syscall. It's frequently a losing proposition. */
488f131b 1470 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1471 if (debug_infrun)
8a9de0e4 1472 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1473 resume (0, TARGET_SIGNAL_0);
1474 prepare_to_wait (ecs);
1475 return;
c906108c 1476
488f131b
JB
1477 /* Before examining the threads further, step this thread to
1478 get it entirely out of the syscall. (We get notice of the
1479 event when the thread is just on the verge of exiting a
1480 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1481 into user code.) */
488f131b 1482 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1483 if (debug_infrun)
8a9de0e4 1484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1485 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1486 prepare_to_wait (ecs);
1487 return;
c906108c 1488
488f131b 1489 case TARGET_WAITKIND_STOPPED:
527159b7 1490 if (debug_infrun)
8a9de0e4 1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1492 stop_signal = ecs->ws.value.sig;
1493 break;
c906108c 1494
488f131b
JB
1495 /* We had an event in the inferior, but we are not interested
1496 in handling it at this level. The lower layers have already
8e7d2c16 1497 done what needs to be done, if anything.
8fb3e588
AC
1498
1499 One of the possible circumstances for this is when the
1500 inferior produces output for the console. The inferior has
1501 not stopped, and we are ignoring the event. Another possible
1502 circumstance is any event which the lower level knows will be
1503 reported multiple times without an intervening resume. */
488f131b 1504 case TARGET_WAITKIND_IGNORE:
527159b7 1505 if (debug_infrun)
8a9de0e4 1506 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1507 prepare_to_wait (ecs);
488f131b
JB
1508 return;
1509 }
c906108c 1510
488f131b
JB
1511 /* We may want to consider not doing a resume here in order to give
1512 the user a chance to play with the new thread. It might be good
1513 to make that a user-settable option. */
c906108c 1514
488f131b
JB
1515 /* At this point, all threads are stopped (happens automatically in
1516 either the OS or the native code). Therefore we need to continue
1517 all threads in order to make progress. */
1518 if (ecs->new_thread_event)
1519 {
1520 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1521 prepare_to_wait (ecs);
1522 return;
1523 }
c906108c 1524
488f131b
JB
1525 stop_pc = read_pc_pid (ecs->ptid);
1526
527159b7 1527 if (debug_infrun)
8a9de0e4 1528 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1529
9f976b41
DJ
1530 if (stepping_past_singlestep_breakpoint)
1531 {
8fb3e588
AC
1532 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1533 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1534 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1535 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1536
1537 stepping_past_singlestep_breakpoint = 0;
1538
1539 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1540 breakpoint, or stopped for some other reason. It would be nice if
1541 we could tell, but we can't reliably. */
9f976b41 1542 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1543 {
527159b7 1544 if (debug_infrun)
8a9de0e4 1545 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1546 /* Pull the single step breakpoints out of the target. */
1547 SOFTWARE_SINGLE_STEP (0, 0);
1548 singlestep_breakpoints_inserted_p = 0;
1549
1550 ecs->random_signal = 0;
1551
1552 ecs->ptid = saved_singlestep_ptid;
1553 context_switch (ecs);
9a4105ab
AC
1554 if (deprecated_context_hook)
1555 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1556
1557 resume (1, TARGET_SIGNAL_0);
1558 prepare_to_wait (ecs);
1559 return;
1560 }
1561 }
1562
1563 stepping_past_singlestep_breakpoint = 0;
1564
488f131b
JB
1565 /* See if a thread hit a thread-specific breakpoint that was meant for
1566 another thread. If so, then step that thread past the breakpoint,
1567 and continue it. */
1568
1569 if (stop_signal == TARGET_SIGNAL_TRAP)
1570 {
9f976b41
DJ
1571 int thread_hop_needed = 0;
1572
f8d40ec8
JB
1573 /* Check if a regular breakpoint has been hit before checking
1574 for a potential single step breakpoint. Otherwise, GDB will
1575 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1576 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1577 {
c5aa993b 1578 ecs->random_signal = 0;
4fa8626c 1579 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1580 thread_hop_needed = 1;
1581 }
1582 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1583 {
1584 ecs->random_signal = 0;
1585 /* The call to in_thread_list is necessary because PTIDs sometimes
1586 change when we go from single-threaded to multi-threaded. If
1587 the singlestep_ptid is still in the list, assume that it is
1588 really different from ecs->ptid. */
1589 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1590 && in_thread_list (singlestep_ptid))
1591 {
1592 thread_hop_needed = 1;
1593 stepping_past_singlestep_breakpoint = 1;
1594 saved_singlestep_ptid = singlestep_ptid;
1595 }
1596 }
1597
1598 if (thread_hop_needed)
8fb3e588
AC
1599 {
1600 int remove_status;
1601
527159b7 1602 if (debug_infrun)
8a9de0e4 1603 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1604
8fb3e588
AC
1605 /* Saw a breakpoint, but it was hit by the wrong thread.
1606 Just continue. */
1607
1608 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1609 {
8fb3e588
AC
1610 /* Pull the single step breakpoints out of the target. */
1611 SOFTWARE_SINGLE_STEP (0, 0);
1612 singlestep_breakpoints_inserted_p = 0;
1613 }
1614
1615 remove_status = remove_breakpoints ();
1616 /* Did we fail to remove breakpoints? If so, try
1617 to set the PC past the bp. (There's at least
1618 one situation in which we can fail to remove
1619 the bp's: On HP-UX's that use ttrace, we can't
1620 change the address space of a vforking child
1621 process until the child exits (well, okay, not
1622 then either :-) or execs. */
1623 if (remove_status != 0)
1624 {
1625 /* FIXME! This is obviously non-portable! */
1626 write_pc_pid (stop_pc + 4, ecs->ptid);
1627 /* We need to restart all the threads now,
1628 * unles we're running in scheduler-locked mode.
1629 * Use currently_stepping to determine whether to
1630 * step or continue.
1631 */
1632 /* FIXME MVS: is there any reason not to call resume()? */
1633 if (scheduler_mode == schedlock_on)
1634 target_resume (ecs->ptid,
1635 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1636 else
8fb3e588
AC
1637 target_resume (RESUME_ALL,
1638 currently_stepping (ecs), TARGET_SIGNAL_0);
1639 prepare_to_wait (ecs);
1640 return;
1641 }
1642 else
1643 { /* Single step */
1644 breakpoints_inserted = 0;
1645 if (!ptid_equal (inferior_ptid, ecs->ptid))
1646 context_switch (ecs);
1647 ecs->waiton_ptid = ecs->ptid;
1648 ecs->wp = &(ecs->ws);
1649 ecs->another_trap = 1;
1650
1651 ecs->infwait_state = infwait_thread_hop_state;
1652 keep_going (ecs);
1653 registers_changed ();
1654 return;
1655 }
488f131b 1656 }
f8d40ec8 1657 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1658 {
1659 sw_single_step_trap_p = 1;
1660 ecs->random_signal = 0;
1661 }
488f131b
JB
1662 }
1663 else
1664 ecs->random_signal = 1;
c906108c 1665
488f131b 1666 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1667 so, then switch to that thread. */
1668 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1669 {
527159b7 1670 if (debug_infrun)
8a9de0e4 1671 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1672
488f131b 1673 context_switch (ecs);
c5aa993b 1674
9a4105ab
AC
1675 if (deprecated_context_hook)
1676 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1677
488f131b
JB
1678 flush_cached_frames ();
1679 }
c906108c 1680
488f131b
JB
1681 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1682 {
1683 /* Pull the single step breakpoints out of the target. */
1684 SOFTWARE_SINGLE_STEP (0, 0);
1685 singlestep_breakpoints_inserted_p = 0;
1686 }
c906108c 1687
488f131b
JB
1688 /* It may not be necessary to disable the watchpoint to stop over
1689 it. For example, the PA can (with some kernel cooperation)
1690 single step over a watchpoint without disabling the watchpoint. */
1691 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1692 {
527159b7 1693 if (debug_infrun)
8a9de0e4 1694 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1695 resume (1, 0);
1696 prepare_to_wait (ecs);
1697 return;
1698 }
c906108c 1699
488f131b
JB
1700 /* It is far more common to need to disable a watchpoint to step
1701 the inferior over it. FIXME. What else might a debug
1702 register or page protection watchpoint scheme need here? */
1703 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1704 {
1705 /* At this point, we are stopped at an instruction which has
1706 attempted to write to a piece of memory under control of
1707 a watchpoint. The instruction hasn't actually executed
1708 yet. If we were to evaluate the watchpoint expression
1709 now, we would get the old value, and therefore no change
1710 would seem to have occurred.
1711
1712 In order to make watchpoints work `right', we really need
1713 to complete the memory write, and then evaluate the
1714 watchpoint expression. The following code does that by
1715 removing the watchpoint (actually, all watchpoints and
1716 breakpoints), single-stepping the target, re-inserting
1717 watchpoints, and then falling through to let normal
1718 single-step processing handle proceed. Since this
1719 includes evaluating watchpoints, things will come to a
1720 stop in the correct manner. */
1721
527159b7 1722 if (debug_infrun)
8a9de0e4 1723 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1724 remove_breakpoints ();
1725 registers_changed ();
1726 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1727
488f131b
JB
1728 ecs->waiton_ptid = ecs->ptid;
1729 ecs->wp = &(ecs->ws);
1730 ecs->infwait_state = infwait_nonstep_watch_state;
1731 prepare_to_wait (ecs);
1732 return;
1733 }
1734
1735 /* It may be possible to simply continue after a watchpoint. */
1736 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1737 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1738
1739 ecs->stop_func_start = 0;
1740 ecs->stop_func_end = 0;
1741 ecs->stop_func_name = 0;
1742 /* Don't care about return value; stop_func_start and stop_func_name
1743 will both be 0 if it doesn't work. */
1744 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1745 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1746 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1747 ecs->another_trap = 0;
1748 bpstat_clear (&stop_bpstat);
1749 stop_step = 0;
1750 stop_stack_dummy = 0;
1751 stop_print_frame = 1;
1752 ecs->random_signal = 0;
1753 stopped_by_random_signal = 0;
1754 breakpoints_failed = 0;
1755
3352ef37
AC
1756 if (stop_signal == TARGET_SIGNAL_TRAP
1757 && trap_expected
1758 && gdbarch_single_step_through_delay_p (current_gdbarch)
1759 && currently_stepping (ecs))
1760 {
1761 /* We're trying to step of a breakpoint. Turns out that we're
1762 also on an instruction that needs to be stepped multiple
1763 times before it's been fully executing. E.g., architectures
1764 with a delay slot. It needs to be stepped twice, once for
1765 the instruction and once for the delay slot. */
1766 int step_through_delay
1767 = gdbarch_single_step_through_delay (current_gdbarch,
1768 get_current_frame ());
527159b7 1769 if (debug_infrun && step_through_delay)
8a9de0e4 1770 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1771 if (step_range_end == 0 && step_through_delay)
1772 {
1773 /* The user issued a continue when stopped at a breakpoint.
1774 Set up for another trap and get out of here. */
1775 ecs->another_trap = 1;
1776 keep_going (ecs);
1777 return;
1778 }
1779 else if (step_through_delay)
1780 {
1781 /* The user issued a step when stopped at a breakpoint.
1782 Maybe we should stop, maybe we should not - the delay
1783 slot *might* correspond to a line of source. In any
1784 case, don't decide that here, just set ecs->another_trap,
1785 making sure we single-step again before breakpoints are
1786 re-inserted. */
1787 ecs->another_trap = 1;
1788 }
1789 }
1790
488f131b
JB
1791 /* Look at the cause of the stop, and decide what to do.
1792 The alternatives are:
1793 1) break; to really stop and return to the debugger,
1794 2) drop through to start up again
1795 (set ecs->another_trap to 1 to single step once)
1796 3) set ecs->random_signal to 1, and the decision between 1 and 2
1797 will be made according to the signal handling tables. */
1798
1799 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1800 that have to do with the program's own actions. Note that
1801 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1802 on the operating system version. Here we detect when a SIGILL or
1803 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1804 something similar for SIGSEGV, since a SIGSEGV will be generated
1805 when we're trying to execute a breakpoint instruction on a
1806 non-executable stack. This happens for call dummy breakpoints
1807 for architectures like SPARC that place call dummies on the
1808 stack. */
488f131b
JB
1809
1810 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1811 || (breakpoints_inserted
1812 && (stop_signal == TARGET_SIGNAL_ILL
1813 || stop_signal == TARGET_SIGNAL_SEGV
1814 || stop_signal == TARGET_SIGNAL_EMT))
1815 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1816 {
1817 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1818 {
527159b7 1819 if (debug_infrun)
8a9de0e4 1820 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1821 stop_print_frame = 0;
1822 stop_stepping (ecs);
1823 return;
1824 }
c54cfec8
EZ
1825
1826 /* This is originated from start_remote(), start_inferior() and
1827 shared libraries hook functions. */
c0236d92 1828 if (stop_soon == STOP_QUIETLY)
488f131b 1829 {
527159b7 1830 if (debug_infrun)
8a9de0e4 1831 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1832 stop_stepping (ecs);
1833 return;
1834 }
1835
c54cfec8
EZ
1836 /* This originates from attach_command(). We need to overwrite
1837 the stop_signal here, because some kernels don't ignore a
1838 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1839 See more comments in inferior.h. */
c0236d92 1840 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1841 {
1842 stop_stepping (ecs);
1843 if (stop_signal == TARGET_SIGNAL_STOP)
1844 stop_signal = TARGET_SIGNAL_0;
1845 return;
1846 }
1847
d303a6c7
AC
1848 /* Don't even think about breakpoints if just proceeded over a
1849 breakpoint. */
1850 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1851 {
1852 if (debug_infrun)
8a9de0e4 1853 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1854 bpstat_clear (&stop_bpstat);
1855 }
488f131b
JB
1856 else
1857 {
1858 /* See if there is a breakpoint at the current PC. */
8fb3e588 1859 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1860 stopped_by_watchpoint);
488f131b 1861
488f131b
JB
1862 /* Following in case break condition called a
1863 function. */
1864 stop_print_frame = 1;
1865 }
1866
73dd234f 1867 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1868 at one stage in the past included checks for an inferior
1869 function call's call dummy's return breakpoint. The original
1870 comment, that went with the test, read:
73dd234f 1871
8fb3e588
AC
1872 ``End of a stack dummy. Some systems (e.g. Sony news) give
1873 another signal besides SIGTRAP, so check here as well as
1874 above.''
73dd234f
AC
1875
1876 If someone ever tries to get get call dummys on a
1877 non-executable stack to work (where the target would stop
03cebad2
MK
1878 with something like a SIGSEGV), then those tests might need
1879 to be re-instated. Given, however, that the tests were only
73dd234f 1880 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1881 suspect that it won't be the case.
1882
8fb3e588
AC
1883 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1884 be necessary for call dummies on a non-executable stack on
1885 SPARC. */
73dd234f 1886
488f131b
JB
1887 if (stop_signal == TARGET_SIGNAL_TRAP)
1888 ecs->random_signal
1889 = !(bpstat_explains_signal (stop_bpstat)
1890 || trap_expected
488f131b 1891 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1892 else
1893 {
73dd234f 1894 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1895 if (!ecs->random_signal)
1896 stop_signal = TARGET_SIGNAL_TRAP;
1897 }
1898 }
1899
1900 /* When we reach this point, we've pretty much decided
1901 that the reason for stopping must've been a random
1902 (unexpected) signal. */
1903
1904 else
1905 ecs->random_signal = 1;
488f131b 1906
04e68871 1907process_event_stop_test:
488f131b
JB
1908 /* For the program's own signals, act according to
1909 the signal handling tables. */
1910
1911 if (ecs->random_signal)
1912 {
1913 /* Signal not for debugging purposes. */
1914 int printed = 0;
1915
527159b7 1916 if (debug_infrun)
8a9de0e4 1917 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1918
488f131b
JB
1919 stopped_by_random_signal = 1;
1920
1921 if (signal_print[stop_signal])
1922 {
1923 printed = 1;
1924 target_terminal_ours_for_output ();
1925 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1926 }
1927 if (signal_stop[stop_signal])
1928 {
1929 stop_stepping (ecs);
1930 return;
1931 }
1932 /* If not going to stop, give terminal back
1933 if we took it away. */
1934 else if (printed)
1935 target_terminal_inferior ();
1936
1937 /* Clear the signal if it should not be passed. */
1938 if (signal_program[stop_signal] == 0)
1939 stop_signal = TARGET_SIGNAL_0;
1940
68f53502
AC
1941 if (prev_pc == read_pc ()
1942 && !breakpoints_inserted
1943 && breakpoint_here_p (read_pc ())
1944 && step_resume_breakpoint == NULL)
1945 {
1946 /* We were just starting a new sequence, attempting to
1947 single-step off of a breakpoint and expecting a SIGTRAP.
1948 Intead this signal arrives. This signal will take us out
1949 of the stepping range so GDB needs to remember to, when
1950 the signal handler returns, resume stepping off that
1951 breakpoint. */
1952 /* To simplify things, "continue" is forced to use the same
1953 code paths as single-step - set a breakpoint at the
1954 signal return address and then, once hit, step off that
1955 breakpoint. */
44cbf7b5 1956 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 1957 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
1958 keep_going (ecs);
1959 return;
68f53502 1960 }
9d799f85
AC
1961
1962 if (step_range_end != 0
1963 && stop_signal != TARGET_SIGNAL_0
1964 && stop_pc >= step_range_start && stop_pc < step_range_end
1965 && frame_id_eq (get_frame_id (get_current_frame ()),
1966 step_frame_id)
1967 && step_resume_breakpoint == NULL)
d303a6c7
AC
1968 {
1969 /* The inferior is about to take a signal that will take it
1970 out of the single step range. Set a breakpoint at the
1971 current PC (which is presumably where the signal handler
1972 will eventually return) and then allow the inferior to
1973 run free.
1974
1975 Note that this is only needed for a signal delivered
1976 while in the single-step range. Nested signals aren't a
1977 problem as they eventually all return. */
44cbf7b5 1978 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
1979 keep_going (ecs);
1980 return;
d303a6c7 1981 }
9d799f85
AC
1982
1983 /* Note: step_resume_breakpoint may be non-NULL. This occures
1984 when either there's a nested signal, or when there's a
1985 pending signal enabled just as the signal handler returns
1986 (leaving the inferior at the step-resume-breakpoint without
1987 actually executing it). Either way continue until the
1988 breakpoint is really hit. */
488f131b
JB
1989 keep_going (ecs);
1990 return;
1991 }
1992
1993 /* Handle cases caused by hitting a breakpoint. */
1994 {
1995 CORE_ADDR jmp_buf_pc;
1996 struct bpstat_what what;
1997
1998 what = bpstat_what (stop_bpstat);
1999
2000 if (what.call_dummy)
2001 {
2002 stop_stack_dummy = 1;
c5aa993b 2003 }
c906108c 2004
488f131b 2005 switch (what.main_action)
c5aa993b 2006 {
488f131b
JB
2007 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2008 /* If we hit the breakpoint at longjmp, disable it for the
2009 duration of this command. Then, install a temporary
2010 breakpoint at the target of the jmp_buf. */
527159b7 2011 if (debug_infrun)
8a9de0e4 2012 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2013 disable_longjmp_breakpoint ();
2014 remove_breakpoints ();
2015 breakpoints_inserted = 0;
2016 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2017 {
488f131b 2018 keep_going (ecs);
104c1213 2019 return;
c5aa993b 2020 }
488f131b
JB
2021
2022 /* Need to blow away step-resume breakpoint, as it
2023 interferes with us */
2024 if (step_resume_breakpoint != NULL)
104c1213 2025 {
488f131b 2026 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2027 }
c906108c 2028
8fb3e588 2029 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2030 ecs->handling_longjmp = 1; /* FIXME */
2031 keep_going (ecs);
2032 return;
c906108c 2033
488f131b
JB
2034 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2035 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2036 if (debug_infrun)
8a9de0e4 2037 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2038 remove_breakpoints ();
2039 breakpoints_inserted = 0;
488f131b
JB
2040 disable_longjmp_breakpoint ();
2041 ecs->handling_longjmp = 0; /* FIXME */
2042 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2043 break;
2044 /* else fallthrough */
2045
2046 case BPSTAT_WHAT_SINGLE:
527159b7 2047 if (debug_infrun)
8a9de0e4 2048 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2049 if (breakpoints_inserted)
c5aa993b 2050 {
488f131b 2051 remove_breakpoints ();
c5aa993b 2052 }
488f131b
JB
2053 breakpoints_inserted = 0;
2054 ecs->another_trap = 1;
2055 /* Still need to check other stuff, at least the case
2056 where we are stepping and step out of the right range. */
2057 break;
c906108c 2058
488f131b 2059 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2060 if (debug_infrun)
8a9de0e4 2061 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2062 stop_print_frame = 1;
c906108c 2063
d303a6c7
AC
2064 /* We are about to nuke the step_resume_breakpointt via the
2065 cleanup chain, so no need to worry about it here. */
c5aa993b 2066
488f131b
JB
2067 stop_stepping (ecs);
2068 return;
c5aa993b 2069
488f131b 2070 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2071 if (debug_infrun)
8a9de0e4 2072 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2073 stop_print_frame = 0;
c5aa993b 2074
d303a6c7
AC
2075 /* We are about to nuke the step_resume_breakpoin via the
2076 cleanup chain, so no need to worry about it here. */
c5aa993b 2077
488f131b 2078 stop_stepping (ecs);
e441088d 2079 return;
c5aa993b 2080
488f131b
JB
2081 case BPSTAT_WHAT_STEP_RESUME:
2082 /* This proably demands a more elegant solution, but, yeah
2083 right...
c5aa993b 2084
488f131b
JB
2085 This function's use of the simple variable
2086 step_resume_breakpoint doesn't seem to accomodate
2087 simultaneously active step-resume bp's, although the
2088 breakpoint list certainly can.
c5aa993b 2089
488f131b
JB
2090 If we reach here and step_resume_breakpoint is already
2091 NULL, then apparently we have multiple active
2092 step-resume bp's. We'll just delete the breakpoint we
2093 stopped at, and carry on.
2094
2095 Correction: what the code currently does is delete a
2096 step-resume bp, but it makes no effort to ensure that
2097 the one deleted is the one currently stopped at. MVS */
c5aa993b 2098
527159b7 2099 if (debug_infrun)
8a9de0e4 2100 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
527159b7 2101
488f131b
JB
2102 if (step_resume_breakpoint == NULL)
2103 {
2104 step_resume_breakpoint =
2105 bpstat_find_step_resume_breakpoint (stop_bpstat);
2106 }
2107 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2108 if (ecs->step_after_step_resume_breakpoint)
2109 {
2110 /* Back when the step-resume breakpoint was inserted, we
2111 were trying to single-step off a breakpoint. Go back
2112 to doing that. */
2113 ecs->step_after_step_resume_breakpoint = 0;
2114 remove_breakpoints ();
2115 breakpoints_inserted = 0;
2116 ecs->another_trap = 1;
2117 keep_going (ecs);
2118 return;
2119 }
488f131b
JB
2120 break;
2121
2122 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2123 if (debug_infrun)
8a9de0e4 2124 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2125 /* If were waiting for a trap, hitting the step_resume_break
2126 doesn't count as getting it. */
2127 if (trap_expected)
2128 ecs->another_trap = 1;
2129 break;
2130
2131 case BPSTAT_WHAT_CHECK_SHLIBS:
2132 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2133 {
527159b7 2134 if (debug_infrun)
8a9de0e4 2135 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2136 /* Remove breakpoints, we eventually want to step over the
2137 shlib event breakpoint, and SOLIB_ADD might adjust
2138 breakpoint addresses via breakpoint_re_set. */
2139 if (breakpoints_inserted)
2140 remove_breakpoints ();
c5aa993b 2141 breakpoints_inserted = 0;
488f131b
JB
2142
2143 /* Check for any newly added shared libraries if we're
2144 supposed to be adding them automatically. Switch
2145 terminal for any messages produced by
2146 breakpoint_re_set. */
2147 target_terminal_ours_for_output ();
aff6338a 2148 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2149 stack's section table is kept up-to-date. Architectures,
2150 (e.g., PPC64), use the section table to perform
2151 operations such as address => section name and hence
2152 require the table to contain all sections (including
2153 those found in shared libraries). */
aff6338a 2154 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2155 exec_ops to SOLIB_ADD. This is because current GDB is
2156 only tooled to propagate section_table changes out from
2157 the "current_target" (see target_resize_to_sections), and
2158 not up from the exec stratum. This, of course, isn't
2159 right. "infrun.c" should only interact with the
2160 exec/process stratum, instead relying on the target stack
2161 to propagate relevant changes (stop, section table
2162 changed, ...) up to other layers. */
a77053c2 2163#ifdef SOLIB_ADD
aff6338a 2164 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2165#else
2166 solib_add (NULL, 0, &current_target, auto_solib_add);
2167#endif
488f131b
JB
2168 target_terminal_inferior ();
2169
2170 /* Try to reenable shared library breakpoints, additional
2171 code segments in shared libraries might be mapped in now. */
2172 re_enable_breakpoints_in_shlibs ();
2173
2174 /* If requested, stop when the dynamic linker notifies
2175 gdb of events. This allows the user to get control
2176 and place breakpoints in initializer routines for
2177 dynamically loaded objects (among other things). */
877522db 2178 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2179 {
488f131b 2180 stop_stepping (ecs);
d4f3574e
SS
2181 return;
2182 }
c5aa993b 2183
488f131b
JB
2184 /* If we stopped due to an explicit catchpoint, then the
2185 (see above) call to SOLIB_ADD pulled in any symbols
2186 from a newly-loaded library, if appropriate.
2187
2188 We do want the inferior to stop, but not where it is
2189 now, which is in the dynamic linker callback. Rather,
2190 we would like it stop in the user's program, just after
2191 the call that caused this catchpoint to trigger. That
2192 gives the user a more useful vantage from which to
2193 examine their program's state. */
8fb3e588
AC
2194 else if (what.main_action
2195 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2196 {
488f131b
JB
2197 /* ??rehrauer: If I could figure out how to get the
2198 right return PC from here, we could just set a temp
2199 breakpoint and resume. I'm not sure we can without
2200 cracking open the dld's shared libraries and sniffing
2201 their unwind tables and text/data ranges, and that's
2202 not a terribly portable notion.
2203
2204 Until that time, we must step the inferior out of the
2205 dld callback, and also out of the dld itself (and any
2206 code or stubs in libdld.sl, such as "shl_load" and
2207 friends) until we reach non-dld code. At that point,
2208 we can stop stepping. */
2209 bpstat_get_triggered_catchpoints (stop_bpstat,
2210 &ecs->
2211 stepping_through_solib_catchpoints);
2212 ecs->stepping_through_solib_after_catch = 1;
2213
2214 /* Be sure to lift all breakpoints, so the inferior does
2215 actually step past this point... */
2216 ecs->another_trap = 1;
2217 break;
c906108c 2218 }
c5aa993b 2219 else
c5aa993b 2220 {
488f131b 2221 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2222 ecs->another_trap = 1;
488f131b 2223 break;
c5aa993b 2224 }
488f131b 2225 }
488f131b 2226 break;
c906108c 2227
488f131b
JB
2228 case BPSTAT_WHAT_LAST:
2229 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2230
488f131b
JB
2231 case BPSTAT_WHAT_KEEP_CHECKING:
2232 break;
2233 }
2234 }
c906108c 2235
488f131b
JB
2236 /* We come here if we hit a breakpoint but should not
2237 stop for it. Possibly we also were stepping
2238 and should stop for that. So fall through and
2239 test for stepping. But, if not stepping,
2240 do not stop. */
c906108c 2241
9d1ff73f
MS
2242 /* Are we stepping to get the inferior out of the dynamic linker's
2243 hook (and possibly the dld itself) after catching a shlib
2244 event? */
488f131b
JB
2245 if (ecs->stepping_through_solib_after_catch)
2246 {
2247#if defined(SOLIB_ADD)
2248 /* Have we reached our destination? If not, keep going. */
2249 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2250 {
527159b7 2251 if (debug_infrun)
8a9de0e4 2252 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2253 ecs->another_trap = 1;
2254 keep_going (ecs);
104c1213 2255 return;
488f131b
JB
2256 }
2257#endif
527159b7 2258 if (debug_infrun)
8a9de0e4 2259 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2260 /* Else, stop and report the catchpoint(s) whose triggering
2261 caused us to begin stepping. */
2262 ecs->stepping_through_solib_after_catch = 0;
2263 bpstat_clear (&stop_bpstat);
2264 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2265 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2266 stop_print_frame = 1;
2267 stop_stepping (ecs);
2268 return;
2269 }
c906108c 2270
488f131b
JB
2271 if (step_resume_breakpoint)
2272 {
527159b7 2273 if (debug_infrun)
8a9de0e4 2274 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2275
488f131b
JB
2276 /* Having a step-resume breakpoint overrides anything
2277 else having to do with stepping commands until
2278 that breakpoint is reached. */
488f131b
JB
2279 keep_going (ecs);
2280 return;
2281 }
c5aa993b 2282
488f131b
JB
2283 if (step_range_end == 0)
2284 {
527159b7 2285 if (debug_infrun)
8a9de0e4 2286 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2287 /* Likewise if we aren't even stepping. */
488f131b
JB
2288 keep_going (ecs);
2289 return;
2290 }
c5aa993b 2291
488f131b 2292 /* If stepping through a line, keep going if still within it.
c906108c 2293
488f131b
JB
2294 Note that step_range_end is the address of the first instruction
2295 beyond the step range, and NOT the address of the last instruction
2296 within it! */
2297 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2298 {
527159b7 2299 if (debug_infrun)
8a9de0e4 2300 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2301 paddr_nz (step_range_start),
2302 paddr_nz (step_range_end));
488f131b
JB
2303 keep_going (ecs);
2304 return;
2305 }
c5aa993b 2306
488f131b 2307 /* We stepped out of the stepping range. */
c906108c 2308
488f131b
JB
2309 /* If we are stepping at the source level and entered the runtime
2310 loader dynamic symbol resolution code, we keep on single stepping
2311 until we exit the run time loader code and reach the callee's
2312 address. */
2313 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2314#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2315 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2316#else
2317 && in_solib_dynsym_resolve_code (stop_pc)
2318#endif
2319 )
488f131b 2320 {
4c8c40e6
MK
2321 CORE_ADDR pc_after_resolver =
2322 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2323
527159b7 2324 if (debug_infrun)
8a9de0e4 2325 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2326
488f131b
JB
2327 if (pc_after_resolver)
2328 {
2329 /* Set up a step-resume breakpoint at the address
2330 indicated by SKIP_SOLIB_RESOLVER. */
2331 struct symtab_and_line sr_sal;
fe39c653 2332 init_sal (&sr_sal);
488f131b
JB
2333 sr_sal.pc = pc_after_resolver;
2334
44cbf7b5 2335 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2336 }
c906108c 2337
488f131b
JB
2338 keep_going (ecs);
2339 return;
2340 }
c906108c 2341
42edda50
AC
2342 if (step_range_end != 1
2343 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2344 || step_over_calls == STEP_OVER_ALL)
2345 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2346 {
527159b7 2347 if (debug_infrun)
8a9de0e4 2348 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2349 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2350 a signal trampoline (either by a signal being delivered or by
2351 the signal handler returning). Just single-step until the
2352 inferior leaves the trampoline (either by calling the handler
2353 or returning). */
488f131b
JB
2354 keep_going (ecs);
2355 return;
2356 }
c906108c 2357
8fb3e588 2358 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2359 {
2360 /* It's a subroutine call. */
95918acb 2361 CORE_ADDR real_stop_pc;
8fb3e588 2362
527159b7 2363 if (debug_infrun)
8a9de0e4 2364 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2365
95918acb
AC
2366 if ((step_over_calls == STEP_OVER_NONE)
2367 || ((step_range_end == 1)
2368 && in_prologue (prev_pc, ecs->stop_func_start)))
2369 {
2370 /* I presume that step_over_calls is only 0 when we're
2371 supposed to be stepping at the assembly language level
2372 ("stepi"). Just stop. */
2373 /* Also, maybe we just did a "nexti" inside a prolog, so we
2374 thought it was a subroutine call but it was not. Stop as
2375 well. FENN */
2376 stop_step = 1;
2377 print_stop_reason (END_STEPPING_RANGE, 0);
2378 stop_stepping (ecs);
2379 return;
2380 }
8fb3e588 2381
8567c30f
AC
2382 if (step_over_calls == STEP_OVER_ALL)
2383 {
2384 /* We're doing a "next", set a breakpoint at callee's return
2385 address (the address at which the caller will
2386 resume). */
44cbf7b5 2387 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2388 keep_going (ecs);
2389 return;
2390 }
a53c66de 2391
95918acb 2392 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2393 calling routine and the real function), locate the real
2394 function. That's what tells us (a) whether we want to step
2395 into it at all, and (b) what prologue we want to run to the
2396 end of, if we do step into it. */
95918acb
AC
2397 real_stop_pc = skip_language_trampoline (stop_pc);
2398 if (real_stop_pc == 0)
2399 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2400 if (real_stop_pc != 0)
2401 ecs->stop_func_start = real_stop_pc;
8fb3e588 2402
a77053c2
MK
2403 if (
2404#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2405 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2406#else
2407 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2408#endif
2409)
1b2bfbb9
RC
2410 {
2411 struct symtab_and_line sr_sal;
2412 init_sal (&sr_sal);
2413 sr_sal.pc = ecs->stop_func_start;
2414
44cbf7b5 2415 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2416 keep_going (ecs);
2417 return;
1b2bfbb9
RC
2418 }
2419
95918acb 2420 /* If we have line number information for the function we are
8fb3e588 2421 thinking of stepping into, step into it.
95918acb 2422
8fb3e588
AC
2423 If there are several symtabs at that PC (e.g. with include
2424 files), just want to know whether *any* of them have line
2425 numbers. find_pc_line handles this. */
95918acb
AC
2426 {
2427 struct symtab_and_line tmp_sal;
8fb3e588 2428
95918acb
AC
2429 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2430 if (tmp_sal.line != 0)
2431 {
2432 step_into_function (ecs);
2433 return;
2434 }
2435 }
2436
2437 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2438 set, we stop the step so that the user has a chance to switch
2439 in assembly mode. */
95918acb
AC
2440 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2441 {
2442 stop_step = 1;
2443 print_stop_reason (END_STEPPING_RANGE, 0);
2444 stop_stepping (ecs);
2445 return;
2446 }
2447
2448 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2449 which the caller will resume). */
44cbf7b5 2450 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2451 keep_going (ecs);
488f131b 2452 return;
488f131b 2453 }
c906108c 2454
488f131b
JB
2455 /* If we're in the return path from a shared library trampoline,
2456 we want to proceed through the trampoline when stepping. */
2457 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2458 {
488f131b 2459 /* Determine where this trampoline returns. */
5cf4d23a 2460 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2461
527159b7 2462 if (debug_infrun)
8a9de0e4 2463 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2464
488f131b 2465 /* Only proceed through if we know where it's going. */
d764a824 2466 if (real_stop_pc)
488f131b
JB
2467 {
2468 /* And put the step-breakpoint there and go until there. */
2469 struct symtab_and_line sr_sal;
2470
fe39c653 2471 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2472 sr_sal.pc = real_stop_pc;
488f131b 2473 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2474
2475 /* Do not specify what the fp should be when we stop since
2476 on some machines the prologue is where the new fp value
2477 is established. */
2478 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2479
488f131b
JB
2480 /* Restart without fiddling with the step ranges or
2481 other state. */
2482 keep_going (ecs);
2483 return;
2484 }
2485 }
c906108c 2486
1b2bfbb9
RC
2487 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2488 the trampoline processing logic, however, there are some trampolines
2489 that have no names, so we should do trampoline handling first. */
2490 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2491 && ecs->stop_func_name == NULL)
2492 {
527159b7 2493 if (debug_infrun)
8a9de0e4 2494 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2495
1b2bfbb9
RC
2496 /* The inferior just stepped into, or returned to, an
2497 undebuggable function (where there is no symbol, not even a
2498 minimal symbol, corresponding to the address where the
2499 inferior stopped). Since we want to skip this kind of code,
2500 we keep going until the inferior returns from this
2501 function. */
2502 if (step_stop_if_no_debug)
2503 {
2504 /* If we have no line number and the step-stop-if-no-debug
2505 is set, we stop the step so that the user has a chance to
2506 switch in assembly mode. */
2507 stop_step = 1;
2508 print_stop_reason (END_STEPPING_RANGE, 0);
2509 stop_stepping (ecs);
2510 return;
2511 }
2512 else
2513 {
2514 /* Set a breakpoint at callee's return address (the address
2515 at which the caller will resume). */
44cbf7b5 2516 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2517 keep_going (ecs);
2518 return;
2519 }
2520 }
2521
2522 if (step_range_end == 1)
2523 {
2524 /* It is stepi or nexti. We always want to stop stepping after
2525 one instruction. */
527159b7 2526 if (debug_infrun)
8a9de0e4 2527 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2528 stop_step = 1;
2529 print_stop_reason (END_STEPPING_RANGE, 0);
2530 stop_stepping (ecs);
2531 return;
2532 }
2533
2534 ecs->sal = find_pc_line (stop_pc, 0);
2535
488f131b
JB
2536 if (ecs->sal.line == 0)
2537 {
2538 /* We have no line number information. That means to stop
2539 stepping (does this always happen right after one instruction,
2540 when we do "s" in a function with no line numbers,
2541 or can this happen as a result of a return or longjmp?). */
527159b7 2542 if (debug_infrun)
8a9de0e4 2543 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2544 stop_step = 1;
2545 print_stop_reason (END_STEPPING_RANGE, 0);
2546 stop_stepping (ecs);
2547 return;
2548 }
c906108c 2549
488f131b
JB
2550 if ((stop_pc == ecs->sal.pc)
2551 && (ecs->current_line != ecs->sal.line
2552 || ecs->current_symtab != ecs->sal.symtab))
2553 {
2554 /* We are at the start of a different line. So stop. Note that
2555 we don't stop if we step into the middle of a different line.
2556 That is said to make things like for (;;) statements work
2557 better. */
527159b7 2558 if (debug_infrun)
8a9de0e4 2559 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2560 stop_step = 1;
2561 print_stop_reason (END_STEPPING_RANGE, 0);
2562 stop_stepping (ecs);
2563 return;
2564 }
c906108c 2565
488f131b 2566 /* We aren't done stepping.
c906108c 2567
488f131b
JB
2568 Optimize by setting the stepping range to the line.
2569 (We might not be in the original line, but if we entered a
2570 new line in mid-statement, we continue stepping. This makes
2571 things like for(;;) statements work better.) */
c906108c 2572
488f131b 2573 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2574 {
488f131b
JB
2575 /* If this is the last line of the function, don't keep stepping
2576 (it would probably step us out of the function).
2577 This is particularly necessary for a one-line function,
2578 in which after skipping the prologue we better stop even though
2579 we will be in mid-line. */
527159b7 2580 if (debug_infrun)
8a9de0e4 2581 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2582 stop_step = 1;
2583 print_stop_reason (END_STEPPING_RANGE, 0);
2584 stop_stepping (ecs);
2585 return;
c5aa993b 2586 }
488f131b
JB
2587 step_range_start = ecs->sal.pc;
2588 step_range_end = ecs->sal.end;
aa0cd9c1 2589 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2590 ecs->current_line = ecs->sal.line;
2591 ecs->current_symtab = ecs->sal.symtab;
2592
aa0cd9c1
AC
2593 /* In the case where we just stepped out of a function into the
2594 middle of a line of the caller, continue stepping, but
2595 step_frame_id must be modified to current frame */
65815ea1
AC
2596#if 0
2597 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2598 generous. It will trigger on things like a step into a frameless
2599 stackless leaf function. I think the logic should instead look
2600 at the unwound frame ID has that should give a more robust
2601 indication of what happened. */
8fb3e588
AC
2602 if (step - ID == current - ID)
2603 still stepping in same function;
2604 else if (step - ID == unwind (current - ID))
2605 stepped into a function;
2606 else
2607 stepped out of a function;
2608 /* Of course this assumes that the frame ID unwind code is robust
2609 and we're willing to introduce frame unwind logic into this
2610 function. Fortunately, those days are nearly upon us. */
65815ea1 2611#endif
488f131b 2612 {
aa0cd9c1
AC
2613 struct frame_id current_frame = get_frame_id (get_current_frame ());
2614 if (!(frame_id_inner (current_frame, step_frame_id)))
2615 step_frame_id = current_frame;
488f131b 2616 }
c906108c 2617
527159b7 2618 if (debug_infrun)
8a9de0e4 2619 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2620 keep_going (ecs);
104c1213
JM
2621}
2622
2623/* Are we in the middle of stepping? */
2624
2625static int
2626currently_stepping (struct execution_control_state *ecs)
2627{
d303a6c7 2628 return ((!ecs->handling_longjmp
104c1213
JM
2629 && ((step_range_end && step_resume_breakpoint == NULL)
2630 || trap_expected))
2631 || ecs->stepping_through_solib_after_catch
2632 || bpstat_should_step ());
2633}
c906108c 2634
c2c6d25f
JM
2635/* Subroutine call with source code we should not step over. Do step
2636 to the first line of code in it. */
2637
2638static void
2639step_into_function (struct execution_control_state *ecs)
2640{
2641 struct symtab *s;
2642 struct symtab_and_line sr_sal;
2643
2644 s = find_pc_symtab (stop_pc);
2645 if (s && s->language != language_asm)
2646 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2647
2648 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2649 /* Use the step_resume_break to step until the end of the prologue,
2650 even if that involves jumps (as it seems to on the vax under
2651 4.2). */
2652 /* If the prologue ends in the middle of a source line, continue to
2653 the end of that source line (if it is still within the function).
2654 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2655 if (ecs->sal.end
2656 && ecs->sal.pc != ecs->stop_func_start
2657 && ecs->sal.end < ecs->stop_func_end)
2658 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2659
2dbd5e30
KB
2660 /* Architectures which require breakpoint adjustment might not be able
2661 to place a breakpoint at the computed address. If so, the test
2662 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2663 ecs->stop_func_start to an address at which a breakpoint may be
2664 legitimately placed.
8fb3e588 2665
2dbd5e30
KB
2666 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2667 made, GDB will enter an infinite loop when stepping through
2668 optimized code consisting of VLIW instructions which contain
2669 subinstructions corresponding to different source lines. On
2670 FR-V, it's not permitted to place a breakpoint on any but the
2671 first subinstruction of a VLIW instruction. When a breakpoint is
2672 set, GDB will adjust the breakpoint address to the beginning of
2673 the VLIW instruction. Thus, we need to make the corresponding
2674 adjustment here when computing the stop address. */
8fb3e588 2675
2dbd5e30
KB
2676 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2677 {
2678 ecs->stop_func_start
2679 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2680 ecs->stop_func_start);
2dbd5e30
KB
2681 }
2682
c2c6d25f
JM
2683 if (ecs->stop_func_start == stop_pc)
2684 {
2685 /* We are already there: stop now. */
2686 stop_step = 1;
488f131b 2687 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2688 stop_stepping (ecs);
2689 return;
2690 }
2691 else
2692 {
2693 /* Put the step-breakpoint there and go until there. */
fe39c653 2694 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2695 sr_sal.pc = ecs->stop_func_start;
2696 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2697
c2c6d25f 2698 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2699 some machines the prologue is where the new fp value is
2700 established. */
44cbf7b5 2701 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2702
2703 /* And make sure stepping stops right away then. */
2704 step_range_end = step_range_start;
2705 }
2706 keep_going (ecs);
2707}
d4f3574e 2708
44cbf7b5
AC
2709/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2710 This is used to both functions and to skip over code. */
2711
2712static void
2713insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2714 struct frame_id sr_id)
2715{
2716 /* There should never be more than one step-resume breakpoint per
2717 thread, so we should never be setting a new
2718 step_resume_breakpoint when one is already active. */
2719 gdb_assert (step_resume_breakpoint == NULL);
2720 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2721 bp_step_resume);
2722 if (breakpoints_inserted)
2723 insert_breakpoints ();
2724}
2725
7ce450bd
AC
2726/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2727 to skip a function (next, skip-no-debug) or signal. It's assumed
2728 that the function/signal handler being skipped eventually returns
2729 to the breakpoint inserted at RETURN_FRAME.pc.
2730
2731 For the skip-function case, the function may have been reached by
2732 either single stepping a call / return / signal-return instruction,
2733 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2734 to the skip-function's caller.
2735
2736 For the signals case, this is called with the interrupted
2737 function's frame. The signal handler, when it returns, will resume
2738 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2739
2740static void
44cbf7b5 2741insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2742{
2743 struct symtab_and_line sr_sal;
2744
d303a6c7
AC
2745 init_sal (&sr_sal); /* initialize to zeros */
2746
7ce450bd 2747 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2748 sr_sal.section = find_pc_overlay (sr_sal.pc);
2749
44cbf7b5 2750 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2751}
2752
104c1213
JM
2753static void
2754stop_stepping (struct execution_control_state *ecs)
2755{
527159b7 2756 if (debug_infrun)
8a9de0e4 2757 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2758
cd0fc7c3
SS
2759 /* Let callers know we don't want to wait for the inferior anymore. */
2760 ecs->wait_some_more = 0;
2761}
2762
d4f3574e
SS
2763/* This function handles various cases where we need to continue
2764 waiting for the inferior. */
2765/* (Used to be the keep_going: label in the old wait_for_inferior) */
2766
2767static void
2768keep_going (struct execution_control_state *ecs)
2769{
d4f3574e 2770 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2771 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2772
d4f3574e
SS
2773 /* If we did not do break;, it means we should keep running the
2774 inferior and not return to debugger. */
2775
2776 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2777 {
2778 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2779 the inferior, else we'd have done a break above) and we
2780 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2781 resume (currently_stepping (ecs), stop_signal);
2782 }
2783 else
2784 {
2785 /* Either the trap was not expected, but we are continuing
488f131b
JB
2786 anyway (the user asked that this signal be passed to the
2787 child)
2788 -- or --
2789 The signal was SIGTRAP, e.g. it was our signal, but we
2790 decided we should resume from it.
d4f3574e 2791
68f53502 2792 We're going to run this baby now! */
d4f3574e 2793
68f53502 2794 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2795 {
2796 breakpoints_failed = insert_breakpoints ();
2797 if (breakpoints_failed)
2798 {
2799 stop_stepping (ecs);
2800 return;
2801 }
2802 breakpoints_inserted = 1;
2803 }
2804
2805 trap_expected = ecs->another_trap;
2806
2807 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2808 specifies that such a signal should be delivered to the
2809 target program).
2810
2811 Typically, this would occure when a user is debugging a
2812 target monitor on a simulator: the target monitor sets a
2813 breakpoint; the simulator encounters this break-point and
2814 halts the simulation handing control to GDB; GDB, noteing
2815 that the break-point isn't valid, returns control back to the
2816 simulator; the simulator then delivers the hardware
2817 equivalent of a SIGNAL_TRAP to the program being debugged. */
2818
2819 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2820 stop_signal = TARGET_SIGNAL_0;
2821
d4f3574e
SS
2822
2823 resume (currently_stepping (ecs), stop_signal);
2824 }
2825
488f131b 2826 prepare_to_wait (ecs);
d4f3574e
SS
2827}
2828
104c1213
JM
2829/* This function normally comes after a resume, before
2830 handle_inferior_event exits. It takes care of any last bits of
2831 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2832
104c1213
JM
2833static void
2834prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2835{
527159b7 2836 if (debug_infrun)
8a9de0e4 2837 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2838 if (ecs->infwait_state == infwait_normal_state)
2839 {
2840 overlay_cache_invalid = 1;
2841
2842 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2843 target_wait because they can be loaded from the target while
2844 in target_wait. This makes remote debugging a bit more
2845 efficient for those targets that provide critical registers
2846 as part of their normal status mechanism. */
104c1213
JM
2847
2848 registers_changed ();
39f77062 2849 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2850 ecs->wp = &(ecs->ws);
2851 }
2852 /* This is the old end of the while loop. Let everybody know we
2853 want to wait for the inferior some more and get called again
2854 soon. */
2855 ecs->wait_some_more = 1;
c906108c 2856}
11cf8741
JM
2857
2858/* Print why the inferior has stopped. We always print something when
2859 the inferior exits, or receives a signal. The rest of the cases are
2860 dealt with later on in normal_stop() and print_it_typical(). Ideally
2861 there should be a call to this function from handle_inferior_event()
2862 each time stop_stepping() is called.*/
2863static void
2864print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2865{
2866 switch (stop_reason)
2867 {
2868 case STOP_UNKNOWN:
2869 /* We don't deal with these cases from handle_inferior_event()
2870 yet. */
2871 break;
2872 case END_STEPPING_RANGE:
2873 /* We are done with a step/next/si/ni command. */
2874 /* For now print nothing. */
fb40c209 2875 /* Print a message only if not in the middle of doing a "step n"
488f131b 2876 operation for n > 1 */
fb40c209 2877 if (!step_multi || !stop_step)
9dc5e2a9 2878 if (ui_out_is_mi_like_p (uiout))
fb40c209 2879 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2880 break;
2881 case BREAKPOINT_HIT:
2882 /* We found a breakpoint. */
2883 /* For now print nothing. */
2884 break;
2885 case SIGNAL_EXITED:
2886 /* The inferior was terminated by a signal. */
8b93c638 2887 annotate_signalled ();
9dc5e2a9 2888 if (ui_out_is_mi_like_p (uiout))
fb40c209 2889 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2890 ui_out_text (uiout, "\nProgram terminated with signal ");
2891 annotate_signal_name ();
488f131b
JB
2892 ui_out_field_string (uiout, "signal-name",
2893 target_signal_to_name (stop_info));
8b93c638
JM
2894 annotate_signal_name_end ();
2895 ui_out_text (uiout, ", ");
2896 annotate_signal_string ();
488f131b
JB
2897 ui_out_field_string (uiout, "signal-meaning",
2898 target_signal_to_string (stop_info));
8b93c638
JM
2899 annotate_signal_string_end ();
2900 ui_out_text (uiout, ".\n");
2901 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2902 break;
2903 case EXITED:
2904 /* The inferior program is finished. */
8b93c638
JM
2905 annotate_exited (stop_info);
2906 if (stop_info)
2907 {
9dc5e2a9 2908 if (ui_out_is_mi_like_p (uiout))
fb40c209 2909 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2910 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2911 ui_out_field_fmt (uiout, "exit-code", "0%o",
2912 (unsigned int) stop_info);
8b93c638
JM
2913 ui_out_text (uiout, ".\n");
2914 }
2915 else
2916 {
9dc5e2a9 2917 if (ui_out_is_mi_like_p (uiout))
fb40c209 2918 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2919 ui_out_text (uiout, "\nProgram exited normally.\n");
2920 }
11cf8741
JM
2921 break;
2922 case SIGNAL_RECEIVED:
2923 /* Signal received. The signal table tells us to print about
2924 it. */
8b93c638
JM
2925 annotate_signal ();
2926 ui_out_text (uiout, "\nProgram received signal ");
2927 annotate_signal_name ();
84c6c83c
KS
2928 if (ui_out_is_mi_like_p (uiout))
2929 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2930 ui_out_field_string (uiout, "signal-name",
2931 target_signal_to_name (stop_info));
8b93c638
JM
2932 annotate_signal_name_end ();
2933 ui_out_text (uiout, ", ");
2934 annotate_signal_string ();
488f131b
JB
2935 ui_out_field_string (uiout, "signal-meaning",
2936 target_signal_to_string (stop_info));
8b93c638
JM
2937 annotate_signal_string_end ();
2938 ui_out_text (uiout, ".\n");
11cf8741
JM
2939 break;
2940 default:
8e65ff28 2941 internal_error (__FILE__, __LINE__,
e2e0b3e5 2942 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
2943 break;
2944 }
2945}
c906108c 2946\f
43ff13b4 2947
c906108c
SS
2948/* Here to return control to GDB when the inferior stops for real.
2949 Print appropriate messages, remove breakpoints, give terminal our modes.
2950
2951 STOP_PRINT_FRAME nonzero means print the executing frame
2952 (pc, function, args, file, line number and line text).
2953 BREAKPOINTS_FAILED nonzero means stop was due to error
2954 attempting to insert breakpoints. */
2955
2956void
96baa820 2957normal_stop (void)
c906108c 2958{
73b65bb0
DJ
2959 struct target_waitstatus last;
2960 ptid_t last_ptid;
2961
2962 get_last_target_status (&last_ptid, &last);
2963
c906108c
SS
2964 /* As with the notification of thread events, we want to delay
2965 notifying the user that we've switched thread context until
2966 the inferior actually stops.
2967
73b65bb0
DJ
2968 There's no point in saying anything if the inferior has exited.
2969 Note that SIGNALLED here means "exited with a signal", not
2970 "received a signal". */
488f131b 2971 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2972 && target_has_execution
2973 && last.kind != TARGET_WAITKIND_SIGNALLED
2974 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2975 {
2976 target_terminal_ours_for_output ();
a3f17187 2977 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
2978 target_pid_or_tid_to_str (inferior_ptid));
2979 previous_inferior_ptid = inferior_ptid;
c906108c 2980 }
c906108c 2981
4fa8626c 2982 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2983 /* Make sure that the current_frame's pc is correct. This
2984 is a correction for setting up the frame info before doing
2985 DECR_PC_AFTER_BREAK */
b87efeee
AC
2986 if (target_has_execution)
2987 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2988 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2989 frame code to check for this and sort out any resultant mess.
2990 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2991 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2992
c906108c
SS
2993 if (target_has_execution && breakpoints_inserted)
2994 {
2995 if (remove_breakpoints ())
2996 {
2997 target_terminal_ours_for_output ();
a3f17187
AC
2998 printf_filtered (_("\
2999Cannot remove breakpoints because program is no longer writable.\n\
3000It might be running in another process.\n\
3001Further execution is probably impossible.\n"));
c906108c
SS
3002 }
3003 }
3004 breakpoints_inserted = 0;
3005
3006 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3007 Delete any breakpoint that is to be deleted at the next stop. */
3008
3009 breakpoint_auto_delete (stop_bpstat);
3010
3011 /* If an auto-display called a function and that got a signal,
3012 delete that auto-display to avoid an infinite recursion. */
3013
3014 if (stopped_by_random_signal)
3015 disable_current_display ();
3016
3017 /* Don't print a message if in the middle of doing a "step n"
3018 operation for n > 1 */
3019 if (step_multi && stop_step)
3020 goto done;
3021
3022 target_terminal_ours ();
3023
5913bcb0
AC
3024 /* Look up the hook_stop and run it (CLI internally handles problem
3025 of stop_command's pre-hook not existing). */
3026 if (stop_command)
3027 catch_errors (hook_stop_stub, stop_command,
3028 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3029
3030 if (!target_has_stack)
3031 {
3032
3033 goto done;
3034 }
3035
3036 /* Select innermost stack frame - i.e., current frame is frame 0,
3037 and current location is based on that.
3038 Don't do this on return from a stack dummy routine,
3039 or if the program has exited. */
3040
3041 if (!stop_stack_dummy)
3042 {
0f7d239c 3043 select_frame (get_current_frame ());
c906108c
SS
3044
3045 /* Print current location without a level number, if
c5aa993b
JM
3046 we have changed functions or hit a breakpoint.
3047 Print source line if we have one.
3048 bpstat_print() contains the logic deciding in detail
3049 what to print, based on the event(s) that just occurred. */
c906108c 3050
6e7f8b9c 3051 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3052 {
3053 int bpstat_ret;
3054 int source_flag;
917317f4 3055 int do_frame_printing = 1;
c906108c
SS
3056
3057 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3058 switch (bpstat_ret)
3059 {
3060 case PRINT_UNKNOWN:
aa0cd9c1 3061 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3062 (or should) carry around the function and does (or
3063 should) use that when doing a frame comparison. */
917317f4 3064 if (stop_step
aa0cd9c1
AC
3065 && frame_id_eq (step_frame_id,
3066 get_frame_id (get_current_frame ()))
917317f4 3067 && step_start_function == find_pc_function (stop_pc))
488f131b 3068 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3069 else
488f131b 3070 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3071 break;
3072 case PRINT_SRC_AND_LOC:
488f131b 3073 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3074 break;
3075 case PRINT_SRC_ONLY:
c5394b80 3076 source_flag = SRC_LINE;
917317f4
JM
3077 break;
3078 case PRINT_NOTHING:
488f131b 3079 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3080 do_frame_printing = 0;
3081 break;
3082 default:
e2e0b3e5 3083 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3084 }
fb40c209 3085 /* For mi, have the same behavior every time we stop:
488f131b 3086 print everything but the source line. */
9dc5e2a9 3087 if (ui_out_is_mi_like_p (uiout))
fb40c209 3088 source_flag = LOC_AND_ADDRESS;
c906108c 3089
9dc5e2a9 3090 if (ui_out_is_mi_like_p (uiout))
39f77062 3091 ui_out_field_int (uiout, "thread-id",
488f131b 3092 pid_to_thread_id (inferior_ptid));
c906108c
SS
3093 /* The behavior of this routine with respect to the source
3094 flag is:
c5394b80
JM
3095 SRC_LINE: Print only source line
3096 LOCATION: Print only location
3097 SRC_AND_LOC: Print location and source line */
917317f4 3098 if (do_frame_printing)
b04f3ab4 3099 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3100
3101 /* Display the auto-display expressions. */
3102 do_displays ();
3103 }
3104 }
3105
3106 /* Save the function value return registers, if we care.
3107 We might be about to restore their previous contents. */
3108 if (proceed_to_finish)
72cec141
AC
3109 /* NB: The copy goes through to the target picking up the value of
3110 all the registers. */
3111 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3112
3113 if (stop_stack_dummy)
3114 {
dbe9fe58
AC
3115 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3116 ends with a setting of the current frame, so we can use that
3117 next. */
3118 frame_pop (get_current_frame ());
c906108c 3119 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3120 Can't rely on restore_inferior_status because that only gets
3121 called if we don't stop in the called function. */
c906108c 3122 stop_pc = read_pc ();
0f7d239c 3123 select_frame (get_current_frame ());
c906108c
SS
3124 }
3125
c906108c
SS
3126done:
3127 annotate_stopped ();
7a464420 3128 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3129}
3130
3131static int
96baa820 3132hook_stop_stub (void *cmd)
c906108c 3133{
5913bcb0 3134 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3135 return (0);
3136}
3137\f
c5aa993b 3138int
96baa820 3139signal_stop_state (int signo)
c906108c
SS
3140{
3141 return signal_stop[signo];
3142}
3143
c5aa993b 3144int
96baa820 3145signal_print_state (int signo)
c906108c
SS
3146{
3147 return signal_print[signo];
3148}
3149
c5aa993b 3150int
96baa820 3151signal_pass_state (int signo)
c906108c
SS
3152{
3153 return signal_program[signo];
3154}
3155
488f131b 3156int
7bda5e4a 3157signal_stop_update (int signo, int state)
d4f3574e
SS
3158{
3159 int ret = signal_stop[signo];
3160 signal_stop[signo] = state;
3161 return ret;
3162}
3163
488f131b 3164int
7bda5e4a 3165signal_print_update (int signo, int state)
d4f3574e
SS
3166{
3167 int ret = signal_print[signo];
3168 signal_print[signo] = state;
3169 return ret;
3170}
3171
488f131b 3172int
7bda5e4a 3173signal_pass_update (int signo, int state)
d4f3574e
SS
3174{
3175 int ret = signal_program[signo];
3176 signal_program[signo] = state;
3177 return ret;
3178}
3179
c906108c 3180static void
96baa820 3181sig_print_header (void)
c906108c 3182{
a3f17187
AC
3183 printf_filtered (_("\
3184Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3185}
3186
3187static void
96baa820 3188sig_print_info (enum target_signal oursig)
c906108c
SS
3189{
3190 char *name = target_signal_to_name (oursig);
3191 int name_padding = 13 - strlen (name);
96baa820 3192
c906108c
SS
3193 if (name_padding <= 0)
3194 name_padding = 0;
3195
3196 printf_filtered ("%s", name);
488f131b 3197 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3198 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3199 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3200 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3201 printf_filtered ("%s\n", target_signal_to_string (oursig));
3202}
3203
3204/* Specify how various signals in the inferior should be handled. */
3205
3206static void
96baa820 3207handle_command (char *args, int from_tty)
c906108c
SS
3208{
3209 char **argv;
3210 int digits, wordlen;
3211 int sigfirst, signum, siglast;
3212 enum target_signal oursig;
3213 int allsigs;
3214 int nsigs;
3215 unsigned char *sigs;
3216 struct cleanup *old_chain;
3217
3218 if (args == NULL)
3219 {
e2e0b3e5 3220 error_no_arg (_("signal to handle"));
c906108c
SS
3221 }
3222
3223 /* Allocate and zero an array of flags for which signals to handle. */
3224
3225 nsigs = (int) TARGET_SIGNAL_LAST;
3226 sigs = (unsigned char *) alloca (nsigs);
3227 memset (sigs, 0, nsigs);
3228
3229 /* Break the command line up into args. */
3230
3231 argv = buildargv (args);
3232 if (argv == NULL)
3233 {
3234 nomem (0);
3235 }
7a292a7a 3236 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3237
3238 /* Walk through the args, looking for signal oursigs, signal names, and
3239 actions. Signal numbers and signal names may be interspersed with
3240 actions, with the actions being performed for all signals cumulatively
3241 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3242
3243 while (*argv != NULL)
3244 {
3245 wordlen = strlen (*argv);
3246 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3247 {;
3248 }
3249 allsigs = 0;
3250 sigfirst = siglast = -1;
3251
3252 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3253 {
3254 /* Apply action to all signals except those used by the
3255 debugger. Silently skip those. */
3256 allsigs = 1;
3257 sigfirst = 0;
3258 siglast = nsigs - 1;
3259 }
3260 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3261 {
3262 SET_SIGS (nsigs, sigs, signal_stop);
3263 SET_SIGS (nsigs, sigs, signal_print);
3264 }
3265 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3266 {
3267 UNSET_SIGS (nsigs, sigs, signal_program);
3268 }
3269 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3270 {
3271 SET_SIGS (nsigs, sigs, signal_print);
3272 }
3273 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3274 {
3275 SET_SIGS (nsigs, sigs, signal_program);
3276 }
3277 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3278 {
3279 UNSET_SIGS (nsigs, sigs, signal_stop);
3280 }
3281 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3282 {
3283 SET_SIGS (nsigs, sigs, signal_program);
3284 }
3285 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3286 {
3287 UNSET_SIGS (nsigs, sigs, signal_print);
3288 UNSET_SIGS (nsigs, sigs, signal_stop);
3289 }
3290 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3291 {
3292 UNSET_SIGS (nsigs, sigs, signal_program);
3293 }
3294 else if (digits > 0)
3295 {
3296 /* It is numeric. The numeric signal refers to our own
3297 internal signal numbering from target.h, not to host/target
3298 signal number. This is a feature; users really should be
3299 using symbolic names anyway, and the common ones like
3300 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3301
3302 sigfirst = siglast = (int)
3303 target_signal_from_command (atoi (*argv));
3304 if ((*argv)[digits] == '-')
3305 {
3306 siglast = (int)
3307 target_signal_from_command (atoi ((*argv) + digits + 1));
3308 }
3309 if (sigfirst > siglast)
3310 {
3311 /* Bet he didn't figure we'd think of this case... */
3312 signum = sigfirst;
3313 sigfirst = siglast;
3314 siglast = signum;
3315 }
3316 }
3317 else
3318 {
3319 oursig = target_signal_from_name (*argv);
3320 if (oursig != TARGET_SIGNAL_UNKNOWN)
3321 {
3322 sigfirst = siglast = (int) oursig;
3323 }
3324 else
3325 {
3326 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3327 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3328 }
3329 }
3330
3331 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3332 which signals to apply actions to. */
c906108c
SS
3333
3334 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3335 {
3336 switch ((enum target_signal) signum)
3337 {
3338 case TARGET_SIGNAL_TRAP:
3339 case TARGET_SIGNAL_INT:
3340 if (!allsigs && !sigs[signum])
3341 {
3342 if (query ("%s is used by the debugger.\n\
488f131b 3343Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3344 {
3345 sigs[signum] = 1;
3346 }
3347 else
3348 {
a3f17187 3349 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3350 gdb_flush (gdb_stdout);
3351 }
3352 }
3353 break;
3354 case TARGET_SIGNAL_0:
3355 case TARGET_SIGNAL_DEFAULT:
3356 case TARGET_SIGNAL_UNKNOWN:
3357 /* Make sure that "all" doesn't print these. */
3358 break;
3359 default:
3360 sigs[signum] = 1;
3361 break;
3362 }
3363 }
3364
3365 argv++;
3366 }
3367
39f77062 3368 target_notice_signals (inferior_ptid);
c906108c
SS
3369
3370 if (from_tty)
3371 {
3372 /* Show the results. */
3373 sig_print_header ();
3374 for (signum = 0; signum < nsigs; signum++)
3375 {
3376 if (sigs[signum])
3377 {
3378 sig_print_info (signum);
3379 }
3380 }
3381 }
3382
3383 do_cleanups (old_chain);
3384}
3385
3386static void
96baa820 3387xdb_handle_command (char *args, int from_tty)
c906108c
SS
3388{
3389 char **argv;
3390 struct cleanup *old_chain;
3391
3392 /* Break the command line up into args. */
3393
3394 argv = buildargv (args);
3395 if (argv == NULL)
3396 {
3397 nomem (0);
3398 }
7a292a7a 3399 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3400 if (argv[1] != (char *) NULL)
3401 {
3402 char *argBuf;
3403 int bufLen;
3404
3405 bufLen = strlen (argv[0]) + 20;
3406 argBuf = (char *) xmalloc (bufLen);
3407 if (argBuf)
3408 {
3409 int validFlag = 1;
3410 enum target_signal oursig;
3411
3412 oursig = target_signal_from_name (argv[0]);
3413 memset (argBuf, 0, bufLen);
3414 if (strcmp (argv[1], "Q") == 0)
3415 sprintf (argBuf, "%s %s", argv[0], "noprint");
3416 else
3417 {
3418 if (strcmp (argv[1], "s") == 0)
3419 {
3420 if (!signal_stop[oursig])
3421 sprintf (argBuf, "%s %s", argv[0], "stop");
3422 else
3423 sprintf (argBuf, "%s %s", argv[0], "nostop");
3424 }
3425 else if (strcmp (argv[1], "i") == 0)
3426 {
3427 if (!signal_program[oursig])
3428 sprintf (argBuf, "%s %s", argv[0], "pass");
3429 else
3430 sprintf (argBuf, "%s %s", argv[0], "nopass");
3431 }
3432 else if (strcmp (argv[1], "r") == 0)
3433 {
3434 if (!signal_print[oursig])
3435 sprintf (argBuf, "%s %s", argv[0], "print");
3436 else
3437 sprintf (argBuf, "%s %s", argv[0], "noprint");
3438 }
3439 else
3440 validFlag = 0;
3441 }
3442 if (validFlag)
3443 handle_command (argBuf, from_tty);
3444 else
a3f17187 3445 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3446 if (argBuf)
b8c9b27d 3447 xfree (argBuf);
c906108c
SS
3448 }
3449 }
3450 do_cleanups (old_chain);
3451}
3452
3453/* Print current contents of the tables set by the handle command.
3454 It is possible we should just be printing signals actually used
3455 by the current target (but for things to work right when switching
3456 targets, all signals should be in the signal tables). */
3457
3458static void
96baa820 3459signals_info (char *signum_exp, int from_tty)
c906108c
SS
3460{
3461 enum target_signal oursig;
3462 sig_print_header ();
3463
3464 if (signum_exp)
3465 {
3466 /* First see if this is a symbol name. */
3467 oursig = target_signal_from_name (signum_exp);
3468 if (oursig == TARGET_SIGNAL_UNKNOWN)
3469 {
3470 /* No, try numeric. */
3471 oursig =
bb518678 3472 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3473 }
3474 sig_print_info (oursig);
3475 return;
3476 }
3477
3478 printf_filtered ("\n");
3479 /* These ugly casts brought to you by the native VAX compiler. */
3480 for (oursig = TARGET_SIGNAL_FIRST;
3481 (int) oursig < (int) TARGET_SIGNAL_LAST;
3482 oursig = (enum target_signal) ((int) oursig + 1))
3483 {
3484 QUIT;
3485
3486 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3487 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3488 sig_print_info (oursig);
3489 }
3490
a3f17187 3491 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3492}
3493\f
7a292a7a
SS
3494struct inferior_status
3495{
3496 enum target_signal stop_signal;
3497 CORE_ADDR stop_pc;
3498 bpstat stop_bpstat;
3499 int stop_step;
3500 int stop_stack_dummy;
3501 int stopped_by_random_signal;
3502 int trap_expected;
3503 CORE_ADDR step_range_start;
3504 CORE_ADDR step_range_end;
aa0cd9c1 3505 struct frame_id step_frame_id;
5fbbeb29 3506 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3507 CORE_ADDR step_resume_break_address;
3508 int stop_after_trap;
c0236d92 3509 int stop_soon;
72cec141 3510 struct regcache *stop_registers;
7a292a7a
SS
3511
3512 /* These are here because if call_function_by_hand has written some
3513 registers and then decides to call error(), we better not have changed
3514 any registers. */
72cec141 3515 struct regcache *registers;
7a292a7a 3516
101dcfbe
AC
3517 /* A frame unique identifier. */
3518 struct frame_id selected_frame_id;
3519
7a292a7a
SS
3520 int breakpoint_proceeded;
3521 int restore_stack_info;
3522 int proceed_to_finish;
3523};
3524
7a292a7a 3525void
96baa820
JM
3526write_inferior_status_register (struct inferior_status *inf_status, int regno,
3527 LONGEST val)
7a292a7a 3528{
3acba339 3529 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3530 void *buf = alloca (size);
3531 store_signed_integer (buf, size, val);
0818c12a 3532 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3533}
3534
c906108c
SS
3535/* Save all of the information associated with the inferior<==>gdb
3536 connection. INF_STATUS is a pointer to a "struct inferior_status"
3537 (defined in inferior.h). */
3538
7a292a7a 3539struct inferior_status *
96baa820 3540save_inferior_status (int restore_stack_info)
c906108c 3541{
72cec141 3542 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3543
c906108c
SS
3544 inf_status->stop_signal = stop_signal;
3545 inf_status->stop_pc = stop_pc;
3546 inf_status->stop_step = stop_step;
3547 inf_status->stop_stack_dummy = stop_stack_dummy;
3548 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3549 inf_status->trap_expected = trap_expected;
3550 inf_status->step_range_start = step_range_start;
3551 inf_status->step_range_end = step_range_end;
aa0cd9c1 3552 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3553 inf_status->step_over_calls = step_over_calls;
3554 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3555 inf_status->stop_soon = stop_soon;
c906108c
SS
3556 /* Save original bpstat chain here; replace it with copy of chain.
3557 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3558 hand them back the original chain when restore_inferior_status is
3559 called. */
c906108c
SS
3560 inf_status->stop_bpstat = stop_bpstat;
3561 stop_bpstat = bpstat_copy (stop_bpstat);
3562 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3563 inf_status->restore_stack_info = restore_stack_info;
3564 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3565
72cec141 3566 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3567
72cec141 3568 inf_status->registers = regcache_dup (current_regcache);
c906108c 3569
7a424e99 3570 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3571 return inf_status;
c906108c
SS
3572}
3573
c906108c 3574static int
96baa820 3575restore_selected_frame (void *args)
c906108c 3576{
488f131b 3577 struct frame_id *fid = (struct frame_id *) args;
c906108c 3578 struct frame_info *frame;
c906108c 3579
101dcfbe 3580 frame = frame_find_by_id (*fid);
c906108c 3581
aa0cd9c1
AC
3582 /* If inf_status->selected_frame_id is NULL, there was no previously
3583 selected frame. */
101dcfbe 3584 if (frame == NULL)
c906108c 3585 {
8a3fe4f8 3586 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3587 return 0;
3588 }
3589
0f7d239c 3590 select_frame (frame);
c906108c
SS
3591
3592 return (1);
3593}
3594
3595void
96baa820 3596restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3597{
3598 stop_signal = inf_status->stop_signal;
3599 stop_pc = inf_status->stop_pc;
3600 stop_step = inf_status->stop_step;
3601 stop_stack_dummy = inf_status->stop_stack_dummy;
3602 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3603 trap_expected = inf_status->trap_expected;
3604 step_range_start = inf_status->step_range_start;
3605 step_range_end = inf_status->step_range_end;
aa0cd9c1 3606 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3607 step_over_calls = inf_status->step_over_calls;
3608 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3609 stop_soon = inf_status->stop_soon;
c906108c
SS
3610 bpstat_clear (&stop_bpstat);
3611 stop_bpstat = inf_status->stop_bpstat;
3612 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3613 proceed_to_finish = inf_status->proceed_to_finish;
3614
72cec141
AC
3615 /* FIXME: Is the restore of stop_registers always needed. */
3616 regcache_xfree (stop_registers);
3617 stop_registers = inf_status->stop_registers;
c906108c
SS
3618
3619 /* The inferior can be gone if the user types "print exit(0)"
3620 (and perhaps other times). */
3621 if (target_has_execution)
72cec141
AC
3622 /* NB: The register write goes through to the target. */
3623 regcache_cpy (current_regcache, inf_status->registers);
3624 regcache_xfree (inf_status->registers);
c906108c 3625
c906108c
SS
3626 /* FIXME: If we are being called after stopping in a function which
3627 is called from gdb, we should not be trying to restore the
3628 selected frame; it just prints a spurious error message (The
3629 message is useful, however, in detecting bugs in gdb (like if gdb
3630 clobbers the stack)). In fact, should we be restoring the
3631 inferior status at all in that case? . */
3632
3633 if (target_has_stack && inf_status->restore_stack_info)
3634 {
c906108c 3635 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3636 walking the stack might encounter a garbage pointer and
3637 error() trying to dereference it. */
488f131b
JB
3638 if (catch_errors
3639 (restore_selected_frame, &inf_status->selected_frame_id,
3640 "Unable to restore previously selected frame:\n",
3641 RETURN_MASK_ERROR) == 0)
c906108c
SS
3642 /* Error in restoring the selected frame. Select the innermost
3643 frame. */
0f7d239c 3644 select_frame (get_current_frame ());
c906108c
SS
3645
3646 }
c906108c 3647
72cec141 3648 xfree (inf_status);
7a292a7a 3649}
c906108c 3650
74b7792f
AC
3651static void
3652do_restore_inferior_status_cleanup (void *sts)
3653{
3654 restore_inferior_status (sts);
3655}
3656
3657struct cleanup *
3658make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3659{
3660 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3661}
3662
c906108c 3663void
96baa820 3664discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3665{
3666 /* See save_inferior_status for info on stop_bpstat. */
3667 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3668 regcache_xfree (inf_status->registers);
3669 regcache_xfree (inf_status->stop_registers);
3670 xfree (inf_status);
7a292a7a
SS
3671}
3672
47932f85
DJ
3673int
3674inferior_has_forked (int pid, int *child_pid)
3675{
3676 struct target_waitstatus last;
3677 ptid_t last_ptid;
3678
3679 get_last_target_status (&last_ptid, &last);
3680
3681 if (last.kind != TARGET_WAITKIND_FORKED)
3682 return 0;
3683
3684 if (ptid_get_pid (last_ptid) != pid)
3685 return 0;
3686
3687 *child_pid = last.value.related_pid;
3688 return 1;
3689}
3690
3691int
3692inferior_has_vforked (int pid, int *child_pid)
3693{
3694 struct target_waitstatus last;
3695 ptid_t last_ptid;
3696
3697 get_last_target_status (&last_ptid, &last);
3698
3699 if (last.kind != TARGET_WAITKIND_VFORKED)
3700 return 0;
3701
3702 if (ptid_get_pid (last_ptid) != pid)
3703 return 0;
3704
3705 *child_pid = last.value.related_pid;
3706 return 1;
3707}
3708
3709int
3710inferior_has_execd (int pid, char **execd_pathname)
3711{
3712 struct target_waitstatus last;
3713 ptid_t last_ptid;
3714
3715 get_last_target_status (&last_ptid, &last);
3716
3717 if (last.kind != TARGET_WAITKIND_EXECD)
3718 return 0;
3719
3720 if (ptid_get_pid (last_ptid) != pid)
3721 return 0;
3722
3723 *execd_pathname = xstrdup (last.value.execd_pathname);
3724 return 1;
3725}
3726
ca6724c1
KB
3727/* Oft used ptids */
3728ptid_t null_ptid;
3729ptid_t minus_one_ptid;
3730
3731/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3732
ca6724c1
KB
3733ptid_t
3734ptid_build (int pid, long lwp, long tid)
3735{
3736 ptid_t ptid;
3737
3738 ptid.pid = pid;
3739 ptid.lwp = lwp;
3740 ptid.tid = tid;
3741 return ptid;
3742}
3743
3744/* Create a ptid from just a pid. */
3745
3746ptid_t
3747pid_to_ptid (int pid)
3748{
3749 return ptid_build (pid, 0, 0);
3750}
3751
3752/* Fetch the pid (process id) component from a ptid. */
3753
3754int
3755ptid_get_pid (ptid_t ptid)
3756{
3757 return ptid.pid;
3758}
3759
3760/* Fetch the lwp (lightweight process) component from a ptid. */
3761
3762long
3763ptid_get_lwp (ptid_t ptid)
3764{
3765 return ptid.lwp;
3766}
3767
3768/* Fetch the tid (thread id) component from a ptid. */
3769
3770long
3771ptid_get_tid (ptid_t ptid)
3772{
3773 return ptid.tid;
3774}
3775
3776/* ptid_equal() is used to test equality of two ptids. */
3777
3778int
3779ptid_equal (ptid_t ptid1, ptid_t ptid2)
3780{
3781 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3782 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3783}
3784
3785/* restore_inferior_ptid() will be used by the cleanup machinery
3786 to restore the inferior_ptid value saved in a call to
3787 save_inferior_ptid(). */
ce696e05
KB
3788
3789static void
3790restore_inferior_ptid (void *arg)
3791{
3792 ptid_t *saved_ptid_ptr = arg;
3793 inferior_ptid = *saved_ptid_ptr;
3794 xfree (arg);
3795}
3796
3797/* Save the value of inferior_ptid so that it may be restored by a
3798 later call to do_cleanups(). Returns the struct cleanup pointer
3799 needed for later doing the cleanup. */
3800
3801struct cleanup *
3802save_inferior_ptid (void)
3803{
3804 ptid_t *saved_ptid_ptr;
3805
3806 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3807 *saved_ptid_ptr = inferior_ptid;
3808 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3809}
c5aa993b 3810\f
488f131b 3811
7a292a7a 3812static void
96baa820 3813build_infrun (void)
7a292a7a 3814{
72cec141 3815 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3816}
c906108c 3817
c906108c 3818void
96baa820 3819_initialize_infrun (void)
c906108c 3820{
52f0bd74
AC
3821 int i;
3822 int numsigs;
c906108c
SS
3823 struct cmd_list_element *c;
3824
046a4708
AC
3825 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3826 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3827
1bedd215
AC
3828 add_info ("signals", signals_info, _("\
3829What debugger does when program gets various signals.\n\
3830Specify a signal as argument to print info on that signal only."));
c906108c
SS
3831 add_info_alias ("handle", "signals", 0);
3832
1bedd215
AC
3833 add_com ("handle", class_run, handle_command, _("\
3834Specify how to handle a signal.\n\
c906108c
SS
3835Args are signals and actions to apply to those signals.\n\
3836Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3837from 1-15 are allowed for compatibility with old versions of GDB.\n\
3838Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3839The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3840used by the debugger, typically SIGTRAP and SIGINT.\n\
3841Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3842\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3843Stop means reenter debugger if this signal happens (implies print).\n\
3844Print means print a message if this signal happens.\n\
3845Pass means let program see this signal; otherwise program doesn't know.\n\
3846Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3847Pass and Stop may be combined."));
c906108c
SS
3848 if (xdb_commands)
3849 {
1bedd215
AC
3850 add_com ("lz", class_info, signals_info, _("\
3851What debugger does when program gets various signals.\n\
3852Specify a signal as argument to print info on that signal only."));
3853 add_com ("z", class_run, xdb_handle_command, _("\
3854Specify how to handle a signal.\n\
c906108c
SS
3855Args are signals and actions to apply to those signals.\n\
3856Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3857from 1-15 are allowed for compatibility with old versions of GDB.\n\
3858Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3859The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3860used by the debugger, typically SIGTRAP and SIGINT.\n\
3861Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3862\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3863nopass), \"Q\" (noprint)\n\
3864Stop means reenter debugger if this signal happens (implies print).\n\
3865Print means print a message if this signal happens.\n\
3866Pass means let program see this signal; otherwise program doesn't know.\n\
3867Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3868Pass and Stop may be combined."));
c906108c
SS
3869 }
3870
3871 if (!dbx_commands)
1a966eab
AC
3872 stop_command = add_cmd ("stop", class_obscure,
3873 not_just_help_class_command, _("\
3874There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3875This allows you to set a list of commands to be run each time execution\n\
1a966eab 3876of the program stops."), &cmdlist);
c906108c 3877
85c07804
AC
3878 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3879Set inferior debugging."), _("\
3880Show inferior debugging."), _("\
3881When non-zero, inferior specific debugging is enabled."),
3882 NULL,
920d2a44 3883 show_debug_infrun,
85c07804 3884 &setdebuglist, &showdebuglist);
527159b7 3885
c906108c 3886 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3887 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3888 signal_print = (unsigned char *)
3889 xmalloc (sizeof (signal_print[0]) * numsigs);
3890 signal_program = (unsigned char *)
3891 xmalloc (sizeof (signal_program[0]) * numsigs);
3892 for (i = 0; i < numsigs; i++)
3893 {
3894 signal_stop[i] = 1;
3895 signal_print[i] = 1;
3896 signal_program[i] = 1;
3897 }
3898
3899 /* Signals caused by debugger's own actions
3900 should not be given to the program afterwards. */
3901 signal_program[TARGET_SIGNAL_TRAP] = 0;
3902 signal_program[TARGET_SIGNAL_INT] = 0;
3903
3904 /* Signals that are not errors should not normally enter the debugger. */
3905 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3906 signal_print[TARGET_SIGNAL_ALRM] = 0;
3907 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3908 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3909 signal_stop[TARGET_SIGNAL_PROF] = 0;
3910 signal_print[TARGET_SIGNAL_PROF] = 0;
3911 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3912 signal_print[TARGET_SIGNAL_CHLD] = 0;
3913 signal_stop[TARGET_SIGNAL_IO] = 0;
3914 signal_print[TARGET_SIGNAL_IO] = 0;
3915 signal_stop[TARGET_SIGNAL_POLL] = 0;
3916 signal_print[TARGET_SIGNAL_POLL] = 0;
3917 signal_stop[TARGET_SIGNAL_URG] = 0;
3918 signal_print[TARGET_SIGNAL_URG] = 0;
3919 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3920 signal_print[TARGET_SIGNAL_WINCH] = 0;
3921
cd0fc7c3
SS
3922 /* These signals are used internally by user-level thread
3923 implementations. (See signal(5) on Solaris.) Like the above
3924 signals, a healthy program receives and handles them as part of
3925 its normal operation. */
3926 signal_stop[TARGET_SIGNAL_LWP] = 0;
3927 signal_print[TARGET_SIGNAL_LWP] = 0;
3928 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3929 signal_print[TARGET_SIGNAL_WAITING] = 0;
3930 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3931 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3932
85c07804
AC
3933 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3934 &stop_on_solib_events, _("\
3935Set stopping for shared library events."), _("\
3936Show stopping for shared library events."), _("\
c906108c
SS
3937If nonzero, gdb will give control to the user when the dynamic linker\n\
3938notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
3939to the user would be loading/unloading of a new library."),
3940 NULL,
920d2a44 3941 show_stop_on_solib_events,
85c07804 3942 &setlist, &showlist);
c906108c 3943
7ab04401
AC
3944 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3945 follow_fork_mode_kind_names,
3946 &follow_fork_mode_string, _("\
3947Set debugger response to a program call of fork or vfork."), _("\
3948Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
3949A fork or vfork creates a new process. follow-fork-mode can be:\n\
3950 parent - the original process is debugged after a fork\n\
3951 child - the new process is debugged after a fork\n\
ea1dd7bc 3952The unfollowed process will continue to run.\n\
7ab04401
AC
3953By default, the debugger will follow the parent process."),
3954 NULL,
920d2a44 3955 show_follow_fork_mode_string,
7ab04401
AC
3956 &setlist, &showlist);
3957
3958 add_setshow_enum_cmd ("scheduler-locking", class_run,
3959 scheduler_enums, &scheduler_mode, _("\
3960Set mode for locking scheduler during execution."), _("\
3961Show mode for locking scheduler during execution."), _("\
c906108c
SS
3962off == no locking (threads may preempt at any time)\n\
3963on == full locking (no thread except the current thread may run)\n\
3964step == scheduler locked during every single-step operation.\n\
3965 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
3966 Other threads may run while stepping over a function call ('next')."),
3967 set_schedlock_func, /* traps on target vector */
920d2a44 3968 show_scheduler_mode,
7ab04401 3969 &setlist, &showlist);
5fbbeb29 3970
5bf193a2
AC
3971 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3972Set mode of the step operation."), _("\
3973Show mode of the step operation."), _("\
3974When set, doing a step over a function without debug line information\n\
3975will stop at the first instruction of that function. Otherwise, the\n\
3976function is skipped and the step command stops at a different source line."),
3977 NULL,
920d2a44 3978 show_step_stop_if_no_debug,
5bf193a2 3979 &setlist, &showlist);
ca6724c1
KB
3980
3981 /* ptid initializations */
3982 null_ptid = ptid_build (0, 0, 0);
3983 minus_one_ptid = ptid_build (-1, 0, 0);
3984 inferior_ptid = null_ptid;
3985 target_last_wait_ptid = minus_one_ptid;
c906108c 3986}
This page took 0.907853 seconds and 4 git commands to generate.