Fix -Wuh and -Wnhu options so that they work.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
c906108c 1/* Target-struct-independent code to start (run) and stop an inferior process.
7a292a7a 2 Copyright 1986-1989, 1991-1999 Free Software Foundation, Inc.
c906108c
SS
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20#include "defs.h"
21#include "gdb_string.h"
22#include <ctype.h>
23#include "symtab.h"
24#include "frame.h"
25#include "inferior.h"
26#include "breakpoint.h"
27#include "wait.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
33#include "symfile.h" /* for overlay functions */
7a292a7a 34#include "top.h"
c906108c
SS
35
36#include <signal.h>
37
38/* Prototypes for local functions */
39
40static void signals_info PARAMS ((char *, int));
41
42static void handle_command PARAMS ((char *, int));
43
44static void sig_print_info PARAMS ((enum target_signal));
45
46static void sig_print_header PARAMS ((void));
47
48static void resume_cleanups PARAMS ((int));
49
50static int hook_stop_stub PARAMS ((PTR));
51
52static void delete_breakpoint_current_contents PARAMS ((PTR));
53
7a292a7a
SS
54static void set_follow_fork_mode_command PARAMS ((char *arg, int from_tty, struct cmd_list_element *c));
55
c906108c
SS
56int inferior_ignoring_startup_exec_events = 0;
57int inferior_ignoring_leading_exec_events = 0;
58
c906108c
SS
59/* wait_for_inferior and normal_stop use this to notify the user
60 when the inferior stopped in a different thread than it had been
61 running in. */
62static int switched_from_inferior_pid;
7a292a7a
SS
63
64/* This will be true for configurations that may actually report an
65 inferior pid different from the original. At present this is only
66 true for HP-UX native. */
67
68#ifndef MAY_SWITCH_FROM_INFERIOR_PID
69#define MAY_SWITCH_FROM_INFERIOR_PID (0)
70#endif
71
72static int may_switch_from_inferior_pid = MAY_SWITCH_FROM_INFERIOR_PID;
73
74/* This is true for configurations that may follow through execl() and
75 similar functions. At present this is only true for HP-UX native. */
76
77#ifndef MAY_FOLLOW_EXEC
78#define MAY_FOLLOW_EXEC (0)
c906108c
SS
79#endif
80
7a292a7a
SS
81static int may_follow_exec = MAY_FOLLOW_EXEC;
82
c906108c
SS
83/* resume and wait_for_inferior use this to ensure that when
84 stepping over a hit breakpoint in a threaded application
85 only the thread that hit the breakpoint is stepped and the
86 other threads don't continue. This prevents having another
87 thread run past the breakpoint while it is temporarily
88 removed.
89
90 This is not thread-specific, so it isn't saved as part of
91 the infrun state.
92
93 Versions of gdb which don't use the "step == this thread steps
94 and others continue" model but instead use the "step == this
95 thread steps and others wait" shouldn't do this. */
96static int thread_step_needed = 0;
97
7a292a7a
SS
98/* This is true if thread_step_needed should actually be used. At
99 present this is only true for HP-UX native. */
100
101#ifndef USE_THREAD_STEP_NEEDED
102#define USE_THREAD_STEP_NEEDED (0)
103#endif
104
105static int use_thread_step_needed = USE_THREAD_STEP_NEEDED;
106
392a587b
JM
107static void follow_inferior_fork PARAMS ((int parent_pid,
108 int child_pid,
109 int has_forked,
110 int has_vforked));
111
112static void follow_fork PARAMS ((int parent_pid, int child_pid));
113
114static void follow_vfork PARAMS ((int parent_pid, int child_pid));
115
116static void set_schedlock_func PARAMS ((char *args, int from_tty,
117 struct cmd_list_element *c));
118
119static int is_internal_shlib_eventpoint PARAMS ((struct breakpoint *ep));
120
121static int stopped_for_internal_shlib_event PARAMS ((bpstat bs));
122
123static int stopped_for_shlib_catchpoint PARAMS ((bpstat bs,
124 struct breakpoint **cp_p));
125
126#if __STDC__
127struct execution_control_state;
128#endif
129static int currently_stepping PARAMS ((struct execution_control_state *ecs));
130
131static void xdb_handle_command PARAMS ((char *args, int from_tty));
132
c906108c
SS
133void _initialize_infrun PARAMS ((void));
134
135/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
136 program. It needs to examine the jmp_buf argument and extract the PC
137 from it. The return value is non-zero on success, zero otherwise. */
138
139#ifndef GET_LONGJMP_TARGET
140#define GET_LONGJMP_TARGET(PC_ADDR) 0
141#endif
142
143
144/* Some machines have trampoline code that sits between function callers
145 and the actual functions themselves. If this machine doesn't have
146 such things, disable their processing. */
147
148#ifndef SKIP_TRAMPOLINE_CODE
149#define SKIP_TRAMPOLINE_CODE(pc) 0
150#endif
151
152/* Dynamic function trampolines are similar to solib trampolines in that they
153 are between the caller and the callee. The difference is that when you
154 enter a dynamic trampoline, you can't determine the callee's address. Some
155 (usually complex) code needs to run in the dynamic trampoline to figure out
156 the callee's address. This macro is usually called twice. First, when we
157 enter the trampoline (looks like a normal function call at that point). It
158 should return the PC of a point within the trampoline where the callee's
159 address is known. Second, when we hit the breakpoint, this routine returns
160 the callee's address. At that point, things proceed as per a step resume
161 breakpoint. */
162
163#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
164#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
165#endif
166
167/* On SVR4 based systems, determining the callee's address is exceedingly
168 difficult and depends on the implementation of the run time loader.
169 If we are stepping at the source level, we single step until we exit
170 the run time loader code and reach the callee's address. */
171
172#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
173#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
174#endif
175
176/* For SVR4 shared libraries, each call goes through a small piece of
177 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
178 to nonzero if we are current stopped in one of these. */
179
180#ifndef IN_SOLIB_CALL_TRAMPOLINE
181#define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
182#endif
183
184/* In some shared library schemes, the return path from a shared library
185 call may need to go through a trampoline too. */
186
187#ifndef IN_SOLIB_RETURN_TRAMPOLINE
188#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
189#endif
190
191/* This function returns TRUE if pc is the address of an instruction
192 that lies within the dynamic linker (such as the event hook, or the
193 dld itself).
194
195 This function must be used only when a dynamic linker event has
196 been caught, and the inferior is being stepped out of the hook, or
197 undefined results are guaranteed. */
198
199#ifndef SOLIB_IN_DYNAMIC_LINKER
200#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
201#endif
202
203/* On MIPS16, a function that returns a floating point value may call
204 a library helper function to copy the return value to a floating point
205 register. The IGNORE_HELPER_CALL macro returns non-zero if we
206 should ignore (i.e. step over) this function call. */
207#ifndef IGNORE_HELPER_CALL
208#define IGNORE_HELPER_CALL(pc) 0
209#endif
210
211/* On some systems, the PC may be left pointing at an instruction that won't
212 actually be executed. This is usually indicated by a bit in the PSW. If
213 we find ourselves in such a state, then we step the target beyond the
214 nullified instruction before returning control to the user so as to avoid
215 confusion. */
216
217#ifndef INSTRUCTION_NULLIFIED
218#define INSTRUCTION_NULLIFIED 0
219#endif
220
7a292a7a
SS
221/* Convert the #defines into values. This is temporary until wfi control
222 flow is completely sorted out. */
223
224#ifndef HAVE_STEPPABLE_WATCHPOINT
225#define HAVE_STEPPABLE_WATCHPOINT 0
226#else
227#undef HAVE_STEPPABLE_WATCHPOINT
228#define HAVE_STEPPABLE_WATCHPOINT 1
229#endif
230
231#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
232#define HAVE_NONSTEPPABLE_WATCHPOINT 0
233#else
234#undef HAVE_NONSTEPPABLE_WATCHPOINT
235#define HAVE_NONSTEPPABLE_WATCHPOINT 1
236#endif
237
238#ifndef HAVE_CONTINUABLE_WATCHPOINT
239#define HAVE_CONTINUABLE_WATCHPOINT 0
240#else
241#undef HAVE_CONTINUABLE_WATCHPOINT
242#define HAVE_CONTINUABLE_WATCHPOINT 1
243#endif
244
c906108c
SS
245/* Tables of how to react to signals; the user sets them. */
246
247static unsigned char *signal_stop;
248static unsigned char *signal_print;
249static unsigned char *signal_program;
250
251#define SET_SIGS(nsigs,sigs,flags) \
252 do { \
253 int signum = (nsigs); \
254 while (signum-- > 0) \
255 if ((sigs)[signum]) \
256 (flags)[signum] = 1; \
257 } while (0)
258
259#define UNSET_SIGS(nsigs,sigs,flags) \
260 do { \
261 int signum = (nsigs); \
262 while (signum-- > 0) \
263 if ((sigs)[signum]) \
264 (flags)[signum] = 0; \
265 } while (0)
266
267
268/* Command list pointer for the "stop" placeholder. */
269
270static struct cmd_list_element *stop_command;
271
272/* Nonzero if breakpoints are now inserted in the inferior. */
273
274static int breakpoints_inserted;
275
276/* Function inferior was in as of last step command. */
277
278static struct symbol *step_start_function;
279
280/* Nonzero if we are expecting a trace trap and should proceed from it. */
281
282static int trap_expected;
283
284#ifdef SOLIB_ADD
285/* Nonzero if we want to give control to the user when we're notified
286 of shared library events by the dynamic linker. */
287static int stop_on_solib_events;
288#endif
289
290#ifdef HP_OS_BUG
291/* Nonzero if the next time we try to continue the inferior, it will
292 step one instruction and generate a spurious trace trap.
293 This is used to compensate for a bug in HP-UX. */
294
295static int trap_expected_after_continue;
296#endif
297
298/* Nonzero means expecting a trace trap
299 and should stop the inferior and return silently when it happens. */
300
301int stop_after_trap;
302
303/* Nonzero means expecting a trap and caller will handle it themselves.
304 It is used after attach, due to attaching to a process;
305 when running in the shell before the child program has been exec'd;
306 and when running some kinds of remote stuff (FIXME?). */
307
308int stop_soon_quietly;
309
310/* Nonzero if proceed is being used for a "finish" command or a similar
311 situation when stop_registers should be saved. */
312
313int proceed_to_finish;
314
315/* Save register contents here when about to pop a stack dummy frame,
316 if-and-only-if proceed_to_finish is set.
317 Thus this contains the return value from the called function (assuming
318 values are returned in a register). */
319
7a292a7a 320char *stop_registers;
c906108c
SS
321
322/* Nonzero if program stopped due to error trying to insert breakpoints. */
323
324static int breakpoints_failed;
325
326/* Nonzero after stop if current stack frame should be printed. */
327
328static int stop_print_frame;
329
330static struct breakpoint *step_resume_breakpoint = NULL;
331static struct breakpoint *through_sigtramp_breakpoint = NULL;
332
333/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
334 interactions with an inferior that is running a kernel function
335 (aka, a system call or "syscall"). wait_for_inferior therefore
336 may have a need to know when the inferior is in a syscall. This
337 is a count of the number of inferior threads which are known to
338 currently be running in a syscall. */
339static int number_of_threads_in_syscalls;
340
341/* This is used to remember when a fork, vfork or exec event
342 was caught by a catchpoint, and thus the event is to be
343 followed at the next resume of the inferior, and not
344 immediately. */
345static struct
346 {
347 enum target_waitkind kind;
348 struct
349 {
350 int parent_pid;
351 int saw_parent_fork;
352 int child_pid;
353 int saw_child_fork;
354 int saw_child_exec;
355 }
356 fork_event;
357 char *execd_pathname;
358 }
359pending_follow;
360
361/* Some platforms don't allow us to do anything meaningful with a
362 vforked child until it has exec'd. Vforked processes on such
363 platforms can only be followed after they've exec'd.
364
365 When this is set to 0, a vfork can be immediately followed,
366 and an exec can be followed merely as an exec. When this is
367 set to 1, a vfork event has been seen, but cannot be followed
368 until the exec is seen.
369
370 (In the latter case, inferior_pid is still the parent of the
371 vfork, and pending_follow.fork_event.child_pid is the child. The
372 appropriate process is followed, according to the setting of
373 follow-fork-mode.) */
374static int follow_vfork_when_exec;
375
376static char *follow_fork_mode_kind_names[] =
377{
378/* ??rehrauer: The "both" option is broken, by what may be a 10.20
379 kernel problem. It's also not terribly useful without a GUI to
380 help the user drive two debuggers. So for now, I'm disabling
381 the "both" option.
382 "parent", "child", "both", "ask" };
383 */
384 "parent", "child", "ask"};
385
386static char *follow_fork_mode_string = NULL;
387\f
388
c906108c
SS
389static void
390follow_inferior_fork (parent_pid, child_pid, has_forked, has_vforked)
391 int parent_pid;
392 int child_pid;
393 int has_forked;
394 int has_vforked;
395{
396 int followed_parent = 0;
397 int followed_child = 0;
398 int ima_clone = 0;
399
400 /* Which process did the user want us to follow? */
401 char *follow_mode =
402 savestring (follow_fork_mode_string, strlen (follow_fork_mode_string));
403
404 /* Or, did the user not know, and want us to ask? */
405 if (STREQ (follow_fork_mode_string, "ask"))
406 {
407 char requested_mode[100];
408
409 free (follow_mode);
410 error ("\"ask\" mode NYI");
411 follow_mode = savestring (requested_mode, strlen (requested_mode));
412 }
413
414 /* If we're to be following the parent, then detach from child_pid.
415 We're already following the parent, so need do nothing explicit
416 for it. */
417 if (STREQ (follow_mode, "parent"))
418 {
419 followed_parent = 1;
420
421 /* We're already attached to the parent, by default. */
422
423 /* Before detaching from the child, remove all breakpoints from
424 it. (This won't actually modify the breakpoint list, but will
425 physically remove the breakpoints from the child.) */
426 if (!has_vforked || !follow_vfork_when_exec)
427 {
428 detach_breakpoints (child_pid);
7a292a7a 429#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 430 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 431#endif
c906108c
SS
432 }
433
434 /* Detach from the child. */
435 dont_repeat ();
436
437 target_require_detach (child_pid, "", 1);
438 }
439
440 /* If we're to be following the child, then attach to it, detach
441 from inferior_pid, and set inferior_pid to child_pid. */
442 else if (STREQ (follow_mode, "child"))
443 {
444 char child_pid_spelling[100]; /* Arbitrary length. */
445
446 followed_child = 1;
447
448 /* Before detaching from the parent, detach all breakpoints from
449 the child. But only if we're forking, or if we follow vforks
450 as soon as they happen. (If we're following vforks only when
451 the child has exec'd, then it's very wrong to try to write
452 back the "shadow contents" of inserted breakpoints now -- they
453 belong to the child's pre-exec'd a.out.) */
454 if (!has_vforked || !follow_vfork_when_exec)
455 {
456 detach_breakpoints (child_pid);
457 }
458
459 /* Before detaching from the parent, remove all breakpoints from it. */
460 remove_breakpoints ();
461
462 /* Also reset the solib inferior hook from the parent. */
7a292a7a 463#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 464 SOLIB_REMOVE_INFERIOR_HOOK (inferior_pid);
7a292a7a 465#endif
c906108c
SS
466
467 /* Detach from the parent. */
468 dont_repeat ();
469 target_detach (NULL, 1);
470
471 /* Attach to the child. */
472 inferior_pid = child_pid;
473 sprintf (child_pid_spelling, "%d", child_pid);
474 dont_repeat ();
475
476 target_require_attach (child_pid_spelling, 1);
477
478 /* Was there a step_resume breakpoint? (There was if the user
479 did a "next" at the fork() call.) If so, explicitly reset its
480 thread number.
481
482 step_resumes are a form of bp that are made to be per-thread.
483 Since we created the step_resume bp when the parent process
484 was being debugged, and now are switching to the child process,
485 from the breakpoint package's viewpoint, that's a switch of
486 "threads". We must update the bp's notion of which thread
487 it is for, or it'll be ignored when it triggers... */
488 if (step_resume_breakpoint &&
489 (!has_vforked || !follow_vfork_when_exec))
490 breakpoint_re_set_thread (step_resume_breakpoint);
491
492 /* Reinsert all breakpoints in the child. (The user may've set
493 breakpoints after catching the fork, in which case those
494 actually didn't get set in the child, but only in the parent.) */
495 if (!has_vforked || !follow_vfork_when_exec)
496 {
497 breakpoint_re_set ();
498 insert_breakpoints ();
499 }
500 }
501
502 /* If we're to be following both parent and child, then fork ourselves,
503 and attach the debugger clone to the child. */
504 else if (STREQ (follow_mode, "both"))
505 {
506 char pid_suffix[100]; /* Arbitrary length. */
507
508 /* Clone ourselves to follow the child. This is the end of our
509 involvement with child_pid; our clone will take it from here... */
510 dont_repeat ();
511 target_clone_and_follow_inferior (child_pid, &followed_child);
512 followed_parent = !followed_child;
513
514 /* We continue to follow the parent. To help distinguish the two
515 debuggers, though, both we and our clone will reset our prompts. */
516 sprintf (pid_suffix, "[%d] ", inferior_pid);
517 set_prompt (strcat (get_prompt (), pid_suffix));
518 }
519
520 /* The parent and child of a vfork share the same address space.
521 Also, on some targets the order in which vfork and exec events
522 are received for parent in child requires some delicate handling
523 of the events.
524
525 For instance, on ptrace-based HPUX we receive the child's vfork
526 event first, at which time the parent has been suspended by the
527 OS and is essentially untouchable until the child's exit or second
528 exec event arrives. At that time, the parent's vfork event is
529 delivered to us, and that's when we see and decide how to follow
530 the vfork. But to get to that point, we must continue the child
531 until it execs or exits. To do that smoothly, all breakpoints
532 must be removed from the child, in case there are any set between
533 the vfork() and exec() calls. But removing them from the child
534 also removes them from the parent, due to the shared-address-space
535 nature of a vfork'd parent and child. On HPUX, therefore, we must
536 take care to restore the bp's to the parent before we continue it.
537 Else, it's likely that we may not stop in the expected place. (The
538 worst scenario is when the user tries to step over a vfork() call;
539 the step-resume bp must be restored for the step to properly stop
540 in the parent after the call completes!)
541
542 Sequence of events, as reported to gdb from HPUX:
543
544 Parent Child Action for gdb to take
545 -------------------------------------------------------
546 1 VFORK Continue child
547 2 EXEC
548 3 EXEC or EXIT
549 4 VFORK */
550 if (has_vforked)
551 {
552 target_post_follow_vfork (parent_pid,
553 followed_parent,
554 child_pid,
555 followed_child);
556 }
557
558 pending_follow.fork_event.saw_parent_fork = 0;
559 pending_follow.fork_event.saw_child_fork = 0;
560
561 free (follow_mode);
562}
563
564static void
565follow_fork (parent_pid, child_pid)
566 int parent_pid;
567 int child_pid;
568{
569 follow_inferior_fork (parent_pid, child_pid, 1, 0);
570}
571
572
573/* Forward declaration. */
574static void follow_exec PARAMS ((int, char *));
575
576static void
577follow_vfork (parent_pid, child_pid)
578 int parent_pid;
579 int child_pid;
580{
581 follow_inferior_fork (parent_pid, child_pid, 0, 1);
582
583 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
584 if (pending_follow.fork_event.saw_child_exec && (inferior_pid == child_pid))
585 {
586 pending_follow.fork_event.saw_child_exec = 0;
587 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
588 follow_exec (inferior_pid, pending_follow.execd_pathname);
589 free (pending_follow.execd_pathname);
590 }
591}
c906108c
SS
592
593static void
594follow_exec (pid, execd_pathname)
595 int pid;
596 char *execd_pathname;
597{
c906108c 598 int saved_pid = pid;
7a292a7a
SS
599 struct target_ops *tgt;
600
601 if (!may_follow_exec)
602 return;
c906108c
SS
603
604 /* Did this exec() follow a vfork()? If so, we must follow the
605 vfork now too. Do it before following the exec. */
606 if (follow_vfork_when_exec &&
607 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
608 {
609 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
610 follow_vfork (inferior_pid, pending_follow.fork_event.child_pid);
611 follow_vfork_when_exec = 0;
612 saved_pid = inferior_pid;
613
614 /* Did we follow the parent? If so, we're done. If we followed
615 the child then we must also follow its exec(). */
616 if (inferior_pid == pending_follow.fork_event.parent_pid)
617 return;
618 }
619
620 /* This is an exec event that we actually wish to pay attention to.
621 Refresh our symbol table to the newly exec'd program, remove any
622 momentary bp's, etc.
623
624 If there are breakpoints, they aren't really inserted now,
625 since the exec() transformed our inferior into a fresh set
626 of instructions.
627
628 We want to preserve symbolic breakpoints on the list, since
629 we have hopes that they can be reset after the new a.out's
630 symbol table is read.
631
632 However, any "raw" breakpoints must be removed from the list
633 (e.g., the solib bp's), since their address is probably invalid
634 now.
635
636 And, we DON'T want to call delete_breakpoints() here, since
637 that may write the bp's "shadow contents" (the instruction
638 value that was overwritten witha TRAP instruction). Since
639 we now have a new a.out, those shadow contents aren't valid. */
640 update_breakpoints_after_exec ();
641
642 /* If there was one, it's gone now. We cannot truly step-to-next
643 statement through an exec(). */
644 step_resume_breakpoint = NULL;
645 step_range_start = 0;
646 step_range_end = 0;
647
648 /* If there was one, it's gone now. */
649 through_sigtramp_breakpoint = NULL;
650
651 /* What is this a.out's name? */
652 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
653
654 /* We've followed the inferior through an exec. Therefore, the
655 inferior has essentially been killed & reborn. */
7a292a7a
SS
656
657 /* First collect the run target in effect. */
658 tgt = find_run_target ();
659 /* If we can't find one, things are in a very strange state... */
660 if (tgt == NULL)
661 error ("Could find run target to save before following exec");
662
c906108c
SS
663 gdb_flush (gdb_stdout);
664 target_mourn_inferior ();
7a292a7a
SS
665 inferior_pid = saved_pid; /* Because mourn_inferior resets inferior_pid. */
666 push_target (tgt);
c906108c
SS
667
668 /* That a.out is now the one to use. */
669 exec_file_attach (execd_pathname, 0);
670
671 /* And also is where symbols can be found. */
672 symbol_file_command (execd_pathname, 0);
673
674 /* Reset the shared library package. This ensures that we get
675 a shlib event when the child reaches "_start", at which point
676 the dld will have had a chance to initialize the child. */
7a292a7a 677#if defined(SOLIB_RESTART)
c906108c 678 SOLIB_RESTART ();
7a292a7a
SS
679#endif
680#ifdef SOLIB_CREATE_INFERIOR_HOOK
c906108c 681 SOLIB_CREATE_INFERIOR_HOOK (inferior_pid);
7a292a7a 682#endif
c906108c
SS
683
684 /* Reinsert all breakpoints. (Those which were symbolic have
685 been reset to the proper address in the new a.out, thanks
686 to symbol_file_command...) */
687 insert_breakpoints ();
688
689 /* The next resume of this inferior should bring it to the shlib
690 startup breakpoints. (If the user had also set bp's on
691 "main" from the old (parent) process, then they'll auto-
692 matically get reset there in the new process.) */
c906108c
SS
693}
694
695/* Non-zero if we just simulating a single-step. This is needed
696 because we cannot remove the breakpoints in the inferior process
697 until after the `wait' in `wait_for_inferior'. */
698static int singlestep_breakpoints_inserted_p = 0;
699\f
700
701/* Things to clean up if we QUIT out of resume (). */
702/* ARGSUSED */
703static void
704resume_cleanups (arg)
705 int arg;
706{
707 normal_stop ();
708}
709
710static char schedlock_off[] = "off";
711static char schedlock_on[] = "on";
712static char schedlock_step[] = "step";
713static char *scheduler_mode = schedlock_off;
714static char *scheduler_enums[] =
715{schedlock_off, schedlock_on, schedlock_step};
716
717static void
718set_schedlock_func (args, from_tty, c)
719 char *args;
720 int from_tty;
721 struct cmd_list_element *c;
722{
723 if (c->type == set_cmd)
724 if (!target_can_lock_scheduler)
725 {
726 scheduler_mode = schedlock_off;
727 error ("Target '%s' cannot support this command.",
728 target_shortname);
729 }
730}
731
732
733/* Resume the inferior, but allow a QUIT. This is useful if the user
734 wants to interrupt some lengthy single-stepping operation
735 (for child processes, the SIGINT goes to the inferior, and so
736 we get a SIGINT random_signal, but for remote debugging and perhaps
737 other targets, that's not true).
738
739 STEP nonzero if we should step (zero to continue instead).
740 SIG is the signal to give the inferior (zero for none). */
741void
742resume (step, sig)
743 int step;
744 enum target_signal sig;
745{
746 int should_resume = 1;
747 struct cleanup *old_cleanups = make_cleanup ((make_cleanup_func)
748 resume_cleanups, 0);
749 QUIT;
750
751#ifdef CANNOT_STEP_BREAKPOINT
752 /* Most targets can step a breakpoint instruction, thus executing it
753 normally. But if this one cannot, just continue and we will hit
754 it anyway. */
755 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
756 step = 0;
757#endif
758
759 if (SOFTWARE_SINGLE_STEP_P && step)
760 {
761 /* Do it the hard way, w/temp breakpoints */
762 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints*/ );
763 /* ...and don't ask hardware to do it. */
764 step = 0;
765 /* and do not pull these breakpoints until after a `wait' in
766 `wait_for_inferior' */
767 singlestep_breakpoints_inserted_p = 1;
768 }
769
770 /* Handle any optimized stores to the inferior NOW... */
771#ifdef DO_DEFERRED_STORES
772 DO_DEFERRED_STORES;
773#endif
774
c906108c
SS
775 /* If there were any forks/vforks/execs that were caught and are
776 now to be followed, then do so. */
777 switch (pending_follow.kind)
778 {
779 case (TARGET_WAITKIND_FORKED):
780 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
781 follow_fork (inferior_pid, pending_follow.fork_event.child_pid);
782 break;
783
784 case (TARGET_WAITKIND_VFORKED):
785 {
786 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
787
788 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
789 follow_vfork (inferior_pid, pending_follow.fork_event.child_pid);
790
791 /* Did we follow the child, but not yet see the child's exec event?
792 If so, then it actually ought to be waiting for us; we respond to
793 parent vfork events. We don't actually want to resume the child
794 in this situation; we want to just get its exec event. */
795 if (!saw_child_exec &&
796 (inferior_pid == pending_follow.fork_event.child_pid))
797 should_resume = 0;
798 }
799 break;
800
801 case (TARGET_WAITKIND_EXECD):
802 /* If we saw a vfork event but couldn't follow it until we saw
803 an exec, then now might be the time! */
804 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
805 /* follow_exec is called as soon as the exec event is seen. */
806 break;
807
808 default:
809 break;
810 }
c906108c
SS
811
812 /* Install inferior's terminal modes. */
813 target_terminal_inferior ();
814
815 if (should_resume)
816 {
7a292a7a 817 if (use_thread_step_needed && thread_step_needed)
c906108c
SS
818 {
819 /* We stopped on a BPT instruction;
820 don't continue other threads and
821 just step this thread. */
822 thread_step_needed = 0;
823
824 if (!breakpoint_here_p (read_pc ()))
825 {
826 /* Breakpoint deleted: ok to do regular resume
827 where all the threads either step or continue. */
828 target_resume (-1, step, sig);
829 }
830 else
831 {
832 if (!step)
833 {
834 warning ("Internal error, changing continue to step.");
835 remove_breakpoints ();
836 breakpoints_inserted = 0;
837 trap_expected = 1;
838 step = 1;
839 }
840
841 target_resume (inferior_pid, step, sig);
842 }
843 }
844 else
c906108c
SS
845 {
846 /* Vanilla resume. */
847
848 if ((scheduler_mode == schedlock_on) ||
849 (scheduler_mode == schedlock_step && step != 0))
850 target_resume (inferior_pid, step, sig);
851 else
852 target_resume (-1, step, sig);
853 }
854 }
855
856 discard_cleanups (old_cleanups);
857}
858\f
859
860/* Clear out all variables saying what to do when inferior is continued.
861 First do this, then set the ones you want, then call `proceed'. */
862
863void
864clear_proceed_status ()
865{
866 trap_expected = 0;
867 step_range_start = 0;
868 step_range_end = 0;
869 step_frame_address = 0;
870 step_over_calls = -1;
871 stop_after_trap = 0;
872 stop_soon_quietly = 0;
873 proceed_to_finish = 0;
874 breakpoint_proceeded = 1; /* We're about to proceed... */
875
876 /* Discard any remaining commands or status from previous stop. */
877 bpstat_clear (&stop_bpstat);
878}
879
880/* Basic routine for continuing the program in various fashions.
881
882 ADDR is the address to resume at, or -1 for resume where stopped.
883 SIGGNAL is the signal to give it, or 0 for none,
884 or -1 for act according to how it stopped.
885 STEP is nonzero if should trap after one instruction.
886 -1 means return after that and print nothing.
887 You should probably set various step_... variables
888 before calling here, if you are stepping.
889
890 You should call clear_proceed_status before calling proceed. */
891
892void
893proceed (addr, siggnal, step)
894 CORE_ADDR addr;
895 enum target_signal siggnal;
896 int step;
897{
898 int oneproc = 0;
899
900 if (step > 0)
901 step_start_function = find_pc_function (read_pc ());
902 if (step < 0)
903 stop_after_trap = 1;
904
905 if (addr == (CORE_ADDR) - 1)
906 {
907 /* If there is a breakpoint at the address we will resume at,
908 step one instruction before inserting breakpoints
909 so that we do not stop right away (and report a second
910 hit at this breakpoint). */
911
912 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
913 oneproc = 1;
914
915#ifndef STEP_SKIPS_DELAY
916#define STEP_SKIPS_DELAY(pc) (0)
917#define STEP_SKIPS_DELAY_P (0)
918#endif
919 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
920 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
921 is slow (it needs to read memory from the target). */
922 if (STEP_SKIPS_DELAY_P
923 && breakpoint_here_p (read_pc () + 4)
924 && STEP_SKIPS_DELAY (read_pc ()))
925 oneproc = 1;
926 }
927 else
928 {
929 write_pc (addr);
930
931 /* New address; we don't need to single-step a thread
932 over a breakpoint we just hit, 'cause we aren't
933 continuing from there.
934
935 It's not worth worrying about the case where a user
936 asks for a "jump" at the current PC--if they get the
937 hiccup of re-hiting a hit breakpoint, what else do
938 they expect? */
939 thread_step_needed = 0;
940 }
941
942#ifdef PREPARE_TO_PROCEED
943 /* In a multi-threaded task we may select another thread
944 and then continue or step.
945
946 But if the old thread was stopped at a breakpoint, it
947 will immediately cause another breakpoint stop without
948 any execution (i.e. it will report a breakpoint hit
949 incorrectly). So we must step over it first.
950
951 PREPARE_TO_PROCEED checks the current thread against the thread
952 that reported the most recent event. If a step-over is required
953 it returns TRUE and sets the current thread to the old thread. */
9e086581 954 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
955 {
956 oneproc = 1;
957 thread_step_needed = 1;
958 }
959
960#endif /* PREPARE_TO_PROCEED */
961
962#ifdef HP_OS_BUG
963 if (trap_expected_after_continue)
964 {
965 /* If (step == 0), a trap will be automatically generated after
966 the first instruction is executed. Force step one
967 instruction to clear this condition. This should not occur
968 if step is nonzero, but it is harmless in that case. */
969 oneproc = 1;
970 trap_expected_after_continue = 0;
971 }
972#endif /* HP_OS_BUG */
973
974 if (oneproc)
975 /* We will get a trace trap after one instruction.
976 Continue it automatically and insert breakpoints then. */
977 trap_expected = 1;
978 else
979 {
980 int temp = insert_breakpoints ();
981 if (temp)
982 {
983 print_sys_errmsg ("ptrace", temp);
984 error ("Cannot insert breakpoints.\n\
985The same program may be running in another process.");
986 }
987
988 breakpoints_inserted = 1;
989 }
990
991 if (siggnal != TARGET_SIGNAL_DEFAULT)
992 stop_signal = siggnal;
993 /* If this signal should not be seen by program,
994 give it zero. Used for debugging signals. */
995 else if (!signal_program[stop_signal])
996 stop_signal = TARGET_SIGNAL_0;
997
998 annotate_starting ();
999
1000 /* Make sure that output from GDB appears before output from the
1001 inferior. */
1002 gdb_flush (gdb_stdout);
1003
1004 /* Resume inferior. */
1005 resume (oneproc || step || bpstat_should_step (), stop_signal);
1006
1007 /* Wait for it to stop (if not standalone)
1008 and in any case decode why it stopped, and act accordingly. */
1009
1010 wait_for_inferior ();
1011 normal_stop ();
1012}
1013
1014/* Record the pc and sp of the program the last time it stopped.
1015 These are just used internally by wait_for_inferior, but need
1016 to be preserved over calls to it and cleared when the inferior
1017 is started. */
1018static CORE_ADDR prev_pc;
1019static CORE_ADDR prev_func_start;
1020static char *prev_func_name;
1021\f
1022
1023/* Start remote-debugging of a machine over a serial link. */
1024
1025void
1026start_remote ()
1027{
1028 init_thread_list ();
1029 init_wait_for_inferior ();
1030 stop_soon_quietly = 1;
1031 trap_expected = 0;
1032 wait_for_inferior ();
1033 normal_stop ();
1034}
1035
1036/* Initialize static vars when a new inferior begins. */
1037
1038void
1039init_wait_for_inferior ()
1040{
1041 /* These are meaningless until the first time through wait_for_inferior. */
1042 prev_pc = 0;
1043 prev_func_start = 0;
1044 prev_func_name = NULL;
1045
1046#ifdef HP_OS_BUG
1047 trap_expected_after_continue = 0;
1048#endif
1049 breakpoints_inserted = 0;
1050 breakpoint_init_inferior (inf_starting);
1051
1052 /* Don't confuse first call to proceed(). */
1053 stop_signal = TARGET_SIGNAL_0;
1054
1055 /* The first resume is not following a fork/vfork/exec. */
1056 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1057 pending_follow.fork_event.saw_parent_fork = 0;
1058 pending_follow.fork_event.saw_child_fork = 0;
1059 pending_follow.fork_event.saw_child_exec = 0;
1060
1061 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1062 number_of_threads_in_syscalls = 0;
1063
1064 clear_proceed_status ();
1065}
1066
1067static void
1068delete_breakpoint_current_contents (arg)
1069 PTR arg;
1070{
1071 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1072 if (*breakpointp != NULL)
1073 {
1074 delete_breakpoint (*breakpointp);
1075 *breakpointp = NULL;
1076 }
1077}
1078\f
b83266a0
SS
1079/* This enum encodes possible reasons for doing a target_wait, so that
1080 wfi can call target_wait in one place. (Ultimately the call will be
1081 moved out of the infinite loop entirely.) */
1082
cd0fc7c3
SS
1083enum infwait_states {
1084 infwait_normal_state,
1085 infwait_thread_hop_state,
1086 infwait_nullified_state,
1087 infwait_nonstep_watch_state
b83266a0
SS
1088};
1089
cd0fc7c3
SS
1090/* This structure contains what used to be local variables in
1091 wait_for_inferior. Probably many of them can return to being
1092 locals in handle_inferior_event. */
1093
1094struct execution_control_state {
1095 struct target_waitstatus ws;
1096 struct target_waitstatus *wp;
c906108c 1097 int another_trap;
cd0fc7c3 1098 int random_signal;
c906108c
SS
1099 CORE_ADDR stop_func_start;
1100 CORE_ADDR stop_func_end;
1101 char *stop_func_name;
c906108c 1102 struct symtab_and_line sal;
cd0fc7c3 1103 int remove_breakpoints_on_following_step;
c906108c
SS
1104 int current_line;
1105 struct symtab *current_symtab;
cd0fc7c3 1106 int handling_longjmp; /* FIXME */
c906108c
SS
1107 int pid;
1108 int saved_inferior_pid;
cd0fc7c3
SS
1109 int update_step_sp;
1110 int stepping_through_solib_after_catch;
1111 bpstat stepping_through_solib_catchpoints;
1112 int enable_hw_watchpoints_after_wait;
1113 int stepping_through_sigtramp;
c906108c 1114 int new_thread_event;
b83266a0 1115 struct target_waitstatus tmpstatus;
cd0fc7c3 1116 enum infwait_states infwait_state;
b83266a0 1117 int waiton_pid;
cd0fc7c3
SS
1118 int wait_some_more;
1119};
1120
1121void init_execution_control_state PARAMS ((struct execution_control_state *ecs));
1122
1123void handle_inferior_event PARAMS ((struct execution_control_state *ecs));
1124
1125/* Wait for control to return from inferior to debugger.
1126 If inferior gets a signal, we may decide to start it up again
1127 instead of returning. That is why there is a loop in this function.
1128 When this function actually returns it means the inferior
1129 should be left stopped and GDB should read more commands. */
1130
1131void
1132wait_for_inferior ()
1133{
1134 struct cleanup *old_cleanups;
1135 struct execution_control_state ecss;
1136 struct execution_control_state *ecs;
c906108c
SS
1137
1138 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
1139 &step_resume_breakpoint);
1140 make_cleanup (delete_breakpoint_current_contents,
1141 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1142
1143 /* wfi still stays in a loop, so it's OK just to take the address of
1144 a local to get the ecs pointer. */
1145 ecs = &ecss;
1146
1147 /* Fill in with reasonable starting values. */
1148 init_execution_control_state (ecs);
1149
c906108c
SS
1150 thread_step_needed = 0;
1151
c906108c 1152 /* We'll update this if & when we switch to a new thread. */
7a292a7a
SS
1153 if (may_switch_from_inferior_pid)
1154 switched_from_inferior_pid = inferior_pid;
c906108c 1155
cd0fc7c3
SS
1156 overlay_cache_invalid = 1;
1157
1158 /* We have to invalidate the registers BEFORE calling target_wait
1159 because they can be loaded from the target while in target_wait.
1160 This makes remote debugging a bit more efficient for those
1161 targets that provide critical registers as part of their normal
1162 status mechanism. */
1163
1164 registers_changed ();
b83266a0 1165
c906108c
SS
1166 while (1)
1167 {
cd0fc7c3
SS
1168 if (target_wait_hook)
1169 ecs->pid = target_wait_hook (ecs->waiton_pid, ecs->wp);
1170 else
1171 ecs->pid = target_wait (ecs->waiton_pid, ecs->wp);
c906108c 1172
cd0fc7c3
SS
1173 /* Now figure out what to do with the result of the result. */
1174 handle_inferior_event (ecs);
c906108c 1175
cd0fc7c3
SS
1176 if (!ecs->wait_some_more)
1177 break;
1178 }
1179 do_cleanups (old_cleanups);
1180}
c906108c 1181
cd0fc7c3
SS
1182/* Prepare an execution control state for looping through a
1183 wait_for_inferior-type loop. */
1184
1185void
1186init_execution_control_state (ecs)
1187 struct execution_control_state *ecs;
1188{
1189 ecs->random_signal = 0;
1190 ecs->remove_breakpoints_on_following_step = 0;
1191 ecs->handling_longjmp = 0; /* FIXME */
1192 ecs->update_step_sp = 0;
1193 ecs->stepping_through_solib_after_catch = 0;
1194 ecs->stepping_through_solib_catchpoints = NULL;
1195 ecs->enable_hw_watchpoints_after_wait = 0;
1196 ecs->stepping_through_sigtramp = 0;
1197 ecs->sal = find_pc_line (prev_pc, 0);
1198 ecs->current_line = ecs->sal.line;
1199 ecs->current_symtab = ecs->sal.symtab;
1200 ecs->infwait_state = infwait_normal_state;
1201 ecs->waiton_pid = -1;
1202 ecs->wp = &(ecs->ws);
1203}
1204
1205/* Given an execution control state that has been freshly filled in
1206 by an event from the inferior, figure out what it means and take
1207 appropriate action. */
c906108c 1208
cd0fc7c3
SS
1209void
1210handle_inferior_event (ecs)
1211 struct execution_control_state *ecs;
1212{
1213 CORE_ADDR tmp;
1214 int stepped_after_stopped_by_watchpoint;
1215
1216 /* Keep this extra brace for now, minimizes diffs. */
1217 {
1218 switch (ecs->infwait_state)
c906108c 1219 {
cd0fc7c3 1220 case infwait_normal_state:
b83266a0
SS
1221 /* Since we've done a wait, we have a new event. Don't
1222 carry over any expectations about needing to step over a
1223 breakpoint. */
1224 thread_step_needed = 0;
c906108c 1225
b83266a0
SS
1226 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1227 is serviced in this loop, below. */
cd0fc7c3 1228 if (ecs->enable_hw_watchpoints_after_wait)
b83266a0
SS
1229 {
1230 TARGET_ENABLE_HW_WATCHPOINTS (inferior_pid);
cd0fc7c3 1231 ecs->enable_hw_watchpoints_after_wait = 0;
b83266a0
SS
1232 }
1233 stepped_after_stopped_by_watchpoint = 0;
1234 break;
1235
cd0fc7c3 1236 case infwait_thread_hop_state:
b83266a0 1237 insert_breakpoints ();
c906108c 1238
b83266a0
SS
1239 /* We need to restart all the threads now,
1240 * unles we're running in scheduler-locked mode.
cd0fc7c3 1241 * FIXME: shouldn't we look at currently_stepping ()?
b83266a0
SS
1242 */
1243 if (scheduler_mode == schedlock_on)
cd0fc7c3 1244 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
b83266a0
SS
1245 else
1246 target_resume (-1, 0, TARGET_SIGNAL_0);
cd0fc7c3
SS
1247 ecs->infwait_state = infwait_normal_state;
1248 goto wfi_continue;
c906108c 1249
cd0fc7c3 1250 case infwait_nullified_state:
b83266a0
SS
1251 break;
1252
cd0fc7c3 1253 case infwait_nonstep_watch_state:
b83266a0
SS
1254 insert_breakpoints ();
1255
1256 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1257 handle things like signals arriving and other things happening
1258 in combination correctly? */
1259 stepped_after_stopped_by_watchpoint = 1;
1260 break;
1261 }
cd0fc7c3 1262 ecs->infwait_state = infwait_normal_state;
c906108c
SS
1263
1264 flush_cached_frames ();
1265
1266 /* If it's a new process, add it to the thread database */
1267
cd0fc7c3 1268 ecs->new_thread_event = ((ecs->pid != inferior_pid) && !in_thread_list (ecs->pid));
c906108c 1269
cd0fc7c3
SS
1270 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1271 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1272 && ecs->new_thread_event)
c906108c 1273 {
cd0fc7c3 1274 add_thread (ecs->pid);
c906108c 1275
cd0fc7c3 1276 printf_filtered ("[New %s]\n", target_pid_or_tid_to_str (ecs->pid));
c906108c
SS
1277
1278#if 0
1279 /* NOTE: This block is ONLY meant to be invoked in case of a
1280 "thread creation event"! If it is invoked for any other
1281 sort of event (such as a new thread landing on a breakpoint),
1282 the event will be discarded, which is almost certainly
1283 a bad thing!
1284
1285 To avoid this, the low-level module (eg. target_wait)
1286 should call in_thread_list and add_thread, so that the
1287 new thread is known by the time we get here. */
1288
1289 /* We may want to consider not doing a resume here in order
1290 to give the user a chance to play with the new thread.
1291 It might be good to make that a user-settable option. */
1292
1293 /* At this point, all threads are stopped (happens
1294 automatically in either the OS or the native code).
1295 Therefore we need to continue all threads in order to
1296 make progress. */
1297
1298 target_resume (-1, 0, TARGET_SIGNAL_0);
cd0fc7c3 1299 goto wfi_continue;
c906108c
SS
1300#endif
1301 }
1302
cd0fc7c3 1303 switch (ecs->ws.kind)
c906108c
SS
1304 {
1305 case TARGET_WAITKIND_LOADED:
1306 /* Ignore gracefully during startup of the inferior, as it
1307 might be the shell which has just loaded some objects,
1308 otherwise add the symbols for the newly loaded objects. */
1309#ifdef SOLIB_ADD
1310 if (!stop_soon_quietly)
1311 {
c906108c
SS
1312 /* Remove breakpoints, SOLIB_ADD might adjust
1313 breakpoint addresses via breakpoint_re_set. */
1314 if (breakpoints_inserted)
1315 remove_breakpoints ();
1316
1317 /* Check for any newly added shared libraries if we're
1318 supposed to be adding them automatically. */
1319 if (auto_solib_add)
1320 {
1321 /* Switch terminal for any messages produced by
1322 breakpoint_re_set. */
1323 target_terminal_ours_for_output ();
1324 SOLIB_ADD (NULL, 0, NULL);
1325 target_terminal_inferior ();
1326 }
1327
1328 /* Reinsert breakpoints and continue. */
1329 if (breakpoints_inserted)
1330 insert_breakpoints ();
1331 }
1332#endif
1333 resume (0, TARGET_SIGNAL_0);
cd0fc7c3 1334 goto wfi_continue;
c906108c
SS
1335
1336 case TARGET_WAITKIND_SPURIOUS:
1337 resume (0, TARGET_SIGNAL_0);
cd0fc7c3 1338 goto wfi_continue;
c906108c
SS
1339
1340 case TARGET_WAITKIND_EXITED:
1341 target_terminal_ours (); /* Must do this before mourn anyway */
cd0fc7c3
SS
1342 annotate_exited (ecs->ws.value.integer);
1343 if (ecs->ws.value.integer)
c906108c 1344 printf_filtered ("\nProgram exited with code 0%o.\n",
cd0fc7c3 1345 (unsigned int) ecs->ws.value.integer);
c906108c
SS
1346 else
1347 printf_filtered ("\nProgram exited normally.\n");
1348
1349 /* Record the exit code in the convenience variable $_exitcode, so
1350 that the user can inspect this again later. */
1351 set_internalvar (lookup_internalvar ("_exitcode"),
1352 value_from_longest (builtin_type_int,
cd0fc7c3 1353 (LONGEST) ecs->ws.value.integer));
c906108c
SS
1354 gdb_flush (gdb_stdout);
1355 target_mourn_inferior ();
1356 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P*/
1357 stop_print_frame = 0;
1358 goto stop_stepping;
1359
1360 case TARGET_WAITKIND_SIGNALLED:
1361 stop_print_frame = 0;
cd0fc7c3 1362 stop_signal = ecs->ws.value.sig;
c906108c
SS
1363 target_terminal_ours (); /* Must do this before mourn anyway */
1364 annotate_signalled ();
1365
1366 /* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED
1367 mean it is already dead? This has been here since GDB 2.8, so
1368 perhaps it means rms didn't understand unix waitstatuses?
1369 For the moment I'm just kludging around this in remote.c
1370 rather than trying to change it here --kingdon, 5 Dec 1994. */
1371 target_kill (); /* kill mourns as well */
1372
1373 printf_filtered ("\nProgram terminated with signal ");
1374 annotate_signal_name ();
1375 printf_filtered ("%s", target_signal_to_name (stop_signal));
1376 annotate_signal_name_end ();
1377 printf_filtered (", ");
1378 annotate_signal_string ();
1379 printf_filtered ("%s", target_signal_to_string (stop_signal));
1380 annotate_signal_string_end ();
1381 printf_filtered (".\n");
1382
1383 printf_filtered ("The program no longer exists.\n");
1384 gdb_flush (gdb_stdout);
1385 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P*/
1386 goto stop_stepping;
1387
1388 /* The following are the only cases in which we keep going;
1389 the above cases end in a continue or goto. */
1390 case TARGET_WAITKIND_FORKED:
1391 stop_signal = TARGET_SIGNAL_TRAP;
cd0fc7c3 1392 pending_follow.kind = ecs->ws.kind;
c906108c
SS
1393
1394 /* Ignore fork events reported for the parent; we're only
1395 interested in reacting to forks of the child. Note that
1396 we expect the child's fork event to be available if we
1397 waited for it now. */
cd0fc7c3 1398 if (inferior_pid == ecs->pid)
c906108c
SS
1399 {
1400 pending_follow.fork_event.saw_parent_fork = 1;
cd0fc7c3
SS
1401 pending_follow.fork_event.parent_pid = ecs->pid;
1402 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1403 goto wfi_continue;
c906108c
SS
1404 }
1405 else
1406 {
1407 pending_follow.fork_event.saw_child_fork = 1;
cd0fc7c3
SS
1408 pending_follow.fork_event.child_pid = ecs->pid;
1409 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
c906108c
SS
1410 }
1411
cd0fc7c3
SS
1412 stop_pc = read_pc_pid (ecs->pid);
1413 ecs->saved_inferior_pid = inferior_pid;
1414 inferior_pid = ecs->pid;
c906108c
SS
1415 stop_bpstat = bpstat_stop_status
1416 (&stop_pc,
7a292a7a
SS
1417 (DECR_PC_AFTER_BREAK ?
1418 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
cd0fc7c3 1419 && currently_stepping (ecs))
7a292a7a 1420 : 0)
c906108c 1421 );
cd0fc7c3
SS
1422 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1423 inferior_pid = ecs->saved_inferior_pid;
c906108c
SS
1424 goto process_event_stop_test;
1425
1426 /* If this a platform which doesn't allow a debugger to touch a
1427 vfork'd inferior until after it exec's, then we'd best keep
1428 our fingers entirely off the inferior, other than continuing
1429 it. This has the unfortunate side-effect that catchpoints
1430 of vforks will be ignored. But since the platform doesn't
1431 allow the inferior be touched at vfork time, there's really
1432 little choice. */
1433 case TARGET_WAITKIND_VFORKED:
1434 stop_signal = TARGET_SIGNAL_TRAP;
cd0fc7c3 1435 pending_follow.kind = ecs->ws.kind;
c906108c
SS
1436
1437 /* Is this a vfork of the parent? If so, then give any
1438 vfork catchpoints a chance to trigger now. (It's
1439 dangerous to do so if the child canot be touched until
1440 it execs, and the child has not yet exec'd. We probably
1441 should warn the user to that effect when the catchpoint
1442 triggers...) */
cd0fc7c3 1443 if (ecs->pid == inferior_pid)
c906108c
SS
1444 {
1445 pending_follow.fork_event.saw_parent_fork = 1;
cd0fc7c3
SS
1446 pending_follow.fork_event.parent_pid = ecs->pid;
1447 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c
SS
1448 }
1449
1450 /* If we've seen the child's vfork event but cannot really touch
1451 the child until it execs, then we must continue the child now.
1452 Else, give any vfork catchpoints a chance to trigger now. */
1453 else
1454 {
1455 pending_follow.fork_event.saw_child_fork = 1;
cd0fc7c3
SS
1456 pending_follow.fork_event.child_pid = ecs->pid;
1457 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
c906108c
SS
1458 target_post_startup_inferior (pending_follow.fork_event.child_pid);
1459 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1460 if (follow_vfork_when_exec)
1461 {
cd0fc7c3
SS
1462 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
1463 goto wfi_continue;
c906108c
SS
1464 }
1465 }
1466
1467 stop_pc = read_pc ();
1468 stop_bpstat = bpstat_stop_status
1469 (&stop_pc,
7a292a7a
SS
1470 (DECR_PC_AFTER_BREAK ?
1471 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
cd0fc7c3 1472 && currently_stepping (ecs))
7a292a7a
SS
1473 : 0)
1474 );
cd0fc7c3 1475 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
c906108c
SS
1476 goto process_event_stop_test;
1477
1478 case TARGET_WAITKIND_EXECD:
1479 stop_signal = TARGET_SIGNAL_TRAP;
1480
1481 /* Is this a target which reports multiple exec events per actual
1482 call to exec()? (HP-UX using ptrace does, for example.) If so,
1483 ignore all but the last one. Just resume the exec'r, and wait
1484 for the next exec event. */
1485 if (inferior_ignoring_leading_exec_events)
1486 {
1487 inferior_ignoring_leading_exec_events--;
1488 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1489 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
cd0fc7c3
SS
1490 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
1491 goto wfi_continue;
c906108c
SS
1492 }
1493 inferior_ignoring_leading_exec_events =
1494 target_reported_exec_events_per_exec_call () - 1;
1495
cd0fc7c3
SS
1496 pending_follow.execd_pathname = savestring (ecs->ws.value.execd_pathname,
1497 strlen (ecs->ws.value.execd_pathname));
c906108c
SS
1498
1499 /* Did inferior_pid exec, or did a (possibly not-yet-followed)
1500 child of a vfork exec?
1501
1502 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1503 HP-UX, events associated with a vforking inferior come in
1504 threes: a vfork event for the child (always first), followed
1505 a vfork event for the parent and an exec event for the child.
1506 The latter two can come in either order.
1507
1508 If we get the parent vfork event first, life's good: We follow
1509 either the parent or child, and then the child's exec event is
1510 a "don't care".
1511
1512 But if we get the child's exec event first, then we delay
1513 responding to it until we handle the parent's vfork. Because,
1514 otherwise we can't satisfy a "catch vfork". */
1515 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1516 {
1517 pending_follow.fork_event.saw_child_exec = 1;
1518
1519 /* On some targets, the child must be resumed before
1520 the parent vfork event is delivered. A single-step
1521 suffices. */
1522 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
cd0fc7c3 1523 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c 1524 /* We expect the parent vfork event to be available now. */
cd0fc7c3 1525 goto wfi_continue;
c906108c
SS
1526 }
1527
1528 /* This causes the eventpoints and symbol table to be reset. Must
1529 do this now, before trying to determine whether to stop. */
1530 follow_exec (inferior_pid, pending_follow.execd_pathname);
1531 free (pending_follow.execd_pathname);
1532
cd0fc7c3
SS
1533 stop_pc = read_pc_pid (ecs->pid);
1534 ecs->saved_inferior_pid = inferior_pid;
1535 inferior_pid = ecs->pid;
c906108c
SS
1536 stop_bpstat = bpstat_stop_status
1537 (&stop_pc,
7a292a7a
SS
1538 (DECR_PC_AFTER_BREAK ?
1539 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
cd0fc7c3 1540 && currently_stepping (ecs))
7a292a7a
SS
1541 : 0)
1542 );
cd0fc7c3
SS
1543 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1544 inferior_pid = ecs->saved_inferior_pid;
c906108c
SS
1545 goto process_event_stop_test;
1546
1547 /* These syscall events are returned on HP-UX, as part of its
1548 implementation of page-protection-based "hardware" watchpoints.
1549 HP-UX has unfortunate interactions between page-protections and
1550 some system calls. Our solution is to disable hardware watches
1551 when a system call is entered, and reenable them when the syscall
1552 completes. The downside of this is that we may miss the precise
1553 point at which a watched piece of memory is modified. "Oh well."
1554
1555 Note that we may have multiple threads running, which may each
1556 enter syscalls at roughly the same time. Since we don't have a
1557 good notion currently of whether a watched piece of memory is
1558 thread-private, we'd best not have any page-protections active
1559 when any thread is in a syscall. Thus, we only want to reenable
1560 hardware watches when no threads are in a syscall.
1561
1562 Also, be careful not to try to gather much state about a thread
1563 that's in a syscall. It's frequently a losing proposition. */
1564 case TARGET_WAITKIND_SYSCALL_ENTRY:
1565 number_of_threads_in_syscalls++;
1566 if (number_of_threads_in_syscalls == 1)
1567 {
1568 TARGET_DISABLE_HW_WATCHPOINTS (inferior_pid);
1569 }
1570 resume (0, TARGET_SIGNAL_0);
cd0fc7c3 1571 goto wfi_continue;
c906108c
SS
1572
1573 /* Before examining the threads further, step this thread to
1574 get it entirely out of the syscall. (We get notice of the
1575 event when the thread is just on the verge of exiting a
1576 syscall. Stepping one instruction seems to get it back
1577 into user code.)
1578
1579 Note that although the logical place to reenable h/w watches
1580 is here, we cannot. We cannot reenable them before stepping
1581 the thread (this causes the next wait on the thread to hang).
1582
1583 Nor can we enable them after stepping until we've done a wait.
cd0fc7c3 1584 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
c906108c
SS
1585 here, which will be serviced immediately after the target
1586 is waited on. */
1587 case TARGET_WAITKIND_SYSCALL_RETURN:
cd0fc7c3 1588 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c
SS
1589
1590 if (number_of_threads_in_syscalls > 0)
1591 {
1592 number_of_threads_in_syscalls--;
cd0fc7c3 1593 ecs->enable_hw_watchpoints_after_wait =
c906108c
SS
1594 (number_of_threads_in_syscalls == 0);
1595 }
cd0fc7c3 1596 goto wfi_continue;
c906108c
SS
1597
1598 case TARGET_WAITKIND_STOPPED:
cd0fc7c3 1599 stop_signal = ecs->ws.value.sig;
c906108c
SS
1600 break;
1601 }
1602
1603 /* We may want to consider not doing a resume here in order to give
1604 the user a chance to play with the new thread. It might be good
1605 to make that a user-settable option. */
1606
1607 /* At this point, all threads are stopped (happens automatically in
1608 either the OS or the native code). Therefore we need to continue
1609 all threads in order to make progress. */
cd0fc7c3 1610 if (ecs->new_thread_event)
c906108c
SS
1611 {
1612 target_resume (-1, 0, TARGET_SIGNAL_0);
cd0fc7c3 1613 goto wfi_continue;
c906108c
SS
1614 }
1615
cd0fc7c3 1616 stop_pc = read_pc_pid (ecs->pid);
c906108c
SS
1617
1618 /* See if a thread hit a thread-specific breakpoint that was meant for
1619 another thread. If so, then step that thread past the breakpoint,
1620 and continue it. */
1621
1622 if (stop_signal == TARGET_SIGNAL_TRAP)
1623 {
1624 if (SOFTWARE_SINGLE_STEP_P && singlestep_breakpoints_inserted_p)
cd0fc7c3 1625 ecs->random_signal = 0;
c906108c
SS
1626 else if (breakpoints_inserted
1627 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1628 {
cd0fc7c3 1629 ecs->random_signal = 0;
c906108c 1630 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
cd0fc7c3 1631 ecs->pid))
c906108c
SS
1632 {
1633 int remove_status;
1634
1635 /* Saw a breakpoint, but it was hit by the wrong thread.
1636 Just continue. */
cd0fc7c3 1637 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->pid);
c906108c
SS
1638
1639 remove_status = remove_breakpoints ();
1640 /* Did we fail to remove breakpoints? If so, try
1641 to set the PC past the bp. (There's at least
1642 one situation in which we can fail to remove
1643 the bp's: On HP-UX's that use ttrace, we can't
1644 change the address space of a vforking child
1645 process until the child exits (well, okay, not
1646 then either :-) or execs. */
1647 if (remove_status != 0)
1648 {
cd0fc7c3 1649 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->pid);
c906108c
SS
1650 }
1651 else
1652 { /* Single step */
cd0fc7c3 1653 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c
SS
1654 /* FIXME: What if a signal arrives instead of the
1655 single-step happening? */
1656
cd0fc7c3
SS
1657 ecs->waiton_pid = ecs->pid;
1658 ecs->wp = &(ecs->ws);
1659 ecs->infwait_state = infwait_thread_hop_state;
1660 goto wfi_continue;
c906108c
SS
1661 }
1662
7a292a7a
SS
1663 /* We need to restart all the threads now,
1664 * unles we're running in scheduler-locked mode.
cd0fc7c3 1665 * FIXME: shouldn't we look at currently_stepping ()?
7a292a7a
SS
1666 */
1667 if (scheduler_mode == schedlock_on)
cd0fc7c3 1668 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
7a292a7a
SS
1669 else
1670 target_resume (-1, 0, TARGET_SIGNAL_0);
cd0fc7c3 1671 goto wfi_continue;
c906108c
SS
1672 }
1673 else
1674 {
1675 /* This breakpoint matches--either it is the right
1676 thread or it's a generic breakpoint for all threads.
1677 Remember that we'll need to step just _this_ thread
1678 on any following user continuation! */
1679 thread_step_needed = 1;
1680 }
1681 }
1682 }
1683 else
cd0fc7c3 1684 ecs->random_signal = 1;
c906108c
SS
1685
1686 /* See if something interesting happened to the non-current thread. If
1687 so, then switch to that thread, and eventually give control back to
1688 the user.
1689
1690 Note that if there's any kind of pending follow (i.e., of a fork,
1691 vfork or exec), we don't want to do this now. Rather, we'll let
1692 the next resume handle it. */
cd0fc7c3 1693 if ((ecs->pid != inferior_pid) &&
c906108c
SS
1694 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1695 {
1696 int printed = 0;
1697
1698 /* If it's a random signal for a non-current thread, notify user
1699 if he's expressed an interest. */
cd0fc7c3 1700 if (ecs->random_signal
c906108c
SS
1701 && signal_print[stop_signal])
1702 {
1703/* ??rehrauer: I don't understand the rationale for this code. If the
1704 inferior will stop as a result of this signal, then the act of handling
1705 the stop ought to print a message that's couches the stoppage in user
1706 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1707 won't stop as a result of the signal -- i.e., if the signal is merely
1708 a side-effect of something GDB's doing "under the covers" for the
1709 user, such as stepping threads over a breakpoint they shouldn't stop
1710 for -- then the message seems to be a serious annoyance at best.
1711
1712 For now, remove the message altogether. */
1713#if 0
1714 printed = 1;
1715 target_terminal_ours_for_output ();
1716 printf_filtered ("\nProgram received signal %s, %s.\n",
1717 target_signal_to_name (stop_signal),
1718 target_signal_to_string (stop_signal));
1719 gdb_flush (gdb_stdout);
1720#endif
1721 }
1722
1723 /* If it's not SIGTRAP and not a signal we want to stop for, then
1724 continue the thread. */
1725
1726 if (stop_signal != TARGET_SIGNAL_TRAP
1727 && !signal_stop[stop_signal])
1728 {
1729 if (printed)
1730 target_terminal_inferior ();
1731
1732 /* Clear the signal if it should not be passed. */
1733 if (signal_program[stop_signal] == 0)
1734 stop_signal = TARGET_SIGNAL_0;
1735
cd0fc7c3
SS
1736 target_resume (ecs->pid, 0, stop_signal);
1737 goto wfi_continue;
c906108c
SS
1738 }
1739
1740 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1741 and fall into the rest of wait_for_inferior(). */
1742
1743 /* Save infrun state for the old thread. */
1744 save_infrun_state (inferior_pid, prev_pc,
1745 prev_func_start, prev_func_name,
1746 trap_expected, step_resume_breakpoint,
1747 through_sigtramp_breakpoint,
1748 step_range_start, step_range_end,
cd0fc7c3
SS
1749 step_frame_address, ecs->handling_longjmp,
1750 ecs->another_trap,
1751 ecs->stepping_through_solib_after_catch,
1752 ecs->stepping_through_solib_catchpoints,
1753 ecs->stepping_through_sigtramp);
c906108c 1754
7a292a7a
SS
1755 if (may_switch_from_inferior_pid)
1756 switched_from_inferior_pid = inferior_pid;
c906108c 1757
cd0fc7c3 1758 inferior_pid = ecs->pid;
c906108c
SS
1759
1760 /* Load infrun state for the new thread. */
1761 load_infrun_state (inferior_pid, &prev_pc,
1762 &prev_func_start, &prev_func_name,
1763 &trap_expected, &step_resume_breakpoint,
1764 &through_sigtramp_breakpoint,
1765 &step_range_start, &step_range_end,
cd0fc7c3
SS
1766 &step_frame_address, &ecs->handling_longjmp,
1767 &ecs->another_trap,
1768 &ecs->stepping_through_solib_after_catch,
1769 &ecs->stepping_through_solib_catchpoints,
1770 &ecs->stepping_through_sigtramp);
c906108c
SS
1771
1772 if (context_hook)
cd0fc7c3 1773 context_hook (pid_to_thread_id (ecs->pid));
c906108c 1774
cd0fc7c3 1775 printf_filtered ("[Switching to %s]\n", target_pid_to_str (ecs->pid));
c906108c
SS
1776 flush_cached_frames ();
1777 }
1778
1779 if (SOFTWARE_SINGLE_STEP_P && singlestep_breakpoints_inserted_p)
1780 {
1781 /* Pull the single step breakpoints out of the target. */
1782 SOFTWARE_SINGLE_STEP (0, 0);
1783 singlestep_breakpoints_inserted_p = 0;
1784 }
1785
1786 /* If PC is pointing at a nullified instruction, then step beyond
1787 it so that the user won't be confused when GDB appears to be ready
1788 to execute it. */
1789
cd0fc7c3 1790 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
c906108c
SS
1791 if (INSTRUCTION_NULLIFIED)
1792 {
c906108c 1793 registers_changed ();
cd0fc7c3 1794 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c
SS
1795
1796 /* We may have received a signal that we want to pass to
1797 the inferior; therefore, we must not clobber the waitstatus
cd0fc7c3 1798 in WS. */
c906108c 1799
cd0fc7c3
SS
1800 ecs->infwait_state = infwait_nullified_state;
1801 ecs->waiton_pid = ecs->pid;
1802 ecs->wp = &(ecs->tmpstatus);
1803 goto wfi_continue;
c906108c
SS
1804 }
1805
c906108c
SS
1806 /* It may not be necessary to disable the watchpoint to stop over
1807 it. For example, the PA can (with some kernel cooperation)
1808 single step over a watchpoint without disabling the watchpoint. */
cd0fc7c3 1809 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
c906108c
SS
1810 {
1811 resume (1, 0);
cd0fc7c3 1812 goto wfi_continue;
c906108c 1813 }
c906108c 1814
7a292a7a
SS
1815 /* It is far more common to need to disable a watchpoint to step
1816 the inferior over it. FIXME. What else might a debug
1817 register or page protection watchpoint scheme need here? */
cd0fc7c3 1818 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
c906108c 1819 {
7a292a7a
SS
1820 /* At this point, we are stopped at an instruction which has
1821 attempted to write to a piece of memory under control of
1822 a watchpoint. The instruction hasn't actually executed
1823 yet. If we were to evaluate the watchpoint expression
1824 now, we would get the old value, and therefore no change
1825 would seem to have occurred.
1826
1827 In order to make watchpoints work `right', we really need
1828 to complete the memory write, and then evaluate the
1829 watchpoint expression. The following code does that by
1830 removing the watchpoint (actually, all watchpoints and
1831 breakpoints), single-stepping the target, re-inserting
1832 watchpoints, and then falling through to let normal
1833 single-step processing handle proceed. Since this
1834 includes evaluating watchpoints, things will come to a
1835 stop in the correct manner. */
c906108c
SS
1836
1837 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
1838
1839 remove_breakpoints ();
1840 registers_changed ();
cd0fc7c3 1841 target_resume (ecs->pid, 1, TARGET_SIGNAL_0); /* Single step */
c906108c 1842
cd0fc7c3
SS
1843 ecs->waiton_pid = ecs->pid;
1844 ecs->wp = &(ecs->ws);
1845 ecs->infwait_state = infwait_nonstep_watch_state;
1846 goto wfi_continue;
c906108c 1847 }
c906108c 1848
c906108c 1849 /* It may be possible to simply continue after a watchpoint. */
7a292a7a 1850 if (HAVE_CONTINUABLE_WATCHPOINT)
cd0fc7c3 1851 STOPPED_BY_WATCHPOINT (ecs->ws);
c906108c 1852
cd0fc7c3
SS
1853 ecs->stop_func_start = 0;
1854 ecs->stop_func_end = 0;
1855 ecs->stop_func_name = 0;
c906108c
SS
1856 /* Don't care about return value; stop_func_start and stop_func_name
1857 will both be 0 if it doesn't work. */
cd0fc7c3
SS
1858 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1859 &ecs->stop_func_start, &ecs->stop_func_end);
1860 ecs->stop_func_start += FUNCTION_START_OFFSET;
1861 ecs->another_trap = 0;
c906108c
SS
1862 bpstat_clear (&stop_bpstat);
1863 stop_step = 0;
1864 stop_stack_dummy = 0;
1865 stop_print_frame = 1;
cd0fc7c3 1866 ecs->random_signal = 0;
c906108c
SS
1867 stopped_by_random_signal = 0;
1868 breakpoints_failed = 0;
1869
1870 /* Look at the cause of the stop, and decide what to do.
1871 The alternatives are:
1872 1) break; to really stop and return to the debugger,
1873 2) drop through to start up again
cd0fc7c3
SS
1874 (set ecs->another_trap to 1 to single step once)
1875 3) set ecs->random_signal to 1, and the decision between 1 and 2
c906108c
SS
1876 will be made according to the signal handling tables. */
1877
1878 /* First, distinguish signals caused by the debugger from signals
1879 that have to do with the program's own actions.
1880 Note that breakpoint insns may cause SIGTRAP or SIGILL
1881 or SIGEMT, depending on the operating system version.
1882 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1883 and change it to SIGTRAP. */
1884
1885 if (stop_signal == TARGET_SIGNAL_TRAP
1886 || (breakpoints_inserted &&
1887 (stop_signal == TARGET_SIGNAL_ILL
1888 || stop_signal == TARGET_SIGNAL_EMT
1889 ))
1890 || stop_soon_quietly)
1891 {
1892 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1893 {
1894 stop_print_frame = 0;
cd0fc7c3 1895 goto wfi_break;
c906108c
SS
1896 }
1897 if (stop_soon_quietly)
cd0fc7c3 1898 goto wfi_break;
c906108c
SS
1899
1900 /* Don't even think about breakpoints
1901 if just proceeded over a breakpoint.
1902
1903 However, if we are trying to proceed over a breakpoint
1904 and end up in sigtramp, then through_sigtramp_breakpoint
1905 will be set and we should check whether we've hit the
1906 step breakpoint. */
1907 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1908 && through_sigtramp_breakpoint == NULL)
1909 bpstat_clear (&stop_bpstat);
1910 else
1911 {
1912 /* See if there is a breakpoint at the current PC. */
1913 stop_bpstat = bpstat_stop_status
1914 (&stop_pc,
1915 (DECR_PC_AFTER_BREAK ?
1916 /* Notice the case of stepping through a jump
1917 that lands just after a breakpoint.
1918 Don't confuse that with hitting the breakpoint.
1919 What we check for is that 1) stepping is going on
1920 and 2) the pc before the last insn does not match
1921 the address of the breakpoint before the current pc
1922 and 3) we didn't hit a breakpoint in a signal handler
1923 without an intervening stop in sigtramp, which is
1924 detected by a new stack pointer value below
1925 any usual function calling stack adjustments. */
cd0fc7c3 1926 (currently_stepping (ecs)
c906108c
SS
1927 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1928 && !(step_range_end
1929 && INNER_THAN (read_sp (), (step_sp - 16)))) :
1930 0)
1931 );
1932 /* Following in case break condition called a
1933 function. */
1934 stop_print_frame = 1;
1935 }
1936
1937 if (stop_signal == TARGET_SIGNAL_TRAP)
cd0fc7c3 1938 ecs->random_signal
c906108c
SS
1939 = !(bpstat_explains_signal (stop_bpstat)
1940 || trap_expected
7a292a7a
SS
1941 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1942 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1943 FRAME_FP (get_current_frame ())))
c906108c
SS
1944 || (step_range_end && step_resume_breakpoint == NULL));
1945
1946 else
1947 {
cd0fc7c3 1948 ecs->random_signal
c906108c 1949 = !(bpstat_explains_signal (stop_bpstat)
7a292a7a
SS
1950 /* End of a stack dummy. Some systems (e.g. Sony
1951 news) give another signal besides SIGTRAP, so
1952 check here as well as above. */
1953 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
1954 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
1955 FRAME_FP (get_current_frame ())))
c906108c 1956 );
cd0fc7c3 1957 if (!ecs->random_signal)
c906108c
SS
1958 stop_signal = TARGET_SIGNAL_TRAP;
1959 }
1960 }
1961
1962 /* When we reach this point, we've pretty much decided
1963 that the reason for stopping must've been a random
1964 (unexpected) signal. */
1965
1966 else
cd0fc7c3 1967 ecs->random_signal = 1;
c906108c
SS
1968 /* If a fork, vfork or exec event was seen, then there are two
1969 possible responses we can make:
1970
cd0fc7c3 1971 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
c906108c
SS
1972 then we must stop now and issue a prompt. We will resume
1973 the inferior when the user tells us to.
cd0fc7c3 1974 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
c906108c
SS
1975 then we must resume the inferior now and keep checking.
1976
1977 In either case, we must take appropriate steps to "follow" the
1978 the fork/vfork/exec when the inferior is resumed. For example,
1979 if follow-fork-mode is "child", then we must detach from the
1980 parent inferior and follow the new child inferior.
1981
1982 In either case, setting pending_follow causes the next resume()
1983 to take the appropriate following action. */
1984 process_event_stop_test:
cd0fc7c3 1985 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
c906108c 1986 {
cd0fc7c3 1987 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
c906108c
SS
1988 {
1989 trap_expected = 1;
1990 stop_signal = TARGET_SIGNAL_0;
1991 goto keep_going;
1992 }
1993 }
cd0fc7c3 1994 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
c906108c 1995 {
cd0fc7c3 1996 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
c906108c
SS
1997 {
1998 stop_signal = TARGET_SIGNAL_0;
1999 goto keep_going;
2000 }
2001 }
cd0fc7c3 2002 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
c906108c 2003 {
cd0fc7c3
SS
2004 pending_follow.kind = ecs->ws.kind;
2005 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
c906108c
SS
2006 {
2007 trap_expected = 1;
2008 stop_signal = TARGET_SIGNAL_0;
2009 goto keep_going;
2010 }
2011 }
2012
2013 /* For the program's own signals, act according to
2014 the signal handling tables. */
2015
cd0fc7c3 2016 if (ecs->random_signal)
c906108c
SS
2017 {
2018 /* Signal not for debugging purposes. */
2019 int printed = 0;
2020
2021 stopped_by_random_signal = 1;
2022
2023 if (signal_print[stop_signal])
2024 {
2025 printed = 1;
2026 target_terminal_ours_for_output ();
2027 annotate_signal ();
2028 printf_filtered ("\nProgram received signal ");
2029 annotate_signal_name ();
2030 printf_filtered ("%s", target_signal_to_name (stop_signal));
2031 annotate_signal_name_end ();
2032 printf_filtered (", ");
2033 annotate_signal_string ();
2034 printf_filtered ("%s", target_signal_to_string (stop_signal));
2035 annotate_signal_string_end ();
2036 printf_filtered (".\n");
2037 gdb_flush (gdb_stdout);
2038 }
2039 if (signal_stop[stop_signal])
cd0fc7c3 2040 goto wfi_break;
c906108c
SS
2041 /* If not going to stop, give terminal back
2042 if we took it away. */
2043 else if (printed)
2044 target_terminal_inferior ();
2045
2046 /* Clear the signal if it should not be passed. */
2047 if (signal_program[stop_signal] == 0)
2048 stop_signal = TARGET_SIGNAL_0;
2049
2050 /* If we're in the middle of a "next" command, let the code for
2051 stepping over a function handle this. pai/1997-09-10
2052
2053 A previous comment here suggested it was possible to change
2054 this to jump to keep_going in all cases. */
2055
2056 if (step_over_calls > 0)
2057 goto step_over_function;
2058 else
2059 goto check_sigtramp2;
2060 }
2061
2062 /* Handle cases caused by hitting a breakpoint. */
2063 {
2064 CORE_ADDR jmp_buf_pc;
2065 struct bpstat_what what;
2066
2067 what = bpstat_what (stop_bpstat);
2068
2069 if (what.call_dummy)
2070 {
2071 stop_stack_dummy = 1;
2072#ifdef HP_OS_BUG
2073 trap_expected_after_continue = 1;
2074#endif
2075 }
2076
2077 switch (what.main_action)
2078 {
2079 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2080 /* If we hit the breakpoint at longjmp, disable it for the
2081 duration of this command. Then, install a temporary
2082 breakpoint at the target of the jmp_buf. */
2083 disable_longjmp_breakpoint ();
2084 remove_breakpoints ();
2085 breakpoints_inserted = 0;
2086 if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
2087 goto keep_going;
2088
2089 /* Need to blow away step-resume breakpoint, as it
2090 interferes with us */
2091 if (step_resume_breakpoint != NULL)
2092 {
2093 delete_breakpoint (step_resume_breakpoint);
2094 step_resume_breakpoint = NULL;
2095 }
2096 /* Not sure whether we need to blow this away too, but probably
2097 it is like the step-resume breakpoint. */
2098 if (through_sigtramp_breakpoint != NULL)
2099 {
2100 delete_breakpoint (through_sigtramp_breakpoint);
2101 through_sigtramp_breakpoint = NULL;
2102 }
2103
2104#if 0
2105 /* FIXME - Need to implement nested temporary breakpoints */
2106 if (step_over_calls > 0)
2107 set_longjmp_resume_breakpoint (jmp_buf_pc,
2108 get_current_frame ());
2109 else
2110#endif /* 0 */
2111 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
cd0fc7c3 2112 ecs->handling_longjmp = 1; /* FIXME */
c906108c
SS
2113 goto keep_going;
2114
2115 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2116 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2117 remove_breakpoints ();
2118 breakpoints_inserted = 0;
2119#if 0
2120 /* FIXME - Need to implement nested temporary breakpoints */
2121 if (step_over_calls
2122 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2123 step_frame_address)))
2124 {
cd0fc7c3 2125 ecs->another_trap = 1;
c906108c
SS
2126 goto keep_going;
2127 }
2128#endif /* 0 */
2129 disable_longjmp_breakpoint ();
cd0fc7c3 2130 ecs->handling_longjmp = 0; /* FIXME */
c906108c
SS
2131 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2132 break;
2133 /* else fallthrough */
2134
2135 case BPSTAT_WHAT_SINGLE:
2136 if (breakpoints_inserted)
2137 {
2138 thread_step_needed = 1;
2139 remove_breakpoints ();
2140 }
2141 breakpoints_inserted = 0;
cd0fc7c3 2142 ecs->another_trap = 1;
c906108c
SS
2143 /* Still need to check other stuff, at least the case
2144 where we are stepping and step out of the right range. */
2145 break;
2146
2147 case BPSTAT_WHAT_STOP_NOISY:
2148 stop_print_frame = 1;
2149
2150 /* We are about to nuke the step_resume_breakpoint and
2151 through_sigtramp_breakpoint via the cleanup chain, so
2152 no need to worry about it here. */
2153
2154 goto stop_stepping;
2155
2156 case BPSTAT_WHAT_STOP_SILENT:
2157 stop_print_frame = 0;
2158
2159 /* We are about to nuke the step_resume_breakpoint and
2160 through_sigtramp_breakpoint via the cleanup chain, so
2161 no need to worry about it here. */
2162
2163 goto stop_stepping;
2164
2165 case BPSTAT_WHAT_STEP_RESUME:
2166 /* This proably demands a more elegant solution, but, yeah
2167 right...
2168
2169 This function's use of the simple variable
2170 step_resume_breakpoint doesn't seem to accomodate
2171 simultaneously active step-resume bp's, although the
2172 breakpoint list certainly can.
2173
2174 If we reach here and step_resume_breakpoint is already
2175 NULL, then apparently we have multiple active
2176 step-resume bp's. We'll just delete the breakpoint we
2177 stopped at, and carry on. */
2178 if (step_resume_breakpoint == NULL)
2179 {
2180 step_resume_breakpoint =
2181 bpstat_find_step_resume_breakpoint (stop_bpstat);
2182 }
2183 delete_breakpoint (step_resume_breakpoint);
2184 step_resume_breakpoint = NULL;
2185 break;
2186
2187 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2188 if (through_sigtramp_breakpoint)
2189 delete_breakpoint (through_sigtramp_breakpoint);
2190 through_sigtramp_breakpoint = NULL;
2191
2192 /* If were waiting for a trap, hitting the step_resume_break
2193 doesn't count as getting it. */
2194 if (trap_expected)
cd0fc7c3 2195 ecs->another_trap = 1;
c906108c
SS
2196 break;
2197
2198 case BPSTAT_WHAT_CHECK_SHLIBS:
2199 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2200#ifdef SOLIB_ADD
2201 {
c906108c
SS
2202 /* Remove breakpoints, we eventually want to step over the
2203 shlib event breakpoint, and SOLIB_ADD might adjust
2204 breakpoint addresses via breakpoint_re_set. */
2205 if (breakpoints_inserted)
2206 remove_breakpoints ();
2207 breakpoints_inserted = 0;
2208
2209 /* Check for any newly added shared libraries if we're
2210 supposed to be adding them automatically. */
2211 if (auto_solib_add)
2212 {
2213 /* Switch terminal for any messages produced by
2214 breakpoint_re_set. */
2215 target_terminal_ours_for_output ();
2216 SOLIB_ADD (NULL, 0, NULL);
2217 target_terminal_inferior ();
2218 }
2219
2220 /* Try to reenable shared library breakpoints, additional
2221 code segments in shared libraries might be mapped in now. */
2222 re_enable_breakpoints_in_shlibs ();
2223
2224 /* If requested, stop when the dynamic linker notifies
2225 gdb of events. This allows the user to get control
2226 and place breakpoints in initializer routines for
2227 dynamically loaded objects (among other things). */
2228 if (stop_on_solib_events)
2229 {
2230 stop_print_frame = 0;
2231 goto stop_stepping;
2232 }
2233
2234 /* If we stopped due to an explicit catchpoint, then the
2235 (see above) call to SOLIB_ADD pulled in any symbols
2236 from a newly-loaded library, if appropriate.
2237
2238 We do want the inferior to stop, but not where it is
2239 now, which is in the dynamic linker callback. Rather,
2240 we would like it stop in the user's program, just after
2241 the call that caused this catchpoint to trigger. That
2242 gives the user a more useful vantage from which to
2243 examine their program's state. */
2244 else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2245 {
2246 /* ??rehrauer: If I could figure out how to get the
2247 right return PC from here, we could just set a temp
2248 breakpoint and resume. I'm not sure we can without
2249 cracking open the dld's shared libraries and sniffing
2250 their unwind tables and text/data ranges, and that's
2251 not a terribly portable notion.
2252
2253 Until that time, we must step the inferior out of the
2254 dld callback, and also out of the dld itself (and any
2255 code or stubs in libdld.sl, such as "shl_load" and
2256 friends) until we reach non-dld code. At that point,
2257 we can stop stepping. */
2258 bpstat_get_triggered_catchpoints (stop_bpstat,
cd0fc7c3
SS
2259 &ecs->stepping_through_solib_catchpoints);
2260 ecs->stepping_through_solib_after_catch = 1;
c906108c
SS
2261
2262 /* Be sure to lift all breakpoints, so the inferior does
2263 actually step past this point... */
cd0fc7c3 2264 ecs->another_trap = 1;
c906108c
SS
2265 break;
2266 }
2267 else
2268 {
2269 /* We want to step over this breakpoint, then keep going. */
cd0fc7c3 2270 ecs->another_trap = 1;
c906108c
SS
2271 break;
2272 }
2273 }
2274#endif
2275 break;
2276
2277 case BPSTAT_WHAT_LAST:
2278 /* Not a real code, but listed here to shut up gcc -Wall. */
2279
2280 case BPSTAT_WHAT_KEEP_CHECKING:
2281 break;
2282 }
2283 }
2284
2285 /* We come here if we hit a breakpoint but should not
2286 stop for it. Possibly we also were stepping
2287 and should stop for that. So fall through and
2288 test for stepping. But, if not stepping,
2289 do not stop. */
2290
2291 /* Are we stepping to get the inferior out of the dynamic
2292 linker's hook (and possibly the dld itself) after catching
2293 a shlib event? */
cd0fc7c3 2294 if (ecs->stepping_through_solib_after_catch)
c906108c
SS
2295 {
2296#if defined(SOLIB_ADD)
2297 /* Have we reached our destination? If not, keep going. */
cd0fc7c3 2298 if (SOLIB_IN_DYNAMIC_LINKER (ecs->pid, stop_pc))
c906108c 2299 {
cd0fc7c3 2300 ecs->another_trap = 1;
c906108c
SS
2301 goto keep_going;
2302 }
2303#endif
2304 /* Else, stop and report the catchpoint(s) whose triggering
2305 caused us to begin stepping. */
cd0fc7c3 2306 ecs->stepping_through_solib_after_catch = 0;
c906108c 2307 bpstat_clear (&stop_bpstat);
cd0fc7c3
SS
2308 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2309 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
c906108c
SS
2310 stop_print_frame = 1;
2311 goto stop_stepping;
2312 }
2313
7a292a7a 2314 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
c906108c 2315 {
7a292a7a
SS
2316 /* This is the old way of detecting the end of the stack dummy.
2317 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2318 handled above. As soon as we can test it on all of them, all
2319 architectures should define it. */
2320
2321 /* If this is the breakpoint at the end of a stack dummy,
2322 just stop silently, unless the user was doing an si/ni, in which
2323 case she'd better know what she's doing. */
2324
2325 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2326 FRAME_FP (get_current_frame ()))
2327 && !step_range_end)
2328 {
2329 stop_print_frame = 0;
2330 stop_stack_dummy = 1;
c906108c 2331#ifdef HP_OS_BUG
7a292a7a 2332 trap_expected_after_continue = 1;
c906108c 2333#endif
cd0fc7c3 2334 goto wfi_break;
7a292a7a 2335 }
c906108c 2336 }
7a292a7a 2337
c906108c
SS
2338 if (step_resume_breakpoint)
2339 /* Having a step-resume breakpoint overrides anything
2340 else having to do with stepping commands until
2341 that breakpoint is reached. */
2342 /* I'm not sure whether this needs to be check_sigtramp2 or
2343 whether it could/should be keep_going. */
2344 goto check_sigtramp2;
7a292a7a 2345
c906108c
SS
2346 if (step_range_end == 0)
2347 /* Likewise if we aren't even stepping. */
2348 /* I'm not sure whether this needs to be check_sigtramp2 or
2349 whether it could/should be keep_going. */
2350 goto check_sigtramp2;
7a292a7a 2351
c906108c 2352 /* If stepping through a line, keep going if still within it.
7a292a7a 2353
c906108c
SS
2354 Note that step_range_end is the address of the first instruction
2355 beyond the step range, and NOT the address of the last instruction
2356 within it! */
2357 if (stop_pc >= step_range_start
7a292a7a 2358 && stop_pc < step_range_end)
c906108c
SS
2359 {
2360 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2361 So definately need to check for sigtramp here. */
2362 goto check_sigtramp2;
2363 }
2364
2365 /* We stepped out of the stepping range. */
2366
2367 /* If we are stepping at the source level and entered the runtime
2368 loader dynamic symbol resolution code, we keep on single stepping
2369 until we exit the run time loader code and reach the callee's
2370 address. */
2371 if (step_over_calls < 0 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2372 goto keep_going;
2373
2374 /* We can't update step_sp every time through the loop, because
2375 reading the stack pointer would slow down stepping too much.
2376 But we can update it every time we leave the step range. */
cd0fc7c3 2377 ecs->update_step_sp = 1;
c906108c
SS
2378
2379 /* Did we just take a signal? */
cd0fc7c3 2380 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
c906108c
SS
2381 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2382 && INNER_THAN (read_sp (), step_sp))
2383 {
2384 /* We've just taken a signal; go until we are back to
2385 the point where we took it and one more. */
2386
2387 /* Note: The test above succeeds not only when we stepped
2388 into a signal handler, but also when we step past the last
2389 statement of a signal handler and end up in the return stub
2390 of the signal handler trampoline. To distinguish between
2391 these two cases, check that the frame is INNER_THAN the
2392 previous one below. pai/1997-09-11 */
2393
2394
2395 {
2396 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2397
2398 if (INNER_THAN (current_frame, step_frame_address))
2399 {
2400 /* We have just taken a signal; go until we are back to
2401 the point where we took it and one more. */
2402
2403 /* This code is needed at least in the following case:
2404 The user types "next" and then a signal arrives (before
2405 the "next" is done). */
2406
2407 /* Note that if we are stopped at a breakpoint, then we need
2408 the step_resume breakpoint to override any breakpoints at
2409 the same location, so that we will still step over the
2410 breakpoint even though the signal happened. */
2411 struct symtab_and_line sr_sal;
2412
2413 INIT_SAL (&sr_sal);
2414 sr_sal.symtab = NULL;
2415 sr_sal.line = 0;
2416 sr_sal.pc = prev_pc;
2417 /* We could probably be setting the frame to
2418 step_frame_address; I don't think anyone thought to
2419 try it. */
2420 step_resume_breakpoint =
2421 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2422 if (breakpoints_inserted)
2423 insert_breakpoints ();
2424 }
2425 else
2426 {
2427 /* We just stepped out of a signal handler and into
2428 its calling trampoline.
2429
2430 Normally, we'd jump to step_over_function from
2431 here, but for some reason GDB can't unwind the
2432 stack correctly to find the real PC for the point
2433 user code where the signal trampoline will return
2434 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2435 But signal trampolines are pretty small stubs of
2436 code, anyway, so it's OK instead to just
2437 single-step out. Note: assuming such trampolines
2438 don't exhibit recursion on any platform... */
cd0fc7c3
SS
2439 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2440 &ecs->stop_func_start,
2441 &ecs->stop_func_end);
c906108c 2442 /* Readjust stepping range */
cd0fc7c3
SS
2443 step_range_start = ecs->stop_func_start;
2444 step_range_end = ecs->stop_func_end;
2445 ecs->stepping_through_sigtramp = 1;
c906108c
SS
2446 }
2447 }
2448
2449
2450 /* If this is stepi or nexti, make sure that the stepping range
2451 gets us past that instruction. */
2452 if (step_range_end == 1)
2453 /* FIXME: Does this run afoul of the code below which, if
2454 we step into the middle of a line, resets the stepping
2455 range? */
2456 step_range_end = (step_range_start = prev_pc) + 1;
2457
cd0fc7c3 2458 ecs->remove_breakpoints_on_following_step = 1;
c906108c
SS
2459 goto keep_going;
2460 }
2461
cd0fc7c3
SS
2462 if (stop_pc == ecs->stop_func_start /* Quick test */
2463 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2464 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2465 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2466 || ecs->stop_func_name == 0)
c906108c
SS
2467 {
2468 /* It's a subroutine call. */
2469
2470 if (step_over_calls == 0)
2471 {
2472 /* I presume that step_over_calls is only 0 when we're
2473 supposed to be stepping at the assembly language level
2474 ("stepi"). Just stop. */
2475 stop_step = 1;
cd0fc7c3 2476 goto wfi_break;
c906108c
SS
2477 }
2478
2479 if (step_over_calls > 0 || IGNORE_HELPER_CALL (stop_pc))
2480 /* We're doing a "next". */
2481 goto step_over_function;
2482
2483 /* If we are in a function call trampoline (a stub between
2484 the calling routine and the real function), locate the real
2485 function. That's what tells us (a) whether we want to step
2486 into it at all, and (b) what prologue we want to run to
2487 the end of, if we do step into it. */
2488 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2489 if (tmp != 0)
cd0fc7c3 2490 ecs->stop_func_start = tmp;
c906108c
SS
2491 else
2492 {
2493 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2494 if (tmp)
2495 {
2496 struct symtab_and_line xxx;
2497 /* Why isn't this s_a_l called "sr_sal", like all of the
2498 other s_a_l's where this code is duplicated? */
2499 INIT_SAL (&xxx); /* initialize to zeroes */
2500 xxx.pc = tmp;
2501 xxx.section = find_pc_overlay (xxx.pc);
2502 step_resume_breakpoint =
2503 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2504 insert_breakpoints ();
2505 goto keep_going;
2506 }
2507 }
2508
2509 /* If we have line number information for the function we
2510 are thinking of stepping into, step into it.
2511
2512 If there are several symtabs at that PC (e.g. with include
2513 files), just want to know whether *any* of them have line
2514 numbers. find_pc_line handles this. */
2515 {
2516 struct symtab_and_line tmp_sal;
2517
cd0fc7c3 2518 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
c906108c
SS
2519 if (tmp_sal.line != 0)
2520 goto step_into_function;
2521 }
2522
2523 step_over_function:
2524 /* A subroutine call has happened. */
2525 {
2526 /* Set a special breakpoint after the return */
2527 struct symtab_and_line sr_sal;
2528
2529 INIT_SAL (&sr_sal);
2530 sr_sal.symtab = NULL;
2531 sr_sal.line = 0;
2532
2533 /* If we came here after encountering a signal in the middle of
2534 a "next", use the stashed-away previous frame pc */
2535 sr_sal.pc
2536 = stopped_by_random_signal
2537 ? prev_pc
2538 : ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
2539
2540 step_resume_breakpoint =
2541 set_momentary_breakpoint (sr_sal,
2542 stopped_by_random_signal ?
2543 NULL : get_current_frame (),
2544 bp_step_resume);
2545
2546 /* We've just entered a callee, and we wish to resume until
2547 it returns to the caller. Setting a step_resume bp on
2548 the return PC will catch a return from the callee.
2549
2550 However, if the callee is recursing, we want to be
2551 careful not to catch returns of those recursive calls,
2552 but of THIS instance of the call.
2553
2554 To do this, we set the step_resume bp's frame to our
2555 current caller's frame (step_frame_address, which is
2556 set by the "next" or "until" command, before execution
2557 begins).
2558
2559 But ... don't do it if we're single-stepping out of a
2560 sigtramp, because the reason we're single-stepping is
2561 precisely because unwinding is a problem (HP-UX 10.20,
2562 e.g.) and the frame address is likely to be incorrect.
2563 No danger of sigtramp recursion. */
2564
cd0fc7c3 2565 if (ecs->stepping_through_sigtramp)
c906108c
SS
2566 {
2567 step_resume_breakpoint->frame = (CORE_ADDR) NULL;
cd0fc7c3 2568 ecs->stepping_through_sigtramp = 0;
c906108c
SS
2569 }
2570 else if (!IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
2571 step_resume_breakpoint->frame = step_frame_address;
2572
2573 if (breakpoints_inserted)
2574 insert_breakpoints ();
2575 }
2576 goto keep_going;
2577
2578 step_into_function:
2579 /* Subroutine call with source code we should not step over.
2580 Do step to the first line of code in it. */
2581 {
2582 struct symtab *s;
2583
2584 s = find_pc_symtab (stop_pc);
2585 if (s && s->language != language_asm)
cd0fc7c3 2586 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
c906108c 2587 }
cd0fc7c3 2588 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
c906108c
SS
2589 /* Use the step_resume_break to step until
2590 the end of the prologue, even if that involves jumps
2591 (as it seems to on the vax under 4.2). */
2592 /* If the prologue ends in the middle of a source line,
2593 continue to the end of that source line (if it is still
2594 within the function). Otherwise, just go to end of prologue. */
2595#ifdef PROLOGUE_FIRSTLINE_OVERLAP
2596 /* no, don't either. It skips any code that's
2597 legitimately on the first line. */
2598#else
cd0fc7c3
SS
2599 if (ecs->sal.end && ecs->sal.pc != ecs->stop_func_start && ecs->sal.end < ecs->stop_func_end)
2600 ecs->stop_func_start = ecs->sal.end;
c906108c
SS
2601#endif
2602
cd0fc7c3 2603 if (ecs->stop_func_start == stop_pc)
c906108c
SS
2604 {
2605 /* We are already there: stop now. */
2606 stop_step = 1;
cd0fc7c3 2607 goto wfi_break;
c906108c
SS
2608 }
2609 else
2610 /* Put the step-breakpoint there and go until there. */
2611 {
2612 struct symtab_and_line sr_sal;
2613
2614 INIT_SAL (&sr_sal); /* initialize to zeroes */
cd0fc7c3
SS
2615 sr_sal.pc = ecs->stop_func_start;
2616 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
c906108c
SS
2617 /* Do not specify what the fp should be when we stop
2618 since on some machines the prologue
2619 is where the new fp value is established. */
2620 step_resume_breakpoint =
2621 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2622 if (breakpoints_inserted)
2623 insert_breakpoints ();
2624
2625 /* And make sure stepping stops right away then. */
2626 step_range_end = step_range_start;
2627 }
2628 goto keep_going;
2629 }
2630
2631 /* We've wandered out of the step range. */
2632
cd0fc7c3 2633 ecs->sal = find_pc_line (stop_pc, 0);
c906108c
SS
2634
2635 if (step_range_end == 1)
2636 {
2637 /* It is stepi or nexti. We always want to stop stepping after
2638 one instruction. */
2639 stop_step = 1;
cd0fc7c3 2640 goto wfi_break;
c906108c
SS
2641 }
2642
2643 /* If we're in the return path from a shared library trampoline,
2644 we want to proceed through the trampoline when stepping. */
cd0fc7c3 2645 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
c906108c
SS
2646 {
2647 CORE_ADDR tmp;
2648
2649 /* Determine where this trampoline returns. */
2650 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2651
2652 /* Only proceed through if we know where it's going. */
2653 if (tmp)
2654 {
2655 /* And put the step-breakpoint there and go until there. */
2656 struct symtab_and_line sr_sal;
2657
2658 INIT_SAL (&sr_sal); /* initialize to zeroes */
2659 sr_sal.pc = tmp;
2660 sr_sal.section = find_pc_overlay (sr_sal.pc);
2661 /* Do not specify what the fp should be when we stop
2662 since on some machines the prologue
2663 is where the new fp value is established. */
2664 step_resume_breakpoint =
2665 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2666 if (breakpoints_inserted)
2667 insert_breakpoints ();
2668
2669 /* Restart without fiddling with the step ranges or
2670 other state. */
2671 goto keep_going;
2672 }
2673 }
2674
cd0fc7c3 2675 if (ecs->sal.line == 0)
c906108c
SS
2676 {
2677 /* We have no line number information. That means to stop
2678 stepping (does this always happen right after one instruction,
2679 when we do "s" in a function with no line numbers,
2680 or can this happen as a result of a return or longjmp?). */
2681 stop_step = 1;
cd0fc7c3 2682 goto wfi_break;
c906108c
SS
2683 }
2684
cd0fc7c3
SS
2685 if ((stop_pc == ecs->sal.pc)
2686 && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
c906108c
SS
2687 {
2688 /* We are at the start of a different line. So stop. Note that
2689 we don't stop if we step into the middle of a different line.
2690 That is said to make things like for (;;) statements work
2691 better. */
2692 stop_step = 1;
cd0fc7c3 2693 goto wfi_break;
c906108c
SS
2694 }
2695
2696 /* We aren't done stepping.
2697
2698 Optimize by setting the stepping range to the line.
2699 (We might not be in the original line, but if we entered a
2700 new line in mid-statement, we continue stepping. This makes
2701 things like for(;;) statements work better.) */
2702
cd0fc7c3 2703 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c906108c
SS
2704 {
2705 /* If this is the last line of the function, don't keep stepping
2706 (it would probably step us out of the function).
2707 This is particularly necessary for a one-line function,
2708 in which after skipping the prologue we better stop even though
2709 we will be in mid-line. */
2710 stop_step = 1;
cd0fc7c3 2711 goto wfi_break;
c906108c 2712 }
cd0fc7c3
SS
2713 step_range_start = ecs->sal.pc;
2714 step_range_end = ecs->sal.end;
c906108c 2715 step_frame_address = FRAME_FP (get_current_frame ());
cd0fc7c3
SS
2716 ecs->current_line = ecs->sal.line;
2717 ecs->current_symtab = ecs->sal.symtab;
c906108c
SS
2718
2719 /* In the case where we just stepped out of a function into the middle
2720 of a line of the caller, continue stepping, but step_frame_address
2721 must be modified to current frame */
2722 {
2723 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2724 if (!(INNER_THAN (current_frame, step_frame_address)))
2725 step_frame_address = current_frame;
2726 }
2727
2728
2729 goto keep_going;
2730
2731 check_sigtramp2:
2732 if (trap_expected
cd0fc7c3 2733 && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
c906108c
SS
2734 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2735 && INNER_THAN (read_sp (), step_sp))
2736 {
2737 /* What has happened here is that we have just stepped the inferior
2738 with a signal (because it is a signal which shouldn't make
2739 us stop), thus stepping into sigtramp.
2740
2741 So we need to set a step_resume_break_address breakpoint
2742 and continue until we hit it, and then step. FIXME: This should
2743 be more enduring than a step_resume breakpoint; we should know
2744 that we will later need to keep going rather than re-hitting
2745 the breakpoint here (see testsuite/gdb.t06/signals.exp where
2746 it says "exceedingly difficult"). */
2747 struct symtab_and_line sr_sal;
2748
2749 INIT_SAL (&sr_sal); /* initialize to zeroes */
2750 sr_sal.pc = prev_pc;
2751 sr_sal.section = find_pc_overlay (sr_sal.pc);
2752 /* We perhaps could set the frame if we kept track of what
2753 the frame corresponding to prev_pc was. But we don't,
2754 so don't. */
2755 through_sigtramp_breakpoint =
2756 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2757 if (breakpoints_inserted)
2758 insert_breakpoints ();
2759
cd0fc7c3
SS
2760 ecs->remove_breakpoints_on_following_step = 1;
2761 ecs->another_trap = 1;
c906108c
SS
2762 }
2763
2764 keep_going:
2765 /* Come to this label when you need to resume the inferior.
2766 It's really much cleaner to do a goto than a maze of if-else
2767 conditions. */
2768
2769 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug
2770 a vforked child beetween its creation and subsequent exit or
2771 call to exec(). However, I had big problems in this rather
2772 creaky exec engine, getting that to work. The fundamental
2773 problem is that I'm trying to debug two processes via an
2774 engine that only understands a single process with possibly
2775 multiple threads.
2776
2777 Hence, this spot is known to have problems when
2778 target_can_follow_vfork_prior_to_exec returns 1. */
2779
2780 /* Save the pc before execution, to compare with pc after stop. */
2781 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
cd0fc7c3 2782 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
c906108c
SS
2783 BREAK is defined, the
2784 original pc would not have
2785 been at the start of a
2786 function. */
cd0fc7c3 2787 prev_func_name = ecs->stop_func_name;
c906108c 2788
cd0fc7c3 2789 if (ecs->update_step_sp)
c906108c 2790 step_sp = read_sp ();
cd0fc7c3 2791 ecs->update_step_sp = 0;
c906108c
SS
2792
2793 /* If we did not do break;, it means we should keep
2794 running the inferior and not return to debugger. */
2795
2796 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2797 {
2798 /* We took a signal (which we are supposed to pass through to
2799 the inferior, else we'd have done a break above) and we
2800 haven't yet gotten our trap. Simply continue. */
cd0fc7c3 2801 resume (currently_stepping (ecs), stop_signal);
c906108c
SS
2802 }
2803 else
2804 {
2805 /* Either the trap was not expected, but we are continuing
2806 anyway (the user asked that this signal be passed to the
2807 child)
2808 -- or --
2809 The signal was SIGTRAP, e.g. it was our signal, but we
2810 decided we should resume from it.
2811
2812 We're going to run this baby now!
2813
2814 Insert breakpoints now, unless we are trying
2815 to one-proceed past a breakpoint. */
2816 /* If we've just finished a special step resume and we don't
2817 want to hit a breakpoint, pull em out. */
2818 if (step_resume_breakpoint == NULL
2819 && through_sigtramp_breakpoint == NULL
cd0fc7c3 2820 && ecs->remove_breakpoints_on_following_step)
c906108c 2821 {
cd0fc7c3 2822 ecs->remove_breakpoints_on_following_step = 0;
c906108c
SS
2823 remove_breakpoints ();
2824 breakpoints_inserted = 0;
2825 }
2826 else if (!breakpoints_inserted &&
cd0fc7c3 2827 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
c906108c
SS
2828 {
2829 breakpoints_failed = insert_breakpoints ();
2830 if (breakpoints_failed)
cd0fc7c3 2831 goto wfi_break;
c906108c
SS
2832 breakpoints_inserted = 1;
2833 }
2834
cd0fc7c3 2835 trap_expected = ecs->another_trap;
c906108c
SS
2836
2837 /* Do not deliver SIGNAL_TRAP (except when the user
2838 explicitly specifies that such a signal should be
2839 delivered to the target program).
2840
2841 Typically, this would occure when a user is debugging a
2842 target monitor on a simulator: the target monitor sets a
2843 breakpoint; the simulator encounters this break-point and
2844 halts the simulation handing control to GDB; GDB, noteing
2845 that the break-point isn't valid, returns control back to
2846 the simulator; the simulator then delivers the hardware
2847 equivalent of a SIGNAL_TRAP to the program being
2848 debugged. */
2849
2850 if (stop_signal == TARGET_SIGNAL_TRAP
2851 && !signal_program[stop_signal])
2852 stop_signal = TARGET_SIGNAL_0;
2853
2854#ifdef SHIFT_INST_REGS
2855 /* I'm not sure when this following segment applies. I do know,
2856 now, that we shouldn't rewrite the regs when we were stopped
2857 by a random signal from the inferior process. */
2858 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
2859 (this is only used on the 88k). */
2860
2861 if (!bpstat_explains_signal (stop_bpstat)
2862 && (stop_signal != TARGET_SIGNAL_CHLD)
2863 && !stopped_by_random_signal)
2864 SHIFT_INST_REGS ();
2865#endif /* SHIFT_INST_REGS */
2866
cd0fc7c3
SS
2867 resume (currently_stepping (ecs), stop_signal);
2868 }
2869
2870 /* Former continues in the main loop goto here. */
2871 wfi_continue:
2872 /* This used to be at the top of the loop. */
2873 if (ecs->infwait_state == infwait_normal_state)
2874 {
2875 overlay_cache_invalid = 1;
2876
2877 /* We have to invalidate the registers BEFORE calling
2878 target_wait because they can be loaded from the target
2879 while in target_wait. This makes remote debugging a bit
2880 more efficient for those targets that provide critical
2881 registers as part of their normal status mechanism. */
2882
2883 registers_changed ();
2884 ecs->waiton_pid = -1;
2885 ecs->wp = &(ecs->ws);
c906108c 2886 }
cd0fc7c3
SS
2887 /* This is the old end of the while loop. Let everybody know
2888 we want to wait for the inferior some more and get called
2889 again soon. */
2890 ecs->wait_some_more = 1;
2891 return;
c906108c
SS
2892 }
2893
cd0fc7c3
SS
2894 /* Former breaks in the main loop goto here. */
2895wfi_break:
2896
c906108c
SS
2897stop_stepping:
2898 if (target_has_execution)
2899 {
2900 /* Are we stopping for a vfork event? We only stop when we see
2901 the child's event. However, we may not yet have seen the
2902 parent's event. And, inferior_pid is still set to the parent's
2903 pid, until we resume again and follow either the parent or child.
2904
2905 To ensure that we can really touch inferior_pid (aka, the
2906 parent process) -- which calls to functions like read_pc
2907 implicitly do -- wait on the parent if necessary. */
2908 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
2909 && !pending_follow.fork_event.saw_parent_fork)
2910 {
2911 int parent_pid;
2912
2913 do
2914 {
2915 if (target_wait_hook)
cd0fc7c3 2916 parent_pid = target_wait_hook (-1, &(ecs->ws));
c906108c 2917 else
cd0fc7c3 2918 parent_pid = target_wait (-1, &(ecs->ws));
c906108c
SS
2919 }
2920 while (parent_pid != inferior_pid);
2921 }
2922
c906108c
SS
2923 /* Assuming the inferior still exists, set these up for next
2924 time, just like we did above if we didn't break out of the
2925 loop. */
2926 prev_pc = read_pc ();
cd0fc7c3
SS
2927 prev_func_start = ecs->stop_func_start;
2928 prev_func_name = ecs->stop_func_name;
c906108c 2929 }
cd0fc7c3
SS
2930 /* Let callers know we don't want to wait for the inferior anymore. */
2931 ecs->wait_some_more = 0;
2932}
2933
2934/* Are we in the middle of stepping? */
2935
392a587b 2936static int
cd0fc7c3
SS
2937currently_stepping (ecs)
2938 struct execution_control_state *ecs;
2939{
2940 return ((through_sigtramp_breakpoint == NULL
2941 && !ecs->handling_longjmp
2942 && ((step_range_end && step_resume_breakpoint == NULL)
2943 || trap_expected))
2944 || ecs->stepping_through_solib_after_catch
2945 || bpstat_should_step ());
c906108c
SS
2946}
2947
2948/* This function returns TRUE if ep is an internal breakpoint
2949 set to catch generic shared library (aka dynamically-linked
2950 library) events. (This is *NOT* the same as a catchpoint for a
2951 shlib event. The latter is something a user can set; this is
2952 something gdb sets for its own use, and isn't ever shown to a
2953 user.) */
2954static int
2955is_internal_shlib_eventpoint (ep)
2956 struct breakpoint *ep;
2957{
2958 return
2959 (ep->type == bp_shlib_event)
2960 ;
2961}
2962
2963/* This function returns TRUE if bs indicates that the inferior
2964 stopped due to a shared library (aka dynamically-linked library)
2965 event. */
2966static int
2967stopped_for_internal_shlib_event (bs)
2968 bpstat bs;
2969{
2970 /* Note that multiple eventpoints may've caused the stop. Any
2971 that are associated with shlib events will be accepted. */
2972 for (; bs != NULL; bs = bs->next)
2973 {
2974 if ((bs->breakpoint_at != NULL)
2975 && is_internal_shlib_eventpoint (bs->breakpoint_at))
2976 return 1;
2977 }
2978
2979 /* If we get here, then no candidate was found. */
2980 return 0;
2981}
2982
2983/* This function returns TRUE if bs indicates that the inferior
2984 stopped due to a shared library (aka dynamically-linked library)
2985 event caught by a catchpoint.
2986
2987 If TRUE, cp_p is set to point to the catchpoint.
2988
2989 Else, the value of cp_p is undefined. */
2990static int
2991stopped_for_shlib_catchpoint (bs, cp_p)
2992 bpstat bs;
2993 struct breakpoint **cp_p;
2994{
2995 /* Note that multiple eventpoints may've caused the stop. Any
2996 that are associated with shlib events will be accepted. */
2997 *cp_p = NULL;
2998
2999 for (; bs != NULL; bs = bs->next)
3000 {
3001 if ((bs->breakpoint_at != NULL)
3002 && ep_is_shlib_catchpoint (bs->breakpoint_at))
3003 {
3004 *cp_p = bs->breakpoint_at;
3005 return 1;
3006 }
3007 }
3008
3009 /* If we get here, then no candidate was found. */
3010 return 0;
3011}
3012\f
3013
3014/* Here to return control to GDB when the inferior stops for real.
3015 Print appropriate messages, remove breakpoints, give terminal our modes.
3016
3017 STOP_PRINT_FRAME nonzero means print the executing frame
3018 (pc, function, args, file, line number and line text).
3019 BREAKPOINTS_FAILED nonzero means stop was due to error
3020 attempting to insert breakpoints. */
3021
3022void
3023normal_stop ()
3024{
c906108c
SS
3025 /* As with the notification of thread events, we want to delay
3026 notifying the user that we've switched thread context until
3027 the inferior actually stops.
3028
3029 (Note that there's no point in saying anything if the inferior
3030 has exited!) */
7a292a7a
SS
3031 if (may_switch_from_inferior_pid
3032 && (switched_from_inferior_pid != inferior_pid)
3033 && target_has_execution)
c906108c
SS
3034 {
3035 target_terminal_ours_for_output ();
3036 printf_filtered ("[Switched to %s]\n",
3037 target_pid_or_tid_to_str (inferior_pid));
3038 switched_from_inferior_pid = inferior_pid;
3039 }
c906108c
SS
3040
3041 /* Make sure that the current_frame's pc is correct. This
3042 is a correction for setting up the frame info before doing
3043 DECR_PC_AFTER_BREAK */
3044 if (target_has_execution && get_current_frame ())
3045 (get_current_frame ())->pc = read_pc ();
3046
3047 if (breakpoints_failed)
3048 {
3049 target_terminal_ours_for_output ();
3050 print_sys_errmsg ("ptrace", breakpoints_failed);
3051 printf_filtered ("Stopped; cannot insert breakpoints.\n\
3052The same program may be running in another process.\n");
3053 }
3054
3055 if (target_has_execution && breakpoints_inserted)
3056 {
3057 if (remove_breakpoints ())
3058 {
3059 target_terminal_ours_for_output ();
3060 printf_filtered ("Cannot remove breakpoints because ");
3061 printf_filtered ("program is no longer writable.\n");
3062 printf_filtered ("It might be running in another process.\n");
3063 printf_filtered ("Further execution is probably impossible.\n");
3064 }
3065 }
3066 breakpoints_inserted = 0;
3067
3068 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3069 Delete any breakpoint that is to be deleted at the next stop. */
3070
3071 breakpoint_auto_delete (stop_bpstat);
3072
3073 /* If an auto-display called a function and that got a signal,
3074 delete that auto-display to avoid an infinite recursion. */
3075
3076 if (stopped_by_random_signal)
3077 disable_current_display ();
3078
3079 /* Don't print a message if in the middle of doing a "step n"
3080 operation for n > 1 */
3081 if (step_multi && stop_step)
3082 goto done;
3083
3084 target_terminal_ours ();
3085
3086 /* Did we stop because the user set the stop_on_solib_events
3087 variable? (If so, we report this as a generic, "Stopped due
3088 to shlib event" message.) */
3089 if (stopped_for_internal_shlib_event (stop_bpstat))
3090 {
3091 printf_filtered ("Stopped due to shared library event\n");
3092 }
3093
3094 /* Look up the hook_stop and run it if it exists. */
3095
3096 if (stop_command && stop_command->hook)
3097 {
3098 catch_errors (hook_stop_stub, stop_command->hook,
3099 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3100 }
3101
3102 if (!target_has_stack)
3103 {
3104
3105 goto done;
3106 }
3107
3108 /* Select innermost stack frame - i.e., current frame is frame 0,
3109 and current location is based on that.
3110 Don't do this on return from a stack dummy routine,
3111 or if the program has exited. */
3112
3113 if (!stop_stack_dummy)
3114 {
3115 select_frame (get_current_frame (), 0);
3116
3117 /* Print current location without a level number, if
3118 we have changed functions or hit a breakpoint.
3119 Print source line if we have one.
3120 bpstat_print() contains the logic deciding in detail
3121 what to print, based on the event(s) that just occurred. */
3122
3123 if (stop_print_frame)
3124 {
3125 int bpstat_ret;
3126 int source_flag;
3127
3128 bpstat_ret = bpstat_print (stop_bpstat);
3129 /* bpstat_print() returned one of:
3130 -1: Didn't print anything
3131 0: Printed preliminary "Breakpoint n, " message, desires
3132 location tacked on
3133 1: Printed something, don't tack on location */
3134
3135 if (bpstat_ret == -1)
3136 if (stop_step
3137 && step_frame_address == FRAME_FP (get_current_frame ())
3138 && step_start_function == find_pc_function (stop_pc))
3139 source_flag = -1; /* finished step, just print source line */
3140 else
3141 source_flag = 1; /* print location and source line */
3142 else if (bpstat_ret == 0) /* hit bpt, desire location */
3143 source_flag = 1; /* print location and source line */
3144 else /* bpstat_ret == 1, hit bpt, do not desire location */
3145 source_flag = -1; /* just print source line */
3146
3147 /* The behavior of this routine with respect to the source
3148 flag is:
3149 -1: Print only source line
3150 0: Print only location
3151 1: Print location and source line */
3152 show_and_print_stack_frame (selected_frame, -1, source_flag);
3153
3154 /* Display the auto-display expressions. */
3155 do_displays ();
3156 }
3157 }
3158
3159 /* Save the function value return registers, if we care.
3160 We might be about to restore their previous contents. */
3161 if (proceed_to_finish)
3162 read_register_bytes (0, stop_registers, REGISTER_BYTES);
3163
3164 if (stop_stack_dummy)
3165 {
3166 /* Pop the empty frame that contains the stack dummy.
3167 POP_FRAME ends with a setting of the current frame, so we
3168 can use that next. */
3169 POP_FRAME;
3170 /* Set stop_pc to what it was before we called the function.
3171 Can't rely on restore_inferior_status because that only gets
3172 called if we don't stop in the called function. */
3173 stop_pc = read_pc ();
3174 select_frame (get_current_frame (), 0);
3175 }
3176
3177
3178 TUIDO (((TuiOpaqueFuncPtr) tui_vCheckDataValues, selected_frame));
3179
3180done:
3181 annotate_stopped ();
3182}
3183
3184static int
3185hook_stop_stub (cmd)
3186 PTR cmd;
3187{
3188 execute_user_command ((struct cmd_list_element *) cmd, 0);
3189 return (0);
3190}
3191\f
3192int
3193signal_stop_state (signo)
3194 int signo;
3195{
3196 return signal_stop[signo];
3197}
3198
3199int
3200signal_print_state (signo)
3201 int signo;
3202{
3203 return signal_print[signo];
3204}
3205
3206int
3207signal_pass_state (signo)
3208 int signo;
3209{
3210 return signal_program[signo];
3211}
3212
3213static void
3214sig_print_header ()
3215{
3216 printf_filtered ("\
3217Signal Stop\tPrint\tPass to program\tDescription\n");
3218}
3219
3220static void
3221sig_print_info (oursig)
3222 enum target_signal oursig;
3223{
3224 char *name = target_signal_to_name (oursig);
3225 int name_padding = 13 - strlen (name);
3226 if (name_padding <= 0)
3227 name_padding = 0;
3228
3229 printf_filtered ("%s", name);
3230 printf_filtered ("%*.*s ", name_padding, name_padding,
3231 " ");
3232 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3233 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3234 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3235 printf_filtered ("%s\n", target_signal_to_string (oursig));
3236}
3237
3238/* Specify how various signals in the inferior should be handled. */
3239
3240static void
3241handle_command (args, from_tty)
3242 char *args;
3243 int from_tty;
3244{
3245 char **argv;
3246 int digits, wordlen;
3247 int sigfirst, signum, siglast;
3248 enum target_signal oursig;
3249 int allsigs;
3250 int nsigs;
3251 unsigned char *sigs;
3252 struct cleanup *old_chain;
3253
3254 if (args == NULL)
3255 {
3256 error_no_arg ("signal to handle");
3257 }
3258
3259 /* Allocate and zero an array of flags for which signals to handle. */
3260
3261 nsigs = (int) TARGET_SIGNAL_LAST;
3262 sigs = (unsigned char *) alloca (nsigs);
3263 memset (sigs, 0, nsigs);
3264
3265 /* Break the command line up into args. */
3266
3267 argv = buildargv (args);
3268 if (argv == NULL)
3269 {
3270 nomem (0);
3271 }
7a292a7a 3272 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3273
3274 /* Walk through the args, looking for signal oursigs, signal names, and
3275 actions. Signal numbers and signal names may be interspersed with
3276 actions, with the actions being performed for all signals cumulatively
3277 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3278
3279 while (*argv != NULL)
3280 {
3281 wordlen = strlen (*argv);
3282 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3283 {;
3284 }
3285 allsigs = 0;
3286 sigfirst = siglast = -1;
3287
3288 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3289 {
3290 /* Apply action to all signals except those used by the
3291 debugger. Silently skip those. */
3292 allsigs = 1;
3293 sigfirst = 0;
3294 siglast = nsigs - 1;
3295 }
3296 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3297 {
3298 SET_SIGS (nsigs, sigs, signal_stop);
3299 SET_SIGS (nsigs, sigs, signal_print);
3300 }
3301 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3302 {
3303 UNSET_SIGS (nsigs, sigs, signal_program);
3304 }
3305 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3306 {
3307 SET_SIGS (nsigs, sigs, signal_print);
3308 }
3309 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3310 {
3311 SET_SIGS (nsigs, sigs, signal_program);
3312 }
3313 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3314 {
3315 UNSET_SIGS (nsigs, sigs, signal_stop);
3316 }
3317 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3318 {
3319 SET_SIGS (nsigs, sigs, signal_program);
3320 }
3321 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3322 {
3323 UNSET_SIGS (nsigs, sigs, signal_print);
3324 UNSET_SIGS (nsigs, sigs, signal_stop);
3325 }
3326 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3327 {
3328 UNSET_SIGS (nsigs, sigs, signal_program);
3329 }
3330 else if (digits > 0)
3331 {
3332 /* It is numeric. The numeric signal refers to our own
3333 internal signal numbering from target.h, not to host/target
3334 signal number. This is a feature; users really should be
3335 using symbolic names anyway, and the common ones like
3336 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3337
3338 sigfirst = siglast = (int)
3339 target_signal_from_command (atoi (*argv));
3340 if ((*argv)[digits] == '-')
3341 {
3342 siglast = (int)
3343 target_signal_from_command (atoi ((*argv) + digits + 1));
3344 }
3345 if (sigfirst > siglast)
3346 {
3347 /* Bet he didn't figure we'd think of this case... */
3348 signum = sigfirst;
3349 sigfirst = siglast;
3350 siglast = signum;
3351 }
3352 }
3353 else
3354 {
3355 oursig = target_signal_from_name (*argv);
3356 if (oursig != TARGET_SIGNAL_UNKNOWN)
3357 {
3358 sigfirst = siglast = (int) oursig;
3359 }
3360 else
3361 {
3362 /* Not a number and not a recognized flag word => complain. */
3363 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3364 }
3365 }
3366
3367 /* If any signal numbers or symbol names were found, set flags for
3368 which signals to apply actions to. */
3369
3370 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3371 {
3372 switch ((enum target_signal) signum)
3373 {
3374 case TARGET_SIGNAL_TRAP:
3375 case TARGET_SIGNAL_INT:
3376 if (!allsigs && !sigs[signum])
3377 {
3378 if (query ("%s is used by the debugger.\n\
3379Are you sure you want to change it? ",
3380 target_signal_to_name
3381 ((enum target_signal) signum)))
3382 {
3383 sigs[signum] = 1;
3384 }
3385 else
3386 {
3387 printf_unfiltered ("Not confirmed, unchanged.\n");
3388 gdb_flush (gdb_stdout);
3389 }
3390 }
3391 break;
3392 case TARGET_SIGNAL_0:
3393 case TARGET_SIGNAL_DEFAULT:
3394 case TARGET_SIGNAL_UNKNOWN:
3395 /* Make sure that "all" doesn't print these. */
3396 break;
3397 default:
3398 sigs[signum] = 1;
3399 break;
3400 }
3401 }
3402
3403 argv++;
3404 }
3405
3406 target_notice_signals (inferior_pid);
3407
3408 if (from_tty)
3409 {
3410 /* Show the results. */
3411 sig_print_header ();
3412 for (signum = 0; signum < nsigs; signum++)
3413 {
3414 if (sigs[signum])
3415 {
3416 sig_print_info (signum);
3417 }
3418 }
3419 }
3420
3421 do_cleanups (old_chain);
3422}
3423
3424static void
3425xdb_handle_command (args, from_tty)
3426 char *args;
3427 int from_tty;
3428{
3429 char **argv;
3430 struct cleanup *old_chain;
3431
3432 /* Break the command line up into args. */
3433
3434 argv = buildargv (args);
3435 if (argv == NULL)
3436 {
3437 nomem (0);
3438 }
7a292a7a 3439 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3440 if (argv[1] != (char *) NULL)
3441 {
3442 char *argBuf;
3443 int bufLen;
3444
3445 bufLen = strlen (argv[0]) + 20;
3446 argBuf = (char *) xmalloc (bufLen);
3447 if (argBuf)
3448 {
3449 int validFlag = 1;
3450 enum target_signal oursig;
3451
3452 oursig = target_signal_from_name (argv[0]);
3453 memset (argBuf, 0, bufLen);
3454 if (strcmp (argv[1], "Q") == 0)
3455 sprintf (argBuf, "%s %s", argv[0], "noprint");
3456 else
3457 {
3458 if (strcmp (argv[1], "s") == 0)
3459 {
3460 if (!signal_stop[oursig])
3461 sprintf (argBuf, "%s %s", argv[0], "stop");
3462 else
3463 sprintf (argBuf, "%s %s", argv[0], "nostop");
3464 }
3465 else if (strcmp (argv[1], "i") == 0)
3466 {
3467 if (!signal_program[oursig])
3468 sprintf (argBuf, "%s %s", argv[0], "pass");
3469 else
3470 sprintf (argBuf, "%s %s", argv[0], "nopass");
3471 }
3472 else if (strcmp (argv[1], "r") == 0)
3473 {
3474 if (!signal_print[oursig])
3475 sprintf (argBuf, "%s %s", argv[0], "print");
3476 else
3477 sprintf (argBuf, "%s %s", argv[0], "noprint");
3478 }
3479 else
3480 validFlag = 0;
3481 }
3482 if (validFlag)
3483 handle_command (argBuf, from_tty);
3484 else
3485 printf_filtered ("Invalid signal handling flag.\n");
3486 if (argBuf)
3487 free (argBuf);
3488 }
3489 }
3490 do_cleanups (old_chain);
3491}
3492
3493/* Print current contents of the tables set by the handle command.
3494 It is possible we should just be printing signals actually used
3495 by the current target (but for things to work right when switching
3496 targets, all signals should be in the signal tables). */
3497
3498static void
3499signals_info (signum_exp, from_tty)
3500 char *signum_exp;
3501 int from_tty;
3502{
3503 enum target_signal oursig;
3504 sig_print_header ();
3505
3506 if (signum_exp)
3507 {
3508 /* First see if this is a symbol name. */
3509 oursig = target_signal_from_name (signum_exp);
3510 if (oursig == TARGET_SIGNAL_UNKNOWN)
3511 {
3512 /* No, try numeric. */
3513 oursig =
3514 target_signal_from_command (parse_and_eval_address (signum_exp));
3515 }
3516 sig_print_info (oursig);
3517 return;
3518 }
3519
3520 printf_filtered ("\n");
3521 /* These ugly casts brought to you by the native VAX compiler. */
3522 for (oursig = TARGET_SIGNAL_FIRST;
3523 (int) oursig < (int) TARGET_SIGNAL_LAST;
3524 oursig = (enum target_signal) ((int) oursig + 1))
3525 {
3526 QUIT;
3527
3528 if (oursig != TARGET_SIGNAL_UNKNOWN
3529 && oursig != TARGET_SIGNAL_DEFAULT
3530 && oursig != TARGET_SIGNAL_0)
3531 sig_print_info (oursig);
3532 }
3533
3534 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3535}
3536\f
7a292a7a
SS
3537struct inferior_status
3538{
3539 enum target_signal stop_signal;
3540 CORE_ADDR stop_pc;
3541 bpstat stop_bpstat;
3542 int stop_step;
3543 int stop_stack_dummy;
3544 int stopped_by_random_signal;
3545 int trap_expected;
3546 CORE_ADDR step_range_start;
3547 CORE_ADDR step_range_end;
3548 CORE_ADDR step_frame_address;
3549 int step_over_calls;
3550 CORE_ADDR step_resume_break_address;
3551 int stop_after_trap;
3552 int stop_soon_quietly;
3553 CORE_ADDR selected_frame_address;
3554 char *stop_registers;
3555
3556 /* These are here because if call_function_by_hand has written some
3557 registers and then decides to call error(), we better not have changed
3558 any registers. */
3559 char *registers;
3560
3561 int selected_level;
3562 int breakpoint_proceeded;
3563 int restore_stack_info;
3564 int proceed_to_finish;
3565};
3566
3567
3568static struct inferior_status *xmalloc_inferior_status PARAMS ((void));
3569static struct inferior_status *
3570xmalloc_inferior_status ()
3571{
3572 struct inferior_status *inf_status;
3573 inf_status = xmalloc (sizeof (struct inferior_status));
3574 inf_status->stop_registers = xmalloc (REGISTER_BYTES);
3575 inf_status->registers = xmalloc (REGISTER_BYTES);
3576 return inf_status;
3577}
3578
3579static void free_inferior_status PARAMS ((struct inferior_status *));
3580static void
3581free_inferior_status (inf_status)
3582 struct inferior_status *inf_status;
3583{
3584 free (inf_status->registers);
3585 free (inf_status->stop_registers);
3586 free (inf_status);
3587}
3588
3589void
3590write_inferior_status_register (inf_status, regno, val)
3591 struct inferior_status *inf_status;
3592 int regno;
3593 LONGEST val;
3594{
3595 int size = REGISTER_RAW_SIZE(regno);
3596 void *buf = alloca (size);
3597 store_signed_integer (buf, size, val);
3598 memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
3599}
3600
3601
3602
c906108c
SS
3603/* Save all of the information associated with the inferior<==>gdb
3604 connection. INF_STATUS is a pointer to a "struct inferior_status"
3605 (defined in inferior.h). */
3606
7a292a7a
SS
3607struct inferior_status *
3608save_inferior_status (restore_stack_info)
c906108c
SS
3609 int restore_stack_info;
3610{
7a292a7a
SS
3611 struct inferior_status *inf_status = xmalloc_inferior_status ();
3612
c906108c
SS
3613 inf_status->stop_signal = stop_signal;
3614 inf_status->stop_pc = stop_pc;
3615 inf_status->stop_step = stop_step;
3616 inf_status->stop_stack_dummy = stop_stack_dummy;
3617 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3618 inf_status->trap_expected = trap_expected;
3619 inf_status->step_range_start = step_range_start;
3620 inf_status->step_range_end = step_range_end;
3621 inf_status->step_frame_address = step_frame_address;
3622 inf_status->step_over_calls = step_over_calls;
3623 inf_status->stop_after_trap = stop_after_trap;
3624 inf_status->stop_soon_quietly = stop_soon_quietly;
3625 /* Save original bpstat chain here; replace it with copy of chain.
3626 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3627 hand them back the original chain when restore_inferior_status is
3628 called. */
c906108c
SS
3629 inf_status->stop_bpstat = stop_bpstat;
3630 stop_bpstat = bpstat_copy (stop_bpstat);
3631 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3632 inf_status->restore_stack_info = restore_stack_info;
3633 inf_status->proceed_to_finish = proceed_to_finish;
7a292a7a 3634
c906108c
SS
3635 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
3636
3637 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
3638
3639 record_selected_frame (&(inf_status->selected_frame_address),
3640 &(inf_status->selected_level));
7a292a7a 3641 return inf_status;
c906108c
SS
3642}
3643
3644struct restore_selected_frame_args
3645{
3646 CORE_ADDR frame_address;
3647 int level;
3648};
3649
3650static int restore_selected_frame PARAMS ((PTR));
3651
c906108c
SS
3652static int
3653restore_selected_frame (args)
3654 PTR args;
3655{
3656 struct restore_selected_frame_args *fr =
3657 (struct restore_selected_frame_args *) args;
3658 struct frame_info *frame;
3659 int level = fr->level;
3660
3661 frame = find_relative_frame (get_current_frame (), &level);
3662
3663 /* If inf_status->selected_frame_address is NULL, there was no
3664 previously selected frame. */
3665 if (frame == NULL ||
3666 /* FRAME_FP (frame) != fr->frame_address || */
3667 /* elz: deleted this check as a quick fix to the problem that
3668 for function called by hand gdb creates no internal frame
3669 structure and the real stack and gdb's idea of stack are
3670 different if nested calls by hands are made.
3671
3672 mvs: this worries me. */
3673 level != 0)
3674 {
3675 warning ("Unable to restore previously selected frame.\n");
3676 return 0;
3677 }
3678
3679 select_frame (frame, fr->level);
3680
3681 return (1);
3682}
3683
3684void
3685restore_inferior_status (inf_status)
3686 struct inferior_status *inf_status;
3687{
3688 stop_signal = inf_status->stop_signal;
3689 stop_pc = inf_status->stop_pc;
3690 stop_step = inf_status->stop_step;
3691 stop_stack_dummy = inf_status->stop_stack_dummy;
3692 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3693 trap_expected = inf_status->trap_expected;
3694 step_range_start = inf_status->step_range_start;
3695 step_range_end = inf_status->step_range_end;
3696 step_frame_address = inf_status->step_frame_address;
3697 step_over_calls = inf_status->step_over_calls;
3698 stop_after_trap = inf_status->stop_after_trap;
3699 stop_soon_quietly = inf_status->stop_soon_quietly;
3700 bpstat_clear (&stop_bpstat);
3701 stop_bpstat = inf_status->stop_bpstat;
3702 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3703 proceed_to_finish = inf_status->proceed_to_finish;
3704
7a292a7a 3705 /* FIXME: Is the restore of stop_registers always needed */
c906108c
SS
3706 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
3707
3708 /* The inferior can be gone if the user types "print exit(0)"
3709 (and perhaps other times). */
3710 if (target_has_execution)
3711 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
3712
c906108c
SS
3713 /* FIXME: If we are being called after stopping in a function which
3714 is called from gdb, we should not be trying to restore the
3715 selected frame; it just prints a spurious error message (The
3716 message is useful, however, in detecting bugs in gdb (like if gdb
3717 clobbers the stack)). In fact, should we be restoring the
3718 inferior status at all in that case? . */
3719
3720 if (target_has_stack && inf_status->restore_stack_info)
3721 {
3722 struct restore_selected_frame_args fr;
3723 fr.level = inf_status->selected_level;
3724 fr.frame_address = inf_status->selected_frame_address;
3725 /* The point of catch_errors is that if the stack is clobbered,
3726 walking the stack might encounter a garbage pointer and error()
3727 trying to dereference it. */
3728 if (catch_errors (restore_selected_frame, &fr,
3729 "Unable to restore previously selected frame:\n",
3730 RETURN_MASK_ERROR) == 0)
3731 /* Error in restoring the selected frame. Select the innermost
3732 frame. */
3733
3734
3735 select_frame (get_current_frame (), 0);
3736
3737 }
c906108c 3738
7a292a7a
SS
3739 free_inferior_status (inf_status);
3740}
c906108c
SS
3741
3742void
7a292a7a
SS
3743discard_inferior_status (inf_status)
3744 struct inferior_status *inf_status;
3745{
3746 /* See save_inferior_status for info on stop_bpstat. */
3747 bpstat_clear (&inf_status->stop_bpstat);
3748 free_inferior_status (inf_status);
3749}
3750
3751static void
c906108c
SS
3752set_follow_fork_mode_command (arg, from_tty, c)
3753 char *arg;
3754 int from_tty;
3755 struct cmd_list_element *c;
3756{
3757 if (!STREQ (arg, "parent") &&
3758 !STREQ (arg, "child") &&
3759 !STREQ (arg, "both") &&
3760 !STREQ (arg, "ask"))
3761 error ("follow-fork-mode must be one of \"parent\", \"child\", \"both\" or \"ask\".");
3762
3763 if (follow_fork_mode_string != NULL)
3764 free (follow_fork_mode_string);
3765 follow_fork_mode_string = savestring (arg, strlen (arg));
3766}
7a292a7a
SS
3767
3768
c906108c 3769\f
7a292a7a
SS
3770static void build_infrun PARAMS ((void));
3771static void
3772build_infrun ()
3773{
3774 stop_registers = xmalloc (REGISTER_BYTES);
3775}
c906108c
SS
3776
3777
3778void
3779_initialize_infrun ()
3780{
3781 register int i;
3782 register int numsigs;
3783 struct cmd_list_element *c;
3784
7a292a7a
SS
3785 build_infrun ();
3786
0f71a2f6
JM
3787 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3788 register_gdbarch_swap (NULL, 0, build_infrun);
3789
c906108c
SS
3790 add_info ("signals", signals_info,
3791 "What debugger does when program gets various signals.\n\
3792Specify a signal as argument to print info on that signal only.");
3793 add_info_alias ("handle", "signals", 0);
3794
3795 add_com ("handle", class_run, handle_command,
3796 concat ("Specify how to handle a signal.\n\
3797Args are signals and actions to apply to those signals.\n\
3798Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3799from 1-15 are allowed for compatibility with old versions of GDB.\n\
3800Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3801The special arg \"all\" is recognized to mean all signals except those\n\
3802used by the debugger, typically SIGTRAP and SIGINT.\n",
3803 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3804\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3805Stop means reenter debugger if this signal happens (implies print).\n\
3806Print means print a message if this signal happens.\n\
3807Pass means let program see this signal; otherwise program doesn't know.\n\
3808Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3809Pass and Stop may be combined.", NULL));
3810 if (xdb_commands)
3811 {
3812 add_com ("lz", class_info, signals_info,
3813 "What debugger does when program gets various signals.\n\
3814Specify a signal as argument to print info on that signal only.");
3815 add_com ("z", class_run, xdb_handle_command,
3816 concat ("Specify how to handle a signal.\n\
3817Args are signals and actions to apply to those signals.\n\
3818Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3819from 1-15 are allowed for compatibility with old versions of GDB.\n\
3820Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3821The special arg \"all\" is recognized to mean all signals except those\n\
3822used by the debugger, typically SIGTRAP and SIGINT.\n",
3823 "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3824\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3825nopass), \"Q\" (noprint)\n\
3826Stop means reenter debugger if this signal happens (implies print).\n\
3827Print means print a message if this signal happens.\n\
3828Pass means let program see this signal; otherwise program doesn't know.\n\
3829Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3830Pass and Stop may be combined.", NULL));
3831 }
3832
3833 if (!dbx_commands)
3834 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
3835 "There is no `stop' command, but you can set a hook on `stop'.\n\
3836This allows you to set a list of commands to be run each time execution\n\
3837of the program stops.", &cmdlist);
3838
3839 numsigs = (int) TARGET_SIGNAL_LAST;
3840 signal_stop = (unsigned char *)
3841 xmalloc (sizeof (signal_stop[0]) * numsigs);
3842 signal_print = (unsigned char *)
3843 xmalloc (sizeof (signal_print[0]) * numsigs);
3844 signal_program = (unsigned char *)
3845 xmalloc (sizeof (signal_program[0]) * numsigs);
3846 for (i = 0; i < numsigs; i++)
3847 {
3848 signal_stop[i] = 1;
3849 signal_print[i] = 1;
3850 signal_program[i] = 1;
3851 }
3852
3853 /* Signals caused by debugger's own actions
3854 should not be given to the program afterwards. */
3855 signal_program[TARGET_SIGNAL_TRAP] = 0;
3856 signal_program[TARGET_SIGNAL_INT] = 0;
3857
3858 /* Signals that are not errors should not normally enter the debugger. */
3859 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3860 signal_print[TARGET_SIGNAL_ALRM] = 0;
3861 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3862 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3863 signal_stop[TARGET_SIGNAL_PROF] = 0;
3864 signal_print[TARGET_SIGNAL_PROF] = 0;
3865 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3866 signal_print[TARGET_SIGNAL_CHLD] = 0;
3867 signal_stop[TARGET_SIGNAL_IO] = 0;
3868 signal_print[TARGET_SIGNAL_IO] = 0;
3869 signal_stop[TARGET_SIGNAL_POLL] = 0;
3870 signal_print[TARGET_SIGNAL_POLL] = 0;
3871 signal_stop[TARGET_SIGNAL_URG] = 0;
3872 signal_print[TARGET_SIGNAL_URG] = 0;
3873 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3874 signal_print[TARGET_SIGNAL_WINCH] = 0;
3875
cd0fc7c3
SS
3876 /* These signals are used internally by user-level thread
3877 implementations. (See signal(5) on Solaris.) Like the above
3878 signals, a healthy program receives and handles them as part of
3879 its normal operation. */
3880 signal_stop[TARGET_SIGNAL_LWP] = 0;
3881 signal_print[TARGET_SIGNAL_LWP] = 0;
3882 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3883 signal_print[TARGET_SIGNAL_WAITING] = 0;
3884 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3885 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3886
c906108c
SS
3887#ifdef SOLIB_ADD
3888 add_show_from_set
3889 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3890 (char *) &stop_on_solib_events,
3891 "Set stopping for shared library events.\n\
3892If nonzero, gdb will give control to the user when the dynamic linker\n\
3893notifies gdb of shared library events. The most common event of interest\n\
3894to the user would be loading/unloading of a new library.\n",
3895 &setlist),
3896 &showlist);
3897#endif
3898
3899 c = add_set_enum_cmd ("follow-fork-mode",
3900 class_run,
3901 follow_fork_mode_kind_names,
3902 (char *) &follow_fork_mode_string,
3903/* ??rehrauer: The "both" option is broken, by what may be a 10.20
3904 kernel problem. It's also not terribly useful without a GUI to
3905 help the user drive two debuggers. So for now, I'm disabling
3906 the "both" option. */
3907/* "Set debugger response to a program call of fork \
3908or vfork.\n\
3909A fork or vfork creates a new process. follow-fork-mode can be:\n\
3910 parent - the original process is debugged after a fork\n\
3911 child - the new process is debugged after a fork\n\
3912 both - both the parent and child are debugged after a fork\n\
3913 ask - the debugger will ask for one of the above choices\n\
3914For \"both\", another copy of the debugger will be started to follow\n\
3915the new child process. The original debugger will continue to follow\n\
3916the original parent process. To distinguish their prompts, the\n\
3917debugger copy's prompt will be changed.\n\
3918For \"parent\" or \"child\", the unfollowed process will run free.\n\
3919By default, the debugger will follow the parent process.",
3920*/
3921 "Set debugger response to a program call of fork \
3922or vfork.\n\
3923A fork or vfork creates a new process. follow-fork-mode can be:\n\
3924 parent - the original process is debugged after a fork\n\
3925 child - the new process is debugged after a fork\n\
3926 ask - the debugger will ask for one of the above choices\n\
3927For \"parent\" or \"child\", the unfollowed process will run free.\n\
3928By default, the debugger will follow the parent process.",
3929 &setlist);
3930/* c->function.sfunc = ;*/
3931 add_show_from_set (c, &showlist);
3932
3933 set_follow_fork_mode_command ("parent", 0, NULL);
3934
3935 c = add_set_enum_cmd ("scheduler-locking", class_run,
3936 scheduler_enums, /* array of string names */
3937 (char *) &scheduler_mode, /* current mode */
3938 "Set mode for locking scheduler during execution.\n\
3939off == no locking (threads may preempt at any time)\n\
3940on == full locking (no thread except the current thread may run)\n\
3941step == scheduler locked during every single-step operation.\n\
3942 In this mode, no other thread may run during a step command.\n\
3943 Other threads may run while stepping over a function call ('next').",
3944 &setlist);
3945
3946 c->function.sfunc = set_schedlock_func; /* traps on target vector */
3947 add_show_from_set (c, &showlist);
3948}
This page took 0.20288 seconds and 4 git commands to generate.