*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2 48#include "solib.h"
f17517ea 49#include "main.h"
a77053c2 50
9f976b41 51#include "gdb_assert.h"
034dad6f 52#include "mi/mi-common.h"
c906108c
SS
53
54/* Prototypes for local functions */
55
96baa820 56static void signals_info (char *, int);
c906108c 57
96baa820 58static void handle_command (char *, int);
c906108c 59
96baa820 60static void sig_print_info (enum target_signal);
c906108c 61
96baa820 62static void sig_print_header (void);
c906108c 63
74b7792f 64static void resume_cleanups (void *);
c906108c 65
96baa820 66static int hook_stop_stub (void *);
c906108c 67
96baa820
JM
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
4ef3f3be 72static int follow_fork (void);
96baa820
JM
73
74static void set_schedlock_func (char *args, int from_tty,
488f131b 75 struct cmd_list_element *c);
96baa820 76
96baa820
JM
77struct execution_control_state;
78
79static int currently_stepping (struct execution_control_state *ecs);
80
81static void xdb_handle_command (char *args, int from_tty);
82
ea67f13b
DJ
83static int prepare_to_proceed (void);
84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
920d2a44
AC
94static void
95show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97{
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99}
5fbbeb29 100
43ff13b4 101/* In asynchronous mode, but simulating synchronous execution. */
96baa820 102
43ff13b4
JM
103int sync_execution = 0;
104
c906108c
SS
105/* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
96baa820
JM
107 running in. */
108
39f77062 109static ptid_t previous_inferior_ptid;
7a292a7a
SS
110
111/* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114#ifndef MAY_FOLLOW_EXEC
115#define MAY_FOLLOW_EXEC (0)
c906108c
SS
116#endif
117
7a292a7a
SS
118static int may_follow_exec = MAY_FOLLOW_EXEC;
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e
SS
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f 179
7a292a7a
SS
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
692590c1
MS
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
c906108c
SS
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
39f77062
KB
212/* Value to pass to target_resume() to cause all threads to resume */
213
214#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
220/* Nonzero if breakpoints are now inserted in the inferior. */
221
222static int breakpoints_inserted;
223
224/* Function inferior was in as of last step command. */
225
226static struct symbol *step_start_function;
227
228/* Nonzero if we are expecting a trace trap and should proceed from it. */
229
230static int trap_expected;
231
c906108c
SS
232/* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234static int stop_on_solib_events;
920d2a44
AC
235static void
236show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
240 value);
241}
c906108c 242
c906108c
SS
243/* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
245
246int stop_after_trap;
247
248/* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
252
c0236d92 253enum stop_kind stop_soon;
c906108c
SS
254
255/* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
257
258int proceed_to_finish;
259
260/* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
264
72cec141 265struct regcache *stop_registers;
c906108c 266
c906108c
SS
267/* Nonzero after stop if current stack frame should be printed. */
268
269static int stop_print_frame;
270
271static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 272
e02bc4cc 273/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
39f77062 276static ptid_t target_last_wait_ptid;
e02bc4cc
DS
277static struct target_waitstatus target_last_waitstatus;
278
c906108c
SS
279/* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
282 immediately. */
283static struct
488f131b
JB
284{
285 enum target_waitkind kind;
286 struct
c906108c 287 {
488f131b 288 int parent_pid;
488f131b 289 int child_pid;
c906108c 290 }
488f131b
JB
291 fork_event;
292 char *execd_pathname;
293}
c906108c
SS
294pending_follow;
295
53904c9e
AC
296static const char follow_fork_mode_child[] = "child";
297static const char follow_fork_mode_parent[] = "parent";
298
488f131b 299static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
302 NULL
ef346e04 303};
c906108c 304
53904c9e 305static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
306static void
307show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309{
310 fprintf_filtered (file, _("\
311Debugger response to a program call of fork or vfork is \"%s\".\n"),
312 value);
313}
c906108c
SS
314\f
315
6604731b 316static int
4ef3f3be 317follow_fork (void)
c906108c 318{
ea1dd7bc 319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 320
6604731b 321 return target_follow_fork (follow_child);
c906108c
SS
322}
323
6604731b
DJ
324void
325follow_inferior_reset_breakpoints (void)
c906108c 326{
6604731b
DJ
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
329 thread number.
330
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
337
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
340
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
345
346 breakpoint_re_set ();
347 insert_breakpoints ();
c906108c 348}
c906108c 349
1adeb98a
FN
350/* EXECD_PATHNAME is assumed to be non-NULL. */
351
c906108c 352static void
96baa820 353follow_exec (int pid, char *execd_pathname)
c906108c 354{
c906108c 355 int saved_pid = pid;
7a292a7a
SS
356 struct target_ops *tgt;
357
358 if (!may_follow_exec)
359 return;
c906108c 360
c906108c
SS
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
c906108c 389 /* What is this a.out's name? */
a3f17187 390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
7a292a7a
SS
394
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
398 if (tgt == NULL)
8a3fe4f8 399 error (_("Could find run target to save before following exec"));
7a292a7a 400
c906108c
SS
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
39f77062 403 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 404 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 405 push_target (tgt);
c906108c
SS
406
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
409
410 /* And also is where symbols can be found. */
1adeb98a 411 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
412
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
7a292a7a 416#if defined(SOLIB_RESTART)
c906108c 417 SOLIB_RESTART ();
7a292a7a
SS
418#endif
419#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
421#else
422 solib_create_inferior_hook ();
7a292a7a 423#endif
c906108c
SS
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
c906108c
SS
434}
435
436/* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
440
441/* The thread we inserted single-step breakpoints for. */
442static ptid_t singlestep_ptid;
443
fd48f117
DJ
444/* PC when we started this single-step. */
445static CORE_ADDR singlestep_pc;
446
9f976b41
DJ
447/* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449static ptid_t saved_singlestep_ptid;
450static int stepping_past_singlestep_breakpoint;
c906108c
SS
451\f
452
453/* Things to clean up if we QUIT out of resume (). */
c906108c 454static void
74b7792f 455resume_cleanups (void *ignore)
c906108c
SS
456{
457 normal_stop ();
458}
459
53904c9e
AC
460static const char schedlock_off[] = "off";
461static const char schedlock_on[] = "on";
462static const char schedlock_step[] = "step";
488f131b 463static const char *scheduler_enums[] = {
ef346e04
AC
464 schedlock_off,
465 schedlock_on,
466 schedlock_step,
467 NULL
468};
920d2a44
AC
469static const char *scheduler_mode = schedlock_off;
470static void
471show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
473{
474 fprintf_filtered (file, _("\
475Mode for locking scheduler during execution is \"%s\".\n"),
476 value);
477}
c906108c
SS
478
479static void
96baa820 480set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 481{
eefe576e
AC
482 if (!target_can_lock_scheduler)
483 {
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
486 }
c906108c
SS
487}
488
489
490/* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
495
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
498void
96baa820 499resume (int step, enum target_signal sig)
c906108c
SS
500{
501 int should_resume = 1;
74b7792f 502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
503 QUIT;
504
527159b7 505 if (debug_infrun)
8a9de0e4
AC
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
507 step, sig);
527159b7 508
ef5cf84e
MS
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
510
c906108c 511
692590c1
MS
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
519 step anyway. */
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
488f131b 522
692590c1 523
c2c6d25f
JM
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
529 {
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
531 gdbarch_skip_permanent_breakpoint (current_gdbarch,
532 get_current_regcache ());
6d350bb5
UW
533 else
534 error (_("\
535The program is stopped at a permanent breakpoint, but GDB does not know\n\
536how to step past a permanent breakpoint on this architecture. Try using\n\
537a command like `return' or `jump' to continue execution."));
538 }
c2c6d25f 539
1c0fdd0e 540 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
541 {
542 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 543 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
544 {
545 /* ...and don't ask hardware to do it. */
546 step = 0;
547 /* and do not pull these breakpoints until after a `wait' in
548 `wait_for_inferior' */
549 singlestep_breakpoints_inserted_p = 1;
550 singlestep_ptid = inferior_ptid;
551 singlestep_pc = read_pc ();
552 }
c906108c
SS
553 }
554
c906108c 555 /* If there were any forks/vforks/execs that were caught and are
6604731b 556 now to be followed, then do so. */
c906108c
SS
557 switch (pending_follow.kind)
558 {
6604731b
DJ
559 case TARGET_WAITKIND_FORKED:
560 case TARGET_WAITKIND_VFORKED:
c906108c 561 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
562 if (follow_fork ())
563 should_resume = 0;
c906108c
SS
564 break;
565
6604731b 566 case TARGET_WAITKIND_EXECD:
c906108c 567 /* follow_exec is called as soon as the exec event is seen. */
6604731b 568 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
569 break;
570
571 default:
572 break;
573 }
c906108c
SS
574
575 /* Install inferior's terminal modes. */
576 target_terminal_inferior ();
577
578 if (should_resume)
579 {
39f77062 580 ptid_t resume_ptid;
dfcd3bfb 581
488f131b 582 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 583
8fb3e588
AC
584 if ((step || singlestep_breakpoints_inserted_p)
585 && (stepping_past_singlestep_breakpoint
586 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 587 {
ef5cf84e
MS
588 /* Stepping past a breakpoint without inserting breakpoints.
589 Make sure only the current thread gets to step, so that
590 other threads don't sneak past breakpoints while they are
591 not inserted. */
c906108c 592
ef5cf84e 593 resume_ptid = inferior_ptid;
c906108c 594 }
ef5cf84e 595
8fb3e588
AC
596 if ((scheduler_mode == schedlock_on)
597 || (scheduler_mode == schedlock_step
598 && (step || singlestep_breakpoints_inserted_p)))
c906108c 599 {
ef5cf84e 600 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 601 resume_ptid = inferior_ptid;
c906108c 602 }
ef5cf84e 603
e6cf7916 604 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
605 {
606 /* Most targets can step a breakpoint instruction, thus
607 executing it normally. But if this one cannot, just
608 continue and we will hit it anyway. */
609 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
610 step = 0;
611 }
39f77062 612 target_resume (resume_ptid, step, sig);
c906108c
SS
613 }
614
615 discard_cleanups (old_cleanups);
616}
617\f
618
619/* Clear out all variables saying what to do when inferior is continued.
620 First do this, then set the ones you want, then call `proceed'. */
621
622void
96baa820 623clear_proceed_status (void)
c906108c
SS
624{
625 trap_expected = 0;
626 step_range_start = 0;
627 step_range_end = 0;
aa0cd9c1 628 step_frame_id = null_frame_id;
5fbbeb29 629 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 630 stop_after_trap = 0;
c0236d92 631 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
632 proceed_to_finish = 0;
633 breakpoint_proceeded = 1; /* We're about to proceed... */
634
d5c31457
UW
635 if (stop_registers)
636 {
637 regcache_xfree (stop_registers);
638 stop_registers = NULL;
639 }
640
c906108c
SS
641 /* Discard any remaining commands or status from previous stop. */
642 bpstat_clear (&stop_bpstat);
643}
644
ea67f13b
DJ
645/* This should be suitable for any targets that support threads. */
646
647static int
648prepare_to_proceed (void)
649{
650 ptid_t wait_ptid;
651 struct target_waitstatus wait_status;
652
653 /* Get the last target status returned by target_wait(). */
654 get_last_target_status (&wait_ptid, &wait_status);
655
656 /* Make sure we were stopped either at a breakpoint, or because
657 of a Ctrl-C. */
658 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
659 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
660 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
661 {
662 return 0;
663 }
664
665 if (!ptid_equal (wait_ptid, minus_one_ptid)
666 && !ptid_equal (inferior_ptid, wait_ptid))
667 {
668 /* Switched over from WAIT_PID. */
669 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
670
671 if (wait_pc != read_pc ())
672 {
673 /* Switch back to WAIT_PID thread. */
674 inferior_ptid = wait_ptid;
675
676 /* FIXME: This stuff came from switch_to_thread() in
677 thread.c (which should probably be a public function). */
35f196d9 678 reinit_frame_cache ();
ea67f13b
DJ
679 registers_changed ();
680 stop_pc = wait_pc;
ea67f13b
DJ
681 }
682
8fb3e588
AC
683 /* We return 1 to indicate that there is a breakpoint here,
684 so we need to step over it before continuing to avoid
685 hitting it straight away. */
686 if (breakpoint_here_p (wait_pc))
687 return 1;
ea67f13b
DJ
688 }
689
690 return 0;
8fb3e588 691
ea67f13b 692}
e4846b08
JJ
693
694/* Record the pc of the program the last time it stopped. This is
695 just used internally by wait_for_inferior, but need to be preserved
696 over calls to it and cleared when the inferior is started. */
697static CORE_ADDR prev_pc;
698
c906108c
SS
699/* Basic routine for continuing the program in various fashions.
700
701 ADDR is the address to resume at, or -1 for resume where stopped.
702 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 703 or -1 for act according to how it stopped.
c906108c 704 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
705 -1 means return after that and print nothing.
706 You should probably set various step_... variables
707 before calling here, if you are stepping.
c906108c
SS
708
709 You should call clear_proceed_status before calling proceed. */
710
711void
96baa820 712proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
713{
714 int oneproc = 0;
715
716 if (step > 0)
717 step_start_function = find_pc_function (read_pc ());
718 if (step < 0)
719 stop_after_trap = 1;
720
2acceee2 721 if (addr == (CORE_ADDR) -1)
c906108c 722 {
c906108c 723 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
724 /* There is a breakpoint at the address we will resume at,
725 step one instruction before inserting breakpoints so that
726 we do not stop right away (and report a second hit at this
727 breakpoint). */
c906108c 728 oneproc = 1;
3352ef37
AC
729 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
730 && gdbarch_single_step_through_delay (current_gdbarch,
731 get_current_frame ()))
732 /* We stepped onto an instruction that needs to be stepped
733 again before re-inserting the breakpoint, do so. */
c906108c
SS
734 oneproc = 1;
735 }
736 else
737 {
738 write_pc (addr);
c906108c
SS
739 }
740
527159b7 741 if (debug_infrun)
8a9de0e4
AC
742 fprintf_unfiltered (gdb_stdlog,
743 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
744 paddr_nz (addr), siggnal, step);
527159b7 745
c906108c
SS
746 /* In a multi-threaded task we may select another thread
747 and then continue or step.
748
749 But if the old thread was stopped at a breakpoint, it
750 will immediately cause another breakpoint stop without
751 any execution (i.e. it will report a breakpoint hit
752 incorrectly). So we must step over it first.
753
ea67f13b 754 prepare_to_proceed checks the current thread against the thread
c906108c
SS
755 that reported the most recent event. If a step-over is required
756 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
757 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
758 oneproc = 1;
c906108c 759
c906108c
SS
760 if (oneproc)
761 /* We will get a trace trap after one instruction.
762 Continue it automatically and insert breakpoints then. */
763 trap_expected = 1;
764 else
765 {
81d0cc19
GS
766 insert_breakpoints ();
767 /* If we get here there was no call to error() in
8fb3e588 768 insert breakpoints -- so they were inserted. */
c906108c
SS
769 breakpoints_inserted = 1;
770 }
771
772 if (siggnal != TARGET_SIGNAL_DEFAULT)
773 stop_signal = siggnal;
774 /* If this signal should not be seen by program,
775 give it zero. Used for debugging signals. */
776 else if (!signal_program[stop_signal])
777 stop_signal = TARGET_SIGNAL_0;
778
779 annotate_starting ();
780
781 /* Make sure that output from GDB appears before output from the
782 inferior. */
783 gdb_flush (gdb_stdout);
784
e4846b08
JJ
785 /* Refresh prev_pc value just prior to resuming. This used to be
786 done in stop_stepping, however, setting prev_pc there did not handle
787 scenarios such as inferior function calls or returning from
788 a function via the return command. In those cases, the prev_pc
789 value was not set properly for subsequent commands. The prev_pc value
790 is used to initialize the starting line number in the ecs. With an
791 invalid value, the gdb next command ends up stopping at the position
792 represented by the next line table entry past our start position.
793 On platforms that generate one line table entry per line, this
794 is not a problem. However, on the ia64, the compiler generates
795 extraneous line table entries that do not increase the line number.
796 When we issue the gdb next command on the ia64 after an inferior call
797 or a return command, we often end up a few instructions forward, still
798 within the original line we started.
799
800 An attempt was made to have init_execution_control_state () refresh
801 the prev_pc value before calculating the line number. This approach
802 did not work because on platforms that use ptrace, the pc register
803 cannot be read unless the inferior is stopped. At that point, we
804 are not guaranteed the inferior is stopped and so the read_pc ()
805 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 806 updated correctly when the inferior is stopped. */
e4846b08
JJ
807 prev_pc = read_pc ();
808
c906108c
SS
809 /* Resume inferior. */
810 resume (oneproc || step || bpstat_should_step (), stop_signal);
811
812 /* Wait for it to stop (if not standalone)
813 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
814 /* Do this only if we are not using the event loop, or if the target
815 does not support asynchronous execution. */
362646f5 816 if (!target_can_async_p ())
43ff13b4
JM
817 {
818 wait_for_inferior ();
819 normal_stop ();
820 }
c906108c 821}
c906108c
SS
822\f
823
824/* Start remote-debugging of a machine over a serial link. */
96baa820 825
c906108c 826void
8621d6a9 827start_remote (int from_tty)
c906108c
SS
828{
829 init_thread_list ();
830 init_wait_for_inferior ();
c0236d92 831 stop_soon = STOP_QUIETLY;
c906108c 832 trap_expected = 0;
43ff13b4 833
6426a772
JM
834 /* Always go on waiting for the target, regardless of the mode. */
835 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 836 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
837 nothing is returned (instead of just blocking). Because of this,
838 targets expecting an immediate response need to, internally, set
839 things up so that the target_wait() is forced to eventually
840 timeout. */
841 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
842 differentiate to its caller what the state of the target is after
843 the initial open has been performed. Here we're assuming that
844 the target has stopped. It should be possible to eventually have
845 target_open() return to the caller an indication that the target
846 is currently running and GDB state should be set to the same as
847 for an async run. */
848 wait_for_inferior ();
8621d6a9
DJ
849
850 /* Now that the inferior has stopped, do any bookkeeping like
851 loading shared libraries. We want to do this before normal_stop,
852 so that the displayed frame is up to date. */
853 post_create_inferior (&current_target, from_tty);
854
6426a772 855 normal_stop ();
c906108c
SS
856}
857
858/* Initialize static vars when a new inferior begins. */
859
860void
96baa820 861init_wait_for_inferior (void)
c906108c
SS
862{
863 /* These are meaningless until the first time through wait_for_inferior. */
864 prev_pc = 0;
c906108c 865
c906108c
SS
866 breakpoints_inserted = 0;
867 breakpoint_init_inferior (inf_starting);
868
869 /* Don't confuse first call to proceed(). */
870 stop_signal = TARGET_SIGNAL_0;
871
872 /* The first resume is not following a fork/vfork/exec. */
873 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 874
c906108c 875 clear_proceed_status ();
9f976b41
DJ
876
877 stepping_past_singlestep_breakpoint = 0;
c906108c 878}
c906108c 879\f
b83266a0
SS
880/* This enum encodes possible reasons for doing a target_wait, so that
881 wfi can call target_wait in one place. (Ultimately the call will be
882 moved out of the infinite loop entirely.) */
883
c5aa993b
JM
884enum infwait_states
885{
cd0fc7c3
SS
886 infwait_normal_state,
887 infwait_thread_hop_state,
cd0fc7c3 888 infwait_nonstep_watch_state
b83266a0
SS
889};
890
11cf8741
JM
891/* Why did the inferior stop? Used to print the appropriate messages
892 to the interface from within handle_inferior_event(). */
893enum inferior_stop_reason
894{
11cf8741
JM
895 /* Step, next, nexti, stepi finished. */
896 END_STEPPING_RANGE,
11cf8741
JM
897 /* Inferior terminated by signal. */
898 SIGNAL_EXITED,
899 /* Inferior exited. */
900 EXITED,
901 /* Inferior received signal, and user asked to be notified. */
902 SIGNAL_RECEIVED
903};
904
cd0fc7c3
SS
905/* This structure contains what used to be local variables in
906 wait_for_inferior. Probably many of them can return to being
907 locals in handle_inferior_event. */
908
c5aa993b 909struct execution_control_state
488f131b
JB
910{
911 struct target_waitstatus ws;
912 struct target_waitstatus *wp;
913 int another_trap;
914 int random_signal;
915 CORE_ADDR stop_func_start;
916 CORE_ADDR stop_func_end;
917 char *stop_func_name;
918 struct symtab_and_line sal;
488f131b
JB
919 int current_line;
920 struct symtab *current_symtab;
921 int handling_longjmp; /* FIXME */
922 ptid_t ptid;
923 ptid_t saved_inferior_ptid;
68f53502 924 int step_after_step_resume_breakpoint;
488f131b
JB
925 int stepping_through_solib_after_catch;
926 bpstat stepping_through_solib_catchpoints;
488f131b
JB
927 int new_thread_event;
928 struct target_waitstatus tmpstatus;
929 enum infwait_states infwait_state;
930 ptid_t waiton_ptid;
931 int wait_some_more;
932};
933
934void init_execution_control_state (struct execution_control_state *ecs);
935
936void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 937
c2c6d25f 938static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 939static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 940static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
941static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
942 struct frame_id sr_id);
104c1213
JM
943static void stop_stepping (struct execution_control_state *ecs);
944static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 945static void keep_going (struct execution_control_state *ecs);
488f131b
JB
946static void print_stop_reason (enum inferior_stop_reason stop_reason,
947 int stop_info);
104c1213 948
cd0fc7c3
SS
949/* Wait for control to return from inferior to debugger.
950 If inferior gets a signal, we may decide to start it up again
951 instead of returning. That is why there is a loop in this function.
952 When this function actually returns it means the inferior
953 should be left stopped and GDB should read more commands. */
954
955void
96baa820 956wait_for_inferior (void)
cd0fc7c3
SS
957{
958 struct cleanup *old_cleanups;
959 struct execution_control_state ecss;
960 struct execution_control_state *ecs;
c906108c 961
527159b7 962 if (debug_infrun)
8a9de0e4 963 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 964
8601f500 965 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 966 &step_resume_breakpoint);
cd0fc7c3
SS
967
968 /* wfi still stays in a loop, so it's OK just to take the address of
969 a local to get the ecs pointer. */
970 ecs = &ecss;
971
972 /* Fill in with reasonable starting values. */
973 init_execution_control_state (ecs);
974
c906108c 975 /* We'll update this if & when we switch to a new thread. */
39f77062 976 previous_inferior_ptid = inferior_ptid;
c906108c 977
cd0fc7c3
SS
978 overlay_cache_invalid = 1;
979
980 /* We have to invalidate the registers BEFORE calling target_wait
981 because they can be loaded from the target while in target_wait.
982 This makes remote debugging a bit more efficient for those
983 targets that provide critical registers as part of their normal
984 status mechanism. */
985
986 registers_changed ();
b83266a0 987
c906108c
SS
988 while (1)
989 {
9a4105ab
AC
990 if (deprecated_target_wait_hook)
991 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 992 else
39f77062 993 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 994
cd0fc7c3
SS
995 /* Now figure out what to do with the result of the result. */
996 handle_inferior_event (ecs);
c906108c 997
cd0fc7c3
SS
998 if (!ecs->wait_some_more)
999 break;
1000 }
1001 do_cleanups (old_cleanups);
1002}
c906108c 1003
43ff13b4
JM
1004/* Asynchronous version of wait_for_inferior. It is called by the
1005 event loop whenever a change of state is detected on the file
1006 descriptor corresponding to the target. It can be called more than
1007 once to complete a single execution command. In such cases we need
1008 to keep the state in a global variable ASYNC_ECSS. If it is the
1009 last time that this function is called for a single execution
1010 command, then report to the user that the inferior has stopped, and
1011 do the necessary cleanups. */
1012
1013struct execution_control_state async_ecss;
1014struct execution_control_state *async_ecs;
1015
1016void
fba45db2 1017fetch_inferior_event (void *client_data)
43ff13b4
JM
1018{
1019 static struct cleanup *old_cleanups;
1020
c5aa993b 1021 async_ecs = &async_ecss;
43ff13b4
JM
1022
1023 if (!async_ecs->wait_some_more)
1024 {
488f131b 1025 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1026 &step_resume_breakpoint);
43ff13b4
JM
1027
1028 /* Fill in with reasonable starting values. */
1029 init_execution_control_state (async_ecs);
1030
43ff13b4 1031 /* We'll update this if & when we switch to a new thread. */
39f77062 1032 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1033
1034 overlay_cache_invalid = 1;
1035
1036 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1037 because they can be loaded from the target while in target_wait.
1038 This makes remote debugging a bit more efficient for those
1039 targets that provide critical registers as part of their normal
1040 status mechanism. */
43ff13b4
JM
1041
1042 registers_changed ();
1043 }
1044
9a4105ab 1045 if (deprecated_target_wait_hook)
488f131b 1046 async_ecs->ptid =
9a4105ab 1047 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1048 else
39f77062 1049 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1050
1051 /* Now figure out what to do with the result of the result. */
1052 handle_inferior_event (async_ecs);
1053
1054 if (!async_ecs->wait_some_more)
1055 {
adf40b2e 1056 /* Do only the cleanups that have been added by this
488f131b
JB
1057 function. Let the continuations for the commands do the rest,
1058 if there are any. */
43ff13b4
JM
1059 do_exec_cleanups (old_cleanups);
1060 normal_stop ();
c2d11a7d
JM
1061 if (step_multi && stop_step)
1062 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1063 else
1064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1065 }
1066}
1067
cd0fc7c3
SS
1068/* Prepare an execution control state for looping through a
1069 wait_for_inferior-type loop. */
1070
1071void
96baa820 1072init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1073{
6ad80df0 1074 ecs->another_trap = 0;
cd0fc7c3 1075 ecs->random_signal = 0;
68f53502 1076 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1077 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1078 ecs->stepping_through_solib_after_catch = 0;
1079 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1080 ecs->sal = find_pc_line (prev_pc, 0);
1081 ecs->current_line = ecs->sal.line;
1082 ecs->current_symtab = ecs->sal.symtab;
1083 ecs->infwait_state = infwait_normal_state;
39f77062 1084 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1085 ecs->wp = &(ecs->ws);
1086}
1087
e02bc4cc 1088/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1089 target_wait()/deprecated_target_wait_hook(). The data is actually
1090 cached by handle_inferior_event(), which gets called immediately
1091 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1092
1093void
488f131b 1094get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1095{
39f77062 1096 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1097 *status = target_last_waitstatus;
1098}
1099
ac264b3b
MS
1100void
1101nullify_last_target_wait_ptid (void)
1102{
1103 target_last_wait_ptid = minus_one_ptid;
1104}
1105
dd80620e
MS
1106/* Switch thread contexts, maintaining "infrun state". */
1107
1108static void
1109context_switch (struct execution_control_state *ecs)
1110{
1111 /* Caution: it may happen that the new thread (or the old one!)
1112 is not in the thread list. In this case we must not attempt
1113 to "switch context", or we run the risk that our context may
1114 be lost. This may happen as a result of the target module
1115 mishandling thread creation. */
1116
fd48f117
DJ
1117 if (debug_infrun)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1120 target_pid_to_str (inferior_ptid));
1121 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1122 target_pid_to_str (ecs->ptid));
1123 }
1124
dd80620e 1125 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1126 { /* Perform infrun state context switch: */
dd80620e 1127 /* Save infrun state for the old thread. */
0ce3d317 1128 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1129 trap_expected, step_resume_breakpoint,
15960608 1130 step_range_start,
aa0cd9c1 1131 step_range_end, &step_frame_id,
dd80620e
MS
1132 ecs->handling_longjmp, ecs->another_trap,
1133 ecs->stepping_through_solib_after_catch,
1134 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1135 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1136
1137 /* Load infrun state for the new thread. */
0ce3d317 1138 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1139 &trap_expected, &step_resume_breakpoint,
15960608 1140 &step_range_start,
aa0cd9c1 1141 &step_range_end, &step_frame_id,
dd80620e
MS
1142 &ecs->handling_longjmp, &ecs->another_trap,
1143 &ecs->stepping_through_solib_after_catch,
1144 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1145 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1146 }
1147 inferior_ptid = ecs->ptid;
35f196d9 1148 reinit_frame_cache ();
dd80620e
MS
1149}
1150
4fa8626c
DJ
1151static void
1152adjust_pc_after_break (struct execution_control_state *ecs)
1153{
8aad930b 1154 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1155
1156 /* If this target does not decrement the PC after breakpoints, then
1157 we have nothing to do. */
b798847d 1158 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1159 return;
1160
1161 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1162 we aren't, just return.
9709f61c
DJ
1163
1164 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1165 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1166 implemented by software breakpoints should be handled through the normal
1167 breakpoint layer.
8fb3e588 1168
4fa8626c
DJ
1169 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1170 different signals (SIGILL or SIGEMT for instance), but it is less
1171 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1172 gdbarch_decr_pc_after_break. I don't know any specific target that
1173 generates these signals at breakpoints (the code has been in GDB since at
1174 least 1992) so I can not guess how to handle them here.
8fb3e588 1175
e6cf7916
UW
1176 In earlier versions of GDB, a target with
1177 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1178 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1179 target with both of these set in GDB history, and it seems unlikely to be
1180 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1181
1182 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1183 return;
1184
1185 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1186 return;
1187
8aad930b
AC
1188 /* Find the location where (if we've hit a breakpoint) the
1189 breakpoint would be. */
b798847d
UW
1190 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1191 (current_gdbarch);
8aad930b 1192
1c0fdd0e
UW
1193 /* Check whether there actually is a software breakpoint inserted
1194 at that location. */
1195 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1196 {
1c0fdd0e
UW
1197 /* When using hardware single-step, a SIGTRAP is reported for both
1198 a completed single-step and a software breakpoint. Need to
1199 differentiate between the two, as the latter needs adjusting
1200 but the former does not.
1201
1202 The SIGTRAP can be due to a completed hardware single-step only if
1203 - we didn't insert software single-step breakpoints
1204 - the thread to be examined is still the current thread
1205 - this thread is currently being stepped
1206
1207 If any of these events did not occur, we must have stopped due
1208 to hitting a software breakpoint, and have to back up to the
1209 breakpoint address.
1210
1211 As a special case, we could have hardware single-stepped a
1212 software breakpoint. In this case (prev_pc == breakpoint_pc),
1213 we also need to back up to the breakpoint address. */
1214
1215 if (singlestep_breakpoints_inserted_p
1216 || !ptid_equal (ecs->ptid, inferior_ptid)
1217 || !currently_stepping (ecs)
1218 || prev_pc == breakpoint_pc)
8aad930b
AC
1219 write_pc_pid (breakpoint_pc, ecs->ptid);
1220 }
4fa8626c
DJ
1221}
1222
cd0fc7c3
SS
1223/* Given an execution control state that has been freshly filled in
1224 by an event from the inferior, figure out what it means and take
1225 appropriate action. */
c906108c 1226
7270d8f2
OF
1227int stepped_after_stopped_by_watchpoint;
1228
cd0fc7c3 1229void
96baa820 1230handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1231{
8bbde302
BE
1232 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1233 that the variable stepped_after_stopped_by_watchpoint isn't used,
1234 then you're wrong! See remote.c:remote_stopped_data_address. */
1235
c8edd8b4 1236 int sw_single_step_trap_p = 0;
8fb3e588 1237 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1238
e02bc4cc 1239 /* Cache the last pid/waitstatus. */
39f77062 1240 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1241 target_last_waitstatus = *ecs->wp;
1242
4fa8626c
DJ
1243 adjust_pc_after_break (ecs);
1244
488f131b
JB
1245 switch (ecs->infwait_state)
1246 {
1247 case infwait_thread_hop_state:
527159b7 1248 if (debug_infrun)
8a9de0e4 1249 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1250 /* Cancel the waiton_ptid. */
1251 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1252 break;
b83266a0 1253
488f131b 1254 case infwait_normal_state:
527159b7 1255 if (debug_infrun)
8a9de0e4 1256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1257 stepped_after_stopped_by_watchpoint = 0;
1258 break;
b83266a0 1259
488f131b 1260 case infwait_nonstep_watch_state:
527159b7 1261 if (debug_infrun)
8a9de0e4
AC
1262 fprintf_unfiltered (gdb_stdlog,
1263 "infrun: infwait_nonstep_watch_state\n");
488f131b 1264 insert_breakpoints ();
c906108c 1265
488f131b
JB
1266 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1267 handle things like signals arriving and other things happening
1268 in combination correctly? */
1269 stepped_after_stopped_by_watchpoint = 1;
1270 break;
65e82032
AC
1271
1272 default:
e2e0b3e5 1273 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1274 }
1275 ecs->infwait_state = infwait_normal_state;
c906108c 1276
35f196d9 1277 reinit_frame_cache ();
c906108c 1278
488f131b 1279 /* If it's a new process, add it to the thread database */
c906108c 1280
488f131b 1281 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1282 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1283 && !in_thread_list (ecs->ptid));
1284
1285 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1286 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1287 {
1288 add_thread (ecs->ptid);
c906108c 1289
488f131b
JB
1290 ui_out_text (uiout, "[New ");
1291 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1292 ui_out_text (uiout, "]\n");
488f131b 1293 }
c906108c 1294
488f131b
JB
1295 switch (ecs->ws.kind)
1296 {
1297 case TARGET_WAITKIND_LOADED:
527159b7 1298 if (debug_infrun)
8a9de0e4 1299 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1300 /* Ignore gracefully during startup of the inferior, as it
1301 might be the shell which has just loaded some objects,
1302 otherwise add the symbols for the newly loaded objects. */
c906108c 1303#ifdef SOLIB_ADD
c0236d92 1304 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1305 {
1306 /* Remove breakpoints, SOLIB_ADD might adjust
1307 breakpoint addresses via breakpoint_re_set. */
1308 if (breakpoints_inserted)
1309 remove_breakpoints ();
c906108c 1310
488f131b
JB
1311 /* Check for any newly added shared libraries if we're
1312 supposed to be adding them automatically. Switch
1313 terminal for any messages produced by
1314 breakpoint_re_set. */
1315 target_terminal_ours_for_output ();
aff6338a 1316 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1317 stack's section table is kept up-to-date. Architectures,
1318 (e.g., PPC64), use the section table to perform
1319 operations such as address => section name and hence
1320 require the table to contain all sections (including
1321 those found in shared libraries). */
aff6338a 1322 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1323 exec_ops to SOLIB_ADD. This is because current GDB is
1324 only tooled to propagate section_table changes out from
1325 the "current_target" (see target_resize_to_sections), and
1326 not up from the exec stratum. This, of course, isn't
1327 right. "infrun.c" should only interact with the
1328 exec/process stratum, instead relying on the target stack
1329 to propagate relevant changes (stop, section table
1330 changed, ...) up to other layers. */
aff6338a 1331 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1332 target_terminal_inferior ();
1333
1334 /* Reinsert breakpoints and continue. */
1335 if (breakpoints_inserted)
1336 insert_breakpoints ();
1337 }
c906108c 1338#endif
488f131b
JB
1339 resume (0, TARGET_SIGNAL_0);
1340 prepare_to_wait (ecs);
1341 return;
c5aa993b 1342
488f131b 1343 case TARGET_WAITKIND_SPURIOUS:
527159b7 1344 if (debug_infrun)
8a9de0e4 1345 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1346 resume (0, TARGET_SIGNAL_0);
1347 prepare_to_wait (ecs);
1348 return;
c5aa993b 1349
488f131b 1350 case TARGET_WAITKIND_EXITED:
527159b7 1351 if (debug_infrun)
8a9de0e4 1352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1353 target_terminal_ours (); /* Must do this before mourn anyway */
1354 print_stop_reason (EXITED, ecs->ws.value.integer);
1355
1356 /* Record the exit code in the convenience variable $_exitcode, so
1357 that the user can inspect this again later. */
1358 set_internalvar (lookup_internalvar ("_exitcode"),
1359 value_from_longest (builtin_type_int,
1360 (LONGEST) ecs->ws.value.integer));
1361 gdb_flush (gdb_stdout);
1362 target_mourn_inferior ();
1c0fdd0e 1363 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1364 stop_print_frame = 0;
1365 stop_stepping (ecs);
1366 return;
c5aa993b 1367
488f131b 1368 case TARGET_WAITKIND_SIGNALLED:
527159b7 1369 if (debug_infrun)
8a9de0e4 1370 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1371 stop_print_frame = 0;
1372 stop_signal = ecs->ws.value.sig;
1373 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1374
488f131b
JB
1375 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1376 reach here unless the inferior is dead. However, for years
1377 target_kill() was called here, which hints that fatal signals aren't
1378 really fatal on some systems. If that's true, then some changes
1379 may be needed. */
1380 target_mourn_inferior ();
c906108c 1381
488f131b 1382 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1383 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1384 stop_stepping (ecs);
1385 return;
c906108c 1386
488f131b
JB
1387 /* The following are the only cases in which we keep going;
1388 the above cases end in a continue or goto. */
1389 case TARGET_WAITKIND_FORKED:
deb3b17b 1390 case TARGET_WAITKIND_VFORKED:
527159b7 1391 if (debug_infrun)
8a9de0e4 1392 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1393 stop_signal = TARGET_SIGNAL_TRAP;
1394 pending_follow.kind = ecs->ws.kind;
1395
8e7d2c16
DJ
1396 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1397 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1398
5a2901d9
DJ
1399 if (!ptid_equal (ecs->ptid, inferior_ptid))
1400 {
1401 context_switch (ecs);
35f196d9 1402 reinit_frame_cache ();
5a2901d9
DJ
1403 }
1404
488f131b 1405 stop_pc = read_pc ();
675bf4cb 1406
00d4360e 1407 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1408
488f131b 1409 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1410
1411 /* If no catchpoint triggered for this, then keep going. */
1412 if (ecs->random_signal)
1413 {
1414 stop_signal = TARGET_SIGNAL_0;
1415 keep_going (ecs);
1416 return;
1417 }
488f131b
JB
1418 goto process_event_stop_test;
1419
1420 case TARGET_WAITKIND_EXECD:
527159b7 1421 if (debug_infrun)
fc5261f2 1422 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1423 stop_signal = TARGET_SIGNAL_TRAP;
1424
7d2830a3 1425 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1426 target_wait function. Until then following vfork on HP/UX 10.20
1427 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1428 /* Is this a target which reports multiple exec events per actual
1429 call to exec()? (HP-UX using ptrace does, for example.) If so,
1430 ignore all but the last one. Just resume the exec'r, and wait
1431 for the next exec event. */
1432 if (inferior_ignoring_leading_exec_events)
1433 {
1434 inferior_ignoring_leading_exec_events--;
488f131b
JB
1435 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1436 prepare_to_wait (ecs);
1437 return;
1438 }
1439 inferior_ignoring_leading_exec_events =
1440 target_reported_exec_events_per_exec_call () - 1;
1441
1442 pending_follow.execd_pathname =
1443 savestring (ecs->ws.value.execd_pathname,
1444 strlen (ecs->ws.value.execd_pathname));
1445
488f131b
JB
1446 /* This causes the eventpoints and symbol table to be reset. Must
1447 do this now, before trying to determine whether to stop. */
1448 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1449 xfree (pending_follow.execd_pathname);
c906108c 1450
488f131b
JB
1451 stop_pc = read_pc_pid (ecs->ptid);
1452 ecs->saved_inferior_ptid = inferior_ptid;
1453 inferior_ptid = ecs->ptid;
675bf4cb 1454
00d4360e 1455 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1456
488f131b
JB
1457 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1458 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1459
5a2901d9
DJ
1460 if (!ptid_equal (ecs->ptid, inferior_ptid))
1461 {
1462 context_switch (ecs);
35f196d9 1463 reinit_frame_cache ();
5a2901d9
DJ
1464 }
1465
04e68871
DJ
1466 /* If no catchpoint triggered for this, then keep going. */
1467 if (ecs->random_signal)
1468 {
1469 stop_signal = TARGET_SIGNAL_0;
1470 keep_going (ecs);
1471 return;
1472 }
488f131b
JB
1473 goto process_event_stop_test;
1474
b4dc5ffa
MK
1475 /* Be careful not to try to gather much state about a thread
1476 that's in a syscall. It's frequently a losing proposition. */
488f131b 1477 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1478 if (debug_infrun)
8a9de0e4 1479 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1480 resume (0, TARGET_SIGNAL_0);
1481 prepare_to_wait (ecs);
1482 return;
c906108c 1483
488f131b
JB
1484 /* Before examining the threads further, step this thread to
1485 get it entirely out of the syscall. (We get notice of the
1486 event when the thread is just on the verge of exiting a
1487 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1488 into user code.) */
488f131b 1489 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1490 if (debug_infrun)
8a9de0e4 1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1492 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1493 prepare_to_wait (ecs);
1494 return;
c906108c 1495
488f131b 1496 case TARGET_WAITKIND_STOPPED:
527159b7 1497 if (debug_infrun)
8a9de0e4 1498 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1499 stop_signal = ecs->ws.value.sig;
1500 break;
c906108c 1501
488f131b
JB
1502 /* We had an event in the inferior, but we are not interested
1503 in handling it at this level. The lower layers have already
8e7d2c16 1504 done what needs to be done, if anything.
8fb3e588
AC
1505
1506 One of the possible circumstances for this is when the
1507 inferior produces output for the console. The inferior has
1508 not stopped, and we are ignoring the event. Another possible
1509 circumstance is any event which the lower level knows will be
1510 reported multiple times without an intervening resume. */
488f131b 1511 case TARGET_WAITKIND_IGNORE:
527159b7 1512 if (debug_infrun)
8a9de0e4 1513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1514 prepare_to_wait (ecs);
488f131b
JB
1515 return;
1516 }
c906108c 1517
488f131b
JB
1518 /* We may want to consider not doing a resume here in order to give
1519 the user a chance to play with the new thread. It might be good
1520 to make that a user-settable option. */
c906108c 1521
488f131b
JB
1522 /* At this point, all threads are stopped (happens automatically in
1523 either the OS or the native code). Therefore we need to continue
1524 all threads in order to make progress. */
1525 if (ecs->new_thread_event)
1526 {
1527 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1528 prepare_to_wait (ecs);
1529 return;
1530 }
c906108c 1531
488f131b
JB
1532 stop_pc = read_pc_pid (ecs->ptid);
1533
527159b7 1534 if (debug_infrun)
8a9de0e4 1535 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1536
9f976b41
DJ
1537 if (stepping_past_singlestep_breakpoint)
1538 {
1c0fdd0e 1539 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1540 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1541 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1542
1543 stepping_past_singlestep_breakpoint = 0;
1544
1545 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1546 breakpoint, or stopped for some other reason. It would be nice if
1547 we could tell, but we can't reliably. */
9f976b41 1548 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1549 {
527159b7 1550 if (debug_infrun)
8a9de0e4 1551 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1552 /* Pull the single step breakpoints out of the target. */
e0cd558a 1553 remove_single_step_breakpoints ();
9f976b41
DJ
1554 singlestep_breakpoints_inserted_p = 0;
1555
1556 ecs->random_signal = 0;
1557
1558 ecs->ptid = saved_singlestep_ptid;
1559 context_switch (ecs);
9a4105ab
AC
1560 if (deprecated_context_hook)
1561 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1562
1563 resume (1, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
1567 }
1568
1569 stepping_past_singlestep_breakpoint = 0;
1570
488f131b
JB
1571 /* See if a thread hit a thread-specific breakpoint that was meant for
1572 another thread. If so, then step that thread past the breakpoint,
1573 and continue it. */
1574
1575 if (stop_signal == TARGET_SIGNAL_TRAP)
1576 {
9f976b41
DJ
1577 int thread_hop_needed = 0;
1578
f8d40ec8
JB
1579 /* Check if a regular breakpoint has been hit before checking
1580 for a potential single step breakpoint. Otherwise, GDB will
1581 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1582 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1583 {
c5aa993b 1584 ecs->random_signal = 0;
4fa8626c 1585 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1586 thread_hop_needed = 1;
1587 }
1c0fdd0e 1588 else if (singlestep_breakpoints_inserted_p)
9f976b41 1589 {
fd48f117
DJ
1590 /* We have not context switched yet, so this should be true
1591 no matter which thread hit the singlestep breakpoint. */
1592 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1593 if (debug_infrun)
1594 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1595 "trap for %s\n",
1596 target_pid_to_str (ecs->ptid));
1597
9f976b41
DJ
1598 ecs->random_signal = 0;
1599 /* The call to in_thread_list is necessary because PTIDs sometimes
1600 change when we go from single-threaded to multi-threaded. If
1601 the singlestep_ptid is still in the list, assume that it is
1602 really different from ecs->ptid. */
1603 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1604 && in_thread_list (singlestep_ptid))
1605 {
fd48f117
DJ
1606 /* If the PC of the thread we were trying to single-step
1607 has changed, discard this event (which we were going
1608 to ignore anyway), and pretend we saw that thread
1609 trap. This prevents us continuously moving the
1610 single-step breakpoint forward, one instruction at a
1611 time. If the PC has changed, then the thread we were
1612 trying to single-step has trapped or been signalled,
1613 but the event has not been reported to GDB yet.
1614
1615 There might be some cases where this loses signal
1616 information, if a signal has arrived at exactly the
1617 same time that the PC changed, but this is the best
1618 we can do with the information available. Perhaps we
1619 should arrange to report all events for all threads
1620 when they stop, or to re-poll the remote looking for
1621 this particular thread (i.e. temporarily enable
1622 schedlock). */
1623 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1624 {
1625 if (debug_infrun)
1626 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1627 " but expected thread advanced also\n");
1628
1629 /* The current context still belongs to
1630 singlestep_ptid. Don't swap here, since that's
1631 the context we want to use. Just fudge our
1632 state and continue. */
1633 ecs->ptid = singlestep_ptid;
1634 stop_pc = read_pc_pid (ecs->ptid);
1635 }
1636 else
1637 {
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "infrun: unexpected thread\n");
1641
1642 thread_hop_needed = 1;
1643 stepping_past_singlestep_breakpoint = 1;
1644 saved_singlestep_ptid = singlestep_ptid;
1645 }
9f976b41
DJ
1646 }
1647 }
1648
1649 if (thread_hop_needed)
8fb3e588
AC
1650 {
1651 int remove_status;
1652
527159b7 1653 if (debug_infrun)
8a9de0e4 1654 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1655
8fb3e588
AC
1656 /* Saw a breakpoint, but it was hit by the wrong thread.
1657 Just continue. */
1658
1c0fdd0e 1659 if (singlestep_breakpoints_inserted_p)
488f131b 1660 {
8fb3e588 1661 /* Pull the single step breakpoints out of the target. */
e0cd558a 1662 remove_single_step_breakpoints ();
8fb3e588
AC
1663 singlestep_breakpoints_inserted_p = 0;
1664 }
1665
1666 remove_status = remove_breakpoints ();
1667 /* Did we fail to remove breakpoints? If so, try
1668 to set the PC past the bp. (There's at least
1669 one situation in which we can fail to remove
1670 the bp's: On HP-UX's that use ttrace, we can't
1671 change the address space of a vforking child
1672 process until the child exits (well, okay, not
1673 then either :-) or execs. */
1674 if (remove_status != 0)
1675 {
1676 /* FIXME! This is obviously non-portable! */
1677 write_pc_pid (stop_pc + 4, ecs->ptid);
1678 /* We need to restart all the threads now,
1679 * unles we're running in scheduler-locked mode.
1680 * Use currently_stepping to determine whether to
1681 * step or continue.
1682 */
1683 /* FIXME MVS: is there any reason not to call resume()? */
1684 if (scheduler_mode == schedlock_on)
1685 target_resume (ecs->ptid,
1686 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1687 else
8fb3e588
AC
1688 target_resume (RESUME_ALL,
1689 currently_stepping (ecs), TARGET_SIGNAL_0);
1690 prepare_to_wait (ecs);
1691 return;
1692 }
1693 else
1694 { /* Single step */
1695 breakpoints_inserted = 0;
1696 if (!ptid_equal (inferior_ptid, ecs->ptid))
1697 context_switch (ecs);
1698 ecs->waiton_ptid = ecs->ptid;
1699 ecs->wp = &(ecs->ws);
1700 ecs->another_trap = 1;
1701
1702 ecs->infwait_state = infwait_thread_hop_state;
1703 keep_going (ecs);
1704 registers_changed ();
1705 return;
1706 }
488f131b 1707 }
1c0fdd0e 1708 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1709 {
1710 sw_single_step_trap_p = 1;
1711 ecs->random_signal = 0;
1712 }
488f131b
JB
1713 }
1714 else
1715 ecs->random_signal = 1;
c906108c 1716
488f131b 1717 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1718 so, then switch to that thread. */
1719 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1720 {
527159b7 1721 if (debug_infrun)
8a9de0e4 1722 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1723
488f131b 1724 context_switch (ecs);
c5aa993b 1725
9a4105ab
AC
1726 if (deprecated_context_hook)
1727 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1728 }
c906108c 1729
1c0fdd0e 1730 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1731 {
1732 /* Pull the single step breakpoints out of the target. */
e0cd558a 1733 remove_single_step_breakpoints ();
488f131b
JB
1734 singlestep_breakpoints_inserted_p = 0;
1735 }
c906108c 1736
488f131b
JB
1737 /* It may not be necessary to disable the watchpoint to stop over
1738 it. For example, the PA can (with some kernel cooperation)
1739 single step over a watchpoint without disabling the watchpoint. */
1740 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1741 {
527159b7 1742 if (debug_infrun)
8a9de0e4 1743 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1744 resume (1, 0);
1745 prepare_to_wait (ecs);
1746 return;
1747 }
c906108c 1748
488f131b
JB
1749 /* It is far more common to need to disable a watchpoint to step
1750 the inferior over it. FIXME. What else might a debug
1751 register or page protection watchpoint scheme need here? */
e6cf7916
UW
1752 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1753 && STOPPED_BY_WATCHPOINT (ecs->ws))
488f131b
JB
1754 {
1755 /* At this point, we are stopped at an instruction which has
1756 attempted to write to a piece of memory under control of
1757 a watchpoint. The instruction hasn't actually executed
1758 yet. If we were to evaluate the watchpoint expression
1759 now, we would get the old value, and therefore no change
1760 would seem to have occurred.
1761
1762 In order to make watchpoints work `right', we really need
1763 to complete the memory write, and then evaluate the
1764 watchpoint expression. The following code does that by
1765 removing the watchpoint (actually, all watchpoints and
1766 breakpoints), single-stepping the target, re-inserting
1767 watchpoints, and then falling through to let normal
1768 single-step processing handle proceed. Since this
1769 includes evaluating watchpoints, things will come to a
1770 stop in the correct manner. */
1771
527159b7 1772 if (debug_infrun)
8a9de0e4 1773 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1774 remove_breakpoints ();
1775 registers_changed ();
1776 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1777
488f131b
JB
1778 ecs->waiton_ptid = ecs->ptid;
1779 ecs->wp = &(ecs->ws);
1780 ecs->infwait_state = infwait_nonstep_watch_state;
1781 prepare_to_wait (ecs);
1782 return;
1783 }
1784
1785 /* It may be possible to simply continue after a watchpoint. */
1786 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1787 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1788
1789 ecs->stop_func_start = 0;
1790 ecs->stop_func_end = 0;
1791 ecs->stop_func_name = 0;
1792 /* Don't care about return value; stop_func_start and stop_func_name
1793 will both be 0 if it doesn't work. */
1794 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1795 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1796 ecs->stop_func_start
1797 += gdbarch_deprecated_function_start_offset (current_gdbarch);
488f131b
JB
1798 ecs->another_trap = 0;
1799 bpstat_clear (&stop_bpstat);
1800 stop_step = 0;
1801 stop_stack_dummy = 0;
1802 stop_print_frame = 1;
1803 ecs->random_signal = 0;
1804 stopped_by_random_signal = 0;
488f131b 1805
3352ef37
AC
1806 if (stop_signal == TARGET_SIGNAL_TRAP
1807 && trap_expected
1808 && gdbarch_single_step_through_delay_p (current_gdbarch)
1809 && currently_stepping (ecs))
1810 {
1811 /* We're trying to step of a breakpoint. Turns out that we're
1812 also on an instruction that needs to be stepped multiple
1813 times before it's been fully executing. E.g., architectures
1814 with a delay slot. It needs to be stepped twice, once for
1815 the instruction and once for the delay slot. */
1816 int step_through_delay
1817 = gdbarch_single_step_through_delay (current_gdbarch,
1818 get_current_frame ());
527159b7 1819 if (debug_infrun && step_through_delay)
8a9de0e4 1820 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1821 if (step_range_end == 0 && step_through_delay)
1822 {
1823 /* The user issued a continue when stopped at a breakpoint.
1824 Set up for another trap and get out of here. */
1825 ecs->another_trap = 1;
1826 keep_going (ecs);
1827 return;
1828 }
1829 else if (step_through_delay)
1830 {
1831 /* The user issued a step when stopped at a breakpoint.
1832 Maybe we should stop, maybe we should not - the delay
1833 slot *might* correspond to a line of source. In any
1834 case, don't decide that here, just set ecs->another_trap,
1835 making sure we single-step again before breakpoints are
1836 re-inserted. */
1837 ecs->another_trap = 1;
1838 }
1839 }
1840
488f131b
JB
1841 /* Look at the cause of the stop, and decide what to do.
1842 The alternatives are:
1843 1) break; to really stop and return to the debugger,
1844 2) drop through to start up again
1845 (set ecs->another_trap to 1 to single step once)
1846 3) set ecs->random_signal to 1, and the decision between 1 and 2
1847 will be made according to the signal handling tables. */
1848
1849 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1850 that have to do with the program's own actions. Note that
1851 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1852 on the operating system version. Here we detect when a SIGILL or
1853 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1854 something similar for SIGSEGV, since a SIGSEGV will be generated
1855 when we're trying to execute a breakpoint instruction on a
1856 non-executable stack. This happens for call dummy breakpoints
1857 for architectures like SPARC that place call dummies on the
1858 stack. */
488f131b
JB
1859
1860 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1861 || (breakpoints_inserted
1862 && (stop_signal == TARGET_SIGNAL_ILL
1863 || stop_signal == TARGET_SIGNAL_SEGV
1864 || stop_signal == TARGET_SIGNAL_EMT))
1865 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1866 {
1867 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1868 {
527159b7 1869 if (debug_infrun)
8a9de0e4 1870 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1871 stop_print_frame = 0;
1872 stop_stepping (ecs);
1873 return;
1874 }
c54cfec8
EZ
1875
1876 /* This is originated from start_remote(), start_inferior() and
1877 shared libraries hook functions. */
c0236d92 1878 if (stop_soon == STOP_QUIETLY)
488f131b 1879 {
527159b7 1880 if (debug_infrun)
8a9de0e4 1881 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1882 stop_stepping (ecs);
1883 return;
1884 }
1885
c54cfec8
EZ
1886 /* This originates from attach_command(). We need to overwrite
1887 the stop_signal here, because some kernels don't ignore a
1888 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1889 See more comments in inferior.h. */
c0236d92 1890 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1891 {
1892 stop_stepping (ecs);
1893 if (stop_signal == TARGET_SIGNAL_STOP)
1894 stop_signal = TARGET_SIGNAL_0;
1895 return;
1896 }
1897
d303a6c7
AC
1898 /* Don't even think about breakpoints if just proceeded over a
1899 breakpoint. */
1900 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1901 {
1902 if (debug_infrun)
8a9de0e4 1903 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1904 bpstat_clear (&stop_bpstat);
1905 }
488f131b
JB
1906 else
1907 {
1908 /* See if there is a breakpoint at the current PC. */
8fb3e588 1909 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1910 stopped_by_watchpoint);
488f131b 1911
488f131b
JB
1912 /* Following in case break condition called a
1913 function. */
1914 stop_print_frame = 1;
1915 }
1916
73dd234f 1917 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1918 at one stage in the past included checks for an inferior
1919 function call's call dummy's return breakpoint. The original
1920 comment, that went with the test, read:
73dd234f 1921
8fb3e588
AC
1922 ``End of a stack dummy. Some systems (e.g. Sony news) give
1923 another signal besides SIGTRAP, so check here as well as
1924 above.''
73dd234f
AC
1925
1926 If someone ever tries to get get call dummys on a
1927 non-executable stack to work (where the target would stop
03cebad2
MK
1928 with something like a SIGSEGV), then those tests might need
1929 to be re-instated. Given, however, that the tests were only
73dd234f 1930 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1931 suspect that it won't be the case.
1932
8fb3e588
AC
1933 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1934 be necessary for call dummies on a non-executable stack on
1935 SPARC. */
73dd234f 1936
488f131b
JB
1937 if (stop_signal == TARGET_SIGNAL_TRAP)
1938 ecs->random_signal
1939 = !(bpstat_explains_signal (stop_bpstat)
1940 || trap_expected
488f131b 1941 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1942 else
1943 {
73dd234f 1944 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1945 if (!ecs->random_signal)
1946 stop_signal = TARGET_SIGNAL_TRAP;
1947 }
1948 }
1949
1950 /* When we reach this point, we've pretty much decided
1951 that the reason for stopping must've been a random
1952 (unexpected) signal. */
1953
1954 else
1955 ecs->random_signal = 1;
488f131b 1956
04e68871 1957process_event_stop_test:
488f131b
JB
1958 /* For the program's own signals, act according to
1959 the signal handling tables. */
1960
1961 if (ecs->random_signal)
1962 {
1963 /* Signal not for debugging purposes. */
1964 int printed = 0;
1965
527159b7 1966 if (debug_infrun)
8a9de0e4 1967 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1968
488f131b
JB
1969 stopped_by_random_signal = 1;
1970
1971 if (signal_print[stop_signal])
1972 {
1973 printed = 1;
1974 target_terminal_ours_for_output ();
1975 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1976 }
1977 if (signal_stop[stop_signal])
1978 {
1979 stop_stepping (ecs);
1980 return;
1981 }
1982 /* If not going to stop, give terminal back
1983 if we took it away. */
1984 else if (printed)
1985 target_terminal_inferior ();
1986
1987 /* Clear the signal if it should not be passed. */
1988 if (signal_program[stop_signal] == 0)
1989 stop_signal = TARGET_SIGNAL_0;
1990
68f53502
AC
1991 if (prev_pc == read_pc ()
1992 && !breakpoints_inserted
1993 && breakpoint_here_p (read_pc ())
1994 && step_resume_breakpoint == NULL)
1995 {
1996 /* We were just starting a new sequence, attempting to
1997 single-step off of a breakpoint and expecting a SIGTRAP.
1998 Intead this signal arrives. This signal will take us out
1999 of the stepping range so GDB needs to remember to, when
2000 the signal handler returns, resume stepping off that
2001 breakpoint. */
2002 /* To simplify things, "continue" is forced to use the same
2003 code paths as single-step - set a breakpoint at the
2004 signal return address and then, once hit, step off that
2005 breakpoint. */
d3169d93 2006
44cbf7b5 2007 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2008 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2009 keep_going (ecs);
2010 return;
68f53502 2011 }
9d799f85
AC
2012
2013 if (step_range_end != 0
2014 && stop_signal != TARGET_SIGNAL_0
2015 && stop_pc >= step_range_start && stop_pc < step_range_end
2016 && frame_id_eq (get_frame_id (get_current_frame ()),
2017 step_frame_id)
2018 && step_resume_breakpoint == NULL)
d303a6c7
AC
2019 {
2020 /* The inferior is about to take a signal that will take it
2021 out of the single step range. Set a breakpoint at the
2022 current PC (which is presumably where the signal handler
2023 will eventually return) and then allow the inferior to
2024 run free.
2025
2026 Note that this is only needed for a signal delivered
2027 while in the single-step range. Nested signals aren't a
2028 problem as they eventually all return. */
44cbf7b5 2029 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2030 keep_going (ecs);
2031 return;
d303a6c7 2032 }
9d799f85
AC
2033
2034 /* Note: step_resume_breakpoint may be non-NULL. This occures
2035 when either there's a nested signal, or when there's a
2036 pending signal enabled just as the signal handler returns
2037 (leaving the inferior at the step-resume-breakpoint without
2038 actually executing it). Either way continue until the
2039 breakpoint is really hit. */
488f131b
JB
2040 keep_going (ecs);
2041 return;
2042 }
2043
2044 /* Handle cases caused by hitting a breakpoint. */
2045 {
2046 CORE_ADDR jmp_buf_pc;
2047 struct bpstat_what what;
2048
2049 what = bpstat_what (stop_bpstat);
2050
2051 if (what.call_dummy)
2052 {
2053 stop_stack_dummy = 1;
c5aa993b 2054 }
c906108c 2055
488f131b 2056 switch (what.main_action)
c5aa993b 2057 {
488f131b
JB
2058 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2059 /* If we hit the breakpoint at longjmp, disable it for the
2060 duration of this command. Then, install a temporary
2061 breakpoint at the target of the jmp_buf. */
527159b7 2062 if (debug_infrun)
8802d8ed 2063 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2064 disable_longjmp_breakpoint ();
2065 remove_breakpoints ();
2066 breakpoints_inserted = 0;
91104499 2067 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2068 || !gdbarch_get_longjmp_target (current_gdbarch,
2069 get_current_frame (), &jmp_buf_pc))
c5aa993b 2070 {
488f131b 2071 keep_going (ecs);
104c1213 2072 return;
c5aa993b 2073 }
488f131b
JB
2074
2075 /* Need to blow away step-resume breakpoint, as it
2076 interferes with us */
2077 if (step_resume_breakpoint != NULL)
104c1213 2078 {
488f131b 2079 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2080 }
c906108c 2081
8fb3e588 2082 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2083 ecs->handling_longjmp = 1; /* FIXME */
2084 keep_going (ecs);
2085 return;
c906108c 2086
488f131b
JB
2087 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2088 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2089 if (debug_infrun)
8802d8ed 2090 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2091 remove_breakpoints ();
2092 breakpoints_inserted = 0;
488f131b
JB
2093 disable_longjmp_breakpoint ();
2094 ecs->handling_longjmp = 0; /* FIXME */
2095 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2096 break;
2097 /* else fallthrough */
2098
2099 case BPSTAT_WHAT_SINGLE:
527159b7 2100 if (debug_infrun)
8802d8ed 2101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
488f131b 2102 if (breakpoints_inserted)
569631c6 2103 remove_breakpoints ();
488f131b
JB
2104 breakpoints_inserted = 0;
2105 ecs->another_trap = 1;
2106 /* Still need to check other stuff, at least the case
2107 where we are stepping and step out of the right range. */
2108 break;
c906108c 2109
488f131b 2110 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2111 if (debug_infrun)
8802d8ed 2112 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2113 stop_print_frame = 1;
c906108c 2114
d303a6c7
AC
2115 /* We are about to nuke the step_resume_breakpointt via the
2116 cleanup chain, so no need to worry about it here. */
c5aa993b 2117
488f131b
JB
2118 stop_stepping (ecs);
2119 return;
c5aa993b 2120
488f131b 2121 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2122 if (debug_infrun)
8802d8ed 2123 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2124 stop_print_frame = 0;
c5aa993b 2125
d303a6c7
AC
2126 /* We are about to nuke the step_resume_breakpoin via the
2127 cleanup chain, so no need to worry about it here. */
c5aa993b 2128
488f131b 2129 stop_stepping (ecs);
e441088d 2130 return;
c5aa993b 2131
488f131b
JB
2132 case BPSTAT_WHAT_STEP_RESUME:
2133 /* This proably demands a more elegant solution, but, yeah
2134 right...
c5aa993b 2135
488f131b
JB
2136 This function's use of the simple variable
2137 step_resume_breakpoint doesn't seem to accomodate
2138 simultaneously active step-resume bp's, although the
2139 breakpoint list certainly can.
c5aa993b 2140
488f131b
JB
2141 If we reach here and step_resume_breakpoint is already
2142 NULL, then apparently we have multiple active
2143 step-resume bp's. We'll just delete the breakpoint we
2144 stopped at, and carry on.
2145
2146 Correction: what the code currently does is delete a
2147 step-resume bp, but it makes no effort to ensure that
2148 the one deleted is the one currently stopped at. MVS */
c5aa993b 2149
527159b7 2150 if (debug_infrun)
8802d8ed 2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2152
488f131b
JB
2153 if (step_resume_breakpoint == NULL)
2154 {
2155 step_resume_breakpoint =
2156 bpstat_find_step_resume_breakpoint (stop_bpstat);
2157 }
2158 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2159 if (ecs->step_after_step_resume_breakpoint)
2160 {
2161 /* Back when the step-resume breakpoint was inserted, we
2162 were trying to single-step off a breakpoint. Go back
2163 to doing that. */
2164 ecs->step_after_step_resume_breakpoint = 0;
2165 remove_breakpoints ();
2166 breakpoints_inserted = 0;
2167 ecs->another_trap = 1;
2168 keep_going (ecs);
2169 return;
2170 }
488f131b
JB
2171 break;
2172
488f131b
JB
2173 case BPSTAT_WHAT_CHECK_SHLIBS:
2174 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2175 {
527159b7 2176 if (debug_infrun)
8802d8ed 2177 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2178 /* Remove breakpoints, we eventually want to step over the
2179 shlib event breakpoint, and SOLIB_ADD might adjust
2180 breakpoint addresses via breakpoint_re_set. */
2181 if (breakpoints_inserted)
2182 remove_breakpoints ();
c5aa993b 2183 breakpoints_inserted = 0;
488f131b
JB
2184
2185 /* Check for any newly added shared libraries if we're
2186 supposed to be adding them automatically. Switch
2187 terminal for any messages produced by
2188 breakpoint_re_set. */
2189 target_terminal_ours_for_output ();
aff6338a 2190 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2191 stack's section table is kept up-to-date. Architectures,
2192 (e.g., PPC64), use the section table to perform
2193 operations such as address => section name and hence
2194 require the table to contain all sections (including
2195 those found in shared libraries). */
aff6338a 2196 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2197 exec_ops to SOLIB_ADD. This is because current GDB is
2198 only tooled to propagate section_table changes out from
2199 the "current_target" (see target_resize_to_sections), and
2200 not up from the exec stratum. This, of course, isn't
2201 right. "infrun.c" should only interact with the
2202 exec/process stratum, instead relying on the target stack
2203 to propagate relevant changes (stop, section table
2204 changed, ...) up to other layers. */
a77053c2 2205#ifdef SOLIB_ADD
aff6338a 2206 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2207#else
2208 solib_add (NULL, 0, &current_target, auto_solib_add);
2209#endif
488f131b
JB
2210 target_terminal_inferior ();
2211
2212 /* Try to reenable shared library breakpoints, additional
2213 code segments in shared libraries might be mapped in now. */
2214 re_enable_breakpoints_in_shlibs ();
2215
2216 /* If requested, stop when the dynamic linker notifies
2217 gdb of events. This allows the user to get control
2218 and place breakpoints in initializer routines for
2219 dynamically loaded objects (among other things). */
877522db 2220 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2221 {
488f131b 2222 stop_stepping (ecs);
d4f3574e
SS
2223 return;
2224 }
c5aa993b 2225
488f131b
JB
2226 /* If we stopped due to an explicit catchpoint, then the
2227 (see above) call to SOLIB_ADD pulled in any symbols
2228 from a newly-loaded library, if appropriate.
2229
2230 We do want the inferior to stop, but not where it is
2231 now, which is in the dynamic linker callback. Rather,
2232 we would like it stop in the user's program, just after
2233 the call that caused this catchpoint to trigger. That
2234 gives the user a more useful vantage from which to
2235 examine their program's state. */
8fb3e588
AC
2236 else if (what.main_action
2237 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2238 {
488f131b
JB
2239 /* ??rehrauer: If I could figure out how to get the
2240 right return PC from here, we could just set a temp
2241 breakpoint and resume. I'm not sure we can without
2242 cracking open the dld's shared libraries and sniffing
2243 their unwind tables and text/data ranges, and that's
2244 not a terribly portable notion.
2245
2246 Until that time, we must step the inferior out of the
2247 dld callback, and also out of the dld itself (and any
2248 code or stubs in libdld.sl, such as "shl_load" and
2249 friends) until we reach non-dld code. At that point,
2250 we can stop stepping. */
2251 bpstat_get_triggered_catchpoints (stop_bpstat,
2252 &ecs->
2253 stepping_through_solib_catchpoints);
2254 ecs->stepping_through_solib_after_catch = 1;
2255
2256 /* Be sure to lift all breakpoints, so the inferior does
2257 actually step past this point... */
2258 ecs->another_trap = 1;
2259 break;
c906108c 2260 }
c5aa993b 2261 else
c5aa993b 2262 {
488f131b 2263 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2264 ecs->another_trap = 1;
488f131b 2265 break;
c5aa993b 2266 }
488f131b 2267 }
488f131b 2268 break;
c906108c 2269
488f131b
JB
2270 case BPSTAT_WHAT_LAST:
2271 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2272
488f131b
JB
2273 case BPSTAT_WHAT_KEEP_CHECKING:
2274 break;
2275 }
2276 }
c906108c 2277
488f131b
JB
2278 /* We come here if we hit a breakpoint but should not
2279 stop for it. Possibly we also were stepping
2280 and should stop for that. So fall through and
2281 test for stepping. But, if not stepping,
2282 do not stop. */
c906108c 2283
9d1ff73f
MS
2284 /* Are we stepping to get the inferior out of the dynamic linker's
2285 hook (and possibly the dld itself) after catching a shlib
2286 event? */
488f131b
JB
2287 if (ecs->stepping_through_solib_after_catch)
2288 {
2289#if defined(SOLIB_ADD)
2290 /* Have we reached our destination? If not, keep going. */
2291 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2292 {
527159b7 2293 if (debug_infrun)
8a9de0e4 2294 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2295 ecs->another_trap = 1;
2296 keep_going (ecs);
104c1213 2297 return;
488f131b
JB
2298 }
2299#endif
527159b7 2300 if (debug_infrun)
8a9de0e4 2301 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2302 /* Else, stop and report the catchpoint(s) whose triggering
2303 caused us to begin stepping. */
2304 ecs->stepping_through_solib_after_catch = 0;
2305 bpstat_clear (&stop_bpstat);
2306 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2307 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2308 stop_print_frame = 1;
2309 stop_stepping (ecs);
2310 return;
2311 }
c906108c 2312
488f131b
JB
2313 if (step_resume_breakpoint)
2314 {
527159b7 2315 if (debug_infrun)
d3169d93
DJ
2316 fprintf_unfiltered (gdb_stdlog,
2317 "infrun: step-resume breakpoint is inserted\n");
527159b7 2318
488f131b
JB
2319 /* Having a step-resume breakpoint overrides anything
2320 else having to do with stepping commands until
2321 that breakpoint is reached. */
488f131b
JB
2322 keep_going (ecs);
2323 return;
2324 }
c5aa993b 2325
488f131b
JB
2326 if (step_range_end == 0)
2327 {
527159b7 2328 if (debug_infrun)
8a9de0e4 2329 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2330 /* Likewise if we aren't even stepping. */
488f131b
JB
2331 keep_going (ecs);
2332 return;
2333 }
c5aa993b 2334
488f131b 2335 /* If stepping through a line, keep going if still within it.
c906108c 2336
488f131b
JB
2337 Note that step_range_end is the address of the first instruction
2338 beyond the step range, and NOT the address of the last instruction
2339 within it! */
2340 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2341 {
527159b7 2342 if (debug_infrun)
8a9de0e4 2343 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2344 paddr_nz (step_range_start),
2345 paddr_nz (step_range_end));
488f131b
JB
2346 keep_going (ecs);
2347 return;
2348 }
c5aa993b 2349
488f131b 2350 /* We stepped out of the stepping range. */
c906108c 2351
488f131b
JB
2352 /* If we are stepping at the source level and entered the runtime
2353 loader dynamic symbol resolution code, we keep on single stepping
2354 until we exit the run time loader code and reach the callee's
2355 address. */
2356 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2357#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2358 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2359#else
2360 && in_solib_dynsym_resolve_code (stop_pc)
2361#endif
2362 )
488f131b 2363 {
4c8c40e6
MK
2364 CORE_ADDR pc_after_resolver =
2365 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2366
527159b7 2367 if (debug_infrun)
8a9de0e4 2368 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2369
488f131b
JB
2370 if (pc_after_resolver)
2371 {
2372 /* Set up a step-resume breakpoint at the address
2373 indicated by SKIP_SOLIB_RESOLVER. */
2374 struct symtab_and_line sr_sal;
fe39c653 2375 init_sal (&sr_sal);
488f131b
JB
2376 sr_sal.pc = pc_after_resolver;
2377
44cbf7b5 2378 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2379 }
c906108c 2380
488f131b
JB
2381 keep_going (ecs);
2382 return;
2383 }
c906108c 2384
42edda50
AC
2385 if (step_range_end != 1
2386 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2387 || step_over_calls == STEP_OVER_ALL)
2388 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2389 {
527159b7 2390 if (debug_infrun)
8a9de0e4 2391 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2392 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2393 a signal trampoline (either by a signal being delivered or by
2394 the signal handler returning). Just single-step until the
2395 inferior leaves the trampoline (either by calling the handler
2396 or returning). */
488f131b
JB
2397 keep_going (ecs);
2398 return;
2399 }
c906108c 2400
c17eaafe
DJ
2401 /* Check for subroutine calls. The check for the current frame
2402 equalling the step ID is not necessary - the check of the
2403 previous frame's ID is sufficient - but it is a common case and
2404 cheaper than checking the previous frame's ID.
14e60db5
DJ
2405
2406 NOTE: frame_id_eq will never report two invalid frame IDs as
2407 being equal, so to get into this block, both the current and
2408 previous frame must have valid frame IDs. */
c17eaafe
DJ
2409 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2410 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2411 {
95918acb 2412 CORE_ADDR real_stop_pc;
8fb3e588 2413
527159b7 2414 if (debug_infrun)
8a9de0e4 2415 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2416
95918acb
AC
2417 if ((step_over_calls == STEP_OVER_NONE)
2418 || ((step_range_end == 1)
2419 && in_prologue (prev_pc, ecs->stop_func_start)))
2420 {
2421 /* I presume that step_over_calls is only 0 when we're
2422 supposed to be stepping at the assembly language level
2423 ("stepi"). Just stop. */
2424 /* Also, maybe we just did a "nexti" inside a prolog, so we
2425 thought it was a subroutine call but it was not. Stop as
2426 well. FENN */
2427 stop_step = 1;
2428 print_stop_reason (END_STEPPING_RANGE, 0);
2429 stop_stepping (ecs);
2430 return;
2431 }
8fb3e588 2432
8567c30f
AC
2433 if (step_over_calls == STEP_OVER_ALL)
2434 {
2435 /* We're doing a "next", set a breakpoint at callee's return
2436 address (the address at which the caller will
2437 resume). */
14e60db5 2438 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2439 keep_going (ecs);
2440 return;
2441 }
a53c66de 2442
95918acb 2443 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2444 calling routine and the real function), locate the real
2445 function. That's what tells us (a) whether we want to step
2446 into it at all, and (b) what prologue we want to run to the
2447 end of, if we do step into it. */
52f729a7 2448 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2449 if (real_stop_pc == 0)
52f729a7
UW
2450 real_stop_pc = gdbarch_skip_trampoline_code
2451 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2452 if (real_stop_pc != 0)
2453 ecs->stop_func_start = real_stop_pc;
8fb3e588 2454
a77053c2
MK
2455 if (
2456#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2457 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2458#else
2459 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2460#endif
2461)
1b2bfbb9
RC
2462 {
2463 struct symtab_and_line sr_sal;
2464 init_sal (&sr_sal);
2465 sr_sal.pc = ecs->stop_func_start;
2466
44cbf7b5 2467 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2468 keep_going (ecs);
2469 return;
1b2bfbb9
RC
2470 }
2471
95918acb 2472 /* If we have line number information for the function we are
8fb3e588 2473 thinking of stepping into, step into it.
95918acb 2474
8fb3e588
AC
2475 If there are several symtabs at that PC (e.g. with include
2476 files), just want to know whether *any* of them have line
2477 numbers. find_pc_line handles this. */
95918acb
AC
2478 {
2479 struct symtab_and_line tmp_sal;
8fb3e588 2480
95918acb
AC
2481 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2482 if (tmp_sal.line != 0)
2483 {
2484 step_into_function (ecs);
2485 return;
2486 }
2487 }
2488
2489 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2490 set, we stop the step so that the user has a chance to switch
2491 in assembly mode. */
95918acb
AC
2492 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2493 {
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
2499
2500 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2501 which the caller will resume). */
14e60db5 2502 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2503 keep_going (ecs);
488f131b 2504 return;
488f131b 2505 }
c906108c 2506
488f131b
JB
2507 /* If we're in the return path from a shared library trampoline,
2508 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2509 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2510 stop_pc, ecs->stop_func_name))
488f131b 2511 {
488f131b 2512 /* Determine where this trampoline returns. */
52f729a7
UW
2513 CORE_ADDR real_stop_pc;
2514 real_stop_pc = gdbarch_skip_trampoline_code
2515 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2516
527159b7 2517 if (debug_infrun)
8a9de0e4 2518 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2519
488f131b 2520 /* Only proceed through if we know where it's going. */
d764a824 2521 if (real_stop_pc)
488f131b
JB
2522 {
2523 /* And put the step-breakpoint there and go until there. */
2524 struct symtab_and_line sr_sal;
2525
fe39c653 2526 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2527 sr_sal.pc = real_stop_pc;
488f131b 2528 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2529
2530 /* Do not specify what the fp should be when we stop since
2531 on some machines the prologue is where the new fp value
2532 is established. */
2533 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2534
488f131b
JB
2535 /* Restart without fiddling with the step ranges or
2536 other state. */
2537 keep_going (ecs);
2538 return;
2539 }
2540 }
c906108c 2541
7ed0fe66
DJ
2542 ecs->sal = find_pc_line (stop_pc, 0);
2543
1b2bfbb9
RC
2544 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2545 the trampoline processing logic, however, there are some trampolines
2546 that have no names, so we should do trampoline handling first. */
2547 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2548 && ecs->stop_func_name == NULL
2549 && ecs->sal.line == 0)
1b2bfbb9 2550 {
527159b7 2551 if (debug_infrun)
8a9de0e4 2552 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2553
1b2bfbb9 2554 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2555 undebuggable function (where there is no debugging information
2556 and no line number corresponding to the address where the
1b2bfbb9
RC
2557 inferior stopped). Since we want to skip this kind of code,
2558 we keep going until the inferior returns from this
14e60db5
DJ
2559 function - unless the user has asked us not to (via
2560 set step-mode) or we no longer know how to get back
2561 to the call site. */
2562 if (step_stop_if_no_debug
2563 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2564 {
2565 /* If we have no line number and the step-stop-if-no-debug
2566 is set, we stop the step so that the user has a chance to
2567 switch in assembly mode. */
2568 stop_step = 1;
2569 print_stop_reason (END_STEPPING_RANGE, 0);
2570 stop_stepping (ecs);
2571 return;
2572 }
2573 else
2574 {
2575 /* Set a breakpoint at callee's return address (the address
2576 at which the caller will resume). */
14e60db5 2577 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2578 keep_going (ecs);
2579 return;
2580 }
2581 }
2582
2583 if (step_range_end == 1)
2584 {
2585 /* It is stepi or nexti. We always want to stop stepping after
2586 one instruction. */
527159b7 2587 if (debug_infrun)
8a9de0e4 2588 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2589 stop_step = 1;
2590 print_stop_reason (END_STEPPING_RANGE, 0);
2591 stop_stepping (ecs);
2592 return;
2593 }
2594
488f131b
JB
2595 if (ecs->sal.line == 0)
2596 {
2597 /* We have no line number information. That means to stop
2598 stepping (does this always happen right after one instruction,
2599 when we do "s" in a function with no line numbers,
2600 or can this happen as a result of a return or longjmp?). */
527159b7 2601 if (debug_infrun)
8a9de0e4 2602 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
c906108c 2608
488f131b
JB
2609 if ((stop_pc == ecs->sal.pc)
2610 && (ecs->current_line != ecs->sal.line
2611 || ecs->current_symtab != ecs->sal.symtab))
2612 {
2613 /* We are at the start of a different line. So stop. Note that
2614 we don't stop if we step into the middle of a different line.
2615 That is said to make things like for (;;) statements work
2616 better. */
527159b7 2617 if (debug_infrun)
8a9de0e4 2618 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2619 stop_step = 1;
2620 print_stop_reason (END_STEPPING_RANGE, 0);
2621 stop_stepping (ecs);
2622 return;
2623 }
c906108c 2624
488f131b 2625 /* We aren't done stepping.
c906108c 2626
488f131b
JB
2627 Optimize by setting the stepping range to the line.
2628 (We might not be in the original line, but if we entered a
2629 new line in mid-statement, we continue stepping. This makes
2630 things like for(;;) statements work better.) */
c906108c 2631
488f131b 2632 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2633 {
488f131b
JB
2634 /* If this is the last line of the function, don't keep stepping
2635 (it would probably step us out of the function).
2636 This is particularly necessary for a one-line function,
2637 in which after skipping the prologue we better stop even though
2638 we will be in mid-line. */
527159b7 2639 if (debug_infrun)
8a9de0e4 2640 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
c5aa993b 2645 }
488f131b
JB
2646 step_range_start = ecs->sal.pc;
2647 step_range_end = ecs->sal.end;
aa0cd9c1 2648 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2649 ecs->current_line = ecs->sal.line;
2650 ecs->current_symtab = ecs->sal.symtab;
2651
aa0cd9c1
AC
2652 /* In the case where we just stepped out of a function into the
2653 middle of a line of the caller, continue stepping, but
2654 step_frame_id must be modified to current frame */
65815ea1
AC
2655#if 0
2656 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2657 generous. It will trigger on things like a step into a frameless
2658 stackless leaf function. I think the logic should instead look
2659 at the unwound frame ID has that should give a more robust
2660 indication of what happened. */
8fb3e588
AC
2661 if (step - ID == current - ID)
2662 still stepping in same function;
2663 else if (step - ID == unwind (current - ID))
2664 stepped into a function;
2665 else
2666 stepped out of a function;
2667 /* Of course this assumes that the frame ID unwind code is robust
2668 and we're willing to introduce frame unwind logic into this
2669 function. Fortunately, those days are nearly upon us. */
65815ea1 2670#endif
488f131b 2671 {
aa0cd9c1
AC
2672 struct frame_id current_frame = get_frame_id (get_current_frame ());
2673 if (!(frame_id_inner (current_frame, step_frame_id)))
2674 step_frame_id = current_frame;
488f131b 2675 }
c906108c 2676
527159b7 2677 if (debug_infrun)
8a9de0e4 2678 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2679 keep_going (ecs);
104c1213
JM
2680}
2681
2682/* Are we in the middle of stepping? */
2683
2684static int
2685currently_stepping (struct execution_control_state *ecs)
2686{
d303a6c7 2687 return ((!ecs->handling_longjmp
104c1213
JM
2688 && ((step_range_end && step_resume_breakpoint == NULL)
2689 || trap_expected))
2690 || ecs->stepping_through_solib_after_catch
2691 || bpstat_should_step ());
2692}
c906108c 2693
c2c6d25f
JM
2694/* Subroutine call with source code we should not step over. Do step
2695 to the first line of code in it. */
2696
2697static void
2698step_into_function (struct execution_control_state *ecs)
2699{
2700 struct symtab *s;
2701 struct symtab_and_line sr_sal;
2702
2703 s = find_pc_symtab (stop_pc);
2704 if (s && s->language != language_asm)
a433963d
UW
2705 ecs->stop_func_start = gdbarch_skip_prologue
2706 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2707
2708 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2709 /* Use the step_resume_break to step until the end of the prologue,
2710 even if that involves jumps (as it seems to on the vax under
2711 4.2). */
2712 /* If the prologue ends in the middle of a source line, continue to
2713 the end of that source line (if it is still within the function).
2714 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2715 if (ecs->sal.end
2716 && ecs->sal.pc != ecs->stop_func_start
2717 && ecs->sal.end < ecs->stop_func_end)
2718 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2719
2dbd5e30
KB
2720 /* Architectures which require breakpoint adjustment might not be able
2721 to place a breakpoint at the computed address. If so, the test
2722 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2723 ecs->stop_func_start to an address at which a breakpoint may be
2724 legitimately placed.
8fb3e588 2725
2dbd5e30
KB
2726 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2727 made, GDB will enter an infinite loop when stepping through
2728 optimized code consisting of VLIW instructions which contain
2729 subinstructions corresponding to different source lines. On
2730 FR-V, it's not permitted to place a breakpoint on any but the
2731 first subinstruction of a VLIW instruction. When a breakpoint is
2732 set, GDB will adjust the breakpoint address to the beginning of
2733 the VLIW instruction. Thus, we need to make the corresponding
2734 adjustment here when computing the stop address. */
8fb3e588 2735
2dbd5e30
KB
2736 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2737 {
2738 ecs->stop_func_start
2739 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2740 ecs->stop_func_start);
2dbd5e30
KB
2741 }
2742
c2c6d25f
JM
2743 if (ecs->stop_func_start == stop_pc)
2744 {
2745 /* We are already there: stop now. */
2746 stop_step = 1;
488f131b 2747 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2748 stop_stepping (ecs);
2749 return;
2750 }
2751 else
2752 {
2753 /* Put the step-breakpoint there and go until there. */
fe39c653 2754 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2755 sr_sal.pc = ecs->stop_func_start;
2756 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2757
c2c6d25f 2758 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2759 some machines the prologue is where the new fp value is
2760 established. */
44cbf7b5 2761 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2762
2763 /* And make sure stepping stops right away then. */
2764 step_range_end = step_range_start;
2765 }
2766 keep_going (ecs);
2767}
d4f3574e 2768
d3169d93 2769/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2770 This is used to both functions and to skip over code. */
2771
2772static void
2773insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2774 struct frame_id sr_id)
2775{
2776 /* There should never be more than one step-resume breakpoint per
2777 thread, so we should never be setting a new
2778 step_resume_breakpoint when one is already active. */
2779 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2780
2781 if (debug_infrun)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "infrun: inserting step-resume breakpoint at 0x%s\n",
2784 paddr_nz (sr_sal.pc));
2785
44cbf7b5
AC
2786 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2787 bp_step_resume);
2788 if (breakpoints_inserted)
2789 insert_breakpoints ();
2790}
7ce450bd 2791
d3169d93 2792/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2793 to skip a potential signal handler.
7ce450bd 2794
14e60db5
DJ
2795 This is called with the interrupted function's frame. The signal
2796 handler, when it returns, will resume the interrupted function at
2797 RETURN_FRAME.pc. */
d303a6c7
AC
2798
2799static void
44cbf7b5 2800insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2801{
2802 struct symtab_and_line sr_sal;
2803
d303a6c7
AC
2804 init_sal (&sr_sal); /* initialize to zeros */
2805
bf6ae464
UW
2806 sr_sal.pc = gdbarch_addr_bits_remove
2807 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2808 sr_sal.section = find_pc_overlay (sr_sal.pc);
2809
44cbf7b5 2810 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2811}
2812
14e60db5
DJ
2813/* Similar to insert_step_resume_breakpoint_at_frame, except
2814 but a breakpoint at the previous frame's PC. This is used to
2815 skip a function after stepping into it (for "next" or if the called
2816 function has no debugging information).
2817
2818 The current function has almost always been reached by single
2819 stepping a call or return instruction. NEXT_FRAME belongs to the
2820 current function, and the breakpoint will be set at the caller's
2821 resume address.
2822
2823 This is a separate function rather than reusing
2824 insert_step_resume_breakpoint_at_frame in order to avoid
2825 get_prev_frame, which may stop prematurely (see the implementation
2826 of frame_unwind_id for an example). */
2827
2828static void
2829insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2830{
2831 struct symtab_and_line sr_sal;
2832
2833 /* We shouldn't have gotten here if we don't know where the call site
2834 is. */
2835 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2836
2837 init_sal (&sr_sal); /* initialize to zeros */
2838
bf6ae464
UW
2839 sr_sal.pc = gdbarch_addr_bits_remove
2840 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2841 sr_sal.section = find_pc_overlay (sr_sal.pc);
2842
2843 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2844}
2845
104c1213
JM
2846static void
2847stop_stepping (struct execution_control_state *ecs)
2848{
527159b7 2849 if (debug_infrun)
8a9de0e4 2850 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2851
cd0fc7c3
SS
2852 /* Let callers know we don't want to wait for the inferior anymore. */
2853 ecs->wait_some_more = 0;
2854}
2855
d4f3574e
SS
2856/* This function handles various cases where we need to continue
2857 waiting for the inferior. */
2858/* (Used to be the keep_going: label in the old wait_for_inferior) */
2859
2860static void
2861keep_going (struct execution_control_state *ecs)
2862{
d4f3574e 2863 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2864 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2865
d4f3574e
SS
2866 /* If we did not do break;, it means we should keep running the
2867 inferior and not return to debugger. */
2868
2869 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2870 {
2871 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2872 the inferior, else we'd have done a break above) and we
2873 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2874 resume (currently_stepping (ecs), stop_signal);
2875 }
2876 else
2877 {
2878 /* Either the trap was not expected, but we are continuing
488f131b
JB
2879 anyway (the user asked that this signal be passed to the
2880 child)
2881 -- or --
2882 The signal was SIGTRAP, e.g. it was our signal, but we
2883 decided we should resume from it.
d4f3574e 2884
68f53502 2885 We're going to run this baby now! */
d4f3574e 2886
68f53502 2887 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e 2888 {
569631c6
UW
2889 /* Stop stepping when inserting breakpoints
2890 has failed. */
2891 if (insert_breakpoints () != 0)
d4f3574e
SS
2892 {
2893 stop_stepping (ecs);
2894 return;
2895 }
2896 breakpoints_inserted = 1;
2897 }
2898
2899 trap_expected = ecs->another_trap;
2900
2901 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2902 specifies that such a signal should be delivered to the
2903 target program).
2904
2905 Typically, this would occure when a user is debugging a
2906 target monitor on a simulator: the target monitor sets a
2907 breakpoint; the simulator encounters this break-point and
2908 halts the simulation handing control to GDB; GDB, noteing
2909 that the break-point isn't valid, returns control back to the
2910 simulator; the simulator then delivers the hardware
2911 equivalent of a SIGNAL_TRAP to the program being debugged. */
2912
2913 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2914 stop_signal = TARGET_SIGNAL_0;
2915
d4f3574e
SS
2916
2917 resume (currently_stepping (ecs), stop_signal);
2918 }
2919
488f131b 2920 prepare_to_wait (ecs);
d4f3574e
SS
2921}
2922
104c1213
JM
2923/* This function normally comes after a resume, before
2924 handle_inferior_event exits. It takes care of any last bits of
2925 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2926
104c1213
JM
2927static void
2928prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2929{
527159b7 2930 if (debug_infrun)
8a9de0e4 2931 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2932 if (ecs->infwait_state == infwait_normal_state)
2933 {
2934 overlay_cache_invalid = 1;
2935
2936 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2937 target_wait because they can be loaded from the target while
2938 in target_wait. This makes remote debugging a bit more
2939 efficient for those targets that provide critical registers
2940 as part of their normal status mechanism. */
104c1213
JM
2941
2942 registers_changed ();
39f77062 2943 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2944 ecs->wp = &(ecs->ws);
2945 }
2946 /* This is the old end of the while loop. Let everybody know we
2947 want to wait for the inferior some more and get called again
2948 soon. */
2949 ecs->wait_some_more = 1;
c906108c 2950}
11cf8741
JM
2951
2952/* Print why the inferior has stopped. We always print something when
2953 the inferior exits, or receives a signal. The rest of the cases are
2954 dealt with later on in normal_stop() and print_it_typical(). Ideally
2955 there should be a call to this function from handle_inferior_event()
2956 each time stop_stepping() is called.*/
2957static void
2958print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2959{
2960 switch (stop_reason)
2961 {
11cf8741
JM
2962 case END_STEPPING_RANGE:
2963 /* We are done with a step/next/si/ni command. */
2964 /* For now print nothing. */
fb40c209 2965 /* Print a message only if not in the middle of doing a "step n"
488f131b 2966 operation for n > 1 */
fb40c209 2967 if (!step_multi || !stop_step)
9dc5e2a9 2968 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2969 ui_out_field_string
2970 (uiout, "reason",
2971 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 2972 break;
11cf8741
JM
2973 case SIGNAL_EXITED:
2974 /* The inferior was terminated by a signal. */
8b93c638 2975 annotate_signalled ();
9dc5e2a9 2976 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2977 ui_out_field_string
2978 (uiout, "reason",
2979 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
2980 ui_out_text (uiout, "\nProgram terminated with signal ");
2981 annotate_signal_name ();
488f131b
JB
2982 ui_out_field_string (uiout, "signal-name",
2983 target_signal_to_name (stop_info));
8b93c638
JM
2984 annotate_signal_name_end ();
2985 ui_out_text (uiout, ", ");
2986 annotate_signal_string ();
488f131b
JB
2987 ui_out_field_string (uiout, "signal-meaning",
2988 target_signal_to_string (stop_info));
8b93c638
JM
2989 annotate_signal_string_end ();
2990 ui_out_text (uiout, ".\n");
2991 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2992 break;
2993 case EXITED:
2994 /* The inferior program is finished. */
8b93c638
JM
2995 annotate_exited (stop_info);
2996 if (stop_info)
2997 {
9dc5e2a9 2998 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2999 ui_out_field_string (uiout, "reason",
3000 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3001 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3002 ui_out_field_fmt (uiout, "exit-code", "0%o",
3003 (unsigned int) stop_info);
8b93c638
JM
3004 ui_out_text (uiout, ".\n");
3005 }
3006 else
3007 {
9dc5e2a9 3008 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3009 ui_out_field_string
3010 (uiout, "reason",
3011 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3012 ui_out_text (uiout, "\nProgram exited normally.\n");
3013 }
f17517ea
AS
3014 /* Support the --return-child-result option. */
3015 return_child_result_value = stop_info;
11cf8741
JM
3016 break;
3017 case SIGNAL_RECEIVED:
3018 /* Signal received. The signal table tells us to print about
3019 it. */
8b93c638
JM
3020 annotate_signal ();
3021 ui_out_text (uiout, "\nProgram received signal ");
3022 annotate_signal_name ();
84c6c83c 3023 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3024 ui_out_field_string
3025 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3026 ui_out_field_string (uiout, "signal-name",
3027 target_signal_to_name (stop_info));
8b93c638
JM
3028 annotate_signal_name_end ();
3029 ui_out_text (uiout, ", ");
3030 annotate_signal_string ();
488f131b
JB
3031 ui_out_field_string (uiout, "signal-meaning",
3032 target_signal_to_string (stop_info));
8b93c638
JM
3033 annotate_signal_string_end ();
3034 ui_out_text (uiout, ".\n");
11cf8741
JM
3035 break;
3036 default:
8e65ff28 3037 internal_error (__FILE__, __LINE__,
e2e0b3e5 3038 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3039 break;
3040 }
3041}
c906108c 3042\f
43ff13b4 3043
c906108c
SS
3044/* Here to return control to GDB when the inferior stops for real.
3045 Print appropriate messages, remove breakpoints, give terminal our modes.
3046
3047 STOP_PRINT_FRAME nonzero means print the executing frame
3048 (pc, function, args, file, line number and line text).
3049 BREAKPOINTS_FAILED nonzero means stop was due to error
3050 attempting to insert breakpoints. */
3051
3052void
96baa820 3053normal_stop (void)
c906108c 3054{
73b65bb0
DJ
3055 struct target_waitstatus last;
3056 ptid_t last_ptid;
3057
3058 get_last_target_status (&last_ptid, &last);
3059
c906108c
SS
3060 /* As with the notification of thread events, we want to delay
3061 notifying the user that we've switched thread context until
3062 the inferior actually stops.
3063
73b65bb0
DJ
3064 There's no point in saying anything if the inferior has exited.
3065 Note that SIGNALLED here means "exited with a signal", not
3066 "received a signal". */
488f131b 3067 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3068 && target_has_execution
3069 && last.kind != TARGET_WAITKIND_SIGNALLED
3070 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3071 {
3072 target_terminal_ours_for_output ();
a3f17187 3073 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3074 target_pid_or_tid_to_str (inferior_ptid));
3075 previous_inferior_ptid = inferior_ptid;
c906108c 3076 }
c906108c 3077
4fa8626c 3078 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3079 /* Make sure that the current_frame's pc is correct. This
3080 is a correction for setting up the frame info before doing
b798847d 3081 gdbarch_decr_pc_after_break */
b87efeee
AC
3082 if (target_has_execution)
3083 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3084 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3085 frame code to check for this and sort out any resultant mess.
b798847d 3086 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3087 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3088
c906108c
SS
3089 if (target_has_execution && breakpoints_inserted)
3090 {
3091 if (remove_breakpoints ())
3092 {
3093 target_terminal_ours_for_output ();
a3f17187
AC
3094 printf_filtered (_("\
3095Cannot remove breakpoints because program is no longer writable.\n\
3096It might be running in another process.\n\
3097Further execution is probably impossible.\n"));
c906108c
SS
3098 }
3099 }
3100 breakpoints_inserted = 0;
3101
3102 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3103 Delete any breakpoint that is to be deleted at the next stop. */
3104
3105 breakpoint_auto_delete (stop_bpstat);
3106
3107 /* If an auto-display called a function and that got a signal,
3108 delete that auto-display to avoid an infinite recursion. */
3109
3110 if (stopped_by_random_signal)
3111 disable_current_display ();
3112
3113 /* Don't print a message if in the middle of doing a "step n"
3114 operation for n > 1 */
3115 if (step_multi && stop_step)
3116 goto done;
3117
3118 target_terminal_ours ();
3119
7abfe014
DJ
3120 /* Set the current source location. This will also happen if we
3121 display the frame below, but the current SAL will be incorrect
3122 during a user hook-stop function. */
3123 if (target_has_stack && !stop_stack_dummy)
3124 set_current_sal_from_frame (get_current_frame (), 1);
3125
5913bcb0
AC
3126 /* Look up the hook_stop and run it (CLI internally handles problem
3127 of stop_command's pre-hook not existing). */
3128 if (stop_command)
3129 catch_errors (hook_stop_stub, stop_command,
3130 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3131
3132 if (!target_has_stack)
3133 {
3134
3135 goto done;
3136 }
3137
3138 /* Select innermost stack frame - i.e., current frame is frame 0,
3139 and current location is based on that.
3140 Don't do this on return from a stack dummy routine,
3141 or if the program has exited. */
3142
3143 if (!stop_stack_dummy)
3144 {
0f7d239c 3145 select_frame (get_current_frame ());
c906108c
SS
3146
3147 /* Print current location without a level number, if
c5aa993b
JM
3148 we have changed functions or hit a breakpoint.
3149 Print source line if we have one.
3150 bpstat_print() contains the logic deciding in detail
3151 what to print, based on the event(s) that just occurred. */
c906108c 3152
206415a3 3153 if (stop_print_frame)
c906108c
SS
3154 {
3155 int bpstat_ret;
3156 int source_flag;
917317f4 3157 int do_frame_printing = 1;
c906108c
SS
3158
3159 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3160 switch (bpstat_ret)
3161 {
3162 case PRINT_UNKNOWN:
aa0cd9c1 3163 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3164 (or should) carry around the function and does (or
3165 should) use that when doing a frame comparison. */
917317f4 3166 if (stop_step
aa0cd9c1
AC
3167 && frame_id_eq (step_frame_id,
3168 get_frame_id (get_current_frame ()))
917317f4 3169 && step_start_function == find_pc_function (stop_pc))
488f131b 3170 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3171 else
488f131b 3172 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3173 break;
3174 case PRINT_SRC_AND_LOC:
488f131b 3175 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3176 break;
3177 case PRINT_SRC_ONLY:
c5394b80 3178 source_flag = SRC_LINE;
917317f4
JM
3179 break;
3180 case PRINT_NOTHING:
488f131b 3181 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3182 do_frame_printing = 0;
3183 break;
3184 default:
e2e0b3e5 3185 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3186 }
c906108c 3187
9dc5e2a9 3188 if (ui_out_is_mi_like_p (uiout))
39f77062 3189 ui_out_field_int (uiout, "thread-id",
488f131b 3190 pid_to_thread_id (inferior_ptid));
c906108c
SS
3191 /* The behavior of this routine with respect to the source
3192 flag is:
c5394b80
JM
3193 SRC_LINE: Print only source line
3194 LOCATION: Print only location
3195 SRC_AND_LOC: Print location and source line */
917317f4 3196 if (do_frame_printing)
b04f3ab4 3197 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3198
3199 /* Display the auto-display expressions. */
3200 do_displays ();
3201 }
3202 }
3203
3204 /* Save the function value return registers, if we care.
3205 We might be about to restore their previous contents. */
3206 if (proceed_to_finish)
d5c31457
UW
3207 {
3208 /* This should not be necessary. */
3209 if (stop_registers)
3210 regcache_xfree (stop_registers);
3211
3212 /* NB: The copy goes through to the target picking up the value of
3213 all the registers. */
3214 stop_registers = regcache_dup (get_current_regcache ());
3215 }
c906108c
SS
3216
3217 if (stop_stack_dummy)
3218 {
dbe9fe58
AC
3219 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3220 ends with a setting of the current frame, so we can use that
3221 next. */
3222 frame_pop (get_current_frame ());
c906108c 3223 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3224 Can't rely on restore_inferior_status because that only gets
3225 called if we don't stop in the called function. */
c906108c 3226 stop_pc = read_pc ();
0f7d239c 3227 select_frame (get_current_frame ());
c906108c
SS
3228 }
3229
c906108c
SS
3230done:
3231 annotate_stopped ();
7a464420 3232 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3233}
3234
3235static int
96baa820 3236hook_stop_stub (void *cmd)
c906108c 3237{
5913bcb0 3238 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3239 return (0);
3240}
3241\f
c5aa993b 3242int
96baa820 3243signal_stop_state (int signo)
c906108c
SS
3244{
3245 return signal_stop[signo];
3246}
3247
c5aa993b 3248int
96baa820 3249signal_print_state (int signo)
c906108c
SS
3250{
3251 return signal_print[signo];
3252}
3253
c5aa993b 3254int
96baa820 3255signal_pass_state (int signo)
c906108c
SS
3256{
3257 return signal_program[signo];
3258}
3259
488f131b 3260int
7bda5e4a 3261signal_stop_update (int signo, int state)
d4f3574e
SS
3262{
3263 int ret = signal_stop[signo];
3264 signal_stop[signo] = state;
3265 return ret;
3266}
3267
488f131b 3268int
7bda5e4a 3269signal_print_update (int signo, int state)
d4f3574e
SS
3270{
3271 int ret = signal_print[signo];
3272 signal_print[signo] = state;
3273 return ret;
3274}
3275
488f131b 3276int
7bda5e4a 3277signal_pass_update (int signo, int state)
d4f3574e
SS
3278{
3279 int ret = signal_program[signo];
3280 signal_program[signo] = state;
3281 return ret;
3282}
3283
c906108c 3284static void
96baa820 3285sig_print_header (void)
c906108c 3286{
a3f17187
AC
3287 printf_filtered (_("\
3288Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3289}
3290
3291static void
96baa820 3292sig_print_info (enum target_signal oursig)
c906108c
SS
3293{
3294 char *name = target_signal_to_name (oursig);
3295 int name_padding = 13 - strlen (name);
96baa820 3296
c906108c
SS
3297 if (name_padding <= 0)
3298 name_padding = 0;
3299
3300 printf_filtered ("%s", name);
488f131b 3301 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3302 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3303 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3304 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3305 printf_filtered ("%s\n", target_signal_to_string (oursig));
3306}
3307
3308/* Specify how various signals in the inferior should be handled. */
3309
3310static void
96baa820 3311handle_command (char *args, int from_tty)
c906108c
SS
3312{
3313 char **argv;
3314 int digits, wordlen;
3315 int sigfirst, signum, siglast;
3316 enum target_signal oursig;
3317 int allsigs;
3318 int nsigs;
3319 unsigned char *sigs;
3320 struct cleanup *old_chain;
3321
3322 if (args == NULL)
3323 {
e2e0b3e5 3324 error_no_arg (_("signal to handle"));
c906108c
SS
3325 }
3326
3327 /* Allocate and zero an array of flags for which signals to handle. */
3328
3329 nsigs = (int) TARGET_SIGNAL_LAST;
3330 sigs = (unsigned char *) alloca (nsigs);
3331 memset (sigs, 0, nsigs);
3332
3333 /* Break the command line up into args. */
3334
3335 argv = buildargv (args);
3336 if (argv == NULL)
3337 {
3338 nomem (0);
3339 }
7a292a7a 3340 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3341
3342 /* Walk through the args, looking for signal oursigs, signal names, and
3343 actions. Signal numbers and signal names may be interspersed with
3344 actions, with the actions being performed for all signals cumulatively
3345 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3346
3347 while (*argv != NULL)
3348 {
3349 wordlen = strlen (*argv);
3350 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3351 {;
3352 }
3353 allsigs = 0;
3354 sigfirst = siglast = -1;
3355
3356 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3357 {
3358 /* Apply action to all signals except those used by the
3359 debugger. Silently skip those. */
3360 allsigs = 1;
3361 sigfirst = 0;
3362 siglast = nsigs - 1;
3363 }
3364 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3365 {
3366 SET_SIGS (nsigs, sigs, signal_stop);
3367 SET_SIGS (nsigs, sigs, signal_print);
3368 }
3369 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3370 {
3371 UNSET_SIGS (nsigs, sigs, signal_program);
3372 }
3373 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3374 {
3375 SET_SIGS (nsigs, sigs, signal_print);
3376 }
3377 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3378 {
3379 SET_SIGS (nsigs, sigs, signal_program);
3380 }
3381 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3382 {
3383 UNSET_SIGS (nsigs, sigs, signal_stop);
3384 }
3385 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3386 {
3387 SET_SIGS (nsigs, sigs, signal_program);
3388 }
3389 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3390 {
3391 UNSET_SIGS (nsigs, sigs, signal_print);
3392 UNSET_SIGS (nsigs, sigs, signal_stop);
3393 }
3394 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3395 {
3396 UNSET_SIGS (nsigs, sigs, signal_program);
3397 }
3398 else if (digits > 0)
3399 {
3400 /* It is numeric. The numeric signal refers to our own
3401 internal signal numbering from target.h, not to host/target
3402 signal number. This is a feature; users really should be
3403 using symbolic names anyway, and the common ones like
3404 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3405
3406 sigfirst = siglast = (int)
3407 target_signal_from_command (atoi (*argv));
3408 if ((*argv)[digits] == '-')
3409 {
3410 siglast = (int)
3411 target_signal_from_command (atoi ((*argv) + digits + 1));
3412 }
3413 if (sigfirst > siglast)
3414 {
3415 /* Bet he didn't figure we'd think of this case... */
3416 signum = sigfirst;
3417 sigfirst = siglast;
3418 siglast = signum;
3419 }
3420 }
3421 else
3422 {
3423 oursig = target_signal_from_name (*argv);
3424 if (oursig != TARGET_SIGNAL_UNKNOWN)
3425 {
3426 sigfirst = siglast = (int) oursig;
3427 }
3428 else
3429 {
3430 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3431 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3432 }
3433 }
3434
3435 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3436 which signals to apply actions to. */
c906108c
SS
3437
3438 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3439 {
3440 switch ((enum target_signal) signum)
3441 {
3442 case TARGET_SIGNAL_TRAP:
3443 case TARGET_SIGNAL_INT:
3444 if (!allsigs && !sigs[signum])
3445 {
3446 if (query ("%s is used by the debugger.\n\
488f131b 3447Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3448 {
3449 sigs[signum] = 1;
3450 }
3451 else
3452 {
a3f17187 3453 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3454 gdb_flush (gdb_stdout);
3455 }
3456 }
3457 break;
3458 case TARGET_SIGNAL_0:
3459 case TARGET_SIGNAL_DEFAULT:
3460 case TARGET_SIGNAL_UNKNOWN:
3461 /* Make sure that "all" doesn't print these. */
3462 break;
3463 default:
3464 sigs[signum] = 1;
3465 break;
3466 }
3467 }
3468
3469 argv++;
3470 }
3471
39f77062 3472 target_notice_signals (inferior_ptid);
c906108c
SS
3473
3474 if (from_tty)
3475 {
3476 /* Show the results. */
3477 sig_print_header ();
3478 for (signum = 0; signum < nsigs; signum++)
3479 {
3480 if (sigs[signum])
3481 {
3482 sig_print_info (signum);
3483 }
3484 }
3485 }
3486
3487 do_cleanups (old_chain);
3488}
3489
3490static void
96baa820 3491xdb_handle_command (char *args, int from_tty)
c906108c
SS
3492{
3493 char **argv;
3494 struct cleanup *old_chain;
3495
3496 /* Break the command line up into args. */
3497
3498 argv = buildargv (args);
3499 if (argv == NULL)
3500 {
3501 nomem (0);
3502 }
7a292a7a 3503 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3504 if (argv[1] != (char *) NULL)
3505 {
3506 char *argBuf;
3507 int bufLen;
3508
3509 bufLen = strlen (argv[0]) + 20;
3510 argBuf = (char *) xmalloc (bufLen);
3511 if (argBuf)
3512 {
3513 int validFlag = 1;
3514 enum target_signal oursig;
3515
3516 oursig = target_signal_from_name (argv[0]);
3517 memset (argBuf, 0, bufLen);
3518 if (strcmp (argv[1], "Q") == 0)
3519 sprintf (argBuf, "%s %s", argv[0], "noprint");
3520 else
3521 {
3522 if (strcmp (argv[1], "s") == 0)
3523 {
3524 if (!signal_stop[oursig])
3525 sprintf (argBuf, "%s %s", argv[0], "stop");
3526 else
3527 sprintf (argBuf, "%s %s", argv[0], "nostop");
3528 }
3529 else if (strcmp (argv[1], "i") == 0)
3530 {
3531 if (!signal_program[oursig])
3532 sprintf (argBuf, "%s %s", argv[0], "pass");
3533 else
3534 sprintf (argBuf, "%s %s", argv[0], "nopass");
3535 }
3536 else if (strcmp (argv[1], "r") == 0)
3537 {
3538 if (!signal_print[oursig])
3539 sprintf (argBuf, "%s %s", argv[0], "print");
3540 else
3541 sprintf (argBuf, "%s %s", argv[0], "noprint");
3542 }
3543 else
3544 validFlag = 0;
3545 }
3546 if (validFlag)
3547 handle_command (argBuf, from_tty);
3548 else
a3f17187 3549 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3550 if (argBuf)
b8c9b27d 3551 xfree (argBuf);
c906108c
SS
3552 }
3553 }
3554 do_cleanups (old_chain);
3555}
3556
3557/* Print current contents of the tables set by the handle command.
3558 It is possible we should just be printing signals actually used
3559 by the current target (but for things to work right when switching
3560 targets, all signals should be in the signal tables). */
3561
3562static void
96baa820 3563signals_info (char *signum_exp, int from_tty)
c906108c
SS
3564{
3565 enum target_signal oursig;
3566 sig_print_header ();
3567
3568 if (signum_exp)
3569 {
3570 /* First see if this is a symbol name. */
3571 oursig = target_signal_from_name (signum_exp);
3572 if (oursig == TARGET_SIGNAL_UNKNOWN)
3573 {
3574 /* No, try numeric. */
3575 oursig =
bb518678 3576 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3577 }
3578 sig_print_info (oursig);
3579 return;
3580 }
3581
3582 printf_filtered ("\n");
3583 /* These ugly casts brought to you by the native VAX compiler. */
3584 for (oursig = TARGET_SIGNAL_FIRST;
3585 (int) oursig < (int) TARGET_SIGNAL_LAST;
3586 oursig = (enum target_signal) ((int) oursig + 1))
3587 {
3588 QUIT;
3589
3590 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3591 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3592 sig_print_info (oursig);
3593 }
3594
a3f17187 3595 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3596}
3597\f
7a292a7a
SS
3598struct inferior_status
3599{
3600 enum target_signal stop_signal;
3601 CORE_ADDR stop_pc;
3602 bpstat stop_bpstat;
3603 int stop_step;
3604 int stop_stack_dummy;
3605 int stopped_by_random_signal;
3606 int trap_expected;
3607 CORE_ADDR step_range_start;
3608 CORE_ADDR step_range_end;
aa0cd9c1 3609 struct frame_id step_frame_id;
5fbbeb29 3610 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3611 CORE_ADDR step_resume_break_address;
3612 int stop_after_trap;
c0236d92 3613 int stop_soon;
7a292a7a
SS
3614
3615 /* These are here because if call_function_by_hand has written some
3616 registers and then decides to call error(), we better not have changed
3617 any registers. */
72cec141 3618 struct regcache *registers;
7a292a7a 3619
101dcfbe
AC
3620 /* A frame unique identifier. */
3621 struct frame_id selected_frame_id;
3622
7a292a7a
SS
3623 int breakpoint_proceeded;
3624 int restore_stack_info;
3625 int proceed_to_finish;
3626};
3627
7a292a7a 3628void
96baa820
JM
3629write_inferior_status_register (struct inferior_status *inf_status, int regno,
3630 LONGEST val)
7a292a7a 3631{
3acba339 3632 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3633 void *buf = alloca (size);
3634 store_signed_integer (buf, size, val);
0818c12a 3635 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3636}
3637
c906108c
SS
3638/* Save all of the information associated with the inferior<==>gdb
3639 connection. INF_STATUS is a pointer to a "struct inferior_status"
3640 (defined in inferior.h). */
3641
7a292a7a 3642struct inferior_status *
96baa820 3643save_inferior_status (int restore_stack_info)
c906108c 3644{
72cec141 3645 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3646
c906108c
SS
3647 inf_status->stop_signal = stop_signal;
3648 inf_status->stop_pc = stop_pc;
3649 inf_status->stop_step = stop_step;
3650 inf_status->stop_stack_dummy = stop_stack_dummy;
3651 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3652 inf_status->trap_expected = trap_expected;
3653 inf_status->step_range_start = step_range_start;
3654 inf_status->step_range_end = step_range_end;
aa0cd9c1 3655 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3656 inf_status->step_over_calls = step_over_calls;
3657 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3658 inf_status->stop_soon = stop_soon;
c906108c
SS
3659 /* Save original bpstat chain here; replace it with copy of chain.
3660 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3661 hand them back the original chain when restore_inferior_status is
3662 called. */
c906108c
SS
3663 inf_status->stop_bpstat = stop_bpstat;
3664 stop_bpstat = bpstat_copy (stop_bpstat);
3665 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3666 inf_status->restore_stack_info = restore_stack_info;
3667 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3668
594f7785 3669 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3670
206415a3 3671 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3672 return inf_status;
c906108c
SS
3673}
3674
c906108c 3675static int
96baa820 3676restore_selected_frame (void *args)
c906108c 3677{
488f131b 3678 struct frame_id *fid = (struct frame_id *) args;
c906108c 3679 struct frame_info *frame;
c906108c 3680
101dcfbe 3681 frame = frame_find_by_id (*fid);
c906108c 3682
aa0cd9c1
AC
3683 /* If inf_status->selected_frame_id is NULL, there was no previously
3684 selected frame. */
101dcfbe 3685 if (frame == NULL)
c906108c 3686 {
8a3fe4f8 3687 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3688 return 0;
3689 }
3690
0f7d239c 3691 select_frame (frame);
c906108c
SS
3692
3693 return (1);
3694}
3695
3696void
96baa820 3697restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3698{
3699 stop_signal = inf_status->stop_signal;
3700 stop_pc = inf_status->stop_pc;
3701 stop_step = inf_status->stop_step;
3702 stop_stack_dummy = inf_status->stop_stack_dummy;
3703 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3704 trap_expected = inf_status->trap_expected;
3705 step_range_start = inf_status->step_range_start;
3706 step_range_end = inf_status->step_range_end;
aa0cd9c1 3707 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3708 step_over_calls = inf_status->step_over_calls;
3709 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3710 stop_soon = inf_status->stop_soon;
c906108c
SS
3711 bpstat_clear (&stop_bpstat);
3712 stop_bpstat = inf_status->stop_bpstat;
3713 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3714 proceed_to_finish = inf_status->proceed_to_finish;
3715
c906108c
SS
3716 /* The inferior can be gone if the user types "print exit(0)"
3717 (and perhaps other times). */
3718 if (target_has_execution)
72cec141 3719 /* NB: The register write goes through to the target. */
594f7785 3720 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3721 regcache_xfree (inf_status->registers);
c906108c 3722
c906108c
SS
3723 /* FIXME: If we are being called after stopping in a function which
3724 is called from gdb, we should not be trying to restore the
3725 selected frame; it just prints a spurious error message (The
3726 message is useful, however, in detecting bugs in gdb (like if gdb
3727 clobbers the stack)). In fact, should we be restoring the
3728 inferior status at all in that case? . */
3729
3730 if (target_has_stack && inf_status->restore_stack_info)
3731 {
c906108c 3732 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3733 walking the stack might encounter a garbage pointer and
3734 error() trying to dereference it. */
488f131b
JB
3735 if (catch_errors
3736 (restore_selected_frame, &inf_status->selected_frame_id,
3737 "Unable to restore previously selected frame:\n",
3738 RETURN_MASK_ERROR) == 0)
c906108c
SS
3739 /* Error in restoring the selected frame. Select the innermost
3740 frame. */
0f7d239c 3741 select_frame (get_current_frame ());
c906108c
SS
3742
3743 }
c906108c 3744
72cec141 3745 xfree (inf_status);
7a292a7a 3746}
c906108c 3747
74b7792f
AC
3748static void
3749do_restore_inferior_status_cleanup (void *sts)
3750{
3751 restore_inferior_status (sts);
3752}
3753
3754struct cleanup *
3755make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3756{
3757 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3758}
3759
c906108c 3760void
96baa820 3761discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3762{
3763 /* See save_inferior_status for info on stop_bpstat. */
3764 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3765 regcache_xfree (inf_status->registers);
72cec141 3766 xfree (inf_status);
7a292a7a
SS
3767}
3768
47932f85
DJ
3769int
3770inferior_has_forked (int pid, int *child_pid)
3771{
3772 struct target_waitstatus last;
3773 ptid_t last_ptid;
3774
3775 get_last_target_status (&last_ptid, &last);
3776
3777 if (last.kind != TARGET_WAITKIND_FORKED)
3778 return 0;
3779
3780 if (ptid_get_pid (last_ptid) != pid)
3781 return 0;
3782
3783 *child_pid = last.value.related_pid;
3784 return 1;
3785}
3786
3787int
3788inferior_has_vforked (int pid, int *child_pid)
3789{
3790 struct target_waitstatus last;
3791 ptid_t last_ptid;
3792
3793 get_last_target_status (&last_ptid, &last);
3794
3795 if (last.kind != TARGET_WAITKIND_VFORKED)
3796 return 0;
3797
3798 if (ptid_get_pid (last_ptid) != pid)
3799 return 0;
3800
3801 *child_pid = last.value.related_pid;
3802 return 1;
3803}
3804
3805int
3806inferior_has_execd (int pid, char **execd_pathname)
3807{
3808 struct target_waitstatus last;
3809 ptid_t last_ptid;
3810
3811 get_last_target_status (&last_ptid, &last);
3812
3813 if (last.kind != TARGET_WAITKIND_EXECD)
3814 return 0;
3815
3816 if (ptid_get_pid (last_ptid) != pid)
3817 return 0;
3818
3819 *execd_pathname = xstrdup (last.value.execd_pathname);
3820 return 1;
3821}
3822
ca6724c1
KB
3823/* Oft used ptids */
3824ptid_t null_ptid;
3825ptid_t minus_one_ptid;
3826
3827/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3828
ca6724c1
KB
3829ptid_t
3830ptid_build (int pid, long lwp, long tid)
3831{
3832 ptid_t ptid;
3833
3834 ptid.pid = pid;
3835 ptid.lwp = lwp;
3836 ptid.tid = tid;
3837 return ptid;
3838}
3839
3840/* Create a ptid from just a pid. */
3841
3842ptid_t
3843pid_to_ptid (int pid)
3844{
3845 return ptid_build (pid, 0, 0);
3846}
3847
3848/* Fetch the pid (process id) component from a ptid. */
3849
3850int
3851ptid_get_pid (ptid_t ptid)
3852{
3853 return ptid.pid;
3854}
3855
3856/* Fetch the lwp (lightweight process) component from a ptid. */
3857
3858long
3859ptid_get_lwp (ptid_t ptid)
3860{
3861 return ptid.lwp;
3862}
3863
3864/* Fetch the tid (thread id) component from a ptid. */
3865
3866long
3867ptid_get_tid (ptid_t ptid)
3868{
3869 return ptid.tid;
3870}
3871
3872/* ptid_equal() is used to test equality of two ptids. */
3873
3874int
3875ptid_equal (ptid_t ptid1, ptid_t ptid2)
3876{
3877 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3878 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3879}
3880
3881/* restore_inferior_ptid() will be used by the cleanup machinery
3882 to restore the inferior_ptid value saved in a call to
3883 save_inferior_ptid(). */
ce696e05
KB
3884
3885static void
3886restore_inferior_ptid (void *arg)
3887{
3888 ptid_t *saved_ptid_ptr = arg;
3889 inferior_ptid = *saved_ptid_ptr;
3890 xfree (arg);
3891}
3892
3893/* Save the value of inferior_ptid so that it may be restored by a
3894 later call to do_cleanups(). Returns the struct cleanup pointer
3895 needed for later doing the cleanup. */
3896
3897struct cleanup *
3898save_inferior_ptid (void)
3899{
3900 ptid_t *saved_ptid_ptr;
3901
3902 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3903 *saved_ptid_ptr = inferior_ptid;
3904 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3905}
c5aa993b 3906\f
488f131b 3907
c906108c 3908void
96baa820 3909_initialize_infrun (void)
c906108c 3910{
52f0bd74
AC
3911 int i;
3912 int numsigs;
c906108c
SS
3913 struct cmd_list_element *c;
3914
1bedd215
AC
3915 add_info ("signals", signals_info, _("\
3916What debugger does when program gets various signals.\n\
3917Specify a signal as argument to print info on that signal only."));
c906108c
SS
3918 add_info_alias ("handle", "signals", 0);
3919
1bedd215
AC
3920 add_com ("handle", class_run, handle_command, _("\
3921Specify how to handle a signal.\n\
c906108c
SS
3922Args are signals and actions to apply to those signals.\n\
3923Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3924from 1-15 are allowed for compatibility with old versions of GDB.\n\
3925Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3926The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3927used by the debugger, typically SIGTRAP and SIGINT.\n\
3928Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3929\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3930Stop means reenter debugger if this signal happens (implies print).\n\
3931Print means print a message if this signal happens.\n\
3932Pass means let program see this signal; otherwise program doesn't know.\n\
3933Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3934Pass and Stop may be combined."));
c906108c
SS
3935 if (xdb_commands)
3936 {
1bedd215
AC
3937 add_com ("lz", class_info, signals_info, _("\
3938What debugger does when program gets various signals.\n\
3939Specify a signal as argument to print info on that signal only."));
3940 add_com ("z", class_run, xdb_handle_command, _("\
3941Specify how to handle a signal.\n\
c906108c
SS
3942Args are signals and actions to apply to those signals.\n\
3943Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3944from 1-15 are allowed for compatibility with old versions of GDB.\n\
3945Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3946The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3947used by the debugger, typically SIGTRAP and SIGINT.\n\
3948Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3949\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3950nopass), \"Q\" (noprint)\n\
3951Stop means reenter debugger if this signal happens (implies print).\n\
3952Print means print a message if this signal happens.\n\
3953Pass means let program see this signal; otherwise program doesn't know.\n\
3954Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3955Pass and Stop may be combined."));
c906108c
SS
3956 }
3957
3958 if (!dbx_commands)
1a966eab
AC
3959 stop_command = add_cmd ("stop", class_obscure,
3960 not_just_help_class_command, _("\
3961There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3962This allows you to set a list of commands to be run each time execution\n\
1a966eab 3963of the program stops."), &cmdlist);
c906108c 3964
85c07804
AC
3965 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3966Set inferior debugging."), _("\
3967Show inferior debugging."), _("\
3968When non-zero, inferior specific debugging is enabled."),
3969 NULL,
920d2a44 3970 show_debug_infrun,
85c07804 3971 &setdebuglist, &showdebuglist);
527159b7 3972
c906108c 3973 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3974 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3975 signal_print = (unsigned char *)
3976 xmalloc (sizeof (signal_print[0]) * numsigs);
3977 signal_program = (unsigned char *)
3978 xmalloc (sizeof (signal_program[0]) * numsigs);
3979 for (i = 0; i < numsigs; i++)
3980 {
3981 signal_stop[i] = 1;
3982 signal_print[i] = 1;
3983 signal_program[i] = 1;
3984 }
3985
3986 /* Signals caused by debugger's own actions
3987 should not be given to the program afterwards. */
3988 signal_program[TARGET_SIGNAL_TRAP] = 0;
3989 signal_program[TARGET_SIGNAL_INT] = 0;
3990
3991 /* Signals that are not errors should not normally enter the debugger. */
3992 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3993 signal_print[TARGET_SIGNAL_ALRM] = 0;
3994 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3995 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3996 signal_stop[TARGET_SIGNAL_PROF] = 0;
3997 signal_print[TARGET_SIGNAL_PROF] = 0;
3998 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3999 signal_print[TARGET_SIGNAL_CHLD] = 0;
4000 signal_stop[TARGET_SIGNAL_IO] = 0;
4001 signal_print[TARGET_SIGNAL_IO] = 0;
4002 signal_stop[TARGET_SIGNAL_POLL] = 0;
4003 signal_print[TARGET_SIGNAL_POLL] = 0;
4004 signal_stop[TARGET_SIGNAL_URG] = 0;
4005 signal_print[TARGET_SIGNAL_URG] = 0;
4006 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4007 signal_print[TARGET_SIGNAL_WINCH] = 0;
4008
cd0fc7c3
SS
4009 /* These signals are used internally by user-level thread
4010 implementations. (See signal(5) on Solaris.) Like the above
4011 signals, a healthy program receives and handles them as part of
4012 its normal operation. */
4013 signal_stop[TARGET_SIGNAL_LWP] = 0;
4014 signal_print[TARGET_SIGNAL_LWP] = 0;
4015 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4016 signal_print[TARGET_SIGNAL_WAITING] = 0;
4017 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4018 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4019
85c07804
AC
4020 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4021 &stop_on_solib_events, _("\
4022Set stopping for shared library events."), _("\
4023Show stopping for shared library events."), _("\
c906108c
SS
4024If nonzero, gdb will give control to the user when the dynamic linker\n\
4025notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4026to the user would be loading/unloading of a new library."),
4027 NULL,
920d2a44 4028 show_stop_on_solib_events,
85c07804 4029 &setlist, &showlist);
c906108c 4030
7ab04401
AC
4031 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4032 follow_fork_mode_kind_names,
4033 &follow_fork_mode_string, _("\
4034Set debugger response to a program call of fork or vfork."), _("\
4035Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4036A fork or vfork creates a new process. follow-fork-mode can be:\n\
4037 parent - the original process is debugged after a fork\n\
4038 child - the new process is debugged after a fork\n\
ea1dd7bc 4039The unfollowed process will continue to run.\n\
7ab04401
AC
4040By default, the debugger will follow the parent process."),
4041 NULL,
920d2a44 4042 show_follow_fork_mode_string,
7ab04401
AC
4043 &setlist, &showlist);
4044
4045 add_setshow_enum_cmd ("scheduler-locking", class_run,
4046 scheduler_enums, &scheduler_mode, _("\
4047Set mode for locking scheduler during execution."), _("\
4048Show mode for locking scheduler during execution."), _("\
c906108c
SS
4049off == no locking (threads may preempt at any time)\n\
4050on == full locking (no thread except the current thread may run)\n\
4051step == scheduler locked during every single-step operation.\n\
4052 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4053 Other threads may run while stepping over a function call ('next')."),
4054 set_schedlock_func, /* traps on target vector */
920d2a44 4055 show_scheduler_mode,
7ab04401 4056 &setlist, &showlist);
5fbbeb29 4057
5bf193a2
AC
4058 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4059Set mode of the step operation."), _("\
4060Show mode of the step operation."), _("\
4061When set, doing a step over a function without debug line information\n\
4062will stop at the first instruction of that function. Otherwise, the\n\
4063function is skipped and the step command stops at a different source line."),
4064 NULL,
920d2a44 4065 show_step_stop_if_no_debug,
5bf193a2 4066 &setlist, &showlist);
ca6724c1
KB
4067
4068 /* ptid initializations */
4069 null_ptid = ptid_build (0, 0, 0);
4070 minus_one_ptid = ptid_build (-1, 0, 0);
4071 inferior_ptid = null_ptid;
4072 target_last_wait_ptid = minus_one_ptid;
c906108c 4073}
This page took 0.87885 seconds and 4 git commands to generate.