* elf32-bfin.c (bfin_howto_table): Set src_mask to 0 for all relocs.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
60250e8b 31#include "exceptions.h"
c906108c 32#include "breakpoint.h"
03f2053f 33#include "gdb_wait.h"
c906108c
SS
34#include "gdbcore.h"
35#include "gdbcmd.h"
210661e7 36#include "cli/cli-script.h"
c906108c
SS
37#include "target.h"
38#include "gdbthread.h"
39#include "annotate.h"
1adeb98a 40#include "symfile.h"
7a292a7a 41#include "top.h"
c906108c 42#include <signal.h>
2acceee2 43#include "inf-loop.h"
4e052eda 44#include "regcache.h"
fd0407d6 45#include "value.h"
06600e06 46#include "observer.h"
f636b87d 47#include "language.h"
a77053c2
MK
48#include "solib.h"
49
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
96baa820
JM
76struct execution_control_state;
77
78static int currently_stepping (struct execution_control_state *ecs);
79
80static void xdb_handle_command (char *args, int from_tty);
81
ea67f13b
DJ
82static int prepare_to_proceed (void);
83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
c906108c
SS
86int inferior_ignoring_startup_exec_events = 0;
87int inferior_ignoring_leading_exec_events = 0;
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
920d2a44
AC
93static void
94show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98}
5fbbeb29 99
43ff13b4 100/* In asynchronous mode, but simulating synchronous execution. */
96baa820 101
43ff13b4
JM
102int sync_execution = 0;
103
c906108c
SS
104/* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
96baa820
JM
106 running in. */
107
39f77062 108static ptid_t previous_inferior_ptid;
7a292a7a
SS
109
110/* This is true for configurations that may follow through execl() and
111 similar functions. At present this is only true for HP-UX native. */
112
113#ifndef MAY_FOLLOW_EXEC
114#define MAY_FOLLOW_EXEC (0)
c906108c
SS
115#endif
116
7a292a7a
SS
117static int may_follow_exec = MAY_FOLLOW_EXEC;
118
527159b7 119static int debug_infrun = 0;
920d2a44
AC
120static void
121show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123{
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125}
527159b7 126
d4f3574e
SS
127/* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
ca557f44
AC
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
d4f3574e
SS
146
147 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
c906108c 165
c906108c
SS
166/* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174#ifndef SOLIB_IN_DYNAMIC_LINKER
175#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176#endif
177
c2c6d25f
JM
178/* We can't step off a permanent breakpoint in the ordinary way, because we
179 can't remove it. Instead, we have to advance the PC to the next
180 instruction. This macro should expand to a pointer to a function that
181 does that, or zero if we have no such function. If we don't have a
182 definition for it, we have to report an error. */
488f131b 183#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
184#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
185static void
c2d11a7d 186default_skip_permanent_breakpoint (void)
c2c6d25f 187{
8a3fe4f8 188 error (_("\
c2c6d25f
JM
189The program is stopped at a permanent breakpoint, but GDB does not know\n\
190how to step past a permanent breakpoint on this architecture. Try using\n\
8a3fe4f8 191a command like `return' or `jump' to continue execution."));
c2c6d25f
JM
192}
193#endif
488f131b 194
c2c6d25f 195
7a292a7a
SS
196/* Convert the #defines into values. This is temporary until wfi control
197 flow is completely sorted out. */
198
199#ifndef HAVE_STEPPABLE_WATCHPOINT
200#define HAVE_STEPPABLE_WATCHPOINT 0
201#else
202#undef HAVE_STEPPABLE_WATCHPOINT
203#define HAVE_STEPPABLE_WATCHPOINT 1
204#endif
205
692590c1
MS
206#ifndef CANNOT_STEP_HW_WATCHPOINTS
207#define CANNOT_STEP_HW_WATCHPOINTS 0
208#else
209#undef CANNOT_STEP_HW_WATCHPOINTS
210#define CANNOT_STEP_HW_WATCHPOINTS 1
211#endif
212
c906108c
SS
213/* Tables of how to react to signals; the user sets them. */
214
215static unsigned char *signal_stop;
216static unsigned char *signal_print;
217static unsigned char *signal_program;
218
219#define SET_SIGS(nsigs,sigs,flags) \
220 do { \
221 int signum = (nsigs); \
222 while (signum-- > 0) \
223 if ((sigs)[signum]) \
224 (flags)[signum] = 1; \
225 } while (0)
226
227#define UNSET_SIGS(nsigs,sigs,flags) \
228 do { \
229 int signum = (nsigs); \
230 while (signum-- > 0) \
231 if ((sigs)[signum]) \
232 (flags)[signum] = 0; \
233 } while (0)
234
39f77062
KB
235/* Value to pass to target_resume() to cause all threads to resume */
236
237#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
238
239/* Command list pointer for the "stop" placeholder. */
240
241static struct cmd_list_element *stop_command;
242
243/* Nonzero if breakpoints are now inserted in the inferior. */
244
245static int breakpoints_inserted;
246
247/* Function inferior was in as of last step command. */
248
249static struct symbol *step_start_function;
250
251/* Nonzero if we are expecting a trace trap and should proceed from it. */
252
253static int trap_expected;
254
c906108c
SS
255/* Nonzero if we want to give control to the user when we're notified
256 of shared library events by the dynamic linker. */
257static int stop_on_solib_events;
920d2a44
AC
258static void
259show_stop_on_solib_events (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261{
262 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
263 value);
264}
c906108c 265
c906108c
SS
266/* Nonzero means expecting a trace trap
267 and should stop the inferior and return silently when it happens. */
268
269int stop_after_trap;
270
271/* Nonzero means expecting a trap and caller will handle it themselves.
272 It is used after attach, due to attaching to a process;
273 when running in the shell before the child program has been exec'd;
274 and when running some kinds of remote stuff (FIXME?). */
275
c0236d92 276enum stop_kind stop_soon;
c906108c
SS
277
278/* Nonzero if proceed is being used for a "finish" command or a similar
279 situation when stop_registers should be saved. */
280
281int proceed_to_finish;
282
283/* Save register contents here when about to pop a stack dummy frame,
284 if-and-only-if proceed_to_finish is set.
285 Thus this contains the return value from the called function (assuming
286 values are returned in a register). */
287
72cec141 288struct regcache *stop_registers;
c906108c
SS
289
290/* Nonzero if program stopped due to error trying to insert breakpoints. */
291
292static int breakpoints_failed;
293
294/* Nonzero after stop if current stack frame should be printed. */
295
296static int stop_print_frame;
297
298static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 299
e02bc4cc 300/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
301 returned by target_wait()/deprecated_target_wait_hook(). This
302 information is returned by get_last_target_status(). */
39f77062 303static ptid_t target_last_wait_ptid;
e02bc4cc
DS
304static struct target_waitstatus target_last_waitstatus;
305
c906108c
SS
306/* This is used to remember when a fork, vfork or exec event
307 was caught by a catchpoint, and thus the event is to be
308 followed at the next resume of the inferior, and not
309 immediately. */
310static struct
488f131b
JB
311{
312 enum target_waitkind kind;
313 struct
c906108c 314 {
488f131b 315 int parent_pid;
488f131b 316 int child_pid;
c906108c 317 }
488f131b
JB
318 fork_event;
319 char *execd_pathname;
320}
c906108c
SS
321pending_follow;
322
53904c9e
AC
323static const char follow_fork_mode_child[] = "child";
324static const char follow_fork_mode_parent[] = "parent";
325
488f131b 326static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
327 follow_fork_mode_child,
328 follow_fork_mode_parent,
329 NULL
ef346e04 330};
c906108c 331
53904c9e 332static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
333static void
334show_follow_fork_mode_string (struct ui_file *file, int from_tty,
335 struct cmd_list_element *c, const char *value)
336{
337 fprintf_filtered (file, _("\
338Debugger response to a program call of fork or vfork is \"%s\".\n"),
339 value);
340}
c906108c
SS
341\f
342
6604731b 343static int
4ef3f3be 344follow_fork (void)
c906108c 345{
ea1dd7bc 346 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 347
6604731b 348 return target_follow_fork (follow_child);
c906108c
SS
349}
350
6604731b
DJ
351void
352follow_inferior_reset_breakpoints (void)
c906108c 353{
6604731b
DJ
354 /* Was there a step_resume breakpoint? (There was if the user
355 did a "next" at the fork() call.) If so, explicitly reset its
356 thread number.
357
358 step_resumes are a form of bp that are made to be per-thread.
359 Since we created the step_resume bp when the parent process
360 was being debugged, and now are switching to the child process,
361 from the breakpoint package's viewpoint, that's a switch of
362 "threads". We must update the bp's notion of which thread
363 it is for, or it'll be ignored when it triggers. */
364
365 if (step_resume_breakpoint)
366 breakpoint_re_set_thread (step_resume_breakpoint);
367
368 /* Reinsert all breakpoints in the child. The user may have set
369 breakpoints after catching the fork, in which case those
370 were never set in the child, but only in the parent. This makes
371 sure the inserted breakpoints match the breakpoint list. */
372
373 breakpoint_re_set ();
374 insert_breakpoints ();
c906108c 375}
c906108c 376
1adeb98a
FN
377/* EXECD_PATHNAME is assumed to be non-NULL. */
378
c906108c 379static void
96baa820 380follow_exec (int pid, char *execd_pathname)
c906108c 381{
c906108c 382 int saved_pid = pid;
7a292a7a
SS
383 struct target_ops *tgt;
384
385 if (!may_follow_exec)
386 return;
c906108c 387
c906108c
SS
388 /* This is an exec event that we actually wish to pay attention to.
389 Refresh our symbol table to the newly exec'd program, remove any
390 momentary bp's, etc.
391
392 If there are breakpoints, they aren't really inserted now,
393 since the exec() transformed our inferior into a fresh set
394 of instructions.
395
396 We want to preserve symbolic breakpoints on the list, since
397 we have hopes that they can be reset after the new a.out's
398 symbol table is read.
399
400 However, any "raw" breakpoints must be removed from the list
401 (e.g., the solib bp's), since their address is probably invalid
402 now.
403
404 And, we DON'T want to call delete_breakpoints() here, since
405 that may write the bp's "shadow contents" (the instruction
406 value that was overwritten witha TRAP instruction). Since
407 we now have a new a.out, those shadow contents aren't valid. */
408 update_breakpoints_after_exec ();
409
410 /* If there was one, it's gone now. We cannot truly step-to-next
411 statement through an exec(). */
412 step_resume_breakpoint = NULL;
413 step_range_start = 0;
414 step_range_end = 0;
415
c906108c 416 /* What is this a.out's name? */
a3f17187 417 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
418
419 /* We've followed the inferior through an exec. Therefore, the
420 inferior has essentially been killed & reborn. */
7a292a7a
SS
421
422 /* First collect the run target in effect. */
423 tgt = find_run_target ();
424 /* If we can't find one, things are in a very strange state... */
425 if (tgt == NULL)
8a3fe4f8 426 error (_("Could find run target to save before following exec"));
7a292a7a 427
c906108c
SS
428 gdb_flush (gdb_stdout);
429 target_mourn_inferior ();
39f77062 430 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 431 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 432 push_target (tgt);
c906108c
SS
433
434 /* That a.out is now the one to use. */
435 exec_file_attach (execd_pathname, 0);
436
437 /* And also is where symbols can be found. */
1adeb98a 438 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
439
440 /* Reset the shared library package. This ensures that we get
441 a shlib event when the child reaches "_start", at which point
442 the dld will have had a chance to initialize the child. */
7a292a7a 443#if defined(SOLIB_RESTART)
c906108c 444 SOLIB_RESTART ();
7a292a7a
SS
445#endif
446#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 447 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
448#else
449 solib_create_inferior_hook ();
7a292a7a 450#endif
c906108c
SS
451
452 /* Reinsert all breakpoints. (Those which were symbolic have
453 been reset to the proper address in the new a.out, thanks
454 to symbol_file_command...) */
455 insert_breakpoints ();
456
457 /* The next resume of this inferior should bring it to the shlib
458 startup breakpoints. (If the user had also set bp's on
459 "main" from the old (parent) process, then they'll auto-
460 matically get reset there in the new process.) */
c906108c
SS
461}
462
463/* Non-zero if we just simulating a single-step. This is needed
464 because we cannot remove the breakpoints in the inferior process
465 until after the `wait' in `wait_for_inferior'. */
466static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
467
468/* The thread we inserted single-step breakpoints for. */
469static ptid_t singlestep_ptid;
470
471/* If another thread hit the singlestep breakpoint, we save the original
472 thread here so that we can resume single-stepping it later. */
473static ptid_t saved_singlestep_ptid;
474static int stepping_past_singlestep_breakpoint;
c906108c
SS
475\f
476
477/* Things to clean up if we QUIT out of resume (). */
c906108c 478static void
74b7792f 479resume_cleanups (void *ignore)
c906108c
SS
480{
481 normal_stop ();
482}
483
53904c9e
AC
484static const char schedlock_off[] = "off";
485static const char schedlock_on[] = "on";
486static const char schedlock_step[] = "step";
488f131b 487static const char *scheduler_enums[] = {
ef346e04
AC
488 schedlock_off,
489 schedlock_on,
490 schedlock_step,
491 NULL
492};
920d2a44
AC
493static const char *scheduler_mode = schedlock_off;
494static void
495show_scheduler_mode (struct ui_file *file, int from_tty,
496 struct cmd_list_element *c, const char *value)
497{
498 fprintf_filtered (file, _("\
499Mode for locking scheduler during execution is \"%s\".\n"),
500 value);
501}
c906108c
SS
502
503static void
96baa820 504set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 505{
eefe576e
AC
506 if (!target_can_lock_scheduler)
507 {
508 scheduler_mode = schedlock_off;
509 error (_("Target '%s' cannot support this command."), target_shortname);
510 }
c906108c
SS
511}
512
513
514/* Resume the inferior, but allow a QUIT. This is useful if the user
515 wants to interrupt some lengthy single-stepping operation
516 (for child processes, the SIGINT goes to the inferior, and so
517 we get a SIGINT random_signal, but for remote debugging and perhaps
518 other targets, that's not true).
519
520 STEP nonzero if we should step (zero to continue instead).
521 SIG is the signal to give the inferior (zero for none). */
522void
96baa820 523resume (int step, enum target_signal sig)
c906108c
SS
524{
525 int should_resume = 1;
74b7792f 526 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
527 QUIT;
528
527159b7 529 if (debug_infrun)
8a9de0e4
AC
530 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
531 step, sig);
527159b7 532
ef5cf84e
MS
533 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
534
c906108c 535
692590c1
MS
536 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
537 over an instruction that causes a page fault without triggering
538 a hardware watchpoint. The kernel properly notices that it shouldn't
539 stop, because the hardware watchpoint is not triggered, but it forgets
540 the step request and continues the program normally.
541 Work around the problem by removing hardware watchpoints if a step is
542 requested, GDB will check for a hardware watchpoint trigger after the
543 step anyway. */
544 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
545 remove_hw_watchpoints ();
488f131b 546
692590c1 547
c2c6d25f
JM
548 /* Normally, by the time we reach `resume', the breakpoints are either
549 removed or inserted, as appropriate. The exception is if we're sitting
550 at a permanent breakpoint; we need to step over it, but permanent
551 breakpoints can't be removed. So we have to test for it here. */
552 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
553 SKIP_PERMANENT_BREAKPOINT ();
554
b0ed3589 555 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
556 {
557 /* Do it the hard way, w/temp breakpoints */
c5aa993b 558 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
559 /* ...and don't ask hardware to do it. */
560 step = 0;
561 /* and do not pull these breakpoints until after a `wait' in
562 `wait_for_inferior' */
563 singlestep_breakpoints_inserted_p = 1;
9f976b41 564 singlestep_ptid = inferior_ptid;
c906108c
SS
565 }
566
c906108c 567 /* If there were any forks/vforks/execs that were caught and are
6604731b 568 now to be followed, then do so. */
c906108c
SS
569 switch (pending_follow.kind)
570 {
6604731b
DJ
571 case TARGET_WAITKIND_FORKED:
572 case TARGET_WAITKIND_VFORKED:
c906108c 573 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
574 if (follow_fork ())
575 should_resume = 0;
c906108c
SS
576 break;
577
6604731b 578 case TARGET_WAITKIND_EXECD:
c906108c 579 /* follow_exec is called as soon as the exec event is seen. */
6604731b 580 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
581 break;
582
583 default:
584 break;
585 }
c906108c
SS
586
587 /* Install inferior's terminal modes. */
588 target_terminal_inferior ();
589
590 if (should_resume)
591 {
39f77062 592 ptid_t resume_ptid;
dfcd3bfb 593
488f131b 594 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 595
8fb3e588
AC
596 if ((step || singlestep_breakpoints_inserted_p)
597 && (stepping_past_singlestep_breakpoint
598 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 599 {
ef5cf84e
MS
600 /* Stepping past a breakpoint without inserting breakpoints.
601 Make sure only the current thread gets to step, so that
602 other threads don't sneak past breakpoints while they are
603 not inserted. */
c906108c 604
ef5cf84e 605 resume_ptid = inferior_ptid;
c906108c 606 }
ef5cf84e 607
8fb3e588
AC
608 if ((scheduler_mode == schedlock_on)
609 || (scheduler_mode == schedlock_step
610 && (step || singlestep_breakpoints_inserted_p)))
c906108c 611 {
ef5cf84e 612 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 613 resume_ptid = inferior_ptid;
c906108c 614 }
ef5cf84e 615
c4ed33b9
AC
616 if (CANNOT_STEP_BREAKPOINT)
617 {
618 /* Most targets can step a breakpoint instruction, thus
619 executing it normally. But if this one cannot, just
620 continue and we will hit it anyway. */
621 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
622 step = 0;
623 }
39f77062 624 target_resume (resume_ptid, step, sig);
c906108c
SS
625 }
626
627 discard_cleanups (old_cleanups);
628}
629\f
630
631/* Clear out all variables saying what to do when inferior is continued.
632 First do this, then set the ones you want, then call `proceed'. */
633
634void
96baa820 635clear_proceed_status (void)
c906108c
SS
636{
637 trap_expected = 0;
638 step_range_start = 0;
639 step_range_end = 0;
aa0cd9c1 640 step_frame_id = null_frame_id;
5fbbeb29 641 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 642 stop_after_trap = 0;
c0236d92 643 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
644 proceed_to_finish = 0;
645 breakpoint_proceeded = 1; /* We're about to proceed... */
646
647 /* Discard any remaining commands or status from previous stop. */
648 bpstat_clear (&stop_bpstat);
649}
650
ea67f13b
DJ
651/* This should be suitable for any targets that support threads. */
652
653static int
654prepare_to_proceed (void)
655{
656 ptid_t wait_ptid;
657 struct target_waitstatus wait_status;
658
659 /* Get the last target status returned by target_wait(). */
660 get_last_target_status (&wait_ptid, &wait_status);
661
662 /* Make sure we were stopped either at a breakpoint, or because
663 of a Ctrl-C. */
664 if (wait_status.kind != TARGET_WAITKIND_STOPPED
8fb3e588
AC
665 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
666 && wait_status.value.sig != TARGET_SIGNAL_INT))
ea67f13b
DJ
667 {
668 return 0;
669 }
670
671 if (!ptid_equal (wait_ptid, minus_one_ptid)
672 && !ptid_equal (inferior_ptid, wait_ptid))
673 {
674 /* Switched over from WAIT_PID. */
675 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
676
677 if (wait_pc != read_pc ())
678 {
679 /* Switch back to WAIT_PID thread. */
680 inferior_ptid = wait_ptid;
681
682 /* FIXME: This stuff came from switch_to_thread() in
683 thread.c (which should probably be a public function). */
684 flush_cached_frames ();
685 registers_changed ();
686 stop_pc = wait_pc;
687 select_frame (get_current_frame ());
688 }
689
8fb3e588
AC
690 /* We return 1 to indicate that there is a breakpoint here,
691 so we need to step over it before continuing to avoid
692 hitting it straight away. */
693 if (breakpoint_here_p (wait_pc))
694 return 1;
ea67f13b
DJ
695 }
696
697 return 0;
8fb3e588 698
ea67f13b 699}
e4846b08
JJ
700
701/* Record the pc of the program the last time it stopped. This is
702 just used internally by wait_for_inferior, but need to be preserved
703 over calls to it and cleared when the inferior is started. */
704static CORE_ADDR prev_pc;
705
c906108c
SS
706/* Basic routine for continuing the program in various fashions.
707
708 ADDR is the address to resume at, or -1 for resume where stopped.
709 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 710 or -1 for act according to how it stopped.
c906108c 711 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
712 -1 means return after that and print nothing.
713 You should probably set various step_... variables
714 before calling here, if you are stepping.
c906108c
SS
715
716 You should call clear_proceed_status before calling proceed. */
717
718void
96baa820 719proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
720{
721 int oneproc = 0;
722
723 if (step > 0)
724 step_start_function = find_pc_function (read_pc ());
725 if (step < 0)
726 stop_after_trap = 1;
727
2acceee2 728 if (addr == (CORE_ADDR) -1)
c906108c 729 {
c906108c 730 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
731 /* There is a breakpoint at the address we will resume at,
732 step one instruction before inserting breakpoints so that
733 we do not stop right away (and report a second hit at this
734 breakpoint). */
c906108c 735 oneproc = 1;
3352ef37
AC
736 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
737 && gdbarch_single_step_through_delay (current_gdbarch,
738 get_current_frame ()))
739 /* We stepped onto an instruction that needs to be stepped
740 again before re-inserting the breakpoint, do so. */
c906108c
SS
741 oneproc = 1;
742 }
743 else
744 {
745 write_pc (addr);
c906108c
SS
746 }
747
527159b7 748 if (debug_infrun)
8a9de0e4
AC
749 fprintf_unfiltered (gdb_stdlog,
750 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
751 paddr_nz (addr), siggnal, step);
527159b7 752
c906108c
SS
753 /* In a multi-threaded task we may select another thread
754 and then continue or step.
755
756 But if the old thread was stopped at a breakpoint, it
757 will immediately cause another breakpoint stop without
758 any execution (i.e. it will report a breakpoint hit
759 incorrectly). So we must step over it first.
760
ea67f13b 761 prepare_to_proceed checks the current thread against the thread
c906108c
SS
762 that reported the most recent event. If a step-over is required
763 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
764 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
765 oneproc = 1;
c906108c 766
c906108c
SS
767 if (oneproc)
768 /* We will get a trace trap after one instruction.
769 Continue it automatically and insert breakpoints then. */
770 trap_expected = 1;
771 else
772 {
81d0cc19
GS
773 insert_breakpoints ();
774 /* If we get here there was no call to error() in
8fb3e588 775 insert breakpoints -- so they were inserted. */
c906108c
SS
776 breakpoints_inserted = 1;
777 }
778
779 if (siggnal != TARGET_SIGNAL_DEFAULT)
780 stop_signal = siggnal;
781 /* If this signal should not be seen by program,
782 give it zero. Used for debugging signals. */
783 else if (!signal_program[stop_signal])
784 stop_signal = TARGET_SIGNAL_0;
785
786 annotate_starting ();
787
788 /* Make sure that output from GDB appears before output from the
789 inferior. */
790 gdb_flush (gdb_stdout);
791
e4846b08
JJ
792 /* Refresh prev_pc value just prior to resuming. This used to be
793 done in stop_stepping, however, setting prev_pc there did not handle
794 scenarios such as inferior function calls or returning from
795 a function via the return command. In those cases, the prev_pc
796 value was not set properly for subsequent commands. The prev_pc value
797 is used to initialize the starting line number in the ecs. With an
798 invalid value, the gdb next command ends up stopping at the position
799 represented by the next line table entry past our start position.
800 On platforms that generate one line table entry per line, this
801 is not a problem. However, on the ia64, the compiler generates
802 extraneous line table entries that do not increase the line number.
803 When we issue the gdb next command on the ia64 after an inferior call
804 or a return command, we often end up a few instructions forward, still
805 within the original line we started.
806
807 An attempt was made to have init_execution_control_state () refresh
808 the prev_pc value before calculating the line number. This approach
809 did not work because on platforms that use ptrace, the pc register
810 cannot be read unless the inferior is stopped. At that point, we
811 are not guaranteed the inferior is stopped and so the read_pc ()
812 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 813 updated correctly when the inferior is stopped. */
e4846b08
JJ
814 prev_pc = read_pc ();
815
c906108c
SS
816 /* Resume inferior. */
817 resume (oneproc || step || bpstat_should_step (), stop_signal);
818
819 /* Wait for it to stop (if not standalone)
820 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
821 /* Do this only if we are not using the event loop, or if the target
822 does not support asynchronous execution. */
362646f5 823 if (!target_can_async_p ())
43ff13b4
JM
824 {
825 wait_for_inferior ();
826 normal_stop ();
827 }
c906108c 828}
c906108c
SS
829\f
830
831/* Start remote-debugging of a machine over a serial link. */
96baa820 832
c906108c 833void
96baa820 834start_remote (void)
c906108c
SS
835{
836 init_thread_list ();
837 init_wait_for_inferior ();
c0236d92 838 stop_soon = STOP_QUIETLY;
c906108c 839 trap_expected = 0;
43ff13b4 840
6426a772
JM
841 /* Always go on waiting for the target, regardless of the mode. */
842 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 843 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
844 nothing is returned (instead of just blocking). Because of this,
845 targets expecting an immediate response need to, internally, set
846 things up so that the target_wait() is forced to eventually
847 timeout. */
848 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
849 differentiate to its caller what the state of the target is after
850 the initial open has been performed. Here we're assuming that
851 the target has stopped. It should be possible to eventually have
852 target_open() return to the caller an indication that the target
853 is currently running and GDB state should be set to the same as
854 for an async run. */
855 wait_for_inferior ();
856 normal_stop ();
c906108c
SS
857}
858
859/* Initialize static vars when a new inferior begins. */
860
861void
96baa820 862init_wait_for_inferior (void)
c906108c
SS
863{
864 /* These are meaningless until the first time through wait_for_inferior. */
865 prev_pc = 0;
c906108c 866
c906108c
SS
867 breakpoints_inserted = 0;
868 breakpoint_init_inferior (inf_starting);
869
870 /* Don't confuse first call to proceed(). */
871 stop_signal = TARGET_SIGNAL_0;
872
873 /* The first resume is not following a fork/vfork/exec. */
874 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 875
c906108c 876 clear_proceed_status ();
9f976b41
DJ
877
878 stepping_past_singlestep_breakpoint = 0;
c906108c 879}
c906108c 880\f
b83266a0
SS
881/* This enum encodes possible reasons for doing a target_wait, so that
882 wfi can call target_wait in one place. (Ultimately the call will be
883 moved out of the infinite loop entirely.) */
884
c5aa993b
JM
885enum infwait_states
886{
cd0fc7c3
SS
887 infwait_normal_state,
888 infwait_thread_hop_state,
cd0fc7c3 889 infwait_nonstep_watch_state
b83266a0
SS
890};
891
11cf8741
JM
892/* Why did the inferior stop? Used to print the appropriate messages
893 to the interface from within handle_inferior_event(). */
894enum inferior_stop_reason
895{
896 /* We don't know why. */
897 STOP_UNKNOWN,
898 /* Step, next, nexti, stepi finished. */
899 END_STEPPING_RANGE,
900 /* Found breakpoint. */
901 BREAKPOINT_HIT,
902 /* Inferior terminated by signal. */
903 SIGNAL_EXITED,
904 /* Inferior exited. */
905 EXITED,
906 /* Inferior received signal, and user asked to be notified. */
907 SIGNAL_RECEIVED
908};
909
cd0fc7c3
SS
910/* This structure contains what used to be local variables in
911 wait_for_inferior. Probably many of them can return to being
912 locals in handle_inferior_event. */
913
c5aa993b 914struct execution_control_state
488f131b
JB
915{
916 struct target_waitstatus ws;
917 struct target_waitstatus *wp;
918 int another_trap;
919 int random_signal;
920 CORE_ADDR stop_func_start;
921 CORE_ADDR stop_func_end;
922 char *stop_func_name;
923 struct symtab_and_line sal;
488f131b
JB
924 int current_line;
925 struct symtab *current_symtab;
926 int handling_longjmp; /* FIXME */
927 ptid_t ptid;
928 ptid_t saved_inferior_ptid;
68f53502 929 int step_after_step_resume_breakpoint;
488f131b
JB
930 int stepping_through_solib_after_catch;
931 bpstat stepping_through_solib_catchpoints;
488f131b
JB
932 int new_thread_event;
933 struct target_waitstatus tmpstatus;
934 enum infwait_states infwait_state;
935 ptid_t waiton_ptid;
936 int wait_some_more;
937};
938
939void init_execution_control_state (struct execution_control_state *ecs);
940
941void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 942
c2c6d25f 943static void step_into_function (struct execution_control_state *ecs);
44cbf7b5
AC
944static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
945static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
946 struct frame_id sr_id);
104c1213
JM
947static void stop_stepping (struct execution_control_state *ecs);
948static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 949static void keep_going (struct execution_control_state *ecs);
488f131b
JB
950static void print_stop_reason (enum inferior_stop_reason stop_reason,
951 int stop_info);
104c1213 952
cd0fc7c3
SS
953/* Wait for control to return from inferior to debugger.
954 If inferior gets a signal, we may decide to start it up again
955 instead of returning. That is why there is a loop in this function.
956 When this function actually returns it means the inferior
957 should be left stopped and GDB should read more commands. */
958
959void
96baa820 960wait_for_inferior (void)
cd0fc7c3
SS
961{
962 struct cleanup *old_cleanups;
963 struct execution_control_state ecss;
964 struct execution_control_state *ecs;
c906108c 965
527159b7 966 if (debug_infrun)
8a9de0e4 967 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 968
8601f500 969 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 970 &step_resume_breakpoint);
cd0fc7c3
SS
971
972 /* wfi still stays in a loop, so it's OK just to take the address of
973 a local to get the ecs pointer. */
974 ecs = &ecss;
975
976 /* Fill in with reasonable starting values. */
977 init_execution_control_state (ecs);
978
c906108c 979 /* We'll update this if & when we switch to a new thread. */
39f77062 980 previous_inferior_ptid = inferior_ptid;
c906108c 981
cd0fc7c3
SS
982 overlay_cache_invalid = 1;
983
984 /* We have to invalidate the registers BEFORE calling target_wait
985 because they can be loaded from the target while in target_wait.
986 This makes remote debugging a bit more efficient for those
987 targets that provide critical registers as part of their normal
988 status mechanism. */
989
990 registers_changed ();
b83266a0 991
c906108c
SS
992 while (1)
993 {
9a4105ab
AC
994 if (deprecated_target_wait_hook)
995 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 996 else
39f77062 997 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 998
cd0fc7c3
SS
999 /* Now figure out what to do with the result of the result. */
1000 handle_inferior_event (ecs);
c906108c 1001
cd0fc7c3
SS
1002 if (!ecs->wait_some_more)
1003 break;
1004 }
1005 do_cleanups (old_cleanups);
1006}
c906108c 1007
43ff13b4
JM
1008/* Asynchronous version of wait_for_inferior. It is called by the
1009 event loop whenever a change of state is detected on the file
1010 descriptor corresponding to the target. It can be called more than
1011 once to complete a single execution command. In such cases we need
1012 to keep the state in a global variable ASYNC_ECSS. If it is the
1013 last time that this function is called for a single execution
1014 command, then report to the user that the inferior has stopped, and
1015 do the necessary cleanups. */
1016
1017struct execution_control_state async_ecss;
1018struct execution_control_state *async_ecs;
1019
1020void
fba45db2 1021fetch_inferior_event (void *client_data)
43ff13b4
JM
1022{
1023 static struct cleanup *old_cleanups;
1024
c5aa993b 1025 async_ecs = &async_ecss;
43ff13b4
JM
1026
1027 if (!async_ecs->wait_some_more)
1028 {
488f131b 1029 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1030 &step_resume_breakpoint);
43ff13b4
JM
1031
1032 /* Fill in with reasonable starting values. */
1033 init_execution_control_state (async_ecs);
1034
43ff13b4 1035 /* We'll update this if & when we switch to a new thread. */
39f77062 1036 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1037
1038 overlay_cache_invalid = 1;
1039
1040 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1041 because they can be loaded from the target while in target_wait.
1042 This makes remote debugging a bit more efficient for those
1043 targets that provide critical registers as part of their normal
1044 status mechanism. */
43ff13b4
JM
1045
1046 registers_changed ();
1047 }
1048
9a4105ab 1049 if (deprecated_target_wait_hook)
488f131b 1050 async_ecs->ptid =
9a4105ab 1051 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1052 else
39f77062 1053 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1054
1055 /* Now figure out what to do with the result of the result. */
1056 handle_inferior_event (async_ecs);
1057
1058 if (!async_ecs->wait_some_more)
1059 {
adf40b2e 1060 /* Do only the cleanups that have been added by this
488f131b
JB
1061 function. Let the continuations for the commands do the rest,
1062 if there are any. */
43ff13b4
JM
1063 do_exec_cleanups (old_cleanups);
1064 normal_stop ();
c2d11a7d
JM
1065 if (step_multi && stop_step)
1066 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1067 else
1068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1069 }
1070}
1071
cd0fc7c3
SS
1072/* Prepare an execution control state for looping through a
1073 wait_for_inferior-type loop. */
1074
1075void
96baa820 1076init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1077{
6ad80df0 1078 ecs->another_trap = 0;
cd0fc7c3 1079 ecs->random_signal = 0;
68f53502 1080 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1081 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1082 ecs->stepping_through_solib_after_catch = 0;
1083 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1084 ecs->sal = find_pc_line (prev_pc, 0);
1085 ecs->current_line = ecs->sal.line;
1086 ecs->current_symtab = ecs->sal.symtab;
1087 ecs->infwait_state = infwait_normal_state;
39f77062 1088 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1089 ecs->wp = &(ecs->ws);
1090}
1091
e02bc4cc 1092/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1093 target_wait()/deprecated_target_wait_hook(). The data is actually
1094 cached by handle_inferior_event(), which gets called immediately
1095 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1096
1097void
488f131b 1098get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1099{
39f77062 1100 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1101 *status = target_last_waitstatus;
1102}
1103
dd80620e
MS
1104/* Switch thread contexts, maintaining "infrun state". */
1105
1106static void
1107context_switch (struct execution_control_state *ecs)
1108{
1109 /* Caution: it may happen that the new thread (or the old one!)
1110 is not in the thread list. In this case we must not attempt
1111 to "switch context", or we run the risk that our context may
1112 be lost. This may happen as a result of the target module
1113 mishandling thread creation. */
1114
1115 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1116 { /* Perform infrun state context switch: */
dd80620e 1117 /* Save infrun state for the old thread. */
0ce3d317 1118 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1119 trap_expected, step_resume_breakpoint,
15960608 1120 step_range_start,
aa0cd9c1 1121 step_range_end, &step_frame_id,
dd80620e
MS
1122 ecs->handling_longjmp, ecs->another_trap,
1123 ecs->stepping_through_solib_after_catch,
1124 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1125 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1126
1127 /* Load infrun state for the new thread. */
0ce3d317 1128 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1129 &trap_expected, &step_resume_breakpoint,
15960608 1130 &step_range_start,
aa0cd9c1 1131 &step_range_end, &step_frame_id,
dd80620e
MS
1132 &ecs->handling_longjmp, &ecs->another_trap,
1133 &ecs->stepping_through_solib_after_catch,
1134 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1135 &ecs->current_line, &ecs->current_symtab);
dd80620e
MS
1136 }
1137 inferior_ptid = ecs->ptid;
1138}
1139
4fa8626c
DJ
1140static void
1141adjust_pc_after_break (struct execution_control_state *ecs)
1142{
8aad930b 1143 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1144
1145 /* If this target does not decrement the PC after breakpoints, then
1146 we have nothing to do. */
1147 if (DECR_PC_AFTER_BREAK == 0)
1148 return;
1149
1150 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1151 we aren't, just return.
9709f61c
DJ
1152
1153 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1154 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1155 by software breakpoints should be handled through the normal breakpoint
1156 layer.
8fb3e588 1157
4fa8626c
DJ
1158 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1159 different signals (SIGILL or SIGEMT for instance), but it is less
1160 clear where the PC is pointing afterwards. It may not match
1161 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1162 these signals at breakpoints (the code has been in GDB since at least
1163 1992) so I can not guess how to handle them here.
8fb3e588 1164
4fa8626c
DJ
1165 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1166 would have the PC after hitting a watchpoint affected by
1167 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1168 in GDB history, and it seems unlikely to be correct, so
1169 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1170
1171 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1172 return;
1173
1174 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1175 return;
1176
8aad930b
AC
1177 /* Find the location where (if we've hit a breakpoint) the
1178 breakpoint would be. */
1179 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1180
1181 if (SOFTWARE_SINGLE_STEP_P ())
1182 {
1183 /* When using software single-step, a SIGTRAP can only indicate
8fb3e588
AC
1184 an inserted breakpoint. This actually makes things
1185 easier. */
8aad930b
AC
1186 if (singlestep_breakpoints_inserted_p)
1187 /* When software single stepping, the instruction at [prev_pc]
1188 is never a breakpoint, but the instruction following
1189 [prev_pc] (in program execution order) always is. Assume
1190 that following instruction was reached and hence a software
1191 breakpoint was hit. */
1192 write_pc_pid (breakpoint_pc, ecs->ptid);
1193 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no single-step
1195 breakpoints inserted) and it hit a software breakpoint. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 }
1198 else
1199 {
1200 /* When using hardware single-step, a SIGTRAP is reported for
8fb3e588
AC
1201 both a completed single-step and a software breakpoint. Need
1202 to differentiate between the two as the latter needs
90225438
AS
1203 adjusting but the former does not.
1204
1205 When the thread to be examined does not match the current thread
1206 context we can't use currently_stepping, so assume no
1207 single-stepping in this case. */
1208 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
8aad930b
AC
1209 {
1210 if (prev_pc == breakpoint_pc
1211 && software_breakpoint_inserted_here_p (breakpoint_pc))
1212 /* Hardware single-stepped a software breakpoint (as
1213 occures when the inferior is resumed with PC pointing
1214 at not-yet-hit software breakpoint). Since the
1215 breakpoint really is executed, the inferior needs to be
1216 backed up to the breakpoint address. */
1217 write_pc_pid (breakpoint_pc, ecs->ptid);
1218 }
1219 else
1220 {
1221 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1222 /* The inferior was free running (i.e., no hardware
1223 single-step and no possibility of a false SIGTRAP) and
1224 hit a software breakpoint. */
1225 write_pc_pid (breakpoint_pc, ecs->ptid);
1226 }
1227 }
4fa8626c
DJ
1228}
1229
cd0fc7c3
SS
1230/* Given an execution control state that has been freshly filled in
1231 by an event from the inferior, figure out what it means and take
1232 appropriate action. */
c906108c 1233
7270d8f2
OF
1234int stepped_after_stopped_by_watchpoint;
1235
cd0fc7c3 1236void
96baa820 1237handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1238{
8bbde302
BE
1239 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1240 that the variable stepped_after_stopped_by_watchpoint isn't used,
1241 then you're wrong! See remote.c:remote_stopped_data_address. */
1242
c8edd8b4 1243 int sw_single_step_trap_p = 0;
8fb3e588 1244 int stopped_by_watchpoint = -1; /* Mark as unknown. */
cd0fc7c3 1245
e02bc4cc 1246 /* Cache the last pid/waitstatus. */
39f77062 1247 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1248 target_last_waitstatus = *ecs->wp;
1249
4fa8626c
DJ
1250 adjust_pc_after_break (ecs);
1251
488f131b
JB
1252 switch (ecs->infwait_state)
1253 {
1254 case infwait_thread_hop_state:
527159b7 1255 if (debug_infrun)
8a9de0e4 1256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1257 /* Cancel the waiton_ptid. */
1258 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1259 break;
b83266a0 1260
488f131b 1261 case infwait_normal_state:
527159b7 1262 if (debug_infrun)
8a9de0e4 1263 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
488f131b
JB
1264 stepped_after_stopped_by_watchpoint = 0;
1265 break;
b83266a0 1266
488f131b 1267 case infwait_nonstep_watch_state:
527159b7 1268 if (debug_infrun)
8a9de0e4
AC
1269 fprintf_unfiltered (gdb_stdlog,
1270 "infrun: infwait_nonstep_watch_state\n");
488f131b 1271 insert_breakpoints ();
c906108c 1272
488f131b
JB
1273 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1274 handle things like signals arriving and other things happening
1275 in combination correctly? */
1276 stepped_after_stopped_by_watchpoint = 1;
1277 break;
65e82032
AC
1278
1279 default:
e2e0b3e5 1280 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1281 }
1282 ecs->infwait_state = infwait_normal_state;
c906108c 1283
488f131b 1284 flush_cached_frames ();
c906108c 1285
488f131b 1286 /* If it's a new process, add it to the thread database */
c906108c 1287
488f131b 1288 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1289 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1290 && !in_thread_list (ecs->ptid));
1291
1292 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1293 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1294 {
1295 add_thread (ecs->ptid);
c906108c 1296
488f131b
JB
1297 ui_out_text (uiout, "[New ");
1298 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1299 ui_out_text (uiout, "]\n");
488f131b 1300 }
c906108c 1301
488f131b
JB
1302 switch (ecs->ws.kind)
1303 {
1304 case TARGET_WAITKIND_LOADED:
527159b7 1305 if (debug_infrun)
8a9de0e4 1306 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
488f131b
JB
1307 /* Ignore gracefully during startup of the inferior, as it
1308 might be the shell which has just loaded some objects,
1309 otherwise add the symbols for the newly loaded objects. */
c906108c 1310#ifdef SOLIB_ADD
c0236d92 1311 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1312 {
1313 /* Remove breakpoints, SOLIB_ADD might adjust
1314 breakpoint addresses via breakpoint_re_set. */
1315 if (breakpoints_inserted)
1316 remove_breakpoints ();
c906108c 1317
488f131b
JB
1318 /* Check for any newly added shared libraries if we're
1319 supposed to be adding them automatically. Switch
1320 terminal for any messages produced by
1321 breakpoint_re_set. */
1322 target_terminal_ours_for_output ();
aff6338a 1323 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1324 stack's section table is kept up-to-date. Architectures,
1325 (e.g., PPC64), use the section table to perform
1326 operations such as address => section name and hence
1327 require the table to contain all sections (including
1328 those found in shared libraries). */
aff6338a 1329 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1330 exec_ops to SOLIB_ADD. This is because current GDB is
1331 only tooled to propagate section_table changes out from
1332 the "current_target" (see target_resize_to_sections), and
1333 not up from the exec stratum. This, of course, isn't
1334 right. "infrun.c" should only interact with the
1335 exec/process stratum, instead relying on the target stack
1336 to propagate relevant changes (stop, section table
1337 changed, ...) up to other layers. */
aff6338a 1338 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1339 target_terminal_inferior ();
1340
1341 /* Reinsert breakpoints and continue. */
1342 if (breakpoints_inserted)
1343 insert_breakpoints ();
1344 }
c906108c 1345#endif
488f131b
JB
1346 resume (0, TARGET_SIGNAL_0);
1347 prepare_to_wait (ecs);
1348 return;
c5aa993b 1349
488f131b 1350 case TARGET_WAITKIND_SPURIOUS:
527159b7 1351 if (debug_infrun)
8a9de0e4 1352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1353 resume (0, TARGET_SIGNAL_0);
1354 prepare_to_wait (ecs);
1355 return;
c5aa993b 1356
488f131b 1357 case TARGET_WAITKIND_EXITED:
527159b7 1358 if (debug_infrun)
8a9de0e4 1359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1360 target_terminal_ours (); /* Must do this before mourn anyway */
1361 print_stop_reason (EXITED, ecs->ws.value.integer);
1362
1363 /* Record the exit code in the convenience variable $_exitcode, so
1364 that the user can inspect this again later. */
1365 set_internalvar (lookup_internalvar ("_exitcode"),
1366 value_from_longest (builtin_type_int,
1367 (LONGEST) ecs->ws.value.integer));
1368 gdb_flush (gdb_stdout);
1369 target_mourn_inferior ();
1370 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1371 stop_print_frame = 0;
1372 stop_stepping (ecs);
1373 return;
c5aa993b 1374
488f131b 1375 case TARGET_WAITKIND_SIGNALLED:
527159b7 1376 if (debug_infrun)
8a9de0e4 1377 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1378 stop_print_frame = 0;
1379 stop_signal = ecs->ws.value.sig;
1380 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1381
488f131b
JB
1382 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1383 reach here unless the inferior is dead. However, for years
1384 target_kill() was called here, which hints that fatal signals aren't
1385 really fatal on some systems. If that's true, then some changes
1386 may be needed. */
1387 target_mourn_inferior ();
c906108c 1388
488f131b
JB
1389 print_stop_reason (SIGNAL_EXITED, stop_signal);
1390 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1391 stop_stepping (ecs);
1392 return;
c906108c 1393
488f131b
JB
1394 /* The following are the only cases in which we keep going;
1395 the above cases end in a continue or goto. */
1396 case TARGET_WAITKIND_FORKED:
deb3b17b 1397 case TARGET_WAITKIND_VFORKED:
527159b7 1398 if (debug_infrun)
8a9de0e4 1399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1400 stop_signal = TARGET_SIGNAL_TRAP;
1401 pending_follow.kind = ecs->ws.kind;
1402
8e7d2c16
DJ
1403 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1404 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1405
488f131b 1406 stop_pc = read_pc ();
675bf4cb 1407
00d4360e 1408 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1409
488f131b 1410 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1411
1412 /* If no catchpoint triggered for this, then keep going. */
1413 if (ecs->random_signal)
1414 {
1415 stop_signal = TARGET_SIGNAL_0;
1416 keep_going (ecs);
1417 return;
1418 }
488f131b
JB
1419 goto process_event_stop_test;
1420
1421 case TARGET_WAITKIND_EXECD:
527159b7 1422 if (debug_infrun)
8a9de0e4 1423 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
488f131b
JB
1424 stop_signal = TARGET_SIGNAL_TRAP;
1425
7d2830a3 1426 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1427 target_wait function. Until then following vfork on HP/UX 10.20
1428 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1429 /* Is this a target which reports multiple exec events per actual
1430 call to exec()? (HP-UX using ptrace does, for example.) If so,
1431 ignore all but the last one. Just resume the exec'r, and wait
1432 for the next exec event. */
1433 if (inferior_ignoring_leading_exec_events)
1434 {
1435 inferior_ignoring_leading_exec_events--;
1436 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1437 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1438 parent_pid);
1439 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1440 prepare_to_wait (ecs);
1441 return;
1442 }
1443 inferior_ignoring_leading_exec_events =
1444 target_reported_exec_events_per_exec_call () - 1;
1445
1446 pending_follow.execd_pathname =
1447 savestring (ecs->ws.value.execd_pathname,
1448 strlen (ecs->ws.value.execd_pathname));
1449
488f131b
JB
1450 /* This causes the eventpoints and symbol table to be reset. Must
1451 do this now, before trying to determine whether to stop. */
1452 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1453 xfree (pending_follow.execd_pathname);
c906108c 1454
488f131b
JB
1455 stop_pc = read_pc_pid (ecs->ptid);
1456 ecs->saved_inferior_ptid = inferior_ptid;
1457 inferior_ptid = ecs->ptid;
675bf4cb 1458
00d4360e 1459 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
675bf4cb 1460
488f131b
JB
1461 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1462 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1463
1464 /* If no catchpoint triggered for this, then keep going. */
1465 if (ecs->random_signal)
1466 {
1467 stop_signal = TARGET_SIGNAL_0;
1468 keep_going (ecs);
1469 return;
1470 }
488f131b
JB
1471 goto process_event_stop_test;
1472
b4dc5ffa
MK
1473 /* Be careful not to try to gather much state about a thread
1474 that's in a syscall. It's frequently a losing proposition. */
488f131b 1475 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1476 if (debug_infrun)
8a9de0e4 1477 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1478 resume (0, TARGET_SIGNAL_0);
1479 prepare_to_wait (ecs);
1480 return;
c906108c 1481
488f131b
JB
1482 /* Before examining the threads further, step this thread to
1483 get it entirely out of the syscall. (We get notice of the
1484 event when the thread is just on the verge of exiting a
1485 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1486 into user code.) */
488f131b 1487 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1488 if (debug_infrun)
8a9de0e4 1489 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1490 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1491 prepare_to_wait (ecs);
1492 return;
c906108c 1493
488f131b 1494 case TARGET_WAITKIND_STOPPED:
527159b7 1495 if (debug_infrun)
8a9de0e4 1496 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1497 stop_signal = ecs->ws.value.sig;
1498 break;
c906108c 1499
488f131b
JB
1500 /* We had an event in the inferior, but we are not interested
1501 in handling it at this level. The lower layers have already
8e7d2c16 1502 done what needs to be done, if anything.
8fb3e588
AC
1503
1504 One of the possible circumstances for this is when the
1505 inferior produces output for the console. The inferior has
1506 not stopped, and we are ignoring the event. Another possible
1507 circumstance is any event which the lower level knows will be
1508 reported multiple times without an intervening resume. */
488f131b 1509 case TARGET_WAITKIND_IGNORE:
527159b7 1510 if (debug_infrun)
8a9de0e4 1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1512 prepare_to_wait (ecs);
488f131b
JB
1513 return;
1514 }
c906108c 1515
488f131b
JB
1516 /* We may want to consider not doing a resume here in order to give
1517 the user a chance to play with the new thread. It might be good
1518 to make that a user-settable option. */
c906108c 1519
488f131b
JB
1520 /* At this point, all threads are stopped (happens automatically in
1521 either the OS or the native code). Therefore we need to continue
1522 all threads in order to make progress. */
1523 if (ecs->new_thread_event)
1524 {
1525 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1526 prepare_to_wait (ecs);
1527 return;
1528 }
c906108c 1529
488f131b
JB
1530 stop_pc = read_pc_pid (ecs->ptid);
1531
527159b7 1532 if (debug_infrun)
8a9de0e4 1533 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1534
9f976b41
DJ
1535 if (stepping_past_singlestep_breakpoint)
1536 {
8fb3e588
AC
1537 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1538 && singlestep_breakpoints_inserted_p);
9f976b41
DJ
1539 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1540 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1541
1542 stepping_past_singlestep_breakpoint = 0;
1543
1544 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1545 breakpoint, or stopped for some other reason. It would be nice if
1546 we could tell, but we can't reliably. */
9f976b41 1547 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1548 {
527159b7 1549 if (debug_infrun)
8a9de0e4 1550 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41
DJ
1551 /* Pull the single step breakpoints out of the target. */
1552 SOFTWARE_SINGLE_STEP (0, 0);
1553 singlestep_breakpoints_inserted_p = 0;
1554
1555 ecs->random_signal = 0;
1556
1557 ecs->ptid = saved_singlestep_ptid;
1558 context_switch (ecs);
9a4105ab
AC
1559 if (deprecated_context_hook)
1560 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1561
1562 resume (1, TARGET_SIGNAL_0);
1563 prepare_to_wait (ecs);
1564 return;
1565 }
1566 }
1567
1568 stepping_past_singlestep_breakpoint = 0;
1569
488f131b
JB
1570 /* See if a thread hit a thread-specific breakpoint that was meant for
1571 another thread. If so, then step that thread past the breakpoint,
1572 and continue it. */
1573
1574 if (stop_signal == TARGET_SIGNAL_TRAP)
1575 {
9f976b41
DJ
1576 int thread_hop_needed = 0;
1577
f8d40ec8
JB
1578 /* Check if a regular breakpoint has been hit before checking
1579 for a potential single step breakpoint. Otherwise, GDB will
1580 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1581 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1582 {
c5aa993b 1583 ecs->random_signal = 0;
4fa8626c 1584 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1585 thread_hop_needed = 1;
1586 }
1587 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1588 {
1589 ecs->random_signal = 0;
1590 /* The call to in_thread_list is necessary because PTIDs sometimes
1591 change when we go from single-threaded to multi-threaded. If
1592 the singlestep_ptid is still in the list, assume that it is
1593 really different from ecs->ptid. */
1594 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1595 && in_thread_list (singlestep_ptid))
1596 {
1597 thread_hop_needed = 1;
1598 stepping_past_singlestep_breakpoint = 1;
1599 saved_singlestep_ptid = singlestep_ptid;
1600 }
1601 }
1602
1603 if (thread_hop_needed)
8fb3e588
AC
1604 {
1605 int remove_status;
1606
527159b7 1607 if (debug_infrun)
8a9de0e4 1608 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1609
8fb3e588
AC
1610 /* Saw a breakpoint, but it was hit by the wrong thread.
1611 Just continue. */
1612
1613 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
488f131b 1614 {
8fb3e588
AC
1615 /* Pull the single step breakpoints out of the target. */
1616 SOFTWARE_SINGLE_STEP (0, 0);
1617 singlestep_breakpoints_inserted_p = 0;
1618 }
1619
1620 remove_status = remove_breakpoints ();
1621 /* Did we fail to remove breakpoints? If so, try
1622 to set the PC past the bp. (There's at least
1623 one situation in which we can fail to remove
1624 the bp's: On HP-UX's that use ttrace, we can't
1625 change the address space of a vforking child
1626 process until the child exits (well, okay, not
1627 then either :-) or execs. */
1628 if (remove_status != 0)
1629 {
1630 /* FIXME! This is obviously non-portable! */
1631 write_pc_pid (stop_pc + 4, ecs->ptid);
1632 /* We need to restart all the threads now,
1633 * unles we're running in scheduler-locked mode.
1634 * Use currently_stepping to determine whether to
1635 * step or continue.
1636 */
1637 /* FIXME MVS: is there any reason not to call resume()? */
1638 if (scheduler_mode == schedlock_on)
1639 target_resume (ecs->ptid,
1640 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1641 else
8fb3e588
AC
1642 target_resume (RESUME_ALL,
1643 currently_stepping (ecs), TARGET_SIGNAL_0);
1644 prepare_to_wait (ecs);
1645 return;
1646 }
1647 else
1648 { /* Single step */
1649 breakpoints_inserted = 0;
1650 if (!ptid_equal (inferior_ptid, ecs->ptid))
1651 context_switch (ecs);
1652 ecs->waiton_ptid = ecs->ptid;
1653 ecs->wp = &(ecs->ws);
1654 ecs->another_trap = 1;
1655
1656 ecs->infwait_state = infwait_thread_hop_state;
1657 keep_going (ecs);
1658 registers_changed ();
1659 return;
1660 }
488f131b 1661 }
f8d40ec8 1662 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
8fb3e588
AC
1663 {
1664 sw_single_step_trap_p = 1;
1665 ecs->random_signal = 0;
1666 }
488f131b
JB
1667 }
1668 else
1669 ecs->random_signal = 1;
c906108c 1670
488f131b 1671 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1672 so, then switch to that thread. */
1673 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1674 {
527159b7 1675 if (debug_infrun)
8a9de0e4 1676 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1677
488f131b 1678 context_switch (ecs);
c5aa993b 1679
9a4105ab
AC
1680 if (deprecated_context_hook)
1681 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1682
488f131b
JB
1683 flush_cached_frames ();
1684 }
c906108c 1685
488f131b
JB
1686 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1687 {
1688 /* Pull the single step breakpoints out of the target. */
1689 SOFTWARE_SINGLE_STEP (0, 0);
1690 singlestep_breakpoints_inserted_p = 0;
1691 }
c906108c 1692
488f131b
JB
1693 /* It may not be necessary to disable the watchpoint to stop over
1694 it. For example, the PA can (with some kernel cooperation)
1695 single step over a watchpoint without disabling the watchpoint. */
1696 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1697 {
527159b7 1698 if (debug_infrun)
8a9de0e4 1699 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1700 resume (1, 0);
1701 prepare_to_wait (ecs);
1702 return;
1703 }
c906108c 1704
488f131b
JB
1705 /* It is far more common to need to disable a watchpoint to step
1706 the inferior over it. FIXME. What else might a debug
1707 register or page protection watchpoint scheme need here? */
1708 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1709 {
1710 /* At this point, we are stopped at an instruction which has
1711 attempted to write to a piece of memory under control of
1712 a watchpoint. The instruction hasn't actually executed
1713 yet. If we were to evaluate the watchpoint expression
1714 now, we would get the old value, and therefore no change
1715 would seem to have occurred.
1716
1717 In order to make watchpoints work `right', we really need
1718 to complete the memory write, and then evaluate the
1719 watchpoint expression. The following code does that by
1720 removing the watchpoint (actually, all watchpoints and
1721 breakpoints), single-stepping the target, re-inserting
1722 watchpoints, and then falling through to let normal
1723 single-step processing handle proceed. Since this
1724 includes evaluating watchpoints, things will come to a
1725 stop in the correct manner. */
1726
527159b7 1727 if (debug_infrun)
8a9de0e4 1728 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
488f131b
JB
1729 remove_breakpoints ();
1730 registers_changed ();
1731 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1732
488f131b
JB
1733 ecs->waiton_ptid = ecs->ptid;
1734 ecs->wp = &(ecs->ws);
1735 ecs->infwait_state = infwait_nonstep_watch_state;
1736 prepare_to_wait (ecs);
1737 return;
1738 }
1739
1740 /* It may be possible to simply continue after a watchpoint. */
1741 if (HAVE_CONTINUABLE_WATCHPOINT)
00d4360e 1742 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
488f131b
JB
1743
1744 ecs->stop_func_start = 0;
1745 ecs->stop_func_end = 0;
1746 ecs->stop_func_name = 0;
1747 /* Don't care about return value; stop_func_start and stop_func_name
1748 will both be 0 if it doesn't work. */
1749 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1750 &ecs->stop_func_start, &ecs->stop_func_end);
782263ab 1751 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
488f131b
JB
1752 ecs->another_trap = 0;
1753 bpstat_clear (&stop_bpstat);
1754 stop_step = 0;
1755 stop_stack_dummy = 0;
1756 stop_print_frame = 1;
1757 ecs->random_signal = 0;
1758 stopped_by_random_signal = 0;
1759 breakpoints_failed = 0;
1760
3352ef37
AC
1761 if (stop_signal == TARGET_SIGNAL_TRAP
1762 && trap_expected
1763 && gdbarch_single_step_through_delay_p (current_gdbarch)
1764 && currently_stepping (ecs))
1765 {
1766 /* We're trying to step of a breakpoint. Turns out that we're
1767 also on an instruction that needs to be stepped multiple
1768 times before it's been fully executing. E.g., architectures
1769 with a delay slot. It needs to be stepped twice, once for
1770 the instruction and once for the delay slot. */
1771 int step_through_delay
1772 = gdbarch_single_step_through_delay (current_gdbarch,
1773 get_current_frame ());
527159b7 1774 if (debug_infrun && step_through_delay)
8a9de0e4 1775 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1776 if (step_range_end == 0 && step_through_delay)
1777 {
1778 /* The user issued a continue when stopped at a breakpoint.
1779 Set up for another trap and get out of here. */
1780 ecs->another_trap = 1;
1781 keep_going (ecs);
1782 return;
1783 }
1784 else if (step_through_delay)
1785 {
1786 /* The user issued a step when stopped at a breakpoint.
1787 Maybe we should stop, maybe we should not - the delay
1788 slot *might* correspond to a line of source. In any
1789 case, don't decide that here, just set ecs->another_trap,
1790 making sure we single-step again before breakpoints are
1791 re-inserted. */
1792 ecs->another_trap = 1;
1793 }
1794 }
1795
488f131b
JB
1796 /* Look at the cause of the stop, and decide what to do.
1797 The alternatives are:
1798 1) break; to really stop and return to the debugger,
1799 2) drop through to start up again
1800 (set ecs->another_trap to 1 to single step once)
1801 3) set ecs->random_signal to 1, and the decision between 1 and 2
1802 will be made according to the signal handling tables. */
1803
1804 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1805 that have to do with the program's own actions. Note that
1806 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1807 on the operating system version. Here we detect when a SIGILL or
1808 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1809 something similar for SIGSEGV, since a SIGSEGV will be generated
1810 when we're trying to execute a breakpoint instruction on a
1811 non-executable stack. This happens for call dummy breakpoints
1812 for architectures like SPARC that place call dummies on the
1813 stack. */
488f131b
JB
1814
1815 if (stop_signal == TARGET_SIGNAL_TRAP
8fb3e588
AC
1816 || (breakpoints_inserted
1817 && (stop_signal == TARGET_SIGNAL_ILL
1818 || stop_signal == TARGET_SIGNAL_SEGV
1819 || stop_signal == TARGET_SIGNAL_EMT))
1820 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1821 {
1822 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1823 {
527159b7 1824 if (debug_infrun)
8a9de0e4 1825 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1826 stop_print_frame = 0;
1827 stop_stepping (ecs);
1828 return;
1829 }
c54cfec8
EZ
1830
1831 /* This is originated from start_remote(), start_inferior() and
1832 shared libraries hook functions. */
c0236d92 1833 if (stop_soon == STOP_QUIETLY)
488f131b 1834 {
527159b7 1835 if (debug_infrun)
8a9de0e4 1836 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1837 stop_stepping (ecs);
1838 return;
1839 }
1840
c54cfec8
EZ
1841 /* This originates from attach_command(). We need to overwrite
1842 the stop_signal here, because some kernels don't ignore a
1843 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1844 See more comments in inferior.h. */
c0236d92 1845 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1846 {
1847 stop_stepping (ecs);
1848 if (stop_signal == TARGET_SIGNAL_STOP)
1849 stop_signal = TARGET_SIGNAL_0;
1850 return;
1851 }
1852
d303a6c7
AC
1853 /* Don't even think about breakpoints if just proceeded over a
1854 breakpoint. */
1855 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
527159b7
RC
1856 {
1857 if (debug_infrun)
8a9de0e4 1858 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
527159b7
RC
1859 bpstat_clear (&stop_bpstat);
1860 }
488f131b
JB
1861 else
1862 {
1863 /* See if there is a breakpoint at the current PC. */
8fb3e588 1864 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
00d4360e 1865 stopped_by_watchpoint);
488f131b 1866
488f131b
JB
1867 /* Following in case break condition called a
1868 function. */
1869 stop_print_frame = 1;
1870 }
1871
73dd234f 1872 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1873 at one stage in the past included checks for an inferior
1874 function call's call dummy's return breakpoint. The original
1875 comment, that went with the test, read:
73dd234f 1876
8fb3e588
AC
1877 ``End of a stack dummy. Some systems (e.g. Sony news) give
1878 another signal besides SIGTRAP, so check here as well as
1879 above.''
73dd234f
AC
1880
1881 If someone ever tries to get get call dummys on a
1882 non-executable stack to work (where the target would stop
03cebad2
MK
1883 with something like a SIGSEGV), then those tests might need
1884 to be re-instated. Given, however, that the tests were only
73dd234f 1885 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1886 suspect that it won't be the case.
1887
8fb3e588
AC
1888 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1889 be necessary for call dummies on a non-executable stack on
1890 SPARC. */
73dd234f 1891
488f131b
JB
1892 if (stop_signal == TARGET_SIGNAL_TRAP)
1893 ecs->random_signal
1894 = !(bpstat_explains_signal (stop_bpstat)
1895 || trap_expected
488f131b 1896 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1897 else
1898 {
73dd234f 1899 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1900 if (!ecs->random_signal)
1901 stop_signal = TARGET_SIGNAL_TRAP;
1902 }
1903 }
1904
1905 /* When we reach this point, we've pretty much decided
1906 that the reason for stopping must've been a random
1907 (unexpected) signal. */
1908
1909 else
1910 ecs->random_signal = 1;
488f131b 1911
04e68871 1912process_event_stop_test:
488f131b
JB
1913 /* For the program's own signals, act according to
1914 the signal handling tables. */
1915
1916 if (ecs->random_signal)
1917 {
1918 /* Signal not for debugging purposes. */
1919 int printed = 0;
1920
527159b7 1921 if (debug_infrun)
8a9de0e4 1922 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 1923
488f131b
JB
1924 stopped_by_random_signal = 1;
1925
1926 if (signal_print[stop_signal])
1927 {
1928 printed = 1;
1929 target_terminal_ours_for_output ();
1930 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1931 }
1932 if (signal_stop[stop_signal])
1933 {
1934 stop_stepping (ecs);
1935 return;
1936 }
1937 /* If not going to stop, give terminal back
1938 if we took it away. */
1939 else if (printed)
1940 target_terminal_inferior ();
1941
1942 /* Clear the signal if it should not be passed. */
1943 if (signal_program[stop_signal] == 0)
1944 stop_signal = TARGET_SIGNAL_0;
1945
68f53502
AC
1946 if (prev_pc == read_pc ()
1947 && !breakpoints_inserted
1948 && breakpoint_here_p (read_pc ())
1949 && step_resume_breakpoint == NULL)
1950 {
1951 /* We were just starting a new sequence, attempting to
1952 single-step off of a breakpoint and expecting a SIGTRAP.
1953 Intead this signal arrives. This signal will take us out
1954 of the stepping range so GDB needs to remember to, when
1955 the signal handler returns, resume stepping off that
1956 breakpoint. */
1957 /* To simplify things, "continue" is forced to use the same
1958 code paths as single-step - set a breakpoint at the
1959 signal return address and then, once hit, step off that
1960 breakpoint. */
44cbf7b5 1961 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 1962 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
1963 keep_going (ecs);
1964 return;
68f53502 1965 }
9d799f85
AC
1966
1967 if (step_range_end != 0
1968 && stop_signal != TARGET_SIGNAL_0
1969 && stop_pc >= step_range_start && stop_pc < step_range_end
1970 && frame_id_eq (get_frame_id (get_current_frame ()),
1971 step_frame_id)
1972 && step_resume_breakpoint == NULL)
d303a6c7
AC
1973 {
1974 /* The inferior is about to take a signal that will take it
1975 out of the single step range. Set a breakpoint at the
1976 current PC (which is presumably where the signal handler
1977 will eventually return) and then allow the inferior to
1978 run free.
1979
1980 Note that this is only needed for a signal delivered
1981 while in the single-step range. Nested signals aren't a
1982 problem as they eventually all return. */
44cbf7b5 1983 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
1984 keep_going (ecs);
1985 return;
d303a6c7 1986 }
9d799f85
AC
1987
1988 /* Note: step_resume_breakpoint may be non-NULL. This occures
1989 when either there's a nested signal, or when there's a
1990 pending signal enabled just as the signal handler returns
1991 (leaving the inferior at the step-resume-breakpoint without
1992 actually executing it). Either way continue until the
1993 breakpoint is really hit. */
488f131b
JB
1994 keep_going (ecs);
1995 return;
1996 }
1997
1998 /* Handle cases caused by hitting a breakpoint. */
1999 {
2000 CORE_ADDR jmp_buf_pc;
2001 struct bpstat_what what;
2002
2003 what = bpstat_what (stop_bpstat);
2004
2005 if (what.call_dummy)
2006 {
2007 stop_stack_dummy = 1;
c5aa993b 2008 }
c906108c 2009
488f131b 2010 switch (what.main_action)
c5aa993b 2011 {
488f131b
JB
2012 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2013 /* If we hit the breakpoint at longjmp, disable it for the
2014 duration of this command. Then, install a temporary
2015 breakpoint at the target of the jmp_buf. */
527159b7 2016 if (debug_infrun)
8a9de0e4 2017 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
488f131b
JB
2018 disable_longjmp_breakpoint ();
2019 remove_breakpoints ();
2020 breakpoints_inserted = 0;
2021 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2022 {
488f131b 2023 keep_going (ecs);
104c1213 2024 return;
c5aa993b 2025 }
488f131b
JB
2026
2027 /* Need to blow away step-resume breakpoint, as it
2028 interferes with us */
2029 if (step_resume_breakpoint != NULL)
104c1213 2030 {
488f131b 2031 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2032 }
c906108c 2033
8fb3e588 2034 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2035 ecs->handling_longjmp = 1; /* FIXME */
2036 keep_going (ecs);
2037 return;
c906108c 2038
488f131b
JB
2039 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2040 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2041 if (debug_infrun)
8a9de0e4 2042 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2043 remove_breakpoints ();
2044 breakpoints_inserted = 0;
488f131b
JB
2045 disable_longjmp_breakpoint ();
2046 ecs->handling_longjmp = 0; /* FIXME */
2047 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2048 break;
2049 /* else fallthrough */
2050
2051 case BPSTAT_WHAT_SINGLE:
527159b7 2052 if (debug_infrun)
8a9de0e4 2053 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
488f131b 2054 if (breakpoints_inserted)
c5aa993b 2055 {
488f131b 2056 remove_breakpoints ();
c5aa993b 2057 }
488f131b
JB
2058 breakpoints_inserted = 0;
2059 ecs->another_trap = 1;
2060 /* Still need to check other stuff, at least the case
2061 where we are stepping and step out of the right range. */
2062 break;
c906108c 2063
488f131b 2064 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2065 if (debug_infrun)
8a9de0e4 2066 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
488f131b 2067 stop_print_frame = 1;
c906108c 2068
d303a6c7
AC
2069 /* We are about to nuke the step_resume_breakpointt via the
2070 cleanup chain, so no need to worry about it here. */
c5aa993b 2071
488f131b
JB
2072 stop_stepping (ecs);
2073 return;
c5aa993b 2074
488f131b 2075 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2076 if (debug_infrun)
8a9de0e4 2077 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
488f131b 2078 stop_print_frame = 0;
c5aa993b 2079
d303a6c7
AC
2080 /* We are about to nuke the step_resume_breakpoin via the
2081 cleanup chain, so no need to worry about it here. */
c5aa993b 2082
488f131b 2083 stop_stepping (ecs);
e441088d 2084 return;
c5aa993b 2085
488f131b
JB
2086 case BPSTAT_WHAT_STEP_RESUME:
2087 /* This proably demands a more elegant solution, but, yeah
2088 right...
c5aa993b 2089
488f131b
JB
2090 This function's use of the simple variable
2091 step_resume_breakpoint doesn't seem to accomodate
2092 simultaneously active step-resume bp's, although the
2093 breakpoint list certainly can.
c5aa993b 2094
488f131b
JB
2095 If we reach here and step_resume_breakpoint is already
2096 NULL, then apparently we have multiple active
2097 step-resume bp's. We'll just delete the breakpoint we
2098 stopped at, and carry on.
2099
2100 Correction: what the code currently does is delete a
2101 step-resume bp, but it makes no effort to ensure that
2102 the one deleted is the one currently stopped at. MVS */
c5aa993b 2103
527159b7 2104 if (debug_infrun)
8a9de0e4 2105 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
527159b7 2106
488f131b
JB
2107 if (step_resume_breakpoint == NULL)
2108 {
2109 step_resume_breakpoint =
2110 bpstat_find_step_resume_breakpoint (stop_bpstat);
2111 }
2112 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2113 if (ecs->step_after_step_resume_breakpoint)
2114 {
2115 /* Back when the step-resume breakpoint was inserted, we
2116 were trying to single-step off a breakpoint. Go back
2117 to doing that. */
2118 ecs->step_after_step_resume_breakpoint = 0;
2119 remove_breakpoints ();
2120 breakpoints_inserted = 0;
2121 ecs->another_trap = 1;
2122 keep_going (ecs);
2123 return;
2124 }
488f131b
JB
2125 break;
2126
2127 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
527159b7 2128 if (debug_infrun)
8a9de0e4 2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
488f131b
JB
2130 /* If were waiting for a trap, hitting the step_resume_break
2131 doesn't count as getting it. */
2132 if (trap_expected)
2133 ecs->another_trap = 1;
2134 break;
2135
2136 case BPSTAT_WHAT_CHECK_SHLIBS:
2137 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2138 {
527159b7 2139 if (debug_infrun)
8a9de0e4 2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2141 /* Remove breakpoints, we eventually want to step over the
2142 shlib event breakpoint, and SOLIB_ADD might adjust
2143 breakpoint addresses via breakpoint_re_set. */
2144 if (breakpoints_inserted)
2145 remove_breakpoints ();
c5aa993b 2146 breakpoints_inserted = 0;
488f131b
JB
2147
2148 /* Check for any newly added shared libraries if we're
2149 supposed to be adding them automatically. Switch
2150 terminal for any messages produced by
2151 breakpoint_re_set. */
2152 target_terminal_ours_for_output ();
aff6338a 2153 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2154 stack's section table is kept up-to-date. Architectures,
2155 (e.g., PPC64), use the section table to perform
2156 operations such as address => section name and hence
2157 require the table to contain all sections (including
2158 those found in shared libraries). */
aff6338a 2159 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2160 exec_ops to SOLIB_ADD. This is because current GDB is
2161 only tooled to propagate section_table changes out from
2162 the "current_target" (see target_resize_to_sections), and
2163 not up from the exec stratum. This, of course, isn't
2164 right. "infrun.c" should only interact with the
2165 exec/process stratum, instead relying on the target stack
2166 to propagate relevant changes (stop, section table
2167 changed, ...) up to other layers. */
a77053c2 2168#ifdef SOLIB_ADD
aff6338a 2169 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2170#else
2171 solib_add (NULL, 0, &current_target, auto_solib_add);
2172#endif
488f131b
JB
2173 target_terminal_inferior ();
2174
2175 /* Try to reenable shared library breakpoints, additional
2176 code segments in shared libraries might be mapped in now. */
2177 re_enable_breakpoints_in_shlibs ();
2178
2179 /* If requested, stop when the dynamic linker notifies
2180 gdb of events. This allows the user to get control
2181 and place breakpoints in initializer routines for
2182 dynamically loaded objects (among other things). */
877522db 2183 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2184 {
488f131b 2185 stop_stepping (ecs);
d4f3574e
SS
2186 return;
2187 }
c5aa993b 2188
488f131b
JB
2189 /* If we stopped due to an explicit catchpoint, then the
2190 (see above) call to SOLIB_ADD pulled in any symbols
2191 from a newly-loaded library, if appropriate.
2192
2193 We do want the inferior to stop, but not where it is
2194 now, which is in the dynamic linker callback. Rather,
2195 we would like it stop in the user's program, just after
2196 the call that caused this catchpoint to trigger. That
2197 gives the user a more useful vantage from which to
2198 examine their program's state. */
8fb3e588
AC
2199 else if (what.main_action
2200 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2201 {
488f131b
JB
2202 /* ??rehrauer: If I could figure out how to get the
2203 right return PC from here, we could just set a temp
2204 breakpoint and resume. I'm not sure we can without
2205 cracking open the dld's shared libraries and sniffing
2206 their unwind tables and text/data ranges, and that's
2207 not a terribly portable notion.
2208
2209 Until that time, we must step the inferior out of the
2210 dld callback, and also out of the dld itself (and any
2211 code or stubs in libdld.sl, such as "shl_load" and
2212 friends) until we reach non-dld code. At that point,
2213 we can stop stepping. */
2214 bpstat_get_triggered_catchpoints (stop_bpstat,
2215 &ecs->
2216 stepping_through_solib_catchpoints);
2217 ecs->stepping_through_solib_after_catch = 1;
2218
2219 /* Be sure to lift all breakpoints, so the inferior does
2220 actually step past this point... */
2221 ecs->another_trap = 1;
2222 break;
c906108c 2223 }
c5aa993b 2224 else
c5aa993b 2225 {
488f131b 2226 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2227 ecs->another_trap = 1;
488f131b 2228 break;
c5aa993b 2229 }
488f131b 2230 }
488f131b 2231 break;
c906108c 2232
488f131b
JB
2233 case BPSTAT_WHAT_LAST:
2234 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2235
488f131b
JB
2236 case BPSTAT_WHAT_KEEP_CHECKING:
2237 break;
2238 }
2239 }
c906108c 2240
488f131b
JB
2241 /* We come here if we hit a breakpoint but should not
2242 stop for it. Possibly we also were stepping
2243 and should stop for that. So fall through and
2244 test for stepping. But, if not stepping,
2245 do not stop. */
c906108c 2246
9d1ff73f
MS
2247 /* Are we stepping to get the inferior out of the dynamic linker's
2248 hook (and possibly the dld itself) after catching a shlib
2249 event? */
488f131b
JB
2250 if (ecs->stepping_through_solib_after_catch)
2251 {
2252#if defined(SOLIB_ADD)
2253 /* Have we reached our destination? If not, keep going. */
2254 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2255 {
527159b7 2256 if (debug_infrun)
8a9de0e4 2257 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
488f131b
JB
2258 ecs->another_trap = 1;
2259 keep_going (ecs);
104c1213 2260 return;
488f131b
JB
2261 }
2262#endif
527159b7 2263 if (debug_infrun)
8a9de0e4 2264 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2265 /* Else, stop and report the catchpoint(s) whose triggering
2266 caused us to begin stepping. */
2267 ecs->stepping_through_solib_after_catch = 0;
2268 bpstat_clear (&stop_bpstat);
2269 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2270 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2271 stop_print_frame = 1;
2272 stop_stepping (ecs);
2273 return;
2274 }
c906108c 2275
488f131b
JB
2276 if (step_resume_breakpoint)
2277 {
527159b7 2278 if (debug_infrun)
8a9de0e4 2279 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
527159b7 2280
488f131b
JB
2281 /* Having a step-resume breakpoint overrides anything
2282 else having to do with stepping commands until
2283 that breakpoint is reached. */
488f131b
JB
2284 keep_going (ecs);
2285 return;
2286 }
c5aa993b 2287
488f131b
JB
2288 if (step_range_end == 0)
2289 {
527159b7 2290 if (debug_infrun)
8a9de0e4 2291 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2292 /* Likewise if we aren't even stepping. */
488f131b
JB
2293 keep_going (ecs);
2294 return;
2295 }
c5aa993b 2296
488f131b 2297 /* If stepping through a line, keep going if still within it.
c906108c 2298
488f131b
JB
2299 Note that step_range_end is the address of the first instruction
2300 beyond the step range, and NOT the address of the last instruction
2301 within it! */
2302 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2303 {
527159b7 2304 if (debug_infrun)
8a9de0e4 2305 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2306 paddr_nz (step_range_start),
2307 paddr_nz (step_range_end));
488f131b
JB
2308 keep_going (ecs);
2309 return;
2310 }
c5aa993b 2311
488f131b 2312 /* We stepped out of the stepping range. */
c906108c 2313
488f131b
JB
2314 /* If we are stepping at the source level and entered the runtime
2315 loader dynamic symbol resolution code, we keep on single stepping
2316 until we exit the run time loader code and reach the callee's
2317 address. */
2318 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2319#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2320 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2321#else
2322 && in_solib_dynsym_resolve_code (stop_pc)
2323#endif
2324 )
488f131b 2325 {
4c8c40e6
MK
2326 CORE_ADDR pc_after_resolver =
2327 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2328
527159b7 2329 if (debug_infrun)
8a9de0e4 2330 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2331
488f131b
JB
2332 if (pc_after_resolver)
2333 {
2334 /* Set up a step-resume breakpoint at the address
2335 indicated by SKIP_SOLIB_RESOLVER. */
2336 struct symtab_and_line sr_sal;
fe39c653 2337 init_sal (&sr_sal);
488f131b
JB
2338 sr_sal.pc = pc_after_resolver;
2339
44cbf7b5 2340 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2341 }
c906108c 2342
488f131b
JB
2343 keep_going (ecs);
2344 return;
2345 }
c906108c 2346
42edda50
AC
2347 if (step_range_end != 1
2348 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2349 || step_over_calls == STEP_OVER_ALL)
2350 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2351 {
527159b7 2352 if (debug_infrun)
8a9de0e4 2353 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2354 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2355 a signal trampoline (either by a signal being delivered or by
2356 the signal handler returning). Just single-step until the
2357 inferior leaves the trampoline (either by calling the handler
2358 or returning). */
488f131b
JB
2359 keep_going (ecs);
2360 return;
2361 }
c906108c 2362
8fb3e588 2363 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b
JB
2364 {
2365 /* It's a subroutine call. */
95918acb 2366 CORE_ADDR real_stop_pc;
8fb3e588 2367
527159b7 2368 if (debug_infrun)
8a9de0e4 2369 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2370
95918acb
AC
2371 if ((step_over_calls == STEP_OVER_NONE)
2372 || ((step_range_end == 1)
2373 && in_prologue (prev_pc, ecs->stop_func_start)))
2374 {
2375 /* I presume that step_over_calls is only 0 when we're
2376 supposed to be stepping at the assembly language level
2377 ("stepi"). Just stop. */
2378 /* Also, maybe we just did a "nexti" inside a prolog, so we
2379 thought it was a subroutine call but it was not. Stop as
2380 well. FENN */
2381 stop_step = 1;
2382 print_stop_reason (END_STEPPING_RANGE, 0);
2383 stop_stepping (ecs);
2384 return;
2385 }
8fb3e588 2386
8567c30f
AC
2387 if (step_over_calls == STEP_OVER_ALL)
2388 {
2389 /* We're doing a "next", set a breakpoint at callee's return
2390 address (the address at which the caller will
2391 resume). */
44cbf7b5 2392 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
8567c30f
AC
2393 keep_going (ecs);
2394 return;
2395 }
a53c66de 2396
95918acb 2397 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2398 calling routine and the real function), locate the real
2399 function. That's what tells us (a) whether we want to step
2400 into it at all, and (b) what prologue we want to run to the
2401 end of, if we do step into it. */
95918acb
AC
2402 real_stop_pc = skip_language_trampoline (stop_pc);
2403 if (real_stop_pc == 0)
2404 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2405 if (real_stop_pc != 0)
2406 ecs->stop_func_start = real_stop_pc;
8fb3e588 2407
a77053c2
MK
2408 if (
2409#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2410 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2411#else
2412 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2413#endif
2414)
1b2bfbb9
RC
2415 {
2416 struct symtab_and_line sr_sal;
2417 init_sal (&sr_sal);
2418 sr_sal.pc = ecs->stop_func_start;
2419
44cbf7b5 2420 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2421 keep_going (ecs);
2422 return;
1b2bfbb9
RC
2423 }
2424
95918acb 2425 /* If we have line number information for the function we are
8fb3e588 2426 thinking of stepping into, step into it.
95918acb 2427
8fb3e588
AC
2428 If there are several symtabs at that PC (e.g. with include
2429 files), just want to know whether *any* of them have line
2430 numbers. find_pc_line handles this. */
95918acb
AC
2431 {
2432 struct symtab_and_line tmp_sal;
8fb3e588 2433
95918acb
AC
2434 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2435 if (tmp_sal.line != 0)
2436 {
2437 step_into_function (ecs);
2438 return;
2439 }
2440 }
2441
2442 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2443 set, we stop the step so that the user has a chance to switch
2444 in assembly mode. */
95918acb
AC
2445 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2446 {
2447 stop_step = 1;
2448 print_stop_reason (END_STEPPING_RANGE, 0);
2449 stop_stepping (ecs);
2450 return;
2451 }
2452
2453 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2454 which the caller will resume). */
44cbf7b5 2455 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
95918acb 2456 keep_going (ecs);
488f131b 2457 return;
488f131b 2458 }
c906108c 2459
488f131b
JB
2460 /* If we're in the return path from a shared library trampoline,
2461 we want to proceed through the trampoline when stepping. */
2462 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2463 {
488f131b 2464 /* Determine where this trampoline returns. */
5cf4d23a 2465 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2466
527159b7 2467 if (debug_infrun)
8a9de0e4 2468 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2469
488f131b 2470 /* Only proceed through if we know where it's going. */
d764a824 2471 if (real_stop_pc)
488f131b
JB
2472 {
2473 /* And put the step-breakpoint there and go until there. */
2474 struct symtab_and_line sr_sal;
2475
fe39c653 2476 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2477 sr_sal.pc = real_stop_pc;
488f131b 2478 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2479
2480 /* Do not specify what the fp should be when we stop since
2481 on some machines the prologue is where the new fp value
2482 is established. */
2483 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2484
488f131b
JB
2485 /* Restart without fiddling with the step ranges or
2486 other state. */
2487 keep_going (ecs);
2488 return;
2489 }
2490 }
c906108c 2491
7ed0fe66
DJ
2492 ecs->sal = find_pc_line (stop_pc, 0);
2493
1b2bfbb9
RC
2494 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2495 the trampoline processing logic, however, there are some trampolines
2496 that have no names, so we should do trampoline handling first. */
2497 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2498 && ecs->stop_func_name == NULL
2499 && ecs->sal.line == 0)
1b2bfbb9 2500 {
527159b7 2501 if (debug_infrun)
8a9de0e4 2502 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2503
1b2bfbb9 2504 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2505 undebuggable function (where there is no debugging information
2506 and no line number corresponding to the address where the
1b2bfbb9
RC
2507 inferior stopped). Since we want to skip this kind of code,
2508 we keep going until the inferior returns from this
2509 function. */
2510 if (step_stop_if_no_debug)
2511 {
2512 /* If we have no line number and the step-stop-if-no-debug
2513 is set, we stop the step so that the user has a chance to
2514 switch in assembly mode. */
2515 stop_step = 1;
2516 print_stop_reason (END_STEPPING_RANGE, 0);
2517 stop_stepping (ecs);
2518 return;
2519 }
2520 else
2521 {
2522 /* Set a breakpoint at callee's return address (the address
2523 at which the caller will resume). */
44cbf7b5 2524 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
1b2bfbb9
RC
2525 keep_going (ecs);
2526 return;
2527 }
2528 }
2529
2530 if (step_range_end == 1)
2531 {
2532 /* It is stepi or nexti. We always want to stop stepping after
2533 one instruction. */
527159b7 2534 if (debug_infrun)
8a9de0e4 2535 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2536 stop_step = 1;
2537 print_stop_reason (END_STEPPING_RANGE, 0);
2538 stop_stepping (ecs);
2539 return;
2540 }
2541
488f131b
JB
2542 if (ecs->sal.line == 0)
2543 {
2544 /* We have no line number information. That means to stop
2545 stepping (does this always happen right after one instruction,
2546 when we do "s" in a function with no line numbers,
2547 or can this happen as a result of a return or longjmp?). */
527159b7 2548 if (debug_infrun)
8a9de0e4 2549 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2550 stop_step = 1;
2551 print_stop_reason (END_STEPPING_RANGE, 0);
2552 stop_stepping (ecs);
2553 return;
2554 }
c906108c 2555
488f131b
JB
2556 if ((stop_pc == ecs->sal.pc)
2557 && (ecs->current_line != ecs->sal.line
2558 || ecs->current_symtab != ecs->sal.symtab))
2559 {
2560 /* We are at the start of a different line. So stop. Note that
2561 we don't stop if we step into the middle of a different line.
2562 That is said to make things like for (;;) statements work
2563 better. */
527159b7 2564 if (debug_infrun)
8a9de0e4 2565 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2566 stop_step = 1;
2567 print_stop_reason (END_STEPPING_RANGE, 0);
2568 stop_stepping (ecs);
2569 return;
2570 }
c906108c 2571
488f131b 2572 /* We aren't done stepping.
c906108c 2573
488f131b
JB
2574 Optimize by setting the stepping range to the line.
2575 (We might not be in the original line, but if we entered a
2576 new line in mid-statement, we continue stepping. This makes
2577 things like for(;;) statements work better.) */
c906108c 2578
488f131b 2579 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2580 {
488f131b
JB
2581 /* If this is the last line of the function, don't keep stepping
2582 (it would probably step us out of the function).
2583 This is particularly necessary for a one-line function,
2584 in which after skipping the prologue we better stop even though
2585 we will be in mid-line. */
527159b7 2586 if (debug_infrun)
8a9de0e4 2587 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2588 stop_step = 1;
2589 print_stop_reason (END_STEPPING_RANGE, 0);
2590 stop_stepping (ecs);
2591 return;
c5aa993b 2592 }
488f131b
JB
2593 step_range_start = ecs->sal.pc;
2594 step_range_end = ecs->sal.end;
aa0cd9c1 2595 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2596 ecs->current_line = ecs->sal.line;
2597 ecs->current_symtab = ecs->sal.symtab;
2598
aa0cd9c1
AC
2599 /* In the case where we just stepped out of a function into the
2600 middle of a line of the caller, continue stepping, but
2601 step_frame_id must be modified to current frame */
65815ea1
AC
2602#if 0
2603 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2604 generous. It will trigger on things like a step into a frameless
2605 stackless leaf function. I think the logic should instead look
2606 at the unwound frame ID has that should give a more robust
2607 indication of what happened. */
8fb3e588
AC
2608 if (step - ID == current - ID)
2609 still stepping in same function;
2610 else if (step - ID == unwind (current - ID))
2611 stepped into a function;
2612 else
2613 stepped out of a function;
2614 /* Of course this assumes that the frame ID unwind code is robust
2615 and we're willing to introduce frame unwind logic into this
2616 function. Fortunately, those days are nearly upon us. */
65815ea1 2617#endif
488f131b 2618 {
aa0cd9c1
AC
2619 struct frame_id current_frame = get_frame_id (get_current_frame ());
2620 if (!(frame_id_inner (current_frame, step_frame_id)))
2621 step_frame_id = current_frame;
488f131b 2622 }
c906108c 2623
527159b7 2624 if (debug_infrun)
8a9de0e4 2625 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2626 keep_going (ecs);
104c1213
JM
2627}
2628
2629/* Are we in the middle of stepping? */
2630
2631static int
2632currently_stepping (struct execution_control_state *ecs)
2633{
d303a6c7 2634 return ((!ecs->handling_longjmp
104c1213
JM
2635 && ((step_range_end && step_resume_breakpoint == NULL)
2636 || trap_expected))
2637 || ecs->stepping_through_solib_after_catch
2638 || bpstat_should_step ());
2639}
c906108c 2640
c2c6d25f
JM
2641/* Subroutine call with source code we should not step over. Do step
2642 to the first line of code in it. */
2643
2644static void
2645step_into_function (struct execution_control_state *ecs)
2646{
2647 struct symtab *s;
2648 struct symtab_and_line sr_sal;
2649
2650 s = find_pc_symtab (stop_pc);
2651 if (s && s->language != language_asm)
2652 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2653
2654 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2655 /* Use the step_resume_break to step until the end of the prologue,
2656 even if that involves jumps (as it seems to on the vax under
2657 4.2). */
2658 /* If the prologue ends in the middle of a source line, continue to
2659 the end of that source line (if it is still within the function).
2660 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2661 if (ecs->sal.end
2662 && ecs->sal.pc != ecs->stop_func_start
2663 && ecs->sal.end < ecs->stop_func_end)
2664 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2665
2dbd5e30
KB
2666 /* Architectures which require breakpoint adjustment might not be able
2667 to place a breakpoint at the computed address. If so, the test
2668 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2669 ecs->stop_func_start to an address at which a breakpoint may be
2670 legitimately placed.
8fb3e588 2671
2dbd5e30
KB
2672 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2673 made, GDB will enter an infinite loop when stepping through
2674 optimized code consisting of VLIW instructions which contain
2675 subinstructions corresponding to different source lines. On
2676 FR-V, it's not permitted to place a breakpoint on any but the
2677 first subinstruction of a VLIW instruction. When a breakpoint is
2678 set, GDB will adjust the breakpoint address to the beginning of
2679 the VLIW instruction. Thus, we need to make the corresponding
2680 adjustment here when computing the stop address. */
8fb3e588 2681
2dbd5e30
KB
2682 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2683 {
2684 ecs->stop_func_start
2685 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2686 ecs->stop_func_start);
2dbd5e30
KB
2687 }
2688
c2c6d25f
JM
2689 if (ecs->stop_func_start == stop_pc)
2690 {
2691 /* We are already there: stop now. */
2692 stop_step = 1;
488f131b 2693 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2694 stop_stepping (ecs);
2695 return;
2696 }
2697 else
2698 {
2699 /* Put the step-breakpoint there and go until there. */
fe39c653 2700 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2701 sr_sal.pc = ecs->stop_func_start;
2702 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2703
c2c6d25f 2704 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2705 some machines the prologue is where the new fp value is
2706 established. */
44cbf7b5 2707 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2708
2709 /* And make sure stepping stops right away then. */
2710 step_range_end = step_range_start;
2711 }
2712 keep_going (ecs);
2713}
d4f3574e 2714
44cbf7b5
AC
2715/* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2716 This is used to both functions and to skip over code. */
2717
2718static void
2719insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2720 struct frame_id sr_id)
2721{
2722 /* There should never be more than one step-resume breakpoint per
2723 thread, so we should never be setting a new
2724 step_resume_breakpoint when one is already active. */
2725 gdb_assert (step_resume_breakpoint == NULL);
2726 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2727 bp_step_resume);
2728 if (breakpoints_inserted)
2729 insert_breakpoints ();
2730}
2731
7ce450bd
AC
2732/* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2733 to skip a function (next, skip-no-debug) or signal. It's assumed
2734 that the function/signal handler being skipped eventually returns
2735 to the breakpoint inserted at RETURN_FRAME.pc.
2736
2737 For the skip-function case, the function may have been reached by
2738 either single stepping a call / return / signal-return instruction,
2739 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2740 to the skip-function's caller.
2741
2742 For the signals case, this is called with the interrupted
2743 function's frame. The signal handler, when it returns, will resume
2744 the interrupted function at RETURN_FRAME.pc. */
d303a6c7
AC
2745
2746static void
44cbf7b5 2747insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2748{
2749 struct symtab_and_line sr_sal;
2750
d303a6c7
AC
2751 init_sal (&sr_sal); /* initialize to zeros */
2752
7ce450bd 2753 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
d303a6c7
AC
2754 sr_sal.section = find_pc_overlay (sr_sal.pc);
2755
44cbf7b5 2756 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2757}
2758
104c1213
JM
2759static void
2760stop_stepping (struct execution_control_state *ecs)
2761{
527159b7 2762 if (debug_infrun)
8a9de0e4 2763 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2764
cd0fc7c3
SS
2765 /* Let callers know we don't want to wait for the inferior anymore. */
2766 ecs->wait_some_more = 0;
2767}
2768
d4f3574e
SS
2769/* This function handles various cases where we need to continue
2770 waiting for the inferior. */
2771/* (Used to be the keep_going: label in the old wait_for_inferior) */
2772
2773static void
2774keep_going (struct execution_control_state *ecs)
2775{
d4f3574e 2776 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2777 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2778
d4f3574e
SS
2779 /* If we did not do break;, it means we should keep running the
2780 inferior and not return to debugger. */
2781
2782 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2783 {
2784 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2785 the inferior, else we'd have done a break above) and we
2786 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2787 resume (currently_stepping (ecs), stop_signal);
2788 }
2789 else
2790 {
2791 /* Either the trap was not expected, but we are continuing
488f131b
JB
2792 anyway (the user asked that this signal be passed to the
2793 child)
2794 -- or --
2795 The signal was SIGTRAP, e.g. it was our signal, but we
2796 decided we should resume from it.
d4f3574e 2797
68f53502 2798 We're going to run this baby now! */
d4f3574e 2799
68f53502 2800 if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2801 {
2802 breakpoints_failed = insert_breakpoints ();
2803 if (breakpoints_failed)
2804 {
2805 stop_stepping (ecs);
2806 return;
2807 }
2808 breakpoints_inserted = 1;
2809 }
2810
2811 trap_expected = ecs->another_trap;
2812
2813 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2814 specifies that such a signal should be delivered to the
2815 target program).
2816
2817 Typically, this would occure when a user is debugging a
2818 target monitor on a simulator: the target monitor sets a
2819 breakpoint; the simulator encounters this break-point and
2820 halts the simulation handing control to GDB; GDB, noteing
2821 that the break-point isn't valid, returns control back to the
2822 simulator; the simulator then delivers the hardware
2823 equivalent of a SIGNAL_TRAP to the program being debugged. */
2824
2825 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2826 stop_signal = TARGET_SIGNAL_0;
2827
d4f3574e
SS
2828
2829 resume (currently_stepping (ecs), stop_signal);
2830 }
2831
488f131b 2832 prepare_to_wait (ecs);
d4f3574e
SS
2833}
2834
104c1213
JM
2835/* This function normally comes after a resume, before
2836 handle_inferior_event exits. It takes care of any last bits of
2837 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2838
104c1213
JM
2839static void
2840prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2841{
527159b7 2842 if (debug_infrun)
8a9de0e4 2843 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2844 if (ecs->infwait_state == infwait_normal_state)
2845 {
2846 overlay_cache_invalid = 1;
2847
2848 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2849 target_wait because they can be loaded from the target while
2850 in target_wait. This makes remote debugging a bit more
2851 efficient for those targets that provide critical registers
2852 as part of their normal status mechanism. */
104c1213
JM
2853
2854 registers_changed ();
39f77062 2855 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2856 ecs->wp = &(ecs->ws);
2857 }
2858 /* This is the old end of the while loop. Let everybody know we
2859 want to wait for the inferior some more and get called again
2860 soon. */
2861 ecs->wait_some_more = 1;
c906108c 2862}
11cf8741
JM
2863
2864/* Print why the inferior has stopped. We always print something when
2865 the inferior exits, or receives a signal. The rest of the cases are
2866 dealt with later on in normal_stop() and print_it_typical(). Ideally
2867 there should be a call to this function from handle_inferior_event()
2868 each time stop_stepping() is called.*/
2869static void
2870print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2871{
2872 switch (stop_reason)
2873 {
2874 case STOP_UNKNOWN:
2875 /* We don't deal with these cases from handle_inferior_event()
2876 yet. */
2877 break;
2878 case END_STEPPING_RANGE:
2879 /* We are done with a step/next/si/ni command. */
2880 /* For now print nothing. */
fb40c209 2881 /* Print a message only if not in the middle of doing a "step n"
488f131b 2882 operation for n > 1 */
fb40c209 2883 if (!step_multi || !stop_step)
9dc5e2a9 2884 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2885 ui_out_field_string
2886 (uiout, "reason",
2887 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741
JM
2888 break;
2889 case BREAKPOINT_HIT:
2890 /* We found a breakpoint. */
2891 /* For now print nothing. */
2892 break;
2893 case SIGNAL_EXITED:
2894 /* The inferior was terminated by a signal. */
8b93c638 2895 annotate_signalled ();
9dc5e2a9 2896 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2897 ui_out_field_string
2898 (uiout, "reason",
2899 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
2900 ui_out_text (uiout, "\nProgram terminated with signal ");
2901 annotate_signal_name ();
488f131b
JB
2902 ui_out_field_string (uiout, "signal-name",
2903 target_signal_to_name (stop_info));
8b93c638
JM
2904 annotate_signal_name_end ();
2905 ui_out_text (uiout, ", ");
2906 annotate_signal_string ();
488f131b
JB
2907 ui_out_field_string (uiout, "signal-meaning",
2908 target_signal_to_string (stop_info));
8b93c638
JM
2909 annotate_signal_string_end ();
2910 ui_out_text (uiout, ".\n");
2911 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2912 break;
2913 case EXITED:
2914 /* The inferior program is finished. */
8b93c638
JM
2915 annotate_exited (stop_info);
2916 if (stop_info)
2917 {
9dc5e2a9 2918 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2919 ui_out_field_string (uiout, "reason",
2920 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 2921 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2922 ui_out_field_fmt (uiout, "exit-code", "0%o",
2923 (unsigned int) stop_info);
8b93c638
JM
2924 ui_out_text (uiout, ".\n");
2925 }
2926 else
2927 {
9dc5e2a9 2928 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2929 ui_out_field_string
2930 (uiout, "reason",
2931 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
2932 ui_out_text (uiout, "\nProgram exited normally.\n");
2933 }
11cf8741
JM
2934 break;
2935 case SIGNAL_RECEIVED:
2936 /* Signal received. The signal table tells us to print about
2937 it. */
8b93c638
JM
2938 annotate_signal ();
2939 ui_out_text (uiout, "\nProgram received signal ");
2940 annotate_signal_name ();
84c6c83c 2941 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
2942 ui_out_field_string
2943 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
2944 ui_out_field_string (uiout, "signal-name",
2945 target_signal_to_name (stop_info));
8b93c638
JM
2946 annotate_signal_name_end ();
2947 ui_out_text (uiout, ", ");
2948 annotate_signal_string ();
488f131b
JB
2949 ui_out_field_string (uiout, "signal-meaning",
2950 target_signal_to_string (stop_info));
8b93c638
JM
2951 annotate_signal_string_end ();
2952 ui_out_text (uiout, ".\n");
11cf8741
JM
2953 break;
2954 default:
8e65ff28 2955 internal_error (__FILE__, __LINE__,
e2e0b3e5 2956 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
2957 break;
2958 }
2959}
c906108c 2960\f
43ff13b4 2961
c906108c
SS
2962/* Here to return control to GDB when the inferior stops for real.
2963 Print appropriate messages, remove breakpoints, give terminal our modes.
2964
2965 STOP_PRINT_FRAME nonzero means print the executing frame
2966 (pc, function, args, file, line number and line text).
2967 BREAKPOINTS_FAILED nonzero means stop was due to error
2968 attempting to insert breakpoints. */
2969
2970void
96baa820 2971normal_stop (void)
c906108c 2972{
73b65bb0
DJ
2973 struct target_waitstatus last;
2974 ptid_t last_ptid;
2975
2976 get_last_target_status (&last_ptid, &last);
2977
c906108c
SS
2978 /* As with the notification of thread events, we want to delay
2979 notifying the user that we've switched thread context until
2980 the inferior actually stops.
2981
73b65bb0
DJ
2982 There's no point in saying anything if the inferior has exited.
2983 Note that SIGNALLED here means "exited with a signal", not
2984 "received a signal". */
488f131b 2985 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2986 && target_has_execution
2987 && last.kind != TARGET_WAITKIND_SIGNALLED
2988 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2989 {
2990 target_terminal_ours_for_output ();
a3f17187 2991 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
2992 target_pid_or_tid_to_str (inferior_ptid));
2993 previous_inferior_ptid = inferior_ptid;
c906108c 2994 }
c906108c 2995
4fa8626c 2996 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2997 /* Make sure that the current_frame's pc is correct. This
2998 is a correction for setting up the frame info before doing
2999 DECR_PC_AFTER_BREAK */
b87efeee
AC
3000 if (target_has_execution)
3001 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3002 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3003 frame code to check for this and sort out any resultant mess.
3004 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3005 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3006
c906108c
SS
3007 if (target_has_execution && breakpoints_inserted)
3008 {
3009 if (remove_breakpoints ())
3010 {
3011 target_terminal_ours_for_output ();
a3f17187
AC
3012 printf_filtered (_("\
3013Cannot remove breakpoints because program is no longer writable.\n\
3014It might be running in another process.\n\
3015Further execution is probably impossible.\n"));
c906108c
SS
3016 }
3017 }
3018 breakpoints_inserted = 0;
3019
3020 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3021 Delete any breakpoint that is to be deleted at the next stop. */
3022
3023 breakpoint_auto_delete (stop_bpstat);
3024
3025 /* If an auto-display called a function and that got a signal,
3026 delete that auto-display to avoid an infinite recursion. */
3027
3028 if (stopped_by_random_signal)
3029 disable_current_display ();
3030
3031 /* Don't print a message if in the middle of doing a "step n"
3032 operation for n > 1 */
3033 if (step_multi && stop_step)
3034 goto done;
3035
3036 target_terminal_ours ();
3037
5913bcb0
AC
3038 /* Look up the hook_stop and run it (CLI internally handles problem
3039 of stop_command's pre-hook not existing). */
3040 if (stop_command)
3041 catch_errors (hook_stop_stub, stop_command,
3042 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3043
3044 if (!target_has_stack)
3045 {
3046
3047 goto done;
3048 }
3049
3050 /* Select innermost stack frame - i.e., current frame is frame 0,
3051 and current location is based on that.
3052 Don't do this on return from a stack dummy routine,
3053 or if the program has exited. */
3054
3055 if (!stop_stack_dummy)
3056 {
0f7d239c 3057 select_frame (get_current_frame ());
c906108c
SS
3058
3059 /* Print current location without a level number, if
c5aa993b
JM
3060 we have changed functions or hit a breakpoint.
3061 Print source line if we have one.
3062 bpstat_print() contains the logic deciding in detail
3063 what to print, based on the event(s) that just occurred. */
c906108c 3064
6e7f8b9c 3065 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3066 {
3067 int bpstat_ret;
3068 int source_flag;
917317f4 3069 int do_frame_printing = 1;
c906108c
SS
3070
3071 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3072 switch (bpstat_ret)
3073 {
3074 case PRINT_UNKNOWN:
aa0cd9c1 3075 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3076 (or should) carry around the function and does (or
3077 should) use that when doing a frame comparison. */
917317f4 3078 if (stop_step
aa0cd9c1
AC
3079 && frame_id_eq (step_frame_id,
3080 get_frame_id (get_current_frame ()))
917317f4 3081 && step_start_function == find_pc_function (stop_pc))
488f131b 3082 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3083 else
488f131b 3084 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3085 break;
3086 case PRINT_SRC_AND_LOC:
488f131b 3087 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3088 break;
3089 case PRINT_SRC_ONLY:
c5394b80 3090 source_flag = SRC_LINE;
917317f4
JM
3091 break;
3092 case PRINT_NOTHING:
488f131b 3093 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3094 do_frame_printing = 0;
3095 break;
3096 default:
e2e0b3e5 3097 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3098 }
fb40c209 3099 /* For mi, have the same behavior every time we stop:
488f131b 3100 print everything but the source line. */
9dc5e2a9 3101 if (ui_out_is_mi_like_p (uiout))
fb40c209 3102 source_flag = LOC_AND_ADDRESS;
c906108c 3103
9dc5e2a9 3104 if (ui_out_is_mi_like_p (uiout))
39f77062 3105 ui_out_field_int (uiout, "thread-id",
488f131b 3106 pid_to_thread_id (inferior_ptid));
c906108c
SS
3107 /* The behavior of this routine with respect to the source
3108 flag is:
c5394b80
JM
3109 SRC_LINE: Print only source line
3110 LOCATION: Print only location
3111 SRC_AND_LOC: Print location and source line */
917317f4 3112 if (do_frame_printing)
b04f3ab4 3113 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3114
3115 /* Display the auto-display expressions. */
3116 do_displays ();
3117 }
3118 }
3119
3120 /* Save the function value return registers, if we care.
3121 We might be about to restore their previous contents. */
3122 if (proceed_to_finish)
72cec141
AC
3123 /* NB: The copy goes through to the target picking up the value of
3124 all the registers. */
3125 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3126
3127 if (stop_stack_dummy)
3128 {
dbe9fe58
AC
3129 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3130 ends with a setting of the current frame, so we can use that
3131 next. */
3132 frame_pop (get_current_frame ());
c906108c 3133 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3134 Can't rely on restore_inferior_status because that only gets
3135 called if we don't stop in the called function. */
c906108c 3136 stop_pc = read_pc ();
0f7d239c 3137 select_frame (get_current_frame ());
c906108c
SS
3138 }
3139
c906108c
SS
3140done:
3141 annotate_stopped ();
7a464420 3142 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3143}
3144
3145static int
96baa820 3146hook_stop_stub (void *cmd)
c906108c 3147{
5913bcb0 3148 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3149 return (0);
3150}
3151\f
c5aa993b 3152int
96baa820 3153signal_stop_state (int signo)
c906108c
SS
3154{
3155 return signal_stop[signo];
3156}
3157
c5aa993b 3158int
96baa820 3159signal_print_state (int signo)
c906108c
SS
3160{
3161 return signal_print[signo];
3162}
3163
c5aa993b 3164int
96baa820 3165signal_pass_state (int signo)
c906108c
SS
3166{
3167 return signal_program[signo];
3168}
3169
488f131b 3170int
7bda5e4a 3171signal_stop_update (int signo, int state)
d4f3574e
SS
3172{
3173 int ret = signal_stop[signo];
3174 signal_stop[signo] = state;
3175 return ret;
3176}
3177
488f131b 3178int
7bda5e4a 3179signal_print_update (int signo, int state)
d4f3574e
SS
3180{
3181 int ret = signal_print[signo];
3182 signal_print[signo] = state;
3183 return ret;
3184}
3185
488f131b 3186int
7bda5e4a 3187signal_pass_update (int signo, int state)
d4f3574e
SS
3188{
3189 int ret = signal_program[signo];
3190 signal_program[signo] = state;
3191 return ret;
3192}
3193
c906108c 3194static void
96baa820 3195sig_print_header (void)
c906108c 3196{
a3f17187
AC
3197 printf_filtered (_("\
3198Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3199}
3200
3201static void
96baa820 3202sig_print_info (enum target_signal oursig)
c906108c
SS
3203{
3204 char *name = target_signal_to_name (oursig);
3205 int name_padding = 13 - strlen (name);
96baa820 3206
c906108c
SS
3207 if (name_padding <= 0)
3208 name_padding = 0;
3209
3210 printf_filtered ("%s", name);
488f131b 3211 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3212 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3213 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3214 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3215 printf_filtered ("%s\n", target_signal_to_string (oursig));
3216}
3217
3218/* Specify how various signals in the inferior should be handled. */
3219
3220static void
96baa820 3221handle_command (char *args, int from_tty)
c906108c
SS
3222{
3223 char **argv;
3224 int digits, wordlen;
3225 int sigfirst, signum, siglast;
3226 enum target_signal oursig;
3227 int allsigs;
3228 int nsigs;
3229 unsigned char *sigs;
3230 struct cleanup *old_chain;
3231
3232 if (args == NULL)
3233 {
e2e0b3e5 3234 error_no_arg (_("signal to handle"));
c906108c
SS
3235 }
3236
3237 /* Allocate and zero an array of flags for which signals to handle. */
3238
3239 nsigs = (int) TARGET_SIGNAL_LAST;
3240 sigs = (unsigned char *) alloca (nsigs);
3241 memset (sigs, 0, nsigs);
3242
3243 /* Break the command line up into args. */
3244
3245 argv = buildargv (args);
3246 if (argv == NULL)
3247 {
3248 nomem (0);
3249 }
7a292a7a 3250 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3251
3252 /* Walk through the args, looking for signal oursigs, signal names, and
3253 actions. Signal numbers and signal names may be interspersed with
3254 actions, with the actions being performed for all signals cumulatively
3255 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3256
3257 while (*argv != NULL)
3258 {
3259 wordlen = strlen (*argv);
3260 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3261 {;
3262 }
3263 allsigs = 0;
3264 sigfirst = siglast = -1;
3265
3266 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3267 {
3268 /* Apply action to all signals except those used by the
3269 debugger. Silently skip those. */
3270 allsigs = 1;
3271 sigfirst = 0;
3272 siglast = nsigs - 1;
3273 }
3274 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3275 {
3276 SET_SIGS (nsigs, sigs, signal_stop);
3277 SET_SIGS (nsigs, sigs, signal_print);
3278 }
3279 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3280 {
3281 UNSET_SIGS (nsigs, sigs, signal_program);
3282 }
3283 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3284 {
3285 SET_SIGS (nsigs, sigs, signal_print);
3286 }
3287 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3288 {
3289 SET_SIGS (nsigs, sigs, signal_program);
3290 }
3291 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3292 {
3293 UNSET_SIGS (nsigs, sigs, signal_stop);
3294 }
3295 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3296 {
3297 SET_SIGS (nsigs, sigs, signal_program);
3298 }
3299 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3300 {
3301 UNSET_SIGS (nsigs, sigs, signal_print);
3302 UNSET_SIGS (nsigs, sigs, signal_stop);
3303 }
3304 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3305 {
3306 UNSET_SIGS (nsigs, sigs, signal_program);
3307 }
3308 else if (digits > 0)
3309 {
3310 /* It is numeric. The numeric signal refers to our own
3311 internal signal numbering from target.h, not to host/target
3312 signal number. This is a feature; users really should be
3313 using symbolic names anyway, and the common ones like
3314 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3315
3316 sigfirst = siglast = (int)
3317 target_signal_from_command (atoi (*argv));
3318 if ((*argv)[digits] == '-')
3319 {
3320 siglast = (int)
3321 target_signal_from_command (atoi ((*argv) + digits + 1));
3322 }
3323 if (sigfirst > siglast)
3324 {
3325 /* Bet he didn't figure we'd think of this case... */
3326 signum = sigfirst;
3327 sigfirst = siglast;
3328 siglast = signum;
3329 }
3330 }
3331 else
3332 {
3333 oursig = target_signal_from_name (*argv);
3334 if (oursig != TARGET_SIGNAL_UNKNOWN)
3335 {
3336 sigfirst = siglast = (int) oursig;
3337 }
3338 else
3339 {
3340 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3341 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3342 }
3343 }
3344
3345 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3346 which signals to apply actions to. */
c906108c
SS
3347
3348 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3349 {
3350 switch ((enum target_signal) signum)
3351 {
3352 case TARGET_SIGNAL_TRAP:
3353 case TARGET_SIGNAL_INT:
3354 if (!allsigs && !sigs[signum])
3355 {
3356 if (query ("%s is used by the debugger.\n\
488f131b 3357Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3358 {
3359 sigs[signum] = 1;
3360 }
3361 else
3362 {
a3f17187 3363 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3364 gdb_flush (gdb_stdout);
3365 }
3366 }
3367 break;
3368 case TARGET_SIGNAL_0:
3369 case TARGET_SIGNAL_DEFAULT:
3370 case TARGET_SIGNAL_UNKNOWN:
3371 /* Make sure that "all" doesn't print these. */
3372 break;
3373 default:
3374 sigs[signum] = 1;
3375 break;
3376 }
3377 }
3378
3379 argv++;
3380 }
3381
39f77062 3382 target_notice_signals (inferior_ptid);
c906108c
SS
3383
3384 if (from_tty)
3385 {
3386 /* Show the results. */
3387 sig_print_header ();
3388 for (signum = 0; signum < nsigs; signum++)
3389 {
3390 if (sigs[signum])
3391 {
3392 sig_print_info (signum);
3393 }
3394 }
3395 }
3396
3397 do_cleanups (old_chain);
3398}
3399
3400static void
96baa820 3401xdb_handle_command (char *args, int from_tty)
c906108c
SS
3402{
3403 char **argv;
3404 struct cleanup *old_chain;
3405
3406 /* Break the command line up into args. */
3407
3408 argv = buildargv (args);
3409 if (argv == NULL)
3410 {
3411 nomem (0);
3412 }
7a292a7a 3413 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3414 if (argv[1] != (char *) NULL)
3415 {
3416 char *argBuf;
3417 int bufLen;
3418
3419 bufLen = strlen (argv[0]) + 20;
3420 argBuf = (char *) xmalloc (bufLen);
3421 if (argBuf)
3422 {
3423 int validFlag = 1;
3424 enum target_signal oursig;
3425
3426 oursig = target_signal_from_name (argv[0]);
3427 memset (argBuf, 0, bufLen);
3428 if (strcmp (argv[1], "Q") == 0)
3429 sprintf (argBuf, "%s %s", argv[0], "noprint");
3430 else
3431 {
3432 if (strcmp (argv[1], "s") == 0)
3433 {
3434 if (!signal_stop[oursig])
3435 sprintf (argBuf, "%s %s", argv[0], "stop");
3436 else
3437 sprintf (argBuf, "%s %s", argv[0], "nostop");
3438 }
3439 else if (strcmp (argv[1], "i") == 0)
3440 {
3441 if (!signal_program[oursig])
3442 sprintf (argBuf, "%s %s", argv[0], "pass");
3443 else
3444 sprintf (argBuf, "%s %s", argv[0], "nopass");
3445 }
3446 else if (strcmp (argv[1], "r") == 0)
3447 {
3448 if (!signal_print[oursig])
3449 sprintf (argBuf, "%s %s", argv[0], "print");
3450 else
3451 sprintf (argBuf, "%s %s", argv[0], "noprint");
3452 }
3453 else
3454 validFlag = 0;
3455 }
3456 if (validFlag)
3457 handle_command (argBuf, from_tty);
3458 else
a3f17187 3459 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3460 if (argBuf)
b8c9b27d 3461 xfree (argBuf);
c906108c
SS
3462 }
3463 }
3464 do_cleanups (old_chain);
3465}
3466
3467/* Print current contents of the tables set by the handle command.
3468 It is possible we should just be printing signals actually used
3469 by the current target (but for things to work right when switching
3470 targets, all signals should be in the signal tables). */
3471
3472static void
96baa820 3473signals_info (char *signum_exp, int from_tty)
c906108c
SS
3474{
3475 enum target_signal oursig;
3476 sig_print_header ();
3477
3478 if (signum_exp)
3479 {
3480 /* First see if this is a symbol name. */
3481 oursig = target_signal_from_name (signum_exp);
3482 if (oursig == TARGET_SIGNAL_UNKNOWN)
3483 {
3484 /* No, try numeric. */
3485 oursig =
bb518678 3486 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3487 }
3488 sig_print_info (oursig);
3489 return;
3490 }
3491
3492 printf_filtered ("\n");
3493 /* These ugly casts brought to you by the native VAX compiler. */
3494 for (oursig = TARGET_SIGNAL_FIRST;
3495 (int) oursig < (int) TARGET_SIGNAL_LAST;
3496 oursig = (enum target_signal) ((int) oursig + 1))
3497 {
3498 QUIT;
3499
3500 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3501 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3502 sig_print_info (oursig);
3503 }
3504
a3f17187 3505 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3506}
3507\f
7a292a7a
SS
3508struct inferior_status
3509{
3510 enum target_signal stop_signal;
3511 CORE_ADDR stop_pc;
3512 bpstat stop_bpstat;
3513 int stop_step;
3514 int stop_stack_dummy;
3515 int stopped_by_random_signal;
3516 int trap_expected;
3517 CORE_ADDR step_range_start;
3518 CORE_ADDR step_range_end;
aa0cd9c1 3519 struct frame_id step_frame_id;
5fbbeb29 3520 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3521 CORE_ADDR step_resume_break_address;
3522 int stop_after_trap;
c0236d92 3523 int stop_soon;
72cec141 3524 struct regcache *stop_registers;
7a292a7a
SS
3525
3526 /* These are here because if call_function_by_hand has written some
3527 registers and then decides to call error(), we better not have changed
3528 any registers. */
72cec141 3529 struct regcache *registers;
7a292a7a 3530
101dcfbe
AC
3531 /* A frame unique identifier. */
3532 struct frame_id selected_frame_id;
3533
7a292a7a
SS
3534 int breakpoint_proceeded;
3535 int restore_stack_info;
3536 int proceed_to_finish;
3537};
3538
7a292a7a 3539void
96baa820
JM
3540write_inferior_status_register (struct inferior_status *inf_status, int regno,
3541 LONGEST val)
7a292a7a 3542{
3acba339 3543 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3544 void *buf = alloca (size);
3545 store_signed_integer (buf, size, val);
0818c12a 3546 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3547}
3548
c906108c
SS
3549/* Save all of the information associated with the inferior<==>gdb
3550 connection. INF_STATUS is a pointer to a "struct inferior_status"
3551 (defined in inferior.h). */
3552
7a292a7a 3553struct inferior_status *
96baa820 3554save_inferior_status (int restore_stack_info)
c906108c 3555{
72cec141 3556 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3557
c906108c
SS
3558 inf_status->stop_signal = stop_signal;
3559 inf_status->stop_pc = stop_pc;
3560 inf_status->stop_step = stop_step;
3561 inf_status->stop_stack_dummy = stop_stack_dummy;
3562 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3563 inf_status->trap_expected = trap_expected;
3564 inf_status->step_range_start = step_range_start;
3565 inf_status->step_range_end = step_range_end;
aa0cd9c1 3566 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3567 inf_status->step_over_calls = step_over_calls;
3568 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3569 inf_status->stop_soon = stop_soon;
c906108c
SS
3570 /* Save original bpstat chain here; replace it with copy of chain.
3571 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3572 hand them back the original chain when restore_inferior_status is
3573 called. */
c906108c
SS
3574 inf_status->stop_bpstat = stop_bpstat;
3575 stop_bpstat = bpstat_copy (stop_bpstat);
3576 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3577 inf_status->restore_stack_info = restore_stack_info;
3578 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3579
72cec141 3580 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3581
72cec141 3582 inf_status->registers = regcache_dup (current_regcache);
c906108c 3583
7a424e99 3584 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3585 return inf_status;
c906108c
SS
3586}
3587
c906108c 3588static int
96baa820 3589restore_selected_frame (void *args)
c906108c 3590{
488f131b 3591 struct frame_id *fid = (struct frame_id *) args;
c906108c 3592 struct frame_info *frame;
c906108c 3593
101dcfbe 3594 frame = frame_find_by_id (*fid);
c906108c 3595
aa0cd9c1
AC
3596 /* If inf_status->selected_frame_id is NULL, there was no previously
3597 selected frame. */
101dcfbe 3598 if (frame == NULL)
c906108c 3599 {
8a3fe4f8 3600 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3601 return 0;
3602 }
3603
0f7d239c 3604 select_frame (frame);
c906108c
SS
3605
3606 return (1);
3607}
3608
3609void
96baa820 3610restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3611{
3612 stop_signal = inf_status->stop_signal;
3613 stop_pc = inf_status->stop_pc;
3614 stop_step = inf_status->stop_step;
3615 stop_stack_dummy = inf_status->stop_stack_dummy;
3616 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3617 trap_expected = inf_status->trap_expected;
3618 step_range_start = inf_status->step_range_start;
3619 step_range_end = inf_status->step_range_end;
aa0cd9c1 3620 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3621 step_over_calls = inf_status->step_over_calls;
3622 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3623 stop_soon = inf_status->stop_soon;
c906108c
SS
3624 bpstat_clear (&stop_bpstat);
3625 stop_bpstat = inf_status->stop_bpstat;
3626 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3627 proceed_to_finish = inf_status->proceed_to_finish;
3628
72cec141
AC
3629 /* FIXME: Is the restore of stop_registers always needed. */
3630 regcache_xfree (stop_registers);
3631 stop_registers = inf_status->stop_registers;
c906108c
SS
3632
3633 /* The inferior can be gone if the user types "print exit(0)"
3634 (and perhaps other times). */
3635 if (target_has_execution)
72cec141
AC
3636 /* NB: The register write goes through to the target. */
3637 regcache_cpy (current_regcache, inf_status->registers);
3638 regcache_xfree (inf_status->registers);
c906108c 3639
c906108c
SS
3640 /* FIXME: If we are being called after stopping in a function which
3641 is called from gdb, we should not be trying to restore the
3642 selected frame; it just prints a spurious error message (The
3643 message is useful, however, in detecting bugs in gdb (like if gdb
3644 clobbers the stack)). In fact, should we be restoring the
3645 inferior status at all in that case? . */
3646
3647 if (target_has_stack && inf_status->restore_stack_info)
3648 {
c906108c 3649 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3650 walking the stack might encounter a garbage pointer and
3651 error() trying to dereference it. */
488f131b
JB
3652 if (catch_errors
3653 (restore_selected_frame, &inf_status->selected_frame_id,
3654 "Unable to restore previously selected frame:\n",
3655 RETURN_MASK_ERROR) == 0)
c906108c
SS
3656 /* Error in restoring the selected frame. Select the innermost
3657 frame. */
0f7d239c 3658 select_frame (get_current_frame ());
c906108c
SS
3659
3660 }
c906108c 3661
72cec141 3662 xfree (inf_status);
7a292a7a 3663}
c906108c 3664
74b7792f
AC
3665static void
3666do_restore_inferior_status_cleanup (void *sts)
3667{
3668 restore_inferior_status (sts);
3669}
3670
3671struct cleanup *
3672make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3673{
3674 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3675}
3676
c906108c 3677void
96baa820 3678discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3679{
3680 /* See save_inferior_status for info on stop_bpstat. */
3681 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3682 regcache_xfree (inf_status->registers);
3683 regcache_xfree (inf_status->stop_registers);
3684 xfree (inf_status);
7a292a7a
SS
3685}
3686
47932f85
DJ
3687int
3688inferior_has_forked (int pid, int *child_pid)
3689{
3690 struct target_waitstatus last;
3691 ptid_t last_ptid;
3692
3693 get_last_target_status (&last_ptid, &last);
3694
3695 if (last.kind != TARGET_WAITKIND_FORKED)
3696 return 0;
3697
3698 if (ptid_get_pid (last_ptid) != pid)
3699 return 0;
3700
3701 *child_pid = last.value.related_pid;
3702 return 1;
3703}
3704
3705int
3706inferior_has_vforked (int pid, int *child_pid)
3707{
3708 struct target_waitstatus last;
3709 ptid_t last_ptid;
3710
3711 get_last_target_status (&last_ptid, &last);
3712
3713 if (last.kind != TARGET_WAITKIND_VFORKED)
3714 return 0;
3715
3716 if (ptid_get_pid (last_ptid) != pid)
3717 return 0;
3718
3719 *child_pid = last.value.related_pid;
3720 return 1;
3721}
3722
3723int
3724inferior_has_execd (int pid, char **execd_pathname)
3725{
3726 struct target_waitstatus last;
3727 ptid_t last_ptid;
3728
3729 get_last_target_status (&last_ptid, &last);
3730
3731 if (last.kind != TARGET_WAITKIND_EXECD)
3732 return 0;
3733
3734 if (ptid_get_pid (last_ptid) != pid)
3735 return 0;
3736
3737 *execd_pathname = xstrdup (last.value.execd_pathname);
3738 return 1;
3739}
3740
ca6724c1
KB
3741/* Oft used ptids */
3742ptid_t null_ptid;
3743ptid_t minus_one_ptid;
3744
3745/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3746
ca6724c1
KB
3747ptid_t
3748ptid_build (int pid, long lwp, long tid)
3749{
3750 ptid_t ptid;
3751
3752 ptid.pid = pid;
3753 ptid.lwp = lwp;
3754 ptid.tid = tid;
3755 return ptid;
3756}
3757
3758/* Create a ptid from just a pid. */
3759
3760ptid_t
3761pid_to_ptid (int pid)
3762{
3763 return ptid_build (pid, 0, 0);
3764}
3765
3766/* Fetch the pid (process id) component from a ptid. */
3767
3768int
3769ptid_get_pid (ptid_t ptid)
3770{
3771 return ptid.pid;
3772}
3773
3774/* Fetch the lwp (lightweight process) component from a ptid. */
3775
3776long
3777ptid_get_lwp (ptid_t ptid)
3778{
3779 return ptid.lwp;
3780}
3781
3782/* Fetch the tid (thread id) component from a ptid. */
3783
3784long
3785ptid_get_tid (ptid_t ptid)
3786{
3787 return ptid.tid;
3788}
3789
3790/* ptid_equal() is used to test equality of two ptids. */
3791
3792int
3793ptid_equal (ptid_t ptid1, ptid_t ptid2)
3794{
3795 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3796 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3797}
3798
3799/* restore_inferior_ptid() will be used by the cleanup machinery
3800 to restore the inferior_ptid value saved in a call to
3801 save_inferior_ptid(). */
ce696e05
KB
3802
3803static void
3804restore_inferior_ptid (void *arg)
3805{
3806 ptid_t *saved_ptid_ptr = arg;
3807 inferior_ptid = *saved_ptid_ptr;
3808 xfree (arg);
3809}
3810
3811/* Save the value of inferior_ptid so that it may be restored by a
3812 later call to do_cleanups(). Returns the struct cleanup pointer
3813 needed for later doing the cleanup. */
3814
3815struct cleanup *
3816save_inferior_ptid (void)
3817{
3818 ptid_t *saved_ptid_ptr;
3819
3820 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3821 *saved_ptid_ptr = inferior_ptid;
3822 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3823}
c5aa993b 3824\f
488f131b 3825
7a292a7a 3826static void
96baa820 3827build_infrun (void)
7a292a7a 3828{
72cec141 3829 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3830}
c906108c 3831
c906108c 3832void
96baa820 3833_initialize_infrun (void)
c906108c 3834{
52f0bd74
AC
3835 int i;
3836 int numsigs;
c906108c
SS
3837 struct cmd_list_element *c;
3838
046a4708
AC
3839 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3840 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3841
1bedd215
AC
3842 add_info ("signals", signals_info, _("\
3843What debugger does when program gets various signals.\n\
3844Specify a signal as argument to print info on that signal only."));
c906108c
SS
3845 add_info_alias ("handle", "signals", 0);
3846
1bedd215
AC
3847 add_com ("handle", class_run, handle_command, _("\
3848Specify how to handle a signal.\n\
c906108c
SS
3849Args are signals and actions to apply to those signals.\n\
3850Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3851from 1-15 are allowed for compatibility with old versions of GDB.\n\
3852Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3853The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3854used by the debugger, typically SIGTRAP and SIGINT.\n\
3855Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3856\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3857Stop means reenter debugger if this signal happens (implies print).\n\
3858Print means print a message if this signal happens.\n\
3859Pass means let program see this signal; otherwise program doesn't know.\n\
3860Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3861Pass and Stop may be combined."));
c906108c
SS
3862 if (xdb_commands)
3863 {
1bedd215
AC
3864 add_com ("lz", class_info, signals_info, _("\
3865What debugger does when program gets various signals.\n\
3866Specify a signal as argument to print info on that signal only."));
3867 add_com ("z", class_run, xdb_handle_command, _("\
3868Specify how to handle a signal.\n\
c906108c
SS
3869Args are signals and actions to apply to those signals.\n\
3870Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3871from 1-15 are allowed for compatibility with old versions of GDB.\n\
3872Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3873The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3874used by the debugger, typically SIGTRAP and SIGINT.\n\
3875Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3876\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3877nopass), \"Q\" (noprint)\n\
3878Stop means reenter debugger if this signal happens (implies print).\n\
3879Print means print a message if this signal happens.\n\
3880Pass means let program see this signal; otherwise program doesn't know.\n\
3881Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3882Pass and Stop may be combined."));
c906108c
SS
3883 }
3884
3885 if (!dbx_commands)
1a966eab
AC
3886 stop_command = add_cmd ("stop", class_obscure,
3887 not_just_help_class_command, _("\
3888There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 3889This allows you to set a list of commands to be run each time execution\n\
1a966eab 3890of the program stops."), &cmdlist);
c906108c 3891
85c07804
AC
3892 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3893Set inferior debugging."), _("\
3894Show inferior debugging."), _("\
3895When non-zero, inferior specific debugging is enabled."),
3896 NULL,
920d2a44 3897 show_debug_infrun,
85c07804 3898 &setdebuglist, &showdebuglist);
527159b7 3899
c906108c 3900 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3901 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3902 signal_print = (unsigned char *)
3903 xmalloc (sizeof (signal_print[0]) * numsigs);
3904 signal_program = (unsigned char *)
3905 xmalloc (sizeof (signal_program[0]) * numsigs);
3906 for (i = 0; i < numsigs; i++)
3907 {
3908 signal_stop[i] = 1;
3909 signal_print[i] = 1;
3910 signal_program[i] = 1;
3911 }
3912
3913 /* Signals caused by debugger's own actions
3914 should not be given to the program afterwards. */
3915 signal_program[TARGET_SIGNAL_TRAP] = 0;
3916 signal_program[TARGET_SIGNAL_INT] = 0;
3917
3918 /* Signals that are not errors should not normally enter the debugger. */
3919 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3920 signal_print[TARGET_SIGNAL_ALRM] = 0;
3921 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3922 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3923 signal_stop[TARGET_SIGNAL_PROF] = 0;
3924 signal_print[TARGET_SIGNAL_PROF] = 0;
3925 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3926 signal_print[TARGET_SIGNAL_CHLD] = 0;
3927 signal_stop[TARGET_SIGNAL_IO] = 0;
3928 signal_print[TARGET_SIGNAL_IO] = 0;
3929 signal_stop[TARGET_SIGNAL_POLL] = 0;
3930 signal_print[TARGET_SIGNAL_POLL] = 0;
3931 signal_stop[TARGET_SIGNAL_URG] = 0;
3932 signal_print[TARGET_SIGNAL_URG] = 0;
3933 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3934 signal_print[TARGET_SIGNAL_WINCH] = 0;
3935
cd0fc7c3
SS
3936 /* These signals are used internally by user-level thread
3937 implementations. (See signal(5) on Solaris.) Like the above
3938 signals, a healthy program receives and handles them as part of
3939 its normal operation. */
3940 signal_stop[TARGET_SIGNAL_LWP] = 0;
3941 signal_print[TARGET_SIGNAL_LWP] = 0;
3942 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3943 signal_print[TARGET_SIGNAL_WAITING] = 0;
3944 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3945 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3946
85c07804
AC
3947 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3948 &stop_on_solib_events, _("\
3949Set stopping for shared library events."), _("\
3950Show stopping for shared library events."), _("\
c906108c
SS
3951If nonzero, gdb will give control to the user when the dynamic linker\n\
3952notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
3953to the user would be loading/unloading of a new library."),
3954 NULL,
920d2a44 3955 show_stop_on_solib_events,
85c07804 3956 &setlist, &showlist);
c906108c 3957
7ab04401
AC
3958 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3959 follow_fork_mode_kind_names,
3960 &follow_fork_mode_string, _("\
3961Set debugger response to a program call of fork or vfork."), _("\
3962Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
3963A fork or vfork creates a new process. follow-fork-mode can be:\n\
3964 parent - the original process is debugged after a fork\n\
3965 child - the new process is debugged after a fork\n\
ea1dd7bc 3966The unfollowed process will continue to run.\n\
7ab04401
AC
3967By default, the debugger will follow the parent process."),
3968 NULL,
920d2a44 3969 show_follow_fork_mode_string,
7ab04401
AC
3970 &setlist, &showlist);
3971
3972 add_setshow_enum_cmd ("scheduler-locking", class_run,
3973 scheduler_enums, &scheduler_mode, _("\
3974Set mode for locking scheduler during execution."), _("\
3975Show mode for locking scheduler during execution."), _("\
c906108c
SS
3976off == no locking (threads may preempt at any time)\n\
3977on == full locking (no thread except the current thread may run)\n\
3978step == scheduler locked during every single-step operation.\n\
3979 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
3980 Other threads may run while stepping over a function call ('next')."),
3981 set_schedlock_func, /* traps on target vector */
920d2a44 3982 show_scheduler_mode,
7ab04401 3983 &setlist, &showlist);
5fbbeb29 3984
5bf193a2
AC
3985 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3986Set mode of the step operation."), _("\
3987Show mode of the step operation."), _("\
3988When set, doing a step over a function without debug line information\n\
3989will stop at the first instruction of that function. Otherwise, the\n\
3990function is skipped and the step command stops at a different source line."),
3991 NULL,
920d2a44 3992 show_step_stop_if_no_debug,
5bf193a2 3993 &setlist, &showlist);
ca6724c1
KB
3994
3995 /* ptid initializations */
3996 null_ptid = ptid_build (0, 0, 0);
3997 minus_one_ptid = ptid_build (-1, 0, 0);
3998 inferior_ptid = null_ptid;
3999 target_last_wait_ptid = minus_one_ptid;
c906108c 4000}
This page took 1.278197 seconds and 4 git commands to generate.