testsuite: Persistent gdbserver cleanup
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
488f131b 2422 int random_signal;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b
JB
2427 int wait_some_more;
2428};
2429
ec9499be 2430static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2431
568d6575
UW
2432static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
186c406b 2436static void check_exception_resume (struct execution_control_state *,
28106bc2 2437 struct frame_info *);
611c83ae 2438
104c1213
JM
2439static void stop_stepping (struct execution_control_state *ecs);
2440static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2441static void keep_going (struct execution_control_state *ecs);
104c1213 2442
252fbfc8
PA
2443/* Callback for iterate over threads. If the thread is stopped, but
2444 the user/frontend doesn't know about that yet, go through
2445 normal_stop, as if the thread had just stopped now. ARG points at
2446 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2447 ptid_is_pid(PTID) is true, applies to all threads of the process
2448 pointed at by PTID. Otherwise, apply only to the thread pointed by
2449 PTID. */
2450
2451static int
2452infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2453{
2454 ptid_t ptid = * (ptid_t *) arg;
2455
2456 if ((ptid_equal (info->ptid, ptid)
2457 || ptid_equal (minus_one_ptid, ptid)
2458 || (ptid_is_pid (ptid)
2459 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2460 && is_running (info->ptid)
2461 && !is_executing (info->ptid))
2462 {
2463 struct cleanup *old_chain;
2464 struct execution_control_state ecss;
2465 struct execution_control_state *ecs = &ecss;
2466
2467 memset (ecs, 0, sizeof (*ecs));
2468
2469 old_chain = make_cleanup_restore_current_thread ();
2470
252fbfc8
PA
2471 /* Go through handle_inferior_event/normal_stop, so we always
2472 have consistent output as if the stop event had been
2473 reported. */
2474 ecs->ptid = info->ptid;
e09875d4 2475 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2476 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2477 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2478
2479 handle_inferior_event (ecs);
2480
2481 if (!ecs->wait_some_more)
2482 {
2483 struct thread_info *tp;
2484
2485 normal_stop ();
2486
fa4cd53f 2487 /* Finish off the continuations. */
252fbfc8 2488 tp = inferior_thread ();
fa4cd53f
PA
2489 do_all_intermediate_continuations_thread (tp, 1);
2490 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2491 }
2492
2493 do_cleanups (old_chain);
2494 }
2495
2496 return 0;
2497}
2498
2499/* This function is attached as a "thread_stop_requested" observer.
2500 Cleanup local state that assumed the PTID was to be resumed, and
2501 report the stop to the frontend. */
2502
2c0b251b 2503static void
252fbfc8
PA
2504infrun_thread_stop_requested (ptid_t ptid)
2505{
fc1cf338 2506 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2507
2508 /* PTID was requested to stop. Remove it from the displaced
2509 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2510
2511 for (displaced = displaced_step_inferior_states;
2512 displaced;
2513 displaced = displaced->next)
252fbfc8 2514 {
fc1cf338 2515 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2516
fc1cf338
PA
2517 it = displaced->step_request_queue;
2518 prev_next_p = &displaced->step_request_queue;
2519 while (it)
252fbfc8 2520 {
fc1cf338
PA
2521 if (ptid_match (it->ptid, ptid))
2522 {
2523 *prev_next_p = it->next;
2524 it->next = NULL;
2525 xfree (it);
2526 }
252fbfc8 2527 else
fc1cf338
PA
2528 {
2529 prev_next_p = &it->next;
2530 }
252fbfc8 2531
fc1cf338 2532 it = *prev_next_p;
252fbfc8 2533 }
252fbfc8
PA
2534 }
2535
2536 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2537}
2538
a07daef3
PA
2539static void
2540infrun_thread_thread_exit (struct thread_info *tp, int silent)
2541{
2542 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2543 nullify_last_target_wait_ptid ();
2544}
2545
4e1c45ea
PA
2546/* Callback for iterate_over_threads. */
2547
2548static int
2549delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2550{
2551 if (is_exited (info->ptid))
2552 return 0;
2553
2554 delete_step_resume_breakpoint (info);
186c406b 2555 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2556 return 0;
2557}
2558
2559/* In all-stop, delete the step resume breakpoint of any thread that
2560 had one. In non-stop, delete the step resume breakpoint of the
2561 thread that just stopped. */
2562
2563static void
2564delete_step_thread_step_resume_breakpoint (void)
2565{
2566 if (!target_has_execution
2567 || ptid_equal (inferior_ptid, null_ptid))
2568 /* If the inferior has exited, we have already deleted the step
2569 resume breakpoints out of GDB's lists. */
2570 return;
2571
2572 if (non_stop)
2573 {
2574 /* If in non-stop mode, only delete the step-resume or
2575 longjmp-resume breakpoint of the thread that just stopped
2576 stepping. */
2577 struct thread_info *tp = inferior_thread ();
abbb1732 2578
4e1c45ea 2579 delete_step_resume_breakpoint (tp);
186c406b 2580 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2581 }
2582 else
2583 /* In all-stop mode, delete all step-resume and longjmp-resume
2584 breakpoints of any thread that had them. */
2585 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2586}
2587
1777feb0 2588/* A cleanup wrapper. */
4e1c45ea
PA
2589
2590static void
2591delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2592{
2593 delete_step_thread_step_resume_breakpoint ();
2594}
2595
223698f8
DE
2596/* Pretty print the results of target_wait, for debugging purposes. */
2597
2598static void
2599print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2600 const struct target_waitstatus *ws)
2601{
2602 char *status_string = target_waitstatus_to_string (ws);
2603 struct ui_file *tmp_stream = mem_fileopen ();
2604 char *text;
223698f8
DE
2605
2606 /* The text is split over several lines because it was getting too long.
2607 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2608 output as a unit; we want only one timestamp printed if debug_timestamp
2609 is set. */
2610
2611 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2612 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2613 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2614 fprintf_unfiltered (tmp_stream,
2615 " [%s]", target_pid_to_str (waiton_ptid));
2616 fprintf_unfiltered (tmp_stream, ", status) =\n");
2617 fprintf_unfiltered (tmp_stream,
2618 "infrun: %d [%s],\n",
dfd4cc63
LM
2619 ptid_get_pid (result_ptid),
2620 target_pid_to_str (result_ptid));
223698f8
DE
2621 fprintf_unfiltered (tmp_stream,
2622 "infrun: %s\n",
2623 status_string);
2624
759ef836 2625 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2626
2627 /* This uses %s in part to handle %'s in the text, but also to avoid
2628 a gcc error: the format attribute requires a string literal. */
2629 fprintf_unfiltered (gdb_stdlog, "%s", text);
2630
2631 xfree (status_string);
2632 xfree (text);
2633 ui_file_delete (tmp_stream);
2634}
2635
24291992
PA
2636/* Prepare and stabilize the inferior for detaching it. E.g.,
2637 detaching while a thread is displaced stepping is a recipe for
2638 crashing it, as nothing would readjust the PC out of the scratch
2639 pad. */
2640
2641void
2642prepare_for_detach (void)
2643{
2644 struct inferior *inf = current_inferior ();
2645 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2646 struct cleanup *old_chain_1;
2647 struct displaced_step_inferior_state *displaced;
2648
2649 displaced = get_displaced_stepping_state (inf->pid);
2650
2651 /* Is any thread of this process displaced stepping? If not,
2652 there's nothing else to do. */
2653 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2654 return;
2655
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "displaced-stepping in-process while detaching");
2659
2660 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2661 inf->detaching = 1;
2662
2663 while (!ptid_equal (displaced->step_ptid, null_ptid))
2664 {
2665 struct cleanup *old_chain_2;
2666 struct execution_control_state ecss;
2667 struct execution_control_state *ecs;
2668
2669 ecs = &ecss;
2670 memset (ecs, 0, sizeof (*ecs));
2671
2672 overlay_cache_invalid = 1;
2673
24291992
PA
2674 if (deprecated_target_wait_hook)
2675 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2676 else
2677 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2678
2679 if (debug_infrun)
2680 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2681
2682 /* If an error happens while handling the event, propagate GDB's
2683 knowledge of the executing state to the frontend/user running
2684 state. */
3e43a32a
MS
2685 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2686 &minus_one_ptid);
24291992
PA
2687
2688 /* Now figure out what to do with the result of the result. */
2689 handle_inferior_event (ecs);
2690
2691 /* No error, don't finish the state yet. */
2692 discard_cleanups (old_chain_2);
2693
2694 /* Breakpoints and watchpoints are not installed on the target
2695 at this point, and signals are passed directly to the
2696 inferior, so this must mean the process is gone. */
2697 if (!ecs->wait_some_more)
2698 {
2699 discard_cleanups (old_chain_1);
2700 error (_("Program exited while detaching"));
2701 }
2702 }
2703
2704 discard_cleanups (old_chain_1);
2705}
2706
cd0fc7c3 2707/* Wait for control to return from inferior to debugger.
ae123ec6 2708
cd0fc7c3
SS
2709 If inferior gets a signal, we may decide to start it up again
2710 instead of returning. That is why there is a loop in this function.
2711 When this function actually returns it means the inferior
2712 should be left stopped and GDB should read more commands. */
2713
2714void
e4c8541f 2715wait_for_inferior (void)
cd0fc7c3
SS
2716{
2717 struct cleanup *old_cleanups;
c906108c 2718
527159b7 2719 if (debug_infrun)
ae123ec6 2720 fprintf_unfiltered
e4c8541f 2721 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2722
4e1c45ea
PA
2723 old_cleanups =
2724 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2725
c906108c
SS
2726 while (1)
2727 {
ae25568b
PA
2728 struct execution_control_state ecss;
2729 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2730 struct cleanup *old_chain;
2731
ae25568b
PA
2732 memset (ecs, 0, sizeof (*ecs));
2733
ec9499be 2734 overlay_cache_invalid = 1;
ec9499be 2735
9a4105ab 2736 if (deprecated_target_wait_hook)
47608cb1 2737 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2738 else
47608cb1 2739 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2740
f00150c9 2741 if (debug_infrun)
223698f8 2742 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2743
29f49a6a
PA
2744 /* If an error happens while handling the event, propagate GDB's
2745 knowledge of the executing state to the frontend/user running
2746 state. */
2747 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2748
cd0fc7c3
SS
2749 /* Now figure out what to do with the result of the result. */
2750 handle_inferior_event (ecs);
c906108c 2751
29f49a6a
PA
2752 /* No error, don't finish the state yet. */
2753 discard_cleanups (old_chain);
2754
cd0fc7c3
SS
2755 if (!ecs->wait_some_more)
2756 break;
2757 }
4e1c45ea 2758
cd0fc7c3
SS
2759 do_cleanups (old_cleanups);
2760}
c906108c 2761
1777feb0 2762/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2763 event loop whenever a change of state is detected on the file
1777feb0
MS
2764 descriptor corresponding to the target. It can be called more than
2765 once to complete a single execution command. In such cases we need
2766 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2767 that this function is called for a single execution command, then
2768 report to the user that the inferior has stopped, and do the
1777feb0 2769 necessary cleanups. */
43ff13b4
JM
2770
2771void
fba45db2 2772fetch_inferior_event (void *client_data)
43ff13b4 2773{
0d1e5fa7 2774 struct execution_control_state ecss;
a474d7c2 2775 struct execution_control_state *ecs = &ecss;
4f8d22e3 2776 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2777 struct cleanup *ts_old_chain;
4f8d22e3 2778 int was_sync = sync_execution;
0f641c01 2779 int cmd_done = 0;
43ff13b4 2780
0d1e5fa7
PA
2781 memset (ecs, 0, sizeof (*ecs));
2782
c5187ac6
PA
2783 /* We're handling a live event, so make sure we're doing live
2784 debugging. If we're looking at traceframes while the target is
2785 running, we're going to need to get back to that mode after
2786 handling the event. */
2787 if (non_stop)
2788 {
2789 make_cleanup_restore_current_traceframe ();
e6e4e701 2790 set_current_traceframe (-1);
c5187ac6
PA
2791 }
2792
4f8d22e3
PA
2793 if (non_stop)
2794 /* In non-stop mode, the user/frontend should not notice a thread
2795 switch due to internal events. Make sure we reverse to the
2796 user selected thread and frame after handling the event and
2797 running any breakpoint commands. */
2798 make_cleanup_restore_current_thread ();
2799
ec9499be 2800 overlay_cache_invalid = 1;
3dd5b83d 2801
32231432
PA
2802 make_cleanup_restore_integer (&execution_direction);
2803 execution_direction = target_execution_direction ();
2804
9a4105ab 2805 if (deprecated_target_wait_hook)
a474d7c2 2806 ecs->ptid =
47608cb1 2807 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2808 else
47608cb1 2809 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2810
f00150c9 2811 if (debug_infrun)
223698f8 2812 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2813
29f49a6a
PA
2814 /* If an error happens while handling the event, propagate GDB's
2815 knowledge of the executing state to the frontend/user running
2816 state. */
2817 if (!non_stop)
2818 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2819 else
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2821
353d1d73
JK
2822 /* Get executed before make_cleanup_restore_current_thread above to apply
2823 still for the thread which has thrown the exception. */
2824 make_bpstat_clear_actions_cleanup ();
2825
43ff13b4 2826 /* Now figure out what to do with the result of the result. */
a474d7c2 2827 handle_inferior_event (ecs);
43ff13b4 2828
a474d7c2 2829 if (!ecs->wait_some_more)
43ff13b4 2830 {
d6b48e9c
PA
2831 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2832
4e1c45ea 2833 delete_step_thread_step_resume_breakpoint ();
f107f563 2834
d6b48e9c 2835 /* We may not find an inferior if this was a process exit. */
16c381f0 2836 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2837 normal_stop ();
2838
af679fd0 2839 if (target_has_execution
0e5bf2a8 2840 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2841 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2842 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2843 && ecs->event_thread->step_multi
16c381f0 2844 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2845 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2846 else
0f641c01
PA
2847 {
2848 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2849 cmd_done = 1;
2850 }
43ff13b4 2851 }
4f8d22e3 2852
29f49a6a
PA
2853 /* No error, don't finish the thread states yet. */
2854 discard_cleanups (ts_old_chain);
2855
4f8d22e3
PA
2856 /* Revert thread and frame. */
2857 do_cleanups (old_chain);
2858
2859 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2860 restore the prompt (a synchronous execution command has finished,
2861 and we're ready for input). */
b4a14fd0 2862 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2863 display_gdb_prompt (0);
0f641c01
PA
2864
2865 if (cmd_done
2866 && !was_sync
2867 && exec_done_display_p
2868 && (ptid_equal (inferior_ptid, null_ptid)
2869 || !is_running (inferior_ptid)))
2870 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2871}
2872
edb3359d
DJ
2873/* Record the frame and location we're currently stepping through. */
2874void
2875set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2876{
2877 struct thread_info *tp = inferior_thread ();
2878
16c381f0
JK
2879 tp->control.step_frame_id = get_frame_id (frame);
2880 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2881
2882 tp->current_symtab = sal.symtab;
2883 tp->current_line = sal.line;
2884}
2885
0d1e5fa7
PA
2886/* Clear context switchable stepping state. */
2887
2888void
4e1c45ea 2889init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2890{
2891 tss->stepping_over_breakpoint = 0;
2892 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2893}
2894
e02bc4cc 2895/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2896 target_wait()/deprecated_target_wait_hook(). The data is actually
2897 cached by handle_inferior_event(), which gets called immediately
2898 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2899
2900void
488f131b 2901get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2902{
39f77062 2903 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2904 *status = target_last_waitstatus;
2905}
2906
ac264b3b
MS
2907void
2908nullify_last_target_wait_ptid (void)
2909{
2910 target_last_wait_ptid = minus_one_ptid;
2911}
2912
dcf4fbde 2913/* Switch thread contexts. */
dd80620e
MS
2914
2915static void
0d1e5fa7 2916context_switch (ptid_t ptid)
dd80620e 2917{
4b51d87b 2918 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2919 {
2920 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2921 target_pid_to_str (inferior_ptid));
2922 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2923 target_pid_to_str (ptid));
fd48f117
DJ
2924 }
2925
0d1e5fa7 2926 switch_to_thread (ptid);
dd80620e
MS
2927}
2928
4fa8626c
DJ
2929static void
2930adjust_pc_after_break (struct execution_control_state *ecs)
2931{
24a73cce
UW
2932 struct regcache *regcache;
2933 struct gdbarch *gdbarch;
6c95b8df 2934 struct address_space *aspace;
8aad930b 2935 CORE_ADDR breakpoint_pc;
4fa8626c 2936
4fa8626c
DJ
2937 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2938 we aren't, just return.
9709f61c
DJ
2939
2940 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2941 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2942 implemented by software breakpoints should be handled through the normal
2943 breakpoint layer.
8fb3e588 2944
4fa8626c
DJ
2945 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2946 different signals (SIGILL or SIGEMT for instance), but it is less
2947 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2948 gdbarch_decr_pc_after_break. I don't know any specific target that
2949 generates these signals at breakpoints (the code has been in GDB since at
2950 least 1992) so I can not guess how to handle them here.
8fb3e588 2951
e6cf7916
UW
2952 In earlier versions of GDB, a target with
2953 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2954 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2955 target with both of these set in GDB history, and it seems unlikely to be
2956 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2957
2958 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2959 return;
2960
a493e3e2 2961 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2962 return;
2963
4058b839
PA
2964 /* In reverse execution, when a breakpoint is hit, the instruction
2965 under it has already been de-executed. The reported PC always
2966 points at the breakpoint address, so adjusting it further would
2967 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2968 architecture:
2969
2970 B1 0x08000000 : INSN1
2971 B2 0x08000001 : INSN2
2972 0x08000002 : INSN3
2973 PC -> 0x08000003 : INSN4
2974
2975 Say you're stopped at 0x08000003 as above. Reverse continuing
2976 from that point should hit B2 as below. Reading the PC when the
2977 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2978 been de-executed already.
2979
2980 B1 0x08000000 : INSN1
2981 B2 PC -> 0x08000001 : INSN2
2982 0x08000002 : INSN3
2983 0x08000003 : INSN4
2984
2985 We can't apply the same logic as for forward execution, because
2986 we would wrongly adjust the PC to 0x08000000, since there's a
2987 breakpoint at PC - 1. We'd then report a hit on B1, although
2988 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2989 behaviour. */
2990 if (execution_direction == EXEC_REVERSE)
2991 return;
2992
24a73cce
UW
2993 /* If this target does not decrement the PC after breakpoints, then
2994 we have nothing to do. */
2995 regcache = get_thread_regcache (ecs->ptid);
2996 gdbarch = get_regcache_arch (regcache);
2997 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2998 return;
2999
6c95b8df
PA
3000 aspace = get_regcache_aspace (regcache);
3001
8aad930b
AC
3002 /* Find the location where (if we've hit a breakpoint) the
3003 breakpoint would be. */
515630c5
UW
3004 breakpoint_pc = regcache_read_pc (regcache)
3005 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3006
1c5cfe86
PA
3007 /* Check whether there actually is a software breakpoint inserted at
3008 that location.
3009
3010 If in non-stop mode, a race condition is possible where we've
3011 removed a breakpoint, but stop events for that breakpoint were
3012 already queued and arrive later. To suppress those spurious
3013 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3014 and retire them after a number of stop events are reported. */
6c95b8df
PA
3015 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3016 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3017 {
77f9e713 3018 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3019
96429cc8 3020 if (RECORD_IS_USED)
77f9e713 3021 record_full_gdb_operation_disable_set ();
96429cc8 3022
1c0fdd0e
UW
3023 /* When using hardware single-step, a SIGTRAP is reported for both
3024 a completed single-step and a software breakpoint. Need to
3025 differentiate between the two, as the latter needs adjusting
3026 but the former does not.
3027
3028 The SIGTRAP can be due to a completed hardware single-step only if
3029 - we didn't insert software single-step breakpoints
3030 - the thread to be examined is still the current thread
3031 - this thread is currently being stepped
3032
3033 If any of these events did not occur, we must have stopped due
3034 to hitting a software breakpoint, and have to back up to the
3035 breakpoint address.
3036
3037 As a special case, we could have hardware single-stepped a
3038 software breakpoint. In this case (prev_pc == breakpoint_pc),
3039 we also need to back up to the breakpoint address. */
3040
3041 if (singlestep_breakpoints_inserted_p
3042 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3043 || !currently_stepping (ecs->event_thread)
3044 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3045 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3046
77f9e713 3047 do_cleanups (old_cleanups);
8aad930b 3048 }
4fa8626c
DJ
3049}
3050
7a76f5b8 3051static void
0d1e5fa7
PA
3052init_infwait_state (void)
3053{
3054 waiton_ptid = pid_to_ptid (-1);
3055 infwait_state = infwait_normal_state;
3056}
3057
edb3359d
DJ
3058static int
3059stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3060{
3061 for (frame = get_prev_frame (frame);
3062 frame != NULL;
3063 frame = get_prev_frame (frame))
3064 {
3065 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3066 return 1;
3067 if (get_frame_type (frame) != INLINE_FRAME)
3068 break;
3069 }
3070
3071 return 0;
3072}
3073
a96d9b2e
SDJ
3074/* Auxiliary function that handles syscall entry/return events.
3075 It returns 1 if the inferior should keep going (and GDB
3076 should ignore the event), or 0 if the event deserves to be
3077 processed. */
ca2163eb 3078
a96d9b2e 3079static int
ca2163eb 3080handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3081{
ca2163eb 3082 struct regcache *regcache;
ca2163eb
PA
3083 int syscall_number;
3084
3085 if (!ptid_equal (ecs->ptid, inferior_ptid))
3086 context_switch (ecs->ptid);
3087
3088 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3089 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3090 stop_pc = regcache_read_pc (regcache);
3091
a96d9b2e
SDJ
3092 if (catch_syscall_enabled () > 0
3093 && catching_syscall_number (syscall_number) > 0)
3094 {
ab04a2af
TT
3095 enum bpstat_signal_value sval;
3096
a96d9b2e
SDJ
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3099 syscall_number);
a96d9b2e 3100
16c381f0 3101 ecs->event_thread->control.stop_bpstat
6c95b8df 3102 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3103 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3104
427cd150
TT
3105 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3106 GDB_SIGNAL_TRAP);
ab04a2af 3107 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3108
ca2163eb
PA
3109 if (!ecs->random_signal)
3110 {
3111 /* Catchpoint hit. */
a493e3e2 3112 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3113 return 0;
3114 }
a96d9b2e 3115 }
ca2163eb
PA
3116
3117 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3118 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3119 keep_going (ecs);
3120 return 1;
a96d9b2e
SDJ
3121}
3122
7e324e48
GB
3123/* Clear the supplied execution_control_state's stop_func_* fields. */
3124
3125static void
3126clear_stop_func (struct execution_control_state *ecs)
3127{
3128 ecs->stop_func_filled_in = 0;
3129 ecs->stop_func_start = 0;
3130 ecs->stop_func_end = 0;
3131 ecs->stop_func_name = NULL;
3132}
3133
3134/* Lazily fill in the execution_control_state's stop_func_* fields. */
3135
3136static void
3137fill_in_stop_func (struct gdbarch *gdbarch,
3138 struct execution_control_state *ecs)
3139{
3140 if (!ecs->stop_func_filled_in)
3141 {
3142 /* Don't care about return value; stop_func_start and stop_func_name
3143 will both be 0 if it doesn't work. */
3144 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3145 &ecs->stop_func_start, &ecs->stop_func_end);
3146 ecs->stop_func_start
3147 += gdbarch_deprecated_function_start_offset (gdbarch);
3148
3149 ecs->stop_func_filled_in = 1;
3150 }
3151}
3152
cd0fc7c3
SS
3153/* Given an execution control state that has been freshly filled in
3154 by an event from the inferior, figure out what it means and take
3155 appropriate action. */
c906108c 3156
ec9499be 3157static void
96baa820 3158handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3159{
568d6575
UW
3160 struct frame_info *frame;
3161 struct gdbarch *gdbarch;
d983da9c
DJ
3162 int stopped_by_watchpoint;
3163 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3164 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3165 enum stop_kind stop_soon;
3166
28736962
PA
3167 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3168 {
3169 /* We had an event in the inferior, but we are not interested in
3170 handling it at this level. The lower layers have already
3171 done what needs to be done, if anything.
3172
3173 One of the possible circumstances for this is when the
3174 inferior produces output for the console. The inferior has
3175 not stopped, and we are ignoring the event. Another possible
3176 circumstance is any event which the lower level knows will be
3177 reported multiple times without an intervening resume. */
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3180 prepare_to_wait (ecs);
3181 return;
3182 }
3183
0e5bf2a8
PA
3184 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3185 && target_can_async_p () && !sync_execution)
3186 {
3187 /* There were no unwaited-for children left in the target, but,
3188 we're not synchronously waiting for events either. Just
3189 ignore. Otherwise, if we were running a synchronous
3190 execution command, we need to cancel it and give the user
3191 back the terminal. */
3192 if (debug_infrun)
3193 fprintf_unfiltered (gdb_stdlog,
3194 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3195 prepare_to_wait (ecs);
3196 return;
3197 }
3198
d6b48e9c 3199 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3200 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3201 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3202 {
3203 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3204
d6b48e9c 3205 gdb_assert (inf);
16c381f0 3206 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3207 }
3208 else
3209 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3210
1777feb0 3211 /* Cache the last pid/waitstatus. */
39f77062 3212 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3213 target_last_waitstatus = ecs->ws;
e02bc4cc 3214
ca005067 3215 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3216 stop_stack_dummy = STOP_NONE;
ca005067 3217
0e5bf2a8
PA
3218 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3219 {
3220 /* No unwaited-for children left. IOW, all resumed children
3221 have exited. */
3222 if (debug_infrun)
3223 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3224
3225 stop_print_frame = 0;
3226 stop_stepping (ecs);
3227 return;
3228 }
3229
8c90c137 3230 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3231 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3232 {
3233 ecs->event_thread = find_thread_ptid (ecs->ptid);
3234 /* If it's a new thread, add it to the thread database. */
3235 if (ecs->event_thread == NULL)
3236 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3237
3238 /* Disable range stepping. If the next step request could use a
3239 range, this will be end up re-enabled then. */
3240 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3241 }
88ed393a
JK
3242
3243 /* Dependent on valid ECS->EVENT_THREAD. */
3244 adjust_pc_after_break (ecs);
3245
3246 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3247 reinit_frame_cache ();
3248
28736962
PA
3249 breakpoint_retire_moribund ();
3250
2b009048
DJ
3251 /* First, distinguish signals caused by the debugger from signals
3252 that have to do with the program's own actions. Note that
3253 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3254 on the operating system version. Here we detect when a SIGILL or
3255 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3256 something similar for SIGSEGV, since a SIGSEGV will be generated
3257 when we're trying to execute a breakpoint instruction on a
3258 non-executable stack. This happens for call dummy breakpoints
3259 for architectures like SPARC that place call dummies on the
3260 stack. */
2b009048 3261 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3262 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3263 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3264 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3265 {
de0a0249
UW
3266 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3267
3268 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3269 regcache_read_pc (regcache)))
3270 {
3271 if (debug_infrun)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3274 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3275 }
2b009048
DJ
3276 }
3277
28736962
PA
3278 /* Mark the non-executing threads accordingly. In all-stop, all
3279 threads of all processes are stopped when we get any event
3280 reported. In non-stop mode, only the event thread stops. If
3281 we're handling a process exit in non-stop mode, there's nothing
3282 to do, as threads of the dead process are gone, and threads of
3283 any other process were left running. */
3284 if (!non_stop)
3285 set_executing (minus_one_ptid, 0);
3286 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3287 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3288 set_executing (ecs->ptid, 0);
8c90c137 3289
0d1e5fa7 3290 switch (infwait_state)
488f131b
JB
3291 {
3292 case infwait_thread_hop_state:
527159b7 3293 if (debug_infrun)
8a9de0e4 3294 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3295 break;
b83266a0 3296
488f131b 3297 case infwait_normal_state:
527159b7 3298 if (debug_infrun)
8a9de0e4 3299 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3300 break;
3301
3302 case infwait_step_watch_state:
3303 if (debug_infrun)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_step_watch_state\n");
3306
3307 stepped_after_stopped_by_watchpoint = 1;
488f131b 3308 break;
b83266a0 3309
488f131b 3310 case infwait_nonstep_watch_state:
527159b7 3311 if (debug_infrun)
8a9de0e4
AC
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: infwait_nonstep_watch_state\n");
488f131b 3314 insert_breakpoints ();
c906108c 3315
488f131b
JB
3316 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3317 handle things like signals arriving and other things happening
3318 in combination correctly? */
3319 stepped_after_stopped_by_watchpoint = 1;
3320 break;
65e82032
AC
3321
3322 default:
e2e0b3e5 3323 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3324 }
ec9499be 3325
0d1e5fa7 3326 infwait_state = infwait_normal_state;
ec9499be 3327 waiton_ptid = pid_to_ptid (-1);
c906108c 3328
488f131b
JB
3329 switch (ecs->ws.kind)
3330 {
3331 case TARGET_WAITKIND_LOADED:
527159b7 3332 if (debug_infrun)
8a9de0e4 3333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3334 /* Ignore gracefully during startup of the inferior, as it might
3335 be the shell which has just loaded some objects, otherwise
3336 add the symbols for the newly loaded objects. Also ignore at
3337 the beginning of an attach or remote session; we will query
3338 the full list of libraries once the connection is
3339 established. */
c0236d92 3340 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3341 {
edcc5120 3342 struct regcache *regcache;
ab04a2af 3343 enum bpstat_signal_value sval;
edcc5120
TT
3344
3345 if (!ptid_equal (ecs->ptid, inferior_ptid))
3346 context_switch (ecs->ptid);
3347 regcache = get_thread_regcache (ecs->ptid);
3348
3349 handle_solib_event ();
3350
3351 ecs->event_thread->control.stop_bpstat
3352 = bpstat_stop_status (get_regcache_aspace (regcache),
3353 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3354
3355 sval
427cd150
TT
3356 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3357 GDB_SIGNAL_TRAP);
ab04a2af 3358 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3359
3360 if (!ecs->random_signal)
3361 {
3362 /* A catchpoint triggered. */
a493e3e2 3363 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3364 goto process_event_stop_test;
3365 }
488f131b 3366
b0f4b84b
DJ
3367 /* If requested, stop when the dynamic linker notifies
3368 gdb of events. This allows the user to get control
3369 and place breakpoints in initializer routines for
3370 dynamically loaded objects (among other things). */
a493e3e2 3371 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3372 if (stop_on_solib_events)
3373 {
55409f9d
DJ
3374 /* Make sure we print "Stopped due to solib-event" in
3375 normal_stop. */
3376 stop_print_frame = 1;
3377
b0f4b84b
DJ
3378 stop_stepping (ecs);
3379 return;
3380 }
488f131b 3381 }
b0f4b84b
DJ
3382
3383 /* If we are skipping through a shell, or through shared library
3384 loading that we aren't interested in, resume the program. If
3385 we're running the program normally, also resume. But stop if
3386 we're attaching or setting up a remote connection. */
3387 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3388 {
8b3ee56d
PA
3389 if (!ptid_equal (ecs->ptid, inferior_ptid))
3390 context_switch (ecs->ptid);
3391
74960c60
VP
3392 /* Loading of shared libraries might have changed breakpoint
3393 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3394 if (stop_soon == NO_STOP_QUIETLY
3395 && !breakpoints_always_inserted_mode ())
74960c60 3396 insert_breakpoints ();
a493e3e2 3397 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3398 prepare_to_wait (ecs);
3399 return;
3400 }
3401
3402 break;
c5aa993b 3403
488f131b 3404 case TARGET_WAITKIND_SPURIOUS:
527159b7 3405 if (debug_infrun)
8a9de0e4 3406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3407 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3408 context_switch (ecs->ptid);
a493e3e2 3409 resume (0, GDB_SIGNAL_0);
488f131b
JB
3410 prepare_to_wait (ecs);
3411 return;
c5aa993b 3412
488f131b 3413 case TARGET_WAITKIND_EXITED:
940c3c06 3414 case TARGET_WAITKIND_SIGNALLED:
527159b7 3415 if (debug_infrun)
940c3c06
PA
3416 {
3417 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3418 fprintf_unfiltered (gdb_stdlog,
3419 "infrun: TARGET_WAITKIND_EXITED\n");
3420 else
3421 fprintf_unfiltered (gdb_stdlog,
3422 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3423 }
3424
fb66883a 3425 inferior_ptid = ecs->ptid;
6c95b8df
PA
3426 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3427 set_current_program_space (current_inferior ()->pspace);
3428 handle_vfork_child_exec_or_exit (0);
1777feb0 3429 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3430
0c557179
SDJ
3431 /* Clearing any previous state of convenience variables. */
3432 clear_exit_convenience_vars ();
3433
940c3c06
PA
3434 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3435 {
3436 /* Record the exit code in the convenience variable $_exitcode, so
3437 that the user can inspect this again later. */
3438 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3439 (LONGEST) ecs->ws.value.integer);
3440
3441 /* Also record this in the inferior itself. */
3442 current_inferior ()->has_exit_code = 1;
3443 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3444
940c3c06
PA
3445 print_exited_reason (ecs->ws.value.integer);
3446 }
3447 else
0c557179
SDJ
3448 {
3449 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3451
3452 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3453 {
3454 /* Set the value of the internal variable $_exitsignal,
3455 which holds the signal uncaught by the inferior. */
3456 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3457 gdbarch_gdb_signal_to_target (gdbarch,
3458 ecs->ws.value.sig));
3459 }
3460 else
3461 {
3462 /* We don't have access to the target's method used for
3463 converting between signal numbers (GDB's internal
3464 representation <-> target's representation).
3465 Therefore, we cannot do a good job at displaying this
3466 information to the user. It's better to just warn
3467 her about it (if infrun debugging is enabled), and
3468 give up. */
3469 if (debug_infrun)
3470 fprintf_filtered (gdb_stdlog, _("\
3471Cannot fill $_exitsignal with the correct signal number.\n"));
3472 }
3473
3474 print_signal_exited_reason (ecs->ws.value.sig);
3475 }
8cf64490 3476
488f131b
JB
3477 gdb_flush (gdb_stdout);
3478 target_mourn_inferior ();
1c0fdd0e 3479 singlestep_breakpoints_inserted_p = 0;
d03285ec 3480 cancel_single_step_breakpoints ();
488f131b
JB
3481 stop_print_frame = 0;
3482 stop_stepping (ecs);
3483 return;
c5aa993b 3484
488f131b 3485 /* The following are the only cases in which we keep going;
1777feb0 3486 the above cases end in a continue or goto. */
488f131b 3487 case TARGET_WAITKIND_FORKED:
deb3b17b 3488 case TARGET_WAITKIND_VFORKED:
527159b7 3489 if (debug_infrun)
fed708ed
PA
3490 {
3491 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3493 else
3494 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3495 }
c906108c 3496
e2d96639
YQ
3497 /* Check whether the inferior is displaced stepping. */
3498 {
3499 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3501 struct displaced_step_inferior_state *displaced
3502 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3503
3504 /* If checking displaced stepping is supported, and thread
3505 ecs->ptid is displaced stepping. */
3506 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3507 {
3508 struct inferior *parent_inf
3509 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3510 struct regcache *child_regcache;
3511 CORE_ADDR parent_pc;
3512
3513 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3514 indicating that the displaced stepping of syscall instruction
3515 has been done. Perform cleanup for parent process here. Note
3516 that this operation also cleans up the child process for vfork,
3517 because their pages are shared. */
a493e3e2 3518 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3519
3520 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3521 {
3522 /* Restore scratch pad for child process. */
3523 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3524 }
3525
3526 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3527 the child's PC is also within the scratchpad. Set the child's PC
3528 to the parent's PC value, which has already been fixed up.
3529 FIXME: we use the parent's aspace here, although we're touching
3530 the child, because the child hasn't been added to the inferior
3531 list yet at this point. */
3532
3533 child_regcache
3534 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3535 gdbarch,
3536 parent_inf->aspace);
3537 /* Read PC value of parent process. */
3538 parent_pc = regcache_read_pc (regcache);
3539
3540 if (debug_displaced)
3541 fprintf_unfiltered (gdb_stdlog,
3542 "displaced: write child pc from %s to %s\n",
3543 paddress (gdbarch,
3544 regcache_read_pc (child_regcache)),
3545 paddress (gdbarch, parent_pc));
3546
3547 regcache_write_pc (child_regcache, parent_pc);
3548 }
3549 }
3550
5a2901d9 3551 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3552 context_switch (ecs->ptid);
5a2901d9 3553
b242c3c2
PA
3554 /* Immediately detach breakpoints from the child before there's
3555 any chance of letting the user delete breakpoints from the
3556 breakpoint lists. If we don't do this early, it's easy to
3557 leave left over traps in the child, vis: "break foo; catch
3558 fork; c; <fork>; del; c; <child calls foo>". We only follow
3559 the fork on the last `continue', and by that time the
3560 breakpoint at "foo" is long gone from the breakpoint table.
3561 If we vforked, then we don't need to unpatch here, since both
3562 parent and child are sharing the same memory pages; we'll
3563 need to unpatch at follow/detach time instead to be certain
3564 that new breakpoints added between catchpoint hit time and
3565 vfork follow are detached. */
3566 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3567 {
b242c3c2
PA
3568 /* This won't actually modify the breakpoint list, but will
3569 physically remove the breakpoints from the child. */
d80ee84f 3570 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3571 }
3572
d03285ec
UW
3573 if (singlestep_breakpoints_inserted_p)
3574 {
1777feb0 3575 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3576 remove_single_step_breakpoints ();
3577 singlestep_breakpoints_inserted_p = 0;
3578 }
3579
e58b0e63
PA
3580 /* In case the event is caught by a catchpoint, remember that
3581 the event is to be followed at the next resume of the thread,
3582 and not immediately. */
3583 ecs->event_thread->pending_follow = ecs->ws;
3584
fb14de7b 3585 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3586
16c381f0 3587 ecs->event_thread->control.stop_bpstat
6c95b8df 3588 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3589 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3590
67822962
PA
3591 /* Note that we're interested in knowing the bpstat actually
3592 causes a stop, not just if it may explain the signal.
3593 Software watchpoints, for example, always appear in the
3594 bpstat. */
16c381f0
JK
3595 ecs->random_signal
3596 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3597
3598 /* If no catchpoint triggered for this, then keep going. */
3599 if (ecs->random_signal)
3600 {
6c95b8df
PA
3601 ptid_t parent;
3602 ptid_t child;
e58b0e63 3603 int should_resume;
3e43a32a
MS
3604 int follow_child
3605 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3606
a493e3e2 3607 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3608
3609 should_resume = follow_fork ();
3610
6c95b8df
PA
3611 parent = ecs->ptid;
3612 child = ecs->ws.value.related_pid;
3613
3614 /* In non-stop mode, also resume the other branch. */
3615 if (non_stop && !detach_fork)
3616 {
3617 if (follow_child)
3618 switch_to_thread (parent);
3619 else
3620 switch_to_thread (child);
3621
3622 ecs->event_thread = inferior_thread ();
3623 ecs->ptid = inferior_ptid;
3624 keep_going (ecs);
3625 }
3626
3627 if (follow_child)
3628 switch_to_thread (child);
3629 else
3630 switch_to_thread (parent);
3631
e58b0e63
PA
3632 ecs->event_thread = inferior_thread ();
3633 ecs->ptid = inferior_ptid;
3634
3635 if (should_resume)
3636 keep_going (ecs);
3637 else
3638 stop_stepping (ecs);
04e68871
DJ
3639 return;
3640 }
a493e3e2 3641 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3642 goto process_event_stop_test;
3643
6c95b8df
PA
3644 case TARGET_WAITKIND_VFORK_DONE:
3645 /* Done with the shared memory region. Re-insert breakpoints in
3646 the parent, and keep going. */
3647
3648 if (debug_infrun)
3e43a32a
MS
3649 fprintf_unfiltered (gdb_stdlog,
3650 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3651
3652 if (!ptid_equal (ecs->ptid, inferior_ptid))
3653 context_switch (ecs->ptid);
3654
3655 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3656 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3657 /* This also takes care of reinserting breakpoints in the
3658 previously locked inferior. */
3659 keep_going (ecs);
3660 return;
3661
488f131b 3662 case TARGET_WAITKIND_EXECD:
527159b7 3663 if (debug_infrun)
fc5261f2 3664 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3665
5a2901d9 3666 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3667 context_switch (ecs->ptid);
5a2901d9 3668
d03285ec
UW
3669 singlestep_breakpoints_inserted_p = 0;
3670 cancel_single_step_breakpoints ();
3671
fb14de7b 3672 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3673
6c95b8df
PA
3674 /* Do whatever is necessary to the parent branch of the vfork. */
3675 handle_vfork_child_exec_or_exit (1);
3676
795e548f
PA
3677 /* This causes the eventpoints and symbol table to be reset.
3678 Must do this now, before trying to determine whether to
3679 stop. */
71b43ef8 3680 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3681
16c381f0 3682 ecs->event_thread->control.stop_bpstat
6c95b8df 3683 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3684 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3685 ecs->random_signal
427cd150
TT
3686 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3687 GDB_SIGNAL_TRAP)
ab04a2af 3688 == BPSTAT_SIGNAL_NO);
795e548f 3689
71b43ef8
PA
3690 /* Note that this may be referenced from inside
3691 bpstat_stop_status above, through inferior_has_execd. */
3692 xfree (ecs->ws.value.execd_pathname);
3693 ecs->ws.value.execd_pathname = NULL;
3694
04e68871
DJ
3695 /* If no catchpoint triggered for this, then keep going. */
3696 if (ecs->random_signal)
3697 {
a493e3e2 3698 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3699 keep_going (ecs);
3700 return;
3701 }
a493e3e2 3702 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3703 goto process_event_stop_test;
3704
b4dc5ffa
MK
3705 /* Be careful not to try to gather much state about a thread
3706 that's in a syscall. It's frequently a losing proposition. */
488f131b 3707 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3708 if (debug_infrun)
3e43a32a
MS
3709 fprintf_unfiltered (gdb_stdlog,
3710 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3711 /* Getting the current syscall number. */
ca2163eb 3712 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3713 return;
3714 goto process_event_stop_test;
c906108c 3715
488f131b
JB
3716 /* Before examining the threads further, step this thread to
3717 get it entirely out of the syscall. (We get notice of the
3718 event when the thread is just on the verge of exiting a
3719 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3720 into user code.) */
488f131b 3721 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3722 if (debug_infrun)
3e43a32a
MS
3723 fprintf_unfiltered (gdb_stdlog,
3724 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3725 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3726 return;
3727 goto process_event_stop_test;
c906108c 3728
488f131b 3729 case TARGET_WAITKIND_STOPPED:
527159b7 3730 if (debug_infrun)
8a9de0e4 3731 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3732 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3733 break;
c906108c 3734
b2175913 3735 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3736 if (debug_infrun)
3737 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3738 /* Reverse execution: target ran out of history info. */
eab402df
PA
3739
3740 /* Pull the single step breakpoints out of the target. */
3741 if (singlestep_breakpoints_inserted_p)
3742 {
3743 if (!ptid_equal (ecs->ptid, inferior_ptid))
3744 context_switch (ecs->ptid);
3745 remove_single_step_breakpoints ();
3746 singlestep_breakpoints_inserted_p = 0;
3747 }
fb14de7b 3748 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3749 print_no_history_reason ();
b2175913
MS
3750 stop_stepping (ecs);
3751 return;
488f131b 3752 }
c906108c 3753
2020b7ab 3754 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3755 {
3756 /* Do we need to clean up the state of a thread that has
3757 completed a displaced single-step? (Doing so usually affects
3758 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3759 displaced_step_fixup (ecs->ptid,
3760 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3761
3762 /* If we either finished a single-step or hit a breakpoint, but
3763 the user wanted this thread to be stopped, pretend we got a
3764 SIG0 (generic unsignaled stop). */
3765
3766 if (ecs->event_thread->stop_requested
a493e3e2
PA
3767 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3768 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3769 }
237fc4c9 3770
515630c5 3771 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3772
527159b7 3773 if (debug_infrun)
237fc4c9 3774 {
5af949e3
UW
3775 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3776 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3777 struct cleanup *old_chain = save_inferior_ptid ();
3778
3779 inferior_ptid = ecs->ptid;
5af949e3
UW
3780
3781 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3782 paddress (gdbarch, stop_pc));
d92524f1 3783 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3784 {
3785 CORE_ADDR addr;
abbb1732 3786
237fc4c9
PA
3787 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3788
3789 if (target_stopped_data_address (&current_target, &addr))
3790 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3791 "infrun: stopped data address = %s\n",
3792 paddress (gdbarch, addr));
237fc4c9
PA
3793 else
3794 fprintf_unfiltered (gdb_stdlog,
3795 "infrun: (no data address available)\n");
3796 }
7f82dfc7
JK
3797
3798 do_cleanups (old_chain);
237fc4c9 3799 }
527159b7 3800
9f976b41
DJ
3801 if (stepping_past_singlestep_breakpoint)
3802 {
1c0fdd0e 3803 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3804 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3805 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3806
3807 stepping_past_singlestep_breakpoint = 0;
3808
3809 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3810 breakpoint, or stopped for some other reason. It would be nice if
3811 we could tell, but we can't reliably. */
a493e3e2 3812 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3813 {
527159b7 3814 if (debug_infrun)
3e43a32a
MS
3815 fprintf_unfiltered (gdb_stdlog,
3816 "infrun: stepping_past_"
3817 "singlestep_breakpoint\n");
9f976b41 3818 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3819 if (!ptid_equal (ecs->ptid, inferior_ptid))
3820 context_switch (ecs->ptid);
e0cd558a 3821 remove_single_step_breakpoints ();
9f976b41
DJ
3822 singlestep_breakpoints_inserted_p = 0;
3823
16c381f0 3824 ecs->event_thread->control.trap_expected = 0;
9f976b41 3825
0d1e5fa7 3826 context_switch (saved_singlestep_ptid);
9a4105ab 3827 if (deprecated_context_hook)
de9f1b68 3828 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3829
a493e3e2 3830 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3831 prepare_to_wait (ecs);
3832 return;
3833 }
3834 }
3835
ca67fcb8 3836 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3837 {
94cc34af
PA
3838 /* In non-stop mode, there's never a deferred_step_ptid set. */
3839 gdb_assert (!non_stop);
3840
6a6b96b9
UW
3841 /* If we stopped for some other reason than single-stepping, ignore
3842 the fact that we were supposed to switch back. */
a493e3e2 3843 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3844 {
3845 if (debug_infrun)
3846 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3847 "infrun: handling deferred step\n");
6a6b96b9
UW
3848
3849 /* Pull the single step breakpoints out of the target. */
3850 if (singlestep_breakpoints_inserted_p)
3851 {
8b3ee56d
PA
3852 if (!ptid_equal (ecs->ptid, inferior_ptid))
3853 context_switch (ecs->ptid);
6a6b96b9
UW
3854 remove_single_step_breakpoints ();
3855 singlestep_breakpoints_inserted_p = 0;
3856 }
3857
cd3da28e
PA
3858 ecs->event_thread->control.trap_expected = 0;
3859
d25f45d9 3860 context_switch (deferred_step_ptid);
ca67fcb8 3861 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3862 /* Suppress spurious "Switching to ..." message. */
3863 previous_inferior_ptid = inferior_ptid;
3864
a493e3e2 3865 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3866 prepare_to_wait (ecs);
3867 return;
3868 }
ca67fcb8
VP
3869
3870 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3871 }
3872
488f131b
JB
3873 /* See if a thread hit a thread-specific breakpoint that was meant for
3874 another thread. If so, then step that thread past the breakpoint,
3875 and continue it. */
3876
a493e3e2 3877 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3878 {
9f976b41 3879 int thread_hop_needed = 0;
cf00dfa7
VP
3880 struct address_space *aspace =
3881 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3882
f8d40ec8 3883 /* Check if a regular breakpoint has been hit before checking
1777feb0 3884 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3885 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3886 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3887 {
6c95b8df 3888 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3889 thread_hop_needed = 1;
3890 }
1c0fdd0e 3891 else if (singlestep_breakpoints_inserted_p)
9f976b41 3892 {
fd48f117
DJ
3893 /* We have not context switched yet, so this should be true
3894 no matter which thread hit the singlestep breakpoint. */
3895 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3898 "trap for %s\n",
3899 target_pid_to_str (ecs->ptid));
3900
9f976b41
DJ
3901 /* The call to in_thread_list is necessary because PTIDs sometimes
3902 change when we go from single-threaded to multi-threaded. If
3903 the singlestep_ptid is still in the list, assume that it is
3904 really different from ecs->ptid. */
3905 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3906 && in_thread_list (singlestep_ptid))
3907 {
fd48f117
DJ
3908 /* If the PC of the thread we were trying to single-step
3909 has changed, discard this event (which we were going
3910 to ignore anyway), and pretend we saw that thread
3911 trap. This prevents us continuously moving the
3912 single-step breakpoint forward, one instruction at a
3913 time. If the PC has changed, then the thread we were
3914 trying to single-step has trapped or been signalled,
3915 but the event has not been reported to GDB yet.
3916
3917 There might be some cases where this loses signal
3918 information, if a signal has arrived at exactly the
3919 same time that the PC changed, but this is the best
3920 we can do with the information available. Perhaps we
3921 should arrange to report all events for all threads
3922 when they stop, or to re-poll the remote looking for
3923 this particular thread (i.e. temporarily enable
3924 schedlock). */
515630c5
UW
3925
3926 CORE_ADDR new_singlestep_pc
3927 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3928
3929 if (new_singlestep_pc != singlestep_pc)
fd48f117 3930 {
2ea28649 3931 enum gdb_signal stop_signal;
2020b7ab 3932
fd48f117
DJ
3933 if (debug_infrun)
3934 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3935 " but expected thread advanced also\n");
3936
3937 /* The current context still belongs to
3938 singlestep_ptid. Don't swap here, since that's
3939 the context we want to use. Just fudge our
3940 state and continue. */
16c381f0 3941 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3942 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3943 ecs->ptid = singlestep_ptid;
e09875d4 3944 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3945 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3946 stop_pc = new_singlestep_pc;
fd48f117
DJ
3947 }
3948 else
3949 {
3950 if (debug_infrun)
3951 fprintf_unfiltered (gdb_stdlog,
3952 "infrun: unexpected thread\n");
3953
3954 thread_hop_needed = 1;
3955 stepping_past_singlestep_breakpoint = 1;
3956 saved_singlestep_ptid = singlestep_ptid;
3957 }
9f976b41
DJ
3958 }
3959 }
3960
3961 if (thread_hop_needed)
8fb3e588 3962 {
9f5a595d 3963 struct regcache *thread_regcache;
237fc4c9 3964 int remove_status = 0;
8fb3e588 3965
527159b7 3966 if (debug_infrun)
8a9de0e4 3967 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3968
b3444185
PA
3969 /* Switch context before touching inferior memory, the
3970 previous thread may have exited. */
3971 if (!ptid_equal (inferior_ptid, ecs->ptid))
3972 context_switch (ecs->ptid);
3973
8fb3e588 3974 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3975 Just continue. */
8fb3e588 3976
1c0fdd0e 3977 if (singlestep_breakpoints_inserted_p)
488f131b 3978 {
1777feb0 3979 /* Pull the single step breakpoints out of the target. */
e0cd558a 3980 remove_single_step_breakpoints ();
8fb3e588
AC
3981 singlestep_breakpoints_inserted_p = 0;
3982 }
3983
237fc4c9
PA
3984 /* If the arch can displace step, don't remove the
3985 breakpoints. */
9f5a595d
UW
3986 thread_regcache = get_thread_regcache (ecs->ptid);
3987 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3988 remove_status = remove_breakpoints ();
3989
8fb3e588
AC
3990 /* Did we fail to remove breakpoints? If so, try
3991 to set the PC past the bp. (There's at least
3992 one situation in which we can fail to remove
3993 the bp's: On HP-UX's that use ttrace, we can't
3994 change the address space of a vforking child
3995 process until the child exits (well, okay, not
1777feb0 3996 then either :-) or execs. */
8fb3e588 3997 if (remove_status != 0)
9d9cd7ac 3998 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3999 else
4000 { /* Single step */
94cc34af
PA
4001 if (!non_stop)
4002 {
4003 /* Only need to require the next event from this
4004 thread in all-stop mode. */
4005 waiton_ptid = ecs->ptid;
4006 infwait_state = infwait_thread_hop_state;
4007 }
8fb3e588 4008
4e1c45ea 4009 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4010 keep_going (ecs);
8fb3e588
AC
4011 return;
4012 }
488f131b
JB
4013 }
4014 }
c906108c 4015
488f131b 4016 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4017 so, then switch to that thread. */
4018 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4019 {
527159b7 4020 if (debug_infrun)
8a9de0e4 4021 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4022
0d1e5fa7 4023 context_switch (ecs->ptid);
c5aa993b 4024
9a4105ab
AC
4025 if (deprecated_context_hook)
4026 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4027 }
c906108c 4028
568d6575
UW
4029 /* At this point, get hold of the now-current thread's frame. */
4030 frame = get_current_frame ();
4031 gdbarch = get_frame_arch (frame);
4032
1c0fdd0e 4033 if (singlestep_breakpoints_inserted_p)
488f131b 4034 {
1777feb0 4035 /* Pull the single step breakpoints out of the target. */
e0cd558a 4036 remove_single_step_breakpoints ();
488f131b
JB
4037 singlestep_breakpoints_inserted_p = 0;
4038 }
c906108c 4039
d983da9c
DJ
4040 if (stepped_after_stopped_by_watchpoint)
4041 stopped_by_watchpoint = 0;
4042 else
4043 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4044
4045 /* If necessary, step over this watchpoint. We'll be back to display
4046 it in a moment. */
4047 if (stopped_by_watchpoint
d92524f1 4048 && (target_have_steppable_watchpoint
568d6575 4049 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4050 {
488f131b
JB
4051 /* At this point, we are stopped at an instruction which has
4052 attempted to write to a piece of memory under control of
4053 a watchpoint. The instruction hasn't actually executed
4054 yet. If we were to evaluate the watchpoint expression
4055 now, we would get the old value, and therefore no change
4056 would seem to have occurred.
4057
4058 In order to make watchpoints work `right', we really need
4059 to complete the memory write, and then evaluate the
d983da9c
DJ
4060 watchpoint expression. We do this by single-stepping the
4061 target.
4062
4063 It may not be necessary to disable the watchpoint to stop over
4064 it. For example, the PA can (with some kernel cooperation)
4065 single step over a watchpoint without disabling the watchpoint.
4066
4067 It is far more common to need to disable a watchpoint to step
4068 the inferior over it. If we have non-steppable watchpoints,
4069 we must disable the current watchpoint; it's simplest to
4070 disable all watchpoints and breakpoints. */
2facfe5c
DD
4071 int hw_step = 1;
4072
d92524f1 4073 if (!target_have_steppable_watchpoint)
2455069d
UW
4074 {
4075 remove_breakpoints ();
4076 /* See comment in resume why we need to stop bypassing signals
4077 while breakpoints have been removed. */
4078 target_pass_signals (0, NULL);
4079 }
2facfe5c 4080 /* Single step */
568d6575 4081 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4082 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4083 waiton_ptid = ecs->ptid;
d92524f1 4084 if (target_have_steppable_watchpoint)
0d1e5fa7 4085 infwait_state = infwait_step_watch_state;
d983da9c 4086 else
0d1e5fa7 4087 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4088 prepare_to_wait (ecs);
4089 return;
4090 }
4091
7e324e48 4092 clear_stop_func (ecs);
4e1c45ea 4093 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4094 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4095 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4096 stop_print_frame = 1;
4097 ecs->random_signal = 0;
4098 stopped_by_random_signal = 0;
488f131b 4099
edb3359d
DJ
4100 /* Hide inlined functions starting here, unless we just performed stepi or
4101 nexti. After stepi and nexti, always show the innermost frame (not any
4102 inline function call sites). */
16c381f0 4103 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4104 {
4105 struct address_space *aspace =
4106 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4107
4108 /* skip_inline_frames is expensive, so we avoid it if we can
4109 determine that the address is one where functions cannot have
4110 been inlined. This improves performance with inferiors that
4111 load a lot of shared libraries, because the solib event
4112 breakpoint is defined as the address of a function (i.e. not
4113 inline). Note that we have to check the previous PC as well
4114 as the current one to catch cases when we have just
4115 single-stepped off a breakpoint prior to reinstating it.
4116 Note that we're assuming that the code we single-step to is
4117 not inline, but that's not definitive: there's nothing
4118 preventing the event breakpoint function from containing
4119 inlined code, and the single-step ending up there. If the
4120 user had set a breakpoint on that inlined code, the missing
4121 skip_inline_frames call would break things. Fortunately
4122 that's an extremely unlikely scenario. */
09ac7c10 4123 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4124 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4125 && ecs->event_thread->control.trap_expected
4126 && pc_at_non_inline_function (aspace,
4127 ecs->event_thread->prev_pc,
09ac7c10 4128 &ecs->ws)))
1c5a993e
MR
4129 {
4130 skip_inline_frames (ecs->ptid);
4131
4132 /* Re-fetch current thread's frame in case that invalidated
4133 the frame cache. */
4134 frame = get_current_frame ();
4135 gdbarch = get_frame_arch (frame);
4136 }
0574c78f 4137 }
edb3359d 4138
a493e3e2 4139 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4140 && ecs->event_thread->control.trap_expected
568d6575 4141 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4142 && currently_stepping (ecs->event_thread))
3352ef37 4143 {
b50d7442 4144 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4145 also on an instruction that needs to be stepped multiple
1777feb0 4146 times before it's been fully executing. E.g., architectures
3352ef37
AC
4147 with a delay slot. It needs to be stepped twice, once for
4148 the instruction and once for the delay slot. */
4149 int step_through_delay
568d6575 4150 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4151
527159b7 4152 if (debug_infrun && step_through_delay)
8a9de0e4 4153 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4154 if (ecs->event_thread->control.step_range_end == 0
4155 && step_through_delay)
3352ef37
AC
4156 {
4157 /* The user issued a continue when stopped at a breakpoint.
4158 Set up for another trap and get out of here. */
4e1c45ea 4159 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4160 keep_going (ecs);
4161 return;
4162 }
4163 else if (step_through_delay)
4164 {
4165 /* The user issued a step when stopped at a breakpoint.
4166 Maybe we should stop, maybe we should not - the delay
4167 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4168 case, don't decide that here, just set
4169 ecs->stepping_over_breakpoint, making sure we
4170 single-step again before breakpoints are re-inserted. */
4e1c45ea 4171 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4172 }
4173 }
4174
488f131b
JB
4175 /* Look at the cause of the stop, and decide what to do.
4176 The alternatives are:
0d1e5fa7
PA
4177 1) stop_stepping and return; to really stop and return to the debugger,
4178 2) keep_going and return to start up again
4e1c45ea 4179 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4180 3) set ecs->random_signal to 1, and the decision between 1 and 2
4181 will be made according to the signal handling tables. */
4182
a493e3e2 4183 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4184 && stop_after_trap)
488f131b 4185 {
ab04a2af
TT
4186 if (debug_infrun)
4187 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4188 stop_print_frame = 0;
4189 stop_stepping (ecs);
4190 return;
4191 }
488f131b 4192
ab04a2af
TT
4193 /* This is originated from start_remote(), start_inferior() and
4194 shared libraries hook functions. */
4195 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4196 {
4197 if (debug_infrun)
4198 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4199 stop_stepping (ecs);
4200 return;
4201 }
c54cfec8 4202
ab04a2af
TT
4203 /* This originates from attach_command(). We need to overwrite
4204 the stop_signal here, because some kernels don't ignore a
4205 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4206 See more comments in inferior.h. On the other hand, if we
4207 get a non-SIGSTOP, report it to the user - assume the backend
4208 will handle the SIGSTOP if it should show up later.
4209
4210 Also consider that the attach is complete when we see a
4211 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4212 target extended-remote report it instead of a SIGSTOP
4213 (e.g. gdbserver). We already rely on SIGTRAP being our
4214 signal, so this is no exception.
4215
4216 Also consider that the attach is complete when we see a
4217 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4218 the target to stop all threads of the inferior, in case the
4219 low level attach operation doesn't stop them implicitly. If
4220 they weren't stopped implicitly, then the stub will report a
4221 GDB_SIGNAL_0, meaning: stopped for no particular reason
4222 other than GDB's request. */
4223 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4224 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4225 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4226 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4227 {
4228 stop_stepping (ecs);
4229 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4230 return;
4231 }
6c95b8df 4232
ab04a2af
TT
4233 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4234 handles this event. */
4235 ecs->event_thread->control.stop_bpstat
4236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4237 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4238
ab04a2af
TT
4239 /* Following in case break condition called a
4240 function. */
4241 stop_print_frame = 1;
73dd234f 4242
ab04a2af
TT
4243 /* This is where we handle "moribund" watchpoints. Unlike
4244 software breakpoints traps, hardware watchpoint traps are
4245 always distinguishable from random traps. If no high-level
4246 watchpoint is associated with the reported stop data address
4247 anymore, then the bpstat does not explain the signal ---
4248 simply make sure to ignore it if `stopped_by_watchpoint' is
4249 set. */
4250
4251 if (debug_infrun
4252 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4253 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4254 GDB_SIGNAL_TRAP)
ab04a2af
TT
4255 == BPSTAT_SIGNAL_NO)
4256 && stopped_by_watchpoint)
4257 fprintf_unfiltered (gdb_stdlog,
4258 "infrun: no user watchpoint explains "
4259 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4260
ab04a2af
TT
4261 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4262 at one stage in the past included checks for an inferior
4263 function call's call dummy's return breakpoint. The original
4264 comment, that went with the test, read:
03cebad2 4265
ab04a2af
TT
4266 ``End of a stack dummy. Some systems (e.g. Sony news) give
4267 another signal besides SIGTRAP, so check here as well as
4268 above.''
73dd234f 4269
ab04a2af
TT
4270 If someone ever tries to get call dummys on a
4271 non-executable stack to work (where the target would stop
4272 with something like a SIGSEGV), then those tests might need
4273 to be re-instated. Given, however, that the tests were only
4274 enabled when momentary breakpoints were not being used, I
4275 suspect that it won't be the case.
488f131b 4276
ab04a2af
TT
4277 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4278 be necessary for call dummies on a non-executable stack on
4279 SPARC. */
488f131b 4280
ab04a2af
TT
4281 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4282 ecs->random_signal
427cd150
TT
4283 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4284 GDB_SIGNAL_TRAP)
ab04a2af
TT
4285 != BPSTAT_SIGNAL_NO)
4286 || stopped_by_watchpoint
4287 || ecs->event_thread->control.trap_expected
4288 || (ecs->event_thread->control.step_range_end
4289 && (ecs->event_thread->control.step_resume_breakpoint
4290 == NULL)));
488f131b 4291 else
ab04a2af
TT
4292 {
4293 enum bpstat_signal_value sval;
4294
427cd150
TT
4295 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4296 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4297 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4298
4299 if (sval == BPSTAT_SIGNAL_HIDE)
4300 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4301 }
488f131b 4302
04e68871 4303process_event_stop_test:
568d6575
UW
4304
4305 /* Re-fetch current thread's frame in case we did a
4306 "goto process_event_stop_test" above. */
4307 frame = get_current_frame ();
4308 gdbarch = get_frame_arch (frame);
4309
488f131b
JB
4310 /* For the program's own signals, act according to
4311 the signal handling tables. */
4312
4313 if (ecs->random_signal)
4314 {
4315 /* Signal not for debugging purposes. */
4316 int printed = 0;
24291992 4317 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4318 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4319
527159b7 4320 if (debug_infrun)
c9737c08
PA
4321 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4322 gdb_signal_to_symbol_string (stop_signal));
527159b7 4323
488f131b
JB
4324 stopped_by_random_signal = 1;
4325
16c381f0 4326 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4327 {
4328 printed = 1;
4329 target_terminal_ours_for_output ();
16c381f0
JK
4330 print_signal_received_reason
4331 (ecs->event_thread->suspend.stop_signal);
488f131b 4332 }
252fbfc8
PA
4333 /* Always stop on signals if we're either just gaining control
4334 of the program, or the user explicitly requested this thread
4335 to remain stopped. */
d6b48e9c 4336 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4337 || ecs->event_thread->stop_requested
24291992 4338 || (!inf->detaching
16c381f0 4339 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4340 {
4341 stop_stepping (ecs);
4342 return;
4343 }
4344 /* If not going to stop, give terminal back
4345 if we took it away. */
4346 else if (printed)
4347 target_terminal_inferior ();
4348
4349 /* Clear the signal if it should not be passed. */
16c381f0 4350 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4351 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4352
fb14de7b 4353 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4354 && ecs->event_thread->control.trap_expected
8358c15c 4355 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4356 {
4357 /* We were just starting a new sequence, attempting to
4358 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4359 Instead this signal arrives. This signal will take us out
68f53502
AC
4360 of the stepping range so GDB needs to remember to, when
4361 the signal handler returns, resume stepping off that
4362 breakpoint. */
4363 /* To simplify things, "continue" is forced to use the same
4364 code paths as single-step - set a breakpoint at the
4365 signal return address and then, once hit, step off that
4366 breakpoint. */
237fc4c9
PA
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: signal arrived while stepping over "
4370 "breakpoint\n");
d3169d93 4371
2c03e5be 4372 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4373 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4374 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4375 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4376 keep_going (ecs);
4377 return;
68f53502 4378 }
9d799f85 4379
16c381f0 4380 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4381 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4382 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4383 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4384 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4385 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4386 {
4387 /* The inferior is about to take a signal that will take it
4388 out of the single step range. Set a breakpoint at the
4389 current PC (which is presumably where the signal handler
4390 will eventually return) and then allow the inferior to
4391 run free.
4392
4393 Note that this is only needed for a signal delivered
4394 while in the single-step range. Nested signals aren't a
4395 problem as they eventually all return. */
237fc4c9
PA
4396 if (debug_infrun)
4397 fprintf_unfiltered (gdb_stdlog,
4398 "infrun: signal may take us out of "
4399 "single-step range\n");
4400
2c03e5be 4401 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4402 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4403 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4404 keep_going (ecs);
4405 return;
d303a6c7 4406 }
9d799f85
AC
4407
4408 /* Note: step_resume_breakpoint may be non-NULL. This occures
4409 when either there's a nested signal, or when there's a
4410 pending signal enabled just as the signal handler returns
4411 (leaving the inferior at the step-resume-breakpoint without
4412 actually executing it). Either way continue until the
4413 breakpoint is really hit. */
488f131b 4414 }
e5ef252a
PA
4415 else
4416 {
4417 /* Handle cases caused by hitting a breakpoint. */
488f131b 4418
e5ef252a
PA
4419 CORE_ADDR jmp_buf_pc;
4420 struct bpstat_what what;
611c83ae 4421
e5ef252a 4422 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4423
e5ef252a 4424 if (what.call_dummy)
e81a37f7 4425 {
e5ef252a
PA
4426 stop_stack_dummy = what.call_dummy;
4427 }
186c406b 4428
e5ef252a
PA
4429 /* If we hit an internal event that triggers symbol changes, the
4430 current frame will be invalidated within bpstat_what (e.g.,
4431 if we hit an internal solib event). Re-fetch it. */
4432 frame = get_current_frame ();
4433 gdbarch = get_frame_arch (frame);
e2e4d78b 4434
e5ef252a
PA
4435 switch (what.main_action)
4436 {
4437 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4438 /* If we hit the breakpoint at longjmp while stepping, we
4439 install a momentary breakpoint at the target of the
4440 jmp_buf. */
186c406b 4441
e81a37f7
TT
4442 if (debug_infrun)
4443 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4444 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4445
e5ef252a 4446 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4447
e2e4d78b
JK
4448 if (what.is_longjmp)
4449 {
e5ef252a
PA
4450 struct value *arg_value;
4451
4452 /* If we set the longjmp breakpoint via a SystemTap
4453 probe, then use it to extract the arguments. The
4454 destination PC is the third argument to the
4455 probe. */
4456 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4457 if (arg_value)
4458 jmp_buf_pc = value_as_address (arg_value);
4459 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4460 || !gdbarch_get_longjmp_target (gdbarch,
4461 frame, &jmp_buf_pc))
e2e4d78b 4462 {
e5ef252a
PA
4463 if (debug_infrun)
4464 fprintf_unfiltered (gdb_stdlog,
4465 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4466 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4467 keep_going (ecs);
4468 return;
4469 }
e5ef252a
PA
4470
4471 /* Insert a breakpoint at resume address. */
4472 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4473 }
e5ef252a
PA
4474 else
4475 check_exception_resume (ecs, frame);
4476 keep_going (ecs);
4477 return;
e2e4d78b 4478
e5ef252a
PA
4479 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4480 {
4481 struct frame_info *init_frame;
e2e4d78b 4482
e5ef252a 4483 /* There are several cases to consider.
e81a37f7 4484
e5ef252a
PA
4485 1. The initiating frame no longer exists. In this case
4486 we must stop, because the exception or longjmp has gone
4487 too far.
e81a37f7 4488
e5ef252a
PA
4489 2. The initiating frame exists, and is the same as the
4490 current frame. We stop, because the exception or
4491 longjmp has been caught.
c906108c 4492
e5ef252a
PA
4493 3. The initiating frame exists and is different from
4494 the current frame. This means the exception or longjmp
4495 has been caught beneath the initiating frame, so keep
4496 going.
2c03e5be 4497
e5ef252a
PA
4498 4. longjmp breakpoint has been placed just to protect
4499 against stale dummy frames and user is not interested
4500 in stopping around longjmps. */
2c03e5be 4501
e5ef252a
PA
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4505
e5ef252a
PA
4506 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4507 != NULL);
4508 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4509
e5ef252a
PA
4510 if (what.is_longjmp)
4511 {
4512 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4513
e5ef252a
PA
4514 if (!frame_id_p (ecs->event_thread->initiating_frame))
4515 {
4516 /* Case 4. */
4517 keep_going (ecs);
4518 return;
4519 }
4520 }
c5aa993b 4521
e5ef252a 4522 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4523
e5ef252a
PA
4524 if (init_frame)
4525 {
4526 struct frame_id current_id
4527 = get_frame_id (get_current_frame ());
4528 if (frame_id_eq (current_id,
4529 ecs->event_thread->initiating_frame))
4530 {
4531 /* Case 2. Fall through. */
4532 }
4533 else
4534 {
4535 /* Case 3. */
4536 keep_going (ecs);
4537 return;
4538 }
4539 }
c5aa993b 4540
e5ef252a
PA
4541 /* For Cases 1 and 2, remove the step-resume breakpoint,
4542 if it exists. */
4543 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4544
e5ef252a
PA
4545 ecs->event_thread->control.stop_step = 1;
4546 print_end_stepping_range_reason ();
4547 stop_stepping (ecs);
68f53502 4548 }
e5ef252a 4549 return;
488f131b 4550
e5ef252a
PA
4551 case BPSTAT_WHAT_SINGLE:
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4554 ecs->event_thread->stepping_over_breakpoint = 1;
4555 /* Still need to check other stuff, at least the case where
4556 we are stepping and step out of the right range. */
4557 break;
4558
4559 case BPSTAT_WHAT_STEP_RESUME:
4560 if (debug_infrun)
4561 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4562
4563 delete_step_resume_breakpoint (ecs->event_thread);
4564 if (ecs->event_thread->control.proceed_to_finish
4565 && execution_direction == EXEC_REVERSE)
4566 {
4567 struct thread_info *tp = ecs->event_thread;
4568
4569 /* We are finishing a function in reverse, and just hit
4570 the step-resume breakpoint at the start address of
4571 the function, and we're almost there -- just need to
4572 back up by one more single-step, which should take us
4573 back to the function call. */
4574 tp->control.step_range_start = tp->control.step_range_end = 1;
4575 keep_going (ecs);
4576 return;
4577 }
4578 fill_in_stop_func (gdbarch, ecs);
4579 if (stop_pc == ecs->stop_func_start
4580 && execution_direction == EXEC_REVERSE)
4581 {
4582 /* We are stepping over a function call in reverse, and
4583 just hit the step-resume breakpoint at the start
4584 address of the function. Go back to single-stepping,
4585 which should take us back to the function call. */
4586 ecs->event_thread->stepping_over_breakpoint = 1;
4587 keep_going (ecs);
4588 return;
4589 }
4590 break;
4591
4592 case BPSTAT_WHAT_STOP_NOISY:
4593 if (debug_infrun)
4594 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4595 stop_print_frame = 1;
4596
4597 /* We are about to nuke the step_resume_breakpointt via the
4598 cleanup chain, so no need to worry about it here. */
4599
4600 stop_stepping (ecs);
4601 return;
4602
4603 case BPSTAT_WHAT_STOP_SILENT:
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4606 stop_print_frame = 0;
4607
4608 /* We are about to nuke the step_resume_breakpoin via the
4609 cleanup chain, so no need to worry about it here. */
4610
4611 stop_stepping (ecs);
4612 return;
4613
4614 case BPSTAT_WHAT_HP_STEP_RESUME:
4615 if (debug_infrun)
4616 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4617
4618 delete_step_resume_breakpoint (ecs->event_thread);
4619 if (ecs->event_thread->step_after_step_resume_breakpoint)
4620 {
4621 /* Back when the step-resume breakpoint was inserted, we
4622 were trying to single-step off a breakpoint. Go back
4623 to doing that. */
4624 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4625 ecs->event_thread->stepping_over_breakpoint = 1;
4626 keep_going (ecs);
4627 return;
4628 }
4629 break;
4630
4631 case BPSTAT_WHAT_KEEP_CHECKING:
4632 break;
4633 }
4634 }
c906108c 4635
488f131b
JB
4636 /* We come here if we hit a breakpoint but should not
4637 stop for it. Possibly we also were stepping
4638 and should stop for that. So fall through and
4639 test for stepping. But, if not stepping,
4640 do not stop. */
c906108c 4641
a7212384
UW
4642 /* In all-stop mode, if we're currently stepping but have stopped in
4643 some other thread, we need to switch back to the stepped thread. */
4644 if (!non_stop)
4645 {
4646 struct thread_info *tp;
abbb1732 4647
b3444185 4648 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4649 ecs->event_thread);
4650 if (tp)
4651 {
4652 /* However, if the current thread is blocked on some internal
4653 breakpoint, and we simply need to step over that breakpoint
4654 to get it going again, do that first. */
16c381f0 4655 if ((ecs->event_thread->control.trap_expected
a493e3e2 4656 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4657 || ecs->event_thread->stepping_over_breakpoint)
4658 {
4659 keep_going (ecs);
4660 return;
4661 }
4662
66852e9c
PA
4663 /* If the stepping thread exited, then don't try to switch
4664 back and resume it, which could fail in several different
4665 ways depending on the target. Instead, just keep going.
4666
4667 We can find a stepping dead thread in the thread list in
4668 two cases:
4669
4670 - The target supports thread exit events, and when the
4671 target tries to delete the thread from the thread list,
4672 inferior_ptid pointed at the exiting thread. In such
4673 case, calling delete_thread does not really remove the
4674 thread from the list; instead, the thread is left listed,
4675 with 'exited' state.
4676
4677 - The target's debug interface does not support thread
4678 exit events, and so we have no idea whatsoever if the
4679 previously stepping thread is still alive. For that
4680 reason, we need to synchronously query the target
4681 now. */
b3444185
PA
4682 if (is_exited (tp->ptid)
4683 || !target_thread_alive (tp->ptid))
4684 {
4685 if (debug_infrun)
3e43a32a
MS
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: not switching back to "
4688 "stepped thread, it has vanished\n");
b3444185
PA
4689
4690 delete_thread (tp->ptid);
4691 keep_going (ecs);
4692 return;
4693 }
4694
a7212384
UW
4695 /* Otherwise, we no longer expect a trap in the current thread.
4696 Clear the trap_expected flag before switching back -- this is
4697 what keep_going would do as well, if we called it. */
16c381f0 4698 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4699
4700 if (debug_infrun)
4701 fprintf_unfiltered (gdb_stdlog,
4702 "infrun: switching back to stepped thread\n");
4703
4704 ecs->event_thread = tp;
4705 ecs->ptid = tp->ptid;
4706 context_switch (ecs->ptid);
4707 keep_going (ecs);
4708 return;
4709 }
4710 }
4711
776f04fa
PA
4712 if (ecs->random_signal)
4713 {
4714 if (debug_infrun)
4715 fprintf_unfiltered (gdb_stdlog,
4716 "infrun: random signal, keep going\n");
4717
4718 /* Signal not stepping related. */
4719 keep_going (ecs);
4720 return;
4721 }
4722
8358c15c 4723 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4724 {
527159b7 4725 if (debug_infrun)
d3169d93
DJ
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: step-resume breakpoint is inserted\n");
527159b7 4728
488f131b
JB
4729 /* Having a step-resume breakpoint overrides anything
4730 else having to do with stepping commands until
4731 that breakpoint is reached. */
488f131b
JB
4732 keep_going (ecs);
4733 return;
4734 }
c5aa993b 4735
16c381f0 4736 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4737 {
527159b7 4738 if (debug_infrun)
8a9de0e4 4739 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4740 /* Likewise if we aren't even stepping. */
488f131b
JB
4741 keep_going (ecs);
4742 return;
4743 }
c5aa993b 4744
4b7703ad
JB
4745 /* Re-fetch current thread's frame in case the code above caused
4746 the frame cache to be re-initialized, making our FRAME variable
4747 a dangling pointer. */
4748 frame = get_current_frame ();
628fe4e4 4749 gdbarch = get_frame_arch (frame);
7e324e48 4750 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4751
488f131b 4752 /* If stepping through a line, keep going if still within it.
c906108c 4753
488f131b
JB
4754 Note that step_range_end is the address of the first instruction
4755 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4756 within it!
4757
4758 Note also that during reverse execution, we may be stepping
4759 through a function epilogue and therefore must detect when
4760 the current-frame changes in the middle of a line. */
4761
ce4c476a 4762 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4763 && (execution_direction != EXEC_REVERSE
388a8562 4764 || frame_id_eq (get_frame_id (frame),
16c381f0 4765 ecs->event_thread->control.step_frame_id)))
488f131b 4766 {
527159b7 4767 if (debug_infrun)
5af949e3
UW
4768 fprintf_unfiltered
4769 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4770 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4771 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4772
c1e36e3e
PA
4773 /* Tentatively re-enable range stepping; `resume' disables it if
4774 necessary (e.g., if we're stepping over a breakpoint or we
4775 have software watchpoints). */
4776 ecs->event_thread->control.may_range_step = 1;
4777
b2175913
MS
4778 /* When stepping backward, stop at beginning of line range
4779 (unless it's the function entry point, in which case
4780 keep going back to the call point). */
16c381f0 4781 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4782 && stop_pc != ecs->stop_func_start
4783 && execution_direction == EXEC_REVERSE)
4784 {
16c381f0 4785 ecs->event_thread->control.stop_step = 1;
33d62d64 4786 print_end_stepping_range_reason ();
b2175913
MS
4787 stop_stepping (ecs);
4788 }
4789 else
4790 keep_going (ecs);
4791
488f131b
JB
4792 return;
4793 }
c5aa993b 4794
488f131b 4795 /* We stepped out of the stepping range. */
c906108c 4796
488f131b 4797 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4798 loader dynamic symbol resolution code...
4799
4800 EXEC_FORWARD: we keep on single stepping until we exit the run
4801 time loader code and reach the callee's address.
4802
4803 EXEC_REVERSE: we've already executed the callee (backward), and
4804 the runtime loader code is handled just like any other
4805 undebuggable function call. Now we need only keep stepping
4806 backward through the trampoline code, and that's handled further
4807 down, so there is nothing for us to do here. */
4808
4809 if (execution_direction != EXEC_REVERSE
16c381f0 4810 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4811 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4812 {
4c8c40e6 4813 CORE_ADDR pc_after_resolver =
568d6575 4814 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4815
527159b7 4816 if (debug_infrun)
3e43a32a
MS
4817 fprintf_unfiltered (gdb_stdlog,
4818 "infrun: stepped into dynsym resolve code\n");
527159b7 4819
488f131b
JB
4820 if (pc_after_resolver)
4821 {
4822 /* Set up a step-resume breakpoint at the address
4823 indicated by SKIP_SOLIB_RESOLVER. */
4824 struct symtab_and_line sr_sal;
abbb1732 4825
fe39c653 4826 init_sal (&sr_sal);
488f131b 4827 sr_sal.pc = pc_after_resolver;
6c95b8df 4828 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4829
a6d9a66e
UW
4830 insert_step_resume_breakpoint_at_sal (gdbarch,
4831 sr_sal, null_frame_id);
c5aa993b 4832 }
c906108c 4833
488f131b
JB
4834 keep_going (ecs);
4835 return;
4836 }
c906108c 4837
16c381f0
JK
4838 if (ecs->event_thread->control.step_range_end != 1
4839 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4840 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4841 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4842 {
527159b7 4843 if (debug_infrun)
3e43a32a
MS
4844 fprintf_unfiltered (gdb_stdlog,
4845 "infrun: stepped into signal trampoline\n");
42edda50 4846 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4847 a signal trampoline (either by a signal being delivered or by
4848 the signal handler returning). Just single-step until the
4849 inferior leaves the trampoline (either by calling the handler
4850 or returning). */
488f131b
JB
4851 keep_going (ecs);
4852 return;
4853 }
c906108c 4854
14132e89
MR
4855 /* If we're in the return path from a shared library trampoline,
4856 we want to proceed through the trampoline when stepping. */
4857 /* macro/2012-04-25: This needs to come before the subroutine
4858 call check below as on some targets return trampolines look
4859 like subroutine calls (MIPS16 return thunks). */
4860 if (gdbarch_in_solib_return_trampoline (gdbarch,
4861 stop_pc, ecs->stop_func_name)
4862 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4863 {
4864 /* Determine where this trampoline returns. */
4865 CORE_ADDR real_stop_pc;
4866
4867 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4868
4869 if (debug_infrun)
4870 fprintf_unfiltered (gdb_stdlog,
4871 "infrun: stepped into solib return tramp\n");
4872
4873 /* Only proceed through if we know where it's going. */
4874 if (real_stop_pc)
4875 {
4876 /* And put the step-breakpoint there and go until there. */
4877 struct symtab_and_line sr_sal;
4878
4879 init_sal (&sr_sal); /* initialize to zeroes */
4880 sr_sal.pc = real_stop_pc;
4881 sr_sal.section = find_pc_overlay (sr_sal.pc);
4882 sr_sal.pspace = get_frame_program_space (frame);
4883
4884 /* Do not specify what the fp should be when we stop since
4885 on some machines the prologue is where the new fp value
4886 is established. */
4887 insert_step_resume_breakpoint_at_sal (gdbarch,
4888 sr_sal, null_frame_id);
4889
4890 /* Restart without fiddling with the step ranges or
4891 other state. */
4892 keep_going (ecs);
4893 return;
4894 }
4895 }
4896
c17eaafe
DJ
4897 /* Check for subroutine calls. The check for the current frame
4898 equalling the step ID is not necessary - the check of the
4899 previous frame's ID is sufficient - but it is a common case and
4900 cheaper than checking the previous frame's ID.
14e60db5
DJ
4901
4902 NOTE: frame_id_eq will never report two invalid frame IDs as
4903 being equal, so to get into this block, both the current and
4904 previous frame must have valid frame IDs. */
005ca36a
JB
4905 /* The outer_frame_id check is a heuristic to detect stepping
4906 through startup code. If we step over an instruction which
4907 sets the stack pointer from an invalid value to a valid value,
4908 we may detect that as a subroutine call from the mythical
4909 "outermost" function. This could be fixed by marking
4910 outermost frames as !stack_p,code_p,special_p. Then the
4911 initial outermost frame, before sp was valid, would
ce6cca6d 4912 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4913 for more. */
edb3359d 4914 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4915 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4916 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4917 ecs->event_thread->control.step_stack_frame_id)
4918 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4919 outer_frame_id)
4920 || step_start_function != find_pc_function (stop_pc))))
488f131b 4921 {
95918acb 4922 CORE_ADDR real_stop_pc;
8fb3e588 4923
527159b7 4924 if (debug_infrun)
8a9de0e4 4925 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4926
16c381f0
JK
4927 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4928 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4929 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4930 ecs->stop_func_start)))
95918acb
AC
4931 {
4932 /* I presume that step_over_calls is only 0 when we're
4933 supposed to be stepping at the assembly language level
4934 ("stepi"). Just stop. */
4935 /* Also, maybe we just did a "nexti" inside a prolog, so we
4936 thought it was a subroutine call but it was not. Stop as
4937 well. FENN */
388a8562 4938 /* And this works the same backward as frontward. MVS */
16c381f0 4939 ecs->event_thread->control.stop_step = 1;
33d62d64 4940 print_end_stepping_range_reason ();
95918acb
AC
4941 stop_stepping (ecs);
4942 return;
4943 }
8fb3e588 4944
388a8562
MS
4945 /* Reverse stepping through solib trampolines. */
4946
4947 if (execution_direction == EXEC_REVERSE
16c381f0 4948 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4949 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4950 || (ecs->stop_func_start == 0
4951 && in_solib_dynsym_resolve_code (stop_pc))))
4952 {
4953 /* Any solib trampoline code can be handled in reverse
4954 by simply continuing to single-step. We have already
4955 executed the solib function (backwards), and a few
4956 steps will take us back through the trampoline to the
4957 caller. */
4958 keep_going (ecs);
4959 return;
4960 }
4961
16c381f0 4962 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4963 {
b2175913
MS
4964 /* We're doing a "next".
4965
4966 Normal (forward) execution: set a breakpoint at the
4967 callee's return address (the address at which the caller
4968 will resume).
4969
4970 Reverse (backward) execution. set the step-resume
4971 breakpoint at the start of the function that we just
4972 stepped into (backwards), and continue to there. When we
6130d0b7 4973 get there, we'll need to single-step back to the caller. */
b2175913
MS
4974
4975 if (execution_direction == EXEC_REVERSE)
4976 {
acf9414f
JK
4977 /* If we're already at the start of the function, we've either
4978 just stepped backward into a single instruction function,
4979 or stepped back out of a signal handler to the first instruction
4980 of the function. Just keep going, which will single-step back
4981 to the caller. */
58c48e72 4982 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4983 {
4984 struct symtab_and_line sr_sal;
4985
4986 /* Normal function call return (static or dynamic). */
4987 init_sal (&sr_sal);
4988 sr_sal.pc = ecs->stop_func_start;
4989 sr_sal.pspace = get_frame_program_space (frame);
4990 insert_step_resume_breakpoint_at_sal (gdbarch,
4991 sr_sal, null_frame_id);
4992 }
b2175913
MS
4993 }
4994 else
568d6575 4995 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4996
8567c30f
AC
4997 keep_going (ecs);
4998 return;
4999 }
a53c66de 5000
95918acb 5001 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5002 calling routine and the real function), locate the real
5003 function. That's what tells us (a) whether we want to step
5004 into it at all, and (b) what prologue we want to run to the
5005 end of, if we do step into it. */
568d6575 5006 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5007 if (real_stop_pc == 0)
568d6575 5008 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5009 if (real_stop_pc != 0)
5010 ecs->stop_func_start = real_stop_pc;
8fb3e588 5011
db5f024e 5012 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5013 {
5014 struct symtab_and_line sr_sal;
abbb1732 5015
1b2bfbb9
RC
5016 init_sal (&sr_sal);
5017 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5018 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5019
a6d9a66e
UW
5020 insert_step_resume_breakpoint_at_sal (gdbarch,
5021 sr_sal, null_frame_id);
8fb3e588
AC
5022 keep_going (ecs);
5023 return;
1b2bfbb9
RC
5024 }
5025
95918acb 5026 /* If we have line number information for the function we are
1bfeeb0f
JL
5027 thinking of stepping into and the function isn't on the skip
5028 list, step into it.
95918acb 5029
8fb3e588
AC
5030 If there are several symtabs at that PC (e.g. with include
5031 files), just want to know whether *any* of them have line
5032 numbers. find_pc_line handles this. */
95918acb
AC
5033 {
5034 struct symtab_and_line tmp_sal;
8fb3e588 5035
95918acb 5036 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5037 if (tmp_sal.line != 0
85817405
JK
5038 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5039 &tmp_sal))
95918acb 5040 {
b2175913 5041 if (execution_direction == EXEC_REVERSE)
568d6575 5042 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5043 else
568d6575 5044 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5045 return;
5046 }
5047 }
5048
5049 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5050 set, we stop the step so that the user has a chance to switch
5051 in assembly mode. */
16c381f0 5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5053 && step_stop_if_no_debug)
95918acb 5054 {
16c381f0 5055 ecs->event_thread->control.stop_step = 1;
33d62d64 5056 print_end_stepping_range_reason ();
95918acb
AC
5057 stop_stepping (ecs);
5058 return;
5059 }
5060
b2175913
MS
5061 if (execution_direction == EXEC_REVERSE)
5062 {
acf9414f
JK
5063 /* If we're already at the start of the function, we've either just
5064 stepped backward into a single instruction function without line
5065 number info, or stepped back out of a signal handler to the first
5066 instruction of the function without line number info. Just keep
5067 going, which will single-step back to the caller. */
5068 if (ecs->stop_func_start != stop_pc)
5069 {
5070 /* Set a breakpoint at callee's start address.
5071 From there we can step once and be back in the caller. */
5072 struct symtab_and_line sr_sal;
abbb1732 5073
acf9414f
JK
5074 init_sal (&sr_sal);
5075 sr_sal.pc = ecs->stop_func_start;
5076 sr_sal.pspace = get_frame_program_space (frame);
5077 insert_step_resume_breakpoint_at_sal (gdbarch,
5078 sr_sal, null_frame_id);
5079 }
b2175913
MS
5080 }
5081 else
5082 /* Set a breakpoint at callee's return address (the address
5083 at which the caller will resume). */
568d6575 5084 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5085
95918acb 5086 keep_going (ecs);
488f131b 5087 return;
488f131b 5088 }
c906108c 5089
fdd654f3
MS
5090 /* Reverse stepping through solib trampolines. */
5091
5092 if (execution_direction == EXEC_REVERSE
16c381f0 5093 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5094 {
5095 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5096 || (ecs->stop_func_start == 0
5097 && in_solib_dynsym_resolve_code (stop_pc)))
5098 {
5099 /* Any solib trampoline code can be handled in reverse
5100 by simply continuing to single-step. We have already
5101 executed the solib function (backwards), and a few
5102 steps will take us back through the trampoline to the
5103 caller. */
5104 keep_going (ecs);
5105 return;
5106 }
5107 else if (in_solib_dynsym_resolve_code (stop_pc))
5108 {
5109 /* Stepped backward into the solib dynsym resolver.
5110 Set a breakpoint at its start and continue, then
5111 one more step will take us out. */
5112 struct symtab_and_line sr_sal;
abbb1732 5113
fdd654f3
MS
5114 init_sal (&sr_sal);
5115 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5116 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5117 insert_step_resume_breakpoint_at_sal (gdbarch,
5118 sr_sal, null_frame_id);
5119 keep_going (ecs);
5120 return;
5121 }
5122 }
5123
2afb61aa 5124 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5125
1b2bfbb9
RC
5126 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5127 the trampoline processing logic, however, there are some trampolines
5128 that have no names, so we should do trampoline handling first. */
16c381f0 5129 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5130 && ecs->stop_func_name == NULL
2afb61aa 5131 && stop_pc_sal.line == 0)
1b2bfbb9 5132 {
527159b7 5133 if (debug_infrun)
3e43a32a
MS
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: stepped into undebuggable function\n");
527159b7 5136
1b2bfbb9 5137 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5138 undebuggable function (where there is no debugging information
5139 and no line number corresponding to the address where the
1b2bfbb9
RC
5140 inferior stopped). Since we want to skip this kind of code,
5141 we keep going until the inferior returns from this
14e60db5
DJ
5142 function - unless the user has asked us not to (via
5143 set step-mode) or we no longer know how to get back
5144 to the call site. */
5145 if (step_stop_if_no_debug
c7ce8faa 5146 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5147 {
5148 /* If we have no line number and the step-stop-if-no-debug
5149 is set, we stop the step so that the user has a chance to
5150 switch in assembly mode. */
16c381f0 5151 ecs->event_thread->control.stop_step = 1;
33d62d64 5152 print_end_stepping_range_reason ();
1b2bfbb9
RC
5153 stop_stepping (ecs);
5154 return;
5155 }
5156 else
5157 {
5158 /* Set a breakpoint at callee's return address (the address
5159 at which the caller will resume). */
568d6575 5160 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5161 keep_going (ecs);
5162 return;
5163 }
5164 }
5165
16c381f0 5166 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5167 {
5168 /* It is stepi or nexti. We always want to stop stepping after
5169 one instruction. */
527159b7 5170 if (debug_infrun)
8a9de0e4 5171 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5172 ecs->event_thread->control.stop_step = 1;
33d62d64 5173 print_end_stepping_range_reason ();
1b2bfbb9
RC
5174 stop_stepping (ecs);
5175 return;
5176 }
5177
2afb61aa 5178 if (stop_pc_sal.line == 0)
488f131b
JB
5179 {
5180 /* We have no line number information. That means to stop
5181 stepping (does this always happen right after one instruction,
5182 when we do "s" in a function with no line numbers,
5183 or can this happen as a result of a return or longjmp?). */
527159b7 5184 if (debug_infrun)
8a9de0e4 5185 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5186 ecs->event_thread->control.stop_step = 1;
33d62d64 5187 print_end_stepping_range_reason ();
488f131b
JB
5188 stop_stepping (ecs);
5189 return;
5190 }
c906108c 5191
edb3359d
DJ
5192 /* Look for "calls" to inlined functions, part one. If the inline
5193 frame machinery detected some skipped call sites, we have entered
5194 a new inline function. */
5195
5196 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5197 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5198 && inline_skipped_frames (ecs->ptid))
5199 {
5200 struct symtab_and_line call_sal;
5201
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: stepped into inlined function\n");
5205
5206 find_frame_sal (get_current_frame (), &call_sal);
5207
16c381f0 5208 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5209 {
5210 /* For "step", we're going to stop. But if the call site
5211 for this inlined function is on the same source line as
5212 we were previously stepping, go down into the function
5213 first. Otherwise stop at the call site. */
5214
5215 if (call_sal.line == ecs->event_thread->current_line
5216 && call_sal.symtab == ecs->event_thread->current_symtab)
5217 step_into_inline_frame (ecs->ptid);
5218
16c381f0 5219 ecs->event_thread->control.stop_step = 1;
33d62d64 5220 print_end_stepping_range_reason ();
edb3359d
DJ
5221 stop_stepping (ecs);
5222 return;
5223 }
5224 else
5225 {
5226 /* For "next", we should stop at the call site if it is on a
5227 different source line. Otherwise continue through the
5228 inlined function. */
5229 if (call_sal.line == ecs->event_thread->current_line
5230 && call_sal.symtab == ecs->event_thread->current_symtab)
5231 keep_going (ecs);
5232 else
5233 {
16c381f0 5234 ecs->event_thread->control.stop_step = 1;
33d62d64 5235 print_end_stepping_range_reason ();
edb3359d
DJ
5236 stop_stepping (ecs);
5237 }
5238 return;
5239 }
5240 }
5241
5242 /* Look for "calls" to inlined functions, part two. If we are still
5243 in the same real function we were stepping through, but we have
5244 to go further up to find the exact frame ID, we are stepping
5245 through a more inlined call beyond its call site. */
5246
5247 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5248 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5249 ecs->event_thread->control.step_frame_id)
edb3359d 5250 && stepped_in_from (get_current_frame (),
16c381f0 5251 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5252 {
5253 if (debug_infrun)
5254 fprintf_unfiltered (gdb_stdlog,
5255 "infrun: stepping through inlined function\n");
5256
16c381f0 5257 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5258 keep_going (ecs);
5259 else
5260 {
16c381f0 5261 ecs->event_thread->control.stop_step = 1;
33d62d64 5262 print_end_stepping_range_reason ();
edb3359d
DJ
5263 stop_stepping (ecs);
5264 }
5265 return;
5266 }
5267
2afb61aa 5268 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5269 && (ecs->event_thread->current_line != stop_pc_sal.line
5270 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5271 {
5272 /* We are at the start of a different line. So stop. Note that
5273 we don't stop if we step into the middle of a different line.
5274 That is said to make things like for (;;) statements work
5275 better. */
527159b7 5276 if (debug_infrun)
3e43a32a
MS
5277 fprintf_unfiltered (gdb_stdlog,
5278 "infrun: stepped to a different line\n");
16c381f0 5279 ecs->event_thread->control.stop_step = 1;
33d62d64 5280 print_end_stepping_range_reason ();
488f131b
JB
5281 stop_stepping (ecs);
5282 return;
5283 }
c906108c 5284
488f131b 5285 /* We aren't done stepping.
c906108c 5286
488f131b
JB
5287 Optimize by setting the stepping range to the line.
5288 (We might not be in the original line, but if we entered a
5289 new line in mid-statement, we continue stepping. This makes
5290 things like for(;;) statements work better.) */
c906108c 5291
16c381f0
JK
5292 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5293 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5294 ecs->event_thread->control.may_range_step = 1;
edb3359d 5295 set_step_info (frame, stop_pc_sal);
488f131b 5296
527159b7 5297 if (debug_infrun)
8a9de0e4 5298 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5299 keep_going (ecs);
104c1213
JM
5300}
5301
b3444185 5302/* Is thread TP in the middle of single-stepping? */
104c1213 5303
a289b8f6 5304static int
b3444185 5305currently_stepping (struct thread_info *tp)
a7212384 5306{
8358c15c
JK
5307 return ((tp->control.step_range_end
5308 && tp->control.step_resume_breakpoint == NULL)
5309 || tp->control.trap_expected
8358c15c 5310 || bpstat_should_step ());
a7212384
UW
5311}
5312
b3444185
PA
5313/* Returns true if any thread *but* the one passed in "data" is in the
5314 middle of stepping or of handling a "next". */
a7212384 5315
104c1213 5316static int
b3444185 5317currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5318{
b3444185
PA
5319 if (tp == data)
5320 return 0;
5321
16c381f0 5322 return (tp->control.step_range_end
ede1849f 5323 || tp->control.trap_expected);
104c1213 5324}
c906108c 5325
b2175913
MS
5326/* Inferior has stepped into a subroutine call with source code that
5327 we should not step over. Do step to the first line of code in
5328 it. */
c2c6d25f
JM
5329
5330static void
568d6575
UW
5331handle_step_into_function (struct gdbarch *gdbarch,
5332 struct execution_control_state *ecs)
c2c6d25f
JM
5333{
5334 struct symtab *s;
2afb61aa 5335 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5336
7e324e48
GB
5337 fill_in_stop_func (gdbarch, ecs);
5338
c2c6d25f
JM
5339 s = find_pc_symtab (stop_pc);
5340 if (s && s->language != language_asm)
568d6575 5341 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5342 ecs->stop_func_start);
c2c6d25f 5343
2afb61aa 5344 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5345 /* Use the step_resume_break to step until the end of the prologue,
5346 even if that involves jumps (as it seems to on the vax under
5347 4.2). */
5348 /* If the prologue ends in the middle of a source line, continue to
5349 the end of that source line (if it is still within the function).
5350 Otherwise, just go to end of prologue. */
2afb61aa
PA
5351 if (stop_func_sal.end
5352 && stop_func_sal.pc != ecs->stop_func_start
5353 && stop_func_sal.end < ecs->stop_func_end)
5354 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5355
2dbd5e30
KB
5356 /* Architectures which require breakpoint adjustment might not be able
5357 to place a breakpoint at the computed address. If so, the test
5358 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5359 ecs->stop_func_start to an address at which a breakpoint may be
5360 legitimately placed.
8fb3e588 5361
2dbd5e30
KB
5362 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5363 made, GDB will enter an infinite loop when stepping through
5364 optimized code consisting of VLIW instructions which contain
5365 subinstructions corresponding to different source lines. On
5366 FR-V, it's not permitted to place a breakpoint on any but the
5367 first subinstruction of a VLIW instruction. When a breakpoint is
5368 set, GDB will adjust the breakpoint address to the beginning of
5369 the VLIW instruction. Thus, we need to make the corresponding
5370 adjustment here when computing the stop address. */
8fb3e588 5371
568d6575 5372 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5373 {
5374 ecs->stop_func_start
568d6575 5375 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5376 ecs->stop_func_start);
2dbd5e30
KB
5377 }
5378
c2c6d25f
JM
5379 if (ecs->stop_func_start == stop_pc)
5380 {
5381 /* We are already there: stop now. */
16c381f0 5382 ecs->event_thread->control.stop_step = 1;
33d62d64 5383 print_end_stepping_range_reason ();
c2c6d25f
JM
5384 stop_stepping (ecs);
5385 return;
5386 }
5387 else
5388 {
5389 /* Put the step-breakpoint there and go until there. */
fe39c653 5390 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5391 sr_sal.pc = ecs->stop_func_start;
5392 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5393 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5394
c2c6d25f 5395 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5396 some machines the prologue is where the new fp value is
5397 established. */
a6d9a66e 5398 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5399
5400 /* And make sure stepping stops right away then. */
16c381f0
JK
5401 ecs->event_thread->control.step_range_end
5402 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5403 }
5404 keep_going (ecs);
5405}
d4f3574e 5406
b2175913
MS
5407/* Inferior has stepped backward into a subroutine call with source
5408 code that we should not step over. Do step to the beginning of the
5409 last line of code in it. */
5410
5411static void
568d6575
UW
5412handle_step_into_function_backward (struct gdbarch *gdbarch,
5413 struct execution_control_state *ecs)
b2175913
MS
5414{
5415 struct symtab *s;
167e4384 5416 struct symtab_and_line stop_func_sal;
b2175913 5417
7e324e48
GB
5418 fill_in_stop_func (gdbarch, ecs);
5419
b2175913
MS
5420 s = find_pc_symtab (stop_pc);
5421 if (s && s->language != language_asm)
568d6575 5422 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5423 ecs->stop_func_start);
5424
5425 stop_func_sal = find_pc_line (stop_pc, 0);
5426
5427 /* OK, we're just going to keep stepping here. */
5428 if (stop_func_sal.pc == stop_pc)
5429 {
5430 /* We're there already. Just stop stepping now. */
16c381f0 5431 ecs->event_thread->control.stop_step = 1;
33d62d64 5432 print_end_stepping_range_reason ();
b2175913
MS
5433 stop_stepping (ecs);
5434 }
5435 else
5436 {
5437 /* Else just reset the step range and keep going.
5438 No step-resume breakpoint, they don't work for
5439 epilogues, which can have multiple entry paths. */
16c381f0
JK
5440 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5441 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5442 keep_going (ecs);
5443 }
5444 return;
5445}
5446
d3169d93 5447/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5448 This is used to both functions and to skip over code. */
5449
5450static void
2c03e5be
PA
5451insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5452 struct symtab_and_line sr_sal,
5453 struct frame_id sr_id,
5454 enum bptype sr_type)
44cbf7b5 5455{
611c83ae
PA
5456 /* There should never be more than one step-resume or longjmp-resume
5457 breakpoint per thread, so we should never be setting a new
44cbf7b5 5458 step_resume_breakpoint when one is already active. */
8358c15c 5459 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5460 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5461
5462 if (debug_infrun)
5463 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5464 "infrun: inserting step-resume breakpoint at %s\n",
5465 paddress (gdbarch, sr_sal.pc));
d3169d93 5466
8358c15c 5467 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5468 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5469}
5470
9da8c2a0 5471void
2c03e5be
PA
5472insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5473 struct symtab_and_line sr_sal,
5474 struct frame_id sr_id)
5475{
5476 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5477 sr_sal, sr_id,
5478 bp_step_resume);
44cbf7b5 5479}
7ce450bd 5480
2c03e5be
PA
5481/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5482 This is used to skip a potential signal handler.
7ce450bd 5483
14e60db5
DJ
5484 This is called with the interrupted function's frame. The signal
5485 handler, when it returns, will resume the interrupted function at
5486 RETURN_FRAME.pc. */
d303a6c7
AC
5487
5488static void
2c03e5be 5489insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5490{
5491 struct symtab_and_line sr_sal;
a6d9a66e 5492 struct gdbarch *gdbarch;
d303a6c7 5493
f4c1edd8 5494 gdb_assert (return_frame != NULL);
d303a6c7
AC
5495 init_sal (&sr_sal); /* initialize to zeros */
5496
a6d9a66e 5497 gdbarch = get_frame_arch (return_frame);
568d6575 5498 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5499 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5500 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5501
2c03e5be
PA
5502 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5503 get_stack_frame_id (return_frame),
5504 bp_hp_step_resume);
d303a6c7
AC
5505}
5506
2c03e5be
PA
5507/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5508 is used to skip a function after stepping into it (for "next" or if
5509 the called function has no debugging information).
14e60db5
DJ
5510
5511 The current function has almost always been reached by single
5512 stepping a call or return instruction. NEXT_FRAME belongs to the
5513 current function, and the breakpoint will be set at the caller's
5514 resume address.
5515
5516 This is a separate function rather than reusing
2c03e5be 5517 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5518 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5519 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5520
5521static void
5522insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5523{
5524 struct symtab_and_line sr_sal;
a6d9a66e 5525 struct gdbarch *gdbarch;
14e60db5
DJ
5526
5527 /* We shouldn't have gotten here if we don't know where the call site
5528 is. */
c7ce8faa 5529 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5530
5531 init_sal (&sr_sal); /* initialize to zeros */
5532
a6d9a66e 5533 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5534 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5535 frame_unwind_caller_pc (next_frame));
14e60db5 5536 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5537 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5538
a6d9a66e 5539 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5540 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5541}
5542
611c83ae
PA
5543/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5544 new breakpoint at the target of a jmp_buf. The handling of
5545 longjmp-resume uses the same mechanisms used for handling
5546 "step-resume" breakpoints. */
5547
5548static void
a6d9a66e 5549insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5550{
e81a37f7
TT
5551 /* There should never be more than one longjmp-resume breakpoint per
5552 thread, so we should never be setting a new
611c83ae 5553 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5554 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5555
5556 if (debug_infrun)
5557 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5558 "infrun: inserting longjmp-resume breakpoint at %s\n",
5559 paddress (gdbarch, pc));
611c83ae 5560
e81a37f7 5561 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5562 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5563}
5564
186c406b
TT
5565/* Insert an exception resume breakpoint. TP is the thread throwing
5566 the exception. The block B is the block of the unwinder debug hook
5567 function. FRAME is the frame corresponding to the call to this
5568 function. SYM is the symbol of the function argument holding the
5569 target PC of the exception. */
5570
5571static void
5572insert_exception_resume_breakpoint (struct thread_info *tp,
5573 struct block *b,
5574 struct frame_info *frame,
5575 struct symbol *sym)
5576{
bfd189b1 5577 volatile struct gdb_exception e;
186c406b
TT
5578
5579 /* We want to ignore errors here. */
5580 TRY_CATCH (e, RETURN_MASK_ERROR)
5581 {
5582 struct symbol *vsym;
5583 struct value *value;
5584 CORE_ADDR handler;
5585 struct breakpoint *bp;
5586
5587 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5588 value = read_var_value (vsym, frame);
5589 /* If the value was optimized out, revert to the old behavior. */
5590 if (! value_optimized_out (value))
5591 {
5592 handler = value_as_address (value);
5593
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: exception resume at %lx\n",
5597 (unsigned long) handler);
5598
5599 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5600 handler, bp_exception_resume);
c70a6932
JK
5601
5602 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5603 frame = NULL;
5604
186c406b
TT
5605 bp->thread = tp->num;
5606 inferior_thread ()->control.exception_resume_breakpoint = bp;
5607 }
5608 }
5609}
5610
28106bc2
SDJ
5611/* A helper for check_exception_resume that sets an
5612 exception-breakpoint based on a SystemTap probe. */
5613
5614static void
5615insert_exception_resume_from_probe (struct thread_info *tp,
5616 const struct probe *probe,
28106bc2
SDJ
5617 struct frame_info *frame)
5618{
5619 struct value *arg_value;
5620 CORE_ADDR handler;
5621 struct breakpoint *bp;
5622
5623 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5624 if (!arg_value)
5625 return;
5626
5627 handler = value_as_address (arg_value);
5628
5629 if (debug_infrun)
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: exception resume at %s\n",
6bac7473 5632 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5633 handler));
5634
5635 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5636 handler, bp_exception_resume);
5637 bp->thread = tp->num;
5638 inferior_thread ()->control.exception_resume_breakpoint = bp;
5639}
5640
186c406b
TT
5641/* This is called when an exception has been intercepted. Check to
5642 see whether the exception's destination is of interest, and if so,
5643 set an exception resume breakpoint there. */
5644
5645static void
5646check_exception_resume (struct execution_control_state *ecs,
28106bc2 5647 struct frame_info *frame)
186c406b 5648{
bfd189b1 5649 volatile struct gdb_exception e;
28106bc2
SDJ
5650 const struct probe *probe;
5651 struct symbol *func;
5652
5653 /* First see if this exception unwinding breakpoint was set via a
5654 SystemTap probe point. If so, the probe has two arguments: the
5655 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5656 set a breakpoint there. */
6bac7473 5657 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5658 if (probe)
5659 {
6bac7473 5660 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5661 return;
5662 }
5663
5664 func = get_frame_function (frame);
5665 if (!func)
5666 return;
186c406b
TT
5667
5668 TRY_CATCH (e, RETURN_MASK_ERROR)
5669 {
5670 struct block *b;
8157b174 5671 struct block_iterator iter;
186c406b
TT
5672 struct symbol *sym;
5673 int argno = 0;
5674
5675 /* The exception breakpoint is a thread-specific breakpoint on
5676 the unwinder's debug hook, declared as:
5677
5678 void _Unwind_DebugHook (void *cfa, void *handler);
5679
5680 The CFA argument indicates the frame to which control is
5681 about to be transferred. HANDLER is the destination PC.
5682
5683 We ignore the CFA and set a temporary breakpoint at HANDLER.
5684 This is not extremely efficient but it avoids issues in gdb
5685 with computing the DWARF CFA, and it also works even in weird
5686 cases such as throwing an exception from inside a signal
5687 handler. */
5688
5689 b = SYMBOL_BLOCK_VALUE (func);
5690 ALL_BLOCK_SYMBOLS (b, iter, sym)
5691 {
5692 if (!SYMBOL_IS_ARGUMENT (sym))
5693 continue;
5694
5695 if (argno == 0)
5696 ++argno;
5697 else
5698 {
5699 insert_exception_resume_breakpoint (ecs->event_thread,
5700 b, frame, sym);
5701 break;
5702 }
5703 }
5704 }
5705}
5706
104c1213
JM
5707static void
5708stop_stepping (struct execution_control_state *ecs)
5709{
527159b7 5710 if (debug_infrun)
8a9de0e4 5711 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5712
cd0fc7c3
SS
5713 /* Let callers know we don't want to wait for the inferior anymore. */
5714 ecs->wait_some_more = 0;
5715}
5716
a9ba6bae
PA
5717/* Called when we should continue running the inferior, because the
5718 current event doesn't cause a user visible stop. This does the
5719 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5720
5721static void
5722keep_going (struct execution_control_state *ecs)
5723{
c4dbc9af
PA
5724 /* Make sure normal_stop is called if we get a QUIT handled before
5725 reaching resume. */
5726 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5727
d4f3574e 5728 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5729 ecs->event_thread->prev_pc
5730 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5731
16c381f0 5732 if (ecs->event_thread->control.trap_expected
a493e3e2 5733 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5734 {
a9ba6bae
PA
5735 /* We haven't yet gotten our trap, and either: intercepted a
5736 non-signal event (e.g., a fork); or took a signal which we
5737 are supposed to pass through to the inferior. Simply
5738 continue. */
c4dbc9af 5739 discard_cleanups (old_cleanups);
2020b7ab 5740 resume (currently_stepping (ecs->event_thread),
16c381f0 5741 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5742 }
5743 else
5744 {
5745 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5746 anyway (if we got a signal, the user asked it be passed to
5747 the child)
5748 -- or --
5749 We got our expected trap, but decided we should resume from
5750 it.
d4f3574e 5751
a9ba6bae 5752 We're going to run this baby now!
d4f3574e 5753
c36b740a
VP
5754 Note that insert_breakpoints won't try to re-insert
5755 already inserted breakpoints. Therefore, we don't
5756 care if breakpoints were already inserted, or not. */
a9ba6bae 5757
4e1c45ea 5758 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5759 {
9f5a595d 5760 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5761
9f5a595d 5762 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5763 {
5764 /* Since we can't do a displaced step, we have to remove
5765 the breakpoint while we step it. To keep things
5766 simple, we remove them all. */
5767 remove_breakpoints ();
5768 }
45e8c884
VP
5769 }
5770 else
d4f3574e 5771 {
bfd189b1 5772 volatile struct gdb_exception e;
abbb1732 5773
a9ba6bae 5774 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5775 TRY_CATCH (e, RETURN_MASK_ERROR)
5776 {
5777 insert_breakpoints ();
5778 }
5779 if (e.reason < 0)
d4f3574e 5780 {
97bd5475 5781 exception_print (gdb_stderr, e);
d4f3574e
SS
5782 stop_stepping (ecs);
5783 return;
5784 }
d4f3574e
SS
5785 }
5786
16c381f0
JK
5787 ecs->event_thread->control.trap_expected
5788 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5789
a9ba6bae
PA
5790 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5791 explicitly specifies that such a signal should be delivered
5792 to the target program). Typically, that would occur when a
5793 user is debugging a target monitor on a simulator: the target
5794 monitor sets a breakpoint; the simulator encounters this
5795 breakpoint and halts the simulation handing control to GDB;
5796 GDB, noting that the stop address doesn't map to any known
5797 breakpoint, returns control back to the simulator; the
5798 simulator then delivers the hardware equivalent of a
5799 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5800 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5801 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5802 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5803
c4dbc9af 5804 discard_cleanups (old_cleanups);
2020b7ab 5805 resume (currently_stepping (ecs->event_thread),
16c381f0 5806 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5807 }
5808
488f131b 5809 prepare_to_wait (ecs);
d4f3574e
SS
5810}
5811
104c1213
JM
5812/* This function normally comes after a resume, before
5813 handle_inferior_event exits. It takes care of any last bits of
5814 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5815
104c1213
JM
5816static void
5817prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5818{
527159b7 5819 if (debug_infrun)
8a9de0e4 5820 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5821
104c1213
JM
5822 /* This is the old end of the while loop. Let everybody know we
5823 want to wait for the inferior some more and get called again
5824 soon. */
5825 ecs->wait_some_more = 1;
c906108c 5826}
11cf8741 5827
33d62d64
JK
5828/* Several print_*_reason functions to print why the inferior has stopped.
5829 We always print something when the inferior exits, or receives a signal.
5830 The rest of the cases are dealt with later on in normal_stop and
5831 print_it_typical. Ideally there should be a call to one of these
5832 print_*_reason functions functions from handle_inferior_event each time
5833 stop_stepping is called. */
5834
5835/* Print why the inferior has stopped.
5836 We are done with a step/next/si/ni command, print why the inferior has
5837 stopped. For now print nothing. Print a message only if not in the middle
5838 of doing a "step n" operation for n > 1. */
5839
5840static void
5841print_end_stepping_range_reason (void)
5842{
16c381f0
JK
5843 if ((!inferior_thread ()->step_multi
5844 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5845 && ui_out_is_mi_like_p (current_uiout))
5846 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5847 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5848}
5849
5850/* The inferior was terminated by a signal, print why it stopped. */
5851
11cf8741 5852static void
2ea28649 5853print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5854{
79a45e25
PA
5855 struct ui_out *uiout = current_uiout;
5856
33d62d64
JK
5857 annotate_signalled ();
5858 if (ui_out_is_mi_like_p (uiout))
5859 ui_out_field_string
5860 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5861 ui_out_text (uiout, "\nProgram terminated with signal ");
5862 annotate_signal_name ();
5863 ui_out_field_string (uiout, "signal-name",
2ea28649 5864 gdb_signal_to_name (siggnal));
33d62d64
JK
5865 annotate_signal_name_end ();
5866 ui_out_text (uiout, ", ");
5867 annotate_signal_string ();
5868 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5869 gdb_signal_to_string (siggnal));
33d62d64
JK
5870 annotate_signal_string_end ();
5871 ui_out_text (uiout, ".\n");
5872 ui_out_text (uiout, "The program no longer exists.\n");
5873}
5874
5875/* The inferior program is finished, print why it stopped. */
5876
5877static void
5878print_exited_reason (int exitstatus)
5879{
fda326dd
TT
5880 struct inferior *inf = current_inferior ();
5881 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5882 struct ui_out *uiout = current_uiout;
fda326dd 5883
33d62d64
JK
5884 annotate_exited (exitstatus);
5885 if (exitstatus)
5886 {
5887 if (ui_out_is_mi_like_p (uiout))
5888 ui_out_field_string (uiout, "reason",
5889 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5890 ui_out_text (uiout, "[Inferior ");
5891 ui_out_text (uiout, plongest (inf->num));
5892 ui_out_text (uiout, " (");
5893 ui_out_text (uiout, pidstr);
5894 ui_out_text (uiout, ") exited with code ");
33d62d64 5895 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5896 ui_out_text (uiout, "]\n");
33d62d64
JK
5897 }
5898 else
11cf8741 5899 {
9dc5e2a9 5900 if (ui_out_is_mi_like_p (uiout))
034dad6f 5901 ui_out_field_string
33d62d64 5902 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5903 ui_out_text (uiout, "[Inferior ");
5904 ui_out_text (uiout, plongest (inf->num));
5905 ui_out_text (uiout, " (");
5906 ui_out_text (uiout, pidstr);
5907 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5908 }
5909 /* Support the --return-child-result option. */
5910 return_child_result_value = exitstatus;
5911}
5912
5913/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5914 tells us to print about it. */
33d62d64
JK
5915
5916static void
2ea28649 5917print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5918{
79a45e25
PA
5919 struct ui_out *uiout = current_uiout;
5920
33d62d64
JK
5921 annotate_signal ();
5922
a493e3e2 5923 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5924 {
5925 struct thread_info *t = inferior_thread ();
5926
5927 ui_out_text (uiout, "\n[");
5928 ui_out_field_string (uiout, "thread-name",
5929 target_pid_to_str (t->ptid));
5930 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5931 ui_out_text (uiout, " stopped");
5932 }
5933 else
5934 {
5935 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5936 annotate_signal_name ();
33d62d64
JK
5937 if (ui_out_is_mi_like_p (uiout))
5938 ui_out_field_string
5939 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5940 ui_out_field_string (uiout, "signal-name",
2ea28649 5941 gdb_signal_to_name (siggnal));
8b93c638
JM
5942 annotate_signal_name_end ();
5943 ui_out_text (uiout, ", ");
5944 annotate_signal_string ();
488f131b 5945 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5946 gdb_signal_to_string (siggnal));
8b93c638 5947 annotate_signal_string_end ();
33d62d64
JK
5948 }
5949 ui_out_text (uiout, ".\n");
5950}
252fbfc8 5951
33d62d64
JK
5952/* Reverse execution: target ran out of history info, print why the inferior
5953 has stopped. */
252fbfc8 5954
33d62d64
JK
5955static void
5956print_no_history_reason (void)
5957{
79a45e25 5958 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5959}
43ff13b4 5960
c906108c
SS
5961/* Here to return control to GDB when the inferior stops for real.
5962 Print appropriate messages, remove breakpoints, give terminal our modes.
5963
5964 STOP_PRINT_FRAME nonzero means print the executing frame
5965 (pc, function, args, file, line number and line text).
5966 BREAKPOINTS_FAILED nonzero means stop was due to error
5967 attempting to insert breakpoints. */
5968
5969void
96baa820 5970normal_stop (void)
c906108c 5971{
73b65bb0
DJ
5972 struct target_waitstatus last;
5973 ptid_t last_ptid;
29f49a6a 5974 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5975
5976 get_last_target_status (&last_ptid, &last);
5977
29f49a6a
PA
5978 /* If an exception is thrown from this point on, make sure to
5979 propagate GDB's knowledge of the executing state to the
5980 frontend/user running state. A QUIT is an easy exception to see
5981 here, so do this before any filtered output. */
c35b1492
PA
5982 if (!non_stop)
5983 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5984 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5985 && last.kind != TARGET_WAITKIND_EXITED
5986 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5987 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5988
4f8d22e3
PA
5989 /* In non-stop mode, we don't want GDB to switch threads behind the
5990 user's back, to avoid races where the user is typing a command to
5991 apply to thread x, but GDB switches to thread y before the user
5992 finishes entering the command. */
5993
c906108c
SS
5994 /* As with the notification of thread events, we want to delay
5995 notifying the user that we've switched thread context until
5996 the inferior actually stops.
5997
73b65bb0
DJ
5998 There's no point in saying anything if the inferior has exited.
5999 Note that SIGNALLED here means "exited with a signal", not
6000 "received a signal". */
4f8d22e3
PA
6001 if (!non_stop
6002 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6003 && target_has_execution
6004 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6005 && last.kind != TARGET_WAITKIND_EXITED
6006 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6007 {
6008 target_terminal_ours_for_output ();
a3f17187 6009 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6010 target_pid_to_str (inferior_ptid));
b8fa951a 6011 annotate_thread_changed ();
39f77062 6012 previous_inferior_ptid = inferior_ptid;
c906108c 6013 }
c906108c 6014
0e5bf2a8
PA
6015 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6016 {
6017 gdb_assert (sync_execution || !target_can_async_p ());
6018
6019 target_terminal_ours_for_output ();
6020 printf_filtered (_("No unwaited-for children left.\n"));
6021 }
6022
74960c60 6023 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6024 {
6025 if (remove_breakpoints ())
6026 {
6027 target_terminal_ours_for_output ();
3e43a32a
MS
6028 printf_filtered (_("Cannot remove breakpoints because "
6029 "program is no longer writable.\nFurther "
6030 "execution is probably impossible.\n"));
c906108c
SS
6031 }
6032 }
c906108c 6033
c906108c
SS
6034 /* If an auto-display called a function and that got a signal,
6035 delete that auto-display to avoid an infinite recursion. */
6036
6037 if (stopped_by_random_signal)
6038 disable_current_display ();
6039
6040 /* Don't print a message if in the middle of doing a "step n"
6041 operation for n > 1 */
af679fd0
PA
6042 if (target_has_execution
6043 && last.kind != TARGET_WAITKIND_SIGNALLED
6044 && last.kind != TARGET_WAITKIND_EXITED
6045 && inferior_thread ()->step_multi
16c381f0 6046 && inferior_thread ()->control.stop_step)
c906108c
SS
6047 goto done;
6048
6049 target_terminal_ours ();
0f641c01 6050 async_enable_stdin ();
c906108c 6051
7abfe014
DJ
6052 /* Set the current source location. This will also happen if we
6053 display the frame below, but the current SAL will be incorrect
6054 during a user hook-stop function. */
d729566a 6055 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6056 set_current_sal_from_frame (get_current_frame (), 1);
6057
dd7e2d2b
PA
6058 /* Let the user/frontend see the threads as stopped. */
6059 do_cleanups (old_chain);
6060
6061 /* Look up the hook_stop and run it (CLI internally handles problem
6062 of stop_command's pre-hook not existing). */
6063 if (stop_command)
6064 catch_errors (hook_stop_stub, stop_command,
6065 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6066
d729566a 6067 if (!has_stack_frames ())
d51fd4c8 6068 goto done;
c906108c 6069
32400beb
PA
6070 if (last.kind == TARGET_WAITKIND_SIGNALLED
6071 || last.kind == TARGET_WAITKIND_EXITED)
6072 goto done;
6073
c906108c
SS
6074 /* Select innermost stack frame - i.e., current frame is frame 0,
6075 and current location is based on that.
6076 Don't do this on return from a stack dummy routine,
1777feb0 6077 or if the program has exited. */
c906108c
SS
6078
6079 if (!stop_stack_dummy)
6080 {
0f7d239c 6081 select_frame (get_current_frame ());
c906108c
SS
6082
6083 /* Print current location without a level number, if
c5aa993b
JM
6084 we have changed functions or hit a breakpoint.
6085 Print source line if we have one.
6086 bpstat_print() contains the logic deciding in detail
1777feb0 6087 what to print, based on the event(s) that just occurred. */
c906108c 6088
d01a8610
AS
6089 /* If --batch-silent is enabled then there's no need to print the current
6090 source location, and to try risks causing an error message about
6091 missing source files. */
6092 if (stop_print_frame && !batch_silent)
c906108c
SS
6093 {
6094 int bpstat_ret;
6095 int source_flag;
917317f4 6096 int do_frame_printing = 1;
347bddb7 6097 struct thread_info *tp = inferior_thread ();
c906108c 6098
36dfb11c 6099 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6100 switch (bpstat_ret)
6101 {
6102 case PRINT_UNKNOWN:
aa0cd9c1 6103 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6104 (or should) carry around the function and does (or
6105 should) use that when doing a frame comparison. */
16c381f0
JK
6106 if (tp->control.stop_step
6107 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6108 get_frame_id (get_current_frame ()))
917317f4 6109 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6110 source_flag = SRC_LINE; /* Finished step, just
6111 print source line. */
917317f4 6112 else
1777feb0
MS
6113 source_flag = SRC_AND_LOC; /* Print location and
6114 source line. */
917317f4
JM
6115 break;
6116 case PRINT_SRC_AND_LOC:
1777feb0
MS
6117 source_flag = SRC_AND_LOC; /* Print location and
6118 source line. */
917317f4
JM
6119 break;
6120 case PRINT_SRC_ONLY:
c5394b80 6121 source_flag = SRC_LINE;
917317f4
JM
6122 break;
6123 case PRINT_NOTHING:
488f131b 6124 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6125 do_frame_printing = 0;
6126 break;
6127 default:
e2e0b3e5 6128 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6129 }
c906108c
SS
6130
6131 /* The behavior of this routine with respect to the source
6132 flag is:
c5394b80
JM
6133 SRC_LINE: Print only source line
6134 LOCATION: Print only location
1777feb0 6135 SRC_AND_LOC: Print location and source line. */
917317f4 6136 if (do_frame_printing)
08d72866 6137 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6138
6139 /* Display the auto-display expressions. */
6140 do_displays ();
6141 }
6142 }
6143
6144 /* Save the function value return registers, if we care.
6145 We might be about to restore their previous contents. */
9da8c2a0
PA
6146 if (inferior_thread ()->control.proceed_to_finish
6147 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6148 {
6149 /* This should not be necessary. */
6150 if (stop_registers)
6151 regcache_xfree (stop_registers);
6152
6153 /* NB: The copy goes through to the target picking up the value of
6154 all the registers. */
6155 stop_registers = regcache_dup (get_current_regcache ());
6156 }
c906108c 6157
aa7d318d 6158 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6159 {
b89667eb
DE
6160 /* Pop the empty frame that contains the stack dummy.
6161 This also restores inferior state prior to the call
16c381f0 6162 (struct infcall_suspend_state). */
b89667eb 6163 struct frame_info *frame = get_current_frame ();
abbb1732 6164
b89667eb
DE
6165 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6166 frame_pop (frame);
3e43a32a
MS
6167 /* frame_pop() calls reinit_frame_cache as the last thing it
6168 does which means there's currently no selected frame. We
6169 don't need to re-establish a selected frame if the dummy call
6170 returns normally, that will be done by
6171 restore_infcall_control_state. However, we do have to handle
6172 the case where the dummy call is returning after being
6173 stopped (e.g. the dummy call previously hit a breakpoint).
6174 We can't know which case we have so just always re-establish
6175 a selected frame here. */
0f7d239c 6176 select_frame (get_current_frame ());
c906108c
SS
6177 }
6178
c906108c
SS
6179done:
6180 annotate_stopped ();
41d2bdb4
PA
6181
6182 /* Suppress the stop observer if we're in the middle of:
6183
6184 - a step n (n > 1), as there still more steps to be done.
6185
6186 - a "finish" command, as the observer will be called in
6187 finish_command_continuation, so it can include the inferior
6188 function's return value.
6189
6190 - calling an inferior function, as we pretend we inferior didn't
6191 run at all. The return value of the call is handled by the
6192 expression evaluator, through call_function_by_hand. */
6193
6194 if (!target_has_execution
6195 || last.kind == TARGET_WAITKIND_SIGNALLED
6196 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6197 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6198 || (!(inferior_thread ()->step_multi
6199 && inferior_thread ()->control.stop_step)
16c381f0
JK
6200 && !(inferior_thread ()->control.stop_bpstat
6201 && inferior_thread ()->control.proceed_to_finish)
6202 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6203 {
6204 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6205 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6206 stop_print_frame);
347bddb7 6207 else
1d33d6ba 6208 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6209 }
347bddb7 6210
48844aa6
PA
6211 if (target_has_execution)
6212 {
6213 if (last.kind != TARGET_WAITKIND_SIGNALLED
6214 && last.kind != TARGET_WAITKIND_EXITED)
6215 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6216 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6217 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6218 }
6c95b8df
PA
6219
6220 /* Try to get rid of automatically added inferiors that are no
6221 longer needed. Keeping those around slows down things linearly.
6222 Note that this never removes the current inferior. */
6223 prune_inferiors ();
c906108c
SS
6224}
6225
6226static int
96baa820 6227hook_stop_stub (void *cmd)
c906108c 6228{
5913bcb0 6229 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6230 return (0);
6231}
6232\f
c5aa993b 6233int
96baa820 6234signal_stop_state (int signo)
c906108c 6235{
d6b48e9c 6236 return signal_stop[signo];
c906108c
SS
6237}
6238
c5aa993b 6239int
96baa820 6240signal_print_state (int signo)
c906108c
SS
6241{
6242 return signal_print[signo];
6243}
6244
c5aa993b 6245int
96baa820 6246signal_pass_state (int signo)
c906108c
SS
6247{
6248 return signal_program[signo];
6249}
6250
2455069d
UW
6251static void
6252signal_cache_update (int signo)
6253{
6254 if (signo == -1)
6255 {
a493e3e2 6256 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6257 signal_cache_update (signo);
6258
6259 return;
6260 }
6261
6262 signal_pass[signo] = (signal_stop[signo] == 0
6263 && signal_print[signo] == 0
ab04a2af
TT
6264 && signal_program[signo] == 1
6265 && signal_catch[signo] == 0);
2455069d
UW
6266}
6267
488f131b 6268int
7bda5e4a 6269signal_stop_update (int signo, int state)
d4f3574e
SS
6270{
6271 int ret = signal_stop[signo];
abbb1732 6272
d4f3574e 6273 signal_stop[signo] = state;
2455069d 6274 signal_cache_update (signo);
d4f3574e
SS
6275 return ret;
6276}
6277
488f131b 6278int
7bda5e4a 6279signal_print_update (int signo, int state)
d4f3574e
SS
6280{
6281 int ret = signal_print[signo];
abbb1732 6282
d4f3574e 6283 signal_print[signo] = state;
2455069d 6284 signal_cache_update (signo);
d4f3574e
SS
6285 return ret;
6286}
6287
488f131b 6288int
7bda5e4a 6289signal_pass_update (int signo, int state)
d4f3574e
SS
6290{
6291 int ret = signal_program[signo];
abbb1732 6292
d4f3574e 6293 signal_program[signo] = state;
2455069d 6294 signal_cache_update (signo);
d4f3574e
SS
6295 return ret;
6296}
6297
ab04a2af
TT
6298/* Update the global 'signal_catch' from INFO and notify the
6299 target. */
6300
6301void
6302signal_catch_update (const unsigned int *info)
6303{
6304 int i;
6305
6306 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6307 signal_catch[i] = info[i] > 0;
6308 signal_cache_update (-1);
6309 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6310}
6311
c906108c 6312static void
96baa820 6313sig_print_header (void)
c906108c 6314{
3e43a32a
MS
6315 printf_filtered (_("Signal Stop\tPrint\tPass "
6316 "to program\tDescription\n"));
c906108c
SS
6317}
6318
6319static void
2ea28649 6320sig_print_info (enum gdb_signal oursig)
c906108c 6321{
2ea28649 6322 const char *name = gdb_signal_to_name (oursig);
c906108c 6323 int name_padding = 13 - strlen (name);
96baa820 6324
c906108c
SS
6325 if (name_padding <= 0)
6326 name_padding = 0;
6327
6328 printf_filtered ("%s", name);
488f131b 6329 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6330 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6331 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6332 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6333 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6334}
6335
6336/* Specify how various signals in the inferior should be handled. */
6337
6338static void
96baa820 6339handle_command (char *args, int from_tty)
c906108c
SS
6340{
6341 char **argv;
6342 int digits, wordlen;
6343 int sigfirst, signum, siglast;
2ea28649 6344 enum gdb_signal oursig;
c906108c
SS
6345 int allsigs;
6346 int nsigs;
6347 unsigned char *sigs;
6348 struct cleanup *old_chain;
6349
6350 if (args == NULL)
6351 {
e2e0b3e5 6352 error_no_arg (_("signal to handle"));
c906108c
SS
6353 }
6354
1777feb0 6355 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6356
a493e3e2 6357 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6358 sigs = (unsigned char *) alloca (nsigs);
6359 memset (sigs, 0, nsigs);
6360
1777feb0 6361 /* Break the command line up into args. */
c906108c 6362
d1a41061 6363 argv = gdb_buildargv (args);
7a292a7a 6364 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6365
6366 /* Walk through the args, looking for signal oursigs, signal names, and
6367 actions. Signal numbers and signal names may be interspersed with
6368 actions, with the actions being performed for all signals cumulatively
1777feb0 6369 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6370
6371 while (*argv != NULL)
6372 {
6373 wordlen = strlen (*argv);
6374 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6375 {;
6376 }
6377 allsigs = 0;
6378 sigfirst = siglast = -1;
6379
6380 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6381 {
6382 /* Apply action to all signals except those used by the
1777feb0 6383 debugger. Silently skip those. */
c906108c
SS
6384 allsigs = 1;
6385 sigfirst = 0;
6386 siglast = nsigs - 1;
6387 }
6388 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6389 {
6390 SET_SIGS (nsigs, sigs, signal_stop);
6391 SET_SIGS (nsigs, sigs, signal_print);
6392 }
6393 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6394 {
6395 UNSET_SIGS (nsigs, sigs, signal_program);
6396 }
6397 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6398 {
6399 SET_SIGS (nsigs, sigs, signal_print);
6400 }
6401 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6402 {
6403 SET_SIGS (nsigs, sigs, signal_program);
6404 }
6405 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6406 {
6407 UNSET_SIGS (nsigs, sigs, signal_stop);
6408 }
6409 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6410 {
6411 SET_SIGS (nsigs, sigs, signal_program);
6412 }
6413 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6414 {
6415 UNSET_SIGS (nsigs, sigs, signal_print);
6416 UNSET_SIGS (nsigs, sigs, signal_stop);
6417 }
6418 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6419 {
6420 UNSET_SIGS (nsigs, sigs, signal_program);
6421 }
6422 else if (digits > 0)
6423 {
6424 /* It is numeric. The numeric signal refers to our own
6425 internal signal numbering from target.h, not to host/target
6426 signal number. This is a feature; users really should be
6427 using symbolic names anyway, and the common ones like
6428 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6429
6430 sigfirst = siglast = (int)
2ea28649 6431 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6432 if ((*argv)[digits] == '-')
6433 {
6434 siglast = (int)
2ea28649 6435 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6436 }
6437 if (sigfirst > siglast)
6438 {
1777feb0 6439 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6440 signum = sigfirst;
6441 sigfirst = siglast;
6442 siglast = signum;
6443 }
6444 }
6445 else
6446 {
2ea28649 6447 oursig = gdb_signal_from_name (*argv);
a493e3e2 6448 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6449 {
6450 sigfirst = siglast = (int) oursig;
6451 }
6452 else
6453 {
6454 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6455 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6456 }
6457 }
6458
6459 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6460 which signals to apply actions to. */
c906108c
SS
6461
6462 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6463 {
2ea28649 6464 switch ((enum gdb_signal) signum)
c906108c 6465 {
a493e3e2
PA
6466 case GDB_SIGNAL_TRAP:
6467 case GDB_SIGNAL_INT:
c906108c
SS
6468 if (!allsigs && !sigs[signum])
6469 {
9e2f0ad4 6470 if (query (_("%s is used by the debugger.\n\
3e43a32a 6471Are you sure you want to change it? "),
2ea28649 6472 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6473 {
6474 sigs[signum] = 1;
6475 }
6476 else
6477 {
a3f17187 6478 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6479 gdb_flush (gdb_stdout);
6480 }
6481 }
6482 break;
a493e3e2
PA
6483 case GDB_SIGNAL_0:
6484 case GDB_SIGNAL_DEFAULT:
6485 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6486 /* Make sure that "all" doesn't print these. */
6487 break;
6488 default:
6489 sigs[signum] = 1;
6490 break;
6491 }
6492 }
6493
6494 argv++;
6495 }
6496
3a031f65
PA
6497 for (signum = 0; signum < nsigs; signum++)
6498 if (sigs[signum])
6499 {
2455069d 6500 signal_cache_update (-1);
a493e3e2
PA
6501 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6502 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6503
3a031f65
PA
6504 if (from_tty)
6505 {
6506 /* Show the results. */
6507 sig_print_header ();
6508 for (; signum < nsigs; signum++)
6509 if (sigs[signum])
6510 sig_print_info (signum);
6511 }
6512
6513 break;
6514 }
c906108c
SS
6515
6516 do_cleanups (old_chain);
6517}
6518
de0bea00
MF
6519/* Complete the "handle" command. */
6520
6521static VEC (char_ptr) *
6522handle_completer (struct cmd_list_element *ignore,
6f937416 6523 const char *text, const char *word)
de0bea00
MF
6524{
6525 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6526 static const char * const keywords[] =
6527 {
6528 "all",
6529 "stop",
6530 "ignore",
6531 "print",
6532 "pass",
6533 "nostop",
6534 "noignore",
6535 "noprint",
6536 "nopass",
6537 NULL,
6538 };
6539
6540 vec_signals = signal_completer (ignore, text, word);
6541 vec_keywords = complete_on_enum (keywords, word, word);
6542
6543 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6544 VEC_free (char_ptr, vec_signals);
6545 VEC_free (char_ptr, vec_keywords);
6546 return return_val;
6547}
6548
c906108c 6549static void
96baa820 6550xdb_handle_command (char *args, int from_tty)
c906108c
SS
6551{
6552 char **argv;
6553 struct cleanup *old_chain;
6554
d1a41061
PP
6555 if (args == NULL)
6556 error_no_arg (_("xdb command"));
6557
1777feb0 6558 /* Break the command line up into args. */
c906108c 6559
d1a41061 6560 argv = gdb_buildargv (args);
7a292a7a 6561 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6562 if (argv[1] != (char *) NULL)
6563 {
6564 char *argBuf;
6565 int bufLen;
6566
6567 bufLen = strlen (argv[0]) + 20;
6568 argBuf = (char *) xmalloc (bufLen);
6569 if (argBuf)
6570 {
6571 int validFlag = 1;
2ea28649 6572 enum gdb_signal oursig;
c906108c 6573
2ea28649 6574 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6575 memset (argBuf, 0, bufLen);
6576 if (strcmp (argv[1], "Q") == 0)
6577 sprintf (argBuf, "%s %s", argv[0], "noprint");
6578 else
6579 {
6580 if (strcmp (argv[1], "s") == 0)
6581 {
6582 if (!signal_stop[oursig])
6583 sprintf (argBuf, "%s %s", argv[0], "stop");
6584 else
6585 sprintf (argBuf, "%s %s", argv[0], "nostop");
6586 }
6587 else if (strcmp (argv[1], "i") == 0)
6588 {
6589 if (!signal_program[oursig])
6590 sprintf (argBuf, "%s %s", argv[0], "pass");
6591 else
6592 sprintf (argBuf, "%s %s", argv[0], "nopass");
6593 }
6594 else if (strcmp (argv[1], "r") == 0)
6595 {
6596 if (!signal_print[oursig])
6597 sprintf (argBuf, "%s %s", argv[0], "print");
6598 else
6599 sprintf (argBuf, "%s %s", argv[0], "noprint");
6600 }
6601 else
6602 validFlag = 0;
6603 }
6604 if (validFlag)
6605 handle_command (argBuf, from_tty);
6606 else
a3f17187 6607 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6608 if (argBuf)
b8c9b27d 6609 xfree (argBuf);
c906108c
SS
6610 }
6611 }
6612 do_cleanups (old_chain);
6613}
6614
2ea28649
PA
6615enum gdb_signal
6616gdb_signal_from_command (int num)
ed01b82c
PA
6617{
6618 if (num >= 1 && num <= 15)
2ea28649 6619 return (enum gdb_signal) num;
ed01b82c
PA
6620 error (_("Only signals 1-15 are valid as numeric signals.\n\
6621Use \"info signals\" for a list of symbolic signals."));
6622}
6623
c906108c
SS
6624/* Print current contents of the tables set by the handle command.
6625 It is possible we should just be printing signals actually used
6626 by the current target (but for things to work right when switching
6627 targets, all signals should be in the signal tables). */
6628
6629static void
96baa820 6630signals_info (char *signum_exp, int from_tty)
c906108c 6631{
2ea28649 6632 enum gdb_signal oursig;
abbb1732 6633
c906108c
SS
6634 sig_print_header ();
6635
6636 if (signum_exp)
6637 {
6638 /* First see if this is a symbol name. */
2ea28649 6639 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6640 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6641 {
6642 /* No, try numeric. */
6643 oursig =
2ea28649 6644 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6645 }
6646 sig_print_info (oursig);
6647 return;
6648 }
6649
6650 printf_filtered ("\n");
6651 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6652 for (oursig = GDB_SIGNAL_FIRST;
6653 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6654 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6655 {
6656 QUIT;
6657
a493e3e2
PA
6658 if (oursig != GDB_SIGNAL_UNKNOWN
6659 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6660 sig_print_info (oursig);
6661 }
6662
3e43a32a
MS
6663 printf_filtered (_("\nUse the \"handle\" command "
6664 "to change these tables.\n"));
c906108c 6665}
4aa995e1 6666
c709acd1
PA
6667/* Check if it makes sense to read $_siginfo from the current thread
6668 at this point. If not, throw an error. */
6669
6670static void
6671validate_siginfo_access (void)
6672{
6673 /* No current inferior, no siginfo. */
6674 if (ptid_equal (inferior_ptid, null_ptid))
6675 error (_("No thread selected."));
6676
6677 /* Don't try to read from a dead thread. */
6678 if (is_exited (inferior_ptid))
6679 error (_("The current thread has terminated"));
6680
6681 /* ... or from a spinning thread. */
6682 if (is_running (inferior_ptid))
6683 error (_("Selected thread is running."));
6684}
6685
4aa995e1
PA
6686/* The $_siginfo convenience variable is a bit special. We don't know
6687 for sure the type of the value until we actually have a chance to
7a9dd1b2 6688 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6689 also dependent on which thread you have selected.
6690
6691 1. making $_siginfo be an internalvar that creates a new value on
6692 access.
6693
6694 2. making the value of $_siginfo be an lval_computed value. */
6695
6696/* This function implements the lval_computed support for reading a
6697 $_siginfo value. */
6698
6699static void
6700siginfo_value_read (struct value *v)
6701{
6702 LONGEST transferred;
6703
c709acd1
PA
6704 validate_siginfo_access ();
6705
4aa995e1
PA
6706 transferred =
6707 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6708 NULL,
6709 value_contents_all_raw (v),
6710 value_offset (v),
6711 TYPE_LENGTH (value_type (v)));
6712
6713 if (transferred != TYPE_LENGTH (value_type (v)))
6714 error (_("Unable to read siginfo"));
6715}
6716
6717/* This function implements the lval_computed support for writing a
6718 $_siginfo value. */
6719
6720static void
6721siginfo_value_write (struct value *v, struct value *fromval)
6722{
6723 LONGEST transferred;
6724
c709acd1
PA
6725 validate_siginfo_access ();
6726
4aa995e1
PA
6727 transferred = target_write (&current_target,
6728 TARGET_OBJECT_SIGNAL_INFO,
6729 NULL,
6730 value_contents_all_raw (fromval),
6731 value_offset (v),
6732 TYPE_LENGTH (value_type (fromval)));
6733
6734 if (transferred != TYPE_LENGTH (value_type (fromval)))
6735 error (_("Unable to write siginfo"));
6736}
6737
c8f2448a 6738static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6739 {
6740 siginfo_value_read,
6741 siginfo_value_write
6742 };
6743
6744/* Return a new value with the correct type for the siginfo object of
78267919
UW
6745 the current thread using architecture GDBARCH. Return a void value
6746 if there's no object available. */
4aa995e1 6747
2c0b251b 6748static struct value *
22d2b532
SDJ
6749siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6750 void *ignore)
4aa995e1 6751{
4aa995e1 6752 if (target_has_stack
78267919
UW
6753 && !ptid_equal (inferior_ptid, null_ptid)
6754 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6755 {
78267919 6756 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6757
78267919 6758 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6759 }
6760
78267919 6761 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6762}
6763
c906108c 6764\f
16c381f0
JK
6765/* infcall_suspend_state contains state about the program itself like its
6766 registers and any signal it received when it last stopped.
6767 This state must be restored regardless of how the inferior function call
6768 ends (either successfully, or after it hits a breakpoint or signal)
6769 if the program is to properly continue where it left off. */
6770
6771struct infcall_suspend_state
7a292a7a 6772{
16c381f0 6773 struct thread_suspend_state thread_suspend;
dd80ea3c 6774#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6775 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6776#endif
16c381f0
JK
6777
6778 /* Other fields: */
7a292a7a 6779 CORE_ADDR stop_pc;
b89667eb 6780 struct regcache *registers;
1736ad11 6781
35515841 6782 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6783 struct gdbarch *siginfo_gdbarch;
6784
6785 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6786 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6787 content would be invalid. */
6788 gdb_byte *siginfo_data;
b89667eb
DE
6789};
6790
16c381f0
JK
6791struct infcall_suspend_state *
6792save_infcall_suspend_state (void)
b89667eb 6793{
16c381f0 6794 struct infcall_suspend_state *inf_state;
b89667eb 6795 struct thread_info *tp = inferior_thread ();
974a734b 6796#if 0
16c381f0 6797 struct inferior *inf = current_inferior ();
974a734b 6798#endif
1736ad11
JK
6799 struct regcache *regcache = get_current_regcache ();
6800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6801 gdb_byte *siginfo_data = NULL;
6802
6803 if (gdbarch_get_siginfo_type_p (gdbarch))
6804 {
6805 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6806 size_t len = TYPE_LENGTH (type);
6807 struct cleanup *back_to;
6808
6809 siginfo_data = xmalloc (len);
6810 back_to = make_cleanup (xfree, siginfo_data);
6811
6812 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6813 siginfo_data, 0, len) == len)
6814 discard_cleanups (back_to);
6815 else
6816 {
6817 /* Errors ignored. */
6818 do_cleanups (back_to);
6819 siginfo_data = NULL;
6820 }
6821 }
6822
16c381f0 6823 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6824
6825 if (siginfo_data)
6826 {
6827 inf_state->siginfo_gdbarch = gdbarch;
6828 inf_state->siginfo_data = siginfo_data;
6829 }
b89667eb 6830
16c381f0 6831 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6832#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6833 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6834#endif
16c381f0 6835
35515841 6836 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6837 GDB_SIGNAL_0 anyway. */
6838 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6839
b89667eb
DE
6840 inf_state->stop_pc = stop_pc;
6841
1736ad11 6842 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6843
6844 return inf_state;
6845}
6846
6847/* Restore inferior session state to INF_STATE. */
6848
6849void
16c381f0 6850restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6851{
6852 struct thread_info *tp = inferior_thread ();
974a734b 6853#if 0
16c381f0 6854 struct inferior *inf = current_inferior ();
974a734b 6855#endif
1736ad11
JK
6856 struct regcache *regcache = get_current_regcache ();
6857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6858
16c381f0 6859 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6860#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6861 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6862#endif
16c381f0 6863
b89667eb
DE
6864 stop_pc = inf_state->stop_pc;
6865
1736ad11
JK
6866 if (inf_state->siginfo_gdbarch == gdbarch)
6867 {
6868 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6869
6870 /* Errors ignored. */
6871 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6872 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6873 }
6874
b89667eb
DE
6875 /* The inferior can be gone if the user types "print exit(0)"
6876 (and perhaps other times). */
6877 if (target_has_execution)
6878 /* NB: The register write goes through to the target. */
1736ad11 6879 regcache_cpy (regcache, inf_state->registers);
803b5f95 6880
16c381f0 6881 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6882}
6883
6884static void
16c381f0 6885do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6886{
16c381f0 6887 restore_infcall_suspend_state (state);
b89667eb
DE
6888}
6889
6890struct cleanup *
16c381f0
JK
6891make_cleanup_restore_infcall_suspend_state
6892 (struct infcall_suspend_state *inf_state)
b89667eb 6893{
16c381f0 6894 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6895}
6896
6897void
16c381f0 6898discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6899{
6900 regcache_xfree (inf_state->registers);
803b5f95 6901 xfree (inf_state->siginfo_data);
b89667eb
DE
6902 xfree (inf_state);
6903}
6904
6905struct regcache *
16c381f0 6906get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6907{
6908 return inf_state->registers;
6909}
6910
16c381f0
JK
6911/* infcall_control_state contains state regarding gdb's control of the
6912 inferior itself like stepping control. It also contains session state like
6913 the user's currently selected frame. */
b89667eb 6914
16c381f0 6915struct infcall_control_state
b89667eb 6916{
16c381f0
JK
6917 struct thread_control_state thread_control;
6918 struct inferior_control_state inferior_control;
d82142e2
JK
6919
6920 /* Other fields: */
6921 enum stop_stack_kind stop_stack_dummy;
6922 int stopped_by_random_signal;
7a292a7a 6923 int stop_after_trap;
7a292a7a 6924
b89667eb 6925 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6926 struct frame_id selected_frame_id;
7a292a7a
SS
6927};
6928
c906108c 6929/* Save all of the information associated with the inferior<==>gdb
b89667eb 6930 connection. */
c906108c 6931
16c381f0
JK
6932struct infcall_control_state *
6933save_infcall_control_state (void)
c906108c 6934{
16c381f0 6935 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6936 struct thread_info *tp = inferior_thread ();
d6b48e9c 6937 struct inferior *inf = current_inferior ();
7a292a7a 6938
16c381f0
JK
6939 inf_status->thread_control = tp->control;
6940 inf_status->inferior_control = inf->control;
d82142e2 6941
8358c15c 6942 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6943 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6944
16c381f0
JK
6945 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6946 chain. If caller's caller is walking the chain, they'll be happier if we
6947 hand them back the original chain when restore_infcall_control_state is
6948 called. */
6949 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6950
6951 /* Other fields: */
6952 inf_status->stop_stack_dummy = stop_stack_dummy;
6953 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6954 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6955
206415a3 6956 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6957
7a292a7a 6958 return inf_status;
c906108c
SS
6959}
6960
c906108c 6961static int
96baa820 6962restore_selected_frame (void *args)
c906108c 6963{
488f131b 6964 struct frame_id *fid = (struct frame_id *) args;
c906108c 6965 struct frame_info *frame;
c906108c 6966
101dcfbe 6967 frame = frame_find_by_id (*fid);
c906108c 6968
aa0cd9c1
AC
6969 /* If inf_status->selected_frame_id is NULL, there was no previously
6970 selected frame. */
101dcfbe 6971 if (frame == NULL)
c906108c 6972 {
8a3fe4f8 6973 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6974 return 0;
6975 }
6976
0f7d239c 6977 select_frame (frame);
c906108c
SS
6978
6979 return (1);
6980}
6981
b89667eb
DE
6982/* Restore inferior session state to INF_STATUS. */
6983
c906108c 6984void
16c381f0 6985restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6986{
4e1c45ea 6987 struct thread_info *tp = inferior_thread ();
d6b48e9c 6988 struct inferior *inf = current_inferior ();
4e1c45ea 6989
8358c15c
JK
6990 if (tp->control.step_resume_breakpoint)
6991 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6992
5b79abe7
TT
6993 if (tp->control.exception_resume_breakpoint)
6994 tp->control.exception_resume_breakpoint->disposition
6995 = disp_del_at_next_stop;
6996
d82142e2 6997 /* Handle the bpstat_copy of the chain. */
16c381f0 6998 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6999
16c381f0
JK
7000 tp->control = inf_status->thread_control;
7001 inf->control = inf_status->inferior_control;
d82142e2
JK
7002
7003 /* Other fields: */
7004 stop_stack_dummy = inf_status->stop_stack_dummy;
7005 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7006 stop_after_trap = inf_status->stop_after_trap;
c906108c 7007
b89667eb 7008 if (target_has_stack)
c906108c 7009 {
c906108c 7010 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7011 walking the stack might encounter a garbage pointer and
7012 error() trying to dereference it. */
488f131b
JB
7013 if (catch_errors
7014 (restore_selected_frame, &inf_status->selected_frame_id,
7015 "Unable to restore previously selected frame:\n",
7016 RETURN_MASK_ERROR) == 0)
c906108c
SS
7017 /* Error in restoring the selected frame. Select the innermost
7018 frame. */
0f7d239c 7019 select_frame (get_current_frame ());
c906108c 7020 }
c906108c 7021
72cec141 7022 xfree (inf_status);
7a292a7a 7023}
c906108c 7024
74b7792f 7025static void
16c381f0 7026do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7027{
16c381f0 7028 restore_infcall_control_state (sts);
74b7792f
AC
7029}
7030
7031struct cleanup *
16c381f0
JK
7032make_cleanup_restore_infcall_control_state
7033 (struct infcall_control_state *inf_status)
74b7792f 7034{
16c381f0 7035 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7036}
7037
c906108c 7038void
16c381f0 7039discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7040{
8358c15c
JK
7041 if (inf_status->thread_control.step_resume_breakpoint)
7042 inf_status->thread_control.step_resume_breakpoint->disposition
7043 = disp_del_at_next_stop;
7044
5b79abe7
TT
7045 if (inf_status->thread_control.exception_resume_breakpoint)
7046 inf_status->thread_control.exception_resume_breakpoint->disposition
7047 = disp_del_at_next_stop;
7048
1777feb0 7049 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7050 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7051
72cec141 7052 xfree (inf_status);
7a292a7a 7053}
b89667eb 7054\f
0723dbf5
PA
7055int
7056ptid_match (ptid_t ptid, ptid_t filter)
7057{
0723dbf5
PA
7058 if (ptid_equal (filter, minus_one_ptid))
7059 return 1;
7060 if (ptid_is_pid (filter)
7061 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7062 return 1;
7063 else if (ptid_equal (ptid, filter))
7064 return 1;
7065
7066 return 0;
7067}
7068
ca6724c1
KB
7069/* restore_inferior_ptid() will be used by the cleanup machinery
7070 to restore the inferior_ptid value saved in a call to
7071 save_inferior_ptid(). */
ce696e05
KB
7072
7073static void
7074restore_inferior_ptid (void *arg)
7075{
7076 ptid_t *saved_ptid_ptr = arg;
abbb1732 7077
ce696e05
KB
7078 inferior_ptid = *saved_ptid_ptr;
7079 xfree (arg);
7080}
7081
7082/* Save the value of inferior_ptid so that it may be restored by a
7083 later call to do_cleanups(). Returns the struct cleanup pointer
7084 needed for later doing the cleanup. */
7085
7086struct cleanup *
7087save_inferior_ptid (void)
7088{
7089 ptid_t *saved_ptid_ptr;
7090
7091 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7092 *saved_ptid_ptr = inferior_ptid;
7093 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7094}
0c557179
SDJ
7095
7096/* See inferior.h. */
7097
7098void
7099clear_exit_convenience_vars (void)
7100{
7101 clear_internalvar (lookup_internalvar ("_exitsignal"));
7102 clear_internalvar (lookup_internalvar ("_exitcode"));
7103}
c5aa993b 7104\f
488f131b 7105
b2175913
MS
7106/* User interface for reverse debugging:
7107 Set exec-direction / show exec-direction commands
7108 (returns error unless target implements to_set_exec_direction method). */
7109
32231432 7110int execution_direction = EXEC_FORWARD;
b2175913
MS
7111static const char exec_forward[] = "forward";
7112static const char exec_reverse[] = "reverse";
7113static const char *exec_direction = exec_forward;
40478521 7114static const char *const exec_direction_names[] = {
b2175913
MS
7115 exec_forward,
7116 exec_reverse,
7117 NULL
7118};
7119
7120static void
7121set_exec_direction_func (char *args, int from_tty,
7122 struct cmd_list_element *cmd)
7123{
7124 if (target_can_execute_reverse)
7125 {
7126 if (!strcmp (exec_direction, exec_forward))
7127 execution_direction = EXEC_FORWARD;
7128 else if (!strcmp (exec_direction, exec_reverse))
7129 execution_direction = EXEC_REVERSE;
7130 }
8bbed405
MS
7131 else
7132 {
7133 exec_direction = exec_forward;
7134 error (_("Target does not support this operation."));
7135 }
b2175913
MS
7136}
7137
7138static void
7139show_exec_direction_func (struct ui_file *out, int from_tty,
7140 struct cmd_list_element *cmd, const char *value)
7141{
7142 switch (execution_direction) {
7143 case EXEC_FORWARD:
7144 fprintf_filtered (out, _("Forward.\n"));
7145 break;
7146 case EXEC_REVERSE:
7147 fprintf_filtered (out, _("Reverse.\n"));
7148 break;
b2175913 7149 default:
d8b34453
PA
7150 internal_error (__FILE__, __LINE__,
7151 _("bogus execution_direction value: %d"),
7152 (int) execution_direction);
b2175913
MS
7153 }
7154}
7155
d4db2f36
PA
7156static void
7157show_schedule_multiple (struct ui_file *file, int from_tty,
7158 struct cmd_list_element *c, const char *value)
7159{
3e43a32a
MS
7160 fprintf_filtered (file, _("Resuming the execution of threads "
7161 "of all processes is %s.\n"), value);
d4db2f36 7162}
ad52ddc6 7163
22d2b532
SDJ
7164/* Implementation of `siginfo' variable. */
7165
7166static const struct internalvar_funcs siginfo_funcs =
7167{
7168 siginfo_make_value,
7169 NULL,
7170 NULL
7171};
7172
c906108c 7173void
96baa820 7174_initialize_infrun (void)
c906108c 7175{
52f0bd74
AC
7176 int i;
7177 int numsigs;
de0bea00 7178 struct cmd_list_element *c;
c906108c 7179
1bedd215
AC
7180 add_info ("signals", signals_info, _("\
7181What debugger does when program gets various signals.\n\
7182Specify a signal as argument to print info on that signal only."));
c906108c
SS
7183 add_info_alias ("handle", "signals", 0);
7184
de0bea00 7185 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7186Specify how to handle signals.\n\
486c7739 7187Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7188Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7189If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7190will be displayed instead.\n\
7191\n\
c906108c
SS
7192Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7193from 1-15 are allowed for compatibility with old versions of GDB.\n\
7194Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7195The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7196used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7197\n\
1bedd215 7198Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7199\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7200Stop means reenter debugger if this signal happens (implies print).\n\
7201Print means print a message if this signal happens.\n\
7202Pass means let program see this signal; otherwise program doesn't know.\n\
7203Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7204Pass and Stop may be combined.\n\
7205\n\
7206Multiple signals may be specified. Signal numbers and signal names\n\
7207may be interspersed with actions, with the actions being performed for\n\
7208all signals cumulatively specified."));
de0bea00 7209 set_cmd_completer (c, handle_completer);
486c7739 7210
c906108c
SS
7211 if (xdb_commands)
7212 {
1bedd215
AC
7213 add_com ("lz", class_info, signals_info, _("\
7214What debugger does when program gets various signals.\n\
7215Specify a signal as argument to print info on that signal only."));
7216 add_com ("z", class_run, xdb_handle_command, _("\
7217Specify how to handle a signal.\n\
c906108c
SS
7218Args are signals and actions to apply to those signals.\n\
7219Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7220from 1-15 are allowed for compatibility with old versions of GDB.\n\
7221Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7222The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7223used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7224Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7225\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7226nopass), \"Q\" (noprint)\n\
7227Stop means reenter debugger if this signal happens (implies print).\n\
7228Print means print a message if this signal happens.\n\
7229Pass means let program see this signal; otherwise program doesn't know.\n\
7230Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7231Pass and Stop may be combined."));
c906108c
SS
7232 }
7233
7234 if (!dbx_commands)
1a966eab
AC
7235 stop_command = add_cmd ("stop", class_obscure,
7236 not_just_help_class_command, _("\
7237There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7238This allows you to set a list of commands to be run each time execution\n\
1a966eab 7239of the program stops."), &cmdlist);
c906108c 7240
ccce17b0 7241 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7242Set inferior debugging."), _("\
7243Show inferior debugging."), _("\
7244When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7245 NULL,
7246 show_debug_infrun,
7247 &setdebuglist, &showdebuglist);
527159b7 7248
3e43a32a
MS
7249 add_setshow_boolean_cmd ("displaced", class_maintenance,
7250 &debug_displaced, _("\
237fc4c9
PA
7251Set displaced stepping debugging."), _("\
7252Show displaced stepping debugging."), _("\
7253When non-zero, displaced stepping specific debugging is enabled."),
7254 NULL,
7255 show_debug_displaced,
7256 &setdebuglist, &showdebuglist);
7257
ad52ddc6
PA
7258 add_setshow_boolean_cmd ("non-stop", no_class,
7259 &non_stop_1, _("\
7260Set whether gdb controls the inferior in non-stop mode."), _("\
7261Show whether gdb controls the inferior in non-stop mode."), _("\
7262When debugging a multi-threaded program and this setting is\n\
7263off (the default, also called all-stop mode), when one thread stops\n\
7264(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7265all other threads in the program while you interact with the thread of\n\
7266interest. When you continue or step a thread, you can allow the other\n\
7267threads to run, or have them remain stopped, but while you inspect any\n\
7268thread's state, all threads stop.\n\
7269\n\
7270In non-stop mode, when one thread stops, other threads can continue\n\
7271to run freely. You'll be able to step each thread independently,\n\
7272leave it stopped or free to run as needed."),
7273 set_non_stop,
7274 show_non_stop,
7275 &setlist,
7276 &showlist);
7277
a493e3e2 7278 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7279 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7280 signal_print = (unsigned char *)
7281 xmalloc (sizeof (signal_print[0]) * numsigs);
7282 signal_program = (unsigned char *)
7283 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7284 signal_catch = (unsigned char *)
7285 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7286 signal_pass = (unsigned char *)
7287 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7288 for (i = 0; i < numsigs; i++)
7289 {
7290 signal_stop[i] = 1;
7291 signal_print[i] = 1;
7292 signal_program[i] = 1;
ab04a2af 7293 signal_catch[i] = 0;
c906108c
SS
7294 }
7295
7296 /* Signals caused by debugger's own actions
7297 should not be given to the program afterwards. */
a493e3e2
PA
7298 signal_program[GDB_SIGNAL_TRAP] = 0;
7299 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7300
7301 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7302 signal_stop[GDB_SIGNAL_ALRM] = 0;
7303 signal_print[GDB_SIGNAL_ALRM] = 0;
7304 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7305 signal_print[GDB_SIGNAL_VTALRM] = 0;
7306 signal_stop[GDB_SIGNAL_PROF] = 0;
7307 signal_print[GDB_SIGNAL_PROF] = 0;
7308 signal_stop[GDB_SIGNAL_CHLD] = 0;
7309 signal_print[GDB_SIGNAL_CHLD] = 0;
7310 signal_stop[GDB_SIGNAL_IO] = 0;
7311 signal_print[GDB_SIGNAL_IO] = 0;
7312 signal_stop[GDB_SIGNAL_POLL] = 0;
7313 signal_print[GDB_SIGNAL_POLL] = 0;
7314 signal_stop[GDB_SIGNAL_URG] = 0;
7315 signal_print[GDB_SIGNAL_URG] = 0;
7316 signal_stop[GDB_SIGNAL_WINCH] = 0;
7317 signal_print[GDB_SIGNAL_WINCH] = 0;
7318 signal_stop[GDB_SIGNAL_PRIO] = 0;
7319 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7320
cd0fc7c3
SS
7321 /* These signals are used internally by user-level thread
7322 implementations. (See signal(5) on Solaris.) Like the above
7323 signals, a healthy program receives and handles them as part of
7324 its normal operation. */
a493e3e2
PA
7325 signal_stop[GDB_SIGNAL_LWP] = 0;
7326 signal_print[GDB_SIGNAL_LWP] = 0;
7327 signal_stop[GDB_SIGNAL_WAITING] = 0;
7328 signal_print[GDB_SIGNAL_WAITING] = 0;
7329 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7330 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7331
2455069d
UW
7332 /* Update cached state. */
7333 signal_cache_update (-1);
7334
85c07804
AC
7335 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7336 &stop_on_solib_events, _("\
7337Set stopping for shared library events."), _("\
7338Show stopping for shared library events."), _("\
c906108c
SS
7339If nonzero, gdb will give control to the user when the dynamic linker\n\
7340notifies gdb of shared library events. The most common event of interest\n\
85c07804 7341to the user would be loading/unloading of a new library."),
f9e14852 7342 set_stop_on_solib_events,
920d2a44 7343 show_stop_on_solib_events,
85c07804 7344 &setlist, &showlist);
c906108c 7345
7ab04401
AC
7346 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7347 follow_fork_mode_kind_names,
7348 &follow_fork_mode_string, _("\
7349Set debugger response to a program call of fork or vfork."), _("\
7350Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7351A fork or vfork creates a new process. follow-fork-mode can be:\n\
7352 parent - the original process is debugged after a fork\n\
7353 child - the new process is debugged after a fork\n\
ea1dd7bc 7354The unfollowed process will continue to run.\n\
7ab04401
AC
7355By default, the debugger will follow the parent process."),
7356 NULL,
920d2a44 7357 show_follow_fork_mode_string,
7ab04401
AC
7358 &setlist, &showlist);
7359
6c95b8df
PA
7360 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7361 follow_exec_mode_names,
7362 &follow_exec_mode_string, _("\
7363Set debugger response to a program call of exec."), _("\
7364Show debugger response to a program call of exec."), _("\
7365An exec call replaces the program image of a process.\n\
7366\n\
7367follow-exec-mode can be:\n\
7368\n\
cce7e648 7369 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7370to this new inferior. The program the process was running before\n\
7371the exec call can be restarted afterwards by restarting the original\n\
7372inferior.\n\
7373\n\
7374 same - the debugger keeps the process bound to the same inferior.\n\
7375The new executable image replaces the previous executable loaded in\n\
7376the inferior. Restarting the inferior after the exec call restarts\n\
7377the executable the process was running after the exec call.\n\
7378\n\
7379By default, the debugger will use the same inferior."),
7380 NULL,
7381 show_follow_exec_mode_string,
7382 &setlist, &showlist);
7383
7ab04401
AC
7384 add_setshow_enum_cmd ("scheduler-locking", class_run,
7385 scheduler_enums, &scheduler_mode, _("\
7386Set mode for locking scheduler during execution."), _("\
7387Show mode for locking scheduler during execution."), _("\
c906108c
SS
7388off == no locking (threads may preempt at any time)\n\
7389on == full locking (no thread except the current thread may run)\n\
7390step == scheduler locked during every single-step operation.\n\
7391 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7392 Other threads may run while stepping over a function call ('next')."),
7393 set_schedlock_func, /* traps on target vector */
920d2a44 7394 show_scheduler_mode,
7ab04401 7395 &setlist, &showlist);
5fbbeb29 7396
d4db2f36
PA
7397 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7398Set mode for resuming threads of all processes."), _("\
7399Show mode for resuming threads of all processes."), _("\
7400When on, execution commands (such as 'continue' or 'next') resume all\n\
7401threads of all processes. When off (which is the default), execution\n\
7402commands only resume the threads of the current process. The set of\n\
7403threads that are resumed is further refined by the scheduler-locking\n\
7404mode (see help set scheduler-locking)."),
7405 NULL,
7406 show_schedule_multiple,
7407 &setlist, &showlist);
7408
5bf193a2
AC
7409 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7410Set mode of the step operation."), _("\
7411Show mode of the step operation."), _("\
7412When set, doing a step over a function without debug line information\n\
7413will stop at the first instruction of that function. Otherwise, the\n\
7414function is skipped and the step command stops at a different source line."),
7415 NULL,
920d2a44 7416 show_step_stop_if_no_debug,
5bf193a2 7417 &setlist, &showlist);
ca6724c1 7418
72d0e2c5
YQ
7419 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7420 &can_use_displaced_stepping, _("\
237fc4c9
PA
7421Set debugger's willingness to use displaced stepping."), _("\
7422Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7423If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7424supported by the target architecture. If off, gdb will not use displaced\n\
7425stepping to step over breakpoints, even if such is supported by the target\n\
7426architecture. If auto (which is the default), gdb will use displaced stepping\n\
7427if the target architecture supports it and non-stop mode is active, but will not\n\
7428use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7429 NULL,
7430 show_can_use_displaced_stepping,
7431 &setlist, &showlist);
237fc4c9 7432
b2175913
MS
7433 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7434 &exec_direction, _("Set direction of execution.\n\
7435Options are 'forward' or 'reverse'."),
7436 _("Show direction of execution (forward/reverse)."),
7437 _("Tells gdb whether to execute forward or backward."),
7438 set_exec_direction_func, show_exec_direction_func,
7439 &setlist, &showlist);
7440
6c95b8df
PA
7441 /* Set/show detach-on-fork: user-settable mode. */
7442
7443 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7444Set whether gdb will detach the child of a fork."), _("\
7445Show whether gdb will detach the child of a fork."), _("\
7446Tells gdb whether to detach the child of a fork."),
7447 NULL, NULL, &setlist, &showlist);
7448
03583c20
UW
7449 /* Set/show disable address space randomization mode. */
7450
7451 add_setshow_boolean_cmd ("disable-randomization", class_support,
7452 &disable_randomization, _("\
7453Set disabling of debuggee's virtual address space randomization."), _("\
7454Show disabling of debuggee's virtual address space randomization."), _("\
7455When this mode is on (which is the default), randomization of the virtual\n\
7456address space is disabled. Standalone programs run with the randomization\n\
7457enabled by default on some platforms."),
7458 &set_disable_randomization,
7459 &show_disable_randomization,
7460 &setlist, &showlist);
7461
ca6724c1 7462 /* ptid initializations */
ca6724c1
KB
7463 inferior_ptid = null_ptid;
7464 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7465
7466 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7467 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7468 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7469 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7470
7471 /* Explicitly create without lookup, since that tries to create a
7472 value with a void typed value, and when we get here, gdbarch
7473 isn't initialized yet. At this point, we're quite sure there
7474 isn't another convenience variable of the same name. */
22d2b532 7475 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7476
7477 add_setshow_boolean_cmd ("observer", no_class,
7478 &observer_mode_1, _("\
7479Set whether gdb controls the inferior in observer mode."), _("\
7480Show whether gdb controls the inferior in observer mode."), _("\
7481In observer mode, GDB can get data from the inferior, but not\n\
7482affect its execution. Registers and memory may not be changed,\n\
7483breakpoints may not be set, and the program cannot be interrupted\n\
7484or signalled."),
7485 set_observer_mode,
7486 show_observer_mode,
7487 &setlist,
7488 &showlist);
c906108c 7489}
This page took 1.847242 seconds and 4 git commands to generate.