* Makefile.in (amd64nbsd-nat.o): New dependency.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
920d2a44
AC
89static void
90show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92{
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94}
5fbbeb29 95
43ff13b4 96/* In asynchronous mode, but simulating synchronous execution. */
96baa820 97
43ff13b4
JM
98int sync_execution = 0;
99
c906108c
SS
100/* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
96baa820
JM
102 running in. */
103
39f77062 104static ptid_t previous_inferior_ptid;
7a292a7a 105
527159b7 106static int debug_infrun = 0;
920d2a44
AC
107static void
108show_debug_infrun (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
112}
527159b7 113
d4f3574e
SS
114/* If the program uses ELF-style shared libraries, then calls to
115 functions in shared libraries go through stubs, which live in a
116 table called the PLT (Procedure Linkage Table). The first time the
117 function is called, the stub sends control to the dynamic linker,
118 which looks up the function's real address, patches the stub so
119 that future calls will go directly to the function, and then passes
120 control to the function.
121
122 If we are stepping at the source level, we don't want to see any of
123 this --- we just want to skip over the stub and the dynamic linker.
124 The simple approach is to single-step until control leaves the
125 dynamic linker.
126
ca557f44
AC
127 However, on some systems (e.g., Red Hat's 5.2 distribution) the
128 dynamic linker calls functions in the shared C library, so you
129 can't tell from the PC alone whether the dynamic linker is still
130 running. In this case, we use a step-resume breakpoint to get us
131 past the dynamic linker, as if we were using "next" to step over a
132 function call.
d4f3574e
SS
133
134 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
135 linker code or not. Normally, this means we single-step. However,
136 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
137 address where we can place a step-resume breakpoint to get past the
138 linker's symbol resolution function.
139
140 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
141 pretty portable way, by comparing the PC against the address ranges
142 of the dynamic linker's sections.
143
144 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
145 it depends on internal details of the dynamic linker. It's usually
146 not too hard to figure out where to put a breakpoint, but it
147 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
148 sanity checking. If it can't figure things out, returning zero and
149 getting the (possibly confusing) stepping behavior is better than
150 signalling an error, which will obscure the change in the
151 inferior's state. */
c906108c 152
c906108c
SS
153/* This function returns TRUE if pc is the address of an instruction
154 that lies within the dynamic linker (such as the event hook, or the
155 dld itself).
156
157 This function must be used only when a dynamic linker event has
158 been caught, and the inferior is being stepped out of the hook, or
159 undefined results are guaranteed. */
160
161#ifndef SOLIB_IN_DYNAMIC_LINKER
162#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
163#endif
164
c2c6d25f 165
7a292a7a
SS
166/* Convert the #defines into values. This is temporary until wfi control
167 flow is completely sorted out. */
168
692590c1
MS
169#ifndef CANNOT_STEP_HW_WATCHPOINTS
170#define CANNOT_STEP_HW_WATCHPOINTS 0
171#else
172#undef CANNOT_STEP_HW_WATCHPOINTS
173#define CANNOT_STEP_HW_WATCHPOINTS 1
174#endif
175
c906108c
SS
176/* Tables of how to react to signals; the user sets them. */
177
178static unsigned char *signal_stop;
179static unsigned char *signal_print;
180static unsigned char *signal_program;
181
182#define SET_SIGS(nsigs,sigs,flags) \
183 do { \
184 int signum = (nsigs); \
185 while (signum-- > 0) \
186 if ((sigs)[signum]) \
187 (flags)[signum] = 1; \
188 } while (0)
189
190#define UNSET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 0; \
196 } while (0)
197
39f77062
KB
198/* Value to pass to target_resume() to cause all threads to resume */
199
200#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
201
202/* Command list pointer for the "stop" placeholder. */
203
204static struct cmd_list_element *stop_command;
205
c906108c
SS
206/* Function inferior was in as of last step command. */
207
208static struct symbol *step_start_function;
209
ca67fcb8 210/* Nonzero if we are presently stepping over a breakpoint.
c906108c 211
ca67fcb8
VP
212 If we hit a breakpoint or watchpoint, and then continue,
213 we need to single step the current thread with breakpoints
214 disabled, to avoid hitting the same breakpoint or
215 watchpoint again. And we should step just a single
216 thread and keep other threads stopped, so that
217 other threads don't miss breakpoints while they are removed.
218
219 So, this variable simultaneously means that we need to single
220 step the current thread, keep other threads stopped, and that
221 breakpoints should be removed while we step.
222
223 This variable is set either:
224 - in proceed, when we resume inferior on user's explicit request
225 - in keep_going, if handle_inferior_event decides we need to
226 step over breakpoint.
227
228 The variable is cleared in clear_proceed_status, called every
229 time before we call proceed. The proceed calls wait_for_inferior,
230 which calls handle_inferior_event in a loop, and until
231 wait_for_inferior exits, this variable is changed only by keep_going. */
232
233static int stepping_over_breakpoint;
c906108c 234
c906108c
SS
235/* Nonzero if we want to give control to the user when we're notified
236 of shared library events by the dynamic linker. */
237static int stop_on_solib_events;
920d2a44
AC
238static void
239show_stop_on_solib_events (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241{
242 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 value);
244}
c906108c 245
c906108c
SS
246/* Nonzero means expecting a trace trap
247 and should stop the inferior and return silently when it happens. */
248
249int stop_after_trap;
250
251/* Nonzero means expecting a trap and caller will handle it themselves.
252 It is used after attach, due to attaching to a process;
253 when running in the shell before the child program has been exec'd;
254 and when running some kinds of remote stuff (FIXME?). */
255
c0236d92 256enum stop_kind stop_soon;
c906108c
SS
257
258/* Nonzero if proceed is being used for a "finish" command or a similar
259 situation when stop_registers should be saved. */
260
261int proceed_to_finish;
262
263/* Save register contents here when about to pop a stack dummy frame,
264 if-and-only-if proceed_to_finish is set.
265 Thus this contains the return value from the called function (assuming
266 values are returned in a register). */
267
72cec141 268struct regcache *stop_registers;
c906108c 269
c906108c
SS
270/* Nonzero after stop if current stack frame should be printed. */
271
272static int stop_print_frame;
273
274static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 275
e02bc4cc 276/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
277 returned by target_wait()/deprecated_target_wait_hook(). This
278 information is returned by get_last_target_status(). */
39f77062 279static ptid_t target_last_wait_ptid;
e02bc4cc
DS
280static struct target_waitstatus target_last_waitstatus;
281
c906108c
SS
282/* This is used to remember when a fork, vfork or exec event
283 was caught by a catchpoint, and thus the event is to be
284 followed at the next resume of the inferior, and not
285 immediately. */
286static struct
488f131b
JB
287{
288 enum target_waitkind kind;
289 struct
c906108c 290 {
488f131b 291 int parent_pid;
488f131b 292 int child_pid;
c906108c 293 }
488f131b
JB
294 fork_event;
295 char *execd_pathname;
296}
c906108c
SS
297pending_follow;
298
53904c9e
AC
299static const char follow_fork_mode_child[] = "child";
300static const char follow_fork_mode_parent[] = "parent";
301
488f131b 302static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
303 follow_fork_mode_child,
304 follow_fork_mode_parent,
305 NULL
ef346e04 306};
c906108c 307
53904c9e 308static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
309static void
310show_follow_fork_mode_string (struct ui_file *file, int from_tty,
311 struct cmd_list_element *c, const char *value)
312{
313 fprintf_filtered (file, _("\
314Debugger response to a program call of fork or vfork is \"%s\".\n"),
315 value);
316}
c906108c
SS
317\f
318
6604731b 319static int
4ef3f3be 320follow_fork (void)
c906108c 321{
ea1dd7bc 322 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 323
6604731b 324 return target_follow_fork (follow_child);
c906108c
SS
325}
326
6604731b
DJ
327void
328follow_inferior_reset_breakpoints (void)
c906108c 329{
6604731b
DJ
330 /* Was there a step_resume breakpoint? (There was if the user
331 did a "next" at the fork() call.) If so, explicitly reset its
332 thread number.
333
334 step_resumes are a form of bp that are made to be per-thread.
335 Since we created the step_resume bp when the parent process
336 was being debugged, and now are switching to the child process,
337 from the breakpoint package's viewpoint, that's a switch of
338 "threads". We must update the bp's notion of which thread
339 it is for, or it'll be ignored when it triggers. */
340
341 if (step_resume_breakpoint)
342 breakpoint_re_set_thread (step_resume_breakpoint);
343
344 /* Reinsert all breakpoints in the child. The user may have set
345 breakpoints after catching the fork, in which case those
346 were never set in the child, but only in the parent. This makes
347 sure the inserted breakpoints match the breakpoint list. */
348
349 breakpoint_re_set ();
350 insert_breakpoints ();
c906108c 351}
c906108c 352
1adeb98a
FN
353/* EXECD_PATHNAME is assumed to be non-NULL. */
354
c906108c 355static void
96baa820 356follow_exec (int pid, char *execd_pathname)
c906108c 357{
c906108c 358 int saved_pid = pid;
7a292a7a
SS
359 struct target_ops *tgt;
360
c906108c
SS
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
363 momentary bp's, etc.
364
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
367 of instructions.
368
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
372
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
375 now.
376
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
382
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
387 step_range_end = 0;
388
c906108c 389 /* What is this a.out's name? */
a3f17187 390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
391
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
7a292a7a 394
c906108c 395 gdb_flush (gdb_stdout);
e85a822c 396 generic_mourn_inferior ();
488f131b 397 /* Because mourn_inferior resets inferior_ptid. */
e85a822c
DJ
398 inferior_ptid = pid_to_ptid (saved_pid);
399
400 if (gdb_sysroot && *gdb_sysroot)
401 {
402 char *name = alloca (strlen (gdb_sysroot)
403 + strlen (execd_pathname)
404 + 1);
405 strcpy (name, gdb_sysroot);
406 strcat (name, execd_pathname);
407 execd_pathname = name;
408 }
c906108c
SS
409
410 /* That a.out is now the one to use. */
411 exec_file_attach (execd_pathname, 0);
412
413 /* And also is where symbols can be found. */
1adeb98a 414 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
415
416 /* Reset the shared library package. This ensures that we get
417 a shlib event when the child reaches "_start", at which point
418 the dld will have had a chance to initialize the child. */
e85a822c 419 no_shared_libraries (NULL, 0);
7a292a7a 420#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 421 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
422#else
423 solib_create_inferior_hook ();
7a292a7a 424#endif
c906108c
SS
425
426 /* Reinsert all breakpoints. (Those which were symbolic have
427 been reset to the proper address in the new a.out, thanks
428 to symbol_file_command...) */
429 insert_breakpoints ();
430
431 /* The next resume of this inferior should bring it to the shlib
432 startup breakpoints. (If the user had also set bp's on
433 "main" from the old (parent) process, then they'll auto-
434 matically get reset there in the new process.) */
c906108c
SS
435}
436
437/* Non-zero if we just simulating a single-step. This is needed
438 because we cannot remove the breakpoints in the inferior process
439 until after the `wait' in `wait_for_inferior'. */
440static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
441
442/* The thread we inserted single-step breakpoints for. */
443static ptid_t singlestep_ptid;
444
fd48f117
DJ
445/* PC when we started this single-step. */
446static CORE_ADDR singlestep_pc;
447
9f976b41
DJ
448/* If another thread hit the singlestep breakpoint, we save the original
449 thread here so that we can resume single-stepping it later. */
450static ptid_t saved_singlestep_ptid;
451static int stepping_past_singlestep_breakpoint;
6a6b96b9 452
ca67fcb8
VP
453/* If not equal to null_ptid, this means that after stepping over breakpoint
454 is finished, we need to switch to deferred_step_ptid, and step it.
455
456 The use case is when one thread has hit a breakpoint, and then the user
457 has switched to another thread and issued 'step'. We need to step over
458 breakpoint in the thread which hit the breakpoint, but then continue
459 stepping the thread user has selected. */
460static ptid_t deferred_step_ptid;
c906108c
SS
461\f
462
463/* Things to clean up if we QUIT out of resume (). */
c906108c 464static void
74b7792f 465resume_cleanups (void *ignore)
c906108c
SS
466{
467 normal_stop ();
468}
469
53904c9e
AC
470static const char schedlock_off[] = "off";
471static const char schedlock_on[] = "on";
472static const char schedlock_step[] = "step";
488f131b 473static const char *scheduler_enums[] = {
ef346e04
AC
474 schedlock_off,
475 schedlock_on,
476 schedlock_step,
477 NULL
478};
920d2a44
AC
479static const char *scheduler_mode = schedlock_off;
480static void
481show_scheduler_mode (struct ui_file *file, int from_tty,
482 struct cmd_list_element *c, const char *value)
483{
484 fprintf_filtered (file, _("\
485Mode for locking scheduler during execution is \"%s\".\n"),
486 value);
487}
c906108c
SS
488
489static void
96baa820 490set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 491{
eefe576e
AC
492 if (!target_can_lock_scheduler)
493 {
494 scheduler_mode = schedlock_off;
495 error (_("Target '%s' cannot support this command."), target_shortname);
496 }
c906108c
SS
497}
498
499
500/* Resume the inferior, but allow a QUIT. This is useful if the user
501 wants to interrupt some lengthy single-stepping operation
502 (for child processes, the SIGINT goes to the inferior, and so
503 we get a SIGINT random_signal, but for remote debugging and perhaps
504 other targets, that's not true).
505
506 STEP nonzero if we should step (zero to continue instead).
507 SIG is the signal to give the inferior (zero for none). */
508void
96baa820 509resume (int step, enum target_signal sig)
c906108c
SS
510{
511 int should_resume = 1;
74b7792f 512 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
513 QUIT;
514
527159b7 515 if (debug_infrun)
8a9de0e4
AC
516 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
517 step, sig);
527159b7 518
ef5cf84e
MS
519 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
520
c906108c 521
692590c1
MS
522 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
523 over an instruction that causes a page fault without triggering
524 a hardware watchpoint. The kernel properly notices that it shouldn't
525 stop, because the hardware watchpoint is not triggered, but it forgets
526 the step request and continues the program normally.
527 Work around the problem by removing hardware watchpoints if a step is
528 requested, GDB will check for a hardware watchpoint trigger after the
529 step anyway. */
c36b740a 530 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 531 remove_hw_watchpoints ();
488f131b 532
692590c1 533
c2c6d25f
JM
534 /* Normally, by the time we reach `resume', the breakpoints are either
535 removed or inserted, as appropriate. The exception is if we're sitting
536 at a permanent breakpoint; we need to step over it, but permanent
537 breakpoints can't be removed. So we have to test for it here. */
538 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
539 {
540 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
541 gdbarch_skip_permanent_breakpoint (current_gdbarch,
542 get_current_regcache ());
6d350bb5
UW
543 else
544 error (_("\
545The program is stopped at a permanent breakpoint, but GDB does not know\n\
546how to step past a permanent breakpoint on this architecture. Try using\n\
547a command like `return' or `jump' to continue execution."));
548 }
c2c6d25f 549
1c0fdd0e 550 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
551 {
552 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 553 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
554 {
555 /* ...and don't ask hardware to do it. */
556 step = 0;
557 /* and do not pull these breakpoints until after a `wait' in
558 `wait_for_inferior' */
559 singlestep_breakpoints_inserted_p = 1;
560 singlestep_ptid = inferior_ptid;
561 singlestep_pc = read_pc ();
562 }
c906108c
SS
563 }
564
c906108c 565 /* If there were any forks/vforks/execs that were caught and are
6604731b 566 now to be followed, then do so. */
c906108c
SS
567 switch (pending_follow.kind)
568 {
6604731b
DJ
569 case TARGET_WAITKIND_FORKED:
570 case TARGET_WAITKIND_VFORKED:
c906108c 571 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
572 if (follow_fork ())
573 should_resume = 0;
c906108c
SS
574 break;
575
6604731b 576 case TARGET_WAITKIND_EXECD:
c906108c 577 /* follow_exec is called as soon as the exec event is seen. */
6604731b 578 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
579 break;
580
581 default:
582 break;
583 }
c906108c
SS
584
585 /* Install inferior's terminal modes. */
586 target_terminal_inferior ();
587
588 if (should_resume)
589 {
39f77062 590 ptid_t resume_ptid;
dfcd3bfb 591
488f131b 592 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 593
cd76b0b7
VP
594 /* If STEP is set, it's a request to use hardware stepping
595 facilities. But in that case, we should never
596 use singlestep breakpoint. */
597 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
598
599 if (singlestep_breakpoints_inserted_p
600 && stepping_past_singlestep_breakpoint)
c906108c 601 {
cd76b0b7
VP
602 /* The situation here is as follows. In thread T1 we wanted to
603 single-step. Lacking hardware single-stepping we've
604 set breakpoint at the PC of the next instruction -- call it
605 P. After resuming, we've hit that breakpoint in thread T2.
606 Now we've removed original breakpoint, inserted breakpoint
607 at P+1, and try to step to advance T2 past breakpoint.
608 We need to step only T2, as if T1 is allowed to freely run,
609 it can run past P, and if other threads are allowed to run,
610 they can hit breakpoint at P+1, and nested hits of single-step
611 breakpoints is not something we'd want -- that's complicated
612 to support, and has no value. */
613 resume_ptid = inferior_ptid;
614 }
c906108c 615
e842223a
VP
616 if ((step || singlestep_breakpoints_inserted_p)
617 && breakpoint_here_p (read_pc ())
cd76b0b7
VP
618 && !breakpoint_inserted_here_p (read_pc ()))
619 {
620 /* We're stepping, have breakpoint at PC, and it's
621 not inserted. Most likely, proceed has noticed that
622 we have breakpoint and tries to single-step over it,
623 so that it's not hit. In which case, we need to
624 single-step only this thread, and keep others stopped,
625 as they can miss this breakpoint if allowed to run.
626
627 The current code either has all breakpoints inserted,
628 or all removed, so if we let other threads run,
629 we can actually miss any breakpoint, not the one at PC. */
ef5cf84e 630 resume_ptid = inferior_ptid;
c906108c 631 }
ef5cf84e 632
8fb3e588
AC
633 if ((scheduler_mode == schedlock_on)
634 || (scheduler_mode == schedlock_step
635 && (step || singlestep_breakpoints_inserted_p)))
c906108c 636 {
ef5cf84e 637 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 638 resume_ptid = inferior_ptid;
c906108c 639 }
ef5cf84e 640
e6cf7916 641 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
642 {
643 /* Most targets can step a breakpoint instruction, thus
644 executing it normally. But if this one cannot, just
645 continue and we will hit it anyway. */
c36b740a 646 if (step && breakpoint_inserted_here_p (read_pc ()))
c4ed33b9
AC
647 step = 0;
648 }
39f77062 649 target_resume (resume_ptid, step, sig);
c906108c
SS
650 }
651
652 discard_cleanups (old_cleanups);
653}
654\f
655
656/* Clear out all variables saying what to do when inferior is continued.
657 First do this, then set the ones you want, then call `proceed'. */
658
659void
96baa820 660clear_proceed_status (void)
c906108c 661{
ca67fcb8 662 stepping_over_breakpoint = 0;
c906108c
SS
663 step_range_start = 0;
664 step_range_end = 0;
aa0cd9c1 665 step_frame_id = null_frame_id;
5fbbeb29 666 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 667 stop_after_trap = 0;
c0236d92 668 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
669 proceed_to_finish = 0;
670 breakpoint_proceeded = 1; /* We're about to proceed... */
671
d5c31457
UW
672 if (stop_registers)
673 {
674 regcache_xfree (stop_registers);
675 stop_registers = NULL;
676 }
677
c906108c
SS
678 /* Discard any remaining commands or status from previous stop. */
679 bpstat_clear (&stop_bpstat);
680}
681
ea67f13b
DJ
682/* This should be suitable for any targets that support threads. */
683
684static int
6a6b96b9 685prepare_to_proceed (int step)
ea67f13b
DJ
686{
687 ptid_t wait_ptid;
688 struct target_waitstatus wait_status;
689
690 /* Get the last target status returned by target_wait(). */
691 get_last_target_status (&wait_ptid, &wait_status);
692
6a6b96b9 693 /* Make sure we were stopped at a breakpoint. */
ea67f13b 694 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 695 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
696 {
697 return 0;
698 }
699
6a6b96b9 700 /* Switched over from WAIT_PID. */
ea67f13b 701 if (!ptid_equal (wait_ptid, minus_one_ptid)
6a6b96b9
UW
702 && !ptid_equal (inferior_ptid, wait_ptid)
703 && breakpoint_here_p (read_pc_pid (wait_ptid)))
ea67f13b 704 {
6a6b96b9
UW
705 /* If stepping, remember current thread to switch back to. */
706 if (step)
ea67f13b 707 {
ca67fcb8 708 deferred_step_ptid = inferior_ptid;
ea67f13b
DJ
709 }
710
6a6b96b9
UW
711 /* Switch back to WAIT_PID thread. */
712 switch_to_thread (wait_ptid);
713
8fb3e588 714 /* We return 1 to indicate that there is a breakpoint here,
6a6b96b9
UW
715 so we need to step over it before continuing to avoid
716 hitting it straight away. */
717 return 1;
ea67f13b
DJ
718 }
719
720 return 0;
ea67f13b 721}
e4846b08
JJ
722
723/* Record the pc of the program the last time it stopped. This is
724 just used internally by wait_for_inferior, but need to be preserved
725 over calls to it and cleared when the inferior is started. */
726static CORE_ADDR prev_pc;
727
c906108c
SS
728/* Basic routine for continuing the program in various fashions.
729
730 ADDR is the address to resume at, or -1 for resume where stopped.
731 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 732 or -1 for act according to how it stopped.
c906108c 733 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
734 -1 means return after that and print nothing.
735 You should probably set various step_... variables
736 before calling here, if you are stepping.
c906108c
SS
737
738 You should call clear_proceed_status before calling proceed. */
739
740void
96baa820 741proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
742{
743 int oneproc = 0;
744
745 if (step > 0)
746 step_start_function = find_pc_function (read_pc ());
747 if (step < 0)
748 stop_after_trap = 1;
749
2acceee2 750 if (addr == (CORE_ADDR) -1)
c906108c 751 {
c906108c 752 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
753 /* There is a breakpoint at the address we will resume at,
754 step one instruction before inserting breakpoints so that
755 we do not stop right away (and report a second hit at this
756 breakpoint). */
c906108c 757 oneproc = 1;
3352ef37
AC
758 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
759 && gdbarch_single_step_through_delay (current_gdbarch,
760 get_current_frame ()))
761 /* We stepped onto an instruction that needs to be stepped
762 again before re-inserting the breakpoint, do so. */
c906108c
SS
763 oneproc = 1;
764 }
765 else
766 {
767 write_pc (addr);
c906108c
SS
768 }
769
527159b7 770 if (debug_infrun)
8a9de0e4
AC
771 fprintf_unfiltered (gdb_stdlog,
772 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
773 paddr_nz (addr), siggnal, step);
527159b7 774
c906108c
SS
775 /* In a multi-threaded task we may select another thread
776 and then continue or step.
777
778 But if the old thread was stopped at a breakpoint, it
779 will immediately cause another breakpoint stop without
780 any execution (i.e. it will report a breakpoint hit
781 incorrectly). So we must step over it first.
782
ea67f13b 783 prepare_to_proceed checks the current thread against the thread
c906108c
SS
784 that reported the most recent event. If a step-over is required
785 it returns TRUE and sets the current thread to the old thread. */
6a6b96b9 786 if (prepare_to_proceed (step))
ea67f13b 787 oneproc = 1;
c906108c 788
c906108c
SS
789 if (oneproc)
790 /* We will get a trace trap after one instruction.
791 Continue it automatically and insert breakpoints then. */
ca67fcb8 792 stepping_over_breakpoint = 1;
c906108c 793 else
c36b740a 794 insert_breakpoints ();
c906108c
SS
795
796 if (siggnal != TARGET_SIGNAL_DEFAULT)
797 stop_signal = siggnal;
798 /* If this signal should not be seen by program,
799 give it zero. Used for debugging signals. */
800 else if (!signal_program[stop_signal])
801 stop_signal = TARGET_SIGNAL_0;
802
803 annotate_starting ();
804
805 /* Make sure that output from GDB appears before output from the
806 inferior. */
807 gdb_flush (gdb_stdout);
808
e4846b08
JJ
809 /* Refresh prev_pc value just prior to resuming. This used to be
810 done in stop_stepping, however, setting prev_pc there did not handle
811 scenarios such as inferior function calls or returning from
812 a function via the return command. In those cases, the prev_pc
813 value was not set properly for subsequent commands. The prev_pc value
814 is used to initialize the starting line number in the ecs. With an
815 invalid value, the gdb next command ends up stopping at the position
816 represented by the next line table entry past our start position.
817 On platforms that generate one line table entry per line, this
818 is not a problem. However, on the ia64, the compiler generates
819 extraneous line table entries that do not increase the line number.
820 When we issue the gdb next command on the ia64 after an inferior call
821 or a return command, we often end up a few instructions forward, still
822 within the original line we started.
823
824 An attempt was made to have init_execution_control_state () refresh
825 the prev_pc value before calculating the line number. This approach
826 did not work because on platforms that use ptrace, the pc register
827 cannot be read unless the inferior is stopped. At that point, we
828 are not guaranteed the inferior is stopped and so the read_pc ()
829 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 830 updated correctly when the inferior is stopped. */
e4846b08
JJ
831 prev_pc = read_pc ();
832
c906108c
SS
833 /* Resume inferior. */
834 resume (oneproc || step || bpstat_should_step (), stop_signal);
835
836 /* Wait for it to stop (if not standalone)
837 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
838 /* Do this only if we are not using the event loop, or if the target
839 does not support asynchronous execution. */
362646f5 840 if (!target_can_async_p ())
43ff13b4 841 {
ae123ec6 842 wait_for_inferior (0);
43ff13b4
JM
843 normal_stop ();
844 }
c906108c 845}
c906108c
SS
846\f
847
848/* Start remote-debugging of a machine over a serial link. */
96baa820 849
c906108c 850void
8621d6a9 851start_remote (int from_tty)
c906108c
SS
852{
853 init_thread_list ();
854 init_wait_for_inferior ();
b0f4b84b 855 stop_soon = STOP_QUIETLY_REMOTE;
ca67fcb8 856 stepping_over_breakpoint = 0;
43ff13b4 857
6426a772
JM
858 /* Always go on waiting for the target, regardless of the mode. */
859 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 860 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
861 nothing is returned (instead of just blocking). Because of this,
862 targets expecting an immediate response need to, internally, set
863 things up so that the target_wait() is forced to eventually
864 timeout. */
865 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
866 differentiate to its caller what the state of the target is after
867 the initial open has been performed. Here we're assuming that
868 the target has stopped. It should be possible to eventually have
869 target_open() return to the caller an indication that the target
870 is currently running and GDB state should be set to the same as
871 for an async run. */
ae123ec6 872 wait_for_inferior (0);
8621d6a9
DJ
873
874 /* Now that the inferior has stopped, do any bookkeeping like
875 loading shared libraries. We want to do this before normal_stop,
876 so that the displayed frame is up to date. */
877 post_create_inferior (&current_target, from_tty);
878
6426a772 879 normal_stop ();
c906108c
SS
880}
881
882/* Initialize static vars when a new inferior begins. */
883
884void
96baa820 885init_wait_for_inferior (void)
c906108c
SS
886{
887 /* These are meaningless until the first time through wait_for_inferior. */
888 prev_pc = 0;
c906108c 889
c906108c
SS
890 breakpoint_init_inferior (inf_starting);
891
892 /* Don't confuse first call to proceed(). */
893 stop_signal = TARGET_SIGNAL_0;
894
895 /* The first resume is not following a fork/vfork/exec. */
896 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 897
c906108c 898 clear_proceed_status ();
9f976b41
DJ
899
900 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 901 deferred_step_ptid = null_ptid;
ca005067
DJ
902
903 target_last_wait_ptid = minus_one_ptid;
c906108c 904}
c906108c 905\f
b83266a0
SS
906/* This enum encodes possible reasons for doing a target_wait, so that
907 wfi can call target_wait in one place. (Ultimately the call will be
908 moved out of the infinite loop entirely.) */
909
c5aa993b
JM
910enum infwait_states
911{
cd0fc7c3
SS
912 infwait_normal_state,
913 infwait_thread_hop_state,
d983da9c 914 infwait_step_watch_state,
cd0fc7c3 915 infwait_nonstep_watch_state
b83266a0
SS
916};
917
11cf8741
JM
918/* Why did the inferior stop? Used to print the appropriate messages
919 to the interface from within handle_inferior_event(). */
920enum inferior_stop_reason
921{
11cf8741
JM
922 /* Step, next, nexti, stepi finished. */
923 END_STEPPING_RANGE,
11cf8741
JM
924 /* Inferior terminated by signal. */
925 SIGNAL_EXITED,
926 /* Inferior exited. */
927 EXITED,
928 /* Inferior received signal, and user asked to be notified. */
929 SIGNAL_RECEIVED
930};
931
cd0fc7c3
SS
932/* This structure contains what used to be local variables in
933 wait_for_inferior. Probably many of them can return to being
934 locals in handle_inferior_event. */
935
c5aa993b 936struct execution_control_state
488f131b
JB
937{
938 struct target_waitstatus ws;
939 struct target_waitstatus *wp;
ca67fcb8
VP
940 /* Should we step over breakpoint next time keep_going
941 is called? */
942 int stepping_over_breakpoint;
488f131b
JB
943 int random_signal;
944 CORE_ADDR stop_func_start;
945 CORE_ADDR stop_func_end;
946 char *stop_func_name;
947 struct symtab_and_line sal;
488f131b
JB
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
68f53502 953 int step_after_step_resume_breakpoint;
488f131b
JB
954 int stepping_through_solib_after_catch;
955 bpstat stepping_through_solib_catchpoints;
488f131b
JB
956 int new_thread_event;
957 struct target_waitstatus tmpstatus;
958 enum infwait_states infwait_state;
959 ptid_t waiton_ptid;
960 int wait_some_more;
961};
962
963void init_execution_control_state (struct execution_control_state *ecs);
964
965void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 966
c2c6d25f 967static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 968static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 969static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
970static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
971 struct frame_id sr_id);
104c1213
JM
972static void stop_stepping (struct execution_control_state *ecs);
973static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 974static void keep_going (struct execution_control_state *ecs);
488f131b
JB
975static void print_stop_reason (enum inferior_stop_reason stop_reason,
976 int stop_info);
104c1213 977
cd0fc7c3 978/* Wait for control to return from inferior to debugger.
ae123ec6
JB
979
980 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
981 as if they were SIGTRAP signals. This can be useful during
982 the startup sequence on some targets such as HP/UX, where
983 we receive an EXEC event instead of the expected SIGTRAP.
984
cd0fc7c3
SS
985 If inferior gets a signal, we may decide to start it up again
986 instead of returning. That is why there is a loop in this function.
987 When this function actually returns it means the inferior
988 should be left stopped and GDB should read more commands. */
989
990void
ae123ec6 991wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
992{
993 struct cleanup *old_cleanups;
994 struct execution_control_state ecss;
995 struct execution_control_state *ecs;
c906108c 996
527159b7 997 if (debug_infrun)
ae123ec6
JB
998 fprintf_unfiltered
999 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1000 treat_exec_as_sigtrap);
527159b7 1001
8601f500 1002 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 1003 &step_resume_breakpoint);
cd0fc7c3
SS
1004
1005 /* wfi still stays in a loop, so it's OK just to take the address of
1006 a local to get the ecs pointer. */
1007 ecs = &ecss;
1008
1009 /* Fill in with reasonable starting values. */
1010 init_execution_control_state (ecs);
1011
c906108c 1012 /* We'll update this if & when we switch to a new thread. */
39f77062 1013 previous_inferior_ptid = inferior_ptid;
c906108c 1014
cd0fc7c3
SS
1015 overlay_cache_invalid = 1;
1016
1017 /* We have to invalidate the registers BEFORE calling target_wait
1018 because they can be loaded from the target while in target_wait.
1019 This makes remote debugging a bit more efficient for those
1020 targets that provide critical registers as part of their normal
1021 status mechanism. */
1022
1023 registers_changed ();
b83266a0 1024
c906108c
SS
1025 while (1)
1026 {
9a4105ab
AC
1027 if (deprecated_target_wait_hook)
1028 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1029 else
39f77062 1030 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1031
ae123ec6
JB
1032 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1033 {
1034 xfree (ecs->ws.value.execd_pathname);
1035 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1036 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1037 }
1038
cd0fc7c3
SS
1039 /* Now figure out what to do with the result of the result. */
1040 handle_inferior_event (ecs);
c906108c 1041
cd0fc7c3
SS
1042 if (!ecs->wait_some_more)
1043 break;
1044 }
1045 do_cleanups (old_cleanups);
1046}
c906108c 1047
43ff13b4
JM
1048/* Asynchronous version of wait_for_inferior. It is called by the
1049 event loop whenever a change of state is detected on the file
1050 descriptor corresponding to the target. It can be called more than
1051 once to complete a single execution command. In such cases we need
1052 to keep the state in a global variable ASYNC_ECSS. If it is the
1053 last time that this function is called for a single execution
1054 command, then report to the user that the inferior has stopped, and
1055 do the necessary cleanups. */
1056
1057struct execution_control_state async_ecss;
1058struct execution_control_state *async_ecs;
1059
1060void
fba45db2 1061fetch_inferior_event (void *client_data)
43ff13b4
JM
1062{
1063 static struct cleanup *old_cleanups;
1064
c5aa993b 1065 async_ecs = &async_ecss;
43ff13b4
JM
1066
1067 if (!async_ecs->wait_some_more)
1068 {
488f131b 1069 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1070 &step_resume_breakpoint);
43ff13b4
JM
1071
1072 /* Fill in with reasonable starting values. */
1073 init_execution_control_state (async_ecs);
1074
43ff13b4 1075 /* We'll update this if & when we switch to a new thread. */
39f77062 1076 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1077
1078 overlay_cache_invalid = 1;
1079
1080 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1081 because they can be loaded from the target while in target_wait.
1082 This makes remote debugging a bit more efficient for those
1083 targets that provide critical registers as part of their normal
1084 status mechanism. */
43ff13b4
JM
1085
1086 registers_changed ();
1087 }
1088
9a4105ab 1089 if (deprecated_target_wait_hook)
488f131b 1090 async_ecs->ptid =
9a4105ab 1091 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1092 else
39f77062 1093 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1094
1095 /* Now figure out what to do with the result of the result. */
1096 handle_inferior_event (async_ecs);
1097
1098 if (!async_ecs->wait_some_more)
1099 {
adf40b2e 1100 /* Do only the cleanups that have been added by this
488f131b
JB
1101 function. Let the continuations for the commands do the rest,
1102 if there are any. */
43ff13b4
JM
1103 do_exec_cleanups (old_cleanups);
1104 normal_stop ();
c2d11a7d
JM
1105 if (step_multi && stop_step)
1106 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1107 else
1108 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1109 }
1110}
1111
cd0fc7c3
SS
1112/* Prepare an execution control state for looping through a
1113 wait_for_inferior-type loop. */
1114
1115void
96baa820 1116init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1117{
ca67fcb8 1118 ecs->stepping_over_breakpoint = 0;
cd0fc7c3 1119 ecs->random_signal = 0;
68f53502 1120 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1121 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1122 ecs->stepping_through_solib_after_catch = 0;
1123 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1124 ecs->sal = find_pc_line (prev_pc, 0);
1125 ecs->current_line = ecs->sal.line;
1126 ecs->current_symtab = ecs->sal.symtab;
1127 ecs->infwait_state = infwait_normal_state;
39f77062 1128 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1129 ecs->wp = &(ecs->ws);
1130}
1131
e02bc4cc 1132/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1133 target_wait()/deprecated_target_wait_hook(). The data is actually
1134 cached by handle_inferior_event(), which gets called immediately
1135 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1136
1137void
488f131b 1138get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1139{
39f77062 1140 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1141 *status = target_last_waitstatus;
1142}
1143
ac264b3b
MS
1144void
1145nullify_last_target_wait_ptid (void)
1146{
1147 target_last_wait_ptid = minus_one_ptid;
1148}
1149
dd80620e
MS
1150/* Switch thread contexts, maintaining "infrun state". */
1151
1152static void
1153context_switch (struct execution_control_state *ecs)
1154{
1155 /* Caution: it may happen that the new thread (or the old one!)
1156 is not in the thread list. In this case we must not attempt
1157 to "switch context", or we run the risk that our context may
1158 be lost. This may happen as a result of the target module
1159 mishandling thread creation. */
1160
fd48f117
DJ
1161 if (debug_infrun)
1162 {
1163 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1164 target_pid_to_str (inferior_ptid));
1165 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1166 target_pid_to_str (ecs->ptid));
1167 }
1168
dd80620e 1169 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1170 { /* Perform infrun state context switch: */
dd80620e 1171 /* Save infrun state for the old thread. */
0ce3d317 1172 save_infrun_state (inferior_ptid, prev_pc,
ca67fcb8 1173 stepping_over_breakpoint, step_resume_breakpoint,
15960608 1174 step_range_start,
aa0cd9c1 1175 step_range_end, &step_frame_id,
ca67fcb8 1176 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
dd80620e
MS
1177 ecs->stepping_through_solib_after_catch,
1178 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1179 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1180
1181 /* Load infrun state for the new thread. */
0ce3d317 1182 load_infrun_state (ecs->ptid, &prev_pc,
ca67fcb8 1183 &stepping_over_breakpoint, &step_resume_breakpoint,
15960608 1184 &step_range_start,
aa0cd9c1 1185 &step_range_end, &step_frame_id,
ca67fcb8 1186 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
dd80620e
MS
1187 &ecs->stepping_through_solib_after_catch,
1188 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1189 &ecs->current_line, &ecs->current_symtab);
dd80620e 1190 }
6a6b96b9
UW
1191
1192 switch_to_thread (ecs->ptid);
dd80620e
MS
1193}
1194
4fa8626c
DJ
1195static void
1196adjust_pc_after_break (struct execution_control_state *ecs)
1197{
8aad930b 1198 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1199
1200 /* If this target does not decrement the PC after breakpoints, then
1201 we have nothing to do. */
b798847d 1202 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1203 return;
1204
1205 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1206 we aren't, just return.
9709f61c
DJ
1207
1208 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1209 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1210 implemented by software breakpoints should be handled through the normal
1211 breakpoint layer.
8fb3e588 1212
4fa8626c
DJ
1213 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1214 different signals (SIGILL or SIGEMT for instance), but it is less
1215 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1216 gdbarch_decr_pc_after_break. I don't know any specific target that
1217 generates these signals at breakpoints (the code has been in GDB since at
1218 least 1992) so I can not guess how to handle them here.
8fb3e588 1219
e6cf7916
UW
1220 In earlier versions of GDB, a target with
1221 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1222 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1223 target with both of these set in GDB history, and it seems unlikely to be
1224 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1225
1226 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1227 return;
1228
1229 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1230 return;
1231
8aad930b
AC
1232 /* Find the location where (if we've hit a breakpoint) the
1233 breakpoint would be. */
b798847d
UW
1234 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1235 (current_gdbarch);
8aad930b 1236
1c0fdd0e
UW
1237 /* Check whether there actually is a software breakpoint inserted
1238 at that location. */
1239 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1240 {
1c0fdd0e
UW
1241 /* When using hardware single-step, a SIGTRAP is reported for both
1242 a completed single-step and a software breakpoint. Need to
1243 differentiate between the two, as the latter needs adjusting
1244 but the former does not.
1245
1246 The SIGTRAP can be due to a completed hardware single-step only if
1247 - we didn't insert software single-step breakpoints
1248 - the thread to be examined is still the current thread
1249 - this thread is currently being stepped
1250
1251 If any of these events did not occur, we must have stopped due
1252 to hitting a software breakpoint, and have to back up to the
1253 breakpoint address.
1254
1255 As a special case, we could have hardware single-stepped a
1256 software breakpoint. In this case (prev_pc == breakpoint_pc),
1257 we also need to back up to the breakpoint address. */
1258
1259 if (singlestep_breakpoints_inserted_p
1260 || !ptid_equal (ecs->ptid, inferior_ptid)
1261 || !currently_stepping (ecs)
1262 || prev_pc == breakpoint_pc)
8aad930b
AC
1263 write_pc_pid (breakpoint_pc, ecs->ptid);
1264 }
4fa8626c
DJ
1265}
1266
cd0fc7c3
SS
1267/* Given an execution control state that has been freshly filled in
1268 by an event from the inferior, figure out what it means and take
1269 appropriate action. */
c906108c 1270
cd0fc7c3 1271void
96baa820 1272handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1273{
c8edd8b4 1274 int sw_single_step_trap_p = 0;
d983da9c
DJ
1275 int stopped_by_watchpoint;
1276 int stepped_after_stopped_by_watchpoint = 0;
cd0fc7c3 1277
e02bc4cc 1278 /* Cache the last pid/waitstatus. */
39f77062 1279 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1280 target_last_waitstatus = *ecs->wp;
1281
ca005067
DJ
1282 /* Always clear state belonging to the previous time we stopped. */
1283 stop_stack_dummy = 0;
1284
4fa8626c
DJ
1285 adjust_pc_after_break (ecs);
1286
488f131b
JB
1287 switch (ecs->infwait_state)
1288 {
1289 case infwait_thread_hop_state:
527159b7 1290 if (debug_infrun)
8a9de0e4 1291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1292 /* Cancel the waiton_ptid. */
1293 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1294 break;
b83266a0 1295
488f131b 1296 case infwait_normal_state:
527159b7 1297 if (debug_infrun)
8a9de0e4 1298 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1299 break;
1300
1301 case infwait_step_watch_state:
1302 if (debug_infrun)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "infrun: infwait_step_watch_state\n");
1305
1306 stepped_after_stopped_by_watchpoint = 1;
488f131b 1307 break;
b83266a0 1308
488f131b 1309 case infwait_nonstep_watch_state:
527159b7 1310 if (debug_infrun)
8a9de0e4
AC
1311 fprintf_unfiltered (gdb_stdlog,
1312 "infrun: infwait_nonstep_watch_state\n");
488f131b 1313 insert_breakpoints ();
c906108c 1314
488f131b
JB
1315 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1316 handle things like signals arriving and other things happening
1317 in combination correctly? */
1318 stepped_after_stopped_by_watchpoint = 1;
1319 break;
65e82032
AC
1320
1321 default:
e2e0b3e5 1322 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1323 }
1324 ecs->infwait_state = infwait_normal_state;
c906108c 1325
35f196d9 1326 reinit_frame_cache ();
c906108c 1327
488f131b 1328 /* If it's a new process, add it to the thread database */
c906108c 1329
488f131b 1330 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1331 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1332 && !in_thread_list (ecs->ptid));
1333
1334 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1335 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
93815fbf 1336 add_thread (ecs->ptid);
c906108c 1337
488f131b
JB
1338 switch (ecs->ws.kind)
1339 {
1340 case TARGET_WAITKIND_LOADED:
527159b7 1341 if (debug_infrun)
8a9de0e4 1342 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1343 /* Ignore gracefully during startup of the inferior, as it might
1344 be the shell which has just loaded some objects, otherwise
1345 add the symbols for the newly loaded objects. Also ignore at
1346 the beginning of an attach or remote session; we will query
1347 the full list of libraries once the connection is
1348 established. */
c0236d92 1349 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1350 {
1351 /* Remove breakpoints, SOLIB_ADD might adjust
1352 breakpoint addresses via breakpoint_re_set. */
c36b740a 1353 remove_breakpoints ();
c906108c 1354
488f131b
JB
1355 /* Check for any newly added shared libraries if we're
1356 supposed to be adding them automatically. Switch
1357 terminal for any messages produced by
1358 breakpoint_re_set. */
1359 target_terminal_ours_for_output ();
aff6338a 1360 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1361 stack's section table is kept up-to-date. Architectures,
1362 (e.g., PPC64), use the section table to perform
1363 operations such as address => section name and hence
1364 require the table to contain all sections (including
1365 those found in shared libraries). */
aff6338a 1366 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1367 exec_ops to SOLIB_ADD. This is because current GDB is
1368 only tooled to propagate section_table changes out from
1369 the "current_target" (see target_resize_to_sections), and
1370 not up from the exec stratum. This, of course, isn't
1371 right. "infrun.c" should only interact with the
1372 exec/process stratum, instead relying on the target stack
1373 to propagate relevant changes (stop, section table
1374 changed, ...) up to other layers. */
b0f4b84b 1375#ifdef SOLIB_ADD
aff6338a 1376 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1377#else
1378 solib_add (NULL, 0, &current_target, auto_solib_add);
1379#endif
488f131b
JB
1380 target_terminal_inferior ();
1381
b0f4b84b
DJ
1382 /* If requested, stop when the dynamic linker notifies
1383 gdb of events. This allows the user to get control
1384 and place breakpoints in initializer routines for
1385 dynamically loaded objects (among other things). */
1386 if (stop_on_solib_events)
1387 {
1388 stop_stepping (ecs);
1389 return;
1390 }
1391
1392 /* NOTE drow/2007-05-11: This might be a good place to check
1393 for "catch load". */
1394
488f131b 1395 /* Reinsert breakpoints and continue. */
c36b740a 1396 insert_breakpoints ();
488f131b 1397 }
b0f4b84b
DJ
1398
1399 /* If we are skipping through a shell, or through shared library
1400 loading that we aren't interested in, resume the program. If
1401 we're running the program normally, also resume. But stop if
1402 we're attaching or setting up a remote connection. */
1403 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1404 {
1405 resume (0, TARGET_SIGNAL_0);
1406 prepare_to_wait (ecs);
1407 return;
1408 }
1409
1410 break;
c5aa993b 1411
488f131b 1412 case TARGET_WAITKIND_SPURIOUS:
527159b7 1413 if (debug_infrun)
8a9de0e4 1414 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1415 resume (0, TARGET_SIGNAL_0);
1416 prepare_to_wait (ecs);
1417 return;
c5aa993b 1418
488f131b 1419 case TARGET_WAITKIND_EXITED:
527159b7 1420 if (debug_infrun)
8a9de0e4 1421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1422 target_terminal_ours (); /* Must do this before mourn anyway */
1423 print_stop_reason (EXITED, ecs->ws.value.integer);
1424
1425 /* Record the exit code in the convenience variable $_exitcode, so
1426 that the user can inspect this again later. */
1427 set_internalvar (lookup_internalvar ("_exitcode"),
1428 value_from_longest (builtin_type_int,
1429 (LONGEST) ecs->ws.value.integer));
1430 gdb_flush (gdb_stdout);
1431 target_mourn_inferior ();
1c0fdd0e 1432 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1433 stop_print_frame = 0;
1434 stop_stepping (ecs);
1435 return;
c5aa993b 1436
488f131b 1437 case TARGET_WAITKIND_SIGNALLED:
527159b7 1438 if (debug_infrun)
8a9de0e4 1439 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1440 stop_print_frame = 0;
1441 stop_signal = ecs->ws.value.sig;
1442 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1443
488f131b
JB
1444 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1445 reach here unless the inferior is dead. However, for years
1446 target_kill() was called here, which hints that fatal signals aren't
1447 really fatal on some systems. If that's true, then some changes
1448 may be needed. */
1449 target_mourn_inferior ();
c906108c 1450
488f131b 1451 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1452 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1453 stop_stepping (ecs);
1454 return;
c906108c 1455
488f131b
JB
1456 /* The following are the only cases in which we keep going;
1457 the above cases end in a continue or goto. */
1458 case TARGET_WAITKIND_FORKED:
deb3b17b 1459 case TARGET_WAITKIND_VFORKED:
527159b7 1460 if (debug_infrun)
8a9de0e4 1461 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1462 stop_signal = TARGET_SIGNAL_TRAP;
1463 pending_follow.kind = ecs->ws.kind;
1464
8e7d2c16
DJ
1465 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1466 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1467
5a2901d9
DJ
1468 if (!ptid_equal (ecs->ptid, inferior_ptid))
1469 {
1470 context_switch (ecs);
35f196d9 1471 reinit_frame_cache ();
5a2901d9
DJ
1472 }
1473
488f131b 1474 stop_pc = read_pc ();
675bf4cb 1475
d983da9c 1476 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1477
488f131b 1478 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1479
1480 /* If no catchpoint triggered for this, then keep going. */
1481 if (ecs->random_signal)
1482 {
1483 stop_signal = TARGET_SIGNAL_0;
1484 keep_going (ecs);
1485 return;
1486 }
488f131b
JB
1487 goto process_event_stop_test;
1488
1489 case TARGET_WAITKIND_EXECD:
527159b7 1490 if (debug_infrun)
fc5261f2 1491 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1492 stop_signal = TARGET_SIGNAL_TRAP;
1493
488f131b
JB
1494 pending_follow.execd_pathname =
1495 savestring (ecs->ws.value.execd_pathname,
1496 strlen (ecs->ws.value.execd_pathname));
1497
488f131b
JB
1498 /* This causes the eventpoints and symbol table to be reset. Must
1499 do this now, before trying to determine whether to stop. */
1500 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1501 xfree (pending_follow.execd_pathname);
c906108c 1502
488f131b
JB
1503 stop_pc = read_pc_pid (ecs->ptid);
1504 ecs->saved_inferior_ptid = inferior_ptid;
1505 inferior_ptid = ecs->ptid;
675bf4cb 1506
d983da9c 1507 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1508
488f131b
JB
1509 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1510 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1511
5a2901d9
DJ
1512 if (!ptid_equal (ecs->ptid, inferior_ptid))
1513 {
1514 context_switch (ecs);
35f196d9 1515 reinit_frame_cache ();
5a2901d9
DJ
1516 }
1517
04e68871
DJ
1518 /* If no catchpoint triggered for this, then keep going. */
1519 if (ecs->random_signal)
1520 {
1521 stop_signal = TARGET_SIGNAL_0;
1522 keep_going (ecs);
1523 return;
1524 }
488f131b
JB
1525 goto process_event_stop_test;
1526
b4dc5ffa
MK
1527 /* Be careful not to try to gather much state about a thread
1528 that's in a syscall. It's frequently a losing proposition. */
488f131b 1529 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1530 if (debug_infrun)
8a9de0e4 1531 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1532 resume (0, TARGET_SIGNAL_0);
1533 prepare_to_wait (ecs);
1534 return;
c906108c 1535
488f131b
JB
1536 /* Before examining the threads further, step this thread to
1537 get it entirely out of the syscall. (We get notice of the
1538 event when the thread is just on the verge of exiting a
1539 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1540 into user code.) */
488f131b 1541 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1542 if (debug_infrun)
8a9de0e4 1543 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1544 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1545 prepare_to_wait (ecs);
1546 return;
c906108c 1547
488f131b 1548 case TARGET_WAITKIND_STOPPED:
527159b7 1549 if (debug_infrun)
8a9de0e4 1550 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1551 stop_signal = ecs->ws.value.sig;
1552 break;
c906108c 1553
488f131b
JB
1554 /* We had an event in the inferior, but we are not interested
1555 in handling it at this level. The lower layers have already
8e7d2c16 1556 done what needs to be done, if anything.
8fb3e588
AC
1557
1558 One of the possible circumstances for this is when the
1559 inferior produces output for the console. The inferior has
1560 not stopped, and we are ignoring the event. Another possible
1561 circumstance is any event which the lower level knows will be
1562 reported multiple times without an intervening resume. */
488f131b 1563 case TARGET_WAITKIND_IGNORE:
527159b7 1564 if (debug_infrun)
8a9de0e4 1565 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1566 prepare_to_wait (ecs);
488f131b
JB
1567 return;
1568 }
c906108c 1569
488f131b
JB
1570 /* We may want to consider not doing a resume here in order to give
1571 the user a chance to play with the new thread. It might be good
1572 to make that a user-settable option. */
c906108c 1573
488f131b
JB
1574 /* At this point, all threads are stopped (happens automatically in
1575 either the OS or the native code). Therefore we need to continue
1576 all threads in order to make progress. */
1577 if (ecs->new_thread_event)
1578 {
1579 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1580 prepare_to_wait (ecs);
1581 return;
1582 }
c906108c 1583
488f131b
JB
1584 stop_pc = read_pc_pid (ecs->ptid);
1585
527159b7 1586 if (debug_infrun)
8a9de0e4 1587 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1588
9f976b41
DJ
1589 if (stepping_past_singlestep_breakpoint)
1590 {
1c0fdd0e 1591 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1592 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1593 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1594
1595 stepping_past_singlestep_breakpoint = 0;
1596
1597 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1598 breakpoint, or stopped for some other reason. It would be nice if
1599 we could tell, but we can't reliably. */
9f976b41 1600 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1601 {
527159b7 1602 if (debug_infrun)
8a9de0e4 1603 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1604 /* Pull the single step breakpoints out of the target. */
e0cd558a 1605 remove_single_step_breakpoints ();
9f976b41
DJ
1606 singlestep_breakpoints_inserted_p = 0;
1607
1608 ecs->random_signal = 0;
1609
1610 ecs->ptid = saved_singlestep_ptid;
1611 context_switch (ecs);
9a4105ab
AC
1612 if (deprecated_context_hook)
1613 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1614
1615 resume (1, TARGET_SIGNAL_0);
1616 prepare_to_wait (ecs);
1617 return;
1618 }
1619 }
1620
1621 stepping_past_singlestep_breakpoint = 0;
1622
ca67fcb8 1623 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 1624 {
6a6b96b9
UW
1625 /* If we stopped for some other reason than single-stepping, ignore
1626 the fact that we were supposed to switch back. */
1627 if (stop_signal == TARGET_SIGNAL_TRAP)
1628 {
1629 if (debug_infrun)
1630 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 1631 "infrun: handling deferred step\n");
6a6b96b9
UW
1632
1633 /* Pull the single step breakpoints out of the target. */
1634 if (singlestep_breakpoints_inserted_p)
1635 {
1636 remove_single_step_breakpoints ();
1637 singlestep_breakpoints_inserted_p = 0;
1638 }
1639
1640 /* Note: We do not call context_switch at this point, as the
1641 context is already set up for stepping the original thread. */
ca67fcb8
VP
1642 switch_to_thread (deferred_step_ptid);
1643 deferred_step_ptid = null_ptid;
6a6b96b9
UW
1644 /* Suppress spurious "Switching to ..." message. */
1645 previous_inferior_ptid = inferior_ptid;
1646
1647 resume (1, TARGET_SIGNAL_0);
1648 prepare_to_wait (ecs);
1649 return;
1650 }
ca67fcb8
VP
1651
1652 deferred_step_ptid = null_ptid;
6a6b96b9
UW
1653 }
1654
488f131b
JB
1655 /* See if a thread hit a thread-specific breakpoint that was meant for
1656 another thread. If so, then step that thread past the breakpoint,
1657 and continue it. */
1658
1659 if (stop_signal == TARGET_SIGNAL_TRAP)
1660 {
9f976b41
DJ
1661 int thread_hop_needed = 0;
1662
f8d40ec8
JB
1663 /* Check if a regular breakpoint has been hit before checking
1664 for a potential single step breakpoint. Otherwise, GDB will
1665 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 1666 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 1667 {
c5aa993b 1668 ecs->random_signal = 0;
4fa8626c 1669 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1670 thread_hop_needed = 1;
1671 }
1c0fdd0e 1672 else if (singlestep_breakpoints_inserted_p)
9f976b41 1673 {
fd48f117
DJ
1674 /* We have not context switched yet, so this should be true
1675 no matter which thread hit the singlestep breakpoint. */
1676 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1677 if (debug_infrun)
1678 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1679 "trap for %s\n",
1680 target_pid_to_str (ecs->ptid));
1681
9f976b41
DJ
1682 ecs->random_signal = 0;
1683 /* The call to in_thread_list is necessary because PTIDs sometimes
1684 change when we go from single-threaded to multi-threaded. If
1685 the singlestep_ptid is still in the list, assume that it is
1686 really different from ecs->ptid. */
1687 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1688 && in_thread_list (singlestep_ptid))
1689 {
fd48f117
DJ
1690 /* If the PC of the thread we were trying to single-step
1691 has changed, discard this event (which we were going
1692 to ignore anyway), and pretend we saw that thread
1693 trap. This prevents us continuously moving the
1694 single-step breakpoint forward, one instruction at a
1695 time. If the PC has changed, then the thread we were
1696 trying to single-step has trapped or been signalled,
1697 but the event has not been reported to GDB yet.
1698
1699 There might be some cases where this loses signal
1700 information, if a signal has arrived at exactly the
1701 same time that the PC changed, but this is the best
1702 we can do with the information available. Perhaps we
1703 should arrange to report all events for all threads
1704 when they stop, or to re-poll the remote looking for
1705 this particular thread (i.e. temporarily enable
1706 schedlock). */
1707 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1708 {
1709 if (debug_infrun)
1710 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1711 " but expected thread advanced also\n");
1712
1713 /* The current context still belongs to
1714 singlestep_ptid. Don't swap here, since that's
1715 the context we want to use. Just fudge our
1716 state and continue. */
1717 ecs->ptid = singlestep_ptid;
1718 stop_pc = read_pc_pid (ecs->ptid);
1719 }
1720 else
1721 {
1722 if (debug_infrun)
1723 fprintf_unfiltered (gdb_stdlog,
1724 "infrun: unexpected thread\n");
1725
1726 thread_hop_needed = 1;
1727 stepping_past_singlestep_breakpoint = 1;
1728 saved_singlestep_ptid = singlestep_ptid;
1729 }
9f976b41
DJ
1730 }
1731 }
1732
1733 if (thread_hop_needed)
8fb3e588
AC
1734 {
1735 int remove_status;
1736
527159b7 1737 if (debug_infrun)
8a9de0e4 1738 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1739
8fb3e588
AC
1740 /* Saw a breakpoint, but it was hit by the wrong thread.
1741 Just continue. */
1742
1c0fdd0e 1743 if (singlestep_breakpoints_inserted_p)
488f131b 1744 {
8fb3e588 1745 /* Pull the single step breakpoints out of the target. */
e0cd558a 1746 remove_single_step_breakpoints ();
8fb3e588
AC
1747 singlestep_breakpoints_inserted_p = 0;
1748 }
1749
1750 remove_status = remove_breakpoints ();
1751 /* Did we fail to remove breakpoints? If so, try
1752 to set the PC past the bp. (There's at least
1753 one situation in which we can fail to remove
1754 the bp's: On HP-UX's that use ttrace, we can't
1755 change the address space of a vforking child
1756 process until the child exits (well, okay, not
1757 then either :-) or execs. */
1758 if (remove_status != 0)
9d9cd7ac 1759 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
1760 else
1761 { /* Single step */
8fb3e588
AC
1762 if (!ptid_equal (inferior_ptid, ecs->ptid))
1763 context_switch (ecs);
1764 ecs->waiton_ptid = ecs->ptid;
1765 ecs->wp = &(ecs->ws);
ca67fcb8 1766 ecs->stepping_over_breakpoint = 1;
8fb3e588
AC
1767
1768 ecs->infwait_state = infwait_thread_hop_state;
1769 keep_going (ecs);
1770 registers_changed ();
1771 return;
1772 }
488f131b 1773 }
1c0fdd0e 1774 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1775 {
1776 sw_single_step_trap_p = 1;
1777 ecs->random_signal = 0;
1778 }
488f131b
JB
1779 }
1780 else
1781 ecs->random_signal = 1;
c906108c 1782
488f131b 1783 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1784 so, then switch to that thread. */
1785 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1786 {
527159b7 1787 if (debug_infrun)
8a9de0e4 1788 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1789
488f131b 1790 context_switch (ecs);
c5aa993b 1791
9a4105ab
AC
1792 if (deprecated_context_hook)
1793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1794 }
c906108c 1795
1c0fdd0e 1796 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1797 {
1798 /* Pull the single step breakpoints out of the target. */
e0cd558a 1799 remove_single_step_breakpoints ();
488f131b
JB
1800 singlestep_breakpoints_inserted_p = 0;
1801 }
c906108c 1802
d983da9c
DJ
1803 if (stepped_after_stopped_by_watchpoint)
1804 stopped_by_watchpoint = 0;
1805 else
1806 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1807
1808 /* If necessary, step over this watchpoint. We'll be back to display
1809 it in a moment. */
1810 if (stopped_by_watchpoint
1811 && (HAVE_STEPPABLE_WATCHPOINT
1812 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 1813 {
527159b7 1814 if (debug_infrun)
8a9de0e4 1815 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
c906108c 1816
488f131b
JB
1817 /* At this point, we are stopped at an instruction which has
1818 attempted to write to a piece of memory under control of
1819 a watchpoint. The instruction hasn't actually executed
1820 yet. If we were to evaluate the watchpoint expression
1821 now, we would get the old value, and therefore no change
1822 would seem to have occurred.
1823
1824 In order to make watchpoints work `right', we really need
1825 to complete the memory write, and then evaluate the
d983da9c
DJ
1826 watchpoint expression. We do this by single-stepping the
1827 target.
1828
1829 It may not be necessary to disable the watchpoint to stop over
1830 it. For example, the PA can (with some kernel cooperation)
1831 single step over a watchpoint without disabling the watchpoint.
1832
1833 It is far more common to need to disable a watchpoint to step
1834 the inferior over it. If we have non-steppable watchpoints,
1835 we must disable the current watchpoint; it's simplest to
1836 disable all watchpoints and breakpoints. */
1837
1838 if (!HAVE_STEPPABLE_WATCHPOINT)
1839 remove_breakpoints ();
488f131b
JB
1840 registers_changed ();
1841 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
488f131b 1842 ecs->waiton_ptid = ecs->ptid;
d983da9c
DJ
1843 if (HAVE_STEPPABLE_WATCHPOINT)
1844 ecs->infwait_state = infwait_step_watch_state;
1845 else
1846 ecs->infwait_state = infwait_nonstep_watch_state;
488f131b
JB
1847 prepare_to_wait (ecs);
1848 return;
1849 }
1850
488f131b
JB
1851 ecs->stop_func_start = 0;
1852 ecs->stop_func_end = 0;
1853 ecs->stop_func_name = 0;
1854 /* Don't care about return value; stop_func_start and stop_func_name
1855 will both be 0 if it doesn't work. */
1856 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1857 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1858 ecs->stop_func_start
1859 += gdbarch_deprecated_function_start_offset (current_gdbarch);
ca67fcb8 1860 ecs->stepping_over_breakpoint = 0;
488f131b
JB
1861 bpstat_clear (&stop_bpstat);
1862 stop_step = 0;
488f131b
JB
1863 stop_print_frame = 1;
1864 ecs->random_signal = 0;
1865 stopped_by_random_signal = 0;
488f131b 1866
3352ef37 1867 if (stop_signal == TARGET_SIGNAL_TRAP
ca67fcb8 1868 && stepping_over_breakpoint
3352ef37
AC
1869 && gdbarch_single_step_through_delay_p (current_gdbarch)
1870 && currently_stepping (ecs))
1871 {
b50d7442 1872 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
1873 also on an instruction that needs to be stepped multiple
1874 times before it's been fully executing. E.g., architectures
1875 with a delay slot. It needs to be stepped twice, once for
1876 the instruction and once for the delay slot. */
1877 int step_through_delay
1878 = gdbarch_single_step_through_delay (current_gdbarch,
1879 get_current_frame ());
527159b7 1880 if (debug_infrun && step_through_delay)
8a9de0e4 1881 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1882 if (step_range_end == 0 && step_through_delay)
1883 {
1884 /* The user issued a continue when stopped at a breakpoint.
1885 Set up for another trap and get out of here. */
ca67fcb8 1886 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
1887 keep_going (ecs);
1888 return;
1889 }
1890 else if (step_through_delay)
1891 {
1892 /* The user issued a step when stopped at a breakpoint.
1893 Maybe we should stop, maybe we should not - the delay
1894 slot *might* correspond to a line of source. In any
ca67fcb8
VP
1895 case, don't decide that here, just set
1896 ecs->stepping_over_breakpoint, making sure we
1897 single-step again before breakpoints are re-inserted. */
1898 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
1899 }
1900 }
1901
488f131b
JB
1902 /* Look at the cause of the stop, and decide what to do.
1903 The alternatives are:
1904 1) break; to really stop and return to the debugger,
1905 2) drop through to start up again
ca67fcb8 1906 (set ecs->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
1907 3) set ecs->random_signal to 1, and the decision between 1 and 2
1908 will be made according to the signal handling tables. */
1909
1910 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1911 that have to do with the program's own actions. Note that
1912 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1913 on the operating system version. Here we detect when a SIGILL or
1914 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1915 something similar for SIGSEGV, since a SIGSEGV will be generated
1916 when we're trying to execute a breakpoint instruction on a
1917 non-executable stack. This happens for call dummy breakpoints
1918 for architectures like SPARC that place call dummies on the
1919 stack. */
488f131b
JB
1920
1921 if (stop_signal == TARGET_SIGNAL_TRAP
c36b740a 1922 || (breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
1923 && (stop_signal == TARGET_SIGNAL_ILL
1924 || stop_signal == TARGET_SIGNAL_SEGV
1925 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1926 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1927 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1928 {
1929 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1930 {
527159b7 1931 if (debug_infrun)
8a9de0e4 1932 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1933 stop_print_frame = 0;
1934 stop_stepping (ecs);
1935 return;
1936 }
c54cfec8
EZ
1937
1938 /* This is originated from start_remote(), start_inferior() and
1939 shared libraries hook functions. */
b0f4b84b 1940 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1941 {
527159b7 1942 if (debug_infrun)
8a9de0e4 1943 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1944 stop_stepping (ecs);
1945 return;
1946 }
1947
c54cfec8
EZ
1948 /* This originates from attach_command(). We need to overwrite
1949 the stop_signal here, because some kernels don't ignore a
1950 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1951 See more comments in inferior.h. */
c0236d92 1952 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1953 {
1954 stop_stepping (ecs);
1955 if (stop_signal == TARGET_SIGNAL_STOP)
1956 stop_signal = TARGET_SIGNAL_0;
1957 return;
1958 }
1959
fba57f8f
VP
1960 /* See if there is a breakpoint at the current PC. */
1961 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1962
1963 /* Following in case break condition called a
1964 function. */
1965 stop_print_frame = 1;
488f131b 1966
73dd234f 1967 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
1968 at one stage in the past included checks for an inferior
1969 function call's call dummy's return breakpoint. The original
1970 comment, that went with the test, read:
73dd234f 1971
8fb3e588
AC
1972 ``End of a stack dummy. Some systems (e.g. Sony news) give
1973 another signal besides SIGTRAP, so check here as well as
1974 above.''
73dd234f
AC
1975
1976 If someone ever tries to get get call dummys on a
1977 non-executable stack to work (where the target would stop
03cebad2
MK
1978 with something like a SIGSEGV), then those tests might need
1979 to be re-instated. Given, however, that the tests were only
73dd234f 1980 enabled when momentary breakpoints were not being used, I
03cebad2
MK
1981 suspect that it won't be the case.
1982
8fb3e588
AC
1983 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1984 be necessary for call dummies on a non-executable stack on
1985 SPARC. */
73dd234f 1986
488f131b
JB
1987 if (stop_signal == TARGET_SIGNAL_TRAP)
1988 ecs->random_signal
1989 = !(bpstat_explains_signal (stop_bpstat)
ca67fcb8 1990 || stepping_over_breakpoint
488f131b 1991 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1992 else
1993 {
73dd234f 1994 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1995 if (!ecs->random_signal)
1996 stop_signal = TARGET_SIGNAL_TRAP;
1997 }
1998 }
1999
2000 /* When we reach this point, we've pretty much decided
2001 that the reason for stopping must've been a random
2002 (unexpected) signal. */
2003
2004 else
2005 ecs->random_signal = 1;
488f131b 2006
04e68871 2007process_event_stop_test:
488f131b
JB
2008 /* For the program's own signals, act according to
2009 the signal handling tables. */
2010
2011 if (ecs->random_signal)
2012 {
2013 /* Signal not for debugging purposes. */
2014 int printed = 0;
2015
527159b7 2016 if (debug_infrun)
8a9de0e4 2017 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2018
488f131b
JB
2019 stopped_by_random_signal = 1;
2020
2021 if (signal_print[stop_signal])
2022 {
2023 printed = 1;
2024 target_terminal_ours_for_output ();
2025 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2026 }
2027 if (signal_stop[stop_signal])
2028 {
2029 stop_stepping (ecs);
2030 return;
2031 }
2032 /* If not going to stop, give terminal back
2033 if we took it away. */
2034 else if (printed)
2035 target_terminal_inferior ();
2036
2037 /* Clear the signal if it should not be passed. */
2038 if (signal_program[stop_signal] == 0)
2039 stop_signal = TARGET_SIGNAL_0;
2040
68f53502 2041 if (prev_pc == read_pc ()
68f53502 2042 && breakpoint_here_p (read_pc ())
c36b740a 2043 && !breakpoint_inserted_here_p (read_pc ())
68f53502
AC
2044 && step_resume_breakpoint == NULL)
2045 {
2046 /* We were just starting a new sequence, attempting to
2047 single-step off of a breakpoint and expecting a SIGTRAP.
2048 Intead this signal arrives. This signal will take us out
2049 of the stepping range so GDB needs to remember to, when
2050 the signal handler returns, resume stepping off that
2051 breakpoint. */
2052 /* To simplify things, "continue" is forced to use the same
2053 code paths as single-step - set a breakpoint at the
2054 signal return address and then, once hit, step off that
2055 breakpoint. */
d3169d93 2056
44cbf7b5 2057 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2058 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2059 keep_going (ecs);
2060 return;
68f53502 2061 }
9d799f85
AC
2062
2063 if (step_range_end != 0
2064 && stop_signal != TARGET_SIGNAL_0
2065 && stop_pc >= step_range_start && stop_pc < step_range_end
2066 && frame_id_eq (get_frame_id (get_current_frame ()),
2067 step_frame_id)
2068 && step_resume_breakpoint == NULL)
d303a6c7
AC
2069 {
2070 /* The inferior is about to take a signal that will take it
2071 out of the single step range. Set a breakpoint at the
2072 current PC (which is presumably where the signal handler
2073 will eventually return) and then allow the inferior to
2074 run free.
2075
2076 Note that this is only needed for a signal delivered
2077 while in the single-step range. Nested signals aren't a
2078 problem as they eventually all return. */
44cbf7b5 2079 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2080 keep_going (ecs);
2081 return;
d303a6c7 2082 }
9d799f85
AC
2083
2084 /* Note: step_resume_breakpoint may be non-NULL. This occures
2085 when either there's a nested signal, or when there's a
2086 pending signal enabled just as the signal handler returns
2087 (leaving the inferior at the step-resume-breakpoint without
2088 actually executing it). Either way continue until the
2089 breakpoint is really hit. */
488f131b
JB
2090 keep_going (ecs);
2091 return;
2092 }
2093
2094 /* Handle cases caused by hitting a breakpoint. */
2095 {
2096 CORE_ADDR jmp_buf_pc;
2097 struct bpstat_what what;
2098
2099 what = bpstat_what (stop_bpstat);
2100
2101 if (what.call_dummy)
2102 {
2103 stop_stack_dummy = 1;
c5aa993b 2104 }
c906108c 2105
488f131b 2106 switch (what.main_action)
c5aa993b 2107 {
488f131b
JB
2108 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2109 /* If we hit the breakpoint at longjmp, disable it for the
2110 duration of this command. Then, install a temporary
2111 breakpoint at the target of the jmp_buf. */
527159b7 2112 if (debug_infrun)
8802d8ed 2113 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b 2114 disable_longjmp_breakpoint ();
91104499 2115 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2116 || !gdbarch_get_longjmp_target (current_gdbarch,
2117 get_current_frame (), &jmp_buf_pc))
c5aa993b 2118 {
488f131b 2119 keep_going (ecs);
104c1213 2120 return;
c5aa993b 2121 }
488f131b
JB
2122
2123 /* Need to blow away step-resume breakpoint, as it
2124 interferes with us */
2125 if (step_resume_breakpoint != NULL)
104c1213 2126 {
488f131b 2127 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2128 }
c906108c 2129
8fb3e588 2130 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2131 ecs->handling_longjmp = 1; /* FIXME */
2132 keep_going (ecs);
2133 return;
c906108c 2134
488f131b
JB
2135 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2136 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2137 if (debug_infrun)
8802d8ed 2138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2139 disable_longjmp_breakpoint ();
2140 ecs->handling_longjmp = 0; /* FIXME */
2141 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2142 break;
2143 /* else fallthrough */
2144
2145 case BPSTAT_WHAT_SINGLE:
527159b7 2146 if (debug_infrun)
8802d8ed 2147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
ca67fcb8 2148 ecs->stepping_over_breakpoint = 1;
488f131b
JB
2149 /* Still need to check other stuff, at least the case
2150 where we are stepping and step out of the right range. */
2151 break;
c906108c 2152
488f131b 2153 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2154 if (debug_infrun)
8802d8ed 2155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2156 stop_print_frame = 1;
c906108c 2157
d303a6c7
AC
2158 /* We are about to nuke the step_resume_breakpointt via the
2159 cleanup chain, so no need to worry about it here. */
c5aa993b 2160
488f131b
JB
2161 stop_stepping (ecs);
2162 return;
c5aa993b 2163
488f131b 2164 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2165 if (debug_infrun)
8802d8ed 2166 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2167 stop_print_frame = 0;
c5aa993b 2168
d303a6c7
AC
2169 /* We are about to nuke the step_resume_breakpoin via the
2170 cleanup chain, so no need to worry about it here. */
c5aa993b 2171
488f131b 2172 stop_stepping (ecs);
e441088d 2173 return;
c5aa993b 2174
488f131b
JB
2175 case BPSTAT_WHAT_STEP_RESUME:
2176 /* This proably demands a more elegant solution, but, yeah
2177 right...
c5aa993b 2178
488f131b
JB
2179 This function's use of the simple variable
2180 step_resume_breakpoint doesn't seem to accomodate
2181 simultaneously active step-resume bp's, although the
2182 breakpoint list certainly can.
c5aa993b 2183
488f131b
JB
2184 If we reach here and step_resume_breakpoint is already
2185 NULL, then apparently we have multiple active
2186 step-resume bp's. We'll just delete the breakpoint we
2187 stopped at, and carry on.
2188
2189 Correction: what the code currently does is delete a
2190 step-resume bp, but it makes no effort to ensure that
2191 the one deleted is the one currently stopped at. MVS */
c5aa993b 2192
527159b7 2193 if (debug_infrun)
8802d8ed 2194 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2195
488f131b
JB
2196 if (step_resume_breakpoint == NULL)
2197 {
2198 step_resume_breakpoint =
2199 bpstat_find_step_resume_breakpoint (stop_bpstat);
2200 }
2201 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2202 if (ecs->step_after_step_resume_breakpoint)
2203 {
2204 /* Back when the step-resume breakpoint was inserted, we
2205 were trying to single-step off a breakpoint. Go back
2206 to doing that. */
2207 ecs->step_after_step_resume_breakpoint = 0;
ca67fcb8 2208 ecs->stepping_over_breakpoint = 1;
68f53502
AC
2209 keep_going (ecs);
2210 return;
2211 }
488f131b
JB
2212 break;
2213
488f131b
JB
2214 case BPSTAT_WHAT_CHECK_SHLIBS:
2215 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2216 {
527159b7 2217 if (debug_infrun)
8802d8ed 2218 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2219 /* Remove breakpoints, we eventually want to step over the
2220 shlib event breakpoint, and SOLIB_ADD might adjust
2221 breakpoint addresses via breakpoint_re_set. */
c36b740a 2222 remove_breakpoints ();
488f131b
JB
2223
2224 /* Check for any newly added shared libraries if we're
2225 supposed to be adding them automatically. Switch
2226 terminal for any messages produced by
2227 breakpoint_re_set. */
2228 target_terminal_ours_for_output ();
aff6338a 2229 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2230 stack's section table is kept up-to-date. Architectures,
2231 (e.g., PPC64), use the section table to perform
2232 operations such as address => section name and hence
2233 require the table to contain all sections (including
2234 those found in shared libraries). */
aff6338a 2235 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2236 exec_ops to SOLIB_ADD. This is because current GDB is
2237 only tooled to propagate section_table changes out from
2238 the "current_target" (see target_resize_to_sections), and
2239 not up from the exec stratum. This, of course, isn't
2240 right. "infrun.c" should only interact with the
2241 exec/process stratum, instead relying on the target stack
2242 to propagate relevant changes (stop, section table
2243 changed, ...) up to other layers. */
a77053c2 2244#ifdef SOLIB_ADD
aff6338a 2245 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2246#else
2247 solib_add (NULL, 0, &current_target, auto_solib_add);
2248#endif
488f131b
JB
2249 target_terminal_inferior ();
2250
488f131b
JB
2251 /* If requested, stop when the dynamic linker notifies
2252 gdb of events. This allows the user to get control
2253 and place breakpoints in initializer routines for
2254 dynamically loaded objects (among other things). */
877522db 2255 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2256 {
488f131b 2257 stop_stepping (ecs);
d4f3574e
SS
2258 return;
2259 }
c5aa993b 2260
488f131b
JB
2261 /* If we stopped due to an explicit catchpoint, then the
2262 (see above) call to SOLIB_ADD pulled in any symbols
2263 from a newly-loaded library, if appropriate.
2264
2265 We do want the inferior to stop, but not where it is
2266 now, which is in the dynamic linker callback. Rather,
2267 we would like it stop in the user's program, just after
2268 the call that caused this catchpoint to trigger. That
2269 gives the user a more useful vantage from which to
2270 examine their program's state. */
8fb3e588
AC
2271 else if (what.main_action
2272 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2273 {
488f131b
JB
2274 /* ??rehrauer: If I could figure out how to get the
2275 right return PC from here, we could just set a temp
2276 breakpoint and resume. I'm not sure we can without
2277 cracking open the dld's shared libraries and sniffing
2278 their unwind tables and text/data ranges, and that's
2279 not a terribly portable notion.
2280
2281 Until that time, we must step the inferior out of the
2282 dld callback, and also out of the dld itself (and any
2283 code or stubs in libdld.sl, such as "shl_load" and
2284 friends) until we reach non-dld code. At that point,
2285 we can stop stepping. */
2286 bpstat_get_triggered_catchpoints (stop_bpstat,
2287 &ecs->
2288 stepping_through_solib_catchpoints);
2289 ecs->stepping_through_solib_after_catch = 1;
2290
2291 /* Be sure to lift all breakpoints, so the inferior does
2292 actually step past this point... */
ca67fcb8 2293 ecs->stepping_over_breakpoint = 1;
488f131b 2294 break;
c906108c 2295 }
c5aa993b 2296 else
c5aa993b 2297 {
488f131b 2298 /* We want to step over this breakpoint, then keep going. */
ca67fcb8 2299 ecs->stepping_over_breakpoint = 1;
488f131b 2300 break;
c5aa993b 2301 }
488f131b 2302 }
488f131b 2303 break;
c906108c 2304
488f131b
JB
2305 case BPSTAT_WHAT_LAST:
2306 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2307
488f131b
JB
2308 case BPSTAT_WHAT_KEEP_CHECKING:
2309 break;
2310 }
2311 }
c906108c 2312
488f131b
JB
2313 /* We come here if we hit a breakpoint but should not
2314 stop for it. Possibly we also were stepping
2315 and should stop for that. So fall through and
2316 test for stepping. But, if not stepping,
2317 do not stop. */
c906108c 2318
9d1ff73f
MS
2319 /* Are we stepping to get the inferior out of the dynamic linker's
2320 hook (and possibly the dld itself) after catching a shlib
2321 event? */
488f131b
JB
2322 if (ecs->stepping_through_solib_after_catch)
2323 {
2324#if defined(SOLIB_ADD)
2325 /* Have we reached our destination? If not, keep going. */
2326 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2327 {
527159b7 2328 if (debug_infrun)
8a9de0e4 2329 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
ca67fcb8 2330 ecs->stepping_over_breakpoint = 1;
488f131b 2331 keep_going (ecs);
104c1213 2332 return;
488f131b
JB
2333 }
2334#endif
527159b7 2335 if (debug_infrun)
8a9de0e4 2336 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2337 /* Else, stop and report the catchpoint(s) whose triggering
2338 caused us to begin stepping. */
2339 ecs->stepping_through_solib_after_catch = 0;
2340 bpstat_clear (&stop_bpstat);
2341 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2342 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2343 stop_print_frame = 1;
2344 stop_stepping (ecs);
2345 return;
2346 }
c906108c 2347
488f131b
JB
2348 if (step_resume_breakpoint)
2349 {
527159b7 2350 if (debug_infrun)
d3169d93
DJ
2351 fprintf_unfiltered (gdb_stdlog,
2352 "infrun: step-resume breakpoint is inserted\n");
527159b7 2353
488f131b
JB
2354 /* Having a step-resume breakpoint overrides anything
2355 else having to do with stepping commands until
2356 that breakpoint is reached. */
488f131b
JB
2357 keep_going (ecs);
2358 return;
2359 }
c5aa993b 2360
488f131b
JB
2361 if (step_range_end == 0)
2362 {
527159b7 2363 if (debug_infrun)
8a9de0e4 2364 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2365 /* Likewise if we aren't even stepping. */
488f131b
JB
2366 keep_going (ecs);
2367 return;
2368 }
c5aa993b 2369
488f131b 2370 /* If stepping through a line, keep going if still within it.
c906108c 2371
488f131b
JB
2372 Note that step_range_end is the address of the first instruction
2373 beyond the step range, and NOT the address of the last instruction
2374 within it! */
2375 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2376 {
527159b7 2377 if (debug_infrun)
8a9de0e4 2378 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2379 paddr_nz (step_range_start),
2380 paddr_nz (step_range_end));
488f131b
JB
2381 keep_going (ecs);
2382 return;
2383 }
c5aa993b 2384
488f131b 2385 /* We stepped out of the stepping range. */
c906108c 2386
488f131b
JB
2387 /* If we are stepping at the source level and entered the runtime
2388 loader dynamic symbol resolution code, we keep on single stepping
2389 until we exit the run time loader code and reach the callee's
2390 address. */
2391 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2392#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2393 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2394#else
2395 && in_solib_dynsym_resolve_code (stop_pc)
2396#endif
2397 )
488f131b 2398 {
4c8c40e6
MK
2399 CORE_ADDR pc_after_resolver =
2400 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2401
527159b7 2402 if (debug_infrun)
8a9de0e4 2403 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2404
488f131b
JB
2405 if (pc_after_resolver)
2406 {
2407 /* Set up a step-resume breakpoint at the address
2408 indicated by SKIP_SOLIB_RESOLVER. */
2409 struct symtab_and_line sr_sal;
fe39c653 2410 init_sal (&sr_sal);
488f131b
JB
2411 sr_sal.pc = pc_after_resolver;
2412
44cbf7b5 2413 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2414 }
c906108c 2415
488f131b
JB
2416 keep_going (ecs);
2417 return;
2418 }
c906108c 2419
42edda50
AC
2420 if (step_range_end != 1
2421 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2422 || step_over_calls == STEP_OVER_ALL)
2423 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2424 {
527159b7 2425 if (debug_infrun)
8a9de0e4 2426 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2427 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2428 a signal trampoline (either by a signal being delivered or by
2429 the signal handler returning). Just single-step until the
2430 inferior leaves the trampoline (either by calling the handler
2431 or returning). */
488f131b
JB
2432 keep_going (ecs);
2433 return;
2434 }
c906108c 2435
c17eaafe
DJ
2436 /* Check for subroutine calls. The check for the current frame
2437 equalling the step ID is not necessary - the check of the
2438 previous frame's ID is sufficient - but it is a common case and
2439 cheaper than checking the previous frame's ID.
14e60db5
DJ
2440
2441 NOTE: frame_id_eq will never report two invalid frame IDs as
2442 being equal, so to get into this block, both the current and
2443 previous frame must have valid frame IDs. */
c17eaafe
DJ
2444 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2445 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2446 {
95918acb 2447 CORE_ADDR real_stop_pc;
8fb3e588 2448
527159b7 2449 if (debug_infrun)
8a9de0e4 2450 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2451
95918acb
AC
2452 if ((step_over_calls == STEP_OVER_NONE)
2453 || ((step_range_end == 1)
2454 && in_prologue (prev_pc, ecs->stop_func_start)))
2455 {
2456 /* I presume that step_over_calls is only 0 when we're
2457 supposed to be stepping at the assembly language level
2458 ("stepi"). Just stop. */
2459 /* Also, maybe we just did a "nexti" inside a prolog, so we
2460 thought it was a subroutine call but it was not. Stop as
2461 well. FENN */
2462 stop_step = 1;
2463 print_stop_reason (END_STEPPING_RANGE, 0);
2464 stop_stepping (ecs);
2465 return;
2466 }
8fb3e588 2467
8567c30f
AC
2468 if (step_over_calls == STEP_OVER_ALL)
2469 {
2470 /* We're doing a "next", set a breakpoint at callee's return
2471 address (the address at which the caller will
2472 resume). */
14e60db5 2473 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2474 keep_going (ecs);
2475 return;
2476 }
a53c66de 2477
95918acb 2478 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2479 calling routine and the real function), locate the real
2480 function. That's what tells us (a) whether we want to step
2481 into it at all, and (b) what prologue we want to run to the
2482 end of, if we do step into it. */
52f729a7 2483 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2484 if (real_stop_pc == 0)
52f729a7
UW
2485 real_stop_pc = gdbarch_skip_trampoline_code
2486 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2487 if (real_stop_pc != 0)
2488 ecs->stop_func_start = real_stop_pc;
8fb3e588 2489
a77053c2
MK
2490 if (
2491#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2492 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2493#else
2494 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2495#endif
2496)
1b2bfbb9
RC
2497 {
2498 struct symtab_and_line sr_sal;
2499 init_sal (&sr_sal);
2500 sr_sal.pc = ecs->stop_func_start;
2501
44cbf7b5 2502 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2503 keep_going (ecs);
2504 return;
1b2bfbb9
RC
2505 }
2506
95918acb 2507 /* If we have line number information for the function we are
8fb3e588 2508 thinking of stepping into, step into it.
95918acb 2509
8fb3e588
AC
2510 If there are several symtabs at that PC (e.g. with include
2511 files), just want to know whether *any* of them have line
2512 numbers. find_pc_line handles this. */
95918acb
AC
2513 {
2514 struct symtab_and_line tmp_sal;
8fb3e588 2515
95918acb
AC
2516 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2517 if (tmp_sal.line != 0)
2518 {
2519 step_into_function (ecs);
2520 return;
2521 }
2522 }
2523
2524 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2525 set, we stop the step so that the user has a chance to switch
2526 in assembly mode. */
95918acb
AC
2527 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2528 {
2529 stop_step = 1;
2530 print_stop_reason (END_STEPPING_RANGE, 0);
2531 stop_stepping (ecs);
2532 return;
2533 }
2534
2535 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2536 which the caller will resume). */
14e60db5 2537 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2538 keep_going (ecs);
488f131b 2539 return;
488f131b 2540 }
c906108c 2541
488f131b
JB
2542 /* If we're in the return path from a shared library trampoline,
2543 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2544 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2545 stop_pc, ecs->stop_func_name))
488f131b 2546 {
488f131b 2547 /* Determine where this trampoline returns. */
52f729a7
UW
2548 CORE_ADDR real_stop_pc;
2549 real_stop_pc = gdbarch_skip_trampoline_code
2550 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2551
527159b7 2552 if (debug_infrun)
8a9de0e4 2553 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2554
488f131b 2555 /* Only proceed through if we know where it's going. */
d764a824 2556 if (real_stop_pc)
488f131b
JB
2557 {
2558 /* And put the step-breakpoint there and go until there. */
2559 struct symtab_and_line sr_sal;
2560
fe39c653 2561 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2562 sr_sal.pc = real_stop_pc;
488f131b 2563 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2564
2565 /* Do not specify what the fp should be when we stop since
2566 on some machines the prologue is where the new fp value
2567 is established. */
2568 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2569
488f131b
JB
2570 /* Restart without fiddling with the step ranges or
2571 other state. */
2572 keep_going (ecs);
2573 return;
2574 }
2575 }
c906108c 2576
7ed0fe66
DJ
2577 ecs->sal = find_pc_line (stop_pc, 0);
2578
1b2bfbb9
RC
2579 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2580 the trampoline processing logic, however, there are some trampolines
2581 that have no names, so we should do trampoline handling first. */
2582 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2583 && ecs->stop_func_name == NULL
2584 && ecs->sal.line == 0)
1b2bfbb9 2585 {
527159b7 2586 if (debug_infrun)
8a9de0e4 2587 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2588
1b2bfbb9 2589 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2590 undebuggable function (where there is no debugging information
2591 and no line number corresponding to the address where the
1b2bfbb9
RC
2592 inferior stopped). Since we want to skip this kind of code,
2593 we keep going until the inferior returns from this
14e60db5
DJ
2594 function - unless the user has asked us not to (via
2595 set step-mode) or we no longer know how to get back
2596 to the call site. */
2597 if (step_stop_if_no_debug
2598 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2599 {
2600 /* If we have no line number and the step-stop-if-no-debug
2601 is set, we stop the step so that the user has a chance to
2602 switch in assembly mode. */
2603 stop_step = 1;
2604 print_stop_reason (END_STEPPING_RANGE, 0);
2605 stop_stepping (ecs);
2606 return;
2607 }
2608 else
2609 {
2610 /* Set a breakpoint at callee's return address (the address
2611 at which the caller will resume). */
14e60db5 2612 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2613 keep_going (ecs);
2614 return;
2615 }
2616 }
2617
2618 if (step_range_end == 1)
2619 {
2620 /* It is stepi or nexti. We always want to stop stepping after
2621 one instruction. */
527159b7 2622 if (debug_infrun)
8a9de0e4 2623 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2624 stop_step = 1;
2625 print_stop_reason (END_STEPPING_RANGE, 0);
2626 stop_stepping (ecs);
2627 return;
2628 }
2629
488f131b
JB
2630 if (ecs->sal.line == 0)
2631 {
2632 /* We have no line number information. That means to stop
2633 stepping (does this always happen right after one instruction,
2634 when we do "s" in a function with no line numbers,
2635 or can this happen as a result of a return or longjmp?). */
527159b7 2636 if (debug_infrun)
8a9de0e4 2637 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2638 stop_step = 1;
2639 print_stop_reason (END_STEPPING_RANGE, 0);
2640 stop_stepping (ecs);
2641 return;
2642 }
c906108c 2643
488f131b
JB
2644 if ((stop_pc == ecs->sal.pc)
2645 && (ecs->current_line != ecs->sal.line
2646 || ecs->current_symtab != ecs->sal.symtab))
2647 {
2648 /* We are at the start of a different line. So stop. Note that
2649 we don't stop if we step into the middle of a different line.
2650 That is said to make things like for (;;) statements work
2651 better. */
527159b7 2652 if (debug_infrun)
8a9de0e4 2653 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2654 stop_step = 1;
2655 print_stop_reason (END_STEPPING_RANGE, 0);
2656 stop_stepping (ecs);
2657 return;
2658 }
c906108c 2659
488f131b 2660 /* We aren't done stepping.
c906108c 2661
488f131b
JB
2662 Optimize by setting the stepping range to the line.
2663 (We might not be in the original line, but if we entered a
2664 new line in mid-statement, we continue stepping. This makes
2665 things like for(;;) statements work better.) */
c906108c 2666
488f131b
JB
2667 step_range_start = ecs->sal.pc;
2668 step_range_end = ecs->sal.end;
aa0cd9c1 2669 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2670 ecs->current_line = ecs->sal.line;
2671 ecs->current_symtab = ecs->sal.symtab;
2672
aa0cd9c1
AC
2673 /* In the case where we just stepped out of a function into the
2674 middle of a line of the caller, continue stepping, but
2675 step_frame_id must be modified to current frame */
65815ea1
AC
2676#if 0
2677 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2678 generous. It will trigger on things like a step into a frameless
2679 stackless leaf function. I think the logic should instead look
2680 at the unwound frame ID has that should give a more robust
2681 indication of what happened. */
8fb3e588
AC
2682 if (step - ID == current - ID)
2683 still stepping in same function;
2684 else if (step - ID == unwind (current - ID))
2685 stepped into a function;
2686 else
2687 stepped out of a function;
2688 /* Of course this assumes that the frame ID unwind code is robust
2689 and we're willing to introduce frame unwind logic into this
2690 function. Fortunately, those days are nearly upon us. */
65815ea1 2691#endif
488f131b 2692 {
09a7aba8
UW
2693 struct frame_info *frame = get_current_frame ();
2694 struct frame_id current_frame = get_frame_id (frame);
2695 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2696 step_frame_id)))
aa0cd9c1 2697 step_frame_id = current_frame;
488f131b 2698 }
c906108c 2699
527159b7 2700 if (debug_infrun)
8a9de0e4 2701 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2702 keep_going (ecs);
104c1213
JM
2703}
2704
2705/* Are we in the middle of stepping? */
2706
2707static int
2708currently_stepping (struct execution_control_state *ecs)
2709{
d303a6c7 2710 return ((!ecs->handling_longjmp
104c1213 2711 && ((step_range_end && step_resume_breakpoint == NULL)
ca67fcb8 2712 || stepping_over_breakpoint))
104c1213
JM
2713 || ecs->stepping_through_solib_after_catch
2714 || bpstat_should_step ());
2715}
c906108c 2716
c2c6d25f
JM
2717/* Subroutine call with source code we should not step over. Do step
2718 to the first line of code in it. */
2719
2720static void
2721step_into_function (struct execution_control_state *ecs)
2722{
2723 struct symtab *s;
2724 struct symtab_and_line sr_sal;
2725
2726 s = find_pc_symtab (stop_pc);
2727 if (s && s->language != language_asm)
a433963d
UW
2728 ecs->stop_func_start = gdbarch_skip_prologue
2729 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2730
2731 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2732 /* Use the step_resume_break to step until the end of the prologue,
2733 even if that involves jumps (as it seems to on the vax under
2734 4.2). */
2735 /* If the prologue ends in the middle of a source line, continue to
2736 the end of that source line (if it is still within the function).
2737 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2738 if (ecs->sal.end
2739 && ecs->sal.pc != ecs->stop_func_start
2740 && ecs->sal.end < ecs->stop_func_end)
2741 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2742
2dbd5e30
KB
2743 /* Architectures which require breakpoint adjustment might not be able
2744 to place a breakpoint at the computed address. If so, the test
2745 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2746 ecs->stop_func_start to an address at which a breakpoint may be
2747 legitimately placed.
8fb3e588 2748
2dbd5e30
KB
2749 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2750 made, GDB will enter an infinite loop when stepping through
2751 optimized code consisting of VLIW instructions which contain
2752 subinstructions corresponding to different source lines. On
2753 FR-V, it's not permitted to place a breakpoint on any but the
2754 first subinstruction of a VLIW instruction. When a breakpoint is
2755 set, GDB will adjust the breakpoint address to the beginning of
2756 the VLIW instruction. Thus, we need to make the corresponding
2757 adjustment here when computing the stop address. */
8fb3e588 2758
2dbd5e30
KB
2759 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2760 {
2761 ecs->stop_func_start
2762 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2763 ecs->stop_func_start);
2dbd5e30
KB
2764 }
2765
c2c6d25f
JM
2766 if (ecs->stop_func_start == stop_pc)
2767 {
2768 /* We are already there: stop now. */
2769 stop_step = 1;
488f131b 2770 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2771 stop_stepping (ecs);
2772 return;
2773 }
2774 else
2775 {
2776 /* Put the step-breakpoint there and go until there. */
fe39c653 2777 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2778 sr_sal.pc = ecs->stop_func_start;
2779 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2780
c2c6d25f 2781 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2782 some machines the prologue is where the new fp value is
2783 established. */
44cbf7b5 2784 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2785
2786 /* And make sure stepping stops right away then. */
2787 step_range_end = step_range_start;
2788 }
2789 keep_going (ecs);
2790}
d4f3574e 2791
d3169d93 2792/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2793 This is used to both functions and to skip over code. */
2794
2795static void
2796insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2797 struct frame_id sr_id)
2798{
2799 /* There should never be more than one step-resume breakpoint per
2800 thread, so we should never be setting a new
2801 step_resume_breakpoint when one is already active. */
2802 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2803
2804 if (debug_infrun)
2805 fprintf_unfiltered (gdb_stdlog,
2806 "infrun: inserting step-resume breakpoint at 0x%s\n",
2807 paddr_nz (sr_sal.pc));
2808
44cbf7b5
AC
2809 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2810 bp_step_resume);
44cbf7b5 2811}
7ce450bd 2812
d3169d93 2813/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2814 to skip a potential signal handler.
7ce450bd 2815
14e60db5
DJ
2816 This is called with the interrupted function's frame. The signal
2817 handler, when it returns, will resume the interrupted function at
2818 RETURN_FRAME.pc. */
d303a6c7
AC
2819
2820static void
44cbf7b5 2821insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2822{
2823 struct symtab_and_line sr_sal;
2824
f4c1edd8 2825 gdb_assert (return_frame != NULL);
d303a6c7
AC
2826 init_sal (&sr_sal); /* initialize to zeros */
2827
bf6ae464
UW
2828 sr_sal.pc = gdbarch_addr_bits_remove
2829 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2830 sr_sal.section = find_pc_overlay (sr_sal.pc);
2831
44cbf7b5 2832 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2833}
2834
14e60db5
DJ
2835/* Similar to insert_step_resume_breakpoint_at_frame, except
2836 but a breakpoint at the previous frame's PC. This is used to
2837 skip a function after stepping into it (for "next" or if the called
2838 function has no debugging information).
2839
2840 The current function has almost always been reached by single
2841 stepping a call or return instruction. NEXT_FRAME belongs to the
2842 current function, and the breakpoint will be set at the caller's
2843 resume address.
2844
2845 This is a separate function rather than reusing
2846 insert_step_resume_breakpoint_at_frame in order to avoid
2847 get_prev_frame, which may stop prematurely (see the implementation
2848 of frame_unwind_id for an example). */
2849
2850static void
2851insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2852{
2853 struct symtab_and_line sr_sal;
2854
2855 /* We shouldn't have gotten here if we don't know where the call site
2856 is. */
2857 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2858
2859 init_sal (&sr_sal); /* initialize to zeros */
2860
bf6ae464
UW
2861 sr_sal.pc = gdbarch_addr_bits_remove
2862 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2863 sr_sal.section = find_pc_overlay (sr_sal.pc);
2864
2865 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2866}
2867
104c1213
JM
2868static void
2869stop_stepping (struct execution_control_state *ecs)
2870{
527159b7 2871 if (debug_infrun)
8a9de0e4 2872 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2873
cd0fc7c3
SS
2874 /* Let callers know we don't want to wait for the inferior anymore. */
2875 ecs->wait_some_more = 0;
2876}
2877
d4f3574e
SS
2878/* This function handles various cases where we need to continue
2879 waiting for the inferior. */
2880/* (Used to be the keep_going: label in the old wait_for_inferior) */
2881
2882static void
2883keep_going (struct execution_control_state *ecs)
2884{
d4f3574e 2885 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2886 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2887
d4f3574e
SS
2888 /* If we did not do break;, it means we should keep running the
2889 inferior and not return to debugger. */
2890
ca67fcb8 2891 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
2892 {
2893 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2894 the inferior, else we'd have done a break above) and we
2895 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2896 resume (currently_stepping (ecs), stop_signal);
2897 }
2898 else
2899 {
2900 /* Either the trap was not expected, but we are continuing
488f131b
JB
2901 anyway (the user asked that this signal be passed to the
2902 child)
2903 -- or --
2904 The signal was SIGTRAP, e.g. it was our signal, but we
2905 decided we should resume from it.
d4f3574e 2906
c36b740a 2907 We're going to run this baby now!
d4f3574e 2908
c36b740a
VP
2909 Note that insert_breakpoints won't try to re-insert
2910 already inserted breakpoints. Therefore, we don't
2911 care if breakpoints were already inserted, or not. */
2912
45e8c884
VP
2913 if (ecs->stepping_over_breakpoint)
2914 {
2915 remove_breakpoints ();
2916 }
2917 else
d4f3574e 2918 {
e236ba44 2919 struct gdb_exception e;
569631c6
UW
2920 /* Stop stepping when inserting breakpoints
2921 has failed. */
e236ba44
VP
2922 TRY_CATCH (e, RETURN_MASK_ERROR)
2923 {
2924 insert_breakpoints ();
2925 }
2926 if (e.reason < 0)
d4f3574e
SS
2927 {
2928 stop_stepping (ecs);
2929 return;
2930 }
d4f3574e
SS
2931 }
2932
ca67fcb8 2933 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
d4f3574e
SS
2934
2935 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2936 specifies that such a signal should be delivered to the
2937 target program).
2938
2939 Typically, this would occure when a user is debugging a
2940 target monitor on a simulator: the target monitor sets a
2941 breakpoint; the simulator encounters this break-point and
2942 halts the simulation handing control to GDB; GDB, noteing
2943 that the break-point isn't valid, returns control back to the
2944 simulator; the simulator then delivers the hardware
2945 equivalent of a SIGNAL_TRAP to the program being debugged. */
2946
2947 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2948 stop_signal = TARGET_SIGNAL_0;
2949
d4f3574e
SS
2950
2951 resume (currently_stepping (ecs), stop_signal);
2952 }
2953
488f131b 2954 prepare_to_wait (ecs);
d4f3574e
SS
2955}
2956
104c1213
JM
2957/* This function normally comes after a resume, before
2958 handle_inferior_event exits. It takes care of any last bits of
2959 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2960
104c1213
JM
2961static void
2962prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2963{
527159b7 2964 if (debug_infrun)
8a9de0e4 2965 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
2966 if (ecs->infwait_state == infwait_normal_state)
2967 {
2968 overlay_cache_invalid = 1;
2969
2970 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2971 target_wait because they can be loaded from the target while
2972 in target_wait. This makes remote debugging a bit more
2973 efficient for those targets that provide critical registers
2974 as part of their normal status mechanism. */
104c1213
JM
2975
2976 registers_changed ();
39f77062 2977 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2978 ecs->wp = &(ecs->ws);
2979 }
2980 /* This is the old end of the while loop. Let everybody know we
2981 want to wait for the inferior some more and get called again
2982 soon. */
2983 ecs->wait_some_more = 1;
c906108c 2984}
11cf8741
JM
2985
2986/* Print why the inferior has stopped. We always print something when
2987 the inferior exits, or receives a signal. The rest of the cases are
2988 dealt with later on in normal_stop() and print_it_typical(). Ideally
2989 there should be a call to this function from handle_inferior_event()
2990 each time stop_stepping() is called.*/
2991static void
2992print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2993{
2994 switch (stop_reason)
2995 {
11cf8741
JM
2996 case END_STEPPING_RANGE:
2997 /* We are done with a step/next/si/ni command. */
2998 /* For now print nothing. */
fb40c209 2999 /* Print a message only if not in the middle of doing a "step n"
488f131b 3000 operation for n > 1 */
fb40c209 3001 if (!step_multi || !stop_step)
9dc5e2a9 3002 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3003 ui_out_field_string
3004 (uiout, "reason",
3005 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3006 break;
11cf8741
JM
3007 case SIGNAL_EXITED:
3008 /* The inferior was terminated by a signal. */
8b93c638 3009 annotate_signalled ();
9dc5e2a9 3010 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3011 ui_out_field_string
3012 (uiout, "reason",
3013 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3014 ui_out_text (uiout, "\nProgram terminated with signal ");
3015 annotate_signal_name ();
488f131b
JB
3016 ui_out_field_string (uiout, "signal-name",
3017 target_signal_to_name (stop_info));
8b93c638
JM
3018 annotate_signal_name_end ();
3019 ui_out_text (uiout, ", ");
3020 annotate_signal_string ();
488f131b
JB
3021 ui_out_field_string (uiout, "signal-meaning",
3022 target_signal_to_string (stop_info));
8b93c638
JM
3023 annotate_signal_string_end ();
3024 ui_out_text (uiout, ".\n");
3025 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3026 break;
3027 case EXITED:
3028 /* The inferior program is finished. */
8b93c638
JM
3029 annotate_exited (stop_info);
3030 if (stop_info)
3031 {
9dc5e2a9 3032 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3033 ui_out_field_string (uiout, "reason",
3034 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3035 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3036 ui_out_field_fmt (uiout, "exit-code", "0%o",
3037 (unsigned int) stop_info);
8b93c638
JM
3038 ui_out_text (uiout, ".\n");
3039 }
3040 else
3041 {
9dc5e2a9 3042 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3043 ui_out_field_string
3044 (uiout, "reason",
3045 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3046 ui_out_text (uiout, "\nProgram exited normally.\n");
3047 }
f17517ea
AS
3048 /* Support the --return-child-result option. */
3049 return_child_result_value = stop_info;
11cf8741
JM
3050 break;
3051 case SIGNAL_RECEIVED:
3052 /* Signal received. The signal table tells us to print about
3053 it. */
8b93c638
JM
3054 annotate_signal ();
3055 ui_out_text (uiout, "\nProgram received signal ");
3056 annotate_signal_name ();
84c6c83c 3057 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3058 ui_out_field_string
3059 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3060 ui_out_field_string (uiout, "signal-name",
3061 target_signal_to_name (stop_info));
8b93c638
JM
3062 annotate_signal_name_end ();
3063 ui_out_text (uiout, ", ");
3064 annotate_signal_string ();
488f131b
JB
3065 ui_out_field_string (uiout, "signal-meaning",
3066 target_signal_to_string (stop_info));
8b93c638
JM
3067 annotate_signal_string_end ();
3068 ui_out_text (uiout, ".\n");
11cf8741
JM
3069 break;
3070 default:
8e65ff28 3071 internal_error (__FILE__, __LINE__,
e2e0b3e5 3072 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3073 break;
3074 }
3075}
c906108c 3076\f
43ff13b4 3077
c906108c
SS
3078/* Here to return control to GDB when the inferior stops for real.
3079 Print appropriate messages, remove breakpoints, give terminal our modes.
3080
3081 STOP_PRINT_FRAME nonzero means print the executing frame
3082 (pc, function, args, file, line number and line text).
3083 BREAKPOINTS_FAILED nonzero means stop was due to error
3084 attempting to insert breakpoints. */
3085
3086void
96baa820 3087normal_stop (void)
c906108c 3088{
73b65bb0
DJ
3089 struct target_waitstatus last;
3090 ptid_t last_ptid;
3091
3092 get_last_target_status (&last_ptid, &last);
3093
c906108c
SS
3094 /* As with the notification of thread events, we want to delay
3095 notifying the user that we've switched thread context until
3096 the inferior actually stops.
3097
73b65bb0
DJ
3098 There's no point in saying anything if the inferior has exited.
3099 Note that SIGNALLED here means "exited with a signal", not
3100 "received a signal". */
488f131b 3101 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3102 && target_has_execution
3103 && last.kind != TARGET_WAITKIND_SIGNALLED
3104 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3105 {
3106 target_terminal_ours_for_output ();
a3f17187 3107 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3108 target_pid_to_str (inferior_ptid));
39f77062 3109 previous_inferior_ptid = inferior_ptid;
c906108c 3110 }
c906108c 3111
4fa8626c 3112 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3113 /* Make sure that the current_frame's pc is correct. This
3114 is a correction for setting up the frame info before doing
b798847d 3115 gdbarch_decr_pc_after_break */
b87efeee
AC
3116 if (target_has_execution)
3117 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3118 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3119 frame code to check for this and sort out any resultant mess.
b798847d 3120 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3121 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3122
c36b740a 3123 if (target_has_execution)
c906108c
SS
3124 {
3125 if (remove_breakpoints ())
3126 {
3127 target_terminal_ours_for_output ();
a3f17187
AC
3128 printf_filtered (_("\
3129Cannot remove breakpoints because program is no longer writable.\n\
3130It might be running in another process.\n\
3131Further execution is probably impossible.\n"));
c906108c
SS
3132 }
3133 }
c906108c
SS
3134
3135 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3136 Delete any breakpoint that is to be deleted at the next stop. */
3137
3138 breakpoint_auto_delete (stop_bpstat);
3139
3140 /* If an auto-display called a function and that got a signal,
3141 delete that auto-display to avoid an infinite recursion. */
3142
3143 if (stopped_by_random_signal)
3144 disable_current_display ();
3145
3146 /* Don't print a message if in the middle of doing a "step n"
3147 operation for n > 1 */
3148 if (step_multi && stop_step)
3149 goto done;
3150
3151 target_terminal_ours ();
3152
7abfe014
DJ
3153 /* Set the current source location. This will also happen if we
3154 display the frame below, but the current SAL will be incorrect
3155 during a user hook-stop function. */
3156 if (target_has_stack && !stop_stack_dummy)
3157 set_current_sal_from_frame (get_current_frame (), 1);
3158
5913bcb0
AC
3159 /* Look up the hook_stop and run it (CLI internally handles problem
3160 of stop_command's pre-hook not existing). */
3161 if (stop_command)
3162 catch_errors (hook_stop_stub, stop_command,
3163 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3164
3165 if (!target_has_stack)
3166 {
3167
3168 goto done;
3169 }
3170
3171 /* Select innermost stack frame - i.e., current frame is frame 0,
3172 and current location is based on that.
3173 Don't do this on return from a stack dummy routine,
3174 or if the program has exited. */
3175
3176 if (!stop_stack_dummy)
3177 {
0f7d239c 3178 select_frame (get_current_frame ());
c906108c
SS
3179
3180 /* Print current location without a level number, if
c5aa993b
JM
3181 we have changed functions or hit a breakpoint.
3182 Print source line if we have one.
3183 bpstat_print() contains the logic deciding in detail
3184 what to print, based on the event(s) that just occurred. */
c906108c 3185
206415a3 3186 if (stop_print_frame)
c906108c
SS
3187 {
3188 int bpstat_ret;
3189 int source_flag;
917317f4 3190 int do_frame_printing = 1;
c906108c
SS
3191
3192 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3193 switch (bpstat_ret)
3194 {
3195 case PRINT_UNKNOWN:
b0f4b84b
DJ
3196 /* If we had hit a shared library event breakpoint,
3197 bpstat_print would print out this message. If we hit
3198 an OS-level shared library event, do the same
3199 thing. */
3200 if (last.kind == TARGET_WAITKIND_LOADED)
3201 {
3202 printf_filtered (_("Stopped due to shared library event\n"));
3203 source_flag = SRC_LINE; /* something bogus */
3204 do_frame_printing = 0;
3205 break;
3206 }
3207
aa0cd9c1 3208 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3209 (or should) carry around the function and does (or
3210 should) use that when doing a frame comparison. */
917317f4 3211 if (stop_step
aa0cd9c1
AC
3212 && frame_id_eq (step_frame_id,
3213 get_frame_id (get_current_frame ()))
917317f4 3214 && step_start_function == find_pc_function (stop_pc))
488f131b 3215 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3216 else
488f131b 3217 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3218 break;
3219 case PRINT_SRC_AND_LOC:
488f131b 3220 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3221 break;
3222 case PRINT_SRC_ONLY:
c5394b80 3223 source_flag = SRC_LINE;
917317f4
JM
3224 break;
3225 case PRINT_NOTHING:
488f131b 3226 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3227 do_frame_printing = 0;
3228 break;
3229 default:
e2e0b3e5 3230 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3231 }
c906108c 3232
9dc5e2a9 3233 if (ui_out_is_mi_like_p (uiout))
39f77062 3234 ui_out_field_int (uiout, "thread-id",
488f131b 3235 pid_to_thread_id (inferior_ptid));
c906108c
SS
3236 /* The behavior of this routine with respect to the source
3237 flag is:
c5394b80
JM
3238 SRC_LINE: Print only source line
3239 LOCATION: Print only location
3240 SRC_AND_LOC: Print location and source line */
917317f4 3241 if (do_frame_printing)
b04f3ab4 3242 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3243
3244 /* Display the auto-display expressions. */
3245 do_displays ();
3246 }
3247 }
3248
3249 /* Save the function value return registers, if we care.
3250 We might be about to restore their previous contents. */
3251 if (proceed_to_finish)
d5c31457
UW
3252 {
3253 /* This should not be necessary. */
3254 if (stop_registers)
3255 regcache_xfree (stop_registers);
3256
3257 /* NB: The copy goes through to the target picking up the value of
3258 all the registers. */
3259 stop_registers = regcache_dup (get_current_regcache ());
3260 }
c906108c
SS
3261
3262 if (stop_stack_dummy)
3263 {
dbe9fe58
AC
3264 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3265 ends with a setting of the current frame, so we can use that
3266 next. */
3267 frame_pop (get_current_frame ());
c906108c 3268 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3269 Can't rely on restore_inferior_status because that only gets
3270 called if we don't stop in the called function. */
c906108c 3271 stop_pc = read_pc ();
0f7d239c 3272 select_frame (get_current_frame ());
c906108c
SS
3273 }
3274
c906108c
SS
3275done:
3276 annotate_stopped ();
7a464420 3277 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3278}
3279
3280static int
96baa820 3281hook_stop_stub (void *cmd)
c906108c 3282{
5913bcb0 3283 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3284 return (0);
3285}
3286\f
c5aa993b 3287int
96baa820 3288signal_stop_state (int signo)
c906108c
SS
3289{
3290 return signal_stop[signo];
3291}
3292
c5aa993b 3293int
96baa820 3294signal_print_state (int signo)
c906108c
SS
3295{
3296 return signal_print[signo];
3297}
3298
c5aa993b 3299int
96baa820 3300signal_pass_state (int signo)
c906108c
SS
3301{
3302 return signal_program[signo];
3303}
3304
488f131b 3305int
7bda5e4a 3306signal_stop_update (int signo, int state)
d4f3574e
SS
3307{
3308 int ret = signal_stop[signo];
3309 signal_stop[signo] = state;
3310 return ret;
3311}
3312
488f131b 3313int
7bda5e4a 3314signal_print_update (int signo, int state)
d4f3574e
SS
3315{
3316 int ret = signal_print[signo];
3317 signal_print[signo] = state;
3318 return ret;
3319}
3320
488f131b 3321int
7bda5e4a 3322signal_pass_update (int signo, int state)
d4f3574e
SS
3323{
3324 int ret = signal_program[signo];
3325 signal_program[signo] = state;
3326 return ret;
3327}
3328
c906108c 3329static void
96baa820 3330sig_print_header (void)
c906108c 3331{
a3f17187
AC
3332 printf_filtered (_("\
3333Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3334}
3335
3336static void
96baa820 3337sig_print_info (enum target_signal oursig)
c906108c
SS
3338{
3339 char *name = target_signal_to_name (oursig);
3340 int name_padding = 13 - strlen (name);
96baa820 3341
c906108c
SS
3342 if (name_padding <= 0)
3343 name_padding = 0;
3344
3345 printf_filtered ("%s", name);
488f131b 3346 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3347 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3348 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3349 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3350 printf_filtered ("%s\n", target_signal_to_string (oursig));
3351}
3352
3353/* Specify how various signals in the inferior should be handled. */
3354
3355static void
96baa820 3356handle_command (char *args, int from_tty)
c906108c
SS
3357{
3358 char **argv;
3359 int digits, wordlen;
3360 int sigfirst, signum, siglast;
3361 enum target_signal oursig;
3362 int allsigs;
3363 int nsigs;
3364 unsigned char *sigs;
3365 struct cleanup *old_chain;
3366
3367 if (args == NULL)
3368 {
e2e0b3e5 3369 error_no_arg (_("signal to handle"));
c906108c
SS
3370 }
3371
3372 /* Allocate and zero an array of flags for which signals to handle. */
3373
3374 nsigs = (int) TARGET_SIGNAL_LAST;
3375 sigs = (unsigned char *) alloca (nsigs);
3376 memset (sigs, 0, nsigs);
3377
3378 /* Break the command line up into args. */
3379
3380 argv = buildargv (args);
3381 if (argv == NULL)
3382 {
3383 nomem (0);
3384 }
7a292a7a 3385 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3386
3387 /* Walk through the args, looking for signal oursigs, signal names, and
3388 actions. Signal numbers and signal names may be interspersed with
3389 actions, with the actions being performed for all signals cumulatively
3390 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3391
3392 while (*argv != NULL)
3393 {
3394 wordlen = strlen (*argv);
3395 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3396 {;
3397 }
3398 allsigs = 0;
3399 sigfirst = siglast = -1;
3400
3401 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3402 {
3403 /* Apply action to all signals except those used by the
3404 debugger. Silently skip those. */
3405 allsigs = 1;
3406 sigfirst = 0;
3407 siglast = nsigs - 1;
3408 }
3409 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3410 {
3411 SET_SIGS (nsigs, sigs, signal_stop);
3412 SET_SIGS (nsigs, sigs, signal_print);
3413 }
3414 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3415 {
3416 UNSET_SIGS (nsigs, sigs, signal_program);
3417 }
3418 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3419 {
3420 SET_SIGS (nsigs, sigs, signal_print);
3421 }
3422 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3423 {
3424 SET_SIGS (nsigs, sigs, signal_program);
3425 }
3426 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3427 {
3428 UNSET_SIGS (nsigs, sigs, signal_stop);
3429 }
3430 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3431 {
3432 SET_SIGS (nsigs, sigs, signal_program);
3433 }
3434 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3435 {
3436 UNSET_SIGS (nsigs, sigs, signal_print);
3437 UNSET_SIGS (nsigs, sigs, signal_stop);
3438 }
3439 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3440 {
3441 UNSET_SIGS (nsigs, sigs, signal_program);
3442 }
3443 else if (digits > 0)
3444 {
3445 /* It is numeric. The numeric signal refers to our own
3446 internal signal numbering from target.h, not to host/target
3447 signal number. This is a feature; users really should be
3448 using symbolic names anyway, and the common ones like
3449 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3450
3451 sigfirst = siglast = (int)
3452 target_signal_from_command (atoi (*argv));
3453 if ((*argv)[digits] == '-')
3454 {
3455 siglast = (int)
3456 target_signal_from_command (atoi ((*argv) + digits + 1));
3457 }
3458 if (sigfirst > siglast)
3459 {
3460 /* Bet he didn't figure we'd think of this case... */
3461 signum = sigfirst;
3462 sigfirst = siglast;
3463 siglast = signum;
3464 }
3465 }
3466 else
3467 {
3468 oursig = target_signal_from_name (*argv);
3469 if (oursig != TARGET_SIGNAL_UNKNOWN)
3470 {
3471 sigfirst = siglast = (int) oursig;
3472 }
3473 else
3474 {
3475 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3476 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3477 }
3478 }
3479
3480 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3481 which signals to apply actions to. */
c906108c
SS
3482
3483 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3484 {
3485 switch ((enum target_signal) signum)
3486 {
3487 case TARGET_SIGNAL_TRAP:
3488 case TARGET_SIGNAL_INT:
3489 if (!allsigs && !sigs[signum])
3490 {
3491 if (query ("%s is used by the debugger.\n\
488f131b 3492Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3493 {
3494 sigs[signum] = 1;
3495 }
3496 else
3497 {
a3f17187 3498 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3499 gdb_flush (gdb_stdout);
3500 }
3501 }
3502 break;
3503 case TARGET_SIGNAL_0:
3504 case TARGET_SIGNAL_DEFAULT:
3505 case TARGET_SIGNAL_UNKNOWN:
3506 /* Make sure that "all" doesn't print these. */
3507 break;
3508 default:
3509 sigs[signum] = 1;
3510 break;
3511 }
3512 }
3513
3514 argv++;
3515 }
3516
39f77062 3517 target_notice_signals (inferior_ptid);
c906108c
SS
3518
3519 if (from_tty)
3520 {
3521 /* Show the results. */
3522 sig_print_header ();
3523 for (signum = 0; signum < nsigs; signum++)
3524 {
3525 if (sigs[signum])
3526 {
3527 sig_print_info (signum);
3528 }
3529 }
3530 }
3531
3532 do_cleanups (old_chain);
3533}
3534
3535static void
96baa820 3536xdb_handle_command (char *args, int from_tty)
c906108c
SS
3537{
3538 char **argv;
3539 struct cleanup *old_chain;
3540
3541 /* Break the command line up into args. */
3542
3543 argv = buildargv (args);
3544 if (argv == NULL)
3545 {
3546 nomem (0);
3547 }
7a292a7a 3548 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3549 if (argv[1] != (char *) NULL)
3550 {
3551 char *argBuf;
3552 int bufLen;
3553
3554 bufLen = strlen (argv[0]) + 20;
3555 argBuf = (char *) xmalloc (bufLen);
3556 if (argBuf)
3557 {
3558 int validFlag = 1;
3559 enum target_signal oursig;
3560
3561 oursig = target_signal_from_name (argv[0]);
3562 memset (argBuf, 0, bufLen);
3563 if (strcmp (argv[1], "Q") == 0)
3564 sprintf (argBuf, "%s %s", argv[0], "noprint");
3565 else
3566 {
3567 if (strcmp (argv[1], "s") == 0)
3568 {
3569 if (!signal_stop[oursig])
3570 sprintf (argBuf, "%s %s", argv[0], "stop");
3571 else
3572 sprintf (argBuf, "%s %s", argv[0], "nostop");
3573 }
3574 else if (strcmp (argv[1], "i") == 0)
3575 {
3576 if (!signal_program[oursig])
3577 sprintf (argBuf, "%s %s", argv[0], "pass");
3578 else
3579 sprintf (argBuf, "%s %s", argv[0], "nopass");
3580 }
3581 else if (strcmp (argv[1], "r") == 0)
3582 {
3583 if (!signal_print[oursig])
3584 sprintf (argBuf, "%s %s", argv[0], "print");
3585 else
3586 sprintf (argBuf, "%s %s", argv[0], "noprint");
3587 }
3588 else
3589 validFlag = 0;
3590 }
3591 if (validFlag)
3592 handle_command (argBuf, from_tty);
3593 else
a3f17187 3594 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3595 if (argBuf)
b8c9b27d 3596 xfree (argBuf);
c906108c
SS
3597 }
3598 }
3599 do_cleanups (old_chain);
3600}
3601
3602/* Print current contents of the tables set by the handle command.
3603 It is possible we should just be printing signals actually used
3604 by the current target (but for things to work right when switching
3605 targets, all signals should be in the signal tables). */
3606
3607static void
96baa820 3608signals_info (char *signum_exp, int from_tty)
c906108c
SS
3609{
3610 enum target_signal oursig;
3611 sig_print_header ();
3612
3613 if (signum_exp)
3614 {
3615 /* First see if this is a symbol name. */
3616 oursig = target_signal_from_name (signum_exp);
3617 if (oursig == TARGET_SIGNAL_UNKNOWN)
3618 {
3619 /* No, try numeric. */
3620 oursig =
bb518678 3621 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3622 }
3623 sig_print_info (oursig);
3624 return;
3625 }
3626
3627 printf_filtered ("\n");
3628 /* These ugly casts brought to you by the native VAX compiler. */
3629 for (oursig = TARGET_SIGNAL_FIRST;
3630 (int) oursig < (int) TARGET_SIGNAL_LAST;
3631 oursig = (enum target_signal) ((int) oursig + 1))
3632 {
3633 QUIT;
3634
3635 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3636 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3637 sig_print_info (oursig);
3638 }
3639
a3f17187 3640 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3641}
3642\f
7a292a7a
SS
3643struct inferior_status
3644{
3645 enum target_signal stop_signal;
3646 CORE_ADDR stop_pc;
3647 bpstat stop_bpstat;
3648 int stop_step;
3649 int stop_stack_dummy;
3650 int stopped_by_random_signal;
ca67fcb8 3651 int stepping_over_breakpoint;
7a292a7a
SS
3652 CORE_ADDR step_range_start;
3653 CORE_ADDR step_range_end;
aa0cd9c1 3654 struct frame_id step_frame_id;
5fbbeb29 3655 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3656 CORE_ADDR step_resume_break_address;
3657 int stop_after_trap;
c0236d92 3658 int stop_soon;
7a292a7a
SS
3659
3660 /* These are here because if call_function_by_hand has written some
3661 registers and then decides to call error(), we better not have changed
3662 any registers. */
72cec141 3663 struct regcache *registers;
7a292a7a 3664
101dcfbe
AC
3665 /* A frame unique identifier. */
3666 struct frame_id selected_frame_id;
3667
7a292a7a
SS
3668 int breakpoint_proceeded;
3669 int restore_stack_info;
3670 int proceed_to_finish;
3671};
3672
7a292a7a 3673void
96baa820
JM
3674write_inferior_status_register (struct inferior_status *inf_status, int regno,
3675 LONGEST val)
7a292a7a 3676{
3acba339 3677 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3678 void *buf = alloca (size);
3679 store_signed_integer (buf, size, val);
0818c12a 3680 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3681}
3682
c906108c
SS
3683/* Save all of the information associated with the inferior<==>gdb
3684 connection. INF_STATUS is a pointer to a "struct inferior_status"
3685 (defined in inferior.h). */
3686
7a292a7a 3687struct inferior_status *
96baa820 3688save_inferior_status (int restore_stack_info)
c906108c 3689{
72cec141 3690 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3691
c906108c
SS
3692 inf_status->stop_signal = stop_signal;
3693 inf_status->stop_pc = stop_pc;
3694 inf_status->stop_step = stop_step;
3695 inf_status->stop_stack_dummy = stop_stack_dummy;
3696 inf_status->stopped_by_random_signal = stopped_by_random_signal;
ca67fcb8 3697 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
c906108c
SS
3698 inf_status->step_range_start = step_range_start;
3699 inf_status->step_range_end = step_range_end;
aa0cd9c1 3700 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3701 inf_status->step_over_calls = step_over_calls;
3702 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3703 inf_status->stop_soon = stop_soon;
c906108c
SS
3704 /* Save original bpstat chain here; replace it with copy of chain.
3705 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3706 hand them back the original chain when restore_inferior_status is
3707 called. */
c906108c
SS
3708 inf_status->stop_bpstat = stop_bpstat;
3709 stop_bpstat = bpstat_copy (stop_bpstat);
3710 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3711 inf_status->restore_stack_info = restore_stack_info;
3712 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3713
594f7785 3714 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3715
206415a3 3716 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3717 return inf_status;
c906108c
SS
3718}
3719
c906108c 3720static int
96baa820 3721restore_selected_frame (void *args)
c906108c 3722{
488f131b 3723 struct frame_id *fid = (struct frame_id *) args;
c906108c 3724 struct frame_info *frame;
c906108c 3725
101dcfbe 3726 frame = frame_find_by_id (*fid);
c906108c 3727
aa0cd9c1
AC
3728 /* If inf_status->selected_frame_id is NULL, there was no previously
3729 selected frame. */
101dcfbe 3730 if (frame == NULL)
c906108c 3731 {
8a3fe4f8 3732 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3733 return 0;
3734 }
3735
0f7d239c 3736 select_frame (frame);
c906108c
SS
3737
3738 return (1);
3739}
3740
3741void
96baa820 3742restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3743{
3744 stop_signal = inf_status->stop_signal;
3745 stop_pc = inf_status->stop_pc;
3746 stop_step = inf_status->stop_step;
3747 stop_stack_dummy = inf_status->stop_stack_dummy;
3748 stopped_by_random_signal = inf_status->stopped_by_random_signal;
ca67fcb8 3749 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
c906108c
SS
3750 step_range_start = inf_status->step_range_start;
3751 step_range_end = inf_status->step_range_end;
aa0cd9c1 3752 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3753 step_over_calls = inf_status->step_over_calls;
3754 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3755 stop_soon = inf_status->stop_soon;
c906108c
SS
3756 bpstat_clear (&stop_bpstat);
3757 stop_bpstat = inf_status->stop_bpstat;
3758 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3759 proceed_to_finish = inf_status->proceed_to_finish;
3760
c906108c
SS
3761 /* The inferior can be gone if the user types "print exit(0)"
3762 (and perhaps other times). */
3763 if (target_has_execution)
72cec141 3764 /* NB: The register write goes through to the target. */
594f7785 3765 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3766 regcache_xfree (inf_status->registers);
c906108c 3767
c906108c
SS
3768 /* FIXME: If we are being called after stopping in a function which
3769 is called from gdb, we should not be trying to restore the
3770 selected frame; it just prints a spurious error message (The
3771 message is useful, however, in detecting bugs in gdb (like if gdb
3772 clobbers the stack)). In fact, should we be restoring the
3773 inferior status at all in that case? . */
3774
3775 if (target_has_stack && inf_status->restore_stack_info)
3776 {
c906108c 3777 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3778 walking the stack might encounter a garbage pointer and
3779 error() trying to dereference it. */
488f131b
JB
3780 if (catch_errors
3781 (restore_selected_frame, &inf_status->selected_frame_id,
3782 "Unable to restore previously selected frame:\n",
3783 RETURN_MASK_ERROR) == 0)
c906108c
SS
3784 /* Error in restoring the selected frame. Select the innermost
3785 frame. */
0f7d239c 3786 select_frame (get_current_frame ());
c906108c
SS
3787
3788 }
c906108c 3789
72cec141 3790 xfree (inf_status);
7a292a7a 3791}
c906108c 3792
74b7792f
AC
3793static void
3794do_restore_inferior_status_cleanup (void *sts)
3795{
3796 restore_inferior_status (sts);
3797}
3798
3799struct cleanup *
3800make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3801{
3802 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3803}
3804
c906108c 3805void
96baa820 3806discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3807{
3808 /* See save_inferior_status for info on stop_bpstat. */
3809 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3810 regcache_xfree (inf_status->registers);
72cec141 3811 xfree (inf_status);
7a292a7a
SS
3812}
3813
47932f85
DJ
3814int
3815inferior_has_forked (int pid, int *child_pid)
3816{
3817 struct target_waitstatus last;
3818 ptid_t last_ptid;
3819
3820 get_last_target_status (&last_ptid, &last);
3821
3822 if (last.kind != TARGET_WAITKIND_FORKED)
3823 return 0;
3824
3825 if (ptid_get_pid (last_ptid) != pid)
3826 return 0;
3827
3828 *child_pid = last.value.related_pid;
3829 return 1;
3830}
3831
3832int
3833inferior_has_vforked (int pid, int *child_pid)
3834{
3835 struct target_waitstatus last;
3836 ptid_t last_ptid;
3837
3838 get_last_target_status (&last_ptid, &last);
3839
3840 if (last.kind != TARGET_WAITKIND_VFORKED)
3841 return 0;
3842
3843 if (ptid_get_pid (last_ptid) != pid)
3844 return 0;
3845
3846 *child_pid = last.value.related_pid;
3847 return 1;
3848}
3849
3850int
3851inferior_has_execd (int pid, char **execd_pathname)
3852{
3853 struct target_waitstatus last;
3854 ptid_t last_ptid;
3855
3856 get_last_target_status (&last_ptid, &last);
3857
3858 if (last.kind != TARGET_WAITKIND_EXECD)
3859 return 0;
3860
3861 if (ptid_get_pid (last_ptid) != pid)
3862 return 0;
3863
3864 *execd_pathname = xstrdup (last.value.execd_pathname);
3865 return 1;
3866}
3867
ca6724c1
KB
3868/* Oft used ptids */
3869ptid_t null_ptid;
3870ptid_t minus_one_ptid;
3871
3872/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3873
ca6724c1
KB
3874ptid_t
3875ptid_build (int pid, long lwp, long tid)
3876{
3877 ptid_t ptid;
3878
3879 ptid.pid = pid;
3880 ptid.lwp = lwp;
3881 ptid.tid = tid;
3882 return ptid;
3883}
3884
3885/* Create a ptid from just a pid. */
3886
3887ptid_t
3888pid_to_ptid (int pid)
3889{
3890 return ptid_build (pid, 0, 0);
3891}
3892
3893/* Fetch the pid (process id) component from a ptid. */
3894
3895int
3896ptid_get_pid (ptid_t ptid)
3897{
3898 return ptid.pid;
3899}
3900
3901/* Fetch the lwp (lightweight process) component from a ptid. */
3902
3903long
3904ptid_get_lwp (ptid_t ptid)
3905{
3906 return ptid.lwp;
3907}
3908
3909/* Fetch the tid (thread id) component from a ptid. */
3910
3911long
3912ptid_get_tid (ptid_t ptid)
3913{
3914 return ptid.tid;
3915}
3916
3917/* ptid_equal() is used to test equality of two ptids. */
3918
3919int
3920ptid_equal (ptid_t ptid1, ptid_t ptid2)
3921{
3922 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3923 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3924}
3925
3926/* restore_inferior_ptid() will be used by the cleanup machinery
3927 to restore the inferior_ptid value saved in a call to
3928 save_inferior_ptid(). */
ce696e05
KB
3929
3930static void
3931restore_inferior_ptid (void *arg)
3932{
3933 ptid_t *saved_ptid_ptr = arg;
3934 inferior_ptid = *saved_ptid_ptr;
3935 xfree (arg);
3936}
3937
3938/* Save the value of inferior_ptid so that it may be restored by a
3939 later call to do_cleanups(). Returns the struct cleanup pointer
3940 needed for later doing the cleanup. */
3941
3942struct cleanup *
3943save_inferior_ptid (void)
3944{
3945 ptid_t *saved_ptid_ptr;
3946
3947 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3948 *saved_ptid_ptr = inferior_ptid;
3949 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3950}
c5aa993b 3951\f
488f131b 3952
c906108c 3953void
96baa820 3954_initialize_infrun (void)
c906108c 3955{
52f0bd74
AC
3956 int i;
3957 int numsigs;
c906108c
SS
3958 struct cmd_list_element *c;
3959
1bedd215
AC
3960 add_info ("signals", signals_info, _("\
3961What debugger does when program gets various signals.\n\
3962Specify a signal as argument to print info on that signal only."));
c906108c
SS
3963 add_info_alias ("handle", "signals", 0);
3964
1bedd215
AC
3965 add_com ("handle", class_run, handle_command, _("\
3966Specify how to handle a signal.\n\
c906108c
SS
3967Args are signals and actions to apply to those signals.\n\
3968Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3969from 1-15 are allowed for compatibility with old versions of GDB.\n\
3970Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3971The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3972used by the debugger, typically SIGTRAP and SIGINT.\n\
3973Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3974\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3975Stop means reenter debugger if this signal happens (implies print).\n\
3976Print means print a message if this signal happens.\n\
3977Pass means let program see this signal; otherwise program doesn't know.\n\
3978Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 3979Pass and Stop may be combined."));
c906108c
SS
3980 if (xdb_commands)
3981 {
1bedd215
AC
3982 add_com ("lz", class_info, signals_info, _("\
3983What debugger does when program gets various signals.\n\
3984Specify a signal as argument to print info on that signal only."));
3985 add_com ("z", class_run, xdb_handle_command, _("\
3986Specify how to handle a signal.\n\
c906108c
SS
3987Args are signals and actions to apply to those signals.\n\
3988Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3989from 1-15 are allowed for compatibility with old versions of GDB.\n\
3990Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3991The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
3992used by the debugger, typically SIGTRAP and SIGINT.\n\
3993Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3994\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3995nopass), \"Q\" (noprint)\n\
3996Stop means reenter debugger if this signal happens (implies print).\n\
3997Print means print a message if this signal happens.\n\
3998Pass means let program see this signal; otherwise program doesn't know.\n\
3999Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4000Pass and Stop may be combined."));
c906108c
SS
4001 }
4002
4003 if (!dbx_commands)
1a966eab
AC
4004 stop_command = add_cmd ("stop", class_obscure,
4005 not_just_help_class_command, _("\
4006There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4007This allows you to set a list of commands to be run each time execution\n\
1a966eab 4008of the program stops."), &cmdlist);
c906108c 4009
85c07804
AC
4010 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4011Set inferior debugging."), _("\
4012Show inferior debugging."), _("\
4013When non-zero, inferior specific debugging is enabled."),
4014 NULL,
920d2a44 4015 show_debug_infrun,
85c07804 4016 &setdebuglist, &showdebuglist);
527159b7 4017
c906108c 4018 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4019 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4020 signal_print = (unsigned char *)
4021 xmalloc (sizeof (signal_print[0]) * numsigs);
4022 signal_program = (unsigned char *)
4023 xmalloc (sizeof (signal_program[0]) * numsigs);
4024 for (i = 0; i < numsigs; i++)
4025 {
4026 signal_stop[i] = 1;
4027 signal_print[i] = 1;
4028 signal_program[i] = 1;
4029 }
4030
4031 /* Signals caused by debugger's own actions
4032 should not be given to the program afterwards. */
4033 signal_program[TARGET_SIGNAL_TRAP] = 0;
4034 signal_program[TARGET_SIGNAL_INT] = 0;
4035
4036 /* Signals that are not errors should not normally enter the debugger. */
4037 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4038 signal_print[TARGET_SIGNAL_ALRM] = 0;
4039 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4040 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4041 signal_stop[TARGET_SIGNAL_PROF] = 0;
4042 signal_print[TARGET_SIGNAL_PROF] = 0;
4043 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4044 signal_print[TARGET_SIGNAL_CHLD] = 0;
4045 signal_stop[TARGET_SIGNAL_IO] = 0;
4046 signal_print[TARGET_SIGNAL_IO] = 0;
4047 signal_stop[TARGET_SIGNAL_POLL] = 0;
4048 signal_print[TARGET_SIGNAL_POLL] = 0;
4049 signal_stop[TARGET_SIGNAL_URG] = 0;
4050 signal_print[TARGET_SIGNAL_URG] = 0;
4051 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4052 signal_print[TARGET_SIGNAL_WINCH] = 0;
4053
cd0fc7c3
SS
4054 /* These signals are used internally by user-level thread
4055 implementations. (See signal(5) on Solaris.) Like the above
4056 signals, a healthy program receives and handles them as part of
4057 its normal operation. */
4058 signal_stop[TARGET_SIGNAL_LWP] = 0;
4059 signal_print[TARGET_SIGNAL_LWP] = 0;
4060 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4061 signal_print[TARGET_SIGNAL_WAITING] = 0;
4062 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4063 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4064
85c07804
AC
4065 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4066 &stop_on_solib_events, _("\
4067Set stopping for shared library events."), _("\
4068Show stopping for shared library events."), _("\
c906108c
SS
4069If nonzero, gdb will give control to the user when the dynamic linker\n\
4070notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4071to the user would be loading/unloading of a new library."),
4072 NULL,
920d2a44 4073 show_stop_on_solib_events,
85c07804 4074 &setlist, &showlist);
c906108c 4075
7ab04401
AC
4076 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4077 follow_fork_mode_kind_names,
4078 &follow_fork_mode_string, _("\
4079Set debugger response to a program call of fork or vfork."), _("\
4080Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4081A fork or vfork creates a new process. follow-fork-mode can be:\n\
4082 parent - the original process is debugged after a fork\n\
4083 child - the new process is debugged after a fork\n\
ea1dd7bc 4084The unfollowed process will continue to run.\n\
7ab04401
AC
4085By default, the debugger will follow the parent process."),
4086 NULL,
920d2a44 4087 show_follow_fork_mode_string,
7ab04401
AC
4088 &setlist, &showlist);
4089
4090 add_setshow_enum_cmd ("scheduler-locking", class_run,
4091 scheduler_enums, &scheduler_mode, _("\
4092Set mode for locking scheduler during execution."), _("\
4093Show mode for locking scheduler during execution."), _("\
c906108c
SS
4094off == no locking (threads may preempt at any time)\n\
4095on == full locking (no thread except the current thread may run)\n\
4096step == scheduler locked during every single-step operation.\n\
4097 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4098 Other threads may run while stepping over a function call ('next')."),
4099 set_schedlock_func, /* traps on target vector */
920d2a44 4100 show_scheduler_mode,
7ab04401 4101 &setlist, &showlist);
5fbbeb29 4102
5bf193a2
AC
4103 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4104Set mode of the step operation."), _("\
4105Show mode of the step operation."), _("\
4106When set, doing a step over a function without debug line information\n\
4107will stop at the first instruction of that function. Otherwise, the\n\
4108function is skipped and the step command stops at a different source line."),
4109 NULL,
920d2a44 4110 show_step_stop_if_no_debug,
5bf193a2 4111 &setlist, &showlist);
ca6724c1
KB
4112
4113 /* ptid initializations */
4114 null_ptid = ptid_build (0, 0, 0);
4115 minus_one_ptid = ptid_build (-1, 0, 0);
4116 inferior_ptid = null_ptid;
4117 target_last_wait_ptid = minus_one_ptid;
c906108c 4118}
This page took 0.917395 seconds and 4 git commands to generate.