Cleanups. Now passes!
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
c906108c 1/* Target-struct-independent code to start (run) and stop an inferior process.
b6ba6518
KB
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
c906108c
SS
41
42/* Prototypes for local functions */
43
96baa820 44static void signals_info (char *, int);
c906108c 45
96baa820 46static void handle_command (char *, int);
c906108c 47
96baa820 48static void sig_print_info (enum target_signal);
c906108c 49
96baa820 50static void sig_print_header (void);
c906108c 51
74b7792f 52static void resume_cleanups (void *);
c906108c 53
96baa820 54static int hook_stop_stub (void *);
c906108c 55
96baa820 56static void delete_breakpoint_current_contents (void *);
c906108c 57
96baa820
JM
58static void set_follow_fork_mode_command (char *arg, int from_tty,
59 struct cmd_list_element * c);
7a292a7a 60
96baa820
JM
61static struct inferior_status *xmalloc_inferior_status (void);
62
63static void free_inferior_status (struct inferior_status *);
64
65static int restore_selected_frame (void *);
66
67static void build_infrun (void);
68
69static void follow_inferior_fork (int parent_pid, int child_pid,
70 int has_forked, int has_vforked);
71
72static void follow_fork (int parent_pid, int child_pid);
73
74static void follow_vfork (int parent_pid, int child_pid);
75
76static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element * c);
78
96baa820
JM
79struct execution_control_state;
80
81static int currently_stepping (struct execution_control_state *ecs);
82
83static void xdb_handle_command (char *args, int from_tty);
84
85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a
SS
104
105/* This is true for configurations that may follow through execl() and
106 similar functions. At present this is only true for HP-UX native. */
107
108#ifndef MAY_FOLLOW_EXEC
109#define MAY_FOLLOW_EXEC (0)
c906108c
SS
110#endif
111
7a292a7a
SS
112static int may_follow_exec = MAY_FOLLOW_EXEC;
113
c906108c
SS
114/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
115 program. It needs to examine the jmp_buf argument and extract the PC
116 from it. The return value is non-zero on success, zero otherwise. */
117
118#ifndef GET_LONGJMP_TARGET
119#define GET_LONGJMP_TARGET(PC_ADDR) 0
120#endif
121
122
c906108c
SS
123/* Dynamic function trampolines are similar to solib trampolines in that they
124 are between the caller and the callee. The difference is that when you
125 enter a dynamic trampoline, you can't determine the callee's address. Some
126 (usually complex) code needs to run in the dynamic trampoline to figure out
127 the callee's address. This macro is usually called twice. First, when we
128 enter the trampoline (looks like a normal function call at that point). It
129 should return the PC of a point within the trampoline where the callee's
130 address is known. Second, when we hit the breakpoint, this routine returns
131 the callee's address. At that point, things proceed as per a step resume
132 breakpoint. */
133
134#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
135#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
136#endif
137
d4f3574e
SS
138/* If the program uses ELF-style shared libraries, then calls to
139 functions in shared libraries go through stubs, which live in a
140 table called the PLT (Procedure Linkage Table). The first time the
141 function is called, the stub sends control to the dynamic linker,
142 which looks up the function's real address, patches the stub so
143 that future calls will go directly to the function, and then passes
144 control to the function.
145
146 If we are stepping at the source level, we don't want to see any of
147 this --- we just want to skip over the stub and the dynamic linker.
148 The simple approach is to single-step until control leaves the
149 dynamic linker.
150
151 However, on some systems (e.g., Red Hat Linux 5.2) the dynamic
152 linker calls functions in the shared C library, so you can't tell
153 from the PC alone whether the dynamic linker is still running. In
154 this case, we use a step-resume breakpoint to get us past the
155 dynamic linker, as if we were using "next" to step over a function
156 call.
157
158 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
159 linker code or not. Normally, this means we single-step. However,
160 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
161 address where we can place a step-resume breakpoint to get past the
162 linker's symbol resolution function.
163
164 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
165 pretty portable way, by comparing the PC against the address ranges
166 of the dynamic linker's sections.
167
168 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
169 it depends on internal details of the dynamic linker. It's usually
170 not too hard to figure out where to put a breakpoint, but it
171 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
172 sanity checking. If it can't figure things out, returning zero and
173 getting the (possibly confusing) stepping behavior is better than
174 signalling an error, which will obscure the change in the
175 inferior's state. */
c906108c
SS
176
177#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
178#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
179#endif
180
d4f3574e
SS
181#ifndef SKIP_SOLIB_RESOLVER
182#define SKIP_SOLIB_RESOLVER(pc) 0
183#endif
184
c906108c
SS
185/* For SVR4 shared libraries, each call goes through a small piece of
186 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
187 to nonzero if we are current stopped in one of these. */
188
189#ifndef IN_SOLIB_CALL_TRAMPOLINE
190#define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
191#endif
192
193/* In some shared library schemes, the return path from a shared library
194 call may need to go through a trampoline too. */
195
196#ifndef IN_SOLIB_RETURN_TRAMPOLINE
197#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
198#endif
199
200/* This function returns TRUE if pc is the address of an instruction
201 that lies within the dynamic linker (such as the event hook, or the
202 dld itself).
203
204 This function must be used only when a dynamic linker event has
205 been caught, and the inferior is being stepped out of the hook, or
206 undefined results are guaranteed. */
207
208#ifndef SOLIB_IN_DYNAMIC_LINKER
209#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
210#endif
211
212/* On MIPS16, a function that returns a floating point value may call
213 a library helper function to copy the return value to a floating point
214 register. The IGNORE_HELPER_CALL macro returns non-zero if we
215 should ignore (i.e. step over) this function call. */
216#ifndef IGNORE_HELPER_CALL
217#define IGNORE_HELPER_CALL(pc) 0
218#endif
219
220/* On some systems, the PC may be left pointing at an instruction that won't
221 actually be executed. This is usually indicated by a bit in the PSW. If
222 we find ourselves in such a state, then we step the target beyond the
223 nullified instruction before returning control to the user so as to avoid
224 confusion. */
225
226#ifndef INSTRUCTION_NULLIFIED
227#define INSTRUCTION_NULLIFIED 0
228#endif
229
c2c6d25f
JM
230/* We can't step off a permanent breakpoint in the ordinary way, because we
231 can't remove it. Instead, we have to advance the PC to the next
232 instruction. This macro should expand to a pointer to a function that
233 does that, or zero if we have no such function. If we don't have a
234 definition for it, we have to report an error. */
235#ifndef SKIP_PERMANENT_BREAKPOINT
236#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
237static void
c2d11a7d 238default_skip_permanent_breakpoint (void)
c2c6d25f
JM
239{
240 error_begin ();
241 fprintf_filtered (gdb_stderr, "\
242The program is stopped at a permanent breakpoint, but GDB does not know\n\
243how to step past a permanent breakpoint on this architecture. Try using\n\
244a command like `return' or `jump' to continue execution.\n");
245 return_to_top_level (RETURN_ERROR);
246}
247#endif
248
249
7a292a7a
SS
250/* Convert the #defines into values. This is temporary until wfi control
251 flow is completely sorted out. */
252
253#ifndef HAVE_STEPPABLE_WATCHPOINT
254#define HAVE_STEPPABLE_WATCHPOINT 0
255#else
256#undef HAVE_STEPPABLE_WATCHPOINT
257#define HAVE_STEPPABLE_WATCHPOINT 1
258#endif
259
260#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
261#define HAVE_NONSTEPPABLE_WATCHPOINT 0
262#else
263#undef HAVE_NONSTEPPABLE_WATCHPOINT
264#define HAVE_NONSTEPPABLE_WATCHPOINT 1
265#endif
266
267#ifndef HAVE_CONTINUABLE_WATCHPOINT
268#define HAVE_CONTINUABLE_WATCHPOINT 0
269#else
270#undef HAVE_CONTINUABLE_WATCHPOINT
271#define HAVE_CONTINUABLE_WATCHPOINT 1
272#endif
273
692590c1
MS
274#ifndef CANNOT_STEP_HW_WATCHPOINTS
275#define CANNOT_STEP_HW_WATCHPOINTS 0
276#else
277#undef CANNOT_STEP_HW_WATCHPOINTS
278#define CANNOT_STEP_HW_WATCHPOINTS 1
279#endif
280
c906108c
SS
281/* Tables of how to react to signals; the user sets them. */
282
283static unsigned char *signal_stop;
284static unsigned char *signal_print;
285static unsigned char *signal_program;
286
287#define SET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 1; \
293 } while (0)
294
295#define UNSET_SIGS(nsigs,sigs,flags) \
296 do { \
297 int signum = (nsigs); \
298 while (signum-- > 0) \
299 if ((sigs)[signum]) \
300 (flags)[signum] = 0; \
301 } while (0)
302
39f77062
KB
303/* Value to pass to target_resume() to cause all threads to resume */
304
305#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
306
307/* Command list pointer for the "stop" placeholder. */
308
309static struct cmd_list_element *stop_command;
310
311/* Nonzero if breakpoints are now inserted in the inferior. */
312
313static int breakpoints_inserted;
314
315/* Function inferior was in as of last step command. */
316
317static struct symbol *step_start_function;
318
319/* Nonzero if we are expecting a trace trap and should proceed from it. */
320
321static int trap_expected;
322
323#ifdef SOLIB_ADD
324/* Nonzero if we want to give control to the user when we're notified
325 of shared library events by the dynamic linker. */
326static int stop_on_solib_events;
327#endif
328
329#ifdef HP_OS_BUG
330/* Nonzero if the next time we try to continue the inferior, it will
331 step one instruction and generate a spurious trace trap.
332 This is used to compensate for a bug in HP-UX. */
333
334static int trap_expected_after_continue;
335#endif
336
337/* Nonzero means expecting a trace trap
338 and should stop the inferior and return silently when it happens. */
339
340int stop_after_trap;
341
342/* Nonzero means expecting a trap and caller will handle it themselves.
343 It is used after attach, due to attaching to a process;
344 when running in the shell before the child program has been exec'd;
345 and when running some kinds of remote stuff (FIXME?). */
346
347int stop_soon_quietly;
348
349/* Nonzero if proceed is being used for a "finish" command or a similar
350 situation when stop_registers should be saved. */
351
352int proceed_to_finish;
353
354/* Save register contents here when about to pop a stack dummy frame,
355 if-and-only-if proceed_to_finish is set.
356 Thus this contains the return value from the called function (assuming
357 values are returned in a register). */
358
7a292a7a 359char *stop_registers;
c906108c
SS
360
361/* Nonzero if program stopped due to error trying to insert breakpoints. */
362
363static int breakpoints_failed;
364
365/* Nonzero after stop if current stack frame should be printed. */
366
367static int stop_print_frame;
368
369static struct breakpoint *step_resume_breakpoint = NULL;
370static struct breakpoint *through_sigtramp_breakpoint = NULL;
371
372/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
373 interactions with an inferior that is running a kernel function
374 (aka, a system call or "syscall"). wait_for_inferior therefore
375 may have a need to know when the inferior is in a syscall. This
376 is a count of the number of inferior threads which are known to
377 currently be running in a syscall. */
378static int number_of_threads_in_syscalls;
379
e02bc4cc
DS
380/* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/target_wait_hook(). This information is
382 returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
c906108c
SS
386/* This is used to remember when a fork, vfork or exec event
387 was caught by a catchpoint, and thus the event is to be
388 followed at the next resume of the inferior, and not
389 immediately. */
390static struct
391 {
392 enum target_waitkind kind;
393 struct
394 {
395 int parent_pid;
396 int saw_parent_fork;
397 int child_pid;
398 int saw_child_fork;
399 int saw_child_exec;
400 }
401 fork_event;
402 char *execd_pathname;
403 }
404pending_follow;
405
406/* Some platforms don't allow us to do anything meaningful with a
407 vforked child until it has exec'd. Vforked processes on such
408 platforms can only be followed after they've exec'd.
409
410 When this is set to 0, a vfork can be immediately followed,
411 and an exec can be followed merely as an exec. When this is
412 set to 1, a vfork event has been seen, but cannot be followed
413 until the exec is seen.
414
39f77062 415 (In the latter case, inferior_ptid is still the parent of the
c906108c
SS
416 vfork, and pending_follow.fork_event.child_pid is the child. The
417 appropriate process is followed, according to the setting of
418 follow-fork-mode.) */
419static int follow_vfork_when_exec;
420
53904c9e
AC
421static const char follow_fork_mode_ask[] = "ask";
422static const char follow_fork_mode_both[] = "both";
423static const char follow_fork_mode_child[] = "child";
424static const char follow_fork_mode_parent[] = "parent";
425
426static const char *follow_fork_mode_kind_names[] =
c906108c 427{
53904c9e 428 follow_fork_mode_ask,
ef346e04
AC
429 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
430 kernel problem. It's also not terribly useful without a GUI to
431 help the user drive two debuggers. So for now, I'm disabling the
432 "both" option. */
53904c9e
AC
433 /* follow_fork_mode_both, */
434 follow_fork_mode_child,
435 follow_fork_mode_parent,
436 NULL
ef346e04 437};
c906108c 438
53904c9e 439static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
440\f
441
c906108c 442static void
96baa820
JM
443follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
444 int has_vforked)
c906108c
SS
445{
446 int followed_parent = 0;
447 int followed_child = 0;
c906108c
SS
448
449 /* Which process did the user want us to follow? */
53904c9e 450 const char *follow_mode = follow_fork_mode_string;
c906108c
SS
451
452 /* Or, did the user not know, and want us to ask? */
e28d556f 453 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 454 {
8e65ff28
AC
455 internal_error (__FILE__, __LINE__,
456 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 457 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
458 }
459
460 /* If we're to be following the parent, then detach from child_pid.
461 We're already following the parent, so need do nothing explicit
462 for it. */
53904c9e 463 if (follow_mode == follow_fork_mode_parent)
c906108c
SS
464 {
465 followed_parent = 1;
466
467 /* We're already attached to the parent, by default. */
468
469 /* Before detaching from the child, remove all breakpoints from
470 it. (This won't actually modify the breakpoint list, but will
471 physically remove the breakpoints from the child.) */
472 if (!has_vforked || !follow_vfork_when_exec)
473 {
474 detach_breakpoints (child_pid);
7a292a7a 475#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 476 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 477#endif
c906108c
SS
478 }
479
480 /* Detach from the child. */
481 dont_repeat ();
482
483 target_require_detach (child_pid, "", 1);
484 }
485
486 /* If we're to be following the child, then attach to it, detach
39f77062 487 from inferior_ptid, and set inferior_ptid to child_pid. */
53904c9e 488 else if (follow_mode == follow_fork_mode_child)
c906108c
SS
489 {
490 char child_pid_spelling[100]; /* Arbitrary length. */
491
492 followed_child = 1;
493
494 /* Before detaching from the parent, detach all breakpoints from
495 the child. But only if we're forking, or if we follow vforks
496 as soon as they happen. (If we're following vforks only when
497 the child has exec'd, then it's very wrong to try to write
498 back the "shadow contents" of inserted breakpoints now -- they
499 belong to the child's pre-exec'd a.out.) */
500 if (!has_vforked || !follow_vfork_when_exec)
501 {
502 detach_breakpoints (child_pid);
503 }
504
505 /* Before detaching from the parent, remove all breakpoints from it. */
506 remove_breakpoints ();
507
508 /* Also reset the solib inferior hook from the parent. */
7a292a7a 509#ifdef SOLIB_REMOVE_INFERIOR_HOOK
39f77062 510 SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 511#endif
c906108c
SS
512
513 /* Detach from the parent. */
514 dont_repeat ();
515 target_detach (NULL, 1);
516
517 /* Attach to the child. */
39f77062 518 inferior_ptid = pid_to_ptid (child_pid);
c906108c
SS
519 sprintf (child_pid_spelling, "%d", child_pid);
520 dont_repeat ();
521
522 target_require_attach (child_pid_spelling, 1);
523
524 /* Was there a step_resume breakpoint? (There was if the user
525 did a "next" at the fork() call.) If so, explicitly reset its
526 thread number.
527
528 step_resumes are a form of bp that are made to be per-thread.
529 Since we created the step_resume bp when the parent process
530 was being debugged, and now are switching to the child process,
531 from the breakpoint package's viewpoint, that's a switch of
532 "threads". We must update the bp's notion of which thread
533 it is for, or it'll be ignored when it triggers... */
534 if (step_resume_breakpoint &&
535 (!has_vforked || !follow_vfork_when_exec))
536 breakpoint_re_set_thread (step_resume_breakpoint);
537
538 /* Reinsert all breakpoints in the child. (The user may've set
539 breakpoints after catching the fork, in which case those
540 actually didn't get set in the child, but only in the parent.) */
541 if (!has_vforked || !follow_vfork_when_exec)
542 {
543 breakpoint_re_set ();
544 insert_breakpoints ();
545 }
546 }
547
548 /* If we're to be following both parent and child, then fork ourselves,
549 and attach the debugger clone to the child. */
53904c9e 550 else if (follow_mode == follow_fork_mode_both)
c906108c
SS
551 {
552 char pid_suffix[100]; /* Arbitrary length. */
553
554 /* Clone ourselves to follow the child. This is the end of our
c5aa993b 555 involvement with child_pid; our clone will take it from here... */
c906108c
SS
556 dont_repeat ();
557 target_clone_and_follow_inferior (child_pid, &followed_child);
558 followed_parent = !followed_child;
559
560 /* We continue to follow the parent. To help distinguish the two
561 debuggers, though, both we and our clone will reset our prompts. */
39f77062 562 sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
c906108c
SS
563 set_prompt (strcat (get_prompt (), pid_suffix));
564 }
565
566 /* The parent and child of a vfork share the same address space.
567 Also, on some targets the order in which vfork and exec events
568 are received for parent in child requires some delicate handling
569 of the events.
570
571 For instance, on ptrace-based HPUX we receive the child's vfork
572 event first, at which time the parent has been suspended by the
573 OS and is essentially untouchable until the child's exit or second
574 exec event arrives. At that time, the parent's vfork event is
575 delivered to us, and that's when we see and decide how to follow
576 the vfork. But to get to that point, we must continue the child
577 until it execs or exits. To do that smoothly, all breakpoints
578 must be removed from the child, in case there are any set between
579 the vfork() and exec() calls. But removing them from the child
580 also removes them from the parent, due to the shared-address-space
581 nature of a vfork'd parent and child. On HPUX, therefore, we must
582 take care to restore the bp's to the parent before we continue it.
583 Else, it's likely that we may not stop in the expected place. (The
584 worst scenario is when the user tries to step over a vfork() call;
585 the step-resume bp must be restored for the step to properly stop
586 in the parent after the call completes!)
587
588 Sequence of events, as reported to gdb from HPUX:
589
c5aa993b
JM
590 Parent Child Action for gdb to take
591 -------------------------------------------------------
592 1 VFORK Continue child
593 2 EXEC
594 3 EXEC or EXIT
595 4 VFORK */
c906108c
SS
596 if (has_vforked)
597 {
598 target_post_follow_vfork (parent_pid,
599 followed_parent,
600 child_pid,
601 followed_child);
602 }
603
604 pending_follow.fork_event.saw_parent_fork = 0;
605 pending_follow.fork_event.saw_child_fork = 0;
c906108c
SS
606}
607
608static void
96baa820 609follow_fork (int parent_pid, int child_pid)
c906108c
SS
610{
611 follow_inferior_fork (parent_pid, child_pid, 1, 0);
612}
613
614
615/* Forward declaration. */
96baa820 616static void follow_exec (int, char *);
c906108c
SS
617
618static void
96baa820 619follow_vfork (int parent_pid, int child_pid)
c906108c
SS
620{
621 follow_inferior_fork (parent_pid, child_pid, 0, 1);
622
623 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
39f77062
KB
624 if (pending_follow.fork_event.saw_child_exec
625 && (PIDGET (inferior_ptid) == child_pid))
c906108c
SS
626 {
627 pending_follow.fork_event.saw_child_exec = 0;
628 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 629 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 630 xfree (pending_follow.execd_pathname);
c906108c
SS
631 }
632}
c906108c 633
1adeb98a
FN
634/* EXECD_PATHNAME is assumed to be non-NULL. */
635
c906108c 636static void
96baa820 637follow_exec (int pid, char *execd_pathname)
c906108c 638{
c906108c 639 int saved_pid = pid;
7a292a7a
SS
640 struct target_ops *tgt;
641
642 if (!may_follow_exec)
643 return;
c906108c
SS
644
645 /* Did this exec() follow a vfork()? If so, we must follow the
646 vfork now too. Do it before following the exec. */
647 if (follow_vfork_when_exec &&
648 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
649 {
650 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
651 follow_vfork (PIDGET (inferior_ptid),
652 pending_follow.fork_event.child_pid);
c906108c 653 follow_vfork_when_exec = 0;
39f77062 654 saved_pid = PIDGET (inferior_ptid);
c906108c
SS
655
656 /* Did we follow the parent? If so, we're done. If we followed
657 the child then we must also follow its exec(). */
39f77062 658 if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
c906108c
SS
659 return;
660 }
661
662 /* This is an exec event that we actually wish to pay attention to.
663 Refresh our symbol table to the newly exec'd program, remove any
664 momentary bp's, etc.
665
666 If there are breakpoints, they aren't really inserted now,
667 since the exec() transformed our inferior into a fresh set
668 of instructions.
669
670 We want to preserve symbolic breakpoints on the list, since
671 we have hopes that they can be reset after the new a.out's
672 symbol table is read.
673
674 However, any "raw" breakpoints must be removed from the list
675 (e.g., the solib bp's), since their address is probably invalid
676 now.
677
678 And, we DON'T want to call delete_breakpoints() here, since
679 that may write the bp's "shadow contents" (the instruction
680 value that was overwritten witha TRAP instruction). Since
681 we now have a new a.out, those shadow contents aren't valid. */
682 update_breakpoints_after_exec ();
683
684 /* If there was one, it's gone now. We cannot truly step-to-next
685 statement through an exec(). */
686 step_resume_breakpoint = NULL;
687 step_range_start = 0;
688 step_range_end = 0;
689
690 /* If there was one, it's gone now. */
691 through_sigtramp_breakpoint = NULL;
692
693 /* What is this a.out's name? */
694 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
695
696 /* We've followed the inferior through an exec. Therefore, the
697 inferior has essentially been killed & reborn. */
7a292a7a
SS
698
699 /* First collect the run target in effect. */
700 tgt = find_run_target ();
701 /* If we can't find one, things are in a very strange state... */
702 if (tgt == NULL)
703 error ("Could find run target to save before following exec");
704
c906108c
SS
705 gdb_flush (gdb_stdout);
706 target_mourn_inferior ();
39f77062
KB
707 inferior_ptid = pid_to_ptid (saved_pid);
708 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 709 push_target (tgt);
c906108c
SS
710
711 /* That a.out is now the one to use. */
712 exec_file_attach (execd_pathname, 0);
713
714 /* And also is where symbols can be found. */
1adeb98a 715 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
716
717 /* Reset the shared library package. This ensures that we get
718 a shlib event when the child reaches "_start", at which point
719 the dld will have had a chance to initialize the child. */
7a292a7a 720#if defined(SOLIB_RESTART)
c906108c 721 SOLIB_RESTART ();
7a292a7a
SS
722#endif
723#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 724 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 725#endif
c906108c
SS
726
727 /* Reinsert all breakpoints. (Those which were symbolic have
728 been reset to the proper address in the new a.out, thanks
729 to symbol_file_command...) */
730 insert_breakpoints ();
731
732 /* The next resume of this inferior should bring it to the shlib
733 startup breakpoints. (If the user had also set bp's on
734 "main" from the old (parent) process, then they'll auto-
735 matically get reset there in the new process.) */
c906108c
SS
736}
737
738/* Non-zero if we just simulating a single-step. This is needed
739 because we cannot remove the breakpoints in the inferior process
740 until after the `wait' in `wait_for_inferior'. */
741static int singlestep_breakpoints_inserted_p = 0;
742\f
743
744/* Things to clean up if we QUIT out of resume (). */
745/* ARGSUSED */
746static void
74b7792f 747resume_cleanups (void *ignore)
c906108c
SS
748{
749 normal_stop ();
750}
751
53904c9e
AC
752static const char schedlock_off[] = "off";
753static const char schedlock_on[] = "on";
754static const char schedlock_step[] = "step";
755static const char *scheduler_mode = schedlock_off;
756static const char *scheduler_enums[] =
ef346e04
AC
757{
758 schedlock_off,
759 schedlock_on,
760 schedlock_step,
761 NULL
762};
c906108c
SS
763
764static void
96baa820 765set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
766{
767 if (c->type == set_cmd)
768 if (!target_can_lock_scheduler)
769 {
770 scheduler_mode = schedlock_off;
771 error ("Target '%s' cannot support this command.",
772 target_shortname);
773 }
774}
775
776
777/* Resume the inferior, but allow a QUIT. This is useful if the user
778 wants to interrupt some lengthy single-stepping operation
779 (for child processes, the SIGINT goes to the inferior, and so
780 we get a SIGINT random_signal, but for remote debugging and perhaps
781 other targets, that's not true).
782
783 STEP nonzero if we should step (zero to continue instead).
784 SIG is the signal to give the inferior (zero for none). */
785void
96baa820 786resume (int step, enum target_signal sig)
c906108c
SS
787{
788 int should_resume = 1;
74b7792f 789 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
790 QUIT;
791
ef5cf84e
MS
792 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
793
c906108c 794
692590c1
MS
795 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
796 over an instruction that causes a page fault without triggering
797 a hardware watchpoint. The kernel properly notices that it shouldn't
798 stop, because the hardware watchpoint is not triggered, but it forgets
799 the step request and continues the program normally.
800 Work around the problem by removing hardware watchpoints if a step is
801 requested, GDB will check for a hardware watchpoint trigger after the
802 step anyway. */
803 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
804 remove_hw_watchpoints ();
805
806
c2c6d25f
JM
807 /* Normally, by the time we reach `resume', the breakpoints are either
808 removed or inserted, as appropriate. The exception is if we're sitting
809 at a permanent breakpoint; we need to step over it, but permanent
810 breakpoints can't be removed. So we have to test for it here. */
811 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
812 SKIP_PERMANENT_BREAKPOINT ();
813
b0ed3589 814 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
815 {
816 /* Do it the hard way, w/temp breakpoints */
c5aa993b 817 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
818 /* ...and don't ask hardware to do it. */
819 step = 0;
820 /* and do not pull these breakpoints until after a `wait' in
821 `wait_for_inferior' */
822 singlestep_breakpoints_inserted_p = 1;
823 }
824
825 /* Handle any optimized stores to the inferior NOW... */
826#ifdef DO_DEFERRED_STORES
827 DO_DEFERRED_STORES;
828#endif
829
c906108c
SS
830 /* If there were any forks/vforks/execs that were caught and are
831 now to be followed, then do so. */
832 switch (pending_follow.kind)
833 {
834 case (TARGET_WAITKIND_FORKED):
835 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
836 follow_fork (PIDGET (inferior_ptid),
837 pending_follow.fork_event.child_pid);
c906108c
SS
838 break;
839
840 case (TARGET_WAITKIND_VFORKED):
841 {
842 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
843
844 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
845 follow_vfork (PIDGET (inferior_ptid),
846 pending_follow.fork_event.child_pid);
c906108c
SS
847
848 /* Did we follow the child, but not yet see the child's exec event?
c5aa993b
JM
849 If so, then it actually ought to be waiting for us; we respond to
850 parent vfork events. We don't actually want to resume the child
851 in this situation; we want to just get its exec event. */
c906108c 852 if (!saw_child_exec &&
39f77062 853 (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
c906108c
SS
854 should_resume = 0;
855 }
856 break;
857
858 case (TARGET_WAITKIND_EXECD):
859 /* If we saw a vfork event but couldn't follow it until we saw
c5aa993b 860 an exec, then now might be the time! */
c906108c
SS
861 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
862 /* follow_exec is called as soon as the exec event is seen. */
863 break;
864
865 default:
866 break;
867 }
c906108c
SS
868
869 /* Install inferior's terminal modes. */
870 target_terminal_inferior ();
871
872 if (should_resume)
873 {
39f77062 874 ptid_t resume_ptid;
dfcd3bfb 875
ef5cf84e
MS
876 resume_ptid = RESUME_ALL; /* Default */
877
878 if ((step || singlestep_breakpoints_inserted_p) &&
879 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 880 {
ef5cf84e
MS
881 /* Stepping past a breakpoint without inserting breakpoints.
882 Make sure only the current thread gets to step, so that
883 other threads don't sneak past breakpoints while they are
884 not inserted. */
c906108c 885
ef5cf84e 886 resume_ptid = inferior_ptid;
c906108c 887 }
ef5cf84e
MS
888
889 if ((scheduler_mode == schedlock_on) ||
890 (scheduler_mode == schedlock_step &&
891 (step || singlestep_breakpoints_inserted_p)))
c906108c 892 {
ef5cf84e 893 /* User-settable 'scheduler' mode requires solo thread resume. */
39f77062 894 resume_ptid = inferior_ptid;
c906108c 895 }
ef5cf84e
MS
896
897#ifdef CANNOT_STEP_BREAKPOINT
898 /* Most targets can step a breakpoint instruction, thus executing it
899 normally. But if this one cannot, just continue and we will hit
900 it anyway. */
901 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
902 step = 0;
903#endif
39f77062 904 target_resume (resume_ptid, step, sig);
c906108c
SS
905 }
906
907 discard_cleanups (old_cleanups);
908}
909\f
910
911/* Clear out all variables saying what to do when inferior is continued.
912 First do this, then set the ones you want, then call `proceed'. */
913
914void
96baa820 915clear_proceed_status (void)
c906108c
SS
916{
917 trap_expected = 0;
918 step_range_start = 0;
919 step_range_end = 0;
920 step_frame_address = 0;
5fbbeb29 921 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
922 stop_after_trap = 0;
923 stop_soon_quietly = 0;
924 proceed_to_finish = 0;
925 breakpoint_proceeded = 1; /* We're about to proceed... */
926
927 /* Discard any remaining commands or status from previous stop. */
928 bpstat_clear (&stop_bpstat);
929}
930
931/* Basic routine for continuing the program in various fashions.
932
933 ADDR is the address to resume at, or -1 for resume where stopped.
934 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 935 or -1 for act according to how it stopped.
c906108c 936 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
937 -1 means return after that and print nothing.
938 You should probably set various step_... variables
939 before calling here, if you are stepping.
c906108c
SS
940
941 You should call clear_proceed_status before calling proceed. */
942
943void
96baa820 944proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
945{
946 int oneproc = 0;
947
948 if (step > 0)
949 step_start_function = find_pc_function (read_pc ());
950 if (step < 0)
951 stop_after_trap = 1;
952
2acceee2 953 if (addr == (CORE_ADDR) -1)
c906108c
SS
954 {
955 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
956 step one instruction before inserting breakpoints
957 so that we do not stop right away (and report a second
c906108c
SS
958 hit at this breakpoint). */
959
960 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
961 oneproc = 1;
962
963#ifndef STEP_SKIPS_DELAY
964#define STEP_SKIPS_DELAY(pc) (0)
965#define STEP_SKIPS_DELAY_P (0)
966#endif
967 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
968 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
969 is slow (it needs to read memory from the target). */
c906108c
SS
970 if (STEP_SKIPS_DELAY_P
971 && breakpoint_here_p (read_pc () + 4)
972 && STEP_SKIPS_DELAY (read_pc ()))
973 oneproc = 1;
974 }
975 else
976 {
977 write_pc (addr);
c906108c
SS
978 }
979
980#ifdef PREPARE_TO_PROCEED
981 /* In a multi-threaded task we may select another thread
982 and then continue or step.
983
984 But if the old thread was stopped at a breakpoint, it
985 will immediately cause another breakpoint stop without
986 any execution (i.e. it will report a breakpoint hit
987 incorrectly). So we must step over it first.
988
989 PREPARE_TO_PROCEED checks the current thread against the thread
990 that reported the most recent event. If a step-over is required
991 it returns TRUE and sets the current thread to the old thread. */
9e086581 992 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
993 {
994 oneproc = 1;
c906108c
SS
995 }
996
997#endif /* PREPARE_TO_PROCEED */
998
999#ifdef HP_OS_BUG
1000 if (trap_expected_after_continue)
1001 {
1002 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
1003 the first instruction is executed. Force step one
1004 instruction to clear this condition. This should not occur
1005 if step is nonzero, but it is harmless in that case. */
c906108c
SS
1006 oneproc = 1;
1007 trap_expected_after_continue = 0;
1008 }
1009#endif /* HP_OS_BUG */
1010
1011 if (oneproc)
1012 /* We will get a trace trap after one instruction.
1013 Continue it automatically and insert breakpoints then. */
1014 trap_expected = 1;
1015 else
1016 {
1017 int temp = insert_breakpoints ();
1018 if (temp)
1019 {
010a3cd9 1020 print_sys_errmsg ("insert_breakpoints", temp);
c906108c 1021 error ("Cannot insert breakpoints.\n\
010a3cd9
EZ
1022The same program may be running in another process,\n\
1023or you may have requested too many hardware\n\
1024breakpoints and/or watchpoints.\n");
c906108c
SS
1025 }
1026
1027 breakpoints_inserted = 1;
1028 }
1029
1030 if (siggnal != TARGET_SIGNAL_DEFAULT)
1031 stop_signal = siggnal;
1032 /* If this signal should not be seen by program,
1033 give it zero. Used for debugging signals. */
1034 else if (!signal_program[stop_signal])
1035 stop_signal = TARGET_SIGNAL_0;
1036
1037 annotate_starting ();
1038
1039 /* Make sure that output from GDB appears before output from the
1040 inferior. */
1041 gdb_flush (gdb_stdout);
1042
1043 /* Resume inferior. */
1044 resume (oneproc || step || bpstat_should_step (), stop_signal);
1045
1046 /* Wait for it to stop (if not standalone)
1047 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1048 /* Do this only if we are not using the event loop, or if the target
1049 does not support asynchronous execution. */
6426a772 1050 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
1051 {
1052 wait_for_inferior ();
1053 normal_stop ();
1054 }
c906108c
SS
1055}
1056
1057/* Record the pc and sp of the program the last time it stopped.
1058 These are just used internally by wait_for_inferior, but need
1059 to be preserved over calls to it and cleared when the inferior
1060 is started. */
1061static CORE_ADDR prev_pc;
1062static CORE_ADDR prev_func_start;
1063static char *prev_func_name;
1064\f
1065
1066/* Start remote-debugging of a machine over a serial link. */
96baa820 1067
c906108c 1068void
96baa820 1069start_remote (void)
c906108c
SS
1070{
1071 init_thread_list ();
1072 init_wait_for_inferior ();
1073 stop_soon_quietly = 1;
1074 trap_expected = 0;
43ff13b4 1075
6426a772
JM
1076 /* Always go on waiting for the target, regardless of the mode. */
1077 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1078 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1079 nothing is returned (instead of just blocking). Because of this,
1080 targets expecting an immediate response need to, internally, set
1081 things up so that the target_wait() is forced to eventually
1082 timeout. */
1083 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1084 differentiate to its caller what the state of the target is after
1085 the initial open has been performed. Here we're assuming that
1086 the target has stopped. It should be possible to eventually have
1087 target_open() return to the caller an indication that the target
1088 is currently running and GDB state should be set to the same as
1089 for an async run. */
1090 wait_for_inferior ();
1091 normal_stop ();
c906108c
SS
1092}
1093
1094/* Initialize static vars when a new inferior begins. */
1095
1096void
96baa820 1097init_wait_for_inferior (void)
c906108c
SS
1098{
1099 /* These are meaningless until the first time through wait_for_inferior. */
1100 prev_pc = 0;
1101 prev_func_start = 0;
1102 prev_func_name = NULL;
1103
1104#ifdef HP_OS_BUG
1105 trap_expected_after_continue = 0;
1106#endif
1107 breakpoints_inserted = 0;
1108 breakpoint_init_inferior (inf_starting);
1109
1110 /* Don't confuse first call to proceed(). */
1111 stop_signal = TARGET_SIGNAL_0;
1112
1113 /* The first resume is not following a fork/vfork/exec. */
1114 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1115 pending_follow.fork_event.saw_parent_fork = 0;
1116 pending_follow.fork_event.saw_child_fork = 0;
1117 pending_follow.fork_event.saw_child_exec = 0;
1118
1119 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1120 number_of_threads_in_syscalls = 0;
1121
1122 clear_proceed_status ();
1123}
1124
1125static void
96baa820 1126delete_breakpoint_current_contents (void *arg)
c906108c
SS
1127{
1128 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1129 if (*breakpointp != NULL)
1130 {
1131 delete_breakpoint (*breakpointp);
1132 *breakpointp = NULL;
1133 }
1134}
1135\f
b83266a0
SS
1136/* This enum encodes possible reasons for doing a target_wait, so that
1137 wfi can call target_wait in one place. (Ultimately the call will be
1138 moved out of the infinite loop entirely.) */
1139
c5aa993b
JM
1140enum infwait_states
1141{
cd0fc7c3
SS
1142 infwait_normal_state,
1143 infwait_thread_hop_state,
1144 infwait_nullified_state,
1145 infwait_nonstep_watch_state
b83266a0
SS
1146};
1147
11cf8741
JM
1148/* Why did the inferior stop? Used to print the appropriate messages
1149 to the interface from within handle_inferior_event(). */
1150enum inferior_stop_reason
1151{
1152 /* We don't know why. */
1153 STOP_UNKNOWN,
1154 /* Step, next, nexti, stepi finished. */
1155 END_STEPPING_RANGE,
1156 /* Found breakpoint. */
1157 BREAKPOINT_HIT,
1158 /* Inferior terminated by signal. */
1159 SIGNAL_EXITED,
1160 /* Inferior exited. */
1161 EXITED,
1162 /* Inferior received signal, and user asked to be notified. */
1163 SIGNAL_RECEIVED
1164};
1165
cd0fc7c3
SS
1166/* This structure contains what used to be local variables in
1167 wait_for_inferior. Probably many of them can return to being
1168 locals in handle_inferior_event. */
1169
c5aa993b
JM
1170struct execution_control_state
1171 {
1172 struct target_waitstatus ws;
1173 struct target_waitstatus *wp;
1174 int another_trap;
1175 int random_signal;
1176 CORE_ADDR stop_func_start;
1177 CORE_ADDR stop_func_end;
1178 char *stop_func_name;
1179 struct symtab_and_line sal;
1180 int remove_breakpoints_on_following_step;
1181 int current_line;
1182 struct symtab *current_symtab;
1183 int handling_longjmp; /* FIXME */
39f77062
KB
1184 ptid_t ptid;
1185 ptid_t saved_inferior_ptid;
c5aa993b
JM
1186 int update_step_sp;
1187 int stepping_through_solib_after_catch;
1188 bpstat stepping_through_solib_catchpoints;
1189 int enable_hw_watchpoints_after_wait;
1190 int stepping_through_sigtramp;
1191 int new_thread_event;
1192 struct target_waitstatus tmpstatus;
1193 enum infwait_states infwait_state;
39f77062 1194 ptid_t waiton_ptid;
c5aa993b
JM
1195 int wait_some_more;
1196 };
1197
96baa820 1198void init_execution_control_state (struct execution_control_state * ecs);
c5aa993b 1199
96baa820 1200void handle_inferior_event (struct execution_control_state * ecs);
cd0fc7c3 1201
104c1213 1202static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 1203static void step_into_function (struct execution_control_state *ecs);
d4f3574e 1204static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
1205static void stop_stepping (struct execution_control_state *ecs);
1206static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1207static void keep_going (struct execution_control_state *ecs);
11cf8741 1208static void print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info);
104c1213 1209
cd0fc7c3
SS
1210/* Wait for control to return from inferior to debugger.
1211 If inferior gets a signal, we may decide to start it up again
1212 instead of returning. That is why there is a loop in this function.
1213 When this function actually returns it means the inferior
1214 should be left stopped and GDB should read more commands. */
1215
1216void
96baa820 1217wait_for_inferior (void)
cd0fc7c3
SS
1218{
1219 struct cleanup *old_cleanups;
1220 struct execution_control_state ecss;
1221 struct execution_control_state *ecs;
c906108c 1222
8601f500 1223 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1224 &step_resume_breakpoint);
1225 make_cleanup (delete_breakpoint_current_contents,
1226 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1227
1228 /* wfi still stays in a loop, so it's OK just to take the address of
1229 a local to get the ecs pointer. */
1230 ecs = &ecss;
1231
1232 /* Fill in with reasonable starting values. */
1233 init_execution_control_state (ecs);
1234
c906108c 1235 /* We'll update this if & when we switch to a new thread. */
39f77062 1236 previous_inferior_ptid = inferior_ptid;
c906108c 1237
cd0fc7c3
SS
1238 overlay_cache_invalid = 1;
1239
1240 /* We have to invalidate the registers BEFORE calling target_wait
1241 because they can be loaded from the target while in target_wait.
1242 This makes remote debugging a bit more efficient for those
1243 targets that provide critical registers as part of their normal
1244 status mechanism. */
1245
1246 registers_changed ();
b83266a0 1247
c906108c
SS
1248 while (1)
1249 {
cd0fc7c3 1250 if (target_wait_hook)
39f77062 1251 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1252 else
39f77062 1253 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1254
cd0fc7c3
SS
1255 /* Now figure out what to do with the result of the result. */
1256 handle_inferior_event (ecs);
c906108c 1257
cd0fc7c3
SS
1258 if (!ecs->wait_some_more)
1259 break;
1260 }
1261 do_cleanups (old_cleanups);
1262}
c906108c 1263
43ff13b4
JM
1264/* Asynchronous version of wait_for_inferior. It is called by the
1265 event loop whenever a change of state is detected on the file
1266 descriptor corresponding to the target. It can be called more than
1267 once to complete a single execution command. In such cases we need
1268 to keep the state in a global variable ASYNC_ECSS. If it is the
1269 last time that this function is called for a single execution
1270 command, then report to the user that the inferior has stopped, and
1271 do the necessary cleanups. */
1272
1273struct execution_control_state async_ecss;
1274struct execution_control_state *async_ecs;
1275
1276void
fba45db2 1277fetch_inferior_event (void *client_data)
43ff13b4
JM
1278{
1279 static struct cleanup *old_cleanups;
1280
c5aa993b 1281 async_ecs = &async_ecss;
43ff13b4
JM
1282
1283 if (!async_ecs->wait_some_more)
1284 {
8601f500 1285 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1286 &step_resume_breakpoint);
43ff13b4 1287 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1288 &through_sigtramp_breakpoint);
43ff13b4
JM
1289
1290 /* Fill in with reasonable starting values. */
1291 init_execution_control_state (async_ecs);
1292
43ff13b4 1293 /* We'll update this if & when we switch to a new thread. */
39f77062 1294 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1295
1296 overlay_cache_invalid = 1;
1297
1298 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1299 because they can be loaded from the target while in target_wait.
1300 This makes remote debugging a bit more efficient for those
1301 targets that provide critical registers as part of their normal
1302 status mechanism. */
43ff13b4
JM
1303
1304 registers_changed ();
1305 }
1306
1307 if (target_wait_hook)
39f77062 1308 async_ecs->ptid = target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1309 else
39f77062 1310 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1311
1312 /* Now figure out what to do with the result of the result. */
1313 handle_inferior_event (async_ecs);
1314
1315 if (!async_ecs->wait_some_more)
1316 {
adf40b2e
JM
1317 /* Do only the cleanups that have been added by this
1318 function. Let the continuations for the commands do the rest,
1319 if there are any. */
43ff13b4
JM
1320 do_exec_cleanups (old_cleanups);
1321 normal_stop ();
c2d11a7d
JM
1322 if (step_multi && stop_step)
1323 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1324 else
1325 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1326 }
1327}
1328
cd0fc7c3
SS
1329/* Prepare an execution control state for looping through a
1330 wait_for_inferior-type loop. */
1331
1332void
96baa820 1333init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1334{
c2d11a7d 1335 /* ecs->another_trap? */
cd0fc7c3
SS
1336 ecs->random_signal = 0;
1337 ecs->remove_breakpoints_on_following_step = 0;
1338 ecs->handling_longjmp = 0; /* FIXME */
1339 ecs->update_step_sp = 0;
1340 ecs->stepping_through_solib_after_catch = 0;
1341 ecs->stepping_through_solib_catchpoints = NULL;
1342 ecs->enable_hw_watchpoints_after_wait = 0;
1343 ecs->stepping_through_sigtramp = 0;
1344 ecs->sal = find_pc_line (prev_pc, 0);
1345 ecs->current_line = ecs->sal.line;
1346 ecs->current_symtab = ecs->sal.symtab;
1347 ecs->infwait_state = infwait_normal_state;
39f77062 1348 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1349 ecs->wp = &(ecs->ws);
1350}
1351
a0b3c4fd 1352/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1353 sanity check. There should never be more than one step-resume
1354 breakpoint per thread, so we should never be setting a new
1355 step_resume_breakpoint when one is already active. */
a0b3c4fd 1356static void
96baa820 1357check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1358{
1359 if (step_resume_breakpoint)
1360 warning ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1361}
1362
e02bc4cc
DS
1363/* Return the cached copy of the last pid/waitstatus returned by
1364 target_wait()/target_wait_hook(). The data is actually cached by
1365 handle_inferior_event(), which gets called immediately after
1366 target_wait()/target_wait_hook(). */
1367
1368void
39f77062 1369get_last_target_status(ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1370{
39f77062 1371 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1372 *status = target_last_waitstatus;
1373}
1374
dd80620e
MS
1375/* Switch thread contexts, maintaining "infrun state". */
1376
1377static void
1378context_switch (struct execution_control_state *ecs)
1379{
1380 /* Caution: it may happen that the new thread (or the old one!)
1381 is not in the thread list. In this case we must not attempt
1382 to "switch context", or we run the risk that our context may
1383 be lost. This may happen as a result of the target module
1384 mishandling thread creation. */
1385
1386 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1387 { /* Perform infrun state context switch: */
1388 /* Save infrun state for the old thread. */
1389 save_infrun_state (inferior_ptid, prev_pc,
1390 prev_func_start, prev_func_name,
1391 trap_expected, step_resume_breakpoint,
1392 through_sigtramp_breakpoint, step_range_start,
1393 step_range_end, step_frame_address,
1394 ecs->handling_longjmp, ecs->another_trap,
1395 ecs->stepping_through_solib_after_catch,
1396 ecs->stepping_through_solib_catchpoints,
1397 ecs->stepping_through_sigtramp,
1398 ecs->current_line, ecs->current_symtab,
1399 step_sp);
1400
1401 /* Load infrun state for the new thread. */
1402 load_infrun_state (ecs->ptid, &prev_pc,
1403 &prev_func_start, &prev_func_name,
1404 &trap_expected, &step_resume_breakpoint,
1405 &through_sigtramp_breakpoint, &step_range_start,
1406 &step_range_end, &step_frame_address,
1407 &ecs->handling_longjmp, &ecs->another_trap,
1408 &ecs->stepping_through_solib_after_catch,
1409 &ecs->stepping_through_solib_catchpoints,
1410 &ecs->stepping_through_sigtramp,
1411 &ecs->current_line, &ecs->current_symtab,
1412 &step_sp);
1413 }
1414 inferior_ptid = ecs->ptid;
1415}
1416
1417
cd0fc7c3
SS
1418/* Given an execution control state that has been freshly filled in
1419 by an event from the inferior, figure out what it means and take
1420 appropriate action. */
c906108c 1421
cd0fc7c3 1422void
96baa820 1423handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3
SS
1424{
1425 CORE_ADDR tmp;
1426 int stepped_after_stopped_by_watchpoint;
1427
e02bc4cc 1428 /* Cache the last pid/waitstatus. */
39f77062 1429 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1430 target_last_waitstatus = *ecs->wp;
1431
cd0fc7c3
SS
1432 /* Keep this extra brace for now, minimizes diffs. */
1433 {
c5aa993b
JM
1434 switch (ecs->infwait_state)
1435 {
dd80620e
MS
1436 case infwait_thread_hop_state:
1437 /* Cancel the waiton_ptid. */
1438 ecs->waiton_ptid = pid_to_ptid (-1);
1439 /* Fall thru to the normal_state case. */
1440
c5aa993b 1441 case infwait_normal_state:
c5aa993b
JM
1442 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1443 is serviced in this loop, below. */
1444 if (ecs->enable_hw_watchpoints_after_wait)
1445 {
39f77062 1446 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
c5aa993b
JM
1447 ecs->enable_hw_watchpoints_after_wait = 0;
1448 }
1449 stepped_after_stopped_by_watchpoint = 0;
1450 break;
b83266a0 1451
c5aa993b
JM
1452 case infwait_nullified_state:
1453 break;
b83266a0 1454
c5aa993b
JM
1455 case infwait_nonstep_watch_state:
1456 insert_breakpoints ();
b83266a0 1457
c5aa993b
JM
1458 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1459 handle things like signals arriving and other things happening
1460 in combination correctly? */
1461 stepped_after_stopped_by_watchpoint = 1;
1462 break;
1463 }
1464 ecs->infwait_state = infwait_normal_state;
c906108c 1465
c5aa993b 1466 flush_cached_frames ();
c906108c 1467
c5aa993b 1468 /* If it's a new process, add it to the thread database */
c906108c 1469
39f77062
KB
1470 ecs->new_thread_event = (! ptid_equal (ecs->ptid, inferior_ptid)
1471 && ! in_thread_list (ecs->ptid));
c906108c 1472
c5aa993b
JM
1473 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1474 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1475 && ecs->new_thread_event)
1476 {
39f77062 1477 add_thread (ecs->ptid);
c906108c 1478
8b93c638
JM
1479#ifdef UI_OUT
1480 ui_out_text (uiout, "[New ");
39f77062 1481 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
8b93c638
JM
1482 ui_out_text (uiout, "]\n");
1483#else
39f77062 1484 printf_filtered ("[New %s]\n", target_pid_or_tid_to_str (ecs->ptid));
8b93c638 1485#endif
c906108c
SS
1486
1487#if 0
c5aa993b
JM
1488 /* NOTE: This block is ONLY meant to be invoked in case of a
1489 "thread creation event"! If it is invoked for any other
1490 sort of event (such as a new thread landing on a breakpoint),
1491 the event will be discarded, which is almost certainly
1492 a bad thing!
1493
1494 To avoid this, the low-level module (eg. target_wait)
1495 should call in_thread_list and add_thread, so that the
1496 new thread is known by the time we get here. */
1497
1498 /* We may want to consider not doing a resume here in order
1499 to give the user a chance to play with the new thread.
1500 It might be good to make that a user-settable option. */
1501
1502 /* At this point, all threads are stopped (happens
1503 automatically in either the OS or the native code).
1504 Therefore we need to continue all threads in order to
1505 make progress. */
1506
39f77062 1507 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
104c1213
JM
1508 prepare_to_wait (ecs);
1509 return;
c906108c 1510#endif
c5aa993b 1511 }
c906108c 1512
c5aa993b
JM
1513 switch (ecs->ws.kind)
1514 {
1515 case TARGET_WAITKIND_LOADED:
1516 /* Ignore gracefully during startup of the inferior, as it
1517 might be the shell which has just loaded some objects,
1518 otherwise add the symbols for the newly loaded objects. */
c906108c 1519#ifdef SOLIB_ADD
c5aa993b
JM
1520 if (!stop_soon_quietly)
1521 {
1522 /* Remove breakpoints, SOLIB_ADD might adjust
1523 breakpoint addresses via breakpoint_re_set. */
1524 if (breakpoints_inserted)
1525 remove_breakpoints ();
c906108c 1526
c5aa993b
JM
1527 /* Check for any newly added shared libraries if we're
1528 supposed to be adding them automatically. */
1529 if (auto_solib_add)
1530 {
1531 /* Switch terminal for any messages produced by
1532 breakpoint_re_set. */
1533 target_terminal_ours_for_output ();
1534 SOLIB_ADD (NULL, 0, NULL);
1535 target_terminal_inferior ();
1536 }
c906108c 1537
c5aa993b
JM
1538 /* Reinsert breakpoints and continue. */
1539 if (breakpoints_inserted)
1540 insert_breakpoints ();
1541 }
c906108c 1542#endif
c5aa993b 1543 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1544 prepare_to_wait (ecs);
1545 return;
c5aa993b
JM
1546
1547 case TARGET_WAITKIND_SPURIOUS:
1548 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1549 prepare_to_wait (ecs);
1550 return;
c5aa993b
JM
1551
1552 case TARGET_WAITKIND_EXITED:
1553 target_terminal_ours (); /* Must do this before mourn anyway */
11cf8741 1554 print_stop_reason (EXITED, ecs->ws.value.integer);
c5aa993b
JM
1555
1556 /* Record the exit code in the convenience variable $_exitcode, so
1557 that the user can inspect this again later. */
1558 set_internalvar (lookup_internalvar ("_exitcode"),
1559 value_from_longest (builtin_type_int,
1560 (LONGEST) ecs->ws.value.integer));
1561 gdb_flush (gdb_stdout);
1562 target_mourn_inferior ();
b0ed3589 1563 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
c5aa993b 1564 stop_print_frame = 0;
104c1213
JM
1565 stop_stepping (ecs);
1566 return;
c5aa993b
JM
1567
1568 case TARGET_WAITKIND_SIGNALLED:
1569 stop_print_frame = 0;
1570 stop_signal = ecs->ws.value.sig;
1571 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1572
c7e79b4b
ND
1573 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1574 reach here unless the inferior is dead. However, for years
1575 target_kill() was called here, which hints that fatal signals aren't
1576 really fatal on some systems. If that's true, then some changes
1577 may be needed. */
1578 target_mourn_inferior ();
c5aa993b 1579
11cf8741 1580 print_stop_reason (SIGNAL_EXITED, stop_signal);
b0ed3589 1581 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
104c1213
JM
1582 stop_stepping (ecs);
1583 return;
c5aa993b
JM
1584
1585 /* The following are the only cases in which we keep going;
1586 the above cases end in a continue or goto. */
1587 case TARGET_WAITKIND_FORKED:
1588 stop_signal = TARGET_SIGNAL_TRAP;
1589 pending_follow.kind = ecs->ws.kind;
1590
1591 /* Ignore fork events reported for the parent; we're only
1592 interested in reacting to forks of the child. Note that
1593 we expect the child's fork event to be available if we
1594 waited for it now. */
39f77062 1595 if (ptid_equal (inferior_ptid, ecs->ptid))
c5aa993b
JM
1596 {
1597 pending_follow.fork_event.saw_parent_fork = 1;
39f77062 1598 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
c5aa993b 1599 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
104c1213
JM
1600 prepare_to_wait (ecs);
1601 return;
c5aa993b
JM
1602 }
1603 else
1604 {
1605 pending_follow.fork_event.saw_child_fork = 1;
39f77062 1606 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
c5aa993b
JM
1607 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1608 }
c906108c 1609
39f77062
KB
1610 stop_pc = read_pc_pid (ecs->ptid);
1611 ecs->saved_inferior_ptid = inferior_ptid;
1612 inferior_ptid = ecs->ptid;
80b34fab
MS
1613 /* The second argument of bpstat_stop_status is meant to help
1614 distinguish between a breakpoint trap and a singlestep trap.
1615 This is only important on targets where DECR_PC_AFTER_BREAK
1616 is non-zero. The prev_pc test is meant to distinguish between
1617 singlestepping a trap instruction, and singlestepping thru a
1618 jump to the instruction following a trap instruction. */
1619
1620 stop_bpstat = bpstat_stop_status (&stop_pc,
1621 currently_stepping (ecs) &&
1622 prev_pc !=
1623 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1624 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
39f77062 1625 inferior_ptid = ecs->saved_inferior_ptid;
c5aa993b
JM
1626 goto process_event_stop_test;
1627
1628 /* If this a platform which doesn't allow a debugger to touch a
1629 vfork'd inferior until after it exec's, then we'd best keep
1630 our fingers entirely off the inferior, other than continuing
1631 it. This has the unfortunate side-effect that catchpoints
1632 of vforks will be ignored. But since the platform doesn't
1633 allow the inferior be touched at vfork time, there's really
1634 little choice. */
1635 case TARGET_WAITKIND_VFORKED:
1636 stop_signal = TARGET_SIGNAL_TRAP;
1637 pending_follow.kind = ecs->ws.kind;
1638
1639 /* Is this a vfork of the parent? If so, then give any
1640 vfork catchpoints a chance to trigger now. (It's
1641 dangerous to do so if the child canot be touched until
1642 it execs, and the child has not yet exec'd. We probably
1643 should warn the user to that effect when the catchpoint
1644 triggers...) */
39f77062 1645 if (ptid_equal (ecs->ptid, inferior_ptid))
c5aa993b
JM
1646 {
1647 pending_follow.fork_event.saw_parent_fork = 1;
39f77062 1648 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
c5aa993b
JM
1649 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1650 }
c906108c 1651
c5aa993b
JM
1652 /* If we've seen the child's vfork event but cannot really touch
1653 the child until it execs, then we must continue the child now.
1654 Else, give any vfork catchpoints a chance to trigger now. */
1655 else
1656 {
1657 pending_follow.fork_event.saw_child_fork = 1;
39f77062 1658 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
c5aa993b 1659 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
39f77062
KB
1660 target_post_startup_inferior (
1661 pid_to_ptid (pending_follow.fork_event.child_pid));
c5aa993b
JM
1662 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1663 if (follow_vfork_when_exec)
1664 {
39f77062 1665 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
104c1213
JM
1666 prepare_to_wait (ecs);
1667 return;
c5aa993b
JM
1668 }
1669 }
c906108c 1670
c5aa993b 1671 stop_pc = read_pc ();
80b34fab
MS
1672 /* The second argument of bpstat_stop_status is meant to help
1673 distinguish between a breakpoint trap and a singlestep trap.
1674 This is only important on targets where DECR_PC_AFTER_BREAK
1675 is non-zero. The prev_pc test is meant to distinguish between
1676 singlestepping a trap instruction, and singlestepping thru a
1677 jump to the instruction following a trap instruction. */
1678
1679 stop_bpstat = bpstat_stop_status (&stop_pc,
1680 currently_stepping (ecs) &&
1681 prev_pc !=
1682 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b
JM
1683 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1684 goto process_event_stop_test;
1685
1686 case TARGET_WAITKIND_EXECD:
1687 stop_signal = TARGET_SIGNAL_TRAP;
1688
1689 /* Is this a target which reports multiple exec events per actual
1690 call to exec()? (HP-UX using ptrace does, for example.) If so,
1691 ignore all but the last one. Just resume the exec'r, and wait
1692 for the next exec event. */
1693 if (inferior_ignoring_leading_exec_events)
1694 {
1695 inferior_ignoring_leading_exec_events--;
1696 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1697 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
39f77062 1698 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
104c1213
JM
1699 prepare_to_wait (ecs);
1700 return;
c5aa993b
JM
1701 }
1702 inferior_ignoring_leading_exec_events =
1703 target_reported_exec_events_per_exec_call () - 1;
c906108c 1704
96baa820
JM
1705 pending_follow.execd_pathname =
1706 savestring (ecs->ws.value.execd_pathname,
1707 strlen (ecs->ws.value.execd_pathname));
c906108c 1708
39f77062 1709 /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
c5aa993b 1710 child of a vfork exec?
c906108c 1711
c5aa993b
JM
1712 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1713 HP-UX, events associated with a vforking inferior come in
1714 threes: a vfork event for the child (always first), followed
1715 a vfork event for the parent and an exec event for the child.
1716 The latter two can come in either order.
c906108c 1717
c5aa993b
JM
1718 If we get the parent vfork event first, life's good: We follow
1719 either the parent or child, and then the child's exec event is
1720 a "don't care".
c906108c 1721
c5aa993b
JM
1722 But if we get the child's exec event first, then we delay
1723 responding to it until we handle the parent's vfork. Because,
1724 otherwise we can't satisfy a "catch vfork". */
1725 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1726 {
1727 pending_follow.fork_event.saw_child_exec = 1;
1728
1729 /* On some targets, the child must be resumed before
1730 the parent vfork event is delivered. A single-step
1731 suffices. */
1732 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
39f77062 1733 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c5aa993b 1734 /* We expect the parent vfork event to be available now. */
104c1213
JM
1735 prepare_to_wait (ecs);
1736 return;
c5aa993b 1737 }
c906108c 1738
c5aa993b
JM
1739 /* This causes the eventpoints and symbol table to be reset. Must
1740 do this now, before trying to determine whether to stop. */
39f77062 1741 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 1742 xfree (pending_follow.execd_pathname);
c5aa993b 1743
39f77062
KB
1744 stop_pc = read_pc_pid (ecs->ptid);
1745 ecs->saved_inferior_ptid = inferior_ptid;
1746 inferior_ptid = ecs->ptid;
80b34fab
MS
1747 /* The second argument of bpstat_stop_status is meant to help
1748 distinguish between a breakpoint trap and a singlestep trap.
1749 This is only important on targets where DECR_PC_AFTER_BREAK
1750 is non-zero. The prev_pc test is meant to distinguish between
1751 singlestepping a trap instruction, and singlestepping thru a
1752 jump to the instruction following a trap instruction. */
1753
1754 stop_bpstat = bpstat_stop_status (&stop_pc,
1755 currently_stepping (ecs) &&
1756 prev_pc !=
1757 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1758 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
39f77062 1759 inferior_ptid = ecs->saved_inferior_ptid;
c5aa993b
JM
1760 goto process_event_stop_test;
1761
1762 /* These syscall events are returned on HP-UX, as part of its
1763 implementation of page-protection-based "hardware" watchpoints.
1764 HP-UX has unfortunate interactions between page-protections and
1765 some system calls. Our solution is to disable hardware watches
1766 when a system call is entered, and reenable them when the syscall
1767 completes. The downside of this is that we may miss the precise
1768 point at which a watched piece of memory is modified. "Oh well."
1769
1770 Note that we may have multiple threads running, which may each
1771 enter syscalls at roughly the same time. Since we don't have a
1772 good notion currently of whether a watched piece of memory is
1773 thread-private, we'd best not have any page-protections active
1774 when any thread is in a syscall. Thus, we only want to reenable
1775 hardware watches when no threads are in a syscall.
1776
1777 Also, be careful not to try to gather much state about a thread
1778 that's in a syscall. It's frequently a losing proposition. */
1779 case TARGET_WAITKIND_SYSCALL_ENTRY:
1780 number_of_threads_in_syscalls++;
1781 if (number_of_threads_in_syscalls == 1)
1782 {
39f77062 1783 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
c5aa993b
JM
1784 }
1785 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1786 prepare_to_wait (ecs);
1787 return;
c906108c 1788
c5aa993b 1789 /* Before examining the threads further, step this thread to
c906108c
SS
1790 get it entirely out of the syscall. (We get notice of the
1791 event when the thread is just on the verge of exiting a
1792 syscall. Stepping one instruction seems to get it back
1793 into user code.)
1794
1795 Note that although the logical place to reenable h/w watches
1796 is here, we cannot. We cannot reenable them before stepping
1797 the thread (this causes the next wait on the thread to hang).
1798
1799 Nor can we enable them after stepping until we've done a wait.
cd0fc7c3 1800 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
c906108c
SS
1801 here, which will be serviced immediately after the target
1802 is waited on. */
c5aa993b 1803 case TARGET_WAITKIND_SYSCALL_RETURN:
39f77062 1804 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1805
c5aa993b
JM
1806 if (number_of_threads_in_syscalls > 0)
1807 {
1808 number_of_threads_in_syscalls--;
1809 ecs->enable_hw_watchpoints_after_wait =
1810 (number_of_threads_in_syscalls == 0);
1811 }
104c1213
JM
1812 prepare_to_wait (ecs);
1813 return;
c906108c 1814
c5aa993b
JM
1815 case TARGET_WAITKIND_STOPPED:
1816 stop_signal = ecs->ws.value.sig;
1817 break;
c4093a6a
JM
1818
1819 /* We had an event in the inferior, but we are not interested
1820 in handling it at this level. The lower layers have already
1821 done what needs to be done, if anything. This case can
1822 occur only when the target is async or extended-async. One
1823 of the circumstamces for this to happen is when the
1824 inferior produces output for the console. The inferior has
1825 not stopped, and we are ignoring the event. */
1826 case TARGET_WAITKIND_IGNORE:
1827 ecs->wait_some_more = 1;
1828 return;
c5aa993b 1829 }
c906108c 1830
c5aa993b
JM
1831 /* We may want to consider not doing a resume here in order to give
1832 the user a chance to play with the new thread. It might be good
1833 to make that a user-settable option. */
c906108c 1834
c5aa993b
JM
1835 /* At this point, all threads are stopped (happens automatically in
1836 either the OS or the native code). Therefore we need to continue
1837 all threads in order to make progress. */
1838 if (ecs->new_thread_event)
1839 {
39f77062 1840 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
104c1213
JM
1841 prepare_to_wait (ecs);
1842 return;
c5aa993b 1843 }
c906108c 1844
39f77062 1845 stop_pc = read_pc_pid (ecs->ptid);
c906108c 1846
c5aa993b
JM
1847 /* See if a thread hit a thread-specific breakpoint that was meant for
1848 another thread. If so, then step that thread past the breakpoint,
1849 and continue it. */
c906108c 1850
c5aa993b
JM
1851 if (stop_signal == TARGET_SIGNAL_TRAP)
1852 {
b0ed3589 1853 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
c5aa993b
JM
1854 ecs->random_signal = 0;
1855 else if (breakpoints_inserted
1856 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1857 {
cd0fc7c3 1858 ecs->random_signal = 0;
c5aa993b 1859 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
39f77062 1860 ecs->ptid))
c5aa993b
JM
1861 {
1862 int remove_status;
1863
1864 /* Saw a breakpoint, but it was hit by the wrong thread.
1865 Just continue. */
80b34fab
MS
1866 if (DECR_PC_AFTER_BREAK)
1867 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
c5aa993b
JM
1868
1869 remove_status = remove_breakpoints ();
1870 /* Did we fail to remove breakpoints? If so, try
1871 to set the PC past the bp. (There's at least
1872 one situation in which we can fail to remove
1873 the bp's: On HP-UX's that use ttrace, we can't
1874 change the address space of a vforking child
1875 process until the child exits (well, okay, not
1876 then either :-) or execs. */
1877 if (remove_status != 0)
1878 {
80b34fab
MS
1879 /* FIXME! This is obviously non-portable! */
1880 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4,
1881 ecs->ptid);
c6ad9598
MS
1882 /* We need to restart all the threads now,
1883 * unles we're running in scheduler-locked mode.
1884 * Use currently_stepping to determine whether to
1885 * step or continue.
1886 */
dd80620e 1887 /* FIXME MVS: is there any reason not to call resume()? */
c6ad9598
MS
1888 if (scheduler_mode == schedlock_on)
1889 target_resume (ecs->ptid,
1890 currently_stepping (ecs),
1891 TARGET_SIGNAL_0);
1892 else
1893 target_resume (RESUME_ALL,
1894 currently_stepping (ecs),
1895 TARGET_SIGNAL_0);
1896 prepare_to_wait (ecs);
1897 return;
c5aa993b
JM
1898 }
1899 else
1900 { /* Single step */
dd80620e
MS
1901 breakpoints_inserted = 0;
1902 if (!ptid_equal (inferior_ptid, ecs->ptid))
1903 context_switch (ecs);
39f77062 1904 ecs->waiton_ptid = ecs->ptid;
c5aa993b 1905 ecs->wp = &(ecs->ws);
dd80620e
MS
1906 ecs->another_trap = 1;
1907
c5aa993b 1908 ecs->infwait_state = infwait_thread_hop_state;
dd80620e
MS
1909 keep_going (ecs);
1910 registers_changed ();
104c1213 1911 return;
c5aa993b 1912 }
c5aa993b 1913 }
c5aa993b
JM
1914 }
1915 }
1916 else
1917 ecs->random_signal = 1;
1918
1919 /* See if something interesting happened to the non-current thread. If
1920 so, then switch to that thread, and eventually give control back to
1921 the user.
1922
1923 Note that if there's any kind of pending follow (i.e., of a fork,
1924 vfork or exec), we don't want to do this now. Rather, we'll let
1925 the next resume handle it. */
39f77062 1926 if (! ptid_equal (ecs->ptid, inferior_ptid) &&
c5aa993b
JM
1927 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1928 {
1929 int printed = 0;
c906108c 1930
c5aa993b
JM
1931 /* If it's a random signal for a non-current thread, notify user
1932 if he's expressed an interest. */
1933 if (ecs->random_signal
1934 && signal_print[stop_signal])
1935 {
c906108c
SS
1936/* ??rehrauer: I don't understand the rationale for this code. If the
1937 inferior will stop as a result of this signal, then the act of handling
1938 the stop ought to print a message that's couches the stoppage in user
1939 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1940 won't stop as a result of the signal -- i.e., if the signal is merely
1941 a side-effect of something GDB's doing "under the covers" for the
1942 user, such as stepping threads over a breakpoint they shouldn't stop
1943 for -- then the message seems to be a serious annoyance at best.
1944
1945 For now, remove the message altogether. */
1946#if 0
c5aa993b
JM
1947 printed = 1;
1948 target_terminal_ours_for_output ();
1949 printf_filtered ("\nProgram received signal %s, %s.\n",
1950 target_signal_to_name (stop_signal),
1951 target_signal_to_string (stop_signal));
1952 gdb_flush (gdb_stdout);
c906108c 1953#endif
c5aa993b 1954 }
c906108c 1955
c5aa993b
JM
1956 /* If it's not SIGTRAP and not a signal we want to stop for, then
1957 continue the thread. */
c906108c 1958
c5aa993b
JM
1959 if (stop_signal != TARGET_SIGNAL_TRAP
1960 && !signal_stop[stop_signal])
1961 {
1962 if (printed)
1963 target_terminal_inferior ();
c906108c 1964
c5aa993b
JM
1965 /* Clear the signal if it should not be passed. */
1966 if (signal_program[stop_signal] == 0)
1967 stop_signal = TARGET_SIGNAL_0;
c906108c 1968
39f77062 1969 target_resume (ecs->ptid, 0, stop_signal);
104c1213
JM
1970 prepare_to_wait (ecs);
1971 return;
c5aa993b 1972 }
c906108c 1973
c5aa993b
JM
1974 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1975 and fall into the rest of wait_for_inferior(). */
1976
dd80620e 1977 context_switch (ecs);
c5aa993b 1978
c5aa993b 1979 if (context_hook)
39f77062 1980 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1981
c5aa993b
JM
1982 flush_cached_frames ();
1983 }
c906108c 1984
b0ed3589 1985 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
c5aa993b
JM
1986 {
1987 /* Pull the single step breakpoints out of the target. */
1988 SOFTWARE_SINGLE_STEP (0, 0);
1989 singlestep_breakpoints_inserted_p = 0;
1990 }
c906108c 1991
c5aa993b
JM
1992 /* If PC is pointing at a nullified instruction, then step beyond
1993 it so that the user won't be confused when GDB appears to be ready
1994 to execute it. */
c906108c 1995
c5aa993b
JM
1996 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1997 if (INSTRUCTION_NULLIFIED)
1998 {
1999 registers_changed ();
39f77062 2000 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 2001
c5aa993b
JM
2002 /* We may have received a signal that we want to pass to
2003 the inferior; therefore, we must not clobber the waitstatus
2004 in WS. */
c906108c 2005
c5aa993b 2006 ecs->infwait_state = infwait_nullified_state;
39f77062 2007 ecs->waiton_ptid = ecs->ptid;
c5aa993b 2008 ecs->wp = &(ecs->tmpstatus);
104c1213
JM
2009 prepare_to_wait (ecs);
2010 return;
c5aa993b 2011 }
c906108c 2012
c5aa993b
JM
2013 /* It may not be necessary to disable the watchpoint to stop over
2014 it. For example, the PA can (with some kernel cooperation)
2015 single step over a watchpoint without disabling the watchpoint. */
2016 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2017 {
2018 resume (1, 0);
104c1213
JM
2019 prepare_to_wait (ecs);
2020 return;
c5aa993b 2021 }
c906108c 2022
c5aa993b
JM
2023 /* It is far more common to need to disable a watchpoint to step
2024 the inferior over it. FIXME. What else might a debug
2025 register or page protection watchpoint scheme need here? */
2026 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2027 {
2028 /* At this point, we are stopped at an instruction which has
2029 attempted to write to a piece of memory under control of
2030 a watchpoint. The instruction hasn't actually executed
2031 yet. If we were to evaluate the watchpoint expression
2032 now, we would get the old value, and therefore no change
2033 would seem to have occurred.
2034
2035 In order to make watchpoints work `right', we really need
2036 to complete the memory write, and then evaluate the
2037 watchpoint expression. The following code does that by
2038 removing the watchpoint (actually, all watchpoints and
2039 breakpoints), single-stepping the target, re-inserting
2040 watchpoints, and then falling through to let normal
2041 single-step processing handle proceed. Since this
2042 includes evaluating watchpoints, things will come to a
2043 stop in the correct manner. */
2044
80b34fab
MS
2045 if (DECR_PC_AFTER_BREAK)
2046 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b
JM
2047
2048 remove_breakpoints ();
2049 registers_changed ();
39f77062 2050 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 2051
39f77062 2052 ecs->waiton_ptid = ecs->ptid;
c5aa993b
JM
2053 ecs->wp = &(ecs->ws);
2054 ecs->infwait_state = infwait_nonstep_watch_state;
104c1213
JM
2055 prepare_to_wait (ecs);
2056 return;
c5aa993b 2057 }
c906108c 2058
c5aa993b
JM
2059 /* It may be possible to simply continue after a watchpoint. */
2060 if (HAVE_CONTINUABLE_WATCHPOINT)
2061 STOPPED_BY_WATCHPOINT (ecs->ws);
2062
2063 ecs->stop_func_start = 0;
2064 ecs->stop_func_end = 0;
2065 ecs->stop_func_name = 0;
2066 /* Don't care about return value; stop_func_start and stop_func_name
2067 will both be 0 if it doesn't work. */
2068 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2069 &ecs->stop_func_start, &ecs->stop_func_end);
2070 ecs->stop_func_start += FUNCTION_START_OFFSET;
2071 ecs->another_trap = 0;
2072 bpstat_clear (&stop_bpstat);
2073 stop_step = 0;
2074 stop_stack_dummy = 0;
2075 stop_print_frame = 1;
2076 ecs->random_signal = 0;
2077 stopped_by_random_signal = 0;
2078 breakpoints_failed = 0;
2079
2080 /* Look at the cause of the stop, and decide what to do.
2081 The alternatives are:
2082 1) break; to really stop and return to the debugger,
2083 2) drop through to start up again
2084 (set ecs->another_trap to 1 to single step once)
2085 3) set ecs->random_signal to 1, and the decision between 1 and 2
2086 will be made according to the signal handling tables. */
2087
2088 /* First, distinguish signals caused by the debugger from signals
2089 that have to do with the program's own actions.
2090 Note that breakpoint insns may cause SIGTRAP or SIGILL
2091 or SIGEMT, depending on the operating system version.
2092 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2093 and change it to SIGTRAP. */
2094
2095 if (stop_signal == TARGET_SIGNAL_TRAP
2096 || (breakpoints_inserted &&
2097 (stop_signal == TARGET_SIGNAL_ILL
2098 || stop_signal == TARGET_SIGNAL_EMT
2099 ))
2100 || stop_soon_quietly)
2101 {
2102 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2103 {
2104 stop_print_frame = 0;
104c1213
JM
2105 stop_stepping (ecs);
2106 return;
c5aa993b
JM
2107 }
2108 if (stop_soon_quietly)
104c1213
JM
2109 {
2110 stop_stepping (ecs);
2111 return;
2112 }
c906108c 2113
c5aa993b
JM
2114 /* Don't even think about breakpoints
2115 if just proceeded over a breakpoint.
c906108c 2116
c5aa993b
JM
2117 However, if we are trying to proceed over a breakpoint
2118 and end up in sigtramp, then through_sigtramp_breakpoint
2119 will be set and we should check whether we've hit the
2120 step breakpoint. */
2121 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2122 && through_sigtramp_breakpoint == NULL)
2123 bpstat_clear (&stop_bpstat);
2124 else
2125 {
2126 /* See if there is a breakpoint at the current PC. */
80b34fab
MS
2127
2128 /* The second argument of bpstat_stop_status is meant to help
2129 distinguish between a breakpoint trap and a singlestep trap.
2130 This is only important on targets where DECR_PC_AFTER_BREAK
2131 is non-zero. The prev_pc test is meant to distinguish between
2132 singlestepping a trap instruction, and singlestepping thru a
2133 jump to the instruction following a trap instruction. */
2134
c5aa993b
JM
2135 stop_bpstat = bpstat_stop_status
2136 (&stop_pc,
6426a772
JM
2137 /* Pass TRUE if our reason for stopping is something other
2138 than hitting a breakpoint. We do this by checking that
2139 1) stepping is going on and 2) we didn't hit a breakpoint
2140 in a signal handler without an intervening stop in
2141 sigtramp, which is detected by a new stack pointer value
2142 below any usual function calling stack adjustments. */
c5aa993b 2143 (currently_stepping (ecs)
80b34fab 2144 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
c5aa993b 2145 && !(step_range_end
6426a772 2146 && INNER_THAN (read_sp (), (step_sp - 16))))
c5aa993b
JM
2147 );
2148 /* Following in case break condition called a
2149 function. */
2150 stop_print_frame = 1;
2151 }
c906108c 2152
c5aa993b
JM
2153 if (stop_signal == TARGET_SIGNAL_TRAP)
2154 ecs->random_signal
2155 = !(bpstat_explains_signal (stop_bpstat)
2156 || trap_expected
2157 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2158 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2159 FRAME_FP (get_current_frame ())))
2160 || (step_range_end && step_resume_breakpoint == NULL));
2161
2162 else
2163 {
cd0fc7c3 2164 ecs->random_signal
c906108c 2165 = !(bpstat_explains_signal (stop_bpstat)
c5aa993b
JM
2166 /* End of a stack dummy. Some systems (e.g. Sony
2167 news) give another signal besides SIGTRAP, so
2168 check here as well as above. */
7a292a7a
SS
2169 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2170 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2171 FRAME_FP (get_current_frame ())))
c5aa993b
JM
2172 );
2173 if (!ecs->random_signal)
2174 stop_signal = TARGET_SIGNAL_TRAP;
2175 }
2176 }
c906108c 2177
c5aa993b
JM
2178 /* When we reach this point, we've pretty much decided
2179 that the reason for stopping must've been a random
2180 (unexpected) signal. */
2181
2182 else
2183 ecs->random_signal = 1;
2184 /* If a fork, vfork or exec event was seen, then there are two
2185 possible responses we can make:
2186
2187 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2188 then we must stop now and issue a prompt. We will resume
2189 the inferior when the user tells us to.
2190 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2191 then we must resume the inferior now and keep checking.
2192
2193 In either case, we must take appropriate steps to "follow" the
2194 the fork/vfork/exec when the inferior is resumed. For example,
2195 if follow-fork-mode is "child", then we must detach from the
2196 parent inferior and follow the new child inferior.
2197
2198 In either case, setting pending_follow causes the next resume()
2199 to take the appropriate following action. */
2200 process_event_stop_test:
2201 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2202 {
2203 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2204 {
2205 trap_expected = 1;
2206 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2207 keep_going (ecs);
2208 return;
c5aa993b
JM
2209 }
2210 }
2211 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2212 {
2213 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2214 {
d4f3574e
SS
2215 stop_signal = TARGET_SIGNAL_0;
2216 keep_going (ecs);
2217 return;
c5aa993b
JM
2218 }
2219 }
2220 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2221 {
2222 pending_follow.kind = ecs->ws.kind;
2223 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2224 {
2225 trap_expected = 1;
2226 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2227 keep_going (ecs);
2228 return;
c5aa993b
JM
2229 }
2230 }
c906108c 2231
c5aa993b
JM
2232 /* For the program's own signals, act according to
2233 the signal handling tables. */
c906108c 2234
c5aa993b
JM
2235 if (ecs->random_signal)
2236 {
2237 /* Signal not for debugging purposes. */
2238 int printed = 0;
2239
2240 stopped_by_random_signal = 1;
2241
2242 if (signal_print[stop_signal])
2243 {
2244 printed = 1;
2245 target_terminal_ours_for_output ();
11cf8741 2246 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
c5aa993b
JM
2247 }
2248 if (signal_stop[stop_signal])
104c1213
JM
2249 {
2250 stop_stepping (ecs);
2251 return;
2252 }
c5aa993b
JM
2253 /* If not going to stop, give terminal back
2254 if we took it away. */
2255 else if (printed)
2256 target_terminal_inferior ();
2257
2258 /* Clear the signal if it should not be passed. */
2259 if (signal_program[stop_signal] == 0)
2260 stop_signal = TARGET_SIGNAL_0;
2261
a0b3c4fd
JM
2262 /* I'm not sure whether this needs to be check_sigtramp2 or
2263 whether it could/should be keep_going.
2264
2265 This used to jump to step_over_function if we are stepping,
2266 which is wrong.
2267
2268 Suppose the user does a `next' over a function call, and while
2269 that call is in progress, the inferior receives a signal for
2270 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2271 that case, when we reach this point, there is already a
2272 step-resume breakpoint established, right where it should be:
2273 immediately after the function call the user is "next"-ing
d4f3574e 2274 over. If we call step_over_function now, two bad things
a0b3c4fd
JM
2275 happen:
2276
2277 - we'll create a new breakpoint, at wherever the current
2278 frame's return address happens to be. That could be
2279 anywhere, depending on what function call happens to be on
2280 the top of the stack at that point. Point is, it's probably
2281 not where we need it.
2282
2283 - the existing step-resume breakpoint (which is at the correct
2284 address) will get orphaned: step_resume_breakpoint will point
2285 to the new breakpoint, and the old step-resume breakpoint
2286 will never be cleaned up.
2287
2288 The old behavior was meant to help HP-UX single-step out of
2289 sigtramps. It would place the new breakpoint at prev_pc, which
2290 was certainly wrong. I don't know the details there, so fixing
2291 this probably breaks that. As with anything else, it's up to
2292 the HP-UX maintainer to furnish a fix that doesn't break other
2293 platforms. --JimB, 20 May 1999 */
104c1213 2294 check_sigtramp2 (ecs);
e441088d
MK
2295 keep_going (ecs);
2296 return;
c5aa993b
JM
2297 }
2298
2299 /* Handle cases caused by hitting a breakpoint. */
2300 {
2301 CORE_ADDR jmp_buf_pc;
2302 struct bpstat_what what;
2303
2304 what = bpstat_what (stop_bpstat);
2305
2306 if (what.call_dummy)
c906108c 2307 {
c5aa993b
JM
2308 stop_stack_dummy = 1;
2309#ifdef HP_OS_BUG
2310 trap_expected_after_continue = 1;
2311#endif
c906108c 2312 }
c5aa993b
JM
2313
2314 switch (what.main_action)
c906108c 2315 {
c5aa993b
JM
2316 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2317 /* If we hit the breakpoint at longjmp, disable it for the
2318 duration of this command. Then, install a temporary
2319 breakpoint at the target of the jmp_buf. */
2320 disable_longjmp_breakpoint ();
2321 remove_breakpoints ();
2322 breakpoints_inserted = 0;
2323 if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
d4f3574e
SS
2324 {
2325 keep_going (ecs);
2326 return;
2327 }
c5aa993b
JM
2328
2329 /* Need to blow away step-resume breakpoint, as it
2330 interferes with us */
2331 if (step_resume_breakpoint != NULL)
c906108c 2332 {
8601f500 2333 delete_step_resume_breakpoint (&step_resume_breakpoint);
c906108c 2334 }
c5aa993b
JM
2335 /* Not sure whether we need to blow this away too, but probably
2336 it is like the step-resume breakpoint. */
2337 if (through_sigtramp_breakpoint != NULL)
c906108c 2338 {
c5aa993b
JM
2339 delete_breakpoint (through_sigtramp_breakpoint);
2340 through_sigtramp_breakpoint = NULL;
c906108c 2341 }
c906108c 2342
c5aa993b
JM
2343#if 0
2344 /* FIXME - Need to implement nested temporary breakpoints */
2345 if (step_over_calls > 0)
2346 set_longjmp_resume_breakpoint (jmp_buf_pc,
2347 get_current_frame ());
2348 else
2349#endif /* 0 */
2350 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2351 ecs->handling_longjmp = 1; /* FIXME */
d4f3574e
SS
2352 keep_going (ecs);
2353 return;
c906108c 2354
c5aa993b
JM
2355 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2356 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2357 remove_breakpoints ();
2358 breakpoints_inserted = 0;
2359#if 0
2360 /* FIXME - Need to implement nested temporary breakpoints */
2361 if (step_over_calls
2362 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2363 step_frame_address)))
2364 {
2365 ecs->another_trap = 1;
d4f3574e
SS
2366 keep_going (ecs);
2367 return;
c5aa993b
JM
2368 }
2369#endif /* 0 */
2370 disable_longjmp_breakpoint ();
2371 ecs->handling_longjmp = 0; /* FIXME */
2372 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2373 break;
2374 /* else fallthrough */
c906108c 2375
c5aa993b
JM
2376 case BPSTAT_WHAT_SINGLE:
2377 if (breakpoints_inserted)
c906108c 2378 {
c5aa993b 2379 remove_breakpoints ();
c906108c 2380 }
c5aa993b
JM
2381 breakpoints_inserted = 0;
2382 ecs->another_trap = 1;
2383 /* Still need to check other stuff, at least the case
2384 where we are stepping and step out of the right range. */
2385 break;
c906108c 2386
c5aa993b
JM
2387 case BPSTAT_WHAT_STOP_NOISY:
2388 stop_print_frame = 1;
c906108c 2389
c5aa993b
JM
2390 /* We are about to nuke the step_resume_breakpoint and
2391 through_sigtramp_breakpoint via the cleanup chain, so
2392 no need to worry about it here. */
c906108c 2393
104c1213
JM
2394 stop_stepping (ecs);
2395 return;
c906108c 2396
c5aa993b
JM
2397 case BPSTAT_WHAT_STOP_SILENT:
2398 stop_print_frame = 0;
c906108c 2399
c5aa993b
JM
2400 /* We are about to nuke the step_resume_breakpoint and
2401 through_sigtramp_breakpoint via the cleanup chain, so
2402 no need to worry about it here. */
c906108c 2403
104c1213
JM
2404 stop_stepping (ecs);
2405 return;
c906108c 2406
c5aa993b
JM
2407 case BPSTAT_WHAT_STEP_RESUME:
2408 /* This proably demands a more elegant solution, but, yeah
2409 right...
2410
2411 This function's use of the simple variable
2412 step_resume_breakpoint doesn't seem to accomodate
2413 simultaneously active step-resume bp's, although the
2414 breakpoint list certainly can.
2415
2416 If we reach here and step_resume_breakpoint is already
2417 NULL, then apparently we have multiple active
2418 step-resume bp's. We'll just delete the breakpoint we
53a5351d
JM
2419 stopped at, and carry on.
2420
2421 Correction: what the code currently does is delete a
2422 step-resume bp, but it makes no effort to ensure that
2423 the one deleted is the one currently stopped at. MVS */
2424
c5aa993b
JM
2425 if (step_resume_breakpoint == NULL)
2426 {
2427 step_resume_breakpoint =
2428 bpstat_find_step_resume_breakpoint (stop_bpstat);
2429 }
8601f500 2430 delete_step_resume_breakpoint (&step_resume_breakpoint);
c5aa993b
JM
2431 break;
2432
2433 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2434 if (through_sigtramp_breakpoint)
2435 delete_breakpoint (through_sigtramp_breakpoint);
2436 through_sigtramp_breakpoint = NULL;
2437
2438 /* If were waiting for a trap, hitting the step_resume_break
2439 doesn't count as getting it. */
2440 if (trap_expected)
2441 ecs->another_trap = 1;
2442 break;
c906108c 2443
c5aa993b
JM
2444 case BPSTAT_WHAT_CHECK_SHLIBS:
2445 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2446#ifdef SOLIB_ADD
c906108c 2447 {
c5aa993b
JM
2448 /* Remove breakpoints, we eventually want to step over the
2449 shlib event breakpoint, and SOLIB_ADD might adjust
2450 breakpoint addresses via breakpoint_re_set. */
2451 if (breakpoints_inserted)
2452 remove_breakpoints ();
c906108c 2453 breakpoints_inserted = 0;
c906108c 2454
c5aa993b
JM
2455 /* Check for any newly added shared libraries if we're
2456 supposed to be adding them automatically. */
2457 if (auto_solib_add)
c906108c 2458 {
c5aa993b
JM
2459 /* Switch terminal for any messages produced by
2460 breakpoint_re_set. */
2461 target_terminal_ours_for_output ();
2462 SOLIB_ADD (NULL, 0, NULL);
2463 target_terminal_inferior ();
c906108c 2464 }
c5aa993b
JM
2465
2466 /* Try to reenable shared library breakpoints, additional
2467 code segments in shared libraries might be mapped in now. */
2468 re_enable_breakpoints_in_shlibs ();
2469
2470 /* If requested, stop when the dynamic linker notifies
2471 gdb of events. This allows the user to get control
2472 and place breakpoints in initializer routines for
2473 dynamically loaded objects (among other things). */
2474 if (stop_on_solib_events)
c906108c 2475 {
104c1213
JM
2476 stop_stepping (ecs);
2477 return;
c906108c
SS
2478 }
2479
c5aa993b
JM
2480 /* If we stopped due to an explicit catchpoint, then the
2481 (see above) call to SOLIB_ADD pulled in any symbols
2482 from a newly-loaded library, if appropriate.
2483
2484 We do want the inferior to stop, but not where it is
2485 now, which is in the dynamic linker callback. Rather,
2486 we would like it stop in the user's program, just after
2487 the call that caused this catchpoint to trigger. That
2488 gives the user a more useful vantage from which to
2489 examine their program's state. */
2490 else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2491 {
2492 /* ??rehrauer: If I could figure out how to get the
2493 right return PC from here, we could just set a temp
2494 breakpoint and resume. I'm not sure we can without
2495 cracking open the dld's shared libraries and sniffing
2496 their unwind tables and text/data ranges, and that's
2497 not a terribly portable notion.
2498
2499 Until that time, we must step the inferior out of the
2500 dld callback, and also out of the dld itself (and any
2501 code or stubs in libdld.sl, such as "shl_load" and
2502 friends) until we reach non-dld code. At that point,
2503 we can stop stepping. */
2504 bpstat_get_triggered_catchpoints (stop_bpstat,
2505 &ecs->stepping_through_solib_catchpoints);
2506 ecs->stepping_through_solib_after_catch = 1;
2507
2508 /* Be sure to lift all breakpoints, so the inferior does
2509 actually step past this point... */
2510 ecs->another_trap = 1;
2511 break;
2512 }
2513 else
c906108c 2514 {
c5aa993b 2515 /* We want to step over this breakpoint, then keep going. */
cd0fc7c3 2516 ecs->another_trap = 1;
c5aa993b 2517 break;
c906108c 2518 }
c5aa993b
JM
2519 }
2520#endif
2521 break;
c906108c 2522
c5aa993b
JM
2523 case BPSTAT_WHAT_LAST:
2524 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2525
c5aa993b
JM
2526 case BPSTAT_WHAT_KEEP_CHECKING:
2527 break;
2528 }
2529 }
c906108c 2530
c5aa993b
JM
2531 /* We come here if we hit a breakpoint but should not
2532 stop for it. Possibly we also were stepping
2533 and should stop for that. So fall through and
2534 test for stepping. But, if not stepping,
2535 do not stop. */
c906108c 2536
c5aa993b
JM
2537 /* Are we stepping to get the inferior out of the dynamic
2538 linker's hook (and possibly the dld itself) after catching
2539 a shlib event? */
2540 if (ecs->stepping_through_solib_after_catch)
2541 {
2542#if defined(SOLIB_ADD)
2543 /* Have we reached our destination? If not, keep going. */
39f77062 2544 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
c5aa993b
JM
2545 {
2546 ecs->another_trap = 1;
d4f3574e
SS
2547 keep_going (ecs);
2548 return;
c5aa993b
JM
2549 }
2550#endif
2551 /* Else, stop and report the catchpoint(s) whose triggering
2552 caused us to begin stepping. */
2553 ecs->stepping_through_solib_after_catch = 0;
2554 bpstat_clear (&stop_bpstat);
2555 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2556 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2557 stop_print_frame = 1;
104c1213
JM
2558 stop_stepping (ecs);
2559 return;
c5aa993b 2560 }
c906108c 2561
c5aa993b
JM
2562 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2563 {
2564 /* This is the old way of detecting the end of the stack dummy.
2565 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2566 handled above. As soon as we can test it on all of them, all
2567 architectures should define it. */
2568
2569 /* If this is the breakpoint at the end of a stack dummy,
2570 just stop silently, unless the user was doing an si/ni, in which
2571 case she'd better know what she's doing. */
2572
2573 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2574 FRAME_FP (get_current_frame ()))
2575 && !step_range_end)
2576 {
c906108c 2577 stop_print_frame = 0;
c5aa993b
JM
2578 stop_stack_dummy = 1;
2579#ifdef HP_OS_BUG
2580 trap_expected_after_continue = 1;
2581#endif
104c1213
JM
2582 stop_stepping (ecs);
2583 return;
c5aa993b
JM
2584 }
2585 }
c906108c 2586
c5aa993b 2587 if (step_resume_breakpoint)
104c1213
JM
2588 {
2589 /* Having a step-resume breakpoint overrides anything
2590 else having to do with stepping commands until
2591 that breakpoint is reached. */
2592 /* I'm not sure whether this needs to be check_sigtramp2 or
2593 whether it could/should be keep_going. */
2594 check_sigtramp2 (ecs);
d4f3574e
SS
2595 keep_going (ecs);
2596 return;
104c1213
JM
2597 }
2598
c5aa993b 2599 if (step_range_end == 0)
104c1213
JM
2600 {
2601 /* Likewise if we aren't even stepping. */
2602 /* I'm not sure whether this needs to be check_sigtramp2 or
2603 whether it could/should be keep_going. */
2604 check_sigtramp2 (ecs);
d4f3574e
SS
2605 keep_going (ecs);
2606 return;
104c1213 2607 }
c5aa993b
JM
2608
2609 /* If stepping through a line, keep going if still within it.
2610
2611 Note that step_range_end is the address of the first instruction
2612 beyond the step range, and NOT the address of the last instruction
2613 within it! */
2614 if (stop_pc >= step_range_start
2615 && stop_pc < step_range_end)
2616 {
2617 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2618 So definately need to check for sigtramp here. */
104c1213 2619 check_sigtramp2 (ecs);
d4f3574e
SS
2620 keep_going (ecs);
2621 return;
c5aa993b 2622 }
c906108c 2623
c5aa993b 2624 /* We stepped out of the stepping range. */
c906108c 2625
c5aa993b
JM
2626 /* If we are stepping at the source level and entered the runtime
2627 loader dynamic symbol resolution code, we keep on single stepping
2628 until we exit the run time loader code and reach the callee's
2629 address. */
5fbbeb29 2630 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
d4f3574e
SS
2631 {
2632 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2633
2634 if (pc_after_resolver)
2635 {
2636 /* Set up a step-resume breakpoint at the address
2637 indicated by SKIP_SOLIB_RESOLVER. */
2638 struct symtab_and_line sr_sal;
2639 INIT_SAL (&sr_sal);
2640 sr_sal.pc = pc_after_resolver;
2641
2642 check_for_old_step_resume_breakpoint ();
2643 step_resume_breakpoint =
2644 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2645 if (breakpoints_inserted)
2646 insert_breakpoints ();
2647 }
2648
2649 keep_going (ecs);
2650 return;
2651 }
c906108c 2652
c5aa993b
JM
2653 /* We can't update step_sp every time through the loop, because
2654 reading the stack pointer would slow down stepping too much.
2655 But we can update it every time we leave the step range. */
2656 ecs->update_step_sp = 1;
c906108c 2657
c5aa993b
JM
2658 /* Did we just take a signal? */
2659 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2660 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2661 && INNER_THAN (read_sp (), step_sp))
2662 {
2663 /* We've just taken a signal; go until we are back to
2664 the point where we took it and one more. */
c906108c 2665
c5aa993b
JM
2666 /* Note: The test above succeeds not only when we stepped
2667 into a signal handler, but also when we step past the last
2668 statement of a signal handler and end up in the return stub
2669 of the signal handler trampoline. To distinguish between
2670 these two cases, check that the frame is INNER_THAN the
2671 previous one below. pai/1997-09-11 */
c906108c 2672
c906108c 2673
c5aa993b
JM
2674 {
2675 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
c906108c 2676
c5aa993b
JM
2677 if (INNER_THAN (current_frame, step_frame_address))
2678 {
2679 /* We have just taken a signal; go until we are back to
2680 the point where we took it and one more. */
c906108c 2681
c5aa993b
JM
2682 /* This code is needed at least in the following case:
2683 The user types "next" and then a signal arrives (before
2684 the "next" is done). */
c906108c 2685
c5aa993b
JM
2686 /* Note that if we are stopped at a breakpoint, then we need
2687 the step_resume breakpoint to override any breakpoints at
2688 the same location, so that we will still step over the
2689 breakpoint even though the signal happened. */
2690 struct symtab_and_line sr_sal;
c906108c 2691
c5aa993b
JM
2692 INIT_SAL (&sr_sal);
2693 sr_sal.symtab = NULL;
2694 sr_sal.line = 0;
2695 sr_sal.pc = prev_pc;
2696 /* We could probably be setting the frame to
2697 step_frame_address; I don't think anyone thought to
2698 try it. */
a0b3c4fd 2699 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2700 step_resume_breakpoint =
2701 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2702 if (breakpoints_inserted)
2703 insert_breakpoints ();
c906108c 2704 }
c5aa993b 2705 else
c906108c 2706 {
c5aa993b
JM
2707 /* We just stepped out of a signal handler and into
2708 its calling trampoline.
2709
d4f3574e 2710 Normally, we'd call step_over_function from
c5aa993b
JM
2711 here, but for some reason GDB can't unwind the
2712 stack correctly to find the real PC for the point
2713 user code where the signal trampoline will return
2714 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2715 But signal trampolines are pretty small stubs of
2716 code, anyway, so it's OK instead to just
2717 single-step out. Note: assuming such trampolines
2718 don't exhibit recursion on any platform... */
2719 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2720 &ecs->stop_func_start,
2721 &ecs->stop_func_end);
2722 /* Readjust stepping range */
2723 step_range_start = ecs->stop_func_start;
2724 step_range_end = ecs->stop_func_end;
2725 ecs->stepping_through_sigtramp = 1;
c906108c 2726 }
c906108c
SS
2727 }
2728
c906108c 2729
c5aa993b
JM
2730 /* If this is stepi or nexti, make sure that the stepping range
2731 gets us past that instruction. */
2732 if (step_range_end == 1)
2733 /* FIXME: Does this run afoul of the code below which, if
2734 we step into the middle of a line, resets the stepping
2735 range? */
2736 step_range_end = (step_range_start = prev_pc) + 1;
c906108c 2737
c5aa993b 2738 ecs->remove_breakpoints_on_following_step = 1;
d4f3574e
SS
2739 keep_going (ecs);
2740 return;
c5aa993b 2741 }
c906108c 2742
c5aa993b
JM
2743 if (stop_pc == ecs->stop_func_start /* Quick test */
2744 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2745 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2746 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2747 || ecs->stop_func_name == 0)
2748 {
2749 /* It's a subroutine call. */
c906108c 2750
100a02e1
AC
2751 if ((step_over_calls == STEP_OVER_NONE)
2752 || ((step_range_end == 1)
2753 && in_prologue (prev_pc, ecs->stop_func_start)))
c906108c 2754 {
c5aa993b
JM
2755 /* I presume that step_over_calls is only 0 when we're
2756 supposed to be stepping at the assembly language level
2757 ("stepi"). Just stop. */
100a02e1
AC
2758 /* Also, maybe we just did a "nexti" inside a prolog,
2759 so we thought it was a subroutine call but it was not.
2760 Stop as well. FENN */
c5aa993b 2761 stop_step = 1;
11cf8741 2762 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2763 stop_stepping (ecs);
2764 return;
c5aa993b 2765 }
c906108c 2766
5fbbeb29 2767 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
d4f3574e
SS
2768 {
2769 /* We're doing a "next". */
d41707c8
MK
2770
2771 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2772 && INNER_THAN (step_frame_address, read_sp()))
2773 /* We stepped out of a signal handler, and into its
2774 calling trampoline. This is misdetected as a
2775 subroutine call, but stepping over the signal
2776 trampoline isn't such a bad idea. In order to do
2777 that, we have to ignore the value in
2778 step_frame_address, since that doesn't represent the
2779 frame that'll reach when we return from the signal
2780 trampoline. Otherwise we'll probably continue to the
2781 end of the program. */
2782 step_frame_address = 0;
2783
d4f3574e
SS
2784 step_over_function (ecs);
2785 keep_going (ecs);
2786 return;
2787 }
c5aa993b
JM
2788
2789 /* If we are in a function call trampoline (a stub between
2790 the calling routine and the real function), locate the real
2791 function. That's what tells us (a) whether we want to step
2792 into it at all, and (b) what prologue we want to run to
2793 the end of, if we do step into it. */
2794 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2795 if (tmp != 0)
2796 ecs->stop_func_start = tmp;
2797 else
2798 {
2799 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2800 if (tmp)
c906108c 2801 {
c5aa993b
JM
2802 struct symtab_and_line xxx;
2803 /* Why isn't this s_a_l called "sr_sal", like all of the
2804 other s_a_l's where this code is duplicated? */
2805 INIT_SAL (&xxx); /* initialize to zeroes */
2806 xxx.pc = tmp;
2807 xxx.section = find_pc_overlay (xxx.pc);
a0b3c4fd 2808 check_for_old_step_resume_breakpoint ();
c906108c 2809 step_resume_breakpoint =
c5aa993b
JM
2810 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2811 insert_breakpoints ();
d4f3574e
SS
2812 keep_going (ecs);
2813 return;
c906108c
SS
2814 }
2815 }
2816
c5aa993b
JM
2817 /* If we have line number information for the function we
2818 are thinking of stepping into, step into it.
c906108c 2819
c5aa993b
JM
2820 If there are several symtabs at that PC (e.g. with include
2821 files), just want to know whether *any* of them have line
2822 numbers. find_pc_line handles this. */
2823 {
2824 struct symtab_and_line tmp_sal;
c906108c 2825
c5aa993b
JM
2826 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2827 if (tmp_sal.line != 0)
c2c6d25f
JM
2828 {
2829 step_into_function (ecs);
2830 return;
2831 }
c906108c 2832 }
5fbbeb29
CF
2833
2834 /* If we have no line number and the step-stop-if-no-debug
2835 is set, we stop the step so that the user has a chance to
2836 switch in assembly mode. */
2837 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2838 {
2839 stop_step = 1;
2840 print_stop_reason (END_STEPPING_RANGE, 0);
2841 stop_stepping (ecs);
2842 return;
2843 }
2844
d4f3574e
SS
2845 step_over_function (ecs);
2846 keep_going (ecs);
2847 return;
c906108c 2848
c5aa993b 2849 }
c906108c 2850
c5aa993b 2851 /* We've wandered out of the step range. */
c906108c 2852
c5aa993b 2853 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2854
c5aa993b
JM
2855 if (step_range_end == 1)
2856 {
2857 /* It is stepi or nexti. We always want to stop stepping after
2858 one instruction. */
2859 stop_step = 1;
11cf8741 2860 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2861 stop_stepping (ecs);
2862 return;
c5aa993b 2863 }
c906108c 2864
c5aa993b
JM
2865 /* If we're in the return path from a shared library trampoline,
2866 we want to proceed through the trampoline when stepping. */
2867 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2868 {
2869 CORE_ADDR tmp;
c906108c 2870
c5aa993b
JM
2871 /* Determine where this trampoline returns. */
2872 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2873
c5aa993b
JM
2874 /* Only proceed through if we know where it's going. */
2875 if (tmp)
2876 {
2877 /* And put the step-breakpoint there and go until there. */
2878 struct symtab_and_line sr_sal;
c906108c 2879
c5aa993b
JM
2880 INIT_SAL (&sr_sal); /* initialize to zeroes */
2881 sr_sal.pc = tmp;
2882 sr_sal.section = find_pc_overlay (sr_sal.pc);
2883 /* Do not specify what the fp should be when we stop
2884 since on some machines the prologue
2885 is where the new fp value is established. */
a0b3c4fd 2886 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2887 step_resume_breakpoint =
2888 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2889 if (breakpoints_inserted)
2890 insert_breakpoints ();
c906108c 2891
c5aa993b
JM
2892 /* Restart without fiddling with the step ranges or
2893 other state. */
d4f3574e
SS
2894 keep_going (ecs);
2895 return;
c5aa993b
JM
2896 }
2897 }
c906108c 2898
c5aa993b 2899 if (ecs->sal.line == 0)
c906108c 2900 {
c5aa993b
JM
2901 /* We have no line number information. That means to stop
2902 stepping (does this always happen right after one instruction,
2903 when we do "s" in a function with no line numbers,
2904 or can this happen as a result of a return or longjmp?). */
2905 stop_step = 1;
11cf8741 2906 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2907 stop_stepping (ecs);
2908 return;
c906108c
SS
2909 }
2910
c5aa993b
JM
2911 if ((stop_pc == ecs->sal.pc)
2912 && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
2913 {
2914 /* We are at the start of a different line. So stop. Note that
2915 we don't stop if we step into the middle of a different line.
2916 That is said to make things like for (;;) statements work
2917 better. */
2918 stop_step = 1;
11cf8741 2919 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2920 stop_stepping (ecs);
2921 return;
c5aa993b 2922 }
c906108c 2923
c5aa993b 2924 /* We aren't done stepping.
c906108c 2925
c5aa993b
JM
2926 Optimize by setting the stepping range to the line.
2927 (We might not be in the original line, but if we entered a
2928 new line in mid-statement, we continue stepping. This makes
2929 things like for(;;) statements work better.) */
c906108c 2930
c5aa993b
JM
2931 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2932 {
2933 /* If this is the last line of the function, don't keep stepping
2934 (it would probably step us out of the function).
2935 This is particularly necessary for a one-line function,
2936 in which after skipping the prologue we better stop even though
2937 we will be in mid-line. */
2938 stop_step = 1;
11cf8741 2939 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2940 stop_stepping (ecs);
2941 return;
c5aa993b
JM
2942 }
2943 step_range_start = ecs->sal.pc;
2944 step_range_end = ecs->sal.end;
2945 step_frame_address = FRAME_FP (get_current_frame ());
2946 ecs->current_line = ecs->sal.line;
2947 ecs->current_symtab = ecs->sal.symtab;
2948
2949 /* In the case where we just stepped out of a function into the middle
2950 of a line of the caller, continue stepping, but step_frame_address
2951 must be modified to current frame */
2952 {
2953 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2954 if (!(INNER_THAN (current_frame, step_frame_address)))
2955 step_frame_address = current_frame;
2956 }
c906108c 2957
d4f3574e 2958 keep_going (ecs);
cd0fc7c3 2959
104c1213 2960 } /* extra brace, to preserve old indentation */
104c1213
JM
2961}
2962
2963/* Are we in the middle of stepping? */
2964
2965static int
2966currently_stepping (struct execution_control_state *ecs)
2967{
2968 return ((through_sigtramp_breakpoint == NULL
2969 && !ecs->handling_longjmp
2970 && ((step_range_end && step_resume_breakpoint == NULL)
2971 || trap_expected))
2972 || ecs->stepping_through_solib_after_catch
2973 || bpstat_should_step ());
2974}
c906108c 2975
104c1213
JM
2976static void
2977check_sigtramp2 (struct execution_control_state *ecs)
2978{
2979 if (trap_expected
2980 && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2981 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2982 && INNER_THAN (read_sp (), step_sp))
2983 {
2984 /* What has happened here is that we have just stepped the
2985 inferior with a signal (because it is a signal which
2986 shouldn't make us stop), thus stepping into sigtramp.
2987
2988 So we need to set a step_resume_break_address breakpoint and
2989 continue until we hit it, and then step. FIXME: This should
2990 be more enduring than a step_resume breakpoint; we should
2991 know that we will later need to keep going rather than
2992 re-hitting the breakpoint here (see the testsuite,
2993 gdb.base/signals.exp where it says "exceedingly difficult"). */
2994
2995 struct symtab_and_line sr_sal;
2996
2997 INIT_SAL (&sr_sal); /* initialize to zeroes */
2998 sr_sal.pc = prev_pc;
2999 sr_sal.section = find_pc_overlay (sr_sal.pc);
3000 /* We perhaps could set the frame if we kept track of what the
3001 frame corresponding to prev_pc was. But we don't, so don't. */
3002 through_sigtramp_breakpoint =
3003 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
3004 if (breakpoints_inserted)
3005 insert_breakpoints ();
cd0fc7c3 3006
104c1213
JM
3007 ecs->remove_breakpoints_on_following_step = 1;
3008 ecs->another_trap = 1;
3009 }
3010}
3011
c2c6d25f
JM
3012/* Subroutine call with source code we should not step over. Do step
3013 to the first line of code in it. */
3014
3015static void
3016step_into_function (struct execution_control_state *ecs)
3017{
3018 struct symtab *s;
3019 struct symtab_and_line sr_sal;
3020
3021 s = find_pc_symtab (stop_pc);
3022 if (s && s->language != language_asm)
3023 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
3024
3025 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3026 /* Use the step_resume_break to step until the end of the prologue,
3027 even if that involves jumps (as it seems to on the vax under
3028 4.2). */
3029 /* If the prologue ends in the middle of a source line, continue to
3030 the end of that source line (if it is still within the function).
3031 Otherwise, just go to end of prologue. */
3032#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3033 /* no, don't either. It skips any code that's legitimately on the
3034 first line. */
3035#else
3036 if (ecs->sal.end
3037 && ecs->sal.pc != ecs->stop_func_start
3038 && ecs->sal.end < ecs->stop_func_end)
3039 ecs->stop_func_start = ecs->sal.end;
3040#endif
3041
3042 if (ecs->stop_func_start == stop_pc)
3043 {
3044 /* We are already there: stop now. */
3045 stop_step = 1;
11cf8741 3046 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3047 stop_stepping (ecs);
3048 return;
3049 }
3050 else
3051 {
3052 /* Put the step-breakpoint there and go until there. */
3053 INIT_SAL (&sr_sal); /* initialize to zeroes */
3054 sr_sal.pc = ecs->stop_func_start;
3055 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3056 /* Do not specify what the fp should be when we stop since on
3057 some machines the prologue is where the new fp value is
3058 established. */
3059 check_for_old_step_resume_breakpoint ();
3060 step_resume_breakpoint =
3061 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3062 if (breakpoints_inserted)
3063 insert_breakpoints ();
3064
3065 /* And make sure stepping stops right away then. */
3066 step_range_end = step_range_start;
3067 }
3068 keep_going (ecs);
3069}
d4f3574e
SS
3070
3071/* We've just entered a callee, and we wish to resume until it returns
3072 to the caller. Setting a step_resume breakpoint on the return
3073 address will catch a return from the callee.
3074
3075 However, if the callee is recursing, we want to be careful not to
3076 catch returns of those recursive calls, but only of THIS instance
3077 of the call.
3078
3079 To do this, we set the step_resume bp's frame to our current
3080 caller's frame (step_frame_address, which is set by the "next" or
3081 "until" command, before execution begins). */
3082
3083static void
3084step_over_function (struct execution_control_state *ecs)
3085{
3086 struct symtab_and_line sr_sal;
3087
3088 INIT_SAL (&sr_sal); /* initialize to zeros */
3089 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3090 sr_sal.section = find_pc_overlay (sr_sal.pc);
3091
3092 check_for_old_step_resume_breakpoint ();
3093 step_resume_breakpoint =
3094 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3095
d41707c8 3096 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
d4f3574e
SS
3097 step_resume_breakpoint->frame = step_frame_address;
3098
3099 if (breakpoints_inserted)
3100 insert_breakpoints ();
3101}
3102
104c1213
JM
3103static void
3104stop_stepping (struct execution_control_state *ecs)
3105{
c906108c
SS
3106 if (target_has_execution)
3107 {
3108 /* Are we stopping for a vfork event? We only stop when we see
3109 the child's event. However, we may not yet have seen the
39f77062 3110 parent's event. And, inferior_ptid is still set to the
104c1213
JM
3111 parent's pid, until we resume again and follow either the
3112 parent or child.
c906108c 3113
39f77062 3114 To ensure that we can really touch inferior_ptid (aka, the
c906108c
SS
3115 parent process) -- which calls to functions like read_pc
3116 implicitly do -- wait on the parent if necessary. */
3117 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3118 && !pending_follow.fork_event.saw_parent_fork)
3119 {
39f77062 3120 ptid_t parent_ptid;
c906108c
SS
3121
3122 do
3123 {
3124 if (target_wait_hook)
39f77062 3125 parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
c906108c 3126 else
39f77062 3127 parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
c906108c 3128 }
39f77062 3129 while (! ptid_equal (parent_ptid, inferior_ptid));
c906108c
SS
3130 }
3131
c906108c 3132 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
3133 time, just like we did above if we didn't break out of the
3134 loop. */
c906108c 3135 prev_pc = read_pc ();
cd0fc7c3
SS
3136 prev_func_start = ecs->stop_func_start;
3137 prev_func_name = ecs->stop_func_name;
c906108c 3138 }
104c1213 3139
cd0fc7c3
SS
3140 /* Let callers know we don't want to wait for the inferior anymore. */
3141 ecs->wait_some_more = 0;
3142}
3143
d4f3574e
SS
3144/* This function handles various cases where we need to continue
3145 waiting for the inferior. */
3146/* (Used to be the keep_going: label in the old wait_for_inferior) */
3147
3148static void
3149keep_going (struct execution_control_state *ecs)
3150{
3151 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3152 vforked child between its creation and subsequent exit or call to
3153 exec(). However, I had big problems in this rather creaky exec
3154 engine, getting that to work. The fundamental problem is that
3155 I'm trying to debug two processes via an engine that only
3156 understands a single process with possibly multiple threads.
3157
3158 Hence, this spot is known to have problems when
3159 target_can_follow_vfork_prior_to_exec returns 1. */
3160
3161 /* Save the pc before execution, to compare with pc after stop. */
3162 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3163 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3164 BREAK is defined, the
3165 original pc would not have
3166 been at the start of a
3167 function. */
3168 prev_func_name = ecs->stop_func_name;
3169
3170 if (ecs->update_step_sp)
3171 step_sp = read_sp ();
3172 ecs->update_step_sp = 0;
3173
3174 /* If we did not do break;, it means we should keep running the
3175 inferior and not return to debugger. */
3176
3177 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3178 {
3179 /* We took a signal (which we are supposed to pass through to
3180 the inferior, else we'd have done a break above) and we
3181 haven't yet gotten our trap. Simply continue. */
3182 resume (currently_stepping (ecs), stop_signal);
3183 }
3184 else
3185 {
3186 /* Either the trap was not expected, but we are continuing
3187 anyway (the user asked that this signal be passed to the
3188 child)
3189 -- or --
3190 The signal was SIGTRAP, e.g. it was our signal, but we
3191 decided we should resume from it.
3192
3193 We're going to run this baby now!
3194
3195 Insert breakpoints now, unless we are trying to one-proceed
3196 past a breakpoint. */
3197 /* If we've just finished a special step resume and we don't
3198 want to hit a breakpoint, pull em out. */
3199 if (step_resume_breakpoint == NULL
3200 && through_sigtramp_breakpoint == NULL
3201 && ecs->remove_breakpoints_on_following_step)
3202 {
3203 ecs->remove_breakpoints_on_following_step = 0;
3204 remove_breakpoints ();
3205 breakpoints_inserted = 0;
3206 }
3207 else if (!breakpoints_inserted &&
3208 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3209 {
3210 breakpoints_failed = insert_breakpoints ();
3211 if (breakpoints_failed)
3212 {
3213 stop_stepping (ecs);
3214 return;
3215 }
3216 breakpoints_inserted = 1;
3217 }
3218
3219 trap_expected = ecs->another_trap;
3220
3221 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3222 specifies that such a signal should be delivered to the
3223 target program).
3224
3225 Typically, this would occure when a user is debugging a
3226 target monitor on a simulator: the target monitor sets a
3227 breakpoint; the simulator encounters this break-point and
3228 halts the simulation handing control to GDB; GDB, noteing
3229 that the break-point isn't valid, returns control back to the
3230 simulator; the simulator then delivers the hardware
3231 equivalent of a SIGNAL_TRAP to the program being debugged. */
3232
3233 if (stop_signal == TARGET_SIGNAL_TRAP
3234 && !signal_program[stop_signal])
3235 stop_signal = TARGET_SIGNAL_0;
3236
3237#ifdef SHIFT_INST_REGS
3238 /* I'm not sure when this following segment applies. I do know,
3239 now, that we shouldn't rewrite the regs when we were stopped
3240 by a random signal from the inferior process. */
3241 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
3242 (this is only used on the 88k). */
3243
3244 if (!bpstat_explains_signal (stop_bpstat)
3245 && (stop_signal != TARGET_SIGNAL_CHLD)
3246 && !stopped_by_random_signal)
3247 SHIFT_INST_REGS ();
3248#endif /* SHIFT_INST_REGS */
3249
3250 resume (currently_stepping (ecs), stop_signal);
3251 }
3252
3253 prepare_to_wait (ecs);
3254}
3255
104c1213
JM
3256/* This function normally comes after a resume, before
3257 handle_inferior_event exits. It takes care of any last bits of
3258 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3259
104c1213
JM
3260static void
3261prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3262{
104c1213
JM
3263 if (ecs->infwait_state == infwait_normal_state)
3264 {
3265 overlay_cache_invalid = 1;
3266
3267 /* We have to invalidate the registers BEFORE calling
3268 target_wait because they can be loaded from the target while
3269 in target_wait. This makes remote debugging a bit more
3270 efficient for those targets that provide critical registers
3271 as part of their normal status mechanism. */
3272
3273 registers_changed ();
39f77062 3274 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3275 ecs->wp = &(ecs->ws);
3276 }
3277 /* This is the old end of the while loop. Let everybody know we
3278 want to wait for the inferior some more and get called again
3279 soon. */
3280 ecs->wait_some_more = 1;
c906108c 3281}
11cf8741
JM
3282
3283/* Print why the inferior has stopped. We always print something when
3284 the inferior exits, or receives a signal. The rest of the cases are
3285 dealt with later on in normal_stop() and print_it_typical(). Ideally
3286 there should be a call to this function from handle_inferior_event()
3287 each time stop_stepping() is called.*/
3288static void
3289print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3290{
3291 switch (stop_reason)
3292 {
3293 case STOP_UNKNOWN:
3294 /* We don't deal with these cases from handle_inferior_event()
3295 yet. */
3296 break;
3297 case END_STEPPING_RANGE:
3298 /* We are done with a step/next/si/ni command. */
3299 /* For now print nothing. */
fb40c209
AC
3300#ifdef UI_OUT
3301 /* Print a message only if not in the middle of doing a "step n"
3302 operation for n > 1 */
3303 if (!step_multi || !stop_step)
9dc5e2a9 3304 if (ui_out_is_mi_like_p (uiout))
fb40c209
AC
3305 ui_out_field_string (uiout, "reason", "end-stepping-range");
3306#endif
11cf8741
JM
3307 break;
3308 case BREAKPOINT_HIT:
3309 /* We found a breakpoint. */
3310 /* For now print nothing. */
3311 break;
3312 case SIGNAL_EXITED:
3313 /* The inferior was terminated by a signal. */
8b93c638
JM
3314#ifdef UI_OUT
3315 annotate_signalled ();
9dc5e2a9 3316 if (ui_out_is_mi_like_p (uiout))
fb40c209 3317 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3318 ui_out_text (uiout, "\nProgram terminated with signal ");
3319 annotate_signal_name ();
3320 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3321 annotate_signal_name_end ();
3322 ui_out_text (uiout, ", ");
3323 annotate_signal_string ();
3324 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3325 annotate_signal_string_end ();
3326 ui_out_text (uiout, ".\n");
3327 ui_out_text (uiout, "The program no longer exists.\n");
3328#else
11cf8741
JM
3329 annotate_signalled ();
3330 printf_filtered ("\nProgram terminated with signal ");
3331 annotate_signal_name ();
3332 printf_filtered ("%s", target_signal_to_name (stop_info));
3333 annotate_signal_name_end ();
3334 printf_filtered (", ");
3335 annotate_signal_string ();
3336 printf_filtered ("%s", target_signal_to_string (stop_info));
3337 annotate_signal_string_end ();
3338 printf_filtered (".\n");
3339
3340 printf_filtered ("The program no longer exists.\n");
3341 gdb_flush (gdb_stdout);
8b93c638 3342#endif
11cf8741
JM
3343 break;
3344 case EXITED:
3345 /* The inferior program is finished. */
8b93c638
JM
3346#ifdef UI_OUT
3347 annotate_exited (stop_info);
3348 if (stop_info)
3349 {
9dc5e2a9 3350 if (ui_out_is_mi_like_p (uiout))
fb40c209 3351 ui_out_field_string (uiout, "reason", "exited");
8b93c638
JM
3352 ui_out_text (uiout, "\nProgram exited with code ");
3353 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) stop_info);
3354 ui_out_text (uiout, ".\n");
3355 }
3356 else
3357 {
9dc5e2a9 3358 if (ui_out_is_mi_like_p (uiout))
fb40c209 3359 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3360 ui_out_text (uiout, "\nProgram exited normally.\n");
3361 }
3362#else
11cf8741
JM
3363 annotate_exited (stop_info);
3364 if (stop_info)
3365 printf_filtered ("\nProgram exited with code 0%o.\n",
3366 (unsigned int) stop_info);
3367 else
3368 printf_filtered ("\nProgram exited normally.\n");
8b93c638 3369#endif
11cf8741
JM
3370 break;
3371 case SIGNAL_RECEIVED:
3372 /* Signal received. The signal table tells us to print about
3373 it. */
8b93c638
JM
3374#ifdef UI_OUT
3375 annotate_signal ();
3376 ui_out_text (uiout, "\nProgram received signal ");
3377 annotate_signal_name ();
84c6c83c
KS
3378 if (ui_out_is_mi_like_p (uiout))
3379 ui_out_field_string (uiout, "reason", "signal-received");
8b93c638
JM
3380 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3381 annotate_signal_name_end ();
3382 ui_out_text (uiout, ", ");
3383 annotate_signal_string ();
3384 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3385 annotate_signal_string_end ();
3386 ui_out_text (uiout, ".\n");
3387#else
11cf8741
JM
3388 annotate_signal ();
3389 printf_filtered ("\nProgram received signal ");
3390 annotate_signal_name ();
3391 printf_filtered ("%s", target_signal_to_name (stop_info));
3392 annotate_signal_name_end ();
3393 printf_filtered (", ");
3394 annotate_signal_string ();
3395 printf_filtered ("%s", target_signal_to_string (stop_info));
3396 annotate_signal_string_end ();
3397 printf_filtered (".\n");
3398 gdb_flush (gdb_stdout);
8b93c638 3399#endif
11cf8741
JM
3400 break;
3401 default:
8e65ff28
AC
3402 internal_error (__FILE__, __LINE__,
3403 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3404 break;
3405 }
3406}
c906108c 3407\f
43ff13b4 3408
c906108c
SS
3409/* Here to return control to GDB when the inferior stops for real.
3410 Print appropriate messages, remove breakpoints, give terminal our modes.
3411
3412 STOP_PRINT_FRAME nonzero means print the executing frame
3413 (pc, function, args, file, line number and line text).
3414 BREAKPOINTS_FAILED nonzero means stop was due to error
3415 attempting to insert breakpoints. */
3416
3417void
96baa820 3418normal_stop (void)
c906108c 3419{
c906108c
SS
3420 /* As with the notification of thread events, we want to delay
3421 notifying the user that we've switched thread context until
3422 the inferior actually stops.
3423
3424 (Note that there's no point in saying anything if the inferior
3425 has exited!) */
39f77062 3426 if (! ptid_equal (previous_inferior_ptid, inferior_ptid)
7a292a7a 3427 && target_has_execution)
c906108c
SS
3428 {
3429 target_terminal_ours_for_output ();
c3f6f71d 3430 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3431 target_pid_or_tid_to_str (inferior_ptid));
3432 previous_inferior_ptid = inferior_ptid;
c906108c 3433 }
c906108c
SS
3434
3435 /* Make sure that the current_frame's pc is correct. This
3436 is a correction for setting up the frame info before doing
3437 DECR_PC_AFTER_BREAK */
3438 if (target_has_execution && get_current_frame ())
3439 (get_current_frame ())->pc = read_pc ();
3440
3441 if (breakpoints_failed)
3442 {
3443 target_terminal_ours_for_output ();
010a3cd9 3444 print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
c906108c 3445 printf_filtered ("Stopped; cannot insert breakpoints.\n\
010a3cd9
EZ
3446The same program may be running in another process,\n\
3447or you may have requested too many hardware breakpoints\n\
3448and/or watchpoints.\n");
c906108c
SS
3449 }
3450
3451 if (target_has_execution && breakpoints_inserted)
3452 {
3453 if (remove_breakpoints ())
3454 {
3455 target_terminal_ours_for_output ();
3456 printf_filtered ("Cannot remove breakpoints because ");
3457 printf_filtered ("program is no longer writable.\n");
3458 printf_filtered ("It might be running in another process.\n");
3459 printf_filtered ("Further execution is probably impossible.\n");
3460 }
3461 }
3462 breakpoints_inserted = 0;
3463
3464 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3465 Delete any breakpoint that is to be deleted at the next stop. */
3466
3467 breakpoint_auto_delete (stop_bpstat);
3468
3469 /* If an auto-display called a function and that got a signal,
3470 delete that auto-display to avoid an infinite recursion. */
3471
3472 if (stopped_by_random_signal)
3473 disable_current_display ();
3474
3475 /* Don't print a message if in the middle of doing a "step n"
3476 operation for n > 1 */
3477 if (step_multi && stop_step)
3478 goto done;
3479
3480 target_terminal_ours ();
3481
c906108c
SS
3482 /* Look up the hook_stop and run it if it exists. */
3483
73bc900d 3484 if (stop_command && stop_command->hook_pre)
c906108c 3485 {
73bc900d 3486 catch_errors (hook_stop_stub, stop_command->hook_pre,
c906108c
SS
3487 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3488 }
3489
3490 if (!target_has_stack)
3491 {
3492
3493 goto done;
3494 }
3495
3496 /* Select innermost stack frame - i.e., current frame is frame 0,
3497 and current location is based on that.
3498 Don't do this on return from a stack dummy routine,
3499 or if the program has exited. */
3500
3501 if (!stop_stack_dummy)
3502 {
3503 select_frame (get_current_frame (), 0);
3504
3505 /* Print current location without a level number, if
c5aa993b
JM
3506 we have changed functions or hit a breakpoint.
3507 Print source line if we have one.
3508 bpstat_print() contains the logic deciding in detail
3509 what to print, based on the event(s) that just occurred. */
c906108c 3510
d082b2bb
AC
3511 if (stop_print_frame
3512 && selected_frame)
c906108c
SS
3513 {
3514 int bpstat_ret;
3515 int source_flag;
917317f4 3516 int do_frame_printing = 1;
c906108c
SS
3517
3518 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3519 switch (bpstat_ret)
3520 {
3521 case PRINT_UNKNOWN:
3522 if (stop_step
3523 && step_frame_address == FRAME_FP (get_current_frame ())
3524 && step_start_function == find_pc_function (stop_pc))
c5394b80 3525 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3526 else
c5394b80 3527 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3528 break;
3529 case PRINT_SRC_AND_LOC:
c5394b80 3530 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3531 break;
3532 case PRINT_SRC_ONLY:
c5394b80 3533 source_flag = SRC_LINE;
917317f4
JM
3534 break;
3535 case PRINT_NOTHING:
88665544 3536 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3537 do_frame_printing = 0;
3538 break;
3539 default:
8e65ff28
AC
3540 internal_error (__FILE__, __LINE__,
3541 "Unknown value.");
917317f4 3542 }
fb40c209
AC
3543#ifdef UI_OUT
3544 /* For mi, have the same behavior every time we stop:
3545 print everything but the source line. */
9dc5e2a9 3546 if (ui_out_is_mi_like_p (uiout))
fb40c209
AC
3547 source_flag = LOC_AND_ADDRESS;
3548#endif
c906108c 3549
fb40c209 3550#ifdef UI_OUT
9dc5e2a9 3551 if (ui_out_is_mi_like_p (uiout))
39f77062
KB
3552 ui_out_field_int (uiout, "thread-id",
3553 pid_to_thread_id (inferior_ptid));
fb40c209 3554#endif
c906108c
SS
3555 /* The behavior of this routine with respect to the source
3556 flag is:
c5394b80
JM
3557 SRC_LINE: Print only source line
3558 LOCATION: Print only location
3559 SRC_AND_LOC: Print location and source line */
917317f4
JM
3560 if (do_frame_printing)
3561 show_and_print_stack_frame (selected_frame, -1, source_flag);
c906108c
SS
3562
3563 /* Display the auto-display expressions. */
3564 do_displays ();
3565 }
3566 }
3567
3568 /* Save the function value return registers, if we care.
3569 We might be about to restore their previous contents. */
3570 if (proceed_to_finish)
3571 read_register_bytes (0, stop_registers, REGISTER_BYTES);
3572
3573 if (stop_stack_dummy)
3574 {
3575 /* Pop the empty frame that contains the stack dummy.
3576 POP_FRAME ends with a setting of the current frame, so we
c5aa993b 3577 can use that next. */
c906108c
SS
3578 POP_FRAME;
3579 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3580 Can't rely on restore_inferior_status because that only gets
3581 called if we don't stop in the called function. */
c906108c
SS
3582 stop_pc = read_pc ();
3583 select_frame (get_current_frame (), 0);
3584 }
3585
c906108c
SS
3586done:
3587 annotate_stopped ();
3588}
3589
3590static int
96baa820 3591hook_stop_stub (void *cmd)
c906108c
SS
3592{
3593 execute_user_command ((struct cmd_list_element *) cmd, 0);
3594 return (0);
3595}
3596\f
c5aa993b 3597int
96baa820 3598signal_stop_state (int signo)
c906108c
SS
3599{
3600 return signal_stop[signo];
3601}
3602
c5aa993b 3603int
96baa820 3604signal_print_state (int signo)
c906108c
SS
3605{
3606 return signal_print[signo];
3607}
3608
c5aa993b 3609int
96baa820 3610signal_pass_state (int signo)
c906108c
SS
3611{
3612 return signal_program[signo];
3613}
3614
d4f3574e
SS
3615int signal_stop_update (signo, state)
3616 int signo;
3617 int state;
3618{
3619 int ret = signal_stop[signo];
3620 signal_stop[signo] = state;
3621 return ret;
3622}
3623
3624int signal_print_update (signo, state)
3625 int signo;
3626 int state;
3627{
3628 int ret = signal_print[signo];
3629 signal_print[signo] = state;
3630 return ret;
3631}
3632
3633int signal_pass_update (signo, state)
3634 int signo;
3635 int state;
3636{
3637 int ret = signal_program[signo];
3638 signal_program[signo] = state;
3639 return ret;
3640}
3641
c906108c 3642static void
96baa820 3643sig_print_header (void)
c906108c
SS
3644{
3645 printf_filtered ("\
3646Signal Stop\tPrint\tPass to program\tDescription\n");
3647}
3648
3649static void
96baa820 3650sig_print_info (enum target_signal oursig)
c906108c
SS
3651{
3652 char *name = target_signal_to_name (oursig);
3653 int name_padding = 13 - strlen (name);
96baa820 3654
c906108c
SS
3655 if (name_padding <= 0)
3656 name_padding = 0;
3657
3658 printf_filtered ("%s", name);
3659 printf_filtered ("%*.*s ", name_padding, name_padding,
3660 " ");
3661 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3662 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3663 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3664 printf_filtered ("%s\n", target_signal_to_string (oursig));
3665}
3666
3667/* Specify how various signals in the inferior should be handled. */
3668
3669static void
96baa820 3670handle_command (char *args, int from_tty)
c906108c
SS
3671{
3672 char **argv;
3673 int digits, wordlen;
3674 int sigfirst, signum, siglast;
3675 enum target_signal oursig;
3676 int allsigs;
3677 int nsigs;
3678 unsigned char *sigs;
3679 struct cleanup *old_chain;
3680
3681 if (args == NULL)
3682 {
3683 error_no_arg ("signal to handle");
3684 }
3685
3686 /* Allocate and zero an array of flags for which signals to handle. */
3687
3688 nsigs = (int) TARGET_SIGNAL_LAST;
3689 sigs = (unsigned char *) alloca (nsigs);
3690 memset (sigs, 0, nsigs);
3691
3692 /* Break the command line up into args. */
3693
3694 argv = buildargv (args);
3695 if (argv == NULL)
3696 {
3697 nomem (0);
3698 }
7a292a7a 3699 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3700
3701 /* Walk through the args, looking for signal oursigs, signal names, and
3702 actions. Signal numbers and signal names may be interspersed with
3703 actions, with the actions being performed for all signals cumulatively
3704 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3705
3706 while (*argv != NULL)
3707 {
3708 wordlen = strlen (*argv);
3709 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3710 {;
3711 }
3712 allsigs = 0;
3713 sigfirst = siglast = -1;
3714
3715 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3716 {
3717 /* Apply action to all signals except those used by the
3718 debugger. Silently skip those. */
3719 allsigs = 1;
3720 sigfirst = 0;
3721 siglast = nsigs - 1;
3722 }
3723 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3724 {
3725 SET_SIGS (nsigs, sigs, signal_stop);
3726 SET_SIGS (nsigs, sigs, signal_print);
3727 }
3728 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3729 {
3730 UNSET_SIGS (nsigs, sigs, signal_program);
3731 }
3732 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3733 {
3734 SET_SIGS (nsigs, sigs, signal_print);
3735 }
3736 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3737 {
3738 SET_SIGS (nsigs, sigs, signal_program);
3739 }
3740 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3741 {
3742 UNSET_SIGS (nsigs, sigs, signal_stop);
3743 }
3744 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3745 {
3746 SET_SIGS (nsigs, sigs, signal_program);
3747 }
3748 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3749 {
3750 UNSET_SIGS (nsigs, sigs, signal_print);
3751 UNSET_SIGS (nsigs, sigs, signal_stop);
3752 }
3753 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3754 {
3755 UNSET_SIGS (nsigs, sigs, signal_program);
3756 }
3757 else if (digits > 0)
3758 {
3759 /* It is numeric. The numeric signal refers to our own
3760 internal signal numbering from target.h, not to host/target
3761 signal number. This is a feature; users really should be
3762 using symbolic names anyway, and the common ones like
3763 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3764
3765 sigfirst = siglast = (int)
3766 target_signal_from_command (atoi (*argv));
3767 if ((*argv)[digits] == '-')
3768 {
3769 siglast = (int)
3770 target_signal_from_command (atoi ((*argv) + digits + 1));
3771 }
3772 if (sigfirst > siglast)
3773 {
3774 /* Bet he didn't figure we'd think of this case... */
3775 signum = sigfirst;
3776 sigfirst = siglast;
3777 siglast = signum;
3778 }
3779 }
3780 else
3781 {
3782 oursig = target_signal_from_name (*argv);
3783 if (oursig != TARGET_SIGNAL_UNKNOWN)
3784 {
3785 sigfirst = siglast = (int) oursig;
3786 }
3787 else
3788 {
3789 /* Not a number and not a recognized flag word => complain. */
3790 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3791 }
3792 }
3793
3794 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3795 which signals to apply actions to. */
c906108c
SS
3796
3797 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3798 {
3799 switch ((enum target_signal) signum)
3800 {
3801 case TARGET_SIGNAL_TRAP:
3802 case TARGET_SIGNAL_INT:
3803 if (!allsigs && !sigs[signum])
3804 {
3805 if (query ("%s is used by the debugger.\n\
3806Are you sure you want to change it? ",
3807 target_signal_to_name
3808 ((enum target_signal) signum)))
3809 {
3810 sigs[signum] = 1;
3811 }
3812 else
3813 {
3814 printf_unfiltered ("Not confirmed, unchanged.\n");
3815 gdb_flush (gdb_stdout);
3816 }
3817 }
3818 break;
3819 case TARGET_SIGNAL_0:
3820 case TARGET_SIGNAL_DEFAULT:
3821 case TARGET_SIGNAL_UNKNOWN:
3822 /* Make sure that "all" doesn't print these. */
3823 break;
3824 default:
3825 sigs[signum] = 1;
3826 break;
3827 }
3828 }
3829
3830 argv++;
3831 }
3832
39f77062 3833 target_notice_signals (inferior_ptid);
c906108c
SS
3834
3835 if (from_tty)
3836 {
3837 /* Show the results. */
3838 sig_print_header ();
3839 for (signum = 0; signum < nsigs; signum++)
3840 {
3841 if (sigs[signum])
3842 {
3843 sig_print_info (signum);
3844 }
3845 }
3846 }
3847
3848 do_cleanups (old_chain);
3849}
3850
3851static void
96baa820 3852xdb_handle_command (char *args, int from_tty)
c906108c
SS
3853{
3854 char **argv;
3855 struct cleanup *old_chain;
3856
3857 /* Break the command line up into args. */
3858
3859 argv = buildargv (args);
3860 if (argv == NULL)
3861 {
3862 nomem (0);
3863 }
7a292a7a 3864 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3865 if (argv[1] != (char *) NULL)
3866 {
3867 char *argBuf;
3868 int bufLen;
3869
3870 bufLen = strlen (argv[0]) + 20;
3871 argBuf = (char *) xmalloc (bufLen);
3872 if (argBuf)
3873 {
3874 int validFlag = 1;
3875 enum target_signal oursig;
3876
3877 oursig = target_signal_from_name (argv[0]);
3878 memset (argBuf, 0, bufLen);
3879 if (strcmp (argv[1], "Q") == 0)
3880 sprintf (argBuf, "%s %s", argv[0], "noprint");
3881 else
3882 {
3883 if (strcmp (argv[1], "s") == 0)
3884 {
3885 if (!signal_stop[oursig])
3886 sprintf (argBuf, "%s %s", argv[0], "stop");
3887 else
3888 sprintf (argBuf, "%s %s", argv[0], "nostop");
3889 }
3890 else if (strcmp (argv[1], "i") == 0)
3891 {
3892 if (!signal_program[oursig])
3893 sprintf (argBuf, "%s %s", argv[0], "pass");
3894 else
3895 sprintf (argBuf, "%s %s", argv[0], "nopass");
3896 }
3897 else if (strcmp (argv[1], "r") == 0)
3898 {
3899 if (!signal_print[oursig])
3900 sprintf (argBuf, "%s %s", argv[0], "print");
3901 else
3902 sprintf (argBuf, "%s %s", argv[0], "noprint");
3903 }
3904 else
3905 validFlag = 0;
3906 }
3907 if (validFlag)
3908 handle_command (argBuf, from_tty);
3909 else
3910 printf_filtered ("Invalid signal handling flag.\n");
3911 if (argBuf)
b8c9b27d 3912 xfree (argBuf);
c906108c
SS
3913 }
3914 }
3915 do_cleanups (old_chain);
3916}
3917
3918/* Print current contents of the tables set by the handle command.
3919 It is possible we should just be printing signals actually used
3920 by the current target (but for things to work right when switching
3921 targets, all signals should be in the signal tables). */
3922
3923static void
96baa820 3924signals_info (char *signum_exp, int from_tty)
c906108c
SS
3925{
3926 enum target_signal oursig;
3927 sig_print_header ();
3928
3929 if (signum_exp)
3930 {
3931 /* First see if this is a symbol name. */
3932 oursig = target_signal_from_name (signum_exp);
3933 if (oursig == TARGET_SIGNAL_UNKNOWN)
3934 {
3935 /* No, try numeric. */
3936 oursig =
bb518678 3937 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3938 }
3939 sig_print_info (oursig);
3940 return;
3941 }
3942
3943 printf_filtered ("\n");
3944 /* These ugly casts brought to you by the native VAX compiler. */
3945 for (oursig = TARGET_SIGNAL_FIRST;
3946 (int) oursig < (int) TARGET_SIGNAL_LAST;
3947 oursig = (enum target_signal) ((int) oursig + 1))
3948 {
3949 QUIT;
3950
3951 if (oursig != TARGET_SIGNAL_UNKNOWN
3952 && oursig != TARGET_SIGNAL_DEFAULT
3953 && oursig != TARGET_SIGNAL_0)
3954 sig_print_info (oursig);
3955 }
3956
3957 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3958}
3959\f
7a292a7a
SS
3960struct inferior_status
3961{
3962 enum target_signal stop_signal;
3963 CORE_ADDR stop_pc;
3964 bpstat stop_bpstat;
3965 int stop_step;
3966 int stop_stack_dummy;
3967 int stopped_by_random_signal;
3968 int trap_expected;
3969 CORE_ADDR step_range_start;
3970 CORE_ADDR step_range_end;
3971 CORE_ADDR step_frame_address;
5fbbeb29 3972 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3973 CORE_ADDR step_resume_break_address;
3974 int stop_after_trap;
3975 int stop_soon_quietly;
3976 CORE_ADDR selected_frame_address;
3977 char *stop_registers;
3978
3979 /* These are here because if call_function_by_hand has written some
3980 registers and then decides to call error(), we better not have changed
3981 any registers. */
3982 char *registers;
3983
3984 int selected_level;
3985 int breakpoint_proceeded;
3986 int restore_stack_info;
3987 int proceed_to_finish;
3988};
3989
7a292a7a 3990static struct inferior_status *
96baa820 3991xmalloc_inferior_status (void)
7a292a7a
SS
3992{
3993 struct inferior_status *inf_status;
3994 inf_status = xmalloc (sizeof (struct inferior_status));
3995 inf_status->stop_registers = xmalloc (REGISTER_BYTES);
3996 inf_status->registers = xmalloc (REGISTER_BYTES);
3997 return inf_status;
3998}
3999
7a292a7a 4000static void
96baa820 4001free_inferior_status (struct inferior_status *inf_status)
7a292a7a 4002{
b8c9b27d
KB
4003 xfree (inf_status->registers);
4004 xfree (inf_status->stop_registers);
4005 xfree (inf_status);
7a292a7a
SS
4006}
4007
4008void
96baa820
JM
4009write_inferior_status_register (struct inferior_status *inf_status, int regno,
4010 LONGEST val)
7a292a7a 4011{
c5aa993b 4012 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
4013 void *buf = alloca (size);
4014 store_signed_integer (buf, size, val);
4015 memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
4016}
4017
c906108c
SS
4018/* Save all of the information associated with the inferior<==>gdb
4019 connection. INF_STATUS is a pointer to a "struct inferior_status"
4020 (defined in inferior.h). */
4021
7a292a7a 4022struct inferior_status *
96baa820 4023save_inferior_status (int restore_stack_info)
c906108c 4024{
7a292a7a
SS
4025 struct inferior_status *inf_status = xmalloc_inferior_status ();
4026
c906108c
SS
4027 inf_status->stop_signal = stop_signal;
4028 inf_status->stop_pc = stop_pc;
4029 inf_status->stop_step = stop_step;
4030 inf_status->stop_stack_dummy = stop_stack_dummy;
4031 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4032 inf_status->trap_expected = trap_expected;
4033 inf_status->step_range_start = step_range_start;
4034 inf_status->step_range_end = step_range_end;
4035 inf_status->step_frame_address = step_frame_address;
4036 inf_status->step_over_calls = step_over_calls;
4037 inf_status->stop_after_trap = stop_after_trap;
4038 inf_status->stop_soon_quietly = stop_soon_quietly;
4039 /* Save original bpstat chain here; replace it with copy of chain.
4040 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4041 hand them back the original chain when restore_inferior_status is
4042 called. */
c906108c
SS
4043 inf_status->stop_bpstat = stop_bpstat;
4044 stop_bpstat = bpstat_copy (stop_bpstat);
4045 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4046 inf_status->restore_stack_info = restore_stack_info;
4047 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 4048
c906108c
SS
4049 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
4050
4051 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4052
4053 record_selected_frame (&(inf_status->selected_frame_address),
4054 &(inf_status->selected_level));
7a292a7a 4055 return inf_status;
c906108c
SS
4056}
4057
4058struct restore_selected_frame_args
4059{
4060 CORE_ADDR frame_address;
4061 int level;
4062};
4063
c906108c 4064static int
96baa820 4065restore_selected_frame (void *args)
c906108c
SS
4066{
4067 struct restore_selected_frame_args *fr =
4068 (struct restore_selected_frame_args *) args;
4069 struct frame_info *frame;
4070 int level = fr->level;
4071
4072 frame = find_relative_frame (get_current_frame (), &level);
4073
4074 /* If inf_status->selected_frame_address is NULL, there was no
4075 previously selected frame. */
4076 if (frame == NULL ||
4077 /* FRAME_FP (frame) != fr->frame_address || */
4078 /* elz: deleted this check as a quick fix to the problem that
c5aa993b
JM
4079 for function called by hand gdb creates no internal frame
4080 structure and the real stack and gdb's idea of stack are
4081 different if nested calls by hands are made.
c906108c 4082
c5aa993b 4083 mvs: this worries me. */
c906108c
SS
4084 level != 0)
4085 {
4086 warning ("Unable to restore previously selected frame.\n");
4087 return 0;
4088 }
4089
4090 select_frame (frame, fr->level);
4091
4092 return (1);
4093}
4094
4095void
96baa820 4096restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4097{
4098 stop_signal = inf_status->stop_signal;
4099 stop_pc = inf_status->stop_pc;
4100 stop_step = inf_status->stop_step;
4101 stop_stack_dummy = inf_status->stop_stack_dummy;
4102 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4103 trap_expected = inf_status->trap_expected;
4104 step_range_start = inf_status->step_range_start;
4105 step_range_end = inf_status->step_range_end;
4106 step_frame_address = inf_status->step_frame_address;
4107 step_over_calls = inf_status->step_over_calls;
4108 stop_after_trap = inf_status->stop_after_trap;
4109 stop_soon_quietly = inf_status->stop_soon_quietly;
4110 bpstat_clear (&stop_bpstat);
4111 stop_bpstat = inf_status->stop_bpstat;
4112 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4113 proceed_to_finish = inf_status->proceed_to_finish;
4114
7a292a7a 4115 /* FIXME: Is the restore of stop_registers always needed */
c906108c
SS
4116 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
4117
4118 /* The inferior can be gone if the user types "print exit(0)"
4119 (and perhaps other times). */
4120 if (target_has_execution)
4121 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4122
c906108c
SS
4123 /* FIXME: If we are being called after stopping in a function which
4124 is called from gdb, we should not be trying to restore the
4125 selected frame; it just prints a spurious error message (The
4126 message is useful, however, in detecting bugs in gdb (like if gdb
4127 clobbers the stack)). In fact, should we be restoring the
4128 inferior status at all in that case? . */
4129
4130 if (target_has_stack && inf_status->restore_stack_info)
4131 {
4132 struct restore_selected_frame_args fr;
4133 fr.level = inf_status->selected_level;
4134 fr.frame_address = inf_status->selected_frame_address;
4135 /* The point of catch_errors is that if the stack is clobbered,
c5aa993b
JM
4136 walking the stack might encounter a garbage pointer and error()
4137 trying to dereference it. */
c906108c
SS
4138 if (catch_errors (restore_selected_frame, &fr,
4139 "Unable to restore previously selected frame:\n",
4140 RETURN_MASK_ERROR) == 0)
4141 /* Error in restoring the selected frame. Select the innermost
4142 frame. */
4143
4144
4145 select_frame (get_current_frame (), 0);
4146
4147 }
c906108c 4148
7a292a7a
SS
4149 free_inferior_status (inf_status);
4150}
c906108c 4151
74b7792f
AC
4152static void
4153do_restore_inferior_status_cleanup (void *sts)
4154{
4155 restore_inferior_status (sts);
4156}
4157
4158struct cleanup *
4159make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4160{
4161 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4162}
4163
c906108c 4164void
96baa820 4165discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4166{
4167 /* See save_inferior_status for info on stop_bpstat. */
4168 bpstat_clear (&inf_status->stop_bpstat);
4169 free_inferior_status (inf_status);
4170}
4171
ca6724c1
KB
4172/* Oft used ptids */
4173ptid_t null_ptid;
4174ptid_t minus_one_ptid;
4175
4176/* Create a ptid given the necessary PID, LWP, and TID components. */
4177
4178ptid_t
4179ptid_build (int pid, long lwp, long tid)
4180{
4181 ptid_t ptid;
4182
4183 ptid.pid = pid;
4184 ptid.lwp = lwp;
4185 ptid.tid = tid;
4186 return ptid;
4187}
4188
4189/* Create a ptid from just a pid. */
4190
4191ptid_t
4192pid_to_ptid (int pid)
4193{
4194 return ptid_build (pid, 0, 0);
4195}
4196
4197/* Fetch the pid (process id) component from a ptid. */
4198
4199int
4200ptid_get_pid (ptid_t ptid)
4201{
4202 return ptid.pid;
4203}
4204
4205/* Fetch the lwp (lightweight process) component from a ptid. */
4206
4207long
4208ptid_get_lwp (ptid_t ptid)
4209{
4210 return ptid.lwp;
4211}
4212
4213/* Fetch the tid (thread id) component from a ptid. */
4214
4215long
4216ptid_get_tid (ptid_t ptid)
4217{
4218 return ptid.tid;
4219}
4220
4221/* ptid_equal() is used to test equality of two ptids. */
4222
4223int
4224ptid_equal (ptid_t ptid1, ptid_t ptid2)
4225{
4226 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4227 && ptid1.tid == ptid2.tid);
4228}
4229
4230/* restore_inferior_ptid() will be used by the cleanup machinery
4231 to restore the inferior_ptid value saved in a call to
4232 save_inferior_ptid(). */
ce696e05
KB
4233
4234static void
4235restore_inferior_ptid (void *arg)
4236{
4237 ptid_t *saved_ptid_ptr = arg;
4238 inferior_ptid = *saved_ptid_ptr;
4239 xfree (arg);
4240}
4241
4242/* Save the value of inferior_ptid so that it may be restored by a
4243 later call to do_cleanups(). Returns the struct cleanup pointer
4244 needed for later doing the cleanup. */
4245
4246struct cleanup *
4247save_inferior_ptid (void)
4248{
4249 ptid_t *saved_ptid_ptr;
4250
4251 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4252 *saved_ptid_ptr = inferior_ptid;
4253 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4254}
4255
c5aa993b 4256\f
7a292a7a 4257static void
96baa820 4258build_infrun (void)
7a292a7a
SS
4259{
4260 stop_registers = xmalloc (REGISTER_BYTES);
4261}
c906108c 4262
c906108c 4263void
96baa820 4264_initialize_infrun (void)
c906108c
SS
4265{
4266 register int i;
4267 register int numsigs;
4268 struct cmd_list_element *c;
4269
7a292a7a
SS
4270 build_infrun ();
4271
0f71a2f6
JM
4272 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4273 register_gdbarch_swap (NULL, 0, build_infrun);
4274
c906108c
SS
4275 add_info ("signals", signals_info,
4276 "What debugger does when program gets various signals.\n\
4277Specify a signal as argument to print info on that signal only.");
4278 add_info_alias ("handle", "signals", 0);
4279
4280 add_com ("handle", class_run, handle_command,
4281 concat ("Specify how to handle a signal.\n\
4282Args are signals and actions to apply to those signals.\n\
4283Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4284from 1-15 are allowed for compatibility with old versions of GDB.\n\
4285Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4286The special arg \"all\" is recognized to mean all signals except those\n\
4287used by the debugger, typically SIGTRAP and SIGINT.\n",
4288 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4289\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4290Stop means reenter debugger if this signal happens (implies print).\n\
4291Print means print a message if this signal happens.\n\
4292Pass means let program see this signal; otherwise program doesn't know.\n\
4293Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4294Pass and Stop may be combined.", NULL));
4295 if (xdb_commands)
4296 {
4297 add_com ("lz", class_info, signals_info,
4298 "What debugger does when program gets various signals.\n\
4299Specify a signal as argument to print info on that signal only.");
4300 add_com ("z", class_run, xdb_handle_command,
4301 concat ("Specify how to handle a signal.\n\
4302Args are signals and actions to apply to those signals.\n\
4303Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4304from 1-15 are allowed for compatibility with old versions of GDB.\n\
4305Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4306The special arg \"all\" is recognized to mean all signals except those\n\
4307used by the debugger, typically SIGTRAP and SIGINT.\n",
4308 "Recognized actions include \"s\" (toggles between stop and nostop), \n\
4309\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4310nopass), \"Q\" (noprint)\n\
4311Stop means reenter debugger if this signal happens (implies print).\n\
4312Print means print a message if this signal happens.\n\
4313Pass means let program see this signal; otherwise program doesn't know.\n\
4314Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4315Pass and Stop may be combined.", NULL));
4316 }
4317
4318 if (!dbx_commands)
4319 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
4320 "There is no `stop' command, but you can set a hook on `stop'.\n\
4321This allows you to set a list of commands to be run each time execution\n\
4322of the program stops.", &cmdlist);
4323
4324 numsigs = (int) TARGET_SIGNAL_LAST;
4325 signal_stop = (unsigned char *)
4326 xmalloc (sizeof (signal_stop[0]) * numsigs);
4327 signal_print = (unsigned char *)
4328 xmalloc (sizeof (signal_print[0]) * numsigs);
4329 signal_program = (unsigned char *)
4330 xmalloc (sizeof (signal_program[0]) * numsigs);
4331 for (i = 0; i < numsigs; i++)
4332 {
4333 signal_stop[i] = 1;
4334 signal_print[i] = 1;
4335 signal_program[i] = 1;
4336 }
4337
4338 /* Signals caused by debugger's own actions
4339 should not be given to the program afterwards. */
4340 signal_program[TARGET_SIGNAL_TRAP] = 0;
4341 signal_program[TARGET_SIGNAL_INT] = 0;
4342
4343 /* Signals that are not errors should not normally enter the debugger. */
4344 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4345 signal_print[TARGET_SIGNAL_ALRM] = 0;
4346 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4347 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4348 signal_stop[TARGET_SIGNAL_PROF] = 0;
4349 signal_print[TARGET_SIGNAL_PROF] = 0;
4350 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4351 signal_print[TARGET_SIGNAL_CHLD] = 0;
4352 signal_stop[TARGET_SIGNAL_IO] = 0;
4353 signal_print[TARGET_SIGNAL_IO] = 0;
4354 signal_stop[TARGET_SIGNAL_POLL] = 0;
4355 signal_print[TARGET_SIGNAL_POLL] = 0;
4356 signal_stop[TARGET_SIGNAL_URG] = 0;
4357 signal_print[TARGET_SIGNAL_URG] = 0;
4358 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4359 signal_print[TARGET_SIGNAL_WINCH] = 0;
4360
cd0fc7c3
SS
4361 /* These signals are used internally by user-level thread
4362 implementations. (See signal(5) on Solaris.) Like the above
4363 signals, a healthy program receives and handles them as part of
4364 its normal operation. */
4365 signal_stop[TARGET_SIGNAL_LWP] = 0;
4366 signal_print[TARGET_SIGNAL_LWP] = 0;
4367 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4368 signal_print[TARGET_SIGNAL_WAITING] = 0;
4369 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4370 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4371
c906108c
SS
4372#ifdef SOLIB_ADD
4373 add_show_from_set
4374 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4375 (char *) &stop_on_solib_events,
4376 "Set stopping for shared library events.\n\
4377If nonzero, gdb will give control to the user when the dynamic linker\n\
4378notifies gdb of shared library events. The most common event of interest\n\
4379to the user would be loading/unloading of a new library.\n",
4380 &setlist),
4381 &showlist);
4382#endif
4383
4384 c = add_set_enum_cmd ("follow-fork-mode",
4385 class_run,
4386 follow_fork_mode_kind_names,
1ed2a135 4387 &follow_fork_mode_string,
c906108c
SS
4388/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4389 kernel problem. It's also not terribly useful without a GUI to
4390 help the user drive two debuggers. So for now, I'm disabling
4391 the "both" option. */
c5aa993b
JM
4392/* "Set debugger response to a program call of fork \
4393 or vfork.\n\
4394 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4395 parent - the original process is debugged after a fork\n\
4396 child - the new process is debugged after a fork\n\
4397 both - both the parent and child are debugged after a fork\n\
4398 ask - the debugger will ask for one of the above choices\n\
4399 For \"both\", another copy of the debugger will be started to follow\n\
4400 the new child process. The original debugger will continue to follow\n\
4401 the original parent process. To distinguish their prompts, the\n\
4402 debugger copy's prompt will be changed.\n\
4403 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4404 By default, the debugger will follow the parent process.",
4405 */
c906108c
SS
4406 "Set debugger response to a program call of fork \
4407or vfork.\n\
4408A fork or vfork creates a new process. follow-fork-mode can be:\n\
4409 parent - the original process is debugged after a fork\n\
4410 child - the new process is debugged after a fork\n\
4411 ask - the debugger will ask for one of the above choices\n\
4412For \"parent\" or \"child\", the unfollowed process will run free.\n\
4413By default, the debugger will follow the parent process.",
4414 &setlist);
c5aa993b 4415/* c->function.sfunc = ; */
c906108c
SS
4416 add_show_from_set (c, &showlist);
4417
c906108c
SS
4418 c = add_set_enum_cmd ("scheduler-locking", class_run,
4419 scheduler_enums, /* array of string names */
1ed2a135 4420 &scheduler_mode, /* current mode */
c906108c
SS
4421 "Set mode for locking scheduler during execution.\n\
4422off == no locking (threads may preempt at any time)\n\
4423on == full locking (no thread except the current thread may run)\n\
4424step == scheduler locked during every single-step operation.\n\
4425 In this mode, no other thread may run during a step command.\n\
4426 Other threads may run while stepping over a function call ('next').",
4427 &setlist);
4428
4429 c->function.sfunc = set_schedlock_func; /* traps on target vector */
4430 add_show_from_set (c, &showlist);
5fbbeb29
CF
4431
4432 c = add_set_cmd ("step-mode", class_run,
4433 var_boolean, (char*) &step_stop_if_no_debug,
4434"Set mode of the step operation. When set, doing a step over a\n\
4435function without debug line information will stop at the first\n\
4436instruction of that function. Otherwise, the function is skipped and\n\
4437the step command stops at a different source line.",
4438 &setlist);
4439 add_show_from_set (c, &showlist);
ca6724c1
KB
4440
4441 /* ptid initializations */
4442 null_ptid = ptid_build (0, 0, 0);
4443 minus_one_ptid = ptid_build (-1, 0, 0);
4444 inferior_ptid = null_ptid;
4445 target_last_wait_ptid = minus_one_ptid;
c906108c 4446}
This page took 0.33601 seconds and 4 git commands to generate.