Add "volatile" keyword to "struct gdb_exception" declaration
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
f15cb84a 63#include "target-dcache.h"
c906108c
SS
64
65/* Prototypes for local functions */
66
96baa820 67static void signals_info (char *, int);
c906108c 68
96baa820 69static void handle_command (char *, int);
c906108c 70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
74b7792f 75static void resume_cleanups (void *);
c906108c 76
96baa820 77static int hook_stop_stub (void *);
c906108c 78
96baa820
JM
79static int restore_selected_frame (void *);
80
4ef3f3be 81static int follow_fork (void);
96baa820
JM
82
83static void set_schedlock_func (char *args, int from_tty,
488f131b 84 struct cmd_list_element *c);
96baa820 85
a289b8f6
JK
86static int currently_stepping (struct thread_info *tp);
87
b3444185
PA
88static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
a7212384 90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
6a6b96b9 93static int prepare_to_proceed (int);
ea67f13b 94
33d62d64
JK
95static void print_exited_reason (int exitstatus);
96
2ea28649 97static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
98
99static void print_no_history_reason (void);
100
2ea28649 101static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
102
103static void print_end_stepping_range_reason (void);
104
96baa820 105void _initialize_infrun (void);
43ff13b4 106
e58b0e63
PA
107void nullify_last_target_wait_ptid (void);
108
2c03e5be 109static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
110
111static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
2484c66b
UW
113static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
5fbbeb29
CF
115/* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118int step_stop_if_no_debug = 0;
920d2a44
AC
119static void
120show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124}
5fbbeb29 125
1777feb0 126/* In asynchronous mode, but simulating synchronous execution. */
96baa820 127
43ff13b4
JM
128int sync_execution = 0;
129
c906108c
SS
130/* wait_for_inferior and normal_stop use this to notify the user
131 when the inferior stopped in a different thread than it had been
96baa820
JM
132 running in. */
133
39f77062 134static ptid_t previous_inferior_ptid;
7a292a7a 135
07107ca6
LM
136/* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141static int detach_fork = 1;
6c95b8df 142
237fc4c9
PA
143int debug_displaced = 0;
144static void
145show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149}
150
ccce17b0 151unsigned int debug_infrun = 0;
920d2a44
AC
152static void
153show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157}
527159b7 158
03583c20
UW
159
160/* Support for disabling address space randomization. */
161
162int disable_randomization = 1;
163
164static void
165show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177}
178
179static void
180set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182{
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187}
188
d32dc48e
PA
189/* User interface for non-stop mode. */
190
191int non_stop = 0;
192static int non_stop_1 = 0;
193
194static void
195set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197{
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205}
206
207static void
208show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210{
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214}
215
d914c394
SS
216/* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
d914c394
SS
220int observer_mode = 0;
221static int observer_mode_1 = 0;
222
223static void
224set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
d914c394
SS
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258}
259
260static void
261show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263{
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265}
266
267/* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273void
274update_observer_mode (void)
275{
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290}
c2c6d25f 291
c906108c
SS
292/* Tables of how to react to signals; the user sets them. */
293
294static unsigned char *signal_stop;
295static unsigned char *signal_print;
296static unsigned char *signal_program;
297
ab04a2af
TT
298/* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302static unsigned char *signal_catch;
303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307static unsigned char *signal_pass;
308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
a493e3e2 331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Function inferior was in as of last step command. */
343
344static struct symbol *step_start_function;
345
c906108c
SS
346/* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
628fe4e4 348int stop_on_solib_events;
f9e14852
GB
349
350/* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353static void
354set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355{
356 update_solib_breakpoints ();
357}
358
920d2a44
AC
359static void
360show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362{
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365}
c906108c 366
c906108c
SS
367/* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370int stop_after_trap;
371
642fd101
DE
372/* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
72cec141 377struct regcache *stop_registers;
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
0d1e5fa7
PA
389static void context_switch (ptid_t ptid);
390
4e1c45ea 391void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 392
7a76f5b8 393static void init_infwait_state (void);
a474d7c2 394
53904c9e
AC
395static const char follow_fork_mode_child[] = "child";
396static const char follow_fork_mode_parent[] = "parent";
397
40478521 398static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
ef346e04 402};
c906108c 403
53904c9e 404static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
405static void
406show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408{
3e43a32a
MS
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
412 value);
413}
c906108c
SS
414\f
415
e58b0e63
PA
416/* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
6604731b 420static int
4ef3f3be 421follow_fork (void)
c906108c 422{
ea1dd7bc 423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
4e3990f4
DE
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 432 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
8358c15c
JK
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
16c381f0
JK
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
186c406b
TT
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
16c381f0
JK
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
186c406b 497 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
07107ca6 505 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
e09875d4 517 tp = find_thread_ptid (parent);
e58b0e63
PA
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
1777feb0 525 /* If we followed the child, switch to it... */
e58b0e63
PA
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
8358c15c
JK
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
16c381f0
JK
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
186c406b
TT
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
e58b0e63
PA
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
3e43a32a
MS
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
e58b0e63
PA
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
c906108c 572
e58b0e63 573 return should_resume;
c906108c
SS
574}
575
6604731b
DJ
576void
577follow_inferior_reset_breakpoints (void)
c906108c 578{
4e1c45ea
PA
579 struct thread_info *tp = inferior_thread ();
580
6604731b
DJ
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
8358c15c
JK
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 594
186c406b
TT
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
6604731b
DJ
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
c906108c 605}
c906108c 606
6c95b8df
PA
607/* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610static int
611proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613{
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
a493e3e2 620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
a493e3e2 629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
630 }
631
632 return 0;
633}
634
635/* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638static void
639handle_vfork_child_exec_or_exit (int exec)
640{
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
1777feb0 658 /* follow-fork child, detach-on-fork on. */
6c95b8df 659
68c9da30
PA
660 inf->vfork_parent->pending_detach = 0;
661
f50f4e56
PA
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
6c95b8df
PA
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
6c95b8df
PA
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
6c95b8df
PA
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
7dcd53a0 759 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 765 inferior. */
6c95b8df
PA
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
3e43a32a
MS
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793}
794
eb6c553b 795/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
796
797static const char follow_exec_mode_new[] = "new";
798static const char follow_exec_mode_same[] = "same";
40478521 799static const char *const follow_exec_mode_names[] =
6c95b8df
PA
800{
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804};
805
806static const char *follow_exec_mode_string = follow_exec_mode_same;
807static void
808show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810{
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812}
813
1777feb0 814/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 815
c906108c 816static void
3a3e9ee3 817follow_exec (ptid_t pid, char *execd_pathname)
c906108c 818{
4e1c45ea 819 struct thread_info *th = inferior_thread ();
6c95b8df 820 struct inferior *inf = current_inferior ();
7a292a7a 821
c906108c
SS
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
1777feb0 841 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
842
843 mark_breakpoints_out ();
844
c906108c
SS
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 848 statement through an exec(). */
8358c15c 849 th->control.step_resume_breakpoint = NULL;
186c406b 850 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
c906108c 853
a75724bc
PA
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
1777feb0 862 /* What is this a.out's name? */
6c95b8df
PA
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
c906108c
SS
866
867 /* We've followed the inferior through an exec. Therefore, the
1777feb0 868 inferior has essentially been killed & reborn. */
7a292a7a 869
c906108c 870 gdb_flush (gdb_stdout);
6ca15a4b
PA
871
872 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
abbb1732 879
e85a822c
DJ
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
c906108c 884
cce9b6bf
PA
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
6c95b8df
PA
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
6c95b8df
PA
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
9107fc8d
PA
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
6c95b8df
PA
920
921 gdb_assert (current_program_space == inf->pspace);
922
1777feb0 923 /* That a.out is now the one to use. */
6c95b8df
PA
924 exec_file_attach (execd_pathname, 0);
925
c1e56572
JK
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
7dcd53a0
TT
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
934 NULL, 0);
935
7dcd53a0
TT
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
c906108c 938
9107fc8d
PA
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
268a4a75 947 solib_create_inferior_hook (0);
c906108c 948
4efc6507
DE
949 jit_inferior_created_hook ();
950
c1e56572
JK
951 breakpoint_re_set ();
952
c906108c
SS
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
1777feb0 955 to symbol_file_command...). */
c906108c
SS
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
1777feb0 961 matically get reset there in the new process.). */
c906108c
SS
962}
963
964/* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
968
969/* The thread we inserted single-step breakpoints for. */
970static ptid_t singlestep_ptid;
971
fd48f117
DJ
972/* PC when we started this single-step. */
973static CORE_ADDR singlestep_pc;
974
9f976b41
DJ
975/* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977static ptid_t saved_singlestep_ptid;
978static int stepping_past_singlestep_breakpoint;
6a6b96b9 979
ca67fcb8
VP
980/* If not equal to null_ptid, this means that after stepping over breakpoint
981 is finished, we need to switch to deferred_step_ptid, and step it.
982
983 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 984 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
985 breakpoint in the thread which hit the breakpoint, but then continue
986 stepping the thread user has selected. */
987static ptid_t deferred_step_ptid;
c906108c 988\f
237fc4c9
PA
989/* Displaced stepping. */
990
991/* In non-stop debugging mode, we must take special care to manage
992 breakpoints properly; in particular, the traditional strategy for
993 stepping a thread past a breakpoint it has hit is unsuitable.
994 'Displaced stepping' is a tactic for stepping one thread past a
995 breakpoint it has hit while ensuring that other threads running
996 concurrently will hit the breakpoint as they should.
997
998 The traditional way to step a thread T off a breakpoint in a
999 multi-threaded program in all-stop mode is as follows:
1000
1001 a0) Initially, all threads are stopped, and breakpoints are not
1002 inserted.
1003 a1) We single-step T, leaving breakpoints uninserted.
1004 a2) We insert breakpoints, and resume all threads.
1005
1006 In non-stop debugging, however, this strategy is unsuitable: we
1007 don't want to have to stop all threads in the system in order to
1008 continue or step T past a breakpoint. Instead, we use displaced
1009 stepping:
1010
1011 n0) Initially, T is stopped, other threads are running, and
1012 breakpoints are inserted.
1013 n1) We copy the instruction "under" the breakpoint to a separate
1014 location, outside the main code stream, making any adjustments
1015 to the instruction, register, and memory state as directed by
1016 T's architecture.
1017 n2) We single-step T over the instruction at its new location.
1018 n3) We adjust the resulting register and memory state as directed
1019 by T's architecture. This includes resetting T's PC to point
1020 back into the main instruction stream.
1021 n4) We resume T.
1022
1023 This approach depends on the following gdbarch methods:
1024
1025 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1026 indicate where to copy the instruction, and how much space must
1027 be reserved there. We use these in step n1.
1028
1029 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1030 address, and makes any necessary adjustments to the instruction,
1031 register contents, and memory. We use this in step n1.
1032
1033 - gdbarch_displaced_step_fixup adjusts registers and memory after
1034 we have successfuly single-stepped the instruction, to yield the
1035 same effect the instruction would have had if we had executed it
1036 at its original address. We use this in step n3.
1037
1038 - gdbarch_displaced_step_free_closure provides cleanup.
1039
1040 The gdbarch_displaced_step_copy_insn and
1041 gdbarch_displaced_step_fixup functions must be written so that
1042 copying an instruction with gdbarch_displaced_step_copy_insn,
1043 single-stepping across the copied instruction, and then applying
1044 gdbarch_displaced_insn_fixup should have the same effects on the
1045 thread's memory and registers as stepping the instruction in place
1046 would have. Exactly which responsibilities fall to the copy and
1047 which fall to the fixup is up to the author of those functions.
1048
1049 See the comments in gdbarch.sh for details.
1050
1051 Note that displaced stepping and software single-step cannot
1052 currently be used in combination, although with some care I think
1053 they could be made to. Software single-step works by placing
1054 breakpoints on all possible subsequent instructions; if the
1055 displaced instruction is a PC-relative jump, those breakpoints
1056 could fall in very strange places --- on pages that aren't
1057 executable, or at addresses that are not proper instruction
1058 boundaries. (We do generally let other threads run while we wait
1059 to hit the software single-step breakpoint, and they might
1060 encounter such a corrupted instruction.) One way to work around
1061 this would be to have gdbarch_displaced_step_copy_insn fully
1062 simulate the effect of PC-relative instructions (and return NULL)
1063 on architectures that use software single-stepping.
1064
1065 In non-stop mode, we can have independent and simultaneous step
1066 requests, so more than one thread may need to simultaneously step
1067 over a breakpoint. The current implementation assumes there is
1068 only one scratch space per process. In this case, we have to
1069 serialize access to the scratch space. If thread A wants to step
1070 over a breakpoint, but we are currently waiting for some other
1071 thread to complete a displaced step, we leave thread A stopped and
1072 place it in the displaced_step_request_queue. Whenever a displaced
1073 step finishes, we pick the next thread in the queue and start a new
1074 displaced step operation on it. See displaced_step_prepare and
1075 displaced_step_fixup for details. */
1076
237fc4c9
PA
1077struct displaced_step_request
1078{
1079 ptid_t ptid;
1080 struct displaced_step_request *next;
1081};
1082
fc1cf338
PA
1083/* Per-inferior displaced stepping state. */
1084struct displaced_step_inferior_state
1085{
1086 /* Pointer to next in linked list. */
1087 struct displaced_step_inferior_state *next;
1088
1089 /* The process this displaced step state refers to. */
1090 int pid;
1091
1092 /* A queue of pending displaced stepping requests. One entry per
1093 thread that needs to do a displaced step. */
1094 struct displaced_step_request *step_request_queue;
1095
1096 /* If this is not null_ptid, this is the thread carrying out a
1097 displaced single-step in process PID. This thread's state will
1098 require fixing up once it has completed its step. */
1099 ptid_t step_ptid;
1100
1101 /* The architecture the thread had when we stepped it. */
1102 struct gdbarch *step_gdbarch;
1103
1104 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1105 for post-step cleanup. */
1106 struct displaced_step_closure *step_closure;
1107
1108 /* The address of the original instruction, and the copy we
1109 made. */
1110 CORE_ADDR step_original, step_copy;
1111
1112 /* Saved contents of copy area. */
1113 gdb_byte *step_saved_copy;
1114};
1115
1116/* The list of states of processes involved in displaced stepping
1117 presently. */
1118static struct displaced_step_inferior_state *displaced_step_inferior_states;
1119
1120/* Get the displaced stepping state of process PID. */
1121
1122static struct displaced_step_inferior_state *
1123get_displaced_stepping_state (int pid)
1124{
1125 struct displaced_step_inferior_state *state;
1126
1127 for (state = displaced_step_inferior_states;
1128 state != NULL;
1129 state = state->next)
1130 if (state->pid == pid)
1131 return state;
1132
1133 return NULL;
1134}
1135
1136/* Add a new displaced stepping state for process PID to the displaced
1137 stepping state list, or return a pointer to an already existing
1138 entry, if it already exists. Never returns NULL. */
1139
1140static struct displaced_step_inferior_state *
1141add_displaced_stepping_state (int pid)
1142{
1143 struct displaced_step_inferior_state *state;
1144
1145 for (state = displaced_step_inferior_states;
1146 state != NULL;
1147 state = state->next)
1148 if (state->pid == pid)
1149 return state;
237fc4c9 1150
fc1cf338
PA
1151 state = xcalloc (1, sizeof (*state));
1152 state->pid = pid;
1153 state->next = displaced_step_inferior_states;
1154 displaced_step_inferior_states = state;
237fc4c9 1155
fc1cf338
PA
1156 return state;
1157}
1158
a42244db
YQ
1159/* If inferior is in displaced stepping, and ADDR equals to starting address
1160 of copy area, return corresponding displaced_step_closure. Otherwise,
1161 return NULL. */
1162
1163struct displaced_step_closure*
1164get_displaced_step_closure_by_addr (CORE_ADDR addr)
1165{
1166 struct displaced_step_inferior_state *displaced
1167 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1168
1169 /* If checking the mode of displaced instruction in copy area. */
1170 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1171 && (displaced->step_copy == addr))
1172 return displaced->step_closure;
1173
1174 return NULL;
1175}
1176
fc1cf338 1177/* Remove the displaced stepping state of process PID. */
237fc4c9 1178
fc1cf338
PA
1179static void
1180remove_displaced_stepping_state (int pid)
1181{
1182 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1183
fc1cf338
PA
1184 gdb_assert (pid != 0);
1185
1186 it = displaced_step_inferior_states;
1187 prev_next_p = &displaced_step_inferior_states;
1188 while (it)
1189 {
1190 if (it->pid == pid)
1191 {
1192 *prev_next_p = it->next;
1193 xfree (it);
1194 return;
1195 }
1196
1197 prev_next_p = &it->next;
1198 it = *prev_next_p;
1199 }
1200}
1201
1202static void
1203infrun_inferior_exit (struct inferior *inf)
1204{
1205 remove_displaced_stepping_state (inf->pid);
1206}
237fc4c9 1207
fff08868
HZ
1208/* If ON, and the architecture supports it, GDB will use displaced
1209 stepping to step over breakpoints. If OFF, or if the architecture
1210 doesn't support it, GDB will instead use the traditional
1211 hold-and-step approach. If AUTO (which is the default), GDB will
1212 decide which technique to use to step over breakpoints depending on
1213 which of all-stop or non-stop mode is active --- displaced stepping
1214 in non-stop mode; hold-and-step in all-stop mode. */
1215
72d0e2c5 1216static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1217
237fc4c9
PA
1218static void
1219show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1220 struct cmd_list_element *c,
1221 const char *value)
1222{
72d0e2c5 1223 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1224 fprintf_filtered (file,
1225 _("Debugger's willingness to use displaced stepping "
1226 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1227 value, non_stop ? "on" : "off");
1228 else
3e43a32a
MS
1229 fprintf_filtered (file,
1230 _("Debugger's willingness to use displaced stepping "
1231 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1232}
1233
fff08868
HZ
1234/* Return non-zero if displaced stepping can/should be used to step
1235 over breakpoints. */
1236
237fc4c9
PA
1237static int
1238use_displaced_stepping (struct gdbarch *gdbarch)
1239{
72d0e2c5
YQ
1240 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1241 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1242 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1243 && find_record_target () == NULL);
237fc4c9
PA
1244}
1245
1246/* Clean out any stray displaced stepping state. */
1247static void
fc1cf338 1248displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1249{
1250 /* Indicate that there is no cleanup pending. */
fc1cf338 1251 displaced->step_ptid = null_ptid;
237fc4c9 1252
fc1cf338 1253 if (displaced->step_closure)
237fc4c9 1254 {
fc1cf338
PA
1255 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1256 displaced->step_closure);
1257 displaced->step_closure = NULL;
237fc4c9
PA
1258 }
1259}
1260
1261static void
fc1cf338 1262displaced_step_clear_cleanup (void *arg)
237fc4c9 1263{
fc1cf338
PA
1264 struct displaced_step_inferior_state *state = arg;
1265
1266 displaced_step_clear (state);
237fc4c9
PA
1267}
1268
1269/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1270void
1271displaced_step_dump_bytes (struct ui_file *file,
1272 const gdb_byte *buf,
1273 size_t len)
1274{
1275 int i;
1276
1277 for (i = 0; i < len; i++)
1278 fprintf_unfiltered (file, "%02x ", buf[i]);
1279 fputs_unfiltered ("\n", file);
1280}
1281
1282/* Prepare to single-step, using displaced stepping.
1283
1284 Note that we cannot use displaced stepping when we have a signal to
1285 deliver. If we have a signal to deliver and an instruction to step
1286 over, then after the step, there will be no indication from the
1287 target whether the thread entered a signal handler or ignored the
1288 signal and stepped over the instruction successfully --- both cases
1289 result in a simple SIGTRAP. In the first case we mustn't do a
1290 fixup, and in the second case we must --- but we can't tell which.
1291 Comments in the code for 'random signals' in handle_inferior_event
1292 explain how we handle this case instead.
1293
1294 Returns 1 if preparing was successful -- this thread is going to be
1295 stepped now; or 0 if displaced stepping this thread got queued. */
1296static int
1297displaced_step_prepare (ptid_t ptid)
1298{
ad53cd71 1299 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1300 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1301 struct regcache *regcache = get_thread_regcache (ptid);
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 CORE_ADDR original, copy;
1304 ULONGEST len;
1305 struct displaced_step_closure *closure;
fc1cf338 1306 struct displaced_step_inferior_state *displaced;
9e529e1d 1307 int status;
237fc4c9
PA
1308
1309 /* We should never reach this function if the architecture does not
1310 support displaced stepping. */
1311 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1312
c1e36e3e
PA
1313 /* Disable range stepping while executing in the scratch pad. We
1314 want a single-step even if executing the displaced instruction in
1315 the scratch buffer lands within the stepping range (e.g., a
1316 jump/branch). */
1317 tp->control.may_range_step = 0;
1318
fc1cf338
PA
1319 /* We have to displaced step one thread at a time, as we only have
1320 access to a single scratch space per inferior. */
237fc4c9 1321
fc1cf338
PA
1322 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1323
1324 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1325 {
1326 /* Already waiting for a displaced step to finish. Defer this
1327 request and place in queue. */
1328 struct displaced_step_request *req, *new_req;
1329
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: defering step of %s\n",
1333 target_pid_to_str (ptid));
1334
1335 new_req = xmalloc (sizeof (*new_req));
1336 new_req->ptid = ptid;
1337 new_req->next = NULL;
1338
fc1cf338 1339 if (displaced->step_request_queue)
237fc4c9 1340 {
fc1cf338 1341 for (req = displaced->step_request_queue;
237fc4c9
PA
1342 req && req->next;
1343 req = req->next)
1344 ;
1345 req->next = new_req;
1346 }
1347 else
fc1cf338 1348 displaced->step_request_queue = new_req;
237fc4c9
PA
1349
1350 return 0;
1351 }
1352 else
1353 {
1354 if (debug_displaced)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "displaced: stepping %s now\n",
1357 target_pid_to_str (ptid));
1358 }
1359
fc1cf338 1360 displaced_step_clear (displaced);
237fc4c9 1361
ad53cd71
PA
1362 old_cleanups = save_inferior_ptid ();
1363 inferior_ptid = ptid;
1364
515630c5 1365 original = regcache_read_pc (regcache);
237fc4c9
PA
1366
1367 copy = gdbarch_displaced_step_location (gdbarch);
1368 len = gdbarch_max_insn_length (gdbarch);
1369
1370 /* Save the original contents of the copy area. */
fc1cf338 1371 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1372 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1373 &displaced->step_saved_copy);
9e529e1d
JK
1374 status = target_read_memory (copy, displaced->step_saved_copy, len);
1375 if (status != 0)
1376 throw_error (MEMORY_ERROR,
1377 _("Error accessing memory address %s (%s) for "
1378 "displaced-stepping scratch space."),
1379 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1380 if (debug_displaced)
1381 {
5af949e3
UW
1382 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1383 paddress (gdbarch, copy));
fc1cf338
PA
1384 displaced_step_dump_bytes (gdb_stdlog,
1385 displaced->step_saved_copy,
1386 len);
237fc4c9
PA
1387 };
1388
1389 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1390 original, copy, regcache);
237fc4c9
PA
1391
1392 /* We don't support the fully-simulated case at present. */
1393 gdb_assert (closure);
1394
9f5a595d
UW
1395 /* Save the information we need to fix things up if the step
1396 succeeds. */
fc1cf338
PA
1397 displaced->step_ptid = ptid;
1398 displaced->step_gdbarch = gdbarch;
1399 displaced->step_closure = closure;
1400 displaced->step_original = original;
1401 displaced->step_copy = copy;
9f5a595d 1402
fc1cf338 1403 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1404
1405 /* Resume execution at the copy. */
515630c5 1406 regcache_write_pc (regcache, copy);
237fc4c9 1407
ad53cd71
PA
1408 discard_cleanups (ignore_cleanups);
1409
1410 do_cleanups (old_cleanups);
237fc4c9
PA
1411
1412 if (debug_displaced)
5af949e3
UW
1413 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1414 paddress (gdbarch, copy));
237fc4c9 1415
237fc4c9
PA
1416 return 1;
1417}
1418
237fc4c9 1419static void
3e43a32a
MS
1420write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1421 const gdb_byte *myaddr, int len)
237fc4c9
PA
1422{
1423 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1424
237fc4c9
PA
1425 inferior_ptid = ptid;
1426 write_memory (memaddr, myaddr, len);
1427 do_cleanups (ptid_cleanup);
1428}
1429
e2d96639
YQ
1430/* Restore the contents of the copy area for thread PTID. */
1431
1432static void
1433displaced_step_restore (struct displaced_step_inferior_state *displaced,
1434 ptid_t ptid)
1435{
1436 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1437
1438 write_memory_ptid (ptid, displaced->step_copy,
1439 displaced->step_saved_copy, len);
1440 if (debug_displaced)
1441 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1442 target_pid_to_str (ptid),
1443 paddress (displaced->step_gdbarch,
1444 displaced->step_copy));
1445}
1446
237fc4c9 1447static void
2ea28649 1448displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1449{
1450 struct cleanup *old_cleanups;
fc1cf338
PA
1451 struct displaced_step_inferior_state *displaced
1452 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1453
1454 /* Was any thread of this process doing a displaced step? */
1455 if (displaced == NULL)
1456 return;
237fc4c9
PA
1457
1458 /* Was this event for the pid we displaced? */
fc1cf338
PA
1459 if (ptid_equal (displaced->step_ptid, null_ptid)
1460 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1461 return;
1462
fc1cf338 1463 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1464
e2d96639 1465 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1466
1467 /* Did the instruction complete successfully? */
a493e3e2 1468 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1469 {
1470 /* Fix up the resulting state. */
fc1cf338
PA
1471 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1472 displaced->step_closure,
1473 displaced->step_original,
1474 displaced->step_copy,
1475 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1476 }
1477 else
1478 {
1479 /* Since the instruction didn't complete, all we can do is
1480 relocate the PC. */
515630c5
UW
1481 struct regcache *regcache = get_thread_regcache (event_ptid);
1482 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1483
fc1cf338 1484 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1485 regcache_write_pc (regcache, pc);
237fc4c9
PA
1486 }
1487
1488 do_cleanups (old_cleanups);
1489
fc1cf338 1490 displaced->step_ptid = null_ptid;
1c5cfe86 1491
237fc4c9 1492 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1493 one now. Leave the state object around, since we're likely to
1494 need it again soon. */
1495 while (displaced->step_request_queue)
237fc4c9
PA
1496 {
1497 struct displaced_step_request *head;
1498 ptid_t ptid;
5af949e3 1499 struct regcache *regcache;
929dfd4f 1500 struct gdbarch *gdbarch;
1c5cfe86 1501 CORE_ADDR actual_pc;
6c95b8df 1502 struct address_space *aspace;
237fc4c9 1503
fc1cf338 1504 head = displaced->step_request_queue;
237fc4c9 1505 ptid = head->ptid;
fc1cf338 1506 displaced->step_request_queue = head->next;
237fc4c9
PA
1507 xfree (head);
1508
ad53cd71
PA
1509 context_switch (ptid);
1510
5af949e3
UW
1511 regcache = get_thread_regcache (ptid);
1512 actual_pc = regcache_read_pc (regcache);
6c95b8df 1513 aspace = get_regcache_aspace (regcache);
1c5cfe86 1514
6c95b8df 1515 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1516 {
1c5cfe86
PA
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: stepping queued %s now\n",
1520 target_pid_to_str (ptid));
1521
1522 displaced_step_prepare (ptid);
1523
929dfd4f
JB
1524 gdbarch = get_regcache_arch (regcache);
1525
1c5cfe86
PA
1526 if (debug_displaced)
1527 {
929dfd4f 1528 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1529 gdb_byte buf[4];
1530
5af949e3
UW
1531 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1532 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1533 read_memory (actual_pc, buf, sizeof (buf));
1534 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1535 }
1536
fc1cf338
PA
1537 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1538 displaced->step_closure))
a493e3e2 1539 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1540 else
a493e3e2 1541 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1542
1543 /* Done, we're stepping a thread. */
1544 break;
ad53cd71 1545 }
1c5cfe86
PA
1546 else
1547 {
1548 int step;
1549 struct thread_info *tp = inferior_thread ();
1550
1551 /* The breakpoint we were sitting under has since been
1552 removed. */
16c381f0 1553 tp->control.trap_expected = 0;
1c5cfe86
PA
1554
1555 /* Go back to what we were trying to do. */
1556 step = currently_stepping (tp);
ad53cd71 1557
1c5cfe86 1558 if (debug_displaced)
3e43a32a 1559 fprintf_unfiltered (gdb_stdlog,
27d2932e 1560 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1561 target_pid_to_str (tp->ptid), step);
1562
a493e3e2
PA
1563 target_resume (ptid, step, GDB_SIGNAL_0);
1564 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1565
1566 /* This request was discarded. See if there's any other
1567 thread waiting for its turn. */
1568 }
237fc4c9
PA
1569 }
1570}
1571
5231c1fd
PA
1572/* Update global variables holding ptids to hold NEW_PTID if they were
1573 holding OLD_PTID. */
1574static void
1575infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1576{
1577 struct displaced_step_request *it;
fc1cf338 1578 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1579
1580 if (ptid_equal (inferior_ptid, old_ptid))
1581 inferior_ptid = new_ptid;
1582
1583 if (ptid_equal (singlestep_ptid, old_ptid))
1584 singlestep_ptid = new_ptid;
1585
5231c1fd
PA
1586 if (ptid_equal (deferred_step_ptid, old_ptid))
1587 deferred_step_ptid = new_ptid;
1588
fc1cf338
PA
1589 for (displaced = displaced_step_inferior_states;
1590 displaced;
1591 displaced = displaced->next)
1592 {
1593 if (ptid_equal (displaced->step_ptid, old_ptid))
1594 displaced->step_ptid = new_ptid;
1595
1596 for (it = displaced->step_request_queue; it; it = it->next)
1597 if (ptid_equal (it->ptid, old_ptid))
1598 it->ptid = new_ptid;
1599 }
5231c1fd
PA
1600}
1601
237fc4c9
PA
1602\f
1603/* Resuming. */
c906108c
SS
1604
1605/* Things to clean up if we QUIT out of resume (). */
c906108c 1606static void
74b7792f 1607resume_cleanups (void *ignore)
c906108c
SS
1608{
1609 normal_stop ();
1610}
1611
53904c9e
AC
1612static const char schedlock_off[] = "off";
1613static const char schedlock_on[] = "on";
1614static const char schedlock_step[] = "step";
40478521 1615static const char *const scheduler_enums[] = {
ef346e04
AC
1616 schedlock_off,
1617 schedlock_on,
1618 schedlock_step,
1619 NULL
1620};
920d2a44
AC
1621static const char *scheduler_mode = schedlock_off;
1622static void
1623show_scheduler_mode (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625{
3e43a32a
MS
1626 fprintf_filtered (file,
1627 _("Mode for locking scheduler "
1628 "during execution is \"%s\".\n"),
920d2a44
AC
1629 value);
1630}
c906108c
SS
1631
1632static void
96baa820 1633set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1634{
eefe576e
AC
1635 if (!target_can_lock_scheduler)
1636 {
1637 scheduler_mode = schedlock_off;
1638 error (_("Target '%s' cannot support this command."), target_shortname);
1639 }
c906108c
SS
1640}
1641
d4db2f36
PA
1642/* True if execution commands resume all threads of all processes by
1643 default; otherwise, resume only threads of the current inferior
1644 process. */
1645int sched_multi = 0;
1646
2facfe5c
DD
1647/* Try to setup for software single stepping over the specified location.
1648 Return 1 if target_resume() should use hardware single step.
1649
1650 GDBARCH the current gdbarch.
1651 PC the location to step over. */
1652
1653static int
1654maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1655{
1656 int hw_step = 1;
1657
f02253f1
HZ
1658 if (execution_direction == EXEC_FORWARD
1659 && gdbarch_software_single_step_p (gdbarch)
99e40580 1660 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1661 {
99e40580
UW
1662 hw_step = 0;
1663 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1664 `wait_for_inferior'. */
99e40580
UW
1665 singlestep_breakpoints_inserted_p = 1;
1666 singlestep_ptid = inferior_ptid;
1667 singlestep_pc = pc;
2facfe5c
DD
1668 }
1669 return hw_step;
1670}
c906108c 1671
09cee04b
PA
1672/* Return a ptid representing the set of threads that we will proceed,
1673 in the perspective of the user/frontend. We may actually resume
1674 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1675 breakpoint that needs stepping-off, but that should not be visible
1676 to the user/frontend, and neither should the frontend/user be
1677 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1678 internal run control handling, if a previous command wanted them
1679 resumed. */
1680
1681ptid_t
1682user_visible_resume_ptid (int step)
1683{
1684 /* By default, resume all threads of all processes. */
1685 ptid_t resume_ptid = RESUME_ALL;
1686
1687 /* Maybe resume only all threads of the current process. */
1688 if (!sched_multi && target_supports_multi_process ())
1689 {
1690 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1691 }
1692
1693 /* Maybe resume a single thread after all. */
1694 if (non_stop)
1695 {
1696 /* With non-stop mode on, threads are always handled
1697 individually. */
1698 resume_ptid = inferior_ptid;
1699 }
1700 else if ((scheduler_mode == schedlock_on)
1701 || (scheduler_mode == schedlock_step
1702 && (step || singlestep_breakpoints_inserted_p)))
1703 {
1704 /* User-settable 'scheduler' mode requires solo thread resume. */
1705 resume_ptid = inferior_ptid;
1706 }
1707
1708 return resume_ptid;
1709}
1710
c906108c
SS
1711/* Resume the inferior, but allow a QUIT. This is useful if the user
1712 wants to interrupt some lengthy single-stepping operation
1713 (for child processes, the SIGINT goes to the inferior, and so
1714 we get a SIGINT random_signal, but for remote debugging and perhaps
1715 other targets, that's not true).
1716
1717 STEP nonzero if we should step (zero to continue instead).
1718 SIG is the signal to give the inferior (zero for none). */
1719void
2ea28649 1720resume (int step, enum gdb_signal sig)
c906108c
SS
1721{
1722 int should_resume = 1;
74b7792f 1723 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1724 struct regcache *regcache = get_current_regcache ();
1725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1726 struct thread_info *tp = inferior_thread ();
515630c5 1727 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1728 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1729
c906108c
SS
1730 QUIT;
1731
74609e71
YQ
1732 if (current_inferior ()->waiting_for_vfork_done)
1733 {
48f9886d
PA
1734 /* Don't try to single-step a vfork parent that is waiting for
1735 the child to get out of the shared memory region (by exec'ing
1736 or exiting). This is particularly important on software
1737 single-step archs, as the child process would trip on the
1738 software single step breakpoint inserted for the parent
1739 process. Since the parent will not actually execute any
1740 instruction until the child is out of the shared region (such
1741 are vfork's semantics), it is safe to simply continue it.
1742 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1743 the parent, and tell it to `keep_going', which automatically
1744 re-sets it stepping. */
74609e71
YQ
1745 if (debug_infrun)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "infrun: resume : clear step\n");
1748 step = 0;
1749 }
1750
527159b7 1751 if (debug_infrun)
237fc4c9 1752 fprintf_unfiltered (gdb_stdlog,
c9737c08 1753 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1754 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1755 step, gdb_signal_to_symbol_string (sig),
1756 tp->control.trap_expected,
0d9a9a5f
PA
1757 target_pid_to_str (inferior_ptid),
1758 paddress (gdbarch, pc));
c906108c 1759
c2c6d25f
JM
1760 /* Normally, by the time we reach `resume', the breakpoints are either
1761 removed or inserted, as appropriate. The exception is if we're sitting
1762 at a permanent breakpoint; we need to step over it, but permanent
1763 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1764 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1765 {
515630c5
UW
1766 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1767 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1768 else
ac74f770
MS
1769 error (_("\
1770The program is stopped at a permanent breakpoint, but GDB does not know\n\
1771how to step past a permanent breakpoint on this architecture. Try using\n\
1772a command like `return' or `jump' to continue execution."));
6d350bb5 1773 }
c2c6d25f 1774
c1e36e3e
PA
1775 /* If we have a breakpoint to step over, make sure to do a single
1776 step only. Same if we have software watchpoints. */
1777 if (tp->control.trap_expected || bpstat_should_step ())
1778 tp->control.may_range_step = 0;
1779
237fc4c9
PA
1780 /* If enabled, step over breakpoints by executing a copy of the
1781 instruction at a different address.
1782
1783 We can't use displaced stepping when we have a signal to deliver;
1784 the comments for displaced_step_prepare explain why. The
1785 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1786 signals' explain what we do instead.
1787
1788 We can't use displaced stepping when we are waiting for vfork_done
1789 event, displaced stepping breaks the vfork child similarly as single
1790 step software breakpoint. */
515630c5 1791 if (use_displaced_stepping (gdbarch)
16c381f0 1792 && (tp->control.trap_expected
929dfd4f 1793 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1794 && sig == GDB_SIGNAL_0
74609e71 1795 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1796 {
fc1cf338
PA
1797 struct displaced_step_inferior_state *displaced;
1798
237fc4c9 1799 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1800 {
1801 /* Got placed in displaced stepping queue. Will be resumed
1802 later when all the currently queued displaced stepping
7f7efbd9
VP
1803 requests finish. The thread is not executing at this point,
1804 and the call to set_executing will be made later. But we
1805 need to call set_running here, since from frontend point of view,
1806 the thread is running. */
1807 set_running (inferior_ptid, 1);
d56b7306
VP
1808 discard_cleanups (old_cleanups);
1809 return;
1810 }
99e40580 1811
ca7781d2
LM
1812 /* Update pc to reflect the new address from which we will execute
1813 instructions due to displaced stepping. */
1814 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1815
fc1cf338
PA
1816 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1817 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1818 displaced->step_closure);
237fc4c9
PA
1819 }
1820
2facfe5c 1821 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1822 else if (step)
2facfe5c 1823 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1824
30852783
UW
1825 /* Currently, our software single-step implementation leads to different
1826 results than hardware single-stepping in one situation: when stepping
1827 into delivering a signal which has an associated signal handler,
1828 hardware single-step will stop at the first instruction of the handler,
1829 while software single-step will simply skip execution of the handler.
1830
1831 For now, this difference in behavior is accepted since there is no
1832 easy way to actually implement single-stepping into a signal handler
1833 without kernel support.
1834
1835 However, there is one scenario where this difference leads to follow-on
1836 problems: if we're stepping off a breakpoint by removing all breakpoints
1837 and then single-stepping. In this case, the software single-step
1838 behavior means that even if there is a *breakpoint* in the signal
1839 handler, GDB still would not stop.
1840
1841 Fortunately, we can at least fix this particular issue. We detect
1842 here the case where we are about to deliver a signal while software
1843 single-stepping with breakpoints removed. In this situation, we
1844 revert the decisions to remove all breakpoints and insert single-
1845 step breakpoints, and instead we install a step-resume breakpoint
1846 at the current address, deliver the signal without stepping, and
1847 once we arrive back at the step-resume breakpoint, actually step
1848 over the breakpoint we originally wanted to step over. */
1849 if (singlestep_breakpoints_inserted_p
a493e3e2 1850 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1851 {
1852 /* If we have nested signals or a pending signal is delivered
1853 immediately after a handler returns, might might already have
1854 a step-resume breakpoint set on the earlier handler. We cannot
1855 set another step-resume breakpoint; just continue on until the
1856 original breakpoint is hit. */
1857 if (tp->control.step_resume_breakpoint == NULL)
1858 {
2c03e5be 1859 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1860 tp->step_after_step_resume_breakpoint = 1;
1861 }
1862
1863 remove_single_step_breakpoints ();
1864 singlestep_breakpoints_inserted_p = 0;
1865
1866 insert_breakpoints ();
1867 tp->control.trap_expected = 0;
1868 }
1869
c906108c
SS
1870 if (should_resume)
1871 {
39f77062 1872 ptid_t resume_ptid;
dfcd3bfb 1873
cd76b0b7
VP
1874 /* If STEP is set, it's a request to use hardware stepping
1875 facilities. But in that case, we should never
1876 use singlestep breakpoint. */
1877 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1878
d4db2f36
PA
1879 /* Decide the set of threads to ask the target to resume. Start
1880 by assuming everything will be resumed, than narrow the set
1881 by applying increasingly restricting conditions. */
09cee04b 1882 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1883
1884 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1885 if (singlestep_breakpoints_inserted_p
1886 && stepping_past_singlestep_breakpoint)
c906108c 1887 {
cd76b0b7
VP
1888 /* The situation here is as follows. In thread T1 we wanted to
1889 single-step. Lacking hardware single-stepping we've
1890 set breakpoint at the PC of the next instruction -- call it
1891 P. After resuming, we've hit that breakpoint in thread T2.
1892 Now we've removed original breakpoint, inserted breakpoint
1893 at P+1, and try to step to advance T2 past breakpoint.
1894 We need to step only T2, as if T1 is allowed to freely run,
1895 it can run past P, and if other threads are allowed to run,
1896 they can hit breakpoint at P+1, and nested hits of single-step
1897 breakpoints is not something we'd want -- that's complicated
1898 to support, and has no value. */
1899 resume_ptid = inferior_ptid;
1900 }
d4db2f36 1901 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1902 && tp->control.trap_expected)
cd76b0b7 1903 {
74960c60
VP
1904 /* We're allowing a thread to run past a breakpoint it has
1905 hit, by single-stepping the thread with the breakpoint
1906 removed. In which case, we need to single-step only this
1907 thread, and keep others stopped, as they can miss this
1908 breakpoint if allowed to run.
1909
1910 The current code actually removes all breakpoints when
1911 doing this, not just the one being stepped over, so if we
1912 let other threads run, we can actually miss any
1913 breakpoint, not just the one at PC. */
ef5cf84e 1914 resume_ptid = inferior_ptid;
c906108c 1915 }
ef5cf84e 1916
515630c5 1917 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1918 {
1919 /* Most targets can step a breakpoint instruction, thus
1920 executing it normally. But if this one cannot, just
1921 continue and we will hit it anyway. */
6c95b8df 1922 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1923 step = 0;
1924 }
237fc4c9
PA
1925
1926 if (debug_displaced
515630c5 1927 && use_displaced_stepping (gdbarch)
16c381f0 1928 && tp->control.trap_expected)
237fc4c9 1929 {
515630c5 1930 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1931 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1932 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1933 gdb_byte buf[4];
1934
5af949e3
UW
1935 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1936 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1937 read_memory (actual_pc, buf, sizeof (buf));
1938 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1939 }
1940
c1e36e3e
PA
1941 if (tp->control.may_range_step)
1942 {
1943 /* If we're resuming a thread with the PC out of the step
1944 range, then we're doing some nested/finer run control
1945 operation, like stepping the thread out of the dynamic
1946 linker or the displaced stepping scratch pad. We
1947 shouldn't have allowed a range step then. */
1948 gdb_assert (pc_in_thread_step_range (pc, tp));
1949 }
1950
e58b0e63
PA
1951 /* Install inferior's terminal modes. */
1952 target_terminal_inferior ();
1953
2020b7ab
PA
1954 /* Avoid confusing the next resume, if the next stop/resume
1955 happens to apply to another thread. */
a493e3e2 1956 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1957
2455069d
UW
1958 /* Advise target which signals may be handled silently. If we have
1959 removed breakpoints because we are stepping over one (which can
1960 happen only if we are not using displaced stepping), we need to
1961 receive all signals to avoid accidentally skipping a breakpoint
1962 during execution of a signal handler. */
1963 if ((step || singlestep_breakpoints_inserted_p)
1964 && tp->control.trap_expected
1965 && !use_displaced_stepping (gdbarch))
1966 target_pass_signals (0, NULL);
1967 else
a493e3e2 1968 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1969
607cecd2 1970 target_resume (resume_ptid, step, sig);
c906108c
SS
1971 }
1972
1973 discard_cleanups (old_cleanups);
1974}
1975\f
237fc4c9 1976/* Proceeding. */
c906108c
SS
1977
1978/* Clear out all variables saying what to do when inferior is continued.
1979 First do this, then set the ones you want, then call `proceed'. */
1980
a7212384
UW
1981static void
1982clear_proceed_status_thread (struct thread_info *tp)
c906108c 1983{
a7212384
UW
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: clear_proceed_status_thread (%s)\n",
1987 target_pid_to_str (tp->ptid));
d6b48e9c 1988
16c381f0
JK
1989 tp->control.trap_expected = 0;
1990 tp->control.step_range_start = 0;
1991 tp->control.step_range_end = 0;
c1e36e3e 1992 tp->control.may_range_step = 0;
16c381f0
JK
1993 tp->control.step_frame_id = null_frame_id;
1994 tp->control.step_stack_frame_id = null_frame_id;
1995 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1996 tp->stop_requested = 0;
4e1c45ea 1997
16c381f0 1998 tp->control.stop_step = 0;
32400beb 1999
16c381f0 2000 tp->control.proceed_to_finish = 0;
414c69f7 2001
a7212384 2002 /* Discard any remaining commands or status from previous stop. */
16c381f0 2003 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2004}
32400beb 2005
a7212384
UW
2006static int
2007clear_proceed_status_callback (struct thread_info *tp, void *data)
2008{
2009 if (is_exited (tp->ptid))
2010 return 0;
d6b48e9c 2011
a7212384
UW
2012 clear_proceed_status_thread (tp);
2013 return 0;
2014}
2015
2016void
2017clear_proceed_status (void)
2018{
6c95b8df
PA
2019 if (!non_stop)
2020 {
2021 /* In all-stop mode, delete the per-thread status of all
2022 threads, even if inferior_ptid is null_ptid, there may be
2023 threads on the list. E.g., we may be launching a new
2024 process, while selecting the executable. */
2025 iterate_over_threads (clear_proceed_status_callback, NULL);
2026 }
2027
a7212384
UW
2028 if (!ptid_equal (inferior_ptid, null_ptid))
2029 {
2030 struct inferior *inferior;
2031
2032 if (non_stop)
2033 {
6c95b8df
PA
2034 /* If in non-stop mode, only delete the per-thread status of
2035 the current thread. */
a7212384
UW
2036 clear_proceed_status_thread (inferior_thread ());
2037 }
6c95b8df 2038
d6b48e9c 2039 inferior = current_inferior ();
16c381f0 2040 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2041 }
2042
c906108c 2043 stop_after_trap = 0;
f3b1572e
PA
2044
2045 observer_notify_about_to_proceed ();
c906108c 2046
d5c31457
UW
2047 if (stop_registers)
2048 {
2049 regcache_xfree (stop_registers);
2050 stop_registers = NULL;
2051 }
c906108c
SS
2052}
2053
5a437975
DE
2054/* Check the current thread against the thread that reported the most recent
2055 event. If a step-over is required return TRUE and set the current thread
2056 to the old thread. Otherwise return FALSE.
2057
1777feb0 2058 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2059
2060static int
6a6b96b9 2061prepare_to_proceed (int step)
ea67f13b
DJ
2062{
2063 ptid_t wait_ptid;
2064 struct target_waitstatus wait_status;
5a437975
DE
2065 int schedlock_enabled;
2066
2067 /* With non-stop mode on, threads are always handled individually. */
2068 gdb_assert (! non_stop);
ea67f13b
DJ
2069
2070 /* Get the last target status returned by target_wait(). */
2071 get_last_target_status (&wait_ptid, &wait_status);
2072
6a6b96b9 2073 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2074 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2075 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2076 && wait_status.value.sig != GDB_SIGNAL_ILL
2077 && wait_status.value.sig != GDB_SIGNAL_SEGV
2078 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2079 {
2080 return 0;
2081 }
2082
5a437975
DE
2083 schedlock_enabled = (scheduler_mode == schedlock_on
2084 || (scheduler_mode == schedlock_step
2085 && step));
2086
d4db2f36
PA
2087 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2088 if (schedlock_enabled)
2089 return 0;
2090
2091 /* Don't switch over if we're about to resume some other process
2092 other than WAIT_PTID's, and schedule-multiple is off. */
2093 if (!sched_multi
2094 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2095 return 0;
2096
6a6b96b9 2097 /* Switched over from WAIT_PID. */
ea67f13b 2098 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2099 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2100 {
515630c5
UW
2101 struct regcache *regcache = get_thread_regcache (wait_ptid);
2102
6c95b8df
PA
2103 if (breakpoint_here_p (get_regcache_aspace (regcache),
2104 regcache_read_pc (regcache)))
ea67f13b 2105 {
515630c5
UW
2106 /* If stepping, remember current thread to switch back to. */
2107 if (step)
2108 deferred_step_ptid = inferior_ptid;
ea67f13b 2109
515630c5
UW
2110 /* Switch back to WAIT_PID thread. */
2111 switch_to_thread (wait_ptid);
6a6b96b9 2112
0d9a9a5f
PA
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: prepare_to_proceed (step=%d), "
2116 "switched to [%s]\n",
2117 step, target_pid_to_str (inferior_ptid));
2118
515630c5
UW
2119 /* We return 1 to indicate that there is a breakpoint here,
2120 so we need to step over it before continuing to avoid
1777feb0 2121 hitting it straight away. */
515630c5
UW
2122 return 1;
2123 }
ea67f13b
DJ
2124 }
2125
2126 return 0;
ea67f13b 2127}
e4846b08 2128
c906108c
SS
2129/* Basic routine for continuing the program in various fashions.
2130
2131 ADDR is the address to resume at, or -1 for resume where stopped.
2132 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2133 or -1 for act according to how it stopped.
c906108c 2134 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2135 -1 means return after that and print nothing.
2136 You should probably set various step_... variables
2137 before calling here, if you are stepping.
c906108c
SS
2138
2139 You should call clear_proceed_status before calling proceed. */
2140
2141void
2ea28649 2142proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2143{
e58b0e63
PA
2144 struct regcache *regcache;
2145 struct gdbarch *gdbarch;
4e1c45ea 2146 struct thread_info *tp;
e58b0e63 2147 CORE_ADDR pc;
6c95b8df 2148 struct address_space *aspace;
0de5618e
YQ
2149 /* GDB may force the inferior to step due to various reasons. */
2150 int force_step = 0;
c906108c 2151
e58b0e63
PA
2152 /* If we're stopped at a fork/vfork, follow the branch set by the
2153 "set follow-fork-mode" command; otherwise, we'll just proceed
2154 resuming the current thread. */
2155 if (!follow_fork ())
2156 {
2157 /* The target for some reason decided not to resume. */
2158 normal_stop ();
f148b27e
PA
2159 if (target_can_async_p ())
2160 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2161 return;
2162 }
2163
842951eb
PA
2164 /* We'll update this if & when we switch to a new thread. */
2165 previous_inferior_ptid = inferior_ptid;
2166
e58b0e63
PA
2167 regcache = get_current_regcache ();
2168 gdbarch = get_regcache_arch (regcache);
6c95b8df 2169 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2170 pc = regcache_read_pc (regcache);
2171
c906108c 2172 if (step > 0)
515630c5 2173 step_start_function = find_pc_function (pc);
c906108c
SS
2174 if (step < 0)
2175 stop_after_trap = 1;
2176
2acceee2 2177 if (addr == (CORE_ADDR) -1)
c906108c 2178 {
6c95b8df 2179 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2180 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2181 /* There is a breakpoint at the address we will resume at,
2182 step one instruction before inserting breakpoints so that
2183 we do not stop right away (and report a second hit at this
b2175913
MS
2184 breakpoint).
2185
2186 Note, we don't do this in reverse, because we won't
2187 actually be executing the breakpoint insn anyway.
2188 We'll be (un-)executing the previous instruction. */
2189
0de5618e 2190 force_step = 1;
515630c5
UW
2191 else if (gdbarch_single_step_through_delay_p (gdbarch)
2192 && gdbarch_single_step_through_delay (gdbarch,
2193 get_current_frame ()))
3352ef37
AC
2194 /* We stepped onto an instruction that needs to be stepped
2195 again before re-inserting the breakpoint, do so. */
0de5618e 2196 force_step = 1;
c906108c
SS
2197 }
2198 else
2199 {
515630c5 2200 regcache_write_pc (regcache, addr);
c906108c
SS
2201 }
2202
527159b7 2203 if (debug_infrun)
8a9de0e4 2204 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2205 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2206 paddress (gdbarch, addr),
2207 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2208
94cc34af
PA
2209 if (non_stop)
2210 /* In non-stop, each thread is handled individually. The context
2211 must already be set to the right thread here. */
2212 ;
2213 else
2214 {
2215 /* In a multi-threaded task we may select another thread and
2216 then continue or step.
c906108c 2217
94cc34af
PA
2218 But if the old thread was stopped at a breakpoint, it will
2219 immediately cause another breakpoint stop without any
2220 execution (i.e. it will report a breakpoint hit incorrectly).
2221 So we must step over it first.
c906108c 2222
94cc34af
PA
2223 prepare_to_proceed checks the current thread against the
2224 thread that reported the most recent event. If a step-over
2225 is required it returns TRUE and sets the current thread to
1777feb0 2226 the old thread. */
94cc34af 2227 if (prepare_to_proceed (step))
0de5618e 2228 force_step = 1;
94cc34af 2229 }
c906108c 2230
4e1c45ea
PA
2231 /* prepare_to_proceed may change the current thread. */
2232 tp = inferior_thread ();
2233
0de5618e 2234 if (force_step)
30852783
UW
2235 {
2236 tp->control.trap_expected = 1;
2237 /* If displaced stepping is enabled, we can step over the
2238 breakpoint without hitting it, so leave all breakpoints
2239 inserted. Otherwise we need to disable all breakpoints, step
2240 one instruction, and then re-add them when that step is
2241 finished. */
2242 if (!use_displaced_stepping (gdbarch))
2243 remove_breakpoints ();
2244 }
2245
2246 /* We can insert breakpoints if we're not trying to step over one,
2247 or if we are stepping over one but we're using displaced stepping
2248 to do so. */
2249 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2250 insert_breakpoints ();
2251
2020b7ab
PA
2252 if (!non_stop)
2253 {
2254 /* Pass the last stop signal to the thread we're resuming,
2255 irrespective of whether the current thread is the thread that
2256 got the last event or not. This was historically GDB's
2257 behaviour before keeping a stop_signal per thread. */
2258
2259 struct thread_info *last_thread;
2260 ptid_t last_ptid;
2261 struct target_waitstatus last_status;
2262
2263 get_last_target_status (&last_ptid, &last_status);
2264 if (!ptid_equal (inferior_ptid, last_ptid)
2265 && !ptid_equal (last_ptid, null_ptid)
2266 && !ptid_equal (last_ptid, minus_one_ptid))
2267 {
e09875d4 2268 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2269 if (last_thread)
2270 {
16c381f0 2271 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2272 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2273 }
2274 }
2275 }
2276
a493e3e2 2277 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2278 tp->suspend.stop_signal = siggnal;
c906108c
SS
2279 /* If this signal should not be seen by program,
2280 give it zero. Used for debugging signals. */
16c381f0 2281 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2283
2284 annotate_starting ();
2285
2286 /* Make sure that output from GDB appears before output from the
2287 inferior. */
2288 gdb_flush (gdb_stdout);
2289
e4846b08
JJ
2290 /* Refresh prev_pc value just prior to resuming. This used to be
2291 done in stop_stepping, however, setting prev_pc there did not handle
2292 scenarios such as inferior function calls or returning from
2293 a function via the return command. In those cases, the prev_pc
2294 value was not set properly for subsequent commands. The prev_pc value
2295 is used to initialize the starting line number in the ecs. With an
2296 invalid value, the gdb next command ends up stopping at the position
2297 represented by the next line table entry past our start position.
2298 On platforms that generate one line table entry per line, this
2299 is not a problem. However, on the ia64, the compiler generates
2300 extraneous line table entries that do not increase the line number.
2301 When we issue the gdb next command on the ia64 after an inferior call
2302 or a return command, we often end up a few instructions forward, still
2303 within the original line we started.
2304
d5cd6034
JB
2305 An attempt was made to refresh the prev_pc at the same time the
2306 execution_control_state is initialized (for instance, just before
2307 waiting for an inferior event). But this approach did not work
2308 because of platforms that use ptrace, where the pc register cannot
2309 be read unless the inferior is stopped. At that point, we are not
2310 guaranteed the inferior is stopped and so the regcache_read_pc() call
2311 can fail. Setting the prev_pc value here ensures the value is updated
2312 correctly when the inferior is stopped. */
4e1c45ea 2313 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2314
59f0d5d9 2315 /* Fill in with reasonable starting values. */
4e1c45ea 2316 init_thread_stepping_state (tp);
59f0d5d9 2317
59f0d5d9
PA
2318 /* Reset to normal state. */
2319 init_infwait_state ();
2320
c906108c 2321 /* Resume inferior. */
0de5618e
YQ
2322 resume (force_step || step || bpstat_should_step (),
2323 tp->suspend.stop_signal);
c906108c
SS
2324
2325 /* Wait for it to stop (if not standalone)
2326 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2327 /* Do this only if we are not using the event loop, or if the target
1777feb0 2328 does not support asynchronous execution. */
362646f5 2329 if (!target_can_async_p ())
43ff13b4 2330 {
e4c8541f 2331 wait_for_inferior ();
43ff13b4
JM
2332 normal_stop ();
2333 }
c906108c 2334}
c906108c
SS
2335\f
2336
2337/* Start remote-debugging of a machine over a serial link. */
96baa820 2338
c906108c 2339void
8621d6a9 2340start_remote (int from_tty)
c906108c 2341{
d6b48e9c 2342 struct inferior *inferior;
d6b48e9c
PA
2343
2344 inferior = current_inferior ();
16c381f0 2345 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2346
1777feb0 2347 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2348 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2349 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2350 nothing is returned (instead of just blocking). Because of this,
2351 targets expecting an immediate response need to, internally, set
2352 things up so that the target_wait() is forced to eventually
1777feb0 2353 timeout. */
6426a772
JM
2354 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2355 differentiate to its caller what the state of the target is after
2356 the initial open has been performed. Here we're assuming that
2357 the target has stopped. It should be possible to eventually have
2358 target_open() return to the caller an indication that the target
2359 is currently running and GDB state should be set to the same as
1777feb0 2360 for an async run. */
e4c8541f 2361 wait_for_inferior ();
8621d6a9
DJ
2362
2363 /* Now that the inferior has stopped, do any bookkeeping like
2364 loading shared libraries. We want to do this before normal_stop,
2365 so that the displayed frame is up to date. */
2366 post_create_inferior (&current_target, from_tty);
2367
6426a772 2368 normal_stop ();
c906108c
SS
2369}
2370
2371/* Initialize static vars when a new inferior begins. */
2372
2373void
96baa820 2374init_wait_for_inferior (void)
c906108c
SS
2375{
2376 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2377
c906108c
SS
2378 breakpoint_init_inferior (inf_starting);
2379
c906108c 2380 clear_proceed_status ();
9f976b41
DJ
2381
2382 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2383 deferred_step_ptid = null_ptid;
ca005067
DJ
2384
2385 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2386
842951eb 2387 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2388 init_infwait_state ();
2389
edb3359d
DJ
2390 /* Discard any skipped inlined frames. */
2391 clear_inline_frame_state (minus_one_ptid);
c906108c 2392}
237fc4c9 2393
c906108c 2394\f
b83266a0
SS
2395/* This enum encodes possible reasons for doing a target_wait, so that
2396 wfi can call target_wait in one place. (Ultimately the call will be
2397 moved out of the infinite loop entirely.) */
2398
c5aa993b
JM
2399enum infwait_states
2400{
cd0fc7c3
SS
2401 infwait_normal_state,
2402 infwait_thread_hop_state,
d983da9c 2403 infwait_step_watch_state,
cd0fc7c3 2404 infwait_nonstep_watch_state
b83266a0
SS
2405};
2406
0d1e5fa7
PA
2407/* The PTID we'll do a target_wait on.*/
2408ptid_t waiton_ptid;
2409
2410/* Current inferior wait state. */
8870954f 2411static enum infwait_states infwait_state;
cd0fc7c3 2412
0d1e5fa7
PA
2413/* Data to be passed around while handling an event. This data is
2414 discarded between events. */
c5aa993b 2415struct execution_control_state
488f131b 2416{
0d1e5fa7 2417 ptid_t ptid;
4e1c45ea
PA
2418 /* The thread that got the event, if this was a thread event; NULL
2419 otherwise. */
2420 struct thread_info *event_thread;
2421
488f131b 2422 struct target_waitstatus ws;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b 2427 int wait_some_more;
4f5d7f63
PA
2428
2429 /* We were in infwait_step_watch_state or
2430 infwait_nonstep_watch_state state, and the thread reported an
2431 event. */
2432 int stepped_after_stopped_by_watchpoint;
488f131b
JB
2433};
2434
ec9499be 2435static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2436
568d6575
UW
2437static void handle_step_into_function (struct gdbarch *gdbarch,
2438 struct execution_control_state *ecs);
2439static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2440 struct execution_control_state *ecs);
4f5d7f63 2441static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2442static void check_exception_resume (struct execution_control_state *,
28106bc2 2443 struct frame_info *);
611c83ae 2444
104c1213
JM
2445static void stop_stepping (struct execution_control_state *ecs);
2446static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2447static void keep_going (struct execution_control_state *ecs);
94c57d6a 2448static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2449static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2450
252fbfc8
PA
2451/* Callback for iterate over threads. If the thread is stopped, but
2452 the user/frontend doesn't know about that yet, go through
2453 normal_stop, as if the thread had just stopped now. ARG points at
2454 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2455 ptid_is_pid(PTID) is true, applies to all threads of the process
2456 pointed at by PTID. Otherwise, apply only to the thread pointed by
2457 PTID. */
2458
2459static int
2460infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2461{
2462 ptid_t ptid = * (ptid_t *) arg;
2463
2464 if ((ptid_equal (info->ptid, ptid)
2465 || ptid_equal (minus_one_ptid, ptid)
2466 || (ptid_is_pid (ptid)
2467 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2468 && is_running (info->ptid)
2469 && !is_executing (info->ptid))
2470 {
2471 struct cleanup *old_chain;
2472 struct execution_control_state ecss;
2473 struct execution_control_state *ecs = &ecss;
2474
2475 memset (ecs, 0, sizeof (*ecs));
2476
2477 old_chain = make_cleanup_restore_current_thread ();
2478
f15cb84a
YQ
2479 overlay_cache_invalid = 1;
2480 /* Flush target cache before starting to handle each event.
2481 Target was running and cache could be stale. This is just a
2482 heuristic. Running threads may modify target memory, but we
2483 don't get any event. */
2484 target_dcache_invalidate ();
2485
252fbfc8
PA
2486 /* Go through handle_inferior_event/normal_stop, so we always
2487 have consistent output as if the stop event had been
2488 reported. */
2489 ecs->ptid = info->ptid;
e09875d4 2490 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2491 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2492 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2493
2494 handle_inferior_event (ecs);
2495
2496 if (!ecs->wait_some_more)
2497 {
2498 struct thread_info *tp;
2499
2500 normal_stop ();
2501
fa4cd53f 2502 /* Finish off the continuations. */
252fbfc8 2503 tp = inferior_thread ();
fa4cd53f
PA
2504 do_all_intermediate_continuations_thread (tp, 1);
2505 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2506 }
2507
2508 do_cleanups (old_chain);
2509 }
2510
2511 return 0;
2512}
2513
2514/* This function is attached as a "thread_stop_requested" observer.
2515 Cleanup local state that assumed the PTID was to be resumed, and
2516 report the stop to the frontend. */
2517
2c0b251b 2518static void
252fbfc8
PA
2519infrun_thread_stop_requested (ptid_t ptid)
2520{
fc1cf338 2521 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2522
2523 /* PTID was requested to stop. Remove it from the displaced
2524 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2525
2526 for (displaced = displaced_step_inferior_states;
2527 displaced;
2528 displaced = displaced->next)
252fbfc8 2529 {
fc1cf338 2530 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2531
fc1cf338
PA
2532 it = displaced->step_request_queue;
2533 prev_next_p = &displaced->step_request_queue;
2534 while (it)
252fbfc8 2535 {
fc1cf338
PA
2536 if (ptid_match (it->ptid, ptid))
2537 {
2538 *prev_next_p = it->next;
2539 it->next = NULL;
2540 xfree (it);
2541 }
252fbfc8 2542 else
fc1cf338
PA
2543 {
2544 prev_next_p = &it->next;
2545 }
252fbfc8 2546
fc1cf338 2547 it = *prev_next_p;
252fbfc8 2548 }
252fbfc8
PA
2549 }
2550
2551 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2552}
2553
a07daef3
PA
2554static void
2555infrun_thread_thread_exit (struct thread_info *tp, int silent)
2556{
2557 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2558 nullify_last_target_wait_ptid ();
2559}
2560
4e1c45ea
PA
2561/* Callback for iterate_over_threads. */
2562
2563static int
2564delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2565{
2566 if (is_exited (info->ptid))
2567 return 0;
2568
2569 delete_step_resume_breakpoint (info);
186c406b 2570 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2571 return 0;
2572}
2573
2574/* In all-stop, delete the step resume breakpoint of any thread that
2575 had one. In non-stop, delete the step resume breakpoint of the
2576 thread that just stopped. */
2577
2578static void
2579delete_step_thread_step_resume_breakpoint (void)
2580{
2581 if (!target_has_execution
2582 || ptid_equal (inferior_ptid, null_ptid))
2583 /* If the inferior has exited, we have already deleted the step
2584 resume breakpoints out of GDB's lists. */
2585 return;
2586
2587 if (non_stop)
2588 {
2589 /* If in non-stop mode, only delete the step-resume or
2590 longjmp-resume breakpoint of the thread that just stopped
2591 stepping. */
2592 struct thread_info *tp = inferior_thread ();
abbb1732 2593
4e1c45ea 2594 delete_step_resume_breakpoint (tp);
186c406b 2595 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2596 }
2597 else
2598 /* In all-stop mode, delete all step-resume and longjmp-resume
2599 breakpoints of any thread that had them. */
2600 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2601}
2602
1777feb0 2603/* A cleanup wrapper. */
4e1c45ea
PA
2604
2605static void
2606delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2607{
2608 delete_step_thread_step_resume_breakpoint ();
2609}
2610
223698f8
DE
2611/* Pretty print the results of target_wait, for debugging purposes. */
2612
2613static void
2614print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2615 const struct target_waitstatus *ws)
2616{
2617 char *status_string = target_waitstatus_to_string (ws);
2618 struct ui_file *tmp_stream = mem_fileopen ();
2619 char *text;
223698f8
DE
2620
2621 /* The text is split over several lines because it was getting too long.
2622 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2623 output as a unit; we want only one timestamp printed if debug_timestamp
2624 is set. */
2625
2626 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2627 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2628 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2629 fprintf_unfiltered (tmp_stream,
2630 " [%s]", target_pid_to_str (waiton_ptid));
2631 fprintf_unfiltered (tmp_stream, ", status) =\n");
2632 fprintf_unfiltered (tmp_stream,
2633 "infrun: %d [%s],\n",
dfd4cc63
LM
2634 ptid_get_pid (result_ptid),
2635 target_pid_to_str (result_ptid));
223698f8
DE
2636 fprintf_unfiltered (tmp_stream,
2637 "infrun: %s\n",
2638 status_string);
2639
759ef836 2640 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2641
2642 /* This uses %s in part to handle %'s in the text, but also to avoid
2643 a gcc error: the format attribute requires a string literal. */
2644 fprintf_unfiltered (gdb_stdlog, "%s", text);
2645
2646 xfree (status_string);
2647 xfree (text);
2648 ui_file_delete (tmp_stream);
2649}
2650
24291992
PA
2651/* Prepare and stabilize the inferior for detaching it. E.g.,
2652 detaching while a thread is displaced stepping is a recipe for
2653 crashing it, as nothing would readjust the PC out of the scratch
2654 pad. */
2655
2656void
2657prepare_for_detach (void)
2658{
2659 struct inferior *inf = current_inferior ();
2660 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2661 struct cleanup *old_chain_1;
2662 struct displaced_step_inferior_state *displaced;
2663
2664 displaced = get_displaced_stepping_state (inf->pid);
2665
2666 /* Is any thread of this process displaced stepping? If not,
2667 there's nothing else to do. */
2668 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2669 return;
2670
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "displaced-stepping in-process while detaching");
2674
2675 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2676 inf->detaching = 1;
2677
2678 while (!ptid_equal (displaced->step_ptid, null_ptid))
2679 {
2680 struct cleanup *old_chain_2;
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs;
2683
2684 ecs = &ecss;
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
f15cb84a
YQ
2688 /* Flush target cache before starting to handle each event.
2689 Target was running and cache could be stale. This is just a
2690 heuristic. Running threads may modify target memory, but we
2691 don't get any event. */
2692 target_dcache_invalidate ();
24291992 2693
24291992
PA
2694 if (deprecated_target_wait_hook)
2695 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2696 else
2697 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2698
2699 if (debug_infrun)
2700 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2701
2702 /* If an error happens while handling the event, propagate GDB's
2703 knowledge of the executing state to the frontend/user running
2704 state. */
3e43a32a
MS
2705 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2706 &minus_one_ptid);
24291992
PA
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain_2);
2713
2714 /* Breakpoints and watchpoints are not installed on the target
2715 at this point, and signals are passed directly to the
2716 inferior, so this must mean the process is gone. */
2717 if (!ecs->wait_some_more)
2718 {
2719 discard_cleanups (old_chain_1);
2720 error (_("Program exited while detaching"));
2721 }
2722 }
2723
2724 discard_cleanups (old_chain_1);
2725}
2726
cd0fc7c3 2727/* Wait for control to return from inferior to debugger.
ae123ec6 2728
cd0fc7c3
SS
2729 If inferior gets a signal, we may decide to start it up again
2730 instead of returning. That is why there is a loop in this function.
2731 When this function actually returns it means the inferior
2732 should be left stopped and GDB should read more commands. */
2733
2734void
e4c8541f 2735wait_for_inferior (void)
cd0fc7c3
SS
2736{
2737 struct cleanup *old_cleanups;
c906108c 2738
527159b7 2739 if (debug_infrun)
ae123ec6 2740 fprintf_unfiltered
e4c8541f 2741 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2742
4e1c45ea
PA
2743 old_cleanups =
2744 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2745
c906108c
SS
2746 while (1)
2747 {
ae25568b
PA
2748 struct execution_control_state ecss;
2749 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2750 struct cleanup *old_chain;
2751
ae25568b
PA
2752 memset (ecs, 0, sizeof (*ecs));
2753
ec9499be 2754 overlay_cache_invalid = 1;
ec9499be 2755
f15cb84a
YQ
2756 /* Flush target cache before starting to handle each event.
2757 Target was running and cache could be stale. This is just a
2758 heuristic. Running threads may modify target memory, but we
2759 don't get any event. */
2760 target_dcache_invalidate ();
2761
9a4105ab 2762 if (deprecated_target_wait_hook)
47608cb1 2763 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2764 else
47608cb1 2765 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2766
f00150c9 2767 if (debug_infrun)
223698f8 2768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2769
29f49a6a
PA
2770 /* If an error happens while handling the event, propagate GDB's
2771 knowledge of the executing state to the frontend/user running
2772 state. */
2773 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2774
cd0fc7c3
SS
2775 /* Now figure out what to do with the result of the result. */
2776 handle_inferior_event (ecs);
c906108c 2777
29f49a6a
PA
2778 /* No error, don't finish the state yet. */
2779 discard_cleanups (old_chain);
2780
cd0fc7c3
SS
2781 if (!ecs->wait_some_more)
2782 break;
2783 }
4e1c45ea 2784
cd0fc7c3
SS
2785 do_cleanups (old_cleanups);
2786}
c906108c 2787
1777feb0 2788/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2789 event loop whenever a change of state is detected on the file
1777feb0
MS
2790 descriptor corresponding to the target. It can be called more than
2791 once to complete a single execution command. In such cases we need
2792 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2793 that this function is called for a single execution command, then
2794 report to the user that the inferior has stopped, and do the
1777feb0 2795 necessary cleanups. */
43ff13b4
JM
2796
2797void
fba45db2 2798fetch_inferior_event (void *client_data)
43ff13b4 2799{
0d1e5fa7 2800 struct execution_control_state ecss;
a474d7c2 2801 struct execution_control_state *ecs = &ecss;
4f8d22e3 2802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2803 struct cleanup *ts_old_chain;
4f8d22e3 2804 int was_sync = sync_execution;
0f641c01 2805 int cmd_done = 0;
43ff13b4 2806
0d1e5fa7
PA
2807 memset (ecs, 0, sizeof (*ecs));
2808
c5187ac6
PA
2809 /* We're handling a live event, so make sure we're doing live
2810 debugging. If we're looking at traceframes while the target is
2811 running, we're going to need to get back to that mode after
2812 handling the event. */
2813 if (non_stop)
2814 {
2815 make_cleanup_restore_current_traceframe ();
e6e4e701 2816 set_current_traceframe (-1);
c5187ac6
PA
2817 }
2818
4f8d22e3
PA
2819 if (non_stop)
2820 /* In non-stop mode, the user/frontend should not notice a thread
2821 switch due to internal events. Make sure we reverse to the
2822 user selected thread and frame after handling the event and
2823 running any breakpoint commands. */
2824 make_cleanup_restore_current_thread ();
2825
ec9499be 2826 overlay_cache_invalid = 1;
f15cb84a
YQ
2827 /* Flush target cache before starting to handle each event. Target
2828 was running and cache could be stale. This is just a heuristic.
2829 Running threads may modify target memory, but we don't get any
2830 event. */
2831 target_dcache_invalidate ();
3dd5b83d 2832
32231432
PA
2833 make_cleanup_restore_integer (&execution_direction);
2834 execution_direction = target_execution_direction ();
2835
9a4105ab 2836 if (deprecated_target_wait_hook)
a474d7c2 2837 ecs->ptid =
47608cb1 2838 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2839 else
47608cb1 2840 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2841
f00150c9 2842 if (debug_infrun)
223698f8 2843 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2844
29f49a6a
PA
2845 /* If an error happens while handling the event, propagate GDB's
2846 knowledge of the executing state to the frontend/user running
2847 state. */
2848 if (!non_stop)
2849 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2850 else
2851 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2852
353d1d73
JK
2853 /* Get executed before make_cleanup_restore_current_thread above to apply
2854 still for the thread which has thrown the exception. */
2855 make_bpstat_clear_actions_cleanup ();
2856
43ff13b4 2857 /* Now figure out what to do with the result of the result. */
a474d7c2 2858 handle_inferior_event (ecs);
43ff13b4 2859
a474d7c2 2860 if (!ecs->wait_some_more)
43ff13b4 2861 {
d6b48e9c
PA
2862 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2863
4e1c45ea 2864 delete_step_thread_step_resume_breakpoint ();
f107f563 2865
d6b48e9c 2866 /* We may not find an inferior if this was a process exit. */
16c381f0 2867 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2868 normal_stop ();
2869
af679fd0 2870 if (target_has_execution
0e5bf2a8 2871 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2872 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2873 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2874 && ecs->event_thread->step_multi
16c381f0 2875 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2876 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2877 else
0f641c01
PA
2878 {
2879 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2880 cmd_done = 1;
2881 }
43ff13b4 2882 }
4f8d22e3 2883
29f49a6a
PA
2884 /* No error, don't finish the thread states yet. */
2885 discard_cleanups (ts_old_chain);
2886
4f8d22e3
PA
2887 /* Revert thread and frame. */
2888 do_cleanups (old_chain);
2889
2890 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2891 restore the prompt (a synchronous execution command has finished,
2892 and we're ready for input). */
b4a14fd0 2893 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2894 display_gdb_prompt (0);
0f641c01
PA
2895
2896 if (cmd_done
2897 && !was_sync
2898 && exec_done_display_p
2899 && (ptid_equal (inferior_ptid, null_ptid)
2900 || !is_running (inferior_ptid)))
2901 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2902}
2903
edb3359d
DJ
2904/* Record the frame and location we're currently stepping through. */
2905void
2906set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2907{
2908 struct thread_info *tp = inferior_thread ();
2909
16c381f0
JK
2910 tp->control.step_frame_id = get_frame_id (frame);
2911 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2912
2913 tp->current_symtab = sal.symtab;
2914 tp->current_line = sal.line;
2915}
2916
0d1e5fa7
PA
2917/* Clear context switchable stepping state. */
2918
2919void
4e1c45ea 2920init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2921{
2922 tss->stepping_over_breakpoint = 0;
2923 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2924}
2925
e02bc4cc 2926/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2927 target_wait()/deprecated_target_wait_hook(). The data is actually
2928 cached by handle_inferior_event(), which gets called immediately
2929 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2930
2931void
488f131b 2932get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2933{
39f77062 2934 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2935 *status = target_last_waitstatus;
2936}
2937
ac264b3b
MS
2938void
2939nullify_last_target_wait_ptid (void)
2940{
2941 target_last_wait_ptid = minus_one_ptid;
2942}
2943
dcf4fbde 2944/* Switch thread contexts. */
dd80620e
MS
2945
2946static void
0d1e5fa7 2947context_switch (ptid_t ptid)
dd80620e 2948{
4b51d87b 2949 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2950 {
2951 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2952 target_pid_to_str (inferior_ptid));
2953 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2954 target_pid_to_str (ptid));
fd48f117
DJ
2955 }
2956
0d1e5fa7 2957 switch_to_thread (ptid);
dd80620e
MS
2958}
2959
4fa8626c
DJ
2960static void
2961adjust_pc_after_break (struct execution_control_state *ecs)
2962{
24a73cce
UW
2963 struct regcache *regcache;
2964 struct gdbarch *gdbarch;
6c95b8df 2965 struct address_space *aspace;
118e6252 2966 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 2967
4fa8626c
DJ
2968 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2969 we aren't, just return.
9709f61c
DJ
2970
2971 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2972 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2973 implemented by software breakpoints should be handled through the normal
2974 breakpoint layer.
8fb3e588 2975
4fa8626c
DJ
2976 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2977 different signals (SIGILL or SIGEMT for instance), but it is less
2978 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2979 gdbarch_decr_pc_after_break. I don't know any specific target that
2980 generates these signals at breakpoints (the code has been in GDB since at
2981 least 1992) so I can not guess how to handle them here.
8fb3e588 2982
e6cf7916
UW
2983 In earlier versions of GDB, a target with
2984 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2985 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2986 target with both of these set in GDB history, and it seems unlikely to be
2987 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2988
2989 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2990 return;
2991
a493e3e2 2992 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2993 return;
2994
4058b839
PA
2995 /* In reverse execution, when a breakpoint is hit, the instruction
2996 under it has already been de-executed. The reported PC always
2997 points at the breakpoint address, so adjusting it further would
2998 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2999 architecture:
3000
3001 B1 0x08000000 : INSN1
3002 B2 0x08000001 : INSN2
3003 0x08000002 : INSN3
3004 PC -> 0x08000003 : INSN4
3005
3006 Say you're stopped at 0x08000003 as above. Reverse continuing
3007 from that point should hit B2 as below. Reading the PC when the
3008 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3009 been de-executed already.
3010
3011 B1 0x08000000 : INSN1
3012 B2 PC -> 0x08000001 : INSN2
3013 0x08000002 : INSN3
3014 0x08000003 : INSN4
3015
3016 We can't apply the same logic as for forward execution, because
3017 we would wrongly adjust the PC to 0x08000000, since there's a
3018 breakpoint at PC - 1. We'd then report a hit on B1, although
3019 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3020 behaviour. */
3021 if (execution_direction == EXEC_REVERSE)
3022 return;
3023
24a73cce
UW
3024 /* If this target does not decrement the PC after breakpoints, then
3025 we have nothing to do. */
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3028
3029 decr_pc = target_decr_pc_after_break (gdbarch);
3030 if (decr_pc == 0)
24a73cce
UW
3031 return;
3032
6c95b8df
PA
3033 aspace = get_regcache_aspace (regcache);
3034
8aad930b
AC
3035 /* Find the location where (if we've hit a breakpoint) the
3036 breakpoint would be. */
118e6252 3037 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3038
1c5cfe86
PA
3039 /* Check whether there actually is a software breakpoint inserted at
3040 that location.
3041
3042 If in non-stop mode, a race condition is possible where we've
3043 removed a breakpoint, but stop events for that breakpoint were
3044 already queued and arrive later. To suppress those spurious
3045 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3046 and retire them after a number of stop events are reported. */
6c95b8df
PA
3047 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3048 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3049 {
77f9e713 3050 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3051
8213266a 3052 if (record_full_is_used ())
77f9e713 3053 record_full_gdb_operation_disable_set ();
96429cc8 3054
1c0fdd0e
UW
3055 /* When using hardware single-step, a SIGTRAP is reported for both
3056 a completed single-step and a software breakpoint. Need to
3057 differentiate between the two, as the latter needs adjusting
3058 but the former does not.
3059
3060 The SIGTRAP can be due to a completed hardware single-step only if
3061 - we didn't insert software single-step breakpoints
3062 - the thread to be examined is still the current thread
3063 - this thread is currently being stepped
3064
3065 If any of these events did not occur, we must have stopped due
3066 to hitting a software breakpoint, and have to back up to the
3067 breakpoint address.
3068
3069 As a special case, we could have hardware single-stepped a
3070 software breakpoint. In this case (prev_pc == breakpoint_pc),
3071 we also need to back up to the breakpoint address. */
3072
3073 if (singlestep_breakpoints_inserted_p
3074 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3075 || !currently_stepping (ecs->event_thread)
3076 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3077 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3078
77f9e713 3079 do_cleanups (old_cleanups);
8aad930b 3080 }
4fa8626c
DJ
3081}
3082
7a76f5b8 3083static void
0d1e5fa7
PA
3084init_infwait_state (void)
3085{
3086 waiton_ptid = pid_to_ptid (-1);
3087 infwait_state = infwait_normal_state;
3088}
3089
edb3359d
DJ
3090static int
3091stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3092{
3093 for (frame = get_prev_frame (frame);
3094 frame != NULL;
3095 frame = get_prev_frame (frame))
3096 {
3097 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3098 return 1;
3099 if (get_frame_type (frame) != INLINE_FRAME)
3100 break;
3101 }
3102
3103 return 0;
3104}
3105
a96d9b2e
SDJ
3106/* Auxiliary function that handles syscall entry/return events.
3107 It returns 1 if the inferior should keep going (and GDB
3108 should ignore the event), or 0 if the event deserves to be
3109 processed. */
ca2163eb 3110
a96d9b2e 3111static int
ca2163eb 3112handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3113{
ca2163eb 3114 struct regcache *regcache;
ca2163eb
PA
3115 int syscall_number;
3116
3117 if (!ptid_equal (ecs->ptid, inferior_ptid))
3118 context_switch (ecs->ptid);
3119
3120 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3121 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3122 stop_pc = regcache_read_pc (regcache);
3123
a96d9b2e
SDJ
3124 if (catch_syscall_enabled () > 0
3125 && catching_syscall_number (syscall_number) > 0)
3126 {
3127 if (debug_infrun)
3128 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3129 syscall_number);
a96d9b2e 3130
16c381f0 3131 ecs->event_thread->control.stop_bpstat
6c95b8df 3132 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3133 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3134
ce12b012 3135 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3136 {
3137 /* Catchpoint hit. */
ca2163eb
PA
3138 return 0;
3139 }
a96d9b2e 3140 }
ca2163eb
PA
3141
3142 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3143 keep_going (ecs);
3144 return 1;
a96d9b2e
SDJ
3145}
3146
7e324e48
GB
3147/* Lazily fill in the execution_control_state's stop_func_* fields. */
3148
3149static void
3150fill_in_stop_func (struct gdbarch *gdbarch,
3151 struct execution_control_state *ecs)
3152{
3153 if (!ecs->stop_func_filled_in)
3154 {
3155 /* Don't care about return value; stop_func_start and stop_func_name
3156 will both be 0 if it doesn't work. */
3157 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3158 &ecs->stop_func_start, &ecs->stop_func_end);
3159 ecs->stop_func_start
3160 += gdbarch_deprecated_function_start_offset (gdbarch);
3161
3162 ecs->stop_func_filled_in = 1;
3163 }
3164}
3165
4f5d7f63
PA
3166
3167/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3168
3169static enum stop_kind
3170get_inferior_stop_soon (ptid_t ptid)
3171{
3172 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3173
3174 gdb_assert (inf != NULL);
3175 return inf->control.stop_soon;
3176}
3177
05ba8510
PA
3178/* Given an execution control state that has been freshly filled in by
3179 an event from the inferior, figure out what it means and take
3180 appropriate action.
3181
3182 The alternatives are:
3183
3184 1) stop_stepping and return; to really stop and return to the
3185 debugger.
3186
3187 2) keep_going and return; to wait for the next event (set
3188 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3189 once). */
c906108c 3190
ec9499be 3191static void
96baa820 3192handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3193{
d6b48e9c
PA
3194 enum stop_kind stop_soon;
3195
28736962
PA
3196 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3197 {
3198 /* We had an event in the inferior, but we are not interested in
3199 handling it at this level. The lower layers have already
3200 done what needs to be done, if anything.
3201
3202 One of the possible circumstances for this is when the
3203 inferior produces output for the console. The inferior has
3204 not stopped, and we are ignoring the event. Another possible
3205 circumstance is any event which the lower level knows will be
3206 reported multiple times without an intervening resume. */
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3209 prepare_to_wait (ecs);
3210 return;
3211 }
3212
0e5bf2a8
PA
3213 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3214 && target_can_async_p () && !sync_execution)
3215 {
3216 /* There were no unwaited-for children left in the target, but,
3217 we're not synchronously waiting for events either. Just
3218 ignore. Otherwise, if we were running a synchronous
3219 execution command, we need to cancel it and give the user
3220 back the terminal. */
3221 if (debug_infrun)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3224 prepare_to_wait (ecs);
3225 return;
3226 }
3227
1777feb0 3228 /* Cache the last pid/waitstatus. */
39f77062 3229 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3230 target_last_waitstatus = ecs->ws;
e02bc4cc 3231
ca005067 3232 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3233 stop_stack_dummy = STOP_NONE;
ca005067 3234
0e5bf2a8
PA
3235 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3236 {
3237 /* No unwaited-for children left. IOW, all resumed children
3238 have exited. */
3239 if (debug_infrun)
3240 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3241
3242 stop_print_frame = 0;
3243 stop_stepping (ecs);
3244 return;
3245 }
3246
8c90c137 3247 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3248 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3249 {
3250 ecs->event_thread = find_thread_ptid (ecs->ptid);
3251 /* If it's a new thread, add it to the thread database. */
3252 if (ecs->event_thread == NULL)
3253 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3254
3255 /* Disable range stepping. If the next step request could use a
3256 range, this will be end up re-enabled then. */
3257 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3258 }
88ed393a
JK
3259
3260 /* Dependent on valid ECS->EVENT_THREAD. */
3261 adjust_pc_after_break (ecs);
3262
3263 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3264 reinit_frame_cache ();
3265
28736962
PA
3266 breakpoint_retire_moribund ();
3267
2b009048
DJ
3268 /* First, distinguish signals caused by the debugger from signals
3269 that have to do with the program's own actions. Note that
3270 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3271 on the operating system version. Here we detect when a SIGILL or
3272 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3273 something similar for SIGSEGV, since a SIGSEGV will be generated
3274 when we're trying to execute a breakpoint instruction on a
3275 non-executable stack. This happens for call dummy breakpoints
3276 for architectures like SPARC that place call dummies on the
3277 stack. */
2b009048 3278 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3279 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3280 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3281 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3282 {
de0a0249
UW
3283 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3284
3285 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3286 regcache_read_pc (regcache)))
3287 {
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3291 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3292 }
2b009048
DJ
3293 }
3294
28736962
PA
3295 /* Mark the non-executing threads accordingly. In all-stop, all
3296 threads of all processes are stopped when we get any event
3297 reported. In non-stop mode, only the event thread stops. If
3298 we're handling a process exit in non-stop mode, there's nothing
3299 to do, as threads of the dead process are gone, and threads of
3300 any other process were left running. */
3301 if (!non_stop)
3302 set_executing (minus_one_ptid, 0);
3303 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3304 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3305 set_executing (ecs->ptid, 0);
8c90c137 3306
0d1e5fa7 3307 switch (infwait_state)
488f131b
JB
3308 {
3309 case infwait_thread_hop_state:
527159b7 3310 if (debug_infrun)
8a9de0e4 3311 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3312 break;
b83266a0 3313
488f131b 3314 case infwait_normal_state:
527159b7 3315 if (debug_infrun)
8a9de0e4 3316 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3317 break;
3318
3319 case infwait_step_watch_state:
3320 if (debug_infrun)
3321 fprintf_unfiltered (gdb_stdlog,
3322 "infrun: infwait_step_watch_state\n");
3323
4f5d7f63 3324 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3325 break;
b83266a0 3326
488f131b 3327 case infwait_nonstep_watch_state:
527159b7 3328 if (debug_infrun)
8a9de0e4
AC
3329 fprintf_unfiltered (gdb_stdlog,
3330 "infrun: infwait_nonstep_watch_state\n");
488f131b 3331 insert_breakpoints ();
c906108c 3332
488f131b
JB
3333 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3334 handle things like signals arriving and other things happening
3335 in combination correctly? */
4f5d7f63 3336 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3337 break;
65e82032
AC
3338
3339 default:
e2e0b3e5 3340 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3341 }
ec9499be 3342
0d1e5fa7 3343 infwait_state = infwait_normal_state;
ec9499be 3344 waiton_ptid = pid_to_ptid (-1);
c906108c 3345
488f131b
JB
3346 switch (ecs->ws.kind)
3347 {
3348 case TARGET_WAITKIND_LOADED:
527159b7 3349 if (debug_infrun)
8a9de0e4 3350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3351 if (!ptid_equal (ecs->ptid, inferior_ptid))
3352 context_switch (ecs->ptid);
b0f4b84b
DJ
3353 /* Ignore gracefully during startup of the inferior, as it might
3354 be the shell which has just loaded some objects, otherwise
3355 add the symbols for the newly loaded objects. Also ignore at
3356 the beginning of an attach or remote session; we will query
3357 the full list of libraries once the connection is
3358 established. */
4f5d7f63
PA
3359
3360 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3361 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3362 {
edcc5120
TT
3363 struct regcache *regcache;
3364
edcc5120
TT
3365 regcache = get_thread_regcache (ecs->ptid);
3366
3367 handle_solib_event ();
3368
3369 ecs->event_thread->control.stop_bpstat
3370 = bpstat_stop_status (get_regcache_aspace (regcache),
3371 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3372
ce12b012 3373 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3374 {
3375 /* A catchpoint triggered. */
94c57d6a
PA
3376 process_event_stop_test (ecs);
3377 return;
edcc5120 3378 }
488f131b 3379
b0f4b84b
DJ
3380 /* If requested, stop when the dynamic linker notifies
3381 gdb of events. This allows the user to get control
3382 and place breakpoints in initializer routines for
3383 dynamically loaded objects (among other things). */
a493e3e2 3384 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3385 if (stop_on_solib_events)
3386 {
55409f9d
DJ
3387 /* Make sure we print "Stopped due to solib-event" in
3388 normal_stop. */
3389 stop_print_frame = 1;
3390
b0f4b84b
DJ
3391 stop_stepping (ecs);
3392 return;
3393 }
488f131b 3394 }
b0f4b84b
DJ
3395
3396 /* If we are skipping through a shell, or through shared library
3397 loading that we aren't interested in, resume the program. If
5c09a2c5 3398 we're running the program normally, also resume. */
b0f4b84b
DJ
3399 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3400 {
74960c60
VP
3401 /* Loading of shared libraries might have changed breakpoint
3402 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3403 if (stop_soon == NO_STOP_QUIETLY
3404 && !breakpoints_always_inserted_mode ())
74960c60 3405 insert_breakpoints ();
a493e3e2 3406 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3407 prepare_to_wait (ecs);
3408 return;
3409 }
3410
5c09a2c5
PA
3411 /* But stop if we're attaching or setting up a remote
3412 connection. */
3413 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3414 || stop_soon == STOP_QUIETLY_REMOTE)
3415 {
3416 if (debug_infrun)
3417 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3418 stop_stepping (ecs);
3419 return;
3420 }
3421
3422 internal_error (__FILE__, __LINE__,
3423 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3424
488f131b 3425 case TARGET_WAITKIND_SPURIOUS:
527159b7 3426 if (debug_infrun)
8a9de0e4 3427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3428 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3429 context_switch (ecs->ptid);
a493e3e2 3430 resume (0, GDB_SIGNAL_0);
488f131b
JB
3431 prepare_to_wait (ecs);
3432 return;
c5aa993b 3433
488f131b 3434 case TARGET_WAITKIND_EXITED:
940c3c06 3435 case TARGET_WAITKIND_SIGNALLED:
527159b7 3436 if (debug_infrun)
940c3c06
PA
3437 {
3438 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3439 fprintf_unfiltered (gdb_stdlog,
3440 "infrun: TARGET_WAITKIND_EXITED\n");
3441 else
3442 fprintf_unfiltered (gdb_stdlog,
3443 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3444 }
3445
fb66883a 3446 inferior_ptid = ecs->ptid;
6c95b8df
PA
3447 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3448 set_current_program_space (current_inferior ()->pspace);
3449 handle_vfork_child_exec_or_exit (0);
1777feb0 3450 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3451
0c557179
SDJ
3452 /* Clearing any previous state of convenience variables. */
3453 clear_exit_convenience_vars ();
3454
940c3c06
PA
3455 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3456 {
3457 /* Record the exit code in the convenience variable $_exitcode, so
3458 that the user can inspect this again later. */
3459 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3460 (LONGEST) ecs->ws.value.integer);
3461
3462 /* Also record this in the inferior itself. */
3463 current_inferior ()->has_exit_code = 1;
3464 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3465
940c3c06
PA
3466 print_exited_reason (ecs->ws.value.integer);
3467 }
3468 else
0c557179
SDJ
3469 {
3470 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3471 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3472
3473 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3474 {
3475 /* Set the value of the internal variable $_exitsignal,
3476 which holds the signal uncaught by the inferior. */
3477 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3478 gdbarch_gdb_signal_to_target (gdbarch,
3479 ecs->ws.value.sig));
3480 }
3481 else
3482 {
3483 /* We don't have access to the target's method used for
3484 converting between signal numbers (GDB's internal
3485 representation <-> target's representation).
3486 Therefore, we cannot do a good job at displaying this
3487 information to the user. It's better to just warn
3488 her about it (if infrun debugging is enabled), and
3489 give up. */
3490 if (debug_infrun)
3491 fprintf_filtered (gdb_stdlog, _("\
3492Cannot fill $_exitsignal with the correct signal number.\n"));
3493 }
3494
3495 print_signal_exited_reason (ecs->ws.value.sig);
3496 }
8cf64490 3497
488f131b
JB
3498 gdb_flush (gdb_stdout);
3499 target_mourn_inferior ();
1c0fdd0e 3500 singlestep_breakpoints_inserted_p = 0;
d03285ec 3501 cancel_single_step_breakpoints ();
488f131b
JB
3502 stop_print_frame = 0;
3503 stop_stepping (ecs);
3504 return;
c5aa993b 3505
488f131b 3506 /* The following are the only cases in which we keep going;
1777feb0 3507 the above cases end in a continue or goto. */
488f131b 3508 case TARGET_WAITKIND_FORKED:
deb3b17b 3509 case TARGET_WAITKIND_VFORKED:
527159b7 3510 if (debug_infrun)
fed708ed
PA
3511 {
3512 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3513 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3514 else
3515 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3516 }
c906108c 3517
e2d96639
YQ
3518 /* Check whether the inferior is displaced stepping. */
3519 {
3520 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3521 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3522 struct displaced_step_inferior_state *displaced
3523 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3524
3525 /* If checking displaced stepping is supported, and thread
3526 ecs->ptid is displaced stepping. */
3527 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3528 {
3529 struct inferior *parent_inf
3530 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3531 struct regcache *child_regcache;
3532 CORE_ADDR parent_pc;
3533
3534 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3535 indicating that the displaced stepping of syscall instruction
3536 has been done. Perform cleanup for parent process here. Note
3537 that this operation also cleans up the child process for vfork,
3538 because their pages are shared. */
a493e3e2 3539 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3540
3541 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3542 {
3543 /* Restore scratch pad for child process. */
3544 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3545 }
3546
3547 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3548 the child's PC is also within the scratchpad. Set the child's PC
3549 to the parent's PC value, which has already been fixed up.
3550 FIXME: we use the parent's aspace here, although we're touching
3551 the child, because the child hasn't been added to the inferior
3552 list yet at this point. */
3553
3554 child_regcache
3555 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3556 gdbarch,
3557 parent_inf->aspace);
3558 /* Read PC value of parent process. */
3559 parent_pc = regcache_read_pc (regcache);
3560
3561 if (debug_displaced)
3562 fprintf_unfiltered (gdb_stdlog,
3563 "displaced: write child pc from %s to %s\n",
3564 paddress (gdbarch,
3565 regcache_read_pc (child_regcache)),
3566 paddress (gdbarch, parent_pc));
3567
3568 regcache_write_pc (child_regcache, parent_pc);
3569 }
3570 }
3571
5a2901d9 3572 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3573 context_switch (ecs->ptid);
5a2901d9 3574
b242c3c2
PA
3575 /* Immediately detach breakpoints from the child before there's
3576 any chance of letting the user delete breakpoints from the
3577 breakpoint lists. If we don't do this early, it's easy to
3578 leave left over traps in the child, vis: "break foo; catch
3579 fork; c; <fork>; del; c; <child calls foo>". We only follow
3580 the fork on the last `continue', and by that time the
3581 breakpoint at "foo" is long gone from the breakpoint table.
3582 If we vforked, then we don't need to unpatch here, since both
3583 parent and child are sharing the same memory pages; we'll
3584 need to unpatch at follow/detach time instead to be certain
3585 that new breakpoints added between catchpoint hit time and
3586 vfork follow are detached. */
3587 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3588 {
b242c3c2
PA
3589 /* This won't actually modify the breakpoint list, but will
3590 physically remove the breakpoints from the child. */
d80ee84f 3591 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3592 }
3593
d03285ec
UW
3594 if (singlestep_breakpoints_inserted_p)
3595 {
1777feb0 3596 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3597 remove_single_step_breakpoints ();
3598 singlestep_breakpoints_inserted_p = 0;
3599 }
3600
e58b0e63
PA
3601 /* In case the event is caught by a catchpoint, remember that
3602 the event is to be followed at the next resume of the thread,
3603 and not immediately. */
3604 ecs->event_thread->pending_follow = ecs->ws;
3605
fb14de7b 3606 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3607
16c381f0 3608 ecs->event_thread->control.stop_bpstat
6c95b8df 3609 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3610 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3611
ce12b012
PA
3612 /* If no catchpoint triggered for this, then keep going. Note
3613 that we're interested in knowing the bpstat actually causes a
3614 stop, not just if it may explain the signal. Software
3615 watchpoints, for example, always appear in the bpstat. */
3616 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3617 {
6c95b8df
PA
3618 ptid_t parent;
3619 ptid_t child;
e58b0e63 3620 int should_resume;
3e43a32a
MS
3621 int follow_child
3622 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3623
a493e3e2 3624 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3625
3626 should_resume = follow_fork ();
3627
6c95b8df
PA
3628 parent = ecs->ptid;
3629 child = ecs->ws.value.related_pid;
3630
3631 /* In non-stop mode, also resume the other branch. */
3632 if (non_stop && !detach_fork)
3633 {
3634 if (follow_child)
3635 switch_to_thread (parent);
3636 else
3637 switch_to_thread (child);
3638
3639 ecs->event_thread = inferior_thread ();
3640 ecs->ptid = inferior_ptid;
3641 keep_going (ecs);
3642 }
3643
3644 if (follow_child)
3645 switch_to_thread (child);
3646 else
3647 switch_to_thread (parent);
3648
e58b0e63
PA
3649 ecs->event_thread = inferior_thread ();
3650 ecs->ptid = inferior_ptid;
3651
3652 if (should_resume)
3653 keep_going (ecs);
3654 else
3655 stop_stepping (ecs);
04e68871
DJ
3656 return;
3657 }
94c57d6a
PA
3658 process_event_stop_test (ecs);
3659 return;
488f131b 3660
6c95b8df
PA
3661 case TARGET_WAITKIND_VFORK_DONE:
3662 /* Done with the shared memory region. Re-insert breakpoints in
3663 the parent, and keep going. */
3664
3665 if (debug_infrun)
3e43a32a
MS
3666 fprintf_unfiltered (gdb_stdlog,
3667 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3668
3669 if (!ptid_equal (ecs->ptid, inferior_ptid))
3670 context_switch (ecs->ptid);
3671
3672 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3673 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3674 /* This also takes care of reinserting breakpoints in the
3675 previously locked inferior. */
3676 keep_going (ecs);
3677 return;
3678
488f131b 3679 case TARGET_WAITKIND_EXECD:
527159b7 3680 if (debug_infrun)
fc5261f2 3681 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3682
5a2901d9 3683 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3684 context_switch (ecs->ptid);
5a2901d9 3685
d03285ec
UW
3686 singlestep_breakpoints_inserted_p = 0;
3687 cancel_single_step_breakpoints ();
3688
fb14de7b 3689 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3690
6c95b8df
PA
3691 /* Do whatever is necessary to the parent branch of the vfork. */
3692 handle_vfork_child_exec_or_exit (1);
3693
795e548f
PA
3694 /* This causes the eventpoints and symbol table to be reset.
3695 Must do this now, before trying to determine whether to
3696 stop. */
71b43ef8 3697 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3698
16c381f0 3699 ecs->event_thread->control.stop_bpstat
6c95b8df 3700 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3701 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3702
71b43ef8
PA
3703 /* Note that this may be referenced from inside
3704 bpstat_stop_status above, through inferior_has_execd. */
3705 xfree (ecs->ws.value.execd_pathname);
3706 ecs->ws.value.execd_pathname = NULL;
3707
04e68871 3708 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3709 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3710 {
a493e3e2 3711 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3712 keep_going (ecs);
3713 return;
3714 }
94c57d6a
PA
3715 process_event_stop_test (ecs);
3716 return;
488f131b 3717
b4dc5ffa
MK
3718 /* Be careful not to try to gather much state about a thread
3719 that's in a syscall. It's frequently a losing proposition. */
488f131b 3720 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3721 if (debug_infrun)
3e43a32a
MS
3722 fprintf_unfiltered (gdb_stdlog,
3723 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3724 /* Getting the current syscall number. */
94c57d6a
PA
3725 if (handle_syscall_event (ecs) == 0)
3726 process_event_stop_test (ecs);
3727 return;
c906108c 3728
488f131b
JB
3729 /* Before examining the threads further, step this thread to
3730 get it entirely out of the syscall. (We get notice of the
3731 event when the thread is just on the verge of exiting a
3732 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3733 into user code.) */
488f131b 3734 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3735 if (debug_infrun)
3e43a32a
MS
3736 fprintf_unfiltered (gdb_stdlog,
3737 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3738 if (handle_syscall_event (ecs) == 0)
3739 process_event_stop_test (ecs);
3740 return;
c906108c 3741
488f131b 3742 case TARGET_WAITKIND_STOPPED:
527159b7 3743 if (debug_infrun)
8a9de0e4 3744 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3745 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
3746 handle_signal_stop (ecs);
3747 return;
c906108c 3748
b2175913 3749 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3750 if (debug_infrun)
3751 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3752 /* Reverse execution: target ran out of history info. */
eab402df
PA
3753
3754 /* Pull the single step breakpoints out of the target. */
3755 if (singlestep_breakpoints_inserted_p)
3756 {
3757 if (!ptid_equal (ecs->ptid, inferior_ptid))
3758 context_switch (ecs->ptid);
3759 remove_single_step_breakpoints ();
3760 singlestep_breakpoints_inserted_p = 0;
3761 }
fb14de7b 3762 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3763 print_no_history_reason ();
b2175913
MS
3764 stop_stepping (ecs);
3765 return;
488f131b 3766 }
4f5d7f63
PA
3767}
3768
3769/* Come here when the program has stopped with a signal. */
3770
3771static void
3772handle_signal_stop (struct execution_control_state *ecs)
3773{
3774 struct frame_info *frame;
3775 struct gdbarch *gdbarch;
3776 int stopped_by_watchpoint;
3777 enum stop_kind stop_soon;
3778 int random_signal;
c906108c 3779
2020b7ab 3780 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3781 {
3782 /* Do we need to clean up the state of a thread that has
3783 completed a displaced single-step? (Doing so usually affects
3784 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3785 displaced_step_fixup (ecs->ptid,
3786 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3787
3788 /* If we either finished a single-step or hit a breakpoint, but
3789 the user wanted this thread to be stopped, pretend we got a
3790 SIG0 (generic unsignaled stop). */
3791
3792 if (ecs->event_thread->stop_requested
a493e3e2
PA
3793 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3794 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3795 }
237fc4c9 3796
515630c5 3797 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3798
527159b7 3799 if (debug_infrun)
237fc4c9 3800 {
5af949e3
UW
3801 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3803 struct cleanup *old_chain = save_inferior_ptid ();
3804
3805 inferior_ptid = ecs->ptid;
5af949e3
UW
3806
3807 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3808 paddress (gdbarch, stop_pc));
d92524f1 3809 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3810 {
3811 CORE_ADDR addr;
abbb1732 3812
237fc4c9
PA
3813 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3814
3815 if (target_stopped_data_address (&current_target, &addr))
3816 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3817 "infrun: stopped data address = %s\n",
3818 paddress (gdbarch, addr));
237fc4c9
PA
3819 else
3820 fprintf_unfiltered (gdb_stdlog,
3821 "infrun: (no data address available)\n");
3822 }
7f82dfc7
JK
3823
3824 do_cleanups (old_chain);
237fc4c9 3825 }
527159b7 3826
36fa8042
PA
3827 /* This is originated from start_remote(), start_inferior() and
3828 shared libraries hook functions. */
3829 stop_soon = get_inferior_stop_soon (ecs->ptid);
3830 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3831 {
3832 if (!ptid_equal (ecs->ptid, inferior_ptid))
3833 context_switch (ecs->ptid);
3834 if (debug_infrun)
3835 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3836 stop_print_frame = 1;
3837 stop_stepping (ecs);
3838 return;
3839 }
3840
3841 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3842 && stop_after_trap)
3843 {
3844 if (!ptid_equal (ecs->ptid, inferior_ptid))
3845 context_switch (ecs->ptid);
3846 if (debug_infrun)
3847 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3848 stop_print_frame = 0;
3849 stop_stepping (ecs);
3850 return;
3851 }
3852
3853 /* This originates from attach_command(). We need to overwrite
3854 the stop_signal here, because some kernels don't ignore a
3855 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3856 See more comments in inferior.h. On the other hand, if we
3857 get a non-SIGSTOP, report it to the user - assume the backend
3858 will handle the SIGSTOP if it should show up later.
3859
3860 Also consider that the attach is complete when we see a
3861 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3862 target extended-remote report it instead of a SIGSTOP
3863 (e.g. gdbserver). We already rely on SIGTRAP being our
3864 signal, so this is no exception.
3865
3866 Also consider that the attach is complete when we see a
3867 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3868 the target to stop all threads of the inferior, in case the
3869 low level attach operation doesn't stop them implicitly. If
3870 they weren't stopped implicitly, then the stub will report a
3871 GDB_SIGNAL_0, meaning: stopped for no particular reason
3872 other than GDB's request. */
3873 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3874 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3875 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3876 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3877 {
3878 stop_print_frame = 1;
3879 stop_stepping (ecs);
3880 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3881 return;
3882 }
3883
9f976b41
DJ
3884 if (stepping_past_singlestep_breakpoint)
3885 {
1c0fdd0e 3886 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3887 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3888 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3889
3890 stepping_past_singlestep_breakpoint = 0;
3891
3892 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3893 breakpoint, or stopped for some other reason. It would be nice if
3894 we could tell, but we can't reliably. */
a493e3e2 3895 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3896 {
527159b7 3897 if (debug_infrun)
3e43a32a
MS
3898 fprintf_unfiltered (gdb_stdlog,
3899 "infrun: stepping_past_"
3900 "singlestep_breakpoint\n");
9f976b41 3901 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3902 if (!ptid_equal (ecs->ptid, inferior_ptid))
3903 context_switch (ecs->ptid);
e0cd558a 3904 remove_single_step_breakpoints ();
9f976b41
DJ
3905 singlestep_breakpoints_inserted_p = 0;
3906
16c381f0 3907 ecs->event_thread->control.trap_expected = 0;
9f976b41 3908
0d1e5fa7 3909 context_switch (saved_singlestep_ptid);
9a4105ab 3910 if (deprecated_context_hook)
de9f1b68 3911 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3912
a493e3e2 3913 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3914 prepare_to_wait (ecs);
3915 return;
3916 }
3917 }
3918
ca67fcb8 3919 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3920 {
94cc34af
PA
3921 /* In non-stop mode, there's never a deferred_step_ptid set. */
3922 gdb_assert (!non_stop);
3923
6a6b96b9
UW
3924 /* If we stopped for some other reason than single-stepping, ignore
3925 the fact that we were supposed to switch back. */
a493e3e2 3926 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3927 {
3928 if (debug_infrun)
3929 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3930 "infrun: handling deferred step\n");
6a6b96b9
UW
3931
3932 /* Pull the single step breakpoints out of the target. */
3933 if (singlestep_breakpoints_inserted_p)
3934 {
8b3ee56d
PA
3935 if (!ptid_equal (ecs->ptid, inferior_ptid))
3936 context_switch (ecs->ptid);
6a6b96b9
UW
3937 remove_single_step_breakpoints ();
3938 singlestep_breakpoints_inserted_p = 0;
3939 }
3940
cd3da28e
PA
3941 ecs->event_thread->control.trap_expected = 0;
3942
d25f45d9 3943 context_switch (deferred_step_ptid);
ca67fcb8 3944 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3945 /* Suppress spurious "Switching to ..." message. */
3946 previous_inferior_ptid = inferior_ptid;
3947
a493e3e2 3948 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3949 prepare_to_wait (ecs);
3950 return;
3951 }
ca67fcb8
VP
3952
3953 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3954 }
3955
488f131b
JB
3956 /* See if a thread hit a thread-specific breakpoint that was meant for
3957 another thread. If so, then step that thread past the breakpoint,
3958 and continue it. */
3959
a493e3e2 3960 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3961 {
9f976b41 3962 int thread_hop_needed = 0;
cf00dfa7
VP
3963 struct address_space *aspace =
3964 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3965
f8d40ec8 3966 /* Check if a regular breakpoint has been hit before checking
1777feb0 3967 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3968 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3969 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3970 {
6c95b8df 3971 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3972 thread_hop_needed = 1;
3973 }
1c0fdd0e 3974 else if (singlestep_breakpoints_inserted_p)
9f976b41 3975 {
fd48f117
DJ
3976 /* We have not context switched yet, so this should be true
3977 no matter which thread hit the singlestep breakpoint. */
3978 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3979 if (debug_infrun)
3980 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3981 "trap for %s\n",
3982 target_pid_to_str (ecs->ptid));
3983
9f976b41
DJ
3984 /* The call to in_thread_list is necessary because PTIDs sometimes
3985 change when we go from single-threaded to multi-threaded. If
3986 the singlestep_ptid is still in the list, assume that it is
3987 really different from ecs->ptid. */
3988 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3989 && in_thread_list (singlestep_ptid))
3990 {
fd48f117
DJ
3991 /* If the PC of the thread we were trying to single-step
3992 has changed, discard this event (which we were going
3993 to ignore anyway), and pretend we saw that thread
3994 trap. This prevents us continuously moving the
3995 single-step breakpoint forward, one instruction at a
3996 time. If the PC has changed, then the thread we were
3997 trying to single-step has trapped or been signalled,
3998 but the event has not been reported to GDB yet.
3999
4000 There might be some cases where this loses signal
4001 information, if a signal has arrived at exactly the
4002 same time that the PC changed, but this is the best
4003 we can do with the information available. Perhaps we
4004 should arrange to report all events for all threads
4005 when they stop, or to re-poll the remote looking for
4006 this particular thread (i.e. temporarily enable
4007 schedlock). */
515630c5
UW
4008
4009 CORE_ADDR new_singlestep_pc
4010 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
4011
4012 if (new_singlestep_pc != singlestep_pc)
fd48f117 4013 {
2ea28649 4014 enum gdb_signal stop_signal;
2020b7ab 4015
fd48f117
DJ
4016 if (debug_infrun)
4017 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
4018 " but expected thread advanced also\n");
4019
4020 /* The current context still belongs to
4021 singlestep_ptid. Don't swap here, since that's
4022 the context we want to use. Just fudge our
4023 state and continue. */
16c381f0 4024 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 4025 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 4026 ecs->ptid = singlestep_ptid;
e09875d4 4027 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 4028 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 4029 stop_pc = new_singlestep_pc;
fd48f117
DJ
4030 }
4031 else
4032 {
4033 if (debug_infrun)
4034 fprintf_unfiltered (gdb_stdlog,
4035 "infrun: unexpected thread\n");
4036
4037 thread_hop_needed = 1;
4038 stepping_past_singlestep_breakpoint = 1;
4039 saved_singlestep_ptid = singlestep_ptid;
4040 }
9f976b41
DJ
4041 }
4042 }
4043
4044 if (thread_hop_needed)
8fb3e588 4045 {
9f5a595d 4046 struct regcache *thread_regcache;
237fc4c9 4047 int remove_status = 0;
8fb3e588 4048
527159b7 4049 if (debug_infrun)
8a9de0e4 4050 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 4051
b3444185
PA
4052 /* Switch context before touching inferior memory, the
4053 previous thread may have exited. */
4054 if (!ptid_equal (inferior_ptid, ecs->ptid))
4055 context_switch (ecs->ptid);
4056
8fb3e588 4057 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 4058 Just continue. */
8fb3e588 4059
1c0fdd0e 4060 if (singlestep_breakpoints_inserted_p)
488f131b 4061 {
1777feb0 4062 /* Pull the single step breakpoints out of the target. */
e0cd558a 4063 remove_single_step_breakpoints ();
8fb3e588
AC
4064 singlestep_breakpoints_inserted_p = 0;
4065 }
4066
237fc4c9
PA
4067 /* If the arch can displace step, don't remove the
4068 breakpoints. */
9f5a595d
UW
4069 thread_regcache = get_thread_regcache (ecs->ptid);
4070 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4071 remove_status = remove_breakpoints ();
4072
8fb3e588
AC
4073 /* Did we fail to remove breakpoints? If so, try
4074 to set the PC past the bp. (There's at least
4075 one situation in which we can fail to remove
4076 the bp's: On HP-UX's that use ttrace, we can't
4077 change the address space of a vforking child
4078 process until the child exits (well, okay, not
1777feb0 4079 then either :-) or execs. */
8fb3e588 4080 if (remove_status != 0)
9d9cd7ac 4081 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
4082 else
4083 { /* Single step */
94cc34af
PA
4084 if (!non_stop)
4085 {
4086 /* Only need to require the next event from this
4087 thread in all-stop mode. */
4088 waiton_ptid = ecs->ptid;
4089 infwait_state = infwait_thread_hop_state;
4090 }
8fb3e588 4091
4e1c45ea 4092 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4093 keep_going (ecs);
8fb3e588
AC
4094 return;
4095 }
488f131b
JB
4096 }
4097 }
c906108c 4098
488f131b 4099 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4100 so, then switch to that thread. */
4101 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4102 {
527159b7 4103 if (debug_infrun)
8a9de0e4 4104 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4105
0d1e5fa7 4106 context_switch (ecs->ptid);
c5aa993b 4107
9a4105ab
AC
4108 if (deprecated_context_hook)
4109 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4110 }
c906108c 4111
568d6575
UW
4112 /* At this point, get hold of the now-current thread's frame. */
4113 frame = get_current_frame ();
4114 gdbarch = get_frame_arch (frame);
4115
1c0fdd0e 4116 if (singlestep_breakpoints_inserted_p)
488f131b 4117 {
1777feb0 4118 /* Pull the single step breakpoints out of the target. */
e0cd558a 4119 remove_single_step_breakpoints ();
488f131b
JB
4120 singlestep_breakpoints_inserted_p = 0;
4121 }
c906108c 4122
4f5d7f63 4123 if (ecs->stepped_after_stopped_by_watchpoint)
d983da9c
DJ
4124 stopped_by_watchpoint = 0;
4125 else
4126 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4127
4128 /* If necessary, step over this watchpoint. We'll be back to display
4129 it in a moment. */
4130 if (stopped_by_watchpoint
d92524f1 4131 && (target_have_steppable_watchpoint
568d6575 4132 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4133 {
488f131b
JB
4134 /* At this point, we are stopped at an instruction which has
4135 attempted to write to a piece of memory under control of
4136 a watchpoint. The instruction hasn't actually executed
4137 yet. If we were to evaluate the watchpoint expression
4138 now, we would get the old value, and therefore no change
4139 would seem to have occurred.
4140
4141 In order to make watchpoints work `right', we really need
4142 to complete the memory write, and then evaluate the
d983da9c
DJ
4143 watchpoint expression. We do this by single-stepping the
4144 target.
4145
4146 It may not be necessary to disable the watchpoint to stop over
4147 it. For example, the PA can (with some kernel cooperation)
4148 single step over a watchpoint without disabling the watchpoint.
4149
4150 It is far more common to need to disable a watchpoint to step
4151 the inferior over it. If we have non-steppable watchpoints,
4152 we must disable the current watchpoint; it's simplest to
4153 disable all watchpoints and breakpoints. */
2facfe5c
DD
4154 int hw_step = 1;
4155
d92524f1 4156 if (!target_have_steppable_watchpoint)
2455069d
UW
4157 {
4158 remove_breakpoints ();
4159 /* See comment in resume why we need to stop bypassing signals
4160 while breakpoints have been removed. */
4161 target_pass_signals (0, NULL);
4162 }
2facfe5c 4163 /* Single step */
568d6575 4164 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4165 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4166 waiton_ptid = ecs->ptid;
d92524f1 4167 if (target_have_steppable_watchpoint)
0d1e5fa7 4168 infwait_state = infwait_step_watch_state;
d983da9c 4169 else
0d1e5fa7 4170 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4171 prepare_to_wait (ecs);
4172 return;
4173 }
4174
4e1c45ea 4175 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4176 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4177 ecs->event_thread->control.stop_step = 0;
488f131b 4178 stop_print_frame = 1;
488f131b 4179 stopped_by_random_signal = 0;
488f131b 4180
edb3359d
DJ
4181 /* Hide inlined functions starting here, unless we just performed stepi or
4182 nexti. After stepi and nexti, always show the innermost frame (not any
4183 inline function call sites). */
16c381f0 4184 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4185 {
4186 struct address_space *aspace =
4187 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4188
4189 /* skip_inline_frames is expensive, so we avoid it if we can
4190 determine that the address is one where functions cannot have
4191 been inlined. This improves performance with inferiors that
4192 load a lot of shared libraries, because the solib event
4193 breakpoint is defined as the address of a function (i.e. not
4194 inline). Note that we have to check the previous PC as well
4195 as the current one to catch cases when we have just
4196 single-stepped off a breakpoint prior to reinstating it.
4197 Note that we're assuming that the code we single-step to is
4198 not inline, but that's not definitive: there's nothing
4199 preventing the event breakpoint function from containing
4200 inlined code, and the single-step ending up there. If the
4201 user had set a breakpoint on that inlined code, the missing
4202 skip_inline_frames call would break things. Fortunately
4203 that's an extremely unlikely scenario. */
09ac7c10 4204 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4205 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4206 && ecs->event_thread->control.trap_expected
4207 && pc_at_non_inline_function (aspace,
4208 ecs->event_thread->prev_pc,
09ac7c10 4209 &ecs->ws)))
1c5a993e
MR
4210 {
4211 skip_inline_frames (ecs->ptid);
4212
4213 /* Re-fetch current thread's frame in case that invalidated
4214 the frame cache. */
4215 frame = get_current_frame ();
4216 gdbarch = get_frame_arch (frame);
4217 }
0574c78f 4218 }
edb3359d 4219
a493e3e2 4220 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4221 && ecs->event_thread->control.trap_expected
568d6575 4222 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4223 && currently_stepping (ecs->event_thread))
3352ef37 4224 {
b50d7442 4225 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4226 also on an instruction that needs to be stepped multiple
1777feb0 4227 times before it's been fully executing. E.g., architectures
3352ef37
AC
4228 with a delay slot. It needs to be stepped twice, once for
4229 the instruction and once for the delay slot. */
4230 int step_through_delay
568d6575 4231 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4232
527159b7 4233 if (debug_infrun && step_through_delay)
8a9de0e4 4234 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4235 if (ecs->event_thread->control.step_range_end == 0
4236 && step_through_delay)
3352ef37
AC
4237 {
4238 /* The user issued a continue when stopped at a breakpoint.
4239 Set up for another trap and get out of here. */
4e1c45ea 4240 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4241 keep_going (ecs);
4242 return;
4243 }
4244 else if (step_through_delay)
4245 {
4246 /* The user issued a step when stopped at a breakpoint.
4247 Maybe we should stop, maybe we should not - the delay
4248 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4249 case, don't decide that here, just set
4250 ecs->stepping_over_breakpoint, making sure we
4251 single-step again before breakpoints are re-inserted. */
4e1c45ea 4252 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4253 }
4254 }
4255
ab04a2af
TT
4256 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4257 handles this event. */
4258 ecs->event_thread->control.stop_bpstat
4259 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4260 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4261
ab04a2af
TT
4262 /* Following in case break condition called a
4263 function. */
4264 stop_print_frame = 1;
73dd234f 4265
ab04a2af
TT
4266 /* This is where we handle "moribund" watchpoints. Unlike
4267 software breakpoints traps, hardware watchpoint traps are
4268 always distinguishable from random traps. If no high-level
4269 watchpoint is associated with the reported stop data address
4270 anymore, then the bpstat does not explain the signal ---
4271 simply make sure to ignore it if `stopped_by_watchpoint' is
4272 set. */
4273
4274 if (debug_infrun
4275 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4276 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4277 GDB_SIGNAL_TRAP)
ab04a2af
TT
4278 && stopped_by_watchpoint)
4279 fprintf_unfiltered (gdb_stdlog,
4280 "infrun: no user watchpoint explains "
4281 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4282
bac7d97b 4283 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4284 at one stage in the past included checks for an inferior
4285 function call's call dummy's return breakpoint. The original
4286 comment, that went with the test, read:
03cebad2 4287
ab04a2af
TT
4288 ``End of a stack dummy. Some systems (e.g. Sony news) give
4289 another signal besides SIGTRAP, so check here as well as
4290 above.''
73dd234f 4291
ab04a2af
TT
4292 If someone ever tries to get call dummys on a
4293 non-executable stack to work (where the target would stop
4294 with something like a SIGSEGV), then those tests might need
4295 to be re-instated. Given, however, that the tests were only
4296 enabled when momentary breakpoints were not being used, I
4297 suspect that it won't be the case.
488f131b 4298
ab04a2af
TT
4299 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4300 be necessary for call dummies on a non-executable stack on
4301 SPARC. */
488f131b 4302
bac7d97b 4303 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4304 random_signal
4305 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4306 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4307
4308 /* If not, perhaps stepping/nexting can. */
4309 if (random_signal)
4310 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4311 && currently_stepping (ecs->event_thread));
ab04a2af 4312
bac7d97b
PA
4313 /* No? Perhaps we got a moribund watchpoint. */
4314 if (random_signal)
4315 random_signal = !stopped_by_watchpoint;
ab04a2af 4316
488f131b
JB
4317 /* For the program's own signals, act according to
4318 the signal handling tables. */
4319
ce12b012 4320 if (random_signal)
488f131b
JB
4321 {
4322 /* Signal not for debugging purposes. */
4323 int printed = 0;
24291992 4324 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4325 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4326
527159b7 4327 if (debug_infrun)
c9737c08
PA
4328 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4329 gdb_signal_to_symbol_string (stop_signal));
527159b7 4330
488f131b
JB
4331 stopped_by_random_signal = 1;
4332
16c381f0 4333 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4334 {
4335 printed = 1;
4336 target_terminal_ours_for_output ();
16c381f0
JK
4337 print_signal_received_reason
4338 (ecs->event_thread->suspend.stop_signal);
488f131b 4339 }
252fbfc8
PA
4340 /* Always stop on signals if we're either just gaining control
4341 of the program, or the user explicitly requested this thread
4342 to remain stopped. */
d6b48e9c 4343 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4344 || ecs->event_thread->stop_requested
24291992 4345 || (!inf->detaching
16c381f0 4346 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4347 {
4348 stop_stepping (ecs);
4349 return;
4350 }
4351 /* If not going to stop, give terminal back
4352 if we took it away. */
4353 else if (printed)
4354 target_terminal_inferior ();
4355
4356 /* Clear the signal if it should not be passed. */
16c381f0 4357 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4359
fb14de7b 4360 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4361 && ecs->event_thread->control.trap_expected
8358c15c 4362 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4363 {
4364 /* We were just starting a new sequence, attempting to
4365 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4366 Instead this signal arrives. This signal will take us out
68f53502
AC
4367 of the stepping range so GDB needs to remember to, when
4368 the signal handler returns, resume stepping off that
4369 breakpoint. */
4370 /* To simplify things, "continue" is forced to use the same
4371 code paths as single-step - set a breakpoint at the
4372 signal return address and then, once hit, step off that
4373 breakpoint. */
237fc4c9
PA
4374 if (debug_infrun)
4375 fprintf_unfiltered (gdb_stdlog,
4376 "infrun: signal arrived while stepping over "
4377 "breakpoint\n");
d3169d93 4378
2c03e5be 4379 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4380 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4381 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4382 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4383 keep_going (ecs);
4384 return;
68f53502 4385 }
9d799f85 4386
16c381f0 4387 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4388 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4389 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4390 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4391 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4392 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4393 {
4394 /* The inferior is about to take a signal that will take it
4395 out of the single step range. Set a breakpoint at the
4396 current PC (which is presumably where the signal handler
4397 will eventually return) and then allow the inferior to
4398 run free.
4399
4400 Note that this is only needed for a signal delivered
4401 while in the single-step range. Nested signals aren't a
4402 problem as they eventually all return. */
237fc4c9
PA
4403 if (debug_infrun)
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: signal may take us out of "
4406 "single-step range\n");
4407
2c03e5be 4408 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4409 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4410 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4411 keep_going (ecs);
4412 return;
d303a6c7 4413 }
9d799f85
AC
4414
4415 /* Note: step_resume_breakpoint may be non-NULL. This occures
4416 when either there's a nested signal, or when there's a
4417 pending signal enabled just as the signal handler returns
4418 (leaving the inferior at the step-resume-breakpoint without
4419 actually executing it). Either way continue until the
4420 breakpoint is really hit. */
c447ac0b
PA
4421
4422 if (!switch_back_to_stepped_thread (ecs))
4423 {
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog,
4426 "infrun: random signal, keep going\n");
4427
4428 keep_going (ecs);
4429 }
4430 return;
488f131b 4431 }
94c57d6a
PA
4432
4433 process_event_stop_test (ecs);
4434}
4435
4436/* Come here when we've got some debug event / signal we can explain
4437 (IOW, not a random signal), and test whether it should cause a
4438 stop, or whether we should resume the inferior (transparently).
4439 E.g., could be a breakpoint whose condition evaluates false; we
4440 could be still stepping within the line; etc. */
4441
4442static void
4443process_event_stop_test (struct execution_control_state *ecs)
4444{
4445 struct symtab_and_line stop_pc_sal;
4446 struct frame_info *frame;
4447 struct gdbarch *gdbarch;
cdaa5b73
PA
4448 CORE_ADDR jmp_buf_pc;
4449 struct bpstat_what what;
94c57d6a 4450
cdaa5b73 4451 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4452
cdaa5b73
PA
4453 frame = get_current_frame ();
4454 gdbarch = get_frame_arch (frame);
fcf3daef 4455
cdaa5b73 4456 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4457
cdaa5b73
PA
4458 if (what.call_dummy)
4459 {
4460 stop_stack_dummy = what.call_dummy;
4461 }
186c406b 4462
cdaa5b73
PA
4463 /* If we hit an internal event that triggers symbol changes, the
4464 current frame will be invalidated within bpstat_what (e.g., if we
4465 hit an internal solib event). Re-fetch it. */
4466 frame = get_current_frame ();
4467 gdbarch = get_frame_arch (frame);
e2e4d78b 4468
cdaa5b73
PA
4469 switch (what.main_action)
4470 {
4471 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4472 /* If we hit the breakpoint at longjmp while stepping, we
4473 install a momentary breakpoint at the target of the
4474 jmp_buf. */
186c406b 4475
cdaa5b73
PA
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog,
4478 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4479
cdaa5b73 4480 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4481
cdaa5b73
PA
4482 if (what.is_longjmp)
4483 {
4484 struct value *arg_value;
4485
4486 /* If we set the longjmp breakpoint via a SystemTap probe,
4487 then use it to extract the arguments. The destination PC
4488 is the third argument to the probe. */
4489 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4490 if (arg_value)
4491 jmp_buf_pc = value_as_address (arg_value);
4492 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4493 || !gdbarch_get_longjmp_target (gdbarch,
4494 frame, &jmp_buf_pc))
e2e4d78b 4495 {
cdaa5b73
PA
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4499 "(!gdbarch_get_longjmp_target)\n");
4500 keep_going (ecs);
4501 return;
e2e4d78b 4502 }
e2e4d78b 4503
cdaa5b73
PA
4504 /* Insert a breakpoint at resume address. */
4505 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4506 }
4507 else
4508 check_exception_resume (ecs, frame);
4509 keep_going (ecs);
4510 return;
e81a37f7 4511
cdaa5b73
PA
4512 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4513 {
4514 struct frame_info *init_frame;
e81a37f7 4515
cdaa5b73 4516 /* There are several cases to consider.
c906108c 4517
cdaa5b73
PA
4518 1. The initiating frame no longer exists. In this case we
4519 must stop, because the exception or longjmp has gone too
4520 far.
2c03e5be 4521
cdaa5b73
PA
4522 2. The initiating frame exists, and is the same as the
4523 current frame. We stop, because the exception or longjmp
4524 has been caught.
2c03e5be 4525
cdaa5b73
PA
4526 3. The initiating frame exists and is different from the
4527 current frame. This means the exception or longjmp has
4528 been caught beneath the initiating frame, so keep going.
c906108c 4529
cdaa5b73
PA
4530 4. longjmp breakpoint has been placed just to protect
4531 against stale dummy frames and user is not interested in
4532 stopping around longjmps. */
c5aa993b 4533
cdaa5b73
PA
4534 if (debug_infrun)
4535 fprintf_unfiltered (gdb_stdlog,
4536 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4537
cdaa5b73
PA
4538 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4539 != NULL);
4540 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4541
cdaa5b73
PA
4542 if (what.is_longjmp)
4543 {
4544 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4545
cdaa5b73 4546 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4547 {
cdaa5b73
PA
4548 /* Case 4. */
4549 keep_going (ecs);
4550 return;
e5ef252a 4551 }
cdaa5b73 4552 }
c5aa993b 4553
cdaa5b73 4554 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4555
cdaa5b73
PA
4556 if (init_frame)
4557 {
4558 struct frame_id current_id
4559 = get_frame_id (get_current_frame ());
4560 if (frame_id_eq (current_id,
4561 ecs->event_thread->initiating_frame))
4562 {
4563 /* Case 2. Fall through. */
4564 }
4565 else
4566 {
4567 /* Case 3. */
4568 keep_going (ecs);
4569 return;
4570 }
68f53502 4571 }
488f131b 4572
cdaa5b73
PA
4573 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4574 exists. */
4575 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4576
cdaa5b73
PA
4577 ecs->event_thread->control.stop_step = 1;
4578 print_end_stepping_range_reason ();
4579 stop_stepping (ecs);
4580 }
4581 return;
e5ef252a 4582
cdaa5b73
PA
4583 case BPSTAT_WHAT_SINGLE:
4584 if (debug_infrun)
4585 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4586 ecs->event_thread->stepping_over_breakpoint = 1;
4587 /* Still need to check other stuff, at least the case where we
4588 are stepping and step out of the right range. */
4589 break;
e5ef252a 4590
cdaa5b73
PA
4591 case BPSTAT_WHAT_STEP_RESUME:
4592 if (debug_infrun)
4593 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4594
cdaa5b73
PA
4595 delete_step_resume_breakpoint (ecs->event_thread);
4596 if (ecs->event_thread->control.proceed_to_finish
4597 && execution_direction == EXEC_REVERSE)
4598 {
4599 struct thread_info *tp = ecs->event_thread;
4600
4601 /* We are finishing a function in reverse, and just hit the
4602 step-resume breakpoint at the start address of the
4603 function, and we're almost there -- just need to back up
4604 by one more single-step, which should take us back to the
4605 function call. */
4606 tp->control.step_range_start = tp->control.step_range_end = 1;
4607 keep_going (ecs);
e5ef252a 4608 return;
cdaa5b73
PA
4609 }
4610 fill_in_stop_func (gdbarch, ecs);
4611 if (stop_pc == ecs->stop_func_start
4612 && execution_direction == EXEC_REVERSE)
4613 {
4614 /* We are stepping over a function call in reverse, and just
4615 hit the step-resume breakpoint at the start address of
4616 the function. Go back to single-stepping, which should
4617 take us back to the function call. */
4618 ecs->event_thread->stepping_over_breakpoint = 1;
4619 keep_going (ecs);
4620 return;
4621 }
4622 break;
e5ef252a 4623
cdaa5b73
PA
4624 case BPSTAT_WHAT_STOP_NOISY:
4625 if (debug_infrun)
4626 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4627 stop_print_frame = 1;
e5ef252a 4628
cdaa5b73
PA
4629 /* We are about to nuke the step_resume_breakpointt via the
4630 cleanup chain, so no need to worry about it here. */
e5ef252a 4631
cdaa5b73
PA
4632 stop_stepping (ecs);
4633 return;
e5ef252a 4634
cdaa5b73
PA
4635 case BPSTAT_WHAT_STOP_SILENT:
4636 if (debug_infrun)
4637 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4638 stop_print_frame = 0;
e5ef252a 4639
cdaa5b73
PA
4640 /* We are about to nuke the step_resume_breakpoin via the
4641 cleanup chain, so no need to worry about it here. */
e5ef252a 4642
cdaa5b73
PA
4643 stop_stepping (ecs);
4644 return;
4645
4646 case BPSTAT_WHAT_HP_STEP_RESUME:
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4649
4650 delete_step_resume_breakpoint (ecs->event_thread);
4651 if (ecs->event_thread->step_after_step_resume_breakpoint)
4652 {
4653 /* Back when the step-resume breakpoint was inserted, we
4654 were trying to single-step off a breakpoint. Go back to
4655 doing that. */
4656 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4657 ecs->event_thread->stepping_over_breakpoint = 1;
4658 keep_going (ecs);
4659 return;
e5ef252a 4660 }
cdaa5b73
PA
4661 break;
4662
4663 case BPSTAT_WHAT_KEEP_CHECKING:
4664 break;
e5ef252a 4665 }
c906108c 4666
cdaa5b73
PA
4667 /* We come here if we hit a breakpoint but should not stop for it.
4668 Possibly we also were stepping and should stop for that. So fall
4669 through and test for stepping. But, if not stepping, do not
4670 stop. */
c906108c 4671
a7212384
UW
4672 /* In all-stop mode, if we're currently stepping but have stopped in
4673 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4674 if (switch_back_to_stepped_thread (ecs))
4675 return;
776f04fa 4676
8358c15c 4677 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4678 {
527159b7 4679 if (debug_infrun)
d3169d93
DJ
4680 fprintf_unfiltered (gdb_stdlog,
4681 "infrun: step-resume breakpoint is inserted\n");
527159b7 4682
488f131b
JB
4683 /* Having a step-resume breakpoint overrides anything
4684 else having to do with stepping commands until
4685 that breakpoint is reached. */
488f131b
JB
4686 keep_going (ecs);
4687 return;
4688 }
c5aa993b 4689
16c381f0 4690 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4691 {
527159b7 4692 if (debug_infrun)
8a9de0e4 4693 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4694 /* Likewise if we aren't even stepping. */
488f131b
JB
4695 keep_going (ecs);
4696 return;
4697 }
c5aa993b 4698
4b7703ad
JB
4699 /* Re-fetch current thread's frame in case the code above caused
4700 the frame cache to be re-initialized, making our FRAME variable
4701 a dangling pointer. */
4702 frame = get_current_frame ();
628fe4e4 4703 gdbarch = get_frame_arch (frame);
7e324e48 4704 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4705
488f131b 4706 /* If stepping through a line, keep going if still within it.
c906108c 4707
488f131b
JB
4708 Note that step_range_end is the address of the first instruction
4709 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4710 within it!
4711
4712 Note also that during reverse execution, we may be stepping
4713 through a function epilogue and therefore must detect when
4714 the current-frame changes in the middle of a line. */
4715
ce4c476a 4716 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4717 && (execution_direction != EXEC_REVERSE
388a8562 4718 || frame_id_eq (get_frame_id (frame),
16c381f0 4719 ecs->event_thread->control.step_frame_id)))
488f131b 4720 {
527159b7 4721 if (debug_infrun)
5af949e3
UW
4722 fprintf_unfiltered
4723 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4724 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4725 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4726
c1e36e3e
PA
4727 /* Tentatively re-enable range stepping; `resume' disables it if
4728 necessary (e.g., if we're stepping over a breakpoint or we
4729 have software watchpoints). */
4730 ecs->event_thread->control.may_range_step = 1;
4731
b2175913
MS
4732 /* When stepping backward, stop at beginning of line range
4733 (unless it's the function entry point, in which case
4734 keep going back to the call point). */
16c381f0 4735 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4736 && stop_pc != ecs->stop_func_start
4737 && execution_direction == EXEC_REVERSE)
4738 {
16c381f0 4739 ecs->event_thread->control.stop_step = 1;
33d62d64 4740 print_end_stepping_range_reason ();
b2175913
MS
4741 stop_stepping (ecs);
4742 }
4743 else
4744 keep_going (ecs);
4745
488f131b
JB
4746 return;
4747 }
c5aa993b 4748
488f131b 4749 /* We stepped out of the stepping range. */
c906108c 4750
488f131b 4751 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4752 loader dynamic symbol resolution code...
4753
4754 EXEC_FORWARD: we keep on single stepping until we exit the run
4755 time loader code and reach the callee's address.
4756
4757 EXEC_REVERSE: we've already executed the callee (backward), and
4758 the runtime loader code is handled just like any other
4759 undebuggable function call. Now we need only keep stepping
4760 backward through the trampoline code, and that's handled further
4761 down, so there is nothing for us to do here. */
4762
4763 if (execution_direction != EXEC_REVERSE
16c381f0 4764 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4765 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4766 {
4c8c40e6 4767 CORE_ADDR pc_after_resolver =
568d6575 4768 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4769
527159b7 4770 if (debug_infrun)
3e43a32a
MS
4771 fprintf_unfiltered (gdb_stdlog,
4772 "infrun: stepped into dynsym resolve code\n");
527159b7 4773
488f131b
JB
4774 if (pc_after_resolver)
4775 {
4776 /* Set up a step-resume breakpoint at the address
4777 indicated by SKIP_SOLIB_RESOLVER. */
4778 struct symtab_and_line sr_sal;
abbb1732 4779
fe39c653 4780 init_sal (&sr_sal);
488f131b 4781 sr_sal.pc = pc_after_resolver;
6c95b8df 4782 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4783
a6d9a66e
UW
4784 insert_step_resume_breakpoint_at_sal (gdbarch,
4785 sr_sal, null_frame_id);
c5aa993b 4786 }
c906108c 4787
488f131b
JB
4788 keep_going (ecs);
4789 return;
4790 }
c906108c 4791
16c381f0
JK
4792 if (ecs->event_thread->control.step_range_end != 1
4793 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4794 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4795 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4796 {
527159b7 4797 if (debug_infrun)
3e43a32a
MS
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: stepped into signal trampoline\n");
42edda50 4800 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4801 a signal trampoline (either by a signal being delivered or by
4802 the signal handler returning). Just single-step until the
4803 inferior leaves the trampoline (either by calling the handler
4804 or returning). */
488f131b
JB
4805 keep_going (ecs);
4806 return;
4807 }
c906108c 4808
14132e89
MR
4809 /* If we're in the return path from a shared library trampoline,
4810 we want to proceed through the trampoline when stepping. */
4811 /* macro/2012-04-25: This needs to come before the subroutine
4812 call check below as on some targets return trampolines look
4813 like subroutine calls (MIPS16 return thunks). */
4814 if (gdbarch_in_solib_return_trampoline (gdbarch,
4815 stop_pc, ecs->stop_func_name)
4816 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4817 {
4818 /* Determine where this trampoline returns. */
4819 CORE_ADDR real_stop_pc;
4820
4821 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4822
4823 if (debug_infrun)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "infrun: stepped into solib return tramp\n");
4826
4827 /* Only proceed through if we know where it's going. */
4828 if (real_stop_pc)
4829 {
4830 /* And put the step-breakpoint there and go until there. */
4831 struct symtab_and_line sr_sal;
4832
4833 init_sal (&sr_sal); /* initialize to zeroes */
4834 sr_sal.pc = real_stop_pc;
4835 sr_sal.section = find_pc_overlay (sr_sal.pc);
4836 sr_sal.pspace = get_frame_program_space (frame);
4837
4838 /* Do not specify what the fp should be when we stop since
4839 on some machines the prologue is where the new fp value
4840 is established. */
4841 insert_step_resume_breakpoint_at_sal (gdbarch,
4842 sr_sal, null_frame_id);
4843
4844 /* Restart without fiddling with the step ranges or
4845 other state. */
4846 keep_going (ecs);
4847 return;
4848 }
4849 }
4850
c17eaafe
DJ
4851 /* Check for subroutine calls. The check for the current frame
4852 equalling the step ID is not necessary - the check of the
4853 previous frame's ID is sufficient - but it is a common case and
4854 cheaper than checking the previous frame's ID.
14e60db5
DJ
4855
4856 NOTE: frame_id_eq will never report two invalid frame IDs as
4857 being equal, so to get into this block, both the current and
4858 previous frame must have valid frame IDs. */
005ca36a
JB
4859 /* The outer_frame_id check is a heuristic to detect stepping
4860 through startup code. If we step over an instruction which
4861 sets the stack pointer from an invalid value to a valid value,
4862 we may detect that as a subroutine call from the mythical
4863 "outermost" function. This could be fixed by marking
4864 outermost frames as !stack_p,code_p,special_p. Then the
4865 initial outermost frame, before sp was valid, would
ce6cca6d 4866 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4867 for more. */
edb3359d 4868 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4869 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4870 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4871 ecs->event_thread->control.step_stack_frame_id)
4872 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4873 outer_frame_id)
4874 || step_start_function != find_pc_function (stop_pc))))
488f131b 4875 {
95918acb 4876 CORE_ADDR real_stop_pc;
8fb3e588 4877
527159b7 4878 if (debug_infrun)
8a9de0e4 4879 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4880
16c381f0
JK
4881 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4882 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4883 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4884 ecs->stop_func_start)))
95918acb
AC
4885 {
4886 /* I presume that step_over_calls is only 0 when we're
4887 supposed to be stepping at the assembly language level
4888 ("stepi"). Just stop. */
4889 /* Also, maybe we just did a "nexti" inside a prolog, so we
4890 thought it was a subroutine call but it was not. Stop as
4891 well. FENN */
388a8562 4892 /* And this works the same backward as frontward. MVS */
16c381f0 4893 ecs->event_thread->control.stop_step = 1;
33d62d64 4894 print_end_stepping_range_reason ();
95918acb
AC
4895 stop_stepping (ecs);
4896 return;
4897 }
8fb3e588 4898
388a8562
MS
4899 /* Reverse stepping through solib trampolines. */
4900
4901 if (execution_direction == EXEC_REVERSE
16c381f0 4902 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4903 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4904 || (ecs->stop_func_start == 0
4905 && in_solib_dynsym_resolve_code (stop_pc))))
4906 {
4907 /* Any solib trampoline code can be handled in reverse
4908 by simply continuing to single-step. We have already
4909 executed the solib function (backwards), and a few
4910 steps will take us back through the trampoline to the
4911 caller. */
4912 keep_going (ecs);
4913 return;
4914 }
4915
16c381f0 4916 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4917 {
b2175913
MS
4918 /* We're doing a "next".
4919
4920 Normal (forward) execution: set a breakpoint at the
4921 callee's return address (the address at which the caller
4922 will resume).
4923
4924 Reverse (backward) execution. set the step-resume
4925 breakpoint at the start of the function that we just
4926 stepped into (backwards), and continue to there. When we
6130d0b7 4927 get there, we'll need to single-step back to the caller. */
b2175913
MS
4928
4929 if (execution_direction == EXEC_REVERSE)
4930 {
acf9414f
JK
4931 /* If we're already at the start of the function, we've either
4932 just stepped backward into a single instruction function,
4933 or stepped back out of a signal handler to the first instruction
4934 of the function. Just keep going, which will single-step back
4935 to the caller. */
58c48e72 4936 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4937 {
4938 struct symtab_and_line sr_sal;
4939
4940 /* Normal function call return (static or dynamic). */
4941 init_sal (&sr_sal);
4942 sr_sal.pc = ecs->stop_func_start;
4943 sr_sal.pspace = get_frame_program_space (frame);
4944 insert_step_resume_breakpoint_at_sal (gdbarch,
4945 sr_sal, null_frame_id);
4946 }
b2175913
MS
4947 }
4948 else
568d6575 4949 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4950
8567c30f
AC
4951 keep_going (ecs);
4952 return;
4953 }
a53c66de 4954
95918acb 4955 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4956 calling routine and the real function), locate the real
4957 function. That's what tells us (a) whether we want to step
4958 into it at all, and (b) what prologue we want to run to the
4959 end of, if we do step into it. */
568d6575 4960 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4961 if (real_stop_pc == 0)
568d6575 4962 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4963 if (real_stop_pc != 0)
4964 ecs->stop_func_start = real_stop_pc;
8fb3e588 4965
db5f024e 4966 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4967 {
4968 struct symtab_and_line sr_sal;
abbb1732 4969
1b2bfbb9
RC
4970 init_sal (&sr_sal);
4971 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4972 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4973
a6d9a66e
UW
4974 insert_step_resume_breakpoint_at_sal (gdbarch,
4975 sr_sal, null_frame_id);
8fb3e588
AC
4976 keep_going (ecs);
4977 return;
1b2bfbb9
RC
4978 }
4979
95918acb 4980 /* If we have line number information for the function we are
1bfeeb0f
JL
4981 thinking of stepping into and the function isn't on the skip
4982 list, step into it.
95918acb 4983
8fb3e588
AC
4984 If there are several symtabs at that PC (e.g. with include
4985 files), just want to know whether *any* of them have line
4986 numbers. find_pc_line handles this. */
95918acb
AC
4987 {
4988 struct symtab_and_line tmp_sal;
8fb3e588 4989
95918acb 4990 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4991 if (tmp_sal.line != 0
85817405
JK
4992 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4993 &tmp_sal))
95918acb 4994 {
b2175913 4995 if (execution_direction == EXEC_REVERSE)
568d6575 4996 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4997 else
568d6575 4998 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4999 return;
5000 }
5001 }
5002
5003 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5004 set, we stop the step so that the user has a chance to switch
5005 in assembly mode. */
16c381f0 5006 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5007 && step_stop_if_no_debug)
95918acb 5008 {
16c381f0 5009 ecs->event_thread->control.stop_step = 1;
33d62d64 5010 print_end_stepping_range_reason ();
95918acb
AC
5011 stop_stepping (ecs);
5012 return;
5013 }
5014
b2175913
MS
5015 if (execution_direction == EXEC_REVERSE)
5016 {
acf9414f
JK
5017 /* If we're already at the start of the function, we've either just
5018 stepped backward into a single instruction function without line
5019 number info, or stepped back out of a signal handler to the first
5020 instruction of the function without line number info. Just keep
5021 going, which will single-step back to the caller. */
5022 if (ecs->stop_func_start != stop_pc)
5023 {
5024 /* Set a breakpoint at callee's start address.
5025 From there we can step once and be back in the caller. */
5026 struct symtab_and_line sr_sal;
abbb1732 5027
acf9414f
JK
5028 init_sal (&sr_sal);
5029 sr_sal.pc = ecs->stop_func_start;
5030 sr_sal.pspace = get_frame_program_space (frame);
5031 insert_step_resume_breakpoint_at_sal (gdbarch,
5032 sr_sal, null_frame_id);
5033 }
b2175913
MS
5034 }
5035 else
5036 /* Set a breakpoint at callee's return address (the address
5037 at which the caller will resume). */
568d6575 5038 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5039
95918acb 5040 keep_going (ecs);
488f131b 5041 return;
488f131b 5042 }
c906108c 5043
fdd654f3
MS
5044 /* Reverse stepping through solib trampolines. */
5045
5046 if (execution_direction == EXEC_REVERSE
16c381f0 5047 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5048 {
5049 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5050 || (ecs->stop_func_start == 0
5051 && in_solib_dynsym_resolve_code (stop_pc)))
5052 {
5053 /* Any solib trampoline code can be handled in reverse
5054 by simply continuing to single-step. We have already
5055 executed the solib function (backwards), and a few
5056 steps will take us back through the trampoline to the
5057 caller. */
5058 keep_going (ecs);
5059 return;
5060 }
5061 else if (in_solib_dynsym_resolve_code (stop_pc))
5062 {
5063 /* Stepped backward into the solib dynsym resolver.
5064 Set a breakpoint at its start and continue, then
5065 one more step will take us out. */
5066 struct symtab_and_line sr_sal;
abbb1732 5067
fdd654f3
MS
5068 init_sal (&sr_sal);
5069 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5070 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5071 insert_step_resume_breakpoint_at_sal (gdbarch,
5072 sr_sal, null_frame_id);
5073 keep_going (ecs);
5074 return;
5075 }
5076 }
5077
2afb61aa 5078 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5079
1b2bfbb9
RC
5080 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5081 the trampoline processing logic, however, there are some trampolines
5082 that have no names, so we should do trampoline handling first. */
16c381f0 5083 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5084 && ecs->stop_func_name == NULL
2afb61aa 5085 && stop_pc_sal.line == 0)
1b2bfbb9 5086 {
527159b7 5087 if (debug_infrun)
3e43a32a
MS
5088 fprintf_unfiltered (gdb_stdlog,
5089 "infrun: stepped into undebuggable function\n");
527159b7 5090
1b2bfbb9 5091 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5092 undebuggable function (where there is no debugging information
5093 and no line number corresponding to the address where the
1b2bfbb9
RC
5094 inferior stopped). Since we want to skip this kind of code,
5095 we keep going until the inferior returns from this
14e60db5
DJ
5096 function - unless the user has asked us not to (via
5097 set step-mode) or we no longer know how to get back
5098 to the call site. */
5099 if (step_stop_if_no_debug
c7ce8faa 5100 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5101 {
5102 /* If we have no line number and the step-stop-if-no-debug
5103 is set, we stop the step so that the user has a chance to
5104 switch in assembly mode. */
16c381f0 5105 ecs->event_thread->control.stop_step = 1;
33d62d64 5106 print_end_stepping_range_reason ();
1b2bfbb9
RC
5107 stop_stepping (ecs);
5108 return;
5109 }
5110 else
5111 {
5112 /* Set a breakpoint at callee's return address (the address
5113 at which the caller will resume). */
568d6575 5114 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5115 keep_going (ecs);
5116 return;
5117 }
5118 }
5119
16c381f0 5120 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5121 {
5122 /* It is stepi or nexti. We always want to stop stepping after
5123 one instruction. */
527159b7 5124 if (debug_infrun)
8a9de0e4 5125 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5126 ecs->event_thread->control.stop_step = 1;
33d62d64 5127 print_end_stepping_range_reason ();
1b2bfbb9
RC
5128 stop_stepping (ecs);
5129 return;
5130 }
5131
2afb61aa 5132 if (stop_pc_sal.line == 0)
488f131b
JB
5133 {
5134 /* We have no line number information. That means to stop
5135 stepping (does this always happen right after one instruction,
5136 when we do "s" in a function with no line numbers,
5137 or can this happen as a result of a return or longjmp?). */
527159b7 5138 if (debug_infrun)
8a9de0e4 5139 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5140 ecs->event_thread->control.stop_step = 1;
33d62d64 5141 print_end_stepping_range_reason ();
488f131b
JB
5142 stop_stepping (ecs);
5143 return;
5144 }
c906108c 5145
edb3359d
DJ
5146 /* Look for "calls" to inlined functions, part one. If the inline
5147 frame machinery detected some skipped call sites, we have entered
5148 a new inline function. */
5149
5150 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5151 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5152 && inline_skipped_frames (ecs->ptid))
5153 {
5154 struct symtab_and_line call_sal;
5155
5156 if (debug_infrun)
5157 fprintf_unfiltered (gdb_stdlog,
5158 "infrun: stepped into inlined function\n");
5159
5160 find_frame_sal (get_current_frame (), &call_sal);
5161
16c381f0 5162 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5163 {
5164 /* For "step", we're going to stop. But if the call site
5165 for this inlined function is on the same source line as
5166 we were previously stepping, go down into the function
5167 first. Otherwise stop at the call site. */
5168
5169 if (call_sal.line == ecs->event_thread->current_line
5170 && call_sal.symtab == ecs->event_thread->current_symtab)
5171 step_into_inline_frame (ecs->ptid);
5172
16c381f0 5173 ecs->event_thread->control.stop_step = 1;
33d62d64 5174 print_end_stepping_range_reason ();
edb3359d
DJ
5175 stop_stepping (ecs);
5176 return;
5177 }
5178 else
5179 {
5180 /* For "next", we should stop at the call site if it is on a
5181 different source line. Otherwise continue through the
5182 inlined function. */
5183 if (call_sal.line == ecs->event_thread->current_line
5184 && call_sal.symtab == ecs->event_thread->current_symtab)
5185 keep_going (ecs);
5186 else
5187 {
16c381f0 5188 ecs->event_thread->control.stop_step = 1;
33d62d64 5189 print_end_stepping_range_reason ();
edb3359d
DJ
5190 stop_stepping (ecs);
5191 }
5192 return;
5193 }
5194 }
5195
5196 /* Look for "calls" to inlined functions, part two. If we are still
5197 in the same real function we were stepping through, but we have
5198 to go further up to find the exact frame ID, we are stepping
5199 through a more inlined call beyond its call site. */
5200
5201 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5202 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5203 ecs->event_thread->control.step_frame_id)
edb3359d 5204 && stepped_in_from (get_current_frame (),
16c381f0 5205 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5206 {
5207 if (debug_infrun)
5208 fprintf_unfiltered (gdb_stdlog,
5209 "infrun: stepping through inlined function\n");
5210
16c381f0 5211 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5212 keep_going (ecs);
5213 else
5214 {
16c381f0 5215 ecs->event_thread->control.stop_step = 1;
33d62d64 5216 print_end_stepping_range_reason ();
edb3359d
DJ
5217 stop_stepping (ecs);
5218 }
5219 return;
5220 }
5221
2afb61aa 5222 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5223 && (ecs->event_thread->current_line != stop_pc_sal.line
5224 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5225 {
5226 /* We are at the start of a different line. So stop. Note that
5227 we don't stop if we step into the middle of a different line.
5228 That is said to make things like for (;;) statements work
5229 better. */
527159b7 5230 if (debug_infrun)
3e43a32a
MS
5231 fprintf_unfiltered (gdb_stdlog,
5232 "infrun: stepped to a different line\n");
16c381f0 5233 ecs->event_thread->control.stop_step = 1;
33d62d64 5234 print_end_stepping_range_reason ();
488f131b
JB
5235 stop_stepping (ecs);
5236 return;
5237 }
c906108c 5238
488f131b 5239 /* We aren't done stepping.
c906108c 5240
488f131b
JB
5241 Optimize by setting the stepping range to the line.
5242 (We might not be in the original line, but if we entered a
5243 new line in mid-statement, we continue stepping. This makes
5244 things like for(;;) statements work better.) */
c906108c 5245
16c381f0
JK
5246 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5247 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5248 ecs->event_thread->control.may_range_step = 1;
edb3359d 5249 set_step_info (frame, stop_pc_sal);
488f131b 5250
527159b7 5251 if (debug_infrun)
8a9de0e4 5252 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5253 keep_going (ecs);
104c1213
JM
5254}
5255
c447ac0b
PA
5256/* In all-stop mode, if we're currently stepping but have stopped in
5257 some other thread, we may need to switch back to the stepped
5258 thread. Returns true we set the inferior running, false if we left
5259 it stopped (and the event needs further processing). */
5260
5261static int
5262switch_back_to_stepped_thread (struct execution_control_state *ecs)
5263{
5264 if (!non_stop)
5265 {
5266 struct thread_info *tp;
5267
5268 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5269 ecs->event_thread);
5270 if (tp)
5271 {
5272 /* However, if the current thread is blocked on some internal
5273 breakpoint, and we simply need to step over that breakpoint
5274 to get it going again, do that first. */
5275 if ((ecs->event_thread->control.trap_expected
5276 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5277 || ecs->event_thread->stepping_over_breakpoint)
5278 {
5279 keep_going (ecs);
5280 return 1;
5281 }
5282
5283 /* If the stepping thread exited, then don't try to switch
5284 back and resume it, which could fail in several different
5285 ways depending on the target. Instead, just keep going.
5286
5287 We can find a stepping dead thread in the thread list in
5288 two cases:
5289
5290 - The target supports thread exit events, and when the
5291 target tries to delete the thread from the thread list,
5292 inferior_ptid pointed at the exiting thread. In such
5293 case, calling delete_thread does not really remove the
5294 thread from the list; instead, the thread is left listed,
5295 with 'exited' state.
5296
5297 - The target's debug interface does not support thread
5298 exit events, and so we have no idea whatsoever if the
5299 previously stepping thread is still alive. For that
5300 reason, we need to synchronously query the target
5301 now. */
5302 if (is_exited (tp->ptid)
5303 || !target_thread_alive (tp->ptid))
5304 {
5305 if (debug_infrun)
5306 fprintf_unfiltered (gdb_stdlog,
5307 "infrun: not switching back to "
5308 "stepped thread, it has vanished\n");
5309
5310 delete_thread (tp->ptid);
5311 keep_going (ecs);
5312 return 1;
5313 }
5314
5315 /* Otherwise, we no longer expect a trap in the current thread.
5316 Clear the trap_expected flag before switching back -- this is
5317 what keep_going would do as well, if we called it. */
5318 ecs->event_thread->control.trap_expected = 0;
5319
5320 if (debug_infrun)
5321 fprintf_unfiltered (gdb_stdlog,
5322 "infrun: switching back to stepped thread\n");
5323
5324 ecs->event_thread = tp;
5325 ecs->ptid = tp->ptid;
5326 context_switch (ecs->ptid);
5327 keep_going (ecs);
5328 return 1;
5329 }
5330 }
5331 return 0;
5332}
5333
b3444185 5334/* Is thread TP in the middle of single-stepping? */
104c1213 5335
a289b8f6 5336static int
b3444185 5337currently_stepping (struct thread_info *tp)
a7212384 5338{
8358c15c
JK
5339 return ((tp->control.step_range_end
5340 && tp->control.step_resume_breakpoint == NULL)
5341 || tp->control.trap_expected
8358c15c 5342 || bpstat_should_step ());
a7212384
UW
5343}
5344
b3444185
PA
5345/* Returns true if any thread *but* the one passed in "data" is in the
5346 middle of stepping or of handling a "next". */
a7212384 5347
104c1213 5348static int
b3444185 5349currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5350{
b3444185
PA
5351 if (tp == data)
5352 return 0;
5353
16c381f0 5354 return (tp->control.step_range_end
ede1849f 5355 || tp->control.trap_expected);
104c1213 5356}
c906108c 5357
b2175913
MS
5358/* Inferior has stepped into a subroutine call with source code that
5359 we should not step over. Do step to the first line of code in
5360 it. */
c2c6d25f
JM
5361
5362static void
568d6575
UW
5363handle_step_into_function (struct gdbarch *gdbarch,
5364 struct execution_control_state *ecs)
c2c6d25f
JM
5365{
5366 struct symtab *s;
2afb61aa 5367 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5368
7e324e48
GB
5369 fill_in_stop_func (gdbarch, ecs);
5370
c2c6d25f
JM
5371 s = find_pc_symtab (stop_pc);
5372 if (s && s->language != language_asm)
568d6575 5373 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5374 ecs->stop_func_start);
c2c6d25f 5375
2afb61aa 5376 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5377 /* Use the step_resume_break to step until the end of the prologue,
5378 even if that involves jumps (as it seems to on the vax under
5379 4.2). */
5380 /* If the prologue ends in the middle of a source line, continue to
5381 the end of that source line (if it is still within the function).
5382 Otherwise, just go to end of prologue. */
2afb61aa
PA
5383 if (stop_func_sal.end
5384 && stop_func_sal.pc != ecs->stop_func_start
5385 && stop_func_sal.end < ecs->stop_func_end)
5386 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5387
2dbd5e30
KB
5388 /* Architectures which require breakpoint adjustment might not be able
5389 to place a breakpoint at the computed address. If so, the test
5390 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5391 ecs->stop_func_start to an address at which a breakpoint may be
5392 legitimately placed.
8fb3e588 5393
2dbd5e30
KB
5394 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5395 made, GDB will enter an infinite loop when stepping through
5396 optimized code consisting of VLIW instructions which contain
5397 subinstructions corresponding to different source lines. On
5398 FR-V, it's not permitted to place a breakpoint on any but the
5399 first subinstruction of a VLIW instruction. When a breakpoint is
5400 set, GDB will adjust the breakpoint address to the beginning of
5401 the VLIW instruction. Thus, we need to make the corresponding
5402 adjustment here when computing the stop address. */
8fb3e588 5403
568d6575 5404 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5405 {
5406 ecs->stop_func_start
568d6575 5407 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5408 ecs->stop_func_start);
2dbd5e30
KB
5409 }
5410
c2c6d25f
JM
5411 if (ecs->stop_func_start == stop_pc)
5412 {
5413 /* We are already there: stop now. */
16c381f0 5414 ecs->event_thread->control.stop_step = 1;
33d62d64 5415 print_end_stepping_range_reason ();
c2c6d25f
JM
5416 stop_stepping (ecs);
5417 return;
5418 }
5419 else
5420 {
5421 /* Put the step-breakpoint there and go until there. */
fe39c653 5422 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5423 sr_sal.pc = ecs->stop_func_start;
5424 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5425 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5426
c2c6d25f 5427 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5428 some machines the prologue is where the new fp value is
5429 established. */
a6d9a66e 5430 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5431
5432 /* And make sure stepping stops right away then. */
16c381f0
JK
5433 ecs->event_thread->control.step_range_end
5434 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5435 }
5436 keep_going (ecs);
5437}
d4f3574e 5438
b2175913
MS
5439/* Inferior has stepped backward into a subroutine call with source
5440 code that we should not step over. Do step to the beginning of the
5441 last line of code in it. */
5442
5443static void
568d6575
UW
5444handle_step_into_function_backward (struct gdbarch *gdbarch,
5445 struct execution_control_state *ecs)
b2175913
MS
5446{
5447 struct symtab *s;
167e4384 5448 struct symtab_and_line stop_func_sal;
b2175913 5449
7e324e48
GB
5450 fill_in_stop_func (gdbarch, ecs);
5451
b2175913
MS
5452 s = find_pc_symtab (stop_pc);
5453 if (s && s->language != language_asm)
568d6575 5454 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5455 ecs->stop_func_start);
5456
5457 stop_func_sal = find_pc_line (stop_pc, 0);
5458
5459 /* OK, we're just going to keep stepping here. */
5460 if (stop_func_sal.pc == stop_pc)
5461 {
5462 /* We're there already. Just stop stepping now. */
16c381f0 5463 ecs->event_thread->control.stop_step = 1;
33d62d64 5464 print_end_stepping_range_reason ();
b2175913
MS
5465 stop_stepping (ecs);
5466 }
5467 else
5468 {
5469 /* Else just reset the step range and keep going.
5470 No step-resume breakpoint, they don't work for
5471 epilogues, which can have multiple entry paths. */
16c381f0
JK
5472 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5473 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5474 keep_going (ecs);
5475 }
5476 return;
5477}
5478
d3169d93 5479/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5480 This is used to both functions and to skip over code. */
5481
5482static void
2c03e5be
PA
5483insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5484 struct symtab_and_line sr_sal,
5485 struct frame_id sr_id,
5486 enum bptype sr_type)
44cbf7b5 5487{
611c83ae
PA
5488 /* There should never be more than one step-resume or longjmp-resume
5489 breakpoint per thread, so we should never be setting a new
44cbf7b5 5490 step_resume_breakpoint when one is already active. */
8358c15c 5491 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5492 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5493
5494 if (debug_infrun)
5495 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5496 "infrun: inserting step-resume breakpoint at %s\n",
5497 paddress (gdbarch, sr_sal.pc));
d3169d93 5498
8358c15c 5499 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5500 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5501}
5502
9da8c2a0 5503void
2c03e5be
PA
5504insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5505 struct symtab_and_line sr_sal,
5506 struct frame_id sr_id)
5507{
5508 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5509 sr_sal, sr_id,
5510 bp_step_resume);
44cbf7b5 5511}
7ce450bd 5512
2c03e5be
PA
5513/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5514 This is used to skip a potential signal handler.
7ce450bd 5515
14e60db5
DJ
5516 This is called with the interrupted function's frame. The signal
5517 handler, when it returns, will resume the interrupted function at
5518 RETURN_FRAME.pc. */
d303a6c7
AC
5519
5520static void
2c03e5be 5521insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5522{
5523 struct symtab_and_line sr_sal;
a6d9a66e 5524 struct gdbarch *gdbarch;
d303a6c7 5525
f4c1edd8 5526 gdb_assert (return_frame != NULL);
d303a6c7
AC
5527 init_sal (&sr_sal); /* initialize to zeros */
5528
a6d9a66e 5529 gdbarch = get_frame_arch (return_frame);
568d6575 5530 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5531 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5532 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5533
2c03e5be
PA
5534 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5535 get_stack_frame_id (return_frame),
5536 bp_hp_step_resume);
d303a6c7
AC
5537}
5538
2c03e5be
PA
5539/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5540 is used to skip a function after stepping into it (for "next" or if
5541 the called function has no debugging information).
14e60db5
DJ
5542
5543 The current function has almost always been reached by single
5544 stepping a call or return instruction. NEXT_FRAME belongs to the
5545 current function, and the breakpoint will be set at the caller's
5546 resume address.
5547
5548 This is a separate function rather than reusing
2c03e5be 5549 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5550 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5551 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5552
5553static void
5554insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5555{
5556 struct symtab_and_line sr_sal;
a6d9a66e 5557 struct gdbarch *gdbarch;
14e60db5
DJ
5558
5559 /* We shouldn't have gotten here if we don't know where the call site
5560 is. */
c7ce8faa 5561 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5562
5563 init_sal (&sr_sal); /* initialize to zeros */
5564
a6d9a66e 5565 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5566 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5567 frame_unwind_caller_pc (next_frame));
14e60db5 5568 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5569 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5570
a6d9a66e 5571 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5572 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5573}
5574
611c83ae
PA
5575/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5576 new breakpoint at the target of a jmp_buf. The handling of
5577 longjmp-resume uses the same mechanisms used for handling
5578 "step-resume" breakpoints. */
5579
5580static void
a6d9a66e 5581insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5582{
e81a37f7
TT
5583 /* There should never be more than one longjmp-resume breakpoint per
5584 thread, so we should never be setting a new
611c83ae 5585 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5586 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5587
5588 if (debug_infrun)
5589 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5590 "infrun: inserting longjmp-resume breakpoint at %s\n",
5591 paddress (gdbarch, pc));
611c83ae 5592
e81a37f7 5593 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5594 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5595}
5596
186c406b
TT
5597/* Insert an exception resume breakpoint. TP is the thread throwing
5598 the exception. The block B is the block of the unwinder debug hook
5599 function. FRAME is the frame corresponding to the call to this
5600 function. SYM is the symbol of the function argument holding the
5601 target PC of the exception. */
5602
5603static void
5604insert_exception_resume_breakpoint (struct thread_info *tp,
5605 struct block *b,
5606 struct frame_info *frame,
5607 struct symbol *sym)
5608{
bfd189b1 5609 volatile struct gdb_exception e;
186c406b
TT
5610
5611 /* We want to ignore errors here. */
5612 TRY_CATCH (e, RETURN_MASK_ERROR)
5613 {
5614 struct symbol *vsym;
5615 struct value *value;
5616 CORE_ADDR handler;
5617 struct breakpoint *bp;
5618
5619 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5620 value = read_var_value (vsym, frame);
5621 /* If the value was optimized out, revert to the old behavior. */
5622 if (! value_optimized_out (value))
5623 {
5624 handler = value_as_address (value);
5625
5626 if (debug_infrun)
5627 fprintf_unfiltered (gdb_stdlog,
5628 "infrun: exception resume at %lx\n",
5629 (unsigned long) handler);
5630
5631 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5632 handler, bp_exception_resume);
c70a6932
JK
5633
5634 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5635 frame = NULL;
5636
186c406b
TT
5637 bp->thread = tp->num;
5638 inferior_thread ()->control.exception_resume_breakpoint = bp;
5639 }
5640 }
5641}
5642
28106bc2
SDJ
5643/* A helper for check_exception_resume that sets an
5644 exception-breakpoint based on a SystemTap probe. */
5645
5646static void
5647insert_exception_resume_from_probe (struct thread_info *tp,
5648 const struct probe *probe,
28106bc2
SDJ
5649 struct frame_info *frame)
5650{
5651 struct value *arg_value;
5652 CORE_ADDR handler;
5653 struct breakpoint *bp;
5654
5655 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5656 if (!arg_value)
5657 return;
5658
5659 handler = value_as_address (arg_value);
5660
5661 if (debug_infrun)
5662 fprintf_unfiltered (gdb_stdlog,
5663 "infrun: exception resume at %s\n",
6bac7473 5664 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5665 handler));
5666
5667 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5668 handler, bp_exception_resume);
5669 bp->thread = tp->num;
5670 inferior_thread ()->control.exception_resume_breakpoint = bp;
5671}
5672
186c406b
TT
5673/* This is called when an exception has been intercepted. Check to
5674 see whether the exception's destination is of interest, and if so,
5675 set an exception resume breakpoint there. */
5676
5677static void
5678check_exception_resume (struct execution_control_state *ecs,
28106bc2 5679 struct frame_info *frame)
186c406b 5680{
bfd189b1 5681 volatile struct gdb_exception e;
28106bc2
SDJ
5682 const struct probe *probe;
5683 struct symbol *func;
5684
5685 /* First see if this exception unwinding breakpoint was set via a
5686 SystemTap probe point. If so, the probe has two arguments: the
5687 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5688 set a breakpoint there. */
6bac7473 5689 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5690 if (probe)
5691 {
6bac7473 5692 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5693 return;
5694 }
5695
5696 func = get_frame_function (frame);
5697 if (!func)
5698 return;
186c406b
TT
5699
5700 TRY_CATCH (e, RETURN_MASK_ERROR)
5701 {
5702 struct block *b;
8157b174 5703 struct block_iterator iter;
186c406b
TT
5704 struct symbol *sym;
5705 int argno = 0;
5706
5707 /* The exception breakpoint is a thread-specific breakpoint on
5708 the unwinder's debug hook, declared as:
5709
5710 void _Unwind_DebugHook (void *cfa, void *handler);
5711
5712 The CFA argument indicates the frame to which control is
5713 about to be transferred. HANDLER is the destination PC.
5714
5715 We ignore the CFA and set a temporary breakpoint at HANDLER.
5716 This is not extremely efficient but it avoids issues in gdb
5717 with computing the DWARF CFA, and it also works even in weird
5718 cases such as throwing an exception from inside a signal
5719 handler. */
5720
5721 b = SYMBOL_BLOCK_VALUE (func);
5722 ALL_BLOCK_SYMBOLS (b, iter, sym)
5723 {
5724 if (!SYMBOL_IS_ARGUMENT (sym))
5725 continue;
5726
5727 if (argno == 0)
5728 ++argno;
5729 else
5730 {
5731 insert_exception_resume_breakpoint (ecs->event_thread,
5732 b, frame, sym);
5733 break;
5734 }
5735 }
5736 }
5737}
5738
104c1213
JM
5739static void
5740stop_stepping (struct execution_control_state *ecs)
5741{
527159b7 5742 if (debug_infrun)
8a9de0e4 5743 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5744
cd0fc7c3
SS
5745 /* Let callers know we don't want to wait for the inferior anymore. */
5746 ecs->wait_some_more = 0;
5747}
5748
a9ba6bae
PA
5749/* Called when we should continue running the inferior, because the
5750 current event doesn't cause a user visible stop. This does the
5751 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5752
5753static void
5754keep_going (struct execution_control_state *ecs)
5755{
c4dbc9af
PA
5756 /* Make sure normal_stop is called if we get a QUIT handled before
5757 reaching resume. */
5758 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5759
d4f3574e 5760 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5761 ecs->event_thread->prev_pc
5762 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5763
16c381f0 5764 if (ecs->event_thread->control.trap_expected
a493e3e2 5765 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5766 {
a9ba6bae
PA
5767 /* We haven't yet gotten our trap, and either: intercepted a
5768 non-signal event (e.g., a fork); or took a signal which we
5769 are supposed to pass through to the inferior. Simply
5770 continue. */
c4dbc9af 5771 discard_cleanups (old_cleanups);
2020b7ab 5772 resume (currently_stepping (ecs->event_thread),
16c381f0 5773 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5774 }
5775 else
5776 {
5777 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5778 anyway (if we got a signal, the user asked it be passed to
5779 the child)
5780 -- or --
5781 We got our expected trap, but decided we should resume from
5782 it.
d4f3574e 5783
a9ba6bae 5784 We're going to run this baby now!
d4f3574e 5785
c36b740a
VP
5786 Note that insert_breakpoints won't try to re-insert
5787 already inserted breakpoints. Therefore, we don't
5788 care if breakpoints were already inserted, or not. */
a9ba6bae 5789
4e1c45ea 5790 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5791 {
9f5a595d 5792 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5793
9f5a595d 5794 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5795 {
5796 /* Since we can't do a displaced step, we have to remove
5797 the breakpoint while we step it. To keep things
5798 simple, we remove them all. */
5799 remove_breakpoints ();
5800 }
45e8c884
VP
5801 }
5802 else
d4f3574e 5803 {
bfd189b1 5804 volatile struct gdb_exception e;
abbb1732 5805
a9ba6bae 5806 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5807 TRY_CATCH (e, RETURN_MASK_ERROR)
5808 {
5809 insert_breakpoints ();
5810 }
5811 if (e.reason < 0)
d4f3574e 5812 {
97bd5475 5813 exception_print (gdb_stderr, e);
d4f3574e
SS
5814 stop_stepping (ecs);
5815 return;
5816 }
d4f3574e
SS
5817 }
5818
16c381f0
JK
5819 ecs->event_thread->control.trap_expected
5820 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5821
a9ba6bae
PA
5822 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5823 explicitly specifies that such a signal should be delivered
5824 to the target program). Typically, that would occur when a
5825 user is debugging a target monitor on a simulator: the target
5826 monitor sets a breakpoint; the simulator encounters this
5827 breakpoint and halts the simulation handing control to GDB;
5828 GDB, noting that the stop address doesn't map to any known
5829 breakpoint, returns control back to the simulator; the
5830 simulator then delivers the hardware equivalent of a
5831 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5832 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5833 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5834 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5835
c4dbc9af 5836 discard_cleanups (old_cleanups);
2020b7ab 5837 resume (currently_stepping (ecs->event_thread),
16c381f0 5838 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5839 }
5840
488f131b 5841 prepare_to_wait (ecs);
d4f3574e
SS
5842}
5843
104c1213
JM
5844/* This function normally comes after a resume, before
5845 handle_inferior_event exits. It takes care of any last bits of
5846 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5847
104c1213
JM
5848static void
5849prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5850{
527159b7 5851 if (debug_infrun)
8a9de0e4 5852 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5853
104c1213
JM
5854 /* This is the old end of the while loop. Let everybody know we
5855 want to wait for the inferior some more and get called again
5856 soon. */
5857 ecs->wait_some_more = 1;
c906108c 5858}
11cf8741 5859
33d62d64
JK
5860/* Several print_*_reason functions to print why the inferior has stopped.
5861 We always print something when the inferior exits, or receives a signal.
5862 The rest of the cases are dealt with later on in normal_stop and
5863 print_it_typical. Ideally there should be a call to one of these
5864 print_*_reason functions functions from handle_inferior_event each time
5865 stop_stepping is called. */
5866
5867/* Print why the inferior has stopped.
5868 We are done with a step/next/si/ni command, print why the inferior has
5869 stopped. For now print nothing. Print a message only if not in the middle
5870 of doing a "step n" operation for n > 1. */
5871
5872static void
5873print_end_stepping_range_reason (void)
5874{
16c381f0
JK
5875 if ((!inferior_thread ()->step_multi
5876 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5877 && ui_out_is_mi_like_p (current_uiout))
5878 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5879 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5880}
5881
5882/* The inferior was terminated by a signal, print why it stopped. */
5883
11cf8741 5884static void
2ea28649 5885print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5886{
79a45e25
PA
5887 struct ui_out *uiout = current_uiout;
5888
33d62d64
JK
5889 annotate_signalled ();
5890 if (ui_out_is_mi_like_p (uiout))
5891 ui_out_field_string
5892 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5893 ui_out_text (uiout, "\nProgram terminated with signal ");
5894 annotate_signal_name ();
5895 ui_out_field_string (uiout, "signal-name",
2ea28649 5896 gdb_signal_to_name (siggnal));
33d62d64
JK
5897 annotate_signal_name_end ();
5898 ui_out_text (uiout, ", ");
5899 annotate_signal_string ();
5900 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5901 gdb_signal_to_string (siggnal));
33d62d64
JK
5902 annotate_signal_string_end ();
5903 ui_out_text (uiout, ".\n");
5904 ui_out_text (uiout, "The program no longer exists.\n");
5905}
5906
5907/* The inferior program is finished, print why it stopped. */
5908
5909static void
5910print_exited_reason (int exitstatus)
5911{
fda326dd
TT
5912 struct inferior *inf = current_inferior ();
5913 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5914 struct ui_out *uiout = current_uiout;
fda326dd 5915
33d62d64
JK
5916 annotate_exited (exitstatus);
5917 if (exitstatus)
5918 {
5919 if (ui_out_is_mi_like_p (uiout))
5920 ui_out_field_string (uiout, "reason",
5921 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5922 ui_out_text (uiout, "[Inferior ");
5923 ui_out_text (uiout, plongest (inf->num));
5924 ui_out_text (uiout, " (");
5925 ui_out_text (uiout, pidstr);
5926 ui_out_text (uiout, ") exited with code ");
33d62d64 5927 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5928 ui_out_text (uiout, "]\n");
33d62d64
JK
5929 }
5930 else
11cf8741 5931 {
9dc5e2a9 5932 if (ui_out_is_mi_like_p (uiout))
034dad6f 5933 ui_out_field_string
33d62d64 5934 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5935 ui_out_text (uiout, "[Inferior ");
5936 ui_out_text (uiout, plongest (inf->num));
5937 ui_out_text (uiout, " (");
5938 ui_out_text (uiout, pidstr);
5939 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5940 }
5941 /* Support the --return-child-result option. */
5942 return_child_result_value = exitstatus;
5943}
5944
5945/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5946 tells us to print about it. */
33d62d64
JK
5947
5948static void
2ea28649 5949print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5950{
79a45e25
PA
5951 struct ui_out *uiout = current_uiout;
5952
33d62d64
JK
5953 annotate_signal ();
5954
a493e3e2 5955 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5956 {
5957 struct thread_info *t = inferior_thread ();
5958
5959 ui_out_text (uiout, "\n[");
5960 ui_out_field_string (uiout, "thread-name",
5961 target_pid_to_str (t->ptid));
5962 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5963 ui_out_text (uiout, " stopped");
5964 }
5965 else
5966 {
5967 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5968 annotate_signal_name ();
33d62d64
JK
5969 if (ui_out_is_mi_like_p (uiout))
5970 ui_out_field_string
5971 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5972 ui_out_field_string (uiout, "signal-name",
2ea28649 5973 gdb_signal_to_name (siggnal));
8b93c638
JM
5974 annotate_signal_name_end ();
5975 ui_out_text (uiout, ", ");
5976 annotate_signal_string ();
488f131b 5977 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5978 gdb_signal_to_string (siggnal));
8b93c638 5979 annotate_signal_string_end ();
33d62d64
JK
5980 }
5981 ui_out_text (uiout, ".\n");
5982}
252fbfc8 5983
33d62d64
JK
5984/* Reverse execution: target ran out of history info, print why the inferior
5985 has stopped. */
252fbfc8 5986
33d62d64
JK
5987static void
5988print_no_history_reason (void)
5989{
79a45e25 5990 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5991}
43ff13b4 5992
c906108c
SS
5993/* Here to return control to GDB when the inferior stops for real.
5994 Print appropriate messages, remove breakpoints, give terminal our modes.
5995
5996 STOP_PRINT_FRAME nonzero means print the executing frame
5997 (pc, function, args, file, line number and line text).
5998 BREAKPOINTS_FAILED nonzero means stop was due to error
5999 attempting to insert breakpoints. */
6000
6001void
96baa820 6002normal_stop (void)
c906108c 6003{
73b65bb0
DJ
6004 struct target_waitstatus last;
6005 ptid_t last_ptid;
29f49a6a 6006 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6007
6008 get_last_target_status (&last_ptid, &last);
6009
29f49a6a
PA
6010 /* If an exception is thrown from this point on, make sure to
6011 propagate GDB's knowledge of the executing state to the
6012 frontend/user running state. A QUIT is an easy exception to see
6013 here, so do this before any filtered output. */
c35b1492
PA
6014 if (!non_stop)
6015 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6016 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6017 && last.kind != TARGET_WAITKIND_EXITED
6018 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6019 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6020
4f8d22e3
PA
6021 /* In non-stop mode, we don't want GDB to switch threads behind the
6022 user's back, to avoid races where the user is typing a command to
6023 apply to thread x, but GDB switches to thread y before the user
6024 finishes entering the command. */
6025
c906108c
SS
6026 /* As with the notification of thread events, we want to delay
6027 notifying the user that we've switched thread context until
6028 the inferior actually stops.
6029
73b65bb0
DJ
6030 There's no point in saying anything if the inferior has exited.
6031 Note that SIGNALLED here means "exited with a signal", not
6032 "received a signal". */
4f8d22e3
PA
6033 if (!non_stop
6034 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6035 && target_has_execution
6036 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6037 && last.kind != TARGET_WAITKIND_EXITED
6038 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6039 {
6040 target_terminal_ours_for_output ();
a3f17187 6041 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6042 target_pid_to_str (inferior_ptid));
b8fa951a 6043 annotate_thread_changed ();
39f77062 6044 previous_inferior_ptid = inferior_ptid;
c906108c 6045 }
c906108c 6046
0e5bf2a8
PA
6047 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6048 {
6049 gdb_assert (sync_execution || !target_can_async_p ());
6050
6051 target_terminal_ours_for_output ();
6052 printf_filtered (_("No unwaited-for children left.\n"));
6053 }
6054
74960c60 6055 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6056 {
6057 if (remove_breakpoints ())
6058 {
6059 target_terminal_ours_for_output ();
3e43a32a
MS
6060 printf_filtered (_("Cannot remove breakpoints because "
6061 "program is no longer writable.\nFurther "
6062 "execution is probably impossible.\n"));
c906108c
SS
6063 }
6064 }
c906108c 6065
c906108c
SS
6066 /* If an auto-display called a function and that got a signal,
6067 delete that auto-display to avoid an infinite recursion. */
6068
6069 if (stopped_by_random_signal)
6070 disable_current_display ();
6071
6072 /* Don't print a message if in the middle of doing a "step n"
6073 operation for n > 1 */
af679fd0
PA
6074 if (target_has_execution
6075 && last.kind != TARGET_WAITKIND_SIGNALLED
6076 && last.kind != TARGET_WAITKIND_EXITED
6077 && inferior_thread ()->step_multi
16c381f0 6078 && inferior_thread ()->control.stop_step)
c906108c
SS
6079 goto done;
6080
6081 target_terminal_ours ();
0f641c01 6082 async_enable_stdin ();
c906108c 6083
7abfe014
DJ
6084 /* Set the current source location. This will also happen if we
6085 display the frame below, but the current SAL will be incorrect
6086 during a user hook-stop function. */
d729566a 6087 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6088 set_current_sal_from_frame (get_current_frame (), 1);
6089
dd7e2d2b
PA
6090 /* Let the user/frontend see the threads as stopped. */
6091 do_cleanups (old_chain);
6092
6093 /* Look up the hook_stop and run it (CLI internally handles problem
6094 of stop_command's pre-hook not existing). */
6095 if (stop_command)
6096 catch_errors (hook_stop_stub, stop_command,
6097 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6098
d729566a 6099 if (!has_stack_frames ())
d51fd4c8 6100 goto done;
c906108c 6101
32400beb
PA
6102 if (last.kind == TARGET_WAITKIND_SIGNALLED
6103 || last.kind == TARGET_WAITKIND_EXITED)
6104 goto done;
6105
c906108c
SS
6106 /* Select innermost stack frame - i.e., current frame is frame 0,
6107 and current location is based on that.
6108 Don't do this on return from a stack dummy routine,
1777feb0 6109 or if the program has exited. */
c906108c
SS
6110
6111 if (!stop_stack_dummy)
6112 {
0f7d239c 6113 select_frame (get_current_frame ());
c906108c
SS
6114
6115 /* Print current location without a level number, if
c5aa993b
JM
6116 we have changed functions or hit a breakpoint.
6117 Print source line if we have one.
6118 bpstat_print() contains the logic deciding in detail
1777feb0 6119 what to print, based on the event(s) that just occurred. */
c906108c 6120
d01a8610
AS
6121 /* If --batch-silent is enabled then there's no need to print the current
6122 source location, and to try risks causing an error message about
6123 missing source files. */
6124 if (stop_print_frame && !batch_silent)
c906108c
SS
6125 {
6126 int bpstat_ret;
6127 int source_flag;
917317f4 6128 int do_frame_printing = 1;
347bddb7 6129 struct thread_info *tp = inferior_thread ();
c906108c 6130
36dfb11c 6131 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6132 switch (bpstat_ret)
6133 {
6134 case PRINT_UNKNOWN:
aa0cd9c1 6135 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6136 (or should) carry around the function and does (or
6137 should) use that when doing a frame comparison. */
16c381f0
JK
6138 if (tp->control.stop_step
6139 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6140 get_frame_id (get_current_frame ()))
917317f4 6141 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6142 source_flag = SRC_LINE; /* Finished step, just
6143 print source line. */
917317f4 6144 else
1777feb0
MS
6145 source_flag = SRC_AND_LOC; /* Print location and
6146 source line. */
917317f4
JM
6147 break;
6148 case PRINT_SRC_AND_LOC:
1777feb0
MS
6149 source_flag = SRC_AND_LOC; /* Print location and
6150 source line. */
917317f4
JM
6151 break;
6152 case PRINT_SRC_ONLY:
c5394b80 6153 source_flag = SRC_LINE;
917317f4
JM
6154 break;
6155 case PRINT_NOTHING:
488f131b 6156 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6157 do_frame_printing = 0;
6158 break;
6159 default:
e2e0b3e5 6160 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6161 }
c906108c
SS
6162
6163 /* The behavior of this routine with respect to the source
6164 flag is:
c5394b80
JM
6165 SRC_LINE: Print only source line
6166 LOCATION: Print only location
1777feb0 6167 SRC_AND_LOC: Print location and source line. */
917317f4 6168 if (do_frame_printing)
08d72866 6169 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6170
6171 /* Display the auto-display expressions. */
6172 do_displays ();
6173 }
6174 }
6175
6176 /* Save the function value return registers, if we care.
6177 We might be about to restore their previous contents. */
9da8c2a0
PA
6178 if (inferior_thread ()->control.proceed_to_finish
6179 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6180 {
6181 /* This should not be necessary. */
6182 if (stop_registers)
6183 regcache_xfree (stop_registers);
6184
6185 /* NB: The copy goes through to the target picking up the value of
6186 all the registers. */
6187 stop_registers = regcache_dup (get_current_regcache ());
6188 }
c906108c 6189
aa7d318d 6190 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6191 {
b89667eb
DE
6192 /* Pop the empty frame that contains the stack dummy.
6193 This also restores inferior state prior to the call
16c381f0 6194 (struct infcall_suspend_state). */
b89667eb 6195 struct frame_info *frame = get_current_frame ();
abbb1732 6196
b89667eb
DE
6197 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6198 frame_pop (frame);
3e43a32a
MS
6199 /* frame_pop() calls reinit_frame_cache as the last thing it
6200 does which means there's currently no selected frame. We
6201 don't need to re-establish a selected frame if the dummy call
6202 returns normally, that will be done by
6203 restore_infcall_control_state. However, we do have to handle
6204 the case where the dummy call is returning after being
6205 stopped (e.g. the dummy call previously hit a breakpoint).
6206 We can't know which case we have so just always re-establish
6207 a selected frame here. */
0f7d239c 6208 select_frame (get_current_frame ());
c906108c
SS
6209 }
6210
c906108c
SS
6211done:
6212 annotate_stopped ();
41d2bdb4
PA
6213
6214 /* Suppress the stop observer if we're in the middle of:
6215
6216 - a step n (n > 1), as there still more steps to be done.
6217
6218 - a "finish" command, as the observer will be called in
6219 finish_command_continuation, so it can include the inferior
6220 function's return value.
6221
6222 - calling an inferior function, as we pretend we inferior didn't
6223 run at all. The return value of the call is handled by the
6224 expression evaluator, through call_function_by_hand. */
6225
6226 if (!target_has_execution
6227 || last.kind == TARGET_WAITKIND_SIGNALLED
6228 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6229 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6230 || (!(inferior_thread ()->step_multi
6231 && inferior_thread ()->control.stop_step)
16c381f0
JK
6232 && !(inferior_thread ()->control.stop_bpstat
6233 && inferior_thread ()->control.proceed_to_finish)
6234 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6235 {
6236 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6237 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6238 stop_print_frame);
347bddb7 6239 else
1d33d6ba 6240 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6241 }
347bddb7 6242
48844aa6
PA
6243 if (target_has_execution)
6244 {
6245 if (last.kind != TARGET_WAITKIND_SIGNALLED
6246 && last.kind != TARGET_WAITKIND_EXITED)
6247 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6248 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6249 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6250 }
6c95b8df
PA
6251
6252 /* Try to get rid of automatically added inferiors that are no
6253 longer needed. Keeping those around slows down things linearly.
6254 Note that this never removes the current inferior. */
6255 prune_inferiors ();
c906108c
SS
6256}
6257
6258static int
96baa820 6259hook_stop_stub (void *cmd)
c906108c 6260{
5913bcb0 6261 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6262 return (0);
6263}
6264\f
c5aa993b 6265int
96baa820 6266signal_stop_state (int signo)
c906108c 6267{
d6b48e9c 6268 return signal_stop[signo];
c906108c
SS
6269}
6270
c5aa993b 6271int
96baa820 6272signal_print_state (int signo)
c906108c
SS
6273{
6274 return signal_print[signo];
6275}
6276
c5aa993b 6277int
96baa820 6278signal_pass_state (int signo)
c906108c
SS
6279{
6280 return signal_program[signo];
6281}
6282
2455069d
UW
6283static void
6284signal_cache_update (int signo)
6285{
6286 if (signo == -1)
6287 {
a493e3e2 6288 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6289 signal_cache_update (signo);
6290
6291 return;
6292 }
6293
6294 signal_pass[signo] = (signal_stop[signo] == 0
6295 && signal_print[signo] == 0
ab04a2af
TT
6296 && signal_program[signo] == 1
6297 && signal_catch[signo] == 0);
2455069d
UW
6298}
6299
488f131b 6300int
7bda5e4a 6301signal_stop_update (int signo, int state)
d4f3574e
SS
6302{
6303 int ret = signal_stop[signo];
abbb1732 6304
d4f3574e 6305 signal_stop[signo] = state;
2455069d 6306 signal_cache_update (signo);
d4f3574e
SS
6307 return ret;
6308}
6309
488f131b 6310int
7bda5e4a 6311signal_print_update (int signo, int state)
d4f3574e
SS
6312{
6313 int ret = signal_print[signo];
abbb1732 6314
d4f3574e 6315 signal_print[signo] = state;
2455069d 6316 signal_cache_update (signo);
d4f3574e
SS
6317 return ret;
6318}
6319
488f131b 6320int
7bda5e4a 6321signal_pass_update (int signo, int state)
d4f3574e
SS
6322{
6323 int ret = signal_program[signo];
abbb1732 6324
d4f3574e 6325 signal_program[signo] = state;
2455069d 6326 signal_cache_update (signo);
d4f3574e
SS
6327 return ret;
6328}
6329
ab04a2af
TT
6330/* Update the global 'signal_catch' from INFO and notify the
6331 target. */
6332
6333void
6334signal_catch_update (const unsigned int *info)
6335{
6336 int i;
6337
6338 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6339 signal_catch[i] = info[i] > 0;
6340 signal_cache_update (-1);
6341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6342}
6343
c906108c 6344static void
96baa820 6345sig_print_header (void)
c906108c 6346{
3e43a32a
MS
6347 printf_filtered (_("Signal Stop\tPrint\tPass "
6348 "to program\tDescription\n"));
c906108c
SS
6349}
6350
6351static void
2ea28649 6352sig_print_info (enum gdb_signal oursig)
c906108c 6353{
2ea28649 6354 const char *name = gdb_signal_to_name (oursig);
c906108c 6355 int name_padding = 13 - strlen (name);
96baa820 6356
c906108c
SS
6357 if (name_padding <= 0)
6358 name_padding = 0;
6359
6360 printf_filtered ("%s", name);
488f131b 6361 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6362 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6363 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6364 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6365 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6366}
6367
6368/* Specify how various signals in the inferior should be handled. */
6369
6370static void
96baa820 6371handle_command (char *args, int from_tty)
c906108c
SS
6372{
6373 char **argv;
6374 int digits, wordlen;
6375 int sigfirst, signum, siglast;
2ea28649 6376 enum gdb_signal oursig;
c906108c
SS
6377 int allsigs;
6378 int nsigs;
6379 unsigned char *sigs;
6380 struct cleanup *old_chain;
6381
6382 if (args == NULL)
6383 {
e2e0b3e5 6384 error_no_arg (_("signal to handle"));
c906108c
SS
6385 }
6386
1777feb0 6387 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6388
a493e3e2 6389 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6390 sigs = (unsigned char *) alloca (nsigs);
6391 memset (sigs, 0, nsigs);
6392
1777feb0 6393 /* Break the command line up into args. */
c906108c 6394
d1a41061 6395 argv = gdb_buildargv (args);
7a292a7a 6396 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6397
6398 /* Walk through the args, looking for signal oursigs, signal names, and
6399 actions. Signal numbers and signal names may be interspersed with
6400 actions, with the actions being performed for all signals cumulatively
1777feb0 6401 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6402
6403 while (*argv != NULL)
6404 {
6405 wordlen = strlen (*argv);
6406 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6407 {;
6408 }
6409 allsigs = 0;
6410 sigfirst = siglast = -1;
6411
6412 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6413 {
6414 /* Apply action to all signals except those used by the
1777feb0 6415 debugger. Silently skip those. */
c906108c
SS
6416 allsigs = 1;
6417 sigfirst = 0;
6418 siglast = nsigs - 1;
6419 }
6420 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6421 {
6422 SET_SIGS (nsigs, sigs, signal_stop);
6423 SET_SIGS (nsigs, sigs, signal_print);
6424 }
6425 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6426 {
6427 UNSET_SIGS (nsigs, sigs, signal_program);
6428 }
6429 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6430 {
6431 SET_SIGS (nsigs, sigs, signal_print);
6432 }
6433 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6434 {
6435 SET_SIGS (nsigs, sigs, signal_program);
6436 }
6437 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6438 {
6439 UNSET_SIGS (nsigs, sigs, signal_stop);
6440 }
6441 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6442 {
6443 SET_SIGS (nsigs, sigs, signal_program);
6444 }
6445 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6446 {
6447 UNSET_SIGS (nsigs, sigs, signal_print);
6448 UNSET_SIGS (nsigs, sigs, signal_stop);
6449 }
6450 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6451 {
6452 UNSET_SIGS (nsigs, sigs, signal_program);
6453 }
6454 else if (digits > 0)
6455 {
6456 /* It is numeric. The numeric signal refers to our own
6457 internal signal numbering from target.h, not to host/target
6458 signal number. This is a feature; users really should be
6459 using symbolic names anyway, and the common ones like
6460 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6461
6462 sigfirst = siglast = (int)
2ea28649 6463 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6464 if ((*argv)[digits] == '-')
6465 {
6466 siglast = (int)
2ea28649 6467 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6468 }
6469 if (sigfirst > siglast)
6470 {
1777feb0 6471 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6472 signum = sigfirst;
6473 sigfirst = siglast;
6474 siglast = signum;
6475 }
6476 }
6477 else
6478 {
2ea28649 6479 oursig = gdb_signal_from_name (*argv);
a493e3e2 6480 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6481 {
6482 sigfirst = siglast = (int) oursig;
6483 }
6484 else
6485 {
6486 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6487 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6488 }
6489 }
6490
6491 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6492 which signals to apply actions to. */
c906108c
SS
6493
6494 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6495 {
2ea28649 6496 switch ((enum gdb_signal) signum)
c906108c 6497 {
a493e3e2
PA
6498 case GDB_SIGNAL_TRAP:
6499 case GDB_SIGNAL_INT:
c906108c
SS
6500 if (!allsigs && !sigs[signum])
6501 {
9e2f0ad4 6502 if (query (_("%s is used by the debugger.\n\
3e43a32a 6503Are you sure you want to change it? "),
2ea28649 6504 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6505 {
6506 sigs[signum] = 1;
6507 }
6508 else
6509 {
a3f17187 6510 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6511 gdb_flush (gdb_stdout);
6512 }
6513 }
6514 break;
a493e3e2
PA
6515 case GDB_SIGNAL_0:
6516 case GDB_SIGNAL_DEFAULT:
6517 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6518 /* Make sure that "all" doesn't print these. */
6519 break;
6520 default:
6521 sigs[signum] = 1;
6522 break;
6523 }
6524 }
6525
6526 argv++;
6527 }
6528
3a031f65
PA
6529 for (signum = 0; signum < nsigs; signum++)
6530 if (sigs[signum])
6531 {
2455069d 6532 signal_cache_update (-1);
a493e3e2
PA
6533 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6534 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6535
3a031f65
PA
6536 if (from_tty)
6537 {
6538 /* Show the results. */
6539 sig_print_header ();
6540 for (; signum < nsigs; signum++)
6541 if (sigs[signum])
6542 sig_print_info (signum);
6543 }
6544
6545 break;
6546 }
c906108c
SS
6547
6548 do_cleanups (old_chain);
6549}
6550
de0bea00
MF
6551/* Complete the "handle" command. */
6552
6553static VEC (char_ptr) *
6554handle_completer (struct cmd_list_element *ignore,
6f937416 6555 const char *text, const char *word)
de0bea00
MF
6556{
6557 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6558 static const char * const keywords[] =
6559 {
6560 "all",
6561 "stop",
6562 "ignore",
6563 "print",
6564 "pass",
6565 "nostop",
6566 "noignore",
6567 "noprint",
6568 "nopass",
6569 NULL,
6570 };
6571
6572 vec_signals = signal_completer (ignore, text, word);
6573 vec_keywords = complete_on_enum (keywords, word, word);
6574
6575 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6576 VEC_free (char_ptr, vec_signals);
6577 VEC_free (char_ptr, vec_keywords);
6578 return return_val;
6579}
6580
c906108c 6581static void
96baa820 6582xdb_handle_command (char *args, int from_tty)
c906108c
SS
6583{
6584 char **argv;
6585 struct cleanup *old_chain;
6586
d1a41061
PP
6587 if (args == NULL)
6588 error_no_arg (_("xdb command"));
6589
1777feb0 6590 /* Break the command line up into args. */
c906108c 6591
d1a41061 6592 argv = gdb_buildargv (args);
7a292a7a 6593 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6594 if (argv[1] != (char *) NULL)
6595 {
6596 char *argBuf;
6597 int bufLen;
6598
6599 bufLen = strlen (argv[0]) + 20;
6600 argBuf = (char *) xmalloc (bufLen);
6601 if (argBuf)
6602 {
6603 int validFlag = 1;
2ea28649 6604 enum gdb_signal oursig;
c906108c 6605
2ea28649 6606 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6607 memset (argBuf, 0, bufLen);
6608 if (strcmp (argv[1], "Q") == 0)
6609 sprintf (argBuf, "%s %s", argv[0], "noprint");
6610 else
6611 {
6612 if (strcmp (argv[1], "s") == 0)
6613 {
6614 if (!signal_stop[oursig])
6615 sprintf (argBuf, "%s %s", argv[0], "stop");
6616 else
6617 sprintf (argBuf, "%s %s", argv[0], "nostop");
6618 }
6619 else if (strcmp (argv[1], "i") == 0)
6620 {
6621 if (!signal_program[oursig])
6622 sprintf (argBuf, "%s %s", argv[0], "pass");
6623 else
6624 sprintf (argBuf, "%s %s", argv[0], "nopass");
6625 }
6626 else if (strcmp (argv[1], "r") == 0)
6627 {
6628 if (!signal_print[oursig])
6629 sprintf (argBuf, "%s %s", argv[0], "print");
6630 else
6631 sprintf (argBuf, "%s %s", argv[0], "noprint");
6632 }
6633 else
6634 validFlag = 0;
6635 }
6636 if (validFlag)
6637 handle_command (argBuf, from_tty);
6638 else
a3f17187 6639 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6640 if (argBuf)
b8c9b27d 6641 xfree (argBuf);
c906108c
SS
6642 }
6643 }
6644 do_cleanups (old_chain);
6645}
6646
2ea28649
PA
6647enum gdb_signal
6648gdb_signal_from_command (int num)
ed01b82c
PA
6649{
6650 if (num >= 1 && num <= 15)
2ea28649 6651 return (enum gdb_signal) num;
ed01b82c
PA
6652 error (_("Only signals 1-15 are valid as numeric signals.\n\
6653Use \"info signals\" for a list of symbolic signals."));
6654}
6655
c906108c
SS
6656/* Print current contents of the tables set by the handle command.
6657 It is possible we should just be printing signals actually used
6658 by the current target (but for things to work right when switching
6659 targets, all signals should be in the signal tables). */
6660
6661static void
96baa820 6662signals_info (char *signum_exp, int from_tty)
c906108c 6663{
2ea28649 6664 enum gdb_signal oursig;
abbb1732 6665
c906108c
SS
6666 sig_print_header ();
6667
6668 if (signum_exp)
6669 {
6670 /* First see if this is a symbol name. */
2ea28649 6671 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6672 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6673 {
6674 /* No, try numeric. */
6675 oursig =
2ea28649 6676 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6677 }
6678 sig_print_info (oursig);
6679 return;
6680 }
6681
6682 printf_filtered ("\n");
6683 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6684 for (oursig = GDB_SIGNAL_FIRST;
6685 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6686 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6687 {
6688 QUIT;
6689
a493e3e2
PA
6690 if (oursig != GDB_SIGNAL_UNKNOWN
6691 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6692 sig_print_info (oursig);
6693 }
6694
3e43a32a
MS
6695 printf_filtered (_("\nUse the \"handle\" command "
6696 "to change these tables.\n"));
c906108c 6697}
4aa995e1 6698
c709acd1
PA
6699/* Check if it makes sense to read $_siginfo from the current thread
6700 at this point. If not, throw an error. */
6701
6702static void
6703validate_siginfo_access (void)
6704{
6705 /* No current inferior, no siginfo. */
6706 if (ptid_equal (inferior_ptid, null_ptid))
6707 error (_("No thread selected."));
6708
6709 /* Don't try to read from a dead thread. */
6710 if (is_exited (inferior_ptid))
6711 error (_("The current thread has terminated"));
6712
6713 /* ... or from a spinning thread. */
6714 if (is_running (inferior_ptid))
6715 error (_("Selected thread is running."));
6716}
6717
4aa995e1
PA
6718/* The $_siginfo convenience variable is a bit special. We don't know
6719 for sure the type of the value until we actually have a chance to
7a9dd1b2 6720 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6721 also dependent on which thread you have selected.
6722
6723 1. making $_siginfo be an internalvar that creates a new value on
6724 access.
6725
6726 2. making the value of $_siginfo be an lval_computed value. */
6727
6728/* This function implements the lval_computed support for reading a
6729 $_siginfo value. */
6730
6731static void
6732siginfo_value_read (struct value *v)
6733{
6734 LONGEST transferred;
6735
c709acd1
PA
6736 validate_siginfo_access ();
6737
4aa995e1
PA
6738 transferred =
6739 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6740 NULL,
6741 value_contents_all_raw (v),
6742 value_offset (v),
6743 TYPE_LENGTH (value_type (v)));
6744
6745 if (transferred != TYPE_LENGTH (value_type (v)))
6746 error (_("Unable to read siginfo"));
6747}
6748
6749/* This function implements the lval_computed support for writing a
6750 $_siginfo value. */
6751
6752static void
6753siginfo_value_write (struct value *v, struct value *fromval)
6754{
6755 LONGEST transferred;
6756
c709acd1
PA
6757 validate_siginfo_access ();
6758
4aa995e1
PA
6759 transferred = target_write (&current_target,
6760 TARGET_OBJECT_SIGNAL_INFO,
6761 NULL,
6762 value_contents_all_raw (fromval),
6763 value_offset (v),
6764 TYPE_LENGTH (value_type (fromval)));
6765
6766 if (transferred != TYPE_LENGTH (value_type (fromval)))
6767 error (_("Unable to write siginfo"));
6768}
6769
c8f2448a 6770static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6771 {
6772 siginfo_value_read,
6773 siginfo_value_write
6774 };
6775
6776/* Return a new value with the correct type for the siginfo object of
78267919
UW
6777 the current thread using architecture GDBARCH. Return a void value
6778 if there's no object available. */
4aa995e1 6779
2c0b251b 6780static struct value *
22d2b532
SDJ
6781siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6782 void *ignore)
4aa995e1 6783{
4aa995e1 6784 if (target_has_stack
78267919
UW
6785 && !ptid_equal (inferior_ptid, null_ptid)
6786 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6787 {
78267919 6788 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6789
78267919 6790 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6791 }
6792
78267919 6793 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6794}
6795
c906108c 6796\f
16c381f0
JK
6797/* infcall_suspend_state contains state about the program itself like its
6798 registers and any signal it received when it last stopped.
6799 This state must be restored regardless of how the inferior function call
6800 ends (either successfully, or after it hits a breakpoint or signal)
6801 if the program is to properly continue where it left off. */
6802
6803struct infcall_suspend_state
7a292a7a 6804{
16c381f0 6805 struct thread_suspend_state thread_suspend;
dd80ea3c 6806#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6807 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6808#endif
16c381f0
JK
6809
6810 /* Other fields: */
7a292a7a 6811 CORE_ADDR stop_pc;
b89667eb 6812 struct regcache *registers;
1736ad11 6813
35515841 6814 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6815 struct gdbarch *siginfo_gdbarch;
6816
6817 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6818 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6819 content would be invalid. */
6820 gdb_byte *siginfo_data;
b89667eb
DE
6821};
6822
16c381f0
JK
6823struct infcall_suspend_state *
6824save_infcall_suspend_state (void)
b89667eb 6825{
16c381f0 6826 struct infcall_suspend_state *inf_state;
b89667eb 6827 struct thread_info *tp = inferior_thread ();
974a734b 6828#if 0
16c381f0 6829 struct inferior *inf = current_inferior ();
974a734b 6830#endif
1736ad11
JK
6831 struct regcache *regcache = get_current_regcache ();
6832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6833 gdb_byte *siginfo_data = NULL;
6834
6835 if (gdbarch_get_siginfo_type_p (gdbarch))
6836 {
6837 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6838 size_t len = TYPE_LENGTH (type);
6839 struct cleanup *back_to;
6840
6841 siginfo_data = xmalloc (len);
6842 back_to = make_cleanup (xfree, siginfo_data);
6843
6844 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6845 siginfo_data, 0, len) == len)
6846 discard_cleanups (back_to);
6847 else
6848 {
6849 /* Errors ignored. */
6850 do_cleanups (back_to);
6851 siginfo_data = NULL;
6852 }
6853 }
6854
41bf6aca 6855 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
6856
6857 if (siginfo_data)
6858 {
6859 inf_state->siginfo_gdbarch = gdbarch;
6860 inf_state->siginfo_data = siginfo_data;
6861 }
b89667eb 6862
16c381f0 6863 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6864#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6865 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6866#endif
16c381f0 6867
35515841 6868 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6869 GDB_SIGNAL_0 anyway. */
6870 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6871
b89667eb
DE
6872 inf_state->stop_pc = stop_pc;
6873
1736ad11 6874 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6875
6876 return inf_state;
6877}
6878
6879/* Restore inferior session state to INF_STATE. */
6880
6881void
16c381f0 6882restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6883{
6884 struct thread_info *tp = inferior_thread ();
974a734b 6885#if 0
16c381f0 6886 struct inferior *inf = current_inferior ();
974a734b 6887#endif
1736ad11
JK
6888 struct regcache *regcache = get_current_regcache ();
6889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6890
16c381f0 6891 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6892#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6893 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6894#endif
16c381f0 6895
b89667eb
DE
6896 stop_pc = inf_state->stop_pc;
6897
1736ad11
JK
6898 if (inf_state->siginfo_gdbarch == gdbarch)
6899 {
6900 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6901
6902 /* Errors ignored. */
6903 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6904 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6905 }
6906
b89667eb
DE
6907 /* The inferior can be gone if the user types "print exit(0)"
6908 (and perhaps other times). */
6909 if (target_has_execution)
6910 /* NB: The register write goes through to the target. */
1736ad11 6911 regcache_cpy (regcache, inf_state->registers);
803b5f95 6912
16c381f0 6913 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6914}
6915
6916static void
16c381f0 6917do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6918{
16c381f0 6919 restore_infcall_suspend_state (state);
b89667eb
DE
6920}
6921
6922struct cleanup *
16c381f0
JK
6923make_cleanup_restore_infcall_suspend_state
6924 (struct infcall_suspend_state *inf_state)
b89667eb 6925{
16c381f0 6926 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6927}
6928
6929void
16c381f0 6930discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6931{
6932 regcache_xfree (inf_state->registers);
803b5f95 6933 xfree (inf_state->siginfo_data);
b89667eb
DE
6934 xfree (inf_state);
6935}
6936
6937struct regcache *
16c381f0 6938get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6939{
6940 return inf_state->registers;
6941}
6942
16c381f0
JK
6943/* infcall_control_state contains state regarding gdb's control of the
6944 inferior itself like stepping control. It also contains session state like
6945 the user's currently selected frame. */
b89667eb 6946
16c381f0 6947struct infcall_control_state
b89667eb 6948{
16c381f0
JK
6949 struct thread_control_state thread_control;
6950 struct inferior_control_state inferior_control;
d82142e2
JK
6951
6952 /* Other fields: */
6953 enum stop_stack_kind stop_stack_dummy;
6954 int stopped_by_random_signal;
7a292a7a 6955 int stop_after_trap;
7a292a7a 6956
b89667eb 6957 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6958 struct frame_id selected_frame_id;
7a292a7a
SS
6959};
6960
c906108c 6961/* Save all of the information associated with the inferior<==>gdb
b89667eb 6962 connection. */
c906108c 6963
16c381f0
JK
6964struct infcall_control_state *
6965save_infcall_control_state (void)
c906108c 6966{
16c381f0 6967 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6968 struct thread_info *tp = inferior_thread ();
d6b48e9c 6969 struct inferior *inf = current_inferior ();
7a292a7a 6970
16c381f0
JK
6971 inf_status->thread_control = tp->control;
6972 inf_status->inferior_control = inf->control;
d82142e2 6973
8358c15c 6974 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6975 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6976
16c381f0
JK
6977 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6978 chain. If caller's caller is walking the chain, they'll be happier if we
6979 hand them back the original chain when restore_infcall_control_state is
6980 called. */
6981 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6982
6983 /* Other fields: */
6984 inf_status->stop_stack_dummy = stop_stack_dummy;
6985 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6986 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6987
206415a3 6988 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6989
7a292a7a 6990 return inf_status;
c906108c
SS
6991}
6992
c906108c 6993static int
96baa820 6994restore_selected_frame (void *args)
c906108c 6995{
488f131b 6996 struct frame_id *fid = (struct frame_id *) args;
c906108c 6997 struct frame_info *frame;
c906108c 6998
101dcfbe 6999 frame = frame_find_by_id (*fid);
c906108c 7000
aa0cd9c1
AC
7001 /* If inf_status->selected_frame_id is NULL, there was no previously
7002 selected frame. */
101dcfbe 7003 if (frame == NULL)
c906108c 7004 {
8a3fe4f8 7005 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7006 return 0;
7007 }
7008
0f7d239c 7009 select_frame (frame);
c906108c
SS
7010
7011 return (1);
7012}
7013
b89667eb
DE
7014/* Restore inferior session state to INF_STATUS. */
7015
c906108c 7016void
16c381f0 7017restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7018{
4e1c45ea 7019 struct thread_info *tp = inferior_thread ();
d6b48e9c 7020 struct inferior *inf = current_inferior ();
4e1c45ea 7021
8358c15c
JK
7022 if (tp->control.step_resume_breakpoint)
7023 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7024
5b79abe7
TT
7025 if (tp->control.exception_resume_breakpoint)
7026 tp->control.exception_resume_breakpoint->disposition
7027 = disp_del_at_next_stop;
7028
d82142e2 7029 /* Handle the bpstat_copy of the chain. */
16c381f0 7030 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7031
16c381f0
JK
7032 tp->control = inf_status->thread_control;
7033 inf->control = inf_status->inferior_control;
d82142e2
JK
7034
7035 /* Other fields: */
7036 stop_stack_dummy = inf_status->stop_stack_dummy;
7037 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7038 stop_after_trap = inf_status->stop_after_trap;
c906108c 7039
b89667eb 7040 if (target_has_stack)
c906108c 7041 {
c906108c 7042 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7043 walking the stack might encounter a garbage pointer and
7044 error() trying to dereference it. */
488f131b
JB
7045 if (catch_errors
7046 (restore_selected_frame, &inf_status->selected_frame_id,
7047 "Unable to restore previously selected frame:\n",
7048 RETURN_MASK_ERROR) == 0)
c906108c
SS
7049 /* Error in restoring the selected frame. Select the innermost
7050 frame. */
0f7d239c 7051 select_frame (get_current_frame ());
c906108c 7052 }
c906108c 7053
72cec141 7054 xfree (inf_status);
7a292a7a 7055}
c906108c 7056
74b7792f 7057static void
16c381f0 7058do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7059{
16c381f0 7060 restore_infcall_control_state (sts);
74b7792f
AC
7061}
7062
7063struct cleanup *
16c381f0
JK
7064make_cleanup_restore_infcall_control_state
7065 (struct infcall_control_state *inf_status)
74b7792f 7066{
16c381f0 7067 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7068}
7069
c906108c 7070void
16c381f0 7071discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7072{
8358c15c
JK
7073 if (inf_status->thread_control.step_resume_breakpoint)
7074 inf_status->thread_control.step_resume_breakpoint->disposition
7075 = disp_del_at_next_stop;
7076
5b79abe7
TT
7077 if (inf_status->thread_control.exception_resume_breakpoint)
7078 inf_status->thread_control.exception_resume_breakpoint->disposition
7079 = disp_del_at_next_stop;
7080
1777feb0 7081 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7082 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7083
72cec141 7084 xfree (inf_status);
7a292a7a 7085}
b89667eb 7086\f
0723dbf5
PA
7087int
7088ptid_match (ptid_t ptid, ptid_t filter)
7089{
0723dbf5
PA
7090 if (ptid_equal (filter, minus_one_ptid))
7091 return 1;
7092 if (ptid_is_pid (filter)
7093 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7094 return 1;
7095 else if (ptid_equal (ptid, filter))
7096 return 1;
7097
7098 return 0;
7099}
7100
ca6724c1
KB
7101/* restore_inferior_ptid() will be used by the cleanup machinery
7102 to restore the inferior_ptid value saved in a call to
7103 save_inferior_ptid(). */
ce696e05
KB
7104
7105static void
7106restore_inferior_ptid (void *arg)
7107{
7108 ptid_t *saved_ptid_ptr = arg;
abbb1732 7109
ce696e05
KB
7110 inferior_ptid = *saved_ptid_ptr;
7111 xfree (arg);
7112}
7113
7114/* Save the value of inferior_ptid so that it may be restored by a
7115 later call to do_cleanups(). Returns the struct cleanup pointer
7116 needed for later doing the cleanup. */
7117
7118struct cleanup *
7119save_inferior_ptid (void)
7120{
7121 ptid_t *saved_ptid_ptr;
7122
7123 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7124 *saved_ptid_ptr = inferior_ptid;
7125 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7126}
0c557179
SDJ
7127
7128/* See inferior.h. */
7129
7130void
7131clear_exit_convenience_vars (void)
7132{
7133 clear_internalvar (lookup_internalvar ("_exitsignal"));
7134 clear_internalvar (lookup_internalvar ("_exitcode"));
7135}
c5aa993b 7136\f
488f131b 7137
b2175913
MS
7138/* User interface for reverse debugging:
7139 Set exec-direction / show exec-direction commands
7140 (returns error unless target implements to_set_exec_direction method). */
7141
32231432 7142int execution_direction = EXEC_FORWARD;
b2175913
MS
7143static const char exec_forward[] = "forward";
7144static const char exec_reverse[] = "reverse";
7145static const char *exec_direction = exec_forward;
40478521 7146static const char *const exec_direction_names[] = {
b2175913
MS
7147 exec_forward,
7148 exec_reverse,
7149 NULL
7150};
7151
7152static void
7153set_exec_direction_func (char *args, int from_tty,
7154 struct cmd_list_element *cmd)
7155{
7156 if (target_can_execute_reverse)
7157 {
7158 if (!strcmp (exec_direction, exec_forward))
7159 execution_direction = EXEC_FORWARD;
7160 else if (!strcmp (exec_direction, exec_reverse))
7161 execution_direction = EXEC_REVERSE;
7162 }
8bbed405
MS
7163 else
7164 {
7165 exec_direction = exec_forward;
7166 error (_("Target does not support this operation."));
7167 }
b2175913
MS
7168}
7169
7170static void
7171show_exec_direction_func (struct ui_file *out, int from_tty,
7172 struct cmd_list_element *cmd, const char *value)
7173{
7174 switch (execution_direction) {
7175 case EXEC_FORWARD:
7176 fprintf_filtered (out, _("Forward.\n"));
7177 break;
7178 case EXEC_REVERSE:
7179 fprintf_filtered (out, _("Reverse.\n"));
7180 break;
b2175913 7181 default:
d8b34453
PA
7182 internal_error (__FILE__, __LINE__,
7183 _("bogus execution_direction value: %d"),
7184 (int) execution_direction);
b2175913
MS
7185 }
7186}
7187
d4db2f36
PA
7188static void
7189show_schedule_multiple (struct ui_file *file, int from_tty,
7190 struct cmd_list_element *c, const char *value)
7191{
3e43a32a
MS
7192 fprintf_filtered (file, _("Resuming the execution of threads "
7193 "of all processes is %s.\n"), value);
d4db2f36 7194}
ad52ddc6 7195
22d2b532
SDJ
7196/* Implementation of `siginfo' variable. */
7197
7198static const struct internalvar_funcs siginfo_funcs =
7199{
7200 siginfo_make_value,
7201 NULL,
7202 NULL
7203};
7204
c906108c 7205void
96baa820 7206_initialize_infrun (void)
c906108c 7207{
52f0bd74
AC
7208 int i;
7209 int numsigs;
de0bea00 7210 struct cmd_list_element *c;
c906108c 7211
1bedd215
AC
7212 add_info ("signals", signals_info, _("\
7213What debugger does when program gets various signals.\n\
7214Specify a signal as argument to print info on that signal only."));
c906108c
SS
7215 add_info_alias ("handle", "signals", 0);
7216
de0bea00 7217 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7218Specify how to handle signals.\n\
486c7739 7219Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7220Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7221If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7222will be displayed instead.\n\
7223\n\
c906108c
SS
7224Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7225from 1-15 are allowed for compatibility with old versions of GDB.\n\
7226Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7227The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7228used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7229\n\
1bedd215 7230Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7231\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7232Stop means reenter debugger if this signal happens (implies print).\n\
7233Print means print a message if this signal happens.\n\
7234Pass means let program see this signal; otherwise program doesn't know.\n\
7235Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7236Pass and Stop may be combined.\n\
7237\n\
7238Multiple signals may be specified. Signal numbers and signal names\n\
7239may be interspersed with actions, with the actions being performed for\n\
7240all signals cumulatively specified."));
de0bea00 7241 set_cmd_completer (c, handle_completer);
486c7739 7242
c906108c
SS
7243 if (xdb_commands)
7244 {
1bedd215
AC
7245 add_com ("lz", class_info, signals_info, _("\
7246What debugger does when program gets various signals.\n\
7247Specify a signal as argument to print info on that signal only."));
7248 add_com ("z", class_run, xdb_handle_command, _("\
7249Specify how to handle a signal.\n\
c906108c
SS
7250Args are signals and actions to apply to those signals.\n\
7251Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7252from 1-15 are allowed for compatibility with old versions of GDB.\n\
7253Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7254The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7255used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7256Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7257\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7258nopass), \"Q\" (noprint)\n\
7259Stop means reenter debugger if this signal happens (implies print).\n\
7260Print means print a message if this signal happens.\n\
7261Pass means let program see this signal; otherwise program doesn't know.\n\
7262Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7263Pass and Stop may be combined."));
c906108c
SS
7264 }
7265
7266 if (!dbx_commands)
1a966eab
AC
7267 stop_command = add_cmd ("stop", class_obscure,
7268 not_just_help_class_command, _("\
7269There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7270This allows you to set a list of commands to be run each time execution\n\
1a966eab 7271of the program stops."), &cmdlist);
c906108c 7272
ccce17b0 7273 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7274Set inferior debugging."), _("\
7275Show inferior debugging."), _("\
7276When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7277 NULL,
7278 show_debug_infrun,
7279 &setdebuglist, &showdebuglist);
527159b7 7280
3e43a32a
MS
7281 add_setshow_boolean_cmd ("displaced", class_maintenance,
7282 &debug_displaced, _("\
237fc4c9
PA
7283Set displaced stepping debugging."), _("\
7284Show displaced stepping debugging."), _("\
7285When non-zero, displaced stepping specific debugging is enabled."),
7286 NULL,
7287 show_debug_displaced,
7288 &setdebuglist, &showdebuglist);
7289
ad52ddc6
PA
7290 add_setshow_boolean_cmd ("non-stop", no_class,
7291 &non_stop_1, _("\
7292Set whether gdb controls the inferior in non-stop mode."), _("\
7293Show whether gdb controls the inferior in non-stop mode."), _("\
7294When debugging a multi-threaded program and this setting is\n\
7295off (the default, also called all-stop mode), when one thread stops\n\
7296(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7297all other threads in the program while you interact with the thread of\n\
7298interest. When you continue or step a thread, you can allow the other\n\
7299threads to run, or have them remain stopped, but while you inspect any\n\
7300thread's state, all threads stop.\n\
7301\n\
7302In non-stop mode, when one thread stops, other threads can continue\n\
7303to run freely. You'll be able to step each thread independently,\n\
7304leave it stopped or free to run as needed."),
7305 set_non_stop,
7306 show_non_stop,
7307 &setlist,
7308 &showlist);
7309
a493e3e2 7310 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7311 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7312 signal_print = (unsigned char *)
7313 xmalloc (sizeof (signal_print[0]) * numsigs);
7314 signal_program = (unsigned char *)
7315 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7316 signal_catch = (unsigned char *)
7317 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7318 signal_pass = (unsigned char *)
7319 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7320 for (i = 0; i < numsigs; i++)
7321 {
7322 signal_stop[i] = 1;
7323 signal_print[i] = 1;
7324 signal_program[i] = 1;
ab04a2af 7325 signal_catch[i] = 0;
c906108c
SS
7326 }
7327
7328 /* Signals caused by debugger's own actions
7329 should not be given to the program afterwards. */
a493e3e2
PA
7330 signal_program[GDB_SIGNAL_TRAP] = 0;
7331 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7332
7333 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7334 signal_stop[GDB_SIGNAL_ALRM] = 0;
7335 signal_print[GDB_SIGNAL_ALRM] = 0;
7336 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7337 signal_print[GDB_SIGNAL_VTALRM] = 0;
7338 signal_stop[GDB_SIGNAL_PROF] = 0;
7339 signal_print[GDB_SIGNAL_PROF] = 0;
7340 signal_stop[GDB_SIGNAL_CHLD] = 0;
7341 signal_print[GDB_SIGNAL_CHLD] = 0;
7342 signal_stop[GDB_SIGNAL_IO] = 0;
7343 signal_print[GDB_SIGNAL_IO] = 0;
7344 signal_stop[GDB_SIGNAL_POLL] = 0;
7345 signal_print[GDB_SIGNAL_POLL] = 0;
7346 signal_stop[GDB_SIGNAL_URG] = 0;
7347 signal_print[GDB_SIGNAL_URG] = 0;
7348 signal_stop[GDB_SIGNAL_WINCH] = 0;
7349 signal_print[GDB_SIGNAL_WINCH] = 0;
7350 signal_stop[GDB_SIGNAL_PRIO] = 0;
7351 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7352
cd0fc7c3
SS
7353 /* These signals are used internally by user-level thread
7354 implementations. (See signal(5) on Solaris.) Like the above
7355 signals, a healthy program receives and handles them as part of
7356 its normal operation. */
a493e3e2
PA
7357 signal_stop[GDB_SIGNAL_LWP] = 0;
7358 signal_print[GDB_SIGNAL_LWP] = 0;
7359 signal_stop[GDB_SIGNAL_WAITING] = 0;
7360 signal_print[GDB_SIGNAL_WAITING] = 0;
7361 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7362 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7363
2455069d
UW
7364 /* Update cached state. */
7365 signal_cache_update (-1);
7366
85c07804
AC
7367 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7368 &stop_on_solib_events, _("\
7369Set stopping for shared library events."), _("\
7370Show stopping for shared library events."), _("\
c906108c
SS
7371If nonzero, gdb will give control to the user when the dynamic linker\n\
7372notifies gdb of shared library events. The most common event of interest\n\
85c07804 7373to the user would be loading/unloading of a new library."),
f9e14852 7374 set_stop_on_solib_events,
920d2a44 7375 show_stop_on_solib_events,
85c07804 7376 &setlist, &showlist);
c906108c 7377
7ab04401
AC
7378 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7379 follow_fork_mode_kind_names,
7380 &follow_fork_mode_string, _("\
7381Set debugger response to a program call of fork or vfork."), _("\
7382Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7383A fork or vfork creates a new process. follow-fork-mode can be:\n\
7384 parent - the original process is debugged after a fork\n\
7385 child - the new process is debugged after a fork\n\
ea1dd7bc 7386The unfollowed process will continue to run.\n\
7ab04401
AC
7387By default, the debugger will follow the parent process."),
7388 NULL,
920d2a44 7389 show_follow_fork_mode_string,
7ab04401
AC
7390 &setlist, &showlist);
7391
6c95b8df
PA
7392 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7393 follow_exec_mode_names,
7394 &follow_exec_mode_string, _("\
7395Set debugger response to a program call of exec."), _("\
7396Show debugger response to a program call of exec."), _("\
7397An exec call replaces the program image of a process.\n\
7398\n\
7399follow-exec-mode can be:\n\
7400\n\
cce7e648 7401 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7402to this new inferior. The program the process was running before\n\
7403the exec call can be restarted afterwards by restarting the original\n\
7404inferior.\n\
7405\n\
7406 same - the debugger keeps the process bound to the same inferior.\n\
7407The new executable image replaces the previous executable loaded in\n\
7408the inferior. Restarting the inferior after the exec call restarts\n\
7409the executable the process was running after the exec call.\n\
7410\n\
7411By default, the debugger will use the same inferior."),
7412 NULL,
7413 show_follow_exec_mode_string,
7414 &setlist, &showlist);
7415
7ab04401
AC
7416 add_setshow_enum_cmd ("scheduler-locking", class_run,
7417 scheduler_enums, &scheduler_mode, _("\
7418Set mode for locking scheduler during execution."), _("\
7419Show mode for locking scheduler during execution."), _("\
c906108c
SS
7420off == no locking (threads may preempt at any time)\n\
7421on == full locking (no thread except the current thread may run)\n\
7422step == scheduler locked during every single-step operation.\n\
7423 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7424 Other threads may run while stepping over a function call ('next')."),
7425 set_schedlock_func, /* traps on target vector */
920d2a44 7426 show_scheduler_mode,
7ab04401 7427 &setlist, &showlist);
5fbbeb29 7428
d4db2f36
PA
7429 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7430Set mode for resuming threads of all processes."), _("\
7431Show mode for resuming threads of all processes."), _("\
7432When on, execution commands (such as 'continue' or 'next') resume all\n\
7433threads of all processes. When off (which is the default), execution\n\
7434commands only resume the threads of the current process. The set of\n\
7435threads that are resumed is further refined by the scheduler-locking\n\
7436mode (see help set scheduler-locking)."),
7437 NULL,
7438 show_schedule_multiple,
7439 &setlist, &showlist);
7440
5bf193a2
AC
7441 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7442Set mode of the step operation."), _("\
7443Show mode of the step operation."), _("\
7444When set, doing a step over a function without debug line information\n\
7445will stop at the first instruction of that function. Otherwise, the\n\
7446function is skipped and the step command stops at a different source line."),
7447 NULL,
920d2a44 7448 show_step_stop_if_no_debug,
5bf193a2 7449 &setlist, &showlist);
ca6724c1 7450
72d0e2c5
YQ
7451 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7452 &can_use_displaced_stepping, _("\
237fc4c9
PA
7453Set debugger's willingness to use displaced stepping."), _("\
7454Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7455If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7456supported by the target architecture. If off, gdb will not use displaced\n\
7457stepping to step over breakpoints, even if such is supported by the target\n\
7458architecture. If auto (which is the default), gdb will use displaced stepping\n\
7459if the target architecture supports it and non-stop mode is active, but will not\n\
7460use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7461 NULL,
7462 show_can_use_displaced_stepping,
7463 &setlist, &showlist);
237fc4c9 7464
b2175913
MS
7465 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7466 &exec_direction, _("Set direction of execution.\n\
7467Options are 'forward' or 'reverse'."),
7468 _("Show direction of execution (forward/reverse)."),
7469 _("Tells gdb whether to execute forward or backward."),
7470 set_exec_direction_func, show_exec_direction_func,
7471 &setlist, &showlist);
7472
6c95b8df
PA
7473 /* Set/show detach-on-fork: user-settable mode. */
7474
7475 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7476Set whether gdb will detach the child of a fork."), _("\
7477Show whether gdb will detach the child of a fork."), _("\
7478Tells gdb whether to detach the child of a fork."),
7479 NULL, NULL, &setlist, &showlist);
7480
03583c20
UW
7481 /* Set/show disable address space randomization mode. */
7482
7483 add_setshow_boolean_cmd ("disable-randomization", class_support,
7484 &disable_randomization, _("\
7485Set disabling of debuggee's virtual address space randomization."), _("\
7486Show disabling of debuggee's virtual address space randomization."), _("\
7487When this mode is on (which is the default), randomization of the virtual\n\
7488address space is disabled. Standalone programs run with the randomization\n\
7489enabled by default on some platforms."),
7490 &set_disable_randomization,
7491 &show_disable_randomization,
7492 &setlist, &showlist);
7493
ca6724c1 7494 /* ptid initializations */
ca6724c1
KB
7495 inferior_ptid = null_ptid;
7496 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7497
7498 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7499 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7500 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7501 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7502
7503 /* Explicitly create without lookup, since that tries to create a
7504 value with a void typed value, and when we get here, gdbarch
7505 isn't initialized yet. At this point, we're quite sure there
7506 isn't another convenience variable of the same name. */
22d2b532 7507 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7508
7509 add_setshow_boolean_cmd ("observer", no_class,
7510 &observer_mode_1, _("\
7511Set whether gdb controls the inferior in observer mode."), _("\
7512Show whether gdb controls the inferior in observer mode."), _("\
7513In observer mode, GDB can get data from the inferior, but not\n\
7514affect its execution. Registers and memory may not be changed,\n\
7515breakpoints may not be set, and the program cannot be interrupted\n\
7516or signalled."),
7517 set_observer_mode,
7518 show_observer_mode,
7519 &setlist,
7520 &showlist);
c906108c 7521}
This page took 1.853145 seconds and 4 git commands to generate.