target, record: add PTID argument to to_record_is_replaying
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
94585166 1098 ptid_t process_ptid;
7a292a7a 1099
c906108c
SS
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1777feb0 1119 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1120
1121 mark_breakpoints_out ();
1122
95e50b27
PA
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
8a06aea7 1142 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
8358c15c 1151 th->control.step_resume_breakpoint = NULL;
186c406b 1152 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1153 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
c906108c 1156
95e50b27
PA
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
a75724bc
PA
1160 th->stop_requested = 0;
1161
95e50b27
PA
1162 update_breakpoints_after_exec ();
1163
1777feb0 1164 /* What is this a.out's name? */
94585166 1165 process_ptid = pid_to_ptid (pid);
6c95b8df 1166 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1167 target_pid_to_str (process_ptid),
6c95b8df 1168 execd_pathname);
c906108c
SS
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1171 inferior has essentially been killed & reborn. */
7a292a7a 1172
c906108c 1173 gdb_flush (gdb_stdout);
6ca15a4b
PA
1174
1175 breakpoint_init_inferior (inf_execd);
e85a822c 1176
a3be80c3 1177 if (*gdb_sysroot != '\0')
e85a822c 1178 {
998d2a3e 1179 char *name = exec_file_find (execd_pathname, NULL);
ff862be4
GB
1180
1181 execd_pathname = alloca (strlen (name) + 1);
1182 strcpy (execd_pathname, name);
1183 xfree (name);
e85a822c 1184 }
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
94585166
DB
1204 inf = add_inferior_with_spaces ();
1205 inf->pid = pid;
1206 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1207
1208 set_current_inferior (inf);
94585166
DB
1209 set_current_program_space (inf->pspace);
1210 add_thread (ptid);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1777feb0 1225 /* That a.out is now the one to use. */
6c95b8df
PA
1226 exec_file_attach (execd_pathname, 0);
1227
c1e56572
JK
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
7dcd53a0
TT
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1236 NULL, 0);
1237
7dcd53a0
TT
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
c906108c 1240
9107fc8d
PA
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
268a4a75 1249 solib_create_inferior_hook (0);
c906108c 1250
4efc6507
DE
1251 jit_inferior_created_hook ();
1252
c1e56572
JK
1253 breakpoint_re_set ();
1254
c906108c
SS
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1777feb0 1257 to symbol_file_command...). */
c906108c
SS
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1777feb0 1263 matically get reset there in the new process.). */
c906108c
SS
1264}
1265
c2829269
PA
1266/* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273struct thread_info *step_over_queue_head;
1274
6c4cfb24
PA
1275/* Bit flags indicating what the thread needs to step over. */
1276
1277enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
31e77af2
PA
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333static void
963f9c80
PA
1334set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
31e77af2
PA
1336{
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
963f9c80 1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1340}
1341
1342/* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345static void
1346clear_step_over_info (void)
1347{
372316f1
PA
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
31e77af2
PA
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
963f9c80 1353 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
1370int
1371stepping_past_nonsteppable_watchpoint (void)
1372{
1373 return step_over_info.nonsteppable_watchpoint_p;
1374}
1375
6cc83d2a
PA
1376/* Returns true if step-over info is valid. */
1377
1378static int
1379step_over_info_valid_p (void)
1380{
963f9c80
PA
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1383}
1384
c906108c 1385\f
237fc4c9
PA
1386/* Displaced stepping. */
1387
1388/* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
fc1cf338
PA
1474/* Per-inferior displaced stepping state. */
1475struct displaced_step_inferior_state
1476{
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
3fc8eb30
PA
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
fc1cf338
PA
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505};
1506
1507/* The list of states of processes involved in displaced stepping
1508 presently. */
1509static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511/* Get the displaced stepping state of process PID. */
1512
1513static struct displaced_step_inferior_state *
1514get_displaced_stepping_state (int pid)
1515{
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525}
1526
372316f1
PA
1527/* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530static int
1531displaced_step_in_progress_any_inferior (void)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542}
1543
8f572e5c
PA
1544/* Return true if process PID has a thread doing a displaced step. */
1545
1546static int
1547displaced_step_in_progress (int pid)
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
fc1cf338
PA
1558/* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562static struct displaced_step_inferior_state *
1563add_displaced_stepping_state (int pid)
1564{
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
237fc4c9 1572
8d749320 1573 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
237fc4c9 1577
fc1cf338
PA
1578 return state;
1579}
1580
a42244db
YQ
1581/* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585struct displaced_step_closure*
1586get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587{
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597}
1598
fc1cf338 1599/* Remove the displaced stepping state of process PID. */
237fc4c9 1600
fc1cf338
PA
1601static void
1602remove_displaced_stepping_state (int pid)
1603{
1604 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1605
fc1cf338
PA
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622}
1623
1624static void
1625infrun_inferior_exit (struct inferior *inf)
1626{
1627 remove_displaced_stepping_state (inf->pid);
1628}
237fc4c9 1629
fff08868
HZ
1630/* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
72d0e2c5 1638static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1639
237fc4c9
PA
1640static void
1641show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644{
72d0e2c5 1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1649 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1650 else
3e43a32a
MS
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1654}
1655
fff08868 1656/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1657 over breakpoints of thread TP. */
fff08868 1658
237fc4c9 1659static int
3fc8eb30 1660use_displaced_stepping (struct thread_info *tp)
237fc4c9 1661{
3fc8eb30
PA
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
fbea99ea
PA
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
72d0e2c5 1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
237fc4c9
PA
1675}
1676
1677/* Clean out any stray displaced stepping state. */
1678static void
fc1cf338 1679displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1680{
1681 /* Indicate that there is no cleanup pending. */
fc1cf338 1682 displaced->step_ptid = null_ptid;
237fc4c9 1683
fc1cf338 1684 if (displaced->step_closure)
237fc4c9 1685 {
fc1cf338
PA
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
237fc4c9
PA
1689 }
1690}
1691
1692static void
fc1cf338 1693displaced_step_clear_cleanup (void *arg)
237fc4c9 1694{
fc1cf338
PA
1695 struct displaced_step_inferior_state *state = arg;
1696
1697 displaced_step_clear (state);
237fc4c9
PA
1698}
1699
1700/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1701void
1702displaced_step_dump_bytes (struct ui_file *file,
1703 const gdb_byte *buf,
1704 size_t len)
1705{
1706 int i;
1707
1708 for (i = 0; i < len; i++)
1709 fprintf_unfiltered (file, "%02x ", buf[i]);
1710 fputs_unfiltered ("\n", file);
1711}
1712
1713/* Prepare to single-step, using displaced stepping.
1714
1715 Note that we cannot use displaced stepping when we have a signal to
1716 deliver. If we have a signal to deliver and an instruction to step
1717 over, then after the step, there will be no indication from the
1718 target whether the thread entered a signal handler or ignored the
1719 signal and stepped over the instruction successfully --- both cases
1720 result in a simple SIGTRAP. In the first case we mustn't do a
1721 fixup, and in the second case we must --- but we can't tell which.
1722 Comments in the code for 'random signals' in handle_inferior_event
1723 explain how we handle this case instead.
1724
1725 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1726 stepped now; 0 if displaced stepping this thread got queued; or -1
1727 if this instruction can't be displaced stepped. */
1728
237fc4c9 1729static int
3fc8eb30 1730displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1731{
ad53cd71 1732 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1733 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1734 struct regcache *regcache = get_thread_regcache (ptid);
1735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1736 CORE_ADDR original, copy;
1737 ULONGEST len;
1738 struct displaced_step_closure *closure;
fc1cf338 1739 struct displaced_step_inferior_state *displaced;
9e529e1d 1740 int status;
237fc4c9
PA
1741
1742 /* We should never reach this function if the architecture does not
1743 support displaced stepping. */
1744 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1745
c2829269
PA
1746 /* Nor if the thread isn't meant to step over a breakpoint. */
1747 gdb_assert (tp->control.trap_expected);
1748
c1e36e3e
PA
1749 /* Disable range stepping while executing in the scratch pad. We
1750 want a single-step even if executing the displaced instruction in
1751 the scratch buffer lands within the stepping range (e.g., a
1752 jump/branch). */
1753 tp->control.may_range_step = 0;
1754
fc1cf338
PA
1755 /* We have to displaced step one thread at a time, as we only have
1756 access to a single scratch space per inferior. */
237fc4c9 1757
fc1cf338
PA
1758 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1759
1760 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1761 {
1762 /* Already waiting for a displaced step to finish. Defer this
1763 request and place in queue. */
237fc4c9
PA
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog,
c2829269 1767 "displaced: deferring step of %s\n",
237fc4c9
PA
1768 target_pid_to_str (ptid));
1769
c2829269 1770 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1771 return 0;
1772 }
1773 else
1774 {
1775 if (debug_displaced)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: stepping %s now\n",
1778 target_pid_to_str (ptid));
1779 }
1780
fc1cf338 1781 displaced_step_clear (displaced);
237fc4c9 1782
ad53cd71
PA
1783 old_cleanups = save_inferior_ptid ();
1784 inferior_ptid = ptid;
1785
515630c5 1786 original = regcache_read_pc (regcache);
237fc4c9
PA
1787
1788 copy = gdbarch_displaced_step_location (gdbarch);
1789 len = gdbarch_max_insn_length (gdbarch);
1790
1791 /* Save the original contents of the copy area. */
fc1cf338 1792 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1793 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1794 &displaced->step_saved_copy);
9e529e1d
JK
1795 status = target_read_memory (copy, displaced->step_saved_copy, len);
1796 if (status != 0)
1797 throw_error (MEMORY_ERROR,
1798 _("Error accessing memory address %s (%s) for "
1799 "displaced-stepping scratch space."),
1800 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1801 if (debug_displaced)
1802 {
5af949e3
UW
1803 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1804 paddress (gdbarch, copy));
fc1cf338
PA
1805 displaced_step_dump_bytes (gdb_stdlog,
1806 displaced->step_saved_copy,
1807 len);
237fc4c9
PA
1808 };
1809
1810 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1811 original, copy, regcache);
7f03bd92
PA
1812 if (closure == NULL)
1813 {
1814 /* The architecture doesn't know how or want to displaced step
1815 this instruction or instruction sequence. Fallback to
1816 stepping over the breakpoint in-line. */
1817 do_cleanups (old_cleanups);
1818 return -1;
1819 }
237fc4c9 1820
9f5a595d
UW
1821 /* Save the information we need to fix things up if the step
1822 succeeds. */
fc1cf338
PA
1823 displaced->step_ptid = ptid;
1824 displaced->step_gdbarch = gdbarch;
1825 displaced->step_closure = closure;
1826 displaced->step_original = original;
1827 displaced->step_copy = copy;
9f5a595d 1828
fc1cf338 1829 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1830
1831 /* Resume execution at the copy. */
515630c5 1832 regcache_write_pc (regcache, copy);
237fc4c9 1833
ad53cd71
PA
1834 discard_cleanups (ignore_cleanups);
1835
1836 do_cleanups (old_cleanups);
237fc4c9
PA
1837
1838 if (debug_displaced)
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1840 paddress (gdbarch, copy));
237fc4c9 1841
237fc4c9
PA
1842 return 1;
1843}
1844
3fc8eb30
PA
1845/* Wrapper for displaced_step_prepare_throw that disabled further
1846 attempts at displaced stepping if we get a memory error. */
1847
1848static int
1849displaced_step_prepare (ptid_t ptid)
1850{
1851 int prepared = -1;
1852
1853 TRY
1854 {
1855 prepared = displaced_step_prepare_throw (ptid);
1856 }
1857 CATCH (ex, RETURN_MASK_ERROR)
1858 {
1859 struct displaced_step_inferior_state *displaced_state;
1860
1861 if (ex.error != MEMORY_ERROR)
1862 throw_exception (ex);
1863
1864 if (debug_infrun)
1865 {
1866 fprintf_unfiltered (gdb_stdlog,
1867 "infrun: disabling displaced stepping: %s\n",
1868 ex.message);
1869 }
1870
1871 /* Be verbose if "set displaced-stepping" is "on", silent if
1872 "auto". */
1873 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1874 {
fd7dcb94 1875 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1876 ex.message);
1877 }
1878
1879 /* Disable further displaced stepping attempts. */
1880 displaced_state
1881 = get_displaced_stepping_state (ptid_get_pid (ptid));
1882 displaced_state->failed_before = 1;
1883 }
1884 END_CATCH
1885
1886 return prepared;
1887}
1888
237fc4c9 1889static void
3e43a32a
MS
1890write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1891 const gdb_byte *myaddr, int len)
237fc4c9
PA
1892{
1893 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1894
237fc4c9
PA
1895 inferior_ptid = ptid;
1896 write_memory (memaddr, myaddr, len);
1897 do_cleanups (ptid_cleanup);
1898}
1899
e2d96639
YQ
1900/* Restore the contents of the copy area for thread PTID. */
1901
1902static void
1903displaced_step_restore (struct displaced_step_inferior_state *displaced,
1904 ptid_t ptid)
1905{
1906 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1907
1908 write_memory_ptid (ptid, displaced->step_copy,
1909 displaced->step_saved_copy, len);
1910 if (debug_displaced)
1911 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1912 target_pid_to_str (ptid),
1913 paddress (displaced->step_gdbarch,
1914 displaced->step_copy));
1915}
1916
372316f1
PA
1917/* If we displaced stepped an instruction successfully, adjust
1918 registers and memory to yield the same effect the instruction would
1919 have had if we had executed it at its original address, and return
1920 1. If the instruction didn't complete, relocate the PC and return
1921 -1. If the thread wasn't displaced stepping, return 0. */
1922
1923static int
2ea28649 1924displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1925{
1926 struct cleanup *old_cleanups;
fc1cf338
PA
1927 struct displaced_step_inferior_state *displaced
1928 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1929 int ret;
fc1cf338
PA
1930
1931 /* Was any thread of this process doing a displaced step? */
1932 if (displaced == NULL)
372316f1 1933 return 0;
237fc4c9
PA
1934
1935 /* Was this event for the pid we displaced? */
fc1cf338
PA
1936 if (ptid_equal (displaced->step_ptid, null_ptid)
1937 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1938 return 0;
237fc4c9 1939
fc1cf338 1940 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1941
e2d96639 1942 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1943
cb71640d
PA
1944 /* Fixup may need to read memory/registers. Switch to the thread
1945 that we're fixing up. Also, target_stopped_by_watchpoint checks
1946 the current thread. */
1947 switch_to_thread (event_ptid);
1948
237fc4c9 1949 /* Did the instruction complete successfully? */
cb71640d
PA
1950 if (signal == GDB_SIGNAL_TRAP
1951 && !(target_stopped_by_watchpoint ()
1952 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1953 || target_have_steppable_watchpoint)))
237fc4c9
PA
1954 {
1955 /* Fix up the resulting state. */
fc1cf338
PA
1956 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1957 displaced->step_closure,
1958 displaced->step_original,
1959 displaced->step_copy,
1960 get_thread_regcache (displaced->step_ptid));
372316f1 1961 ret = 1;
237fc4c9
PA
1962 }
1963 else
1964 {
1965 /* Since the instruction didn't complete, all we can do is
1966 relocate the PC. */
515630c5
UW
1967 struct regcache *regcache = get_thread_regcache (event_ptid);
1968 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1969
fc1cf338 1970 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1971 regcache_write_pc (regcache, pc);
372316f1 1972 ret = -1;
237fc4c9
PA
1973 }
1974
1975 do_cleanups (old_cleanups);
1976
fc1cf338 1977 displaced->step_ptid = null_ptid;
372316f1
PA
1978
1979 return ret;
c2829269 1980}
1c5cfe86 1981
4d9d9d04
PA
1982/* Data to be passed around while handling an event. This data is
1983 discarded between events. */
1984struct execution_control_state
1985{
1986 ptid_t ptid;
1987 /* The thread that got the event, if this was a thread event; NULL
1988 otherwise. */
1989 struct thread_info *event_thread;
1990
1991 struct target_waitstatus ws;
1992 int stop_func_filled_in;
1993 CORE_ADDR stop_func_start;
1994 CORE_ADDR stop_func_end;
1995 const char *stop_func_name;
1996 int wait_some_more;
1997
1998 /* True if the event thread hit the single-step breakpoint of
1999 another thread. Thus the event doesn't cause a stop, the thread
2000 needs to be single-stepped past the single-step breakpoint before
2001 we can switch back to the original stepping thread. */
2002 int hit_singlestep_breakpoint;
2003};
2004
2005/* Clear ECS and set it to point at TP. */
c2829269
PA
2006
2007static void
4d9d9d04
PA
2008reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2009{
2010 memset (ecs, 0, sizeof (*ecs));
2011 ecs->event_thread = tp;
2012 ecs->ptid = tp->ptid;
2013}
2014
2015static void keep_going_pass_signal (struct execution_control_state *ecs);
2016static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2017static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2018static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2019static void stop_all_threads (void);
4d9d9d04
PA
2020
2021/* Are there any pending step-over requests? If so, run all we can
2022 now and return true. Otherwise, return false. */
2023
2024static int
c2829269
PA
2025start_step_over (void)
2026{
2027 struct thread_info *tp, *next;
2028
372316f1
PA
2029 /* Don't start a new step-over if we already have an in-line
2030 step-over operation ongoing. */
2031 if (step_over_info_valid_p ())
2032 return 0;
2033
c2829269 2034 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2035 {
4d9d9d04
PA
2036 struct execution_control_state ecss;
2037 struct execution_control_state *ecs = &ecss;
372316f1
PA
2038 enum step_over_what step_what;
2039 int must_be_in_line;
c2829269
PA
2040
2041 next = thread_step_over_chain_next (tp);
237fc4c9 2042
c2829269
PA
2043 /* If this inferior already has a displaced step in process,
2044 don't start a new one. */
4d9d9d04 2045 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2046 continue;
2047
372316f1
PA
2048 step_what = thread_still_needs_step_over (tp);
2049 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2050 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2051 && !use_displaced_stepping (tp)));
372316f1
PA
2052
2053 /* We currently stop all threads of all processes to step-over
2054 in-line. If we need to start a new in-line step-over, let
2055 any pending displaced steps finish first. */
2056 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2057 return 0;
2058
c2829269
PA
2059 thread_step_over_chain_remove (tp);
2060
2061 if (step_over_queue_head == NULL)
2062 {
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: step-over queue now empty\n");
2066 }
2067
372316f1
PA
2068 if (tp->control.trap_expected
2069 || tp->resumed
2070 || tp->executing)
ad53cd71 2071 {
4d9d9d04
PA
2072 internal_error (__FILE__, __LINE__,
2073 "[%s] has inconsistent state: "
372316f1 2074 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2075 target_pid_to_str (tp->ptid),
2076 tp->control.trap_expected,
372316f1 2077 tp->resumed,
4d9d9d04 2078 tp->executing);
ad53cd71 2079 }
1c5cfe86 2080
4d9d9d04
PA
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "infrun: resuming [%s] for step-over\n",
2084 target_pid_to_str (tp->ptid));
2085
2086 /* keep_going_pass_signal skips the step-over if the breakpoint
2087 is no longer inserted. In all-stop, we want to keep looking
2088 for a thread that needs a step-over instead of resuming TP,
2089 because we wouldn't be able to resume anything else until the
2090 target stops again. In non-stop, the resume always resumes
2091 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2092 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2093 continue;
8550d3b3 2094
4d9d9d04
PA
2095 switch_to_thread (tp->ptid);
2096 reset_ecs (ecs, tp);
2097 keep_going_pass_signal (ecs);
1c5cfe86 2098
4d9d9d04
PA
2099 if (!ecs->wait_some_more)
2100 error (_("Command aborted."));
1c5cfe86 2101
372316f1
PA
2102 gdb_assert (tp->resumed);
2103
2104 /* If we started a new in-line step-over, we're done. */
2105 if (step_over_info_valid_p ())
2106 {
2107 gdb_assert (tp->control.trap_expected);
2108 return 1;
2109 }
2110
fbea99ea 2111 if (!target_is_non_stop_p ())
4d9d9d04
PA
2112 {
2113 /* On all-stop, shouldn't have resumed unless we needed a
2114 step over. */
2115 gdb_assert (tp->control.trap_expected
2116 || tp->step_after_step_resume_breakpoint);
2117
2118 /* With remote targets (at least), in all-stop, we can't
2119 issue any further remote commands until the program stops
2120 again. */
2121 return 1;
1c5cfe86 2122 }
c2829269 2123
4d9d9d04
PA
2124 /* Either the thread no longer needed a step-over, or a new
2125 displaced stepping sequence started. Even in the latter
2126 case, continue looking. Maybe we can also start another
2127 displaced step on a thread of other process. */
237fc4c9 2128 }
4d9d9d04
PA
2129
2130 return 0;
237fc4c9
PA
2131}
2132
5231c1fd
PA
2133/* Update global variables holding ptids to hold NEW_PTID if they were
2134 holding OLD_PTID. */
2135static void
2136infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2137{
2138 struct displaced_step_request *it;
fc1cf338 2139 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2140
2141 if (ptid_equal (inferior_ptid, old_ptid))
2142 inferior_ptid = new_ptid;
2143
fc1cf338
PA
2144 for (displaced = displaced_step_inferior_states;
2145 displaced;
2146 displaced = displaced->next)
2147 {
2148 if (ptid_equal (displaced->step_ptid, old_ptid))
2149 displaced->step_ptid = new_ptid;
fc1cf338 2150 }
5231c1fd
PA
2151}
2152
237fc4c9
PA
2153\f
2154/* Resuming. */
c906108c
SS
2155
2156/* Things to clean up if we QUIT out of resume (). */
c906108c 2157static void
74b7792f 2158resume_cleanups (void *ignore)
c906108c 2159{
34b7e8a6
PA
2160 if (!ptid_equal (inferior_ptid, null_ptid))
2161 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2162
c906108c
SS
2163 normal_stop ();
2164}
2165
53904c9e
AC
2166static const char schedlock_off[] = "off";
2167static const char schedlock_on[] = "on";
2168static const char schedlock_step[] = "step";
40478521 2169static const char *const scheduler_enums[] = {
ef346e04
AC
2170 schedlock_off,
2171 schedlock_on,
2172 schedlock_step,
2173 NULL
2174};
920d2a44
AC
2175static const char *scheduler_mode = schedlock_off;
2176static void
2177show_scheduler_mode (struct ui_file *file, int from_tty,
2178 struct cmd_list_element *c, const char *value)
2179{
3e43a32a
MS
2180 fprintf_filtered (file,
2181 _("Mode for locking scheduler "
2182 "during execution is \"%s\".\n"),
920d2a44
AC
2183 value);
2184}
c906108c
SS
2185
2186static void
96baa820 2187set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2188{
eefe576e
AC
2189 if (!target_can_lock_scheduler)
2190 {
2191 scheduler_mode = schedlock_off;
2192 error (_("Target '%s' cannot support this command."), target_shortname);
2193 }
c906108c
SS
2194}
2195
d4db2f36
PA
2196/* True if execution commands resume all threads of all processes by
2197 default; otherwise, resume only threads of the current inferior
2198 process. */
2199int sched_multi = 0;
2200
2facfe5c
DD
2201/* Try to setup for software single stepping over the specified location.
2202 Return 1 if target_resume() should use hardware single step.
2203
2204 GDBARCH the current gdbarch.
2205 PC the location to step over. */
2206
2207static int
2208maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2209{
2210 int hw_step = 1;
2211
f02253f1
HZ
2212 if (execution_direction == EXEC_FORWARD
2213 && gdbarch_software_single_step_p (gdbarch)
99e40580 2214 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2215 {
99e40580 2216 hw_step = 0;
2facfe5c
DD
2217 }
2218 return hw_step;
2219}
c906108c 2220
f3263aa4
PA
2221/* See infrun.h. */
2222
09cee04b
PA
2223ptid_t
2224user_visible_resume_ptid (int step)
2225{
f3263aa4 2226 ptid_t resume_ptid;
09cee04b 2227
09cee04b
PA
2228 if (non_stop)
2229 {
2230 /* With non-stop mode on, threads are always handled
2231 individually. */
2232 resume_ptid = inferior_ptid;
2233 }
2234 else if ((scheduler_mode == schedlock_on)
03d46957 2235 || (scheduler_mode == schedlock_step && step))
09cee04b 2236 {
f3263aa4
PA
2237 /* User-settable 'scheduler' mode requires solo thread
2238 resume. */
09cee04b
PA
2239 resume_ptid = inferior_ptid;
2240 }
f3263aa4
PA
2241 else if (!sched_multi && target_supports_multi_process ())
2242 {
2243 /* Resume all threads of the current process (and none of other
2244 processes). */
2245 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2246 }
2247 else
2248 {
2249 /* Resume all threads of all processes. */
2250 resume_ptid = RESUME_ALL;
2251 }
09cee04b
PA
2252
2253 return resume_ptid;
2254}
2255
fbea99ea
PA
2256/* Return a ptid representing the set of threads that we will resume,
2257 in the perspective of the target, assuming run control handling
2258 does not require leaving some threads stopped (e.g., stepping past
2259 breakpoint). USER_STEP indicates whether we're about to start the
2260 target for a stepping command. */
2261
2262static ptid_t
2263internal_resume_ptid (int user_step)
2264{
2265 /* In non-stop, we always control threads individually. Note that
2266 the target may always work in non-stop mode even with "set
2267 non-stop off", in which case user_visible_resume_ptid could
2268 return a wildcard ptid. */
2269 if (target_is_non_stop_p ())
2270 return inferior_ptid;
2271 else
2272 return user_visible_resume_ptid (user_step);
2273}
2274
64ce06e4
PA
2275/* Wrapper for target_resume, that handles infrun-specific
2276 bookkeeping. */
2277
2278static void
2279do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2280{
2281 struct thread_info *tp = inferior_thread ();
2282
2283 /* Install inferior's terminal modes. */
2284 target_terminal_inferior ();
2285
2286 /* Avoid confusing the next resume, if the next stop/resume
2287 happens to apply to another thread. */
2288 tp->suspend.stop_signal = GDB_SIGNAL_0;
2289
8f572e5c
PA
2290 /* Advise target which signals may be handled silently.
2291
2292 If we have removed breakpoints because we are stepping over one
2293 in-line (in any thread), we need to receive all signals to avoid
2294 accidentally skipping a breakpoint during execution of a signal
2295 handler.
2296
2297 Likewise if we're displaced stepping, otherwise a trap for a
2298 breakpoint in a signal handler might be confused with the
2299 displaced step finishing. We don't make the displaced_step_fixup
2300 step distinguish the cases instead, because:
2301
2302 - a backtrace while stopped in the signal handler would show the
2303 scratch pad as frame older than the signal handler, instead of
2304 the real mainline code.
2305
2306 - when the thread is later resumed, the signal handler would
2307 return to the scratch pad area, which would no longer be
2308 valid. */
2309 if (step_over_info_valid_p ()
2310 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2311 target_pass_signals (0, NULL);
2312 else
2313 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2314
2315 target_resume (resume_ptid, step, sig);
2316}
2317
c906108c
SS
2318/* Resume the inferior, but allow a QUIT. This is useful if the user
2319 wants to interrupt some lengthy single-stepping operation
2320 (for child processes, the SIGINT goes to the inferior, and so
2321 we get a SIGINT random_signal, but for remote debugging and perhaps
2322 other targets, that's not true).
2323
c906108c
SS
2324 SIG is the signal to give the inferior (zero for none). */
2325void
64ce06e4 2326resume (enum gdb_signal sig)
c906108c 2327{
74b7792f 2328 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2329 struct regcache *regcache = get_current_regcache ();
2330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2331 struct thread_info *tp = inferior_thread ();
515630c5 2332 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2333 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2334 ptid_t resume_ptid;
856e7dd6
PA
2335 /* This represents the user's step vs continue request. When
2336 deciding whether "set scheduler-locking step" applies, it's the
2337 user's intention that counts. */
2338 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2339 /* This represents what we'll actually request the target to do.
2340 This can decay from a step to a continue, if e.g., we need to
2341 implement single-stepping with breakpoints (software
2342 single-step). */
6b403daa 2343 int step;
c7e8a53c 2344
c2829269
PA
2345 gdb_assert (!thread_is_in_step_over_chain (tp));
2346
c906108c
SS
2347 QUIT;
2348
372316f1
PA
2349 if (tp->suspend.waitstatus_pending_p)
2350 {
2351 if (debug_infrun)
2352 {
2353 char *statstr;
2354
2355 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: thread %s has pending wait status %s "
2358 "(currently_stepping=%d).\n",
2359 target_pid_to_str (tp->ptid), statstr,
2360 currently_stepping (tp));
2361 xfree (statstr);
2362 }
2363
2364 tp->resumed = 1;
2365
2366 /* FIXME: What should we do if we are supposed to resume this
2367 thread with a signal? Maybe we should maintain a queue of
2368 pending signals to deliver. */
2369 if (sig != GDB_SIGNAL_0)
2370 {
fd7dcb94 2371 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2372 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2373 }
2374
2375 tp->suspend.stop_signal = GDB_SIGNAL_0;
2376 discard_cleanups (old_cleanups);
2377
2378 if (target_can_async_p ())
2379 target_async (1);
2380 return;
2381 }
2382
2383 tp->stepped_breakpoint = 0;
2384
6b403daa
PA
2385 /* Depends on stepped_breakpoint. */
2386 step = currently_stepping (tp);
2387
74609e71
YQ
2388 if (current_inferior ()->waiting_for_vfork_done)
2389 {
48f9886d
PA
2390 /* Don't try to single-step a vfork parent that is waiting for
2391 the child to get out of the shared memory region (by exec'ing
2392 or exiting). This is particularly important on software
2393 single-step archs, as the child process would trip on the
2394 software single step breakpoint inserted for the parent
2395 process. Since the parent will not actually execute any
2396 instruction until the child is out of the shared region (such
2397 are vfork's semantics), it is safe to simply continue it.
2398 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2399 the parent, and tell it to `keep_going', which automatically
2400 re-sets it stepping. */
74609e71
YQ
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "infrun: resume : clear step\n");
a09dd441 2404 step = 0;
74609e71
YQ
2405 }
2406
527159b7 2407 if (debug_infrun)
237fc4c9 2408 fprintf_unfiltered (gdb_stdlog,
c9737c08 2409 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2410 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2411 step, gdb_signal_to_symbol_string (sig),
2412 tp->control.trap_expected,
0d9a9a5f
PA
2413 target_pid_to_str (inferior_ptid),
2414 paddress (gdbarch, pc));
c906108c 2415
c2c6d25f
JM
2416 /* Normally, by the time we reach `resume', the breakpoints are either
2417 removed or inserted, as appropriate. The exception is if we're sitting
2418 at a permanent breakpoint; we need to step over it, but permanent
2419 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2420 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2421 {
af48d08f
PA
2422 if (sig != GDB_SIGNAL_0)
2423 {
2424 /* We have a signal to pass to the inferior. The resume
2425 may, or may not take us to the signal handler. If this
2426 is a step, we'll need to stop in the signal handler, if
2427 there's one, (if the target supports stepping into
2428 handlers), or in the next mainline instruction, if
2429 there's no handler. If this is a continue, we need to be
2430 sure to run the handler with all breakpoints inserted.
2431 In all cases, set a breakpoint at the current address
2432 (where the handler returns to), and once that breakpoint
2433 is hit, resume skipping the permanent breakpoint. If
2434 that breakpoint isn't hit, then we've stepped into the
2435 signal handler (or hit some other event). We'll delete
2436 the step-resume breakpoint then. */
2437
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog,
2440 "infrun: resume: skipping permanent breakpoint, "
2441 "deliver signal first\n");
2442
2443 clear_step_over_info ();
2444 tp->control.trap_expected = 0;
2445
2446 if (tp->control.step_resume_breakpoint == NULL)
2447 {
2448 /* Set a "high-priority" step-resume, as we don't want
2449 user breakpoints at PC to trigger (again) when this
2450 hits. */
2451 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2452 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2453
2454 tp->step_after_step_resume_breakpoint = step;
2455 }
2456
2457 insert_breakpoints ();
2458 }
2459 else
2460 {
2461 /* There's no signal to pass, we can go ahead and skip the
2462 permanent breakpoint manually. */
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog,
2465 "infrun: resume: skipping permanent breakpoint\n");
2466 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2467 /* Update pc to reflect the new address from which we will
2468 execute instructions. */
2469 pc = regcache_read_pc (regcache);
2470
2471 if (step)
2472 {
2473 /* We've already advanced the PC, so the stepping part
2474 is done. Now we need to arrange for a trap to be
2475 reported to handle_inferior_event. Set a breakpoint
2476 at the current PC, and run to it. Don't update
2477 prev_pc, because if we end in
44a1ee51
PA
2478 switch_back_to_stepped_thread, we want the "expected
2479 thread advanced also" branch to be taken. IOW, we
2480 don't want this thread to step further from PC
af48d08f 2481 (overstep). */
1ac806b8 2482 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2483 insert_single_step_breakpoint (gdbarch, aspace, pc);
2484 insert_breakpoints ();
2485
fbea99ea 2486 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2487 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2488 discard_cleanups (old_cleanups);
372316f1 2489 tp->resumed = 1;
af48d08f
PA
2490 return;
2491 }
2492 }
6d350bb5 2493 }
c2c6d25f 2494
c1e36e3e
PA
2495 /* If we have a breakpoint to step over, make sure to do a single
2496 step only. Same if we have software watchpoints. */
2497 if (tp->control.trap_expected || bpstat_should_step ())
2498 tp->control.may_range_step = 0;
2499
237fc4c9
PA
2500 /* If enabled, step over breakpoints by executing a copy of the
2501 instruction at a different address.
2502
2503 We can't use displaced stepping when we have a signal to deliver;
2504 the comments for displaced_step_prepare explain why. The
2505 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2506 signals' explain what we do instead.
2507
2508 We can't use displaced stepping when we are waiting for vfork_done
2509 event, displaced stepping breaks the vfork child similarly as single
2510 step software breakpoint. */
3fc8eb30
PA
2511 if (tp->control.trap_expected
2512 && use_displaced_stepping (tp)
cb71640d 2513 && !step_over_info_valid_p ()
a493e3e2 2514 && sig == GDB_SIGNAL_0
74609e71 2515 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2516 {
3fc8eb30 2517 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2518
3fc8eb30 2519 if (prepared == 0)
d56b7306 2520 {
4d9d9d04
PA
2521 if (debug_infrun)
2522 fprintf_unfiltered (gdb_stdlog,
2523 "Got placed in step-over queue\n");
2524
2525 tp->control.trap_expected = 0;
d56b7306
VP
2526 discard_cleanups (old_cleanups);
2527 return;
2528 }
3fc8eb30
PA
2529 else if (prepared < 0)
2530 {
2531 /* Fallback to stepping over the breakpoint in-line. */
2532
2533 if (target_is_non_stop_p ())
2534 stop_all_threads ();
2535
2536 set_step_over_info (get_regcache_aspace (regcache),
2537 regcache_read_pc (regcache), 0);
2538
2539 step = maybe_software_singlestep (gdbarch, pc);
2540
2541 insert_breakpoints ();
2542 }
2543 else if (prepared > 0)
2544 {
2545 struct displaced_step_inferior_state *displaced;
99e40580 2546
3fc8eb30
PA
2547 /* Update pc to reflect the new address from which we will
2548 execute instructions due to displaced stepping. */
2549 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2550
3fc8eb30
PA
2551 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2552 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2553 displaced->step_closure);
2554 }
237fc4c9
PA
2555 }
2556
2facfe5c 2557 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2558 else if (step)
2facfe5c 2559 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2560
30852783
UW
2561 /* Currently, our software single-step implementation leads to different
2562 results than hardware single-stepping in one situation: when stepping
2563 into delivering a signal which has an associated signal handler,
2564 hardware single-step will stop at the first instruction of the handler,
2565 while software single-step will simply skip execution of the handler.
2566
2567 For now, this difference in behavior is accepted since there is no
2568 easy way to actually implement single-stepping into a signal handler
2569 without kernel support.
2570
2571 However, there is one scenario where this difference leads to follow-on
2572 problems: if we're stepping off a breakpoint by removing all breakpoints
2573 and then single-stepping. In this case, the software single-step
2574 behavior means that even if there is a *breakpoint* in the signal
2575 handler, GDB still would not stop.
2576
2577 Fortunately, we can at least fix this particular issue. We detect
2578 here the case where we are about to deliver a signal while software
2579 single-stepping with breakpoints removed. In this situation, we
2580 revert the decisions to remove all breakpoints and insert single-
2581 step breakpoints, and instead we install a step-resume breakpoint
2582 at the current address, deliver the signal without stepping, and
2583 once we arrive back at the step-resume breakpoint, actually step
2584 over the breakpoint we originally wanted to step over. */
34b7e8a6 2585 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2586 && sig != GDB_SIGNAL_0
2587 && step_over_info_valid_p ())
30852783
UW
2588 {
2589 /* If we have nested signals or a pending signal is delivered
2590 immediately after a handler returns, might might already have
2591 a step-resume breakpoint set on the earlier handler. We cannot
2592 set another step-resume breakpoint; just continue on until the
2593 original breakpoint is hit. */
2594 if (tp->control.step_resume_breakpoint == NULL)
2595 {
2c03e5be 2596 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2597 tp->step_after_step_resume_breakpoint = 1;
2598 }
2599
34b7e8a6 2600 delete_single_step_breakpoints (tp);
30852783 2601
31e77af2 2602 clear_step_over_info ();
30852783 2603 tp->control.trap_expected = 0;
31e77af2
PA
2604
2605 insert_breakpoints ();
30852783
UW
2606 }
2607
b0f16a3e
SM
2608 /* If STEP is set, it's a request to use hardware stepping
2609 facilities. But in that case, we should never
2610 use singlestep breakpoint. */
34b7e8a6 2611 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2612
fbea99ea 2613 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2614 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2615 && tp->control.trap_expected)
2616 {
2617 /* We're allowing a thread to run past a breakpoint it has
2618 hit, by single-stepping the thread with the breakpoint
2619 removed. In which case, we need to single-step only this
2620 thread, and keep others stopped, as they can miss this
2621 breakpoint if allowed to run. */
2622 resume_ptid = inferior_ptid;
2623 }
fbea99ea
PA
2624 else
2625 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2626
7f5ef605
PA
2627 if (execution_direction != EXEC_REVERSE
2628 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2629 {
372316f1
PA
2630 /* There are two cases where we currently need to step a
2631 breakpoint instruction when we have a signal to deliver:
2632
2633 - See handle_signal_stop where we handle random signals that
2634 could take out us out of the stepping range. Normally, in
2635 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2636 signal handler with a breakpoint at PC, but there are cases
2637 where we should _always_ single-step, even if we have a
2638 step-resume breakpoint, like when a software watchpoint is
2639 set. Assuming single-stepping and delivering a signal at the
2640 same time would takes us to the signal handler, then we could
2641 have removed the breakpoint at PC to step over it. However,
2642 some hardware step targets (like e.g., Mac OS) can't step
2643 into signal handlers, and for those, we need to leave the
2644 breakpoint at PC inserted, as otherwise if the handler
2645 recurses and executes PC again, it'll miss the breakpoint.
2646 So we leave the breakpoint inserted anyway, but we need to
2647 record that we tried to step a breakpoint instruction, so
372316f1
PA
2648 that adjust_pc_after_break doesn't end up confused.
2649
2650 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2651 in one thread after another thread that was stepping had been
2652 momentarily paused for a step-over. When we re-resume the
2653 stepping thread, it may be resumed from that address with a
2654 breakpoint that hasn't trapped yet. Seen with
2655 gdb.threads/non-stop-fair-events.exp, on targets that don't
2656 do displaced stepping. */
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "infrun: resume: [%s] stepped breakpoint\n",
2661 target_pid_to_str (tp->ptid));
7f5ef605
PA
2662
2663 tp->stepped_breakpoint = 1;
2664
b0f16a3e
SM
2665 /* Most targets can step a breakpoint instruction, thus
2666 executing it normally. But if this one cannot, just
2667 continue and we will hit it anyway. */
7f5ef605 2668 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2669 step = 0;
2670 }
ef5cf84e 2671
b0f16a3e 2672 if (debug_displaced
cb71640d 2673 && tp->control.trap_expected
3fc8eb30 2674 && use_displaced_stepping (tp)
cb71640d 2675 && !step_over_info_valid_p ())
b0f16a3e 2676 {
d9b67d9f 2677 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2678 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2679 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2680 gdb_byte buf[4];
2681
2682 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2683 paddress (resume_gdbarch, actual_pc));
2684 read_memory (actual_pc, buf, sizeof (buf));
2685 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2686 }
237fc4c9 2687
b0f16a3e
SM
2688 if (tp->control.may_range_step)
2689 {
2690 /* If we're resuming a thread with the PC out of the step
2691 range, then we're doing some nested/finer run control
2692 operation, like stepping the thread out of the dynamic
2693 linker or the displaced stepping scratch pad. We
2694 shouldn't have allowed a range step then. */
2695 gdb_assert (pc_in_thread_step_range (pc, tp));
2696 }
c1e36e3e 2697
64ce06e4 2698 do_target_resume (resume_ptid, step, sig);
372316f1 2699 tp->resumed = 1;
c906108c
SS
2700 discard_cleanups (old_cleanups);
2701}
2702\f
237fc4c9 2703/* Proceeding. */
c906108c 2704
4c2f2a79
PA
2705/* See infrun.h. */
2706
2707/* Counter that tracks number of user visible stops. This can be used
2708 to tell whether a command has proceeded the inferior past the
2709 current location. This allows e.g., inferior function calls in
2710 breakpoint commands to not interrupt the command list. When the
2711 call finishes successfully, the inferior is standing at the same
2712 breakpoint as if nothing happened (and so we don't call
2713 normal_stop). */
2714static ULONGEST current_stop_id;
2715
2716/* See infrun.h. */
2717
2718ULONGEST
2719get_stop_id (void)
2720{
2721 return current_stop_id;
2722}
2723
2724/* Called when we report a user visible stop. */
2725
2726static void
2727new_stop_id (void)
2728{
2729 current_stop_id++;
2730}
2731
c906108c
SS
2732/* Clear out all variables saying what to do when inferior is continued.
2733 First do this, then set the ones you want, then call `proceed'. */
2734
a7212384
UW
2735static void
2736clear_proceed_status_thread (struct thread_info *tp)
c906108c 2737{
a7212384
UW
2738 if (debug_infrun)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "infrun: clear_proceed_status_thread (%s)\n",
2741 target_pid_to_str (tp->ptid));
d6b48e9c 2742
372316f1
PA
2743 /* If we're starting a new sequence, then the previous finished
2744 single-step is no longer relevant. */
2745 if (tp->suspend.waitstatus_pending_p)
2746 {
2747 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2748 {
2749 if (debug_infrun)
2750 fprintf_unfiltered (gdb_stdlog,
2751 "infrun: clear_proceed_status: pending "
2752 "event of %s was a finished step. "
2753 "Discarding.\n",
2754 target_pid_to_str (tp->ptid));
2755
2756 tp->suspend.waitstatus_pending_p = 0;
2757 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2758 }
2759 else if (debug_infrun)
2760 {
2761 char *statstr;
2762
2763 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2764 fprintf_unfiltered (gdb_stdlog,
2765 "infrun: clear_proceed_status_thread: thread %s "
2766 "has pending wait status %s "
2767 "(currently_stepping=%d).\n",
2768 target_pid_to_str (tp->ptid), statstr,
2769 currently_stepping (tp));
2770 xfree (statstr);
2771 }
2772 }
2773
70509625
PA
2774 /* If this signal should not be seen by program, give it zero.
2775 Used for debugging signals. */
2776 if (!signal_pass_state (tp->suspend.stop_signal))
2777 tp->suspend.stop_signal = GDB_SIGNAL_0;
2778
243a9253
PA
2779 thread_fsm_delete (tp->thread_fsm);
2780 tp->thread_fsm = NULL;
2781
16c381f0
JK
2782 tp->control.trap_expected = 0;
2783 tp->control.step_range_start = 0;
2784 tp->control.step_range_end = 0;
c1e36e3e 2785 tp->control.may_range_step = 0;
16c381f0
JK
2786 tp->control.step_frame_id = null_frame_id;
2787 tp->control.step_stack_frame_id = null_frame_id;
2788 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2789 tp->control.step_start_function = NULL;
a7212384 2790 tp->stop_requested = 0;
4e1c45ea 2791
16c381f0 2792 tp->control.stop_step = 0;
32400beb 2793
16c381f0 2794 tp->control.proceed_to_finish = 0;
414c69f7 2795
17b2616c 2796 tp->control.command_interp = NULL;
856e7dd6 2797 tp->control.stepping_command = 0;
17b2616c 2798
a7212384 2799 /* Discard any remaining commands or status from previous stop. */
16c381f0 2800 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2801}
32400beb 2802
a7212384 2803void
70509625 2804clear_proceed_status (int step)
a7212384 2805{
6c95b8df
PA
2806 if (!non_stop)
2807 {
70509625
PA
2808 struct thread_info *tp;
2809 ptid_t resume_ptid;
2810
2811 resume_ptid = user_visible_resume_ptid (step);
2812
2813 /* In all-stop mode, delete the per-thread status of all threads
2814 we're about to resume, implicitly and explicitly. */
2815 ALL_NON_EXITED_THREADS (tp)
2816 {
2817 if (!ptid_match (tp->ptid, resume_ptid))
2818 continue;
2819 clear_proceed_status_thread (tp);
2820 }
6c95b8df
PA
2821 }
2822
a7212384
UW
2823 if (!ptid_equal (inferior_ptid, null_ptid))
2824 {
2825 struct inferior *inferior;
2826
2827 if (non_stop)
2828 {
6c95b8df
PA
2829 /* If in non-stop mode, only delete the per-thread status of
2830 the current thread. */
a7212384
UW
2831 clear_proceed_status_thread (inferior_thread ());
2832 }
6c95b8df 2833
d6b48e9c 2834 inferior = current_inferior ();
16c381f0 2835 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2836 }
2837
c906108c 2838 stop_after_trap = 0;
f3b1572e
PA
2839
2840 observer_notify_about_to_proceed ();
c906108c
SS
2841}
2842
99619bea
PA
2843/* Returns true if TP is still stopped at a breakpoint that needs
2844 stepping-over in order to make progress. If the breakpoint is gone
2845 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2846
2847static int
6c4cfb24 2848thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2849{
2850 if (tp->stepping_over_breakpoint)
2851 {
2852 struct regcache *regcache = get_thread_regcache (tp->ptid);
2853
2854 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2855 regcache_read_pc (regcache))
2856 == ordinary_breakpoint_here)
99619bea
PA
2857 return 1;
2858
2859 tp->stepping_over_breakpoint = 0;
2860 }
2861
2862 return 0;
2863}
2864
6c4cfb24
PA
2865/* Check whether thread TP still needs to start a step-over in order
2866 to make progress when resumed. Returns an bitwise or of enum
2867 step_over_what bits, indicating what needs to be stepped over. */
2868
2869static int
2870thread_still_needs_step_over (struct thread_info *tp)
2871{
2872 struct inferior *inf = find_inferior_ptid (tp->ptid);
2873 int what = 0;
2874
2875 if (thread_still_needs_step_over_bp (tp))
2876 what |= STEP_OVER_BREAKPOINT;
2877
2878 if (tp->stepping_over_watchpoint
2879 && !target_have_steppable_watchpoint)
2880 what |= STEP_OVER_WATCHPOINT;
2881
2882 return what;
2883}
2884
483805cf
PA
2885/* Returns true if scheduler locking applies. STEP indicates whether
2886 we're about to do a step/next-like command to a thread. */
2887
2888static int
856e7dd6 2889schedlock_applies (struct thread_info *tp)
483805cf
PA
2890{
2891 return (scheduler_mode == schedlock_on
2892 || (scheduler_mode == schedlock_step
856e7dd6 2893 && tp->control.stepping_command));
483805cf
PA
2894}
2895
c906108c
SS
2896/* Basic routine for continuing the program in various fashions.
2897
2898 ADDR is the address to resume at, or -1 for resume where stopped.
2899 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2900 or -1 for act according to how it stopped.
c906108c 2901 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2902 -1 means return after that and print nothing.
2903 You should probably set various step_... variables
2904 before calling here, if you are stepping.
c906108c
SS
2905
2906 You should call clear_proceed_status before calling proceed. */
2907
2908void
64ce06e4 2909proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2910{
e58b0e63
PA
2911 struct regcache *regcache;
2912 struct gdbarch *gdbarch;
4e1c45ea 2913 struct thread_info *tp;
e58b0e63 2914 CORE_ADDR pc;
6c95b8df 2915 struct address_space *aspace;
4d9d9d04
PA
2916 ptid_t resume_ptid;
2917 struct execution_control_state ecss;
2918 struct execution_control_state *ecs = &ecss;
2919 struct cleanup *old_chain;
2920 int started;
c906108c 2921
e58b0e63
PA
2922 /* If we're stopped at a fork/vfork, follow the branch set by the
2923 "set follow-fork-mode" command; otherwise, we'll just proceed
2924 resuming the current thread. */
2925 if (!follow_fork ())
2926 {
2927 /* The target for some reason decided not to resume. */
2928 normal_stop ();
f148b27e
PA
2929 if (target_can_async_p ())
2930 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2931 return;
2932 }
2933
842951eb
PA
2934 /* We'll update this if & when we switch to a new thread. */
2935 previous_inferior_ptid = inferior_ptid;
2936
e58b0e63
PA
2937 regcache = get_current_regcache ();
2938 gdbarch = get_regcache_arch (regcache);
6c95b8df 2939 aspace = get_regcache_aspace (regcache);
e58b0e63 2940 pc = regcache_read_pc (regcache);
2adfaa28 2941 tp = inferior_thread ();
e58b0e63 2942
99619bea
PA
2943 /* Fill in with reasonable starting values. */
2944 init_thread_stepping_state (tp);
2945
c2829269
PA
2946 gdb_assert (!thread_is_in_step_over_chain (tp));
2947
2acceee2 2948 if (addr == (CORE_ADDR) -1)
c906108c 2949 {
af48d08f
PA
2950 if (pc == stop_pc
2951 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2952 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2953 /* There is a breakpoint at the address we will resume at,
2954 step one instruction before inserting breakpoints so that
2955 we do not stop right away (and report a second hit at this
b2175913
MS
2956 breakpoint).
2957
2958 Note, we don't do this in reverse, because we won't
2959 actually be executing the breakpoint insn anyway.
2960 We'll be (un-)executing the previous instruction. */
99619bea 2961 tp->stepping_over_breakpoint = 1;
515630c5
UW
2962 else if (gdbarch_single_step_through_delay_p (gdbarch)
2963 && gdbarch_single_step_through_delay (gdbarch,
2964 get_current_frame ()))
3352ef37
AC
2965 /* We stepped onto an instruction that needs to be stepped
2966 again before re-inserting the breakpoint, do so. */
99619bea 2967 tp->stepping_over_breakpoint = 1;
c906108c
SS
2968 }
2969 else
2970 {
515630c5 2971 regcache_write_pc (regcache, addr);
c906108c
SS
2972 }
2973
70509625
PA
2974 if (siggnal != GDB_SIGNAL_DEFAULT)
2975 tp->suspend.stop_signal = siggnal;
2976
17b2616c
PA
2977 /* Record the interpreter that issued the execution command that
2978 caused this thread to resume. If the top level interpreter is
2979 MI/async, and the execution command was a CLI command
2980 (next/step/etc.), we'll want to print stop event output to the MI
2981 console channel (the stepped-to line, etc.), as if the user
2982 entered the execution command on a real GDB console. */
4d9d9d04
PA
2983 tp->control.command_interp = command_interp ();
2984
2985 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
2986
2987 /* If an exception is thrown from this point on, make sure to
2988 propagate GDB's knowledge of the executing state to the
2989 frontend/user running state. */
2990 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
2991
2992 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2993 threads (e.g., we might need to set threads stepping over
2994 breakpoints first), from the user/frontend's point of view, all
2995 threads in RESUME_PTID are now running. Unless we're calling an
2996 inferior function, as in that case we pretend the inferior
2997 doesn't run at all. */
2998 if (!tp->control.in_infcall)
2999 set_running (resume_ptid, 1);
17b2616c 3000
527159b7 3001 if (debug_infrun)
8a9de0e4 3002 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3003 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3004 paddress (gdbarch, addr),
64ce06e4 3005 gdb_signal_to_symbol_string (siggnal));
527159b7 3006
4d9d9d04
PA
3007 annotate_starting ();
3008
3009 /* Make sure that output from GDB appears before output from the
3010 inferior. */
3011 gdb_flush (gdb_stdout);
3012
3013 /* In a multi-threaded task we may select another thread and
3014 then continue or step.
3015
3016 But if a thread that we're resuming had stopped at a breakpoint,
3017 it will immediately cause another breakpoint stop without any
3018 execution (i.e. it will report a breakpoint hit incorrectly). So
3019 we must step over it first.
3020
3021 Look for threads other than the current (TP) that reported a
3022 breakpoint hit and haven't been resumed yet since. */
3023
3024 /* If scheduler locking applies, we can avoid iterating over all
3025 threads. */
3026 if (!non_stop && !schedlock_applies (tp))
94cc34af 3027 {
4d9d9d04
PA
3028 struct thread_info *current = tp;
3029
3030 ALL_NON_EXITED_THREADS (tp)
3031 {
3032 /* Ignore the current thread here. It's handled
3033 afterwards. */
3034 if (tp == current)
3035 continue;
99619bea 3036
4d9d9d04
PA
3037 /* Ignore threads of processes we're not resuming. */
3038 if (!ptid_match (tp->ptid, resume_ptid))
3039 continue;
c906108c 3040
4d9d9d04
PA
3041 if (!thread_still_needs_step_over (tp))
3042 continue;
3043
3044 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3045
99619bea
PA
3046 if (debug_infrun)
3047 fprintf_unfiltered (gdb_stdlog,
3048 "infrun: need to step-over [%s] first\n",
4d9d9d04 3049 target_pid_to_str (tp->ptid));
99619bea 3050
4d9d9d04 3051 thread_step_over_chain_enqueue (tp);
2adfaa28 3052 }
31e77af2 3053
4d9d9d04 3054 tp = current;
30852783
UW
3055 }
3056
4d9d9d04
PA
3057 /* Enqueue the current thread last, so that we move all other
3058 threads over their breakpoints first. */
3059 if (tp->stepping_over_breakpoint)
3060 thread_step_over_chain_enqueue (tp);
30852783 3061
4d9d9d04
PA
3062 /* If the thread isn't started, we'll still need to set its prev_pc,
3063 so that switch_back_to_stepped_thread knows the thread hasn't
3064 advanced. Must do this before resuming any thread, as in
3065 all-stop/remote, once we resume we can't send any other packet
3066 until the target stops again. */
3067 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3068
4d9d9d04 3069 started = start_step_over ();
c906108c 3070
4d9d9d04
PA
3071 if (step_over_info_valid_p ())
3072 {
3073 /* Either this thread started a new in-line step over, or some
3074 other thread was already doing one. In either case, don't
3075 resume anything else until the step-over is finished. */
3076 }
fbea99ea 3077 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3078 {
3079 /* A new displaced stepping sequence was started. In all-stop,
3080 we can't talk to the target anymore until it next stops. */
3081 }
fbea99ea
PA
3082 else if (!non_stop && target_is_non_stop_p ())
3083 {
3084 /* In all-stop, but the target is always in non-stop mode.
3085 Start all other threads that are implicitly resumed too. */
3086 ALL_NON_EXITED_THREADS (tp)
3087 {
3088 /* Ignore threads of processes we're not resuming. */
3089 if (!ptid_match (tp->ptid, resume_ptid))
3090 continue;
3091
3092 if (tp->resumed)
3093 {
3094 if (debug_infrun)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "infrun: proceed: [%s] resumed\n",
3097 target_pid_to_str (tp->ptid));
3098 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3099 continue;
3100 }
3101
3102 if (thread_is_in_step_over_chain (tp))
3103 {
3104 if (debug_infrun)
3105 fprintf_unfiltered (gdb_stdlog,
3106 "infrun: proceed: [%s] needs step-over\n",
3107 target_pid_to_str (tp->ptid));
3108 continue;
3109 }
3110
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: proceed: resuming %s\n",
3114 target_pid_to_str (tp->ptid));
3115
3116 reset_ecs (ecs, tp);
3117 switch_to_thread (tp->ptid);
3118 keep_going_pass_signal (ecs);
3119 if (!ecs->wait_some_more)
fd7dcb94 3120 error (_("Command aborted."));
fbea99ea
PA
3121 }
3122 }
372316f1 3123 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3124 {
3125 /* The thread wasn't started, and isn't queued, run it now. */
3126 reset_ecs (ecs, tp);
3127 switch_to_thread (tp->ptid);
3128 keep_going_pass_signal (ecs);
3129 if (!ecs->wait_some_more)
fd7dcb94 3130 error (_("Command aborted."));
4d9d9d04 3131 }
c906108c 3132
4d9d9d04 3133 discard_cleanups (old_chain);
c906108c 3134
0b333c5e
PA
3135 /* Tell the event loop to wait for it to stop. If the target
3136 supports asynchronous execution, it'll do this from within
3137 target_resume. */
362646f5 3138 if (!target_can_async_p ())
0b333c5e 3139 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3140}
c906108c
SS
3141\f
3142
3143/* Start remote-debugging of a machine over a serial link. */
96baa820 3144
c906108c 3145void
8621d6a9 3146start_remote (int from_tty)
c906108c 3147{
d6b48e9c 3148 struct inferior *inferior;
d6b48e9c
PA
3149
3150 inferior = current_inferior ();
16c381f0 3151 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3152
1777feb0 3153 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3154 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3155 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3156 nothing is returned (instead of just blocking). Because of this,
3157 targets expecting an immediate response need to, internally, set
3158 things up so that the target_wait() is forced to eventually
1777feb0 3159 timeout. */
6426a772
JM
3160 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3161 differentiate to its caller what the state of the target is after
3162 the initial open has been performed. Here we're assuming that
3163 the target has stopped. It should be possible to eventually have
3164 target_open() return to the caller an indication that the target
3165 is currently running and GDB state should be set to the same as
1777feb0 3166 for an async run. */
e4c8541f 3167 wait_for_inferior ();
8621d6a9
DJ
3168
3169 /* Now that the inferior has stopped, do any bookkeeping like
3170 loading shared libraries. We want to do this before normal_stop,
3171 so that the displayed frame is up to date. */
3172 post_create_inferior (&current_target, from_tty);
3173
6426a772 3174 normal_stop ();
c906108c
SS
3175}
3176
3177/* Initialize static vars when a new inferior begins. */
3178
3179void
96baa820 3180init_wait_for_inferior (void)
c906108c
SS
3181{
3182 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3183
c906108c
SS
3184 breakpoint_init_inferior (inf_starting);
3185
70509625 3186 clear_proceed_status (0);
9f976b41 3187
ca005067 3188 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3189
842951eb 3190 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3191
edb3359d
DJ
3192 /* Discard any skipped inlined frames. */
3193 clear_inline_frame_state (minus_one_ptid);
c906108c 3194}
237fc4c9 3195
c906108c 3196\f
488f131b 3197
ec9499be 3198static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3199
568d6575
UW
3200static void handle_step_into_function (struct gdbarch *gdbarch,
3201 struct execution_control_state *ecs);
3202static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3203 struct execution_control_state *ecs);
4f5d7f63 3204static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3205static void check_exception_resume (struct execution_control_state *,
28106bc2 3206 struct frame_info *);
611c83ae 3207
bdc36728 3208static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3209static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3210static void keep_going (struct execution_control_state *ecs);
94c57d6a 3211static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3212static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3213
252fbfc8
PA
3214/* Callback for iterate over threads. If the thread is stopped, but
3215 the user/frontend doesn't know about that yet, go through
3216 normal_stop, as if the thread had just stopped now. ARG points at
3217 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3218 ptid_is_pid(PTID) is true, applies to all threads of the process
3219 pointed at by PTID. Otherwise, apply only to the thread pointed by
3220 PTID. */
3221
3222static int
3223infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3224{
3225 ptid_t ptid = * (ptid_t *) arg;
3226
3227 if ((ptid_equal (info->ptid, ptid)
3228 || ptid_equal (minus_one_ptid, ptid)
3229 || (ptid_is_pid (ptid)
3230 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3231 && is_running (info->ptid)
3232 && !is_executing (info->ptid))
3233 {
3234 struct cleanup *old_chain;
3235 struct execution_control_state ecss;
3236 struct execution_control_state *ecs = &ecss;
3237
3238 memset (ecs, 0, sizeof (*ecs));
3239
3240 old_chain = make_cleanup_restore_current_thread ();
3241
f15cb84a
YQ
3242 overlay_cache_invalid = 1;
3243 /* Flush target cache before starting to handle each event.
3244 Target was running and cache could be stale. This is just a
3245 heuristic. Running threads may modify target memory, but we
3246 don't get any event. */
3247 target_dcache_invalidate ();
3248
252fbfc8
PA
3249 /* Go through handle_inferior_event/normal_stop, so we always
3250 have consistent output as if the stop event had been
3251 reported. */
3252 ecs->ptid = info->ptid;
243a9253 3253 ecs->event_thread = info;
252fbfc8 3254 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3255 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3256
3257 handle_inferior_event (ecs);
3258
3259 if (!ecs->wait_some_more)
3260 {
243a9253
PA
3261 /* Cancel any running execution command. */
3262 thread_cancel_execution_command (info);
3263
252fbfc8 3264 normal_stop ();
252fbfc8
PA
3265 }
3266
3267 do_cleanups (old_chain);
3268 }
3269
3270 return 0;
3271}
3272
3273/* This function is attached as a "thread_stop_requested" observer.
3274 Cleanup local state that assumed the PTID was to be resumed, and
3275 report the stop to the frontend. */
3276
2c0b251b 3277static void
252fbfc8
PA
3278infrun_thread_stop_requested (ptid_t ptid)
3279{
c2829269 3280 struct thread_info *tp;
252fbfc8 3281
c2829269
PA
3282 /* PTID was requested to stop. Remove matching threads from the
3283 step-over queue, so we don't try to resume them
3284 automatically. */
3285 ALL_NON_EXITED_THREADS (tp)
3286 if (ptid_match (tp->ptid, ptid))
3287 {
3288 if (thread_is_in_step_over_chain (tp))
3289 thread_step_over_chain_remove (tp);
3290 }
252fbfc8
PA
3291
3292 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3293}
3294
a07daef3
PA
3295static void
3296infrun_thread_thread_exit (struct thread_info *tp, int silent)
3297{
3298 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3299 nullify_last_target_wait_ptid ();
3300}
3301
0cbcdb96
PA
3302/* Delete the step resume, single-step and longjmp/exception resume
3303 breakpoints of TP. */
4e1c45ea 3304
0cbcdb96
PA
3305static void
3306delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3307{
0cbcdb96
PA
3308 delete_step_resume_breakpoint (tp);
3309 delete_exception_resume_breakpoint (tp);
34b7e8a6 3310 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3311}
3312
0cbcdb96
PA
3313/* If the target still has execution, call FUNC for each thread that
3314 just stopped. In all-stop, that's all the non-exited threads; in
3315 non-stop, that's the current thread, only. */
3316
3317typedef void (*for_each_just_stopped_thread_callback_func)
3318 (struct thread_info *tp);
4e1c45ea
PA
3319
3320static void
0cbcdb96 3321for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3322{
0cbcdb96 3323 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3324 return;
3325
fbea99ea 3326 if (target_is_non_stop_p ())
4e1c45ea 3327 {
0cbcdb96
PA
3328 /* If in non-stop mode, only the current thread stopped. */
3329 func (inferior_thread ());
4e1c45ea
PA
3330 }
3331 else
0cbcdb96
PA
3332 {
3333 struct thread_info *tp;
3334
3335 /* In all-stop mode, all threads have stopped. */
3336 ALL_NON_EXITED_THREADS (tp)
3337 {
3338 func (tp);
3339 }
3340 }
3341}
3342
3343/* Delete the step resume and longjmp/exception resume breakpoints of
3344 the threads that just stopped. */
3345
3346static void
3347delete_just_stopped_threads_infrun_breakpoints (void)
3348{
3349 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3350}
3351
3352/* Delete the single-step breakpoints of the threads that just
3353 stopped. */
7c16b83e 3354
34b7e8a6
PA
3355static void
3356delete_just_stopped_threads_single_step_breakpoints (void)
3357{
3358 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3359}
3360
1777feb0 3361/* A cleanup wrapper. */
4e1c45ea
PA
3362
3363static void
0cbcdb96 3364delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3365{
0cbcdb96 3366 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3367}
3368
221e1a37 3369/* See infrun.h. */
223698f8 3370
221e1a37 3371void
223698f8
DE
3372print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3373 const struct target_waitstatus *ws)
3374{
3375 char *status_string = target_waitstatus_to_string (ws);
3376 struct ui_file *tmp_stream = mem_fileopen ();
3377 char *text;
223698f8
DE
3378
3379 /* The text is split over several lines because it was getting too long.
3380 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3381 output as a unit; we want only one timestamp printed if debug_timestamp
3382 is set. */
3383
3384 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3385 "infrun: target_wait (%d.%ld.%ld",
3386 ptid_get_pid (waiton_ptid),
3387 ptid_get_lwp (waiton_ptid),
3388 ptid_get_tid (waiton_ptid));
dfd4cc63 3389 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3390 fprintf_unfiltered (tmp_stream,
3391 " [%s]", target_pid_to_str (waiton_ptid));
3392 fprintf_unfiltered (tmp_stream, ", status) =\n");
3393 fprintf_unfiltered (tmp_stream,
1176ecec 3394 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3395 ptid_get_pid (result_ptid),
1176ecec
PA
3396 ptid_get_lwp (result_ptid),
3397 ptid_get_tid (result_ptid),
dfd4cc63 3398 target_pid_to_str (result_ptid));
223698f8
DE
3399 fprintf_unfiltered (tmp_stream,
3400 "infrun: %s\n",
3401 status_string);
3402
759ef836 3403 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3404
3405 /* This uses %s in part to handle %'s in the text, but also to avoid
3406 a gcc error: the format attribute requires a string literal. */
3407 fprintf_unfiltered (gdb_stdlog, "%s", text);
3408
3409 xfree (status_string);
3410 xfree (text);
3411 ui_file_delete (tmp_stream);
3412}
3413
372316f1
PA
3414/* Select a thread at random, out of those which are resumed and have
3415 had events. */
3416
3417static struct thread_info *
3418random_pending_event_thread (ptid_t waiton_ptid)
3419{
3420 struct thread_info *event_tp;
3421 int num_events = 0;
3422 int random_selector;
3423
3424 /* First see how many events we have. Count only resumed threads
3425 that have an event pending. */
3426 ALL_NON_EXITED_THREADS (event_tp)
3427 if (ptid_match (event_tp->ptid, waiton_ptid)
3428 && event_tp->resumed
3429 && event_tp->suspend.waitstatus_pending_p)
3430 num_events++;
3431
3432 if (num_events == 0)
3433 return NULL;
3434
3435 /* Now randomly pick a thread out of those that have had events. */
3436 random_selector = (int)
3437 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3438
3439 if (debug_infrun && num_events > 1)
3440 fprintf_unfiltered (gdb_stdlog,
3441 "infrun: Found %d events, selecting #%d\n",
3442 num_events, random_selector);
3443
3444 /* Select the Nth thread that has had an event. */
3445 ALL_NON_EXITED_THREADS (event_tp)
3446 if (ptid_match (event_tp->ptid, waiton_ptid)
3447 && event_tp->resumed
3448 && event_tp->suspend.waitstatus_pending_p)
3449 if (random_selector-- == 0)
3450 break;
3451
3452 return event_tp;
3453}
3454
3455/* Wrapper for target_wait that first checks whether threads have
3456 pending statuses to report before actually asking the target for
3457 more events. */
3458
3459static ptid_t
3460do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3461{
3462 ptid_t event_ptid;
3463 struct thread_info *tp;
3464
3465 /* First check if there is a resumed thread with a wait status
3466 pending. */
3467 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3468 {
3469 tp = random_pending_event_thread (ptid);
3470 }
3471 else
3472 {
3473 if (debug_infrun)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Waiting for specific thread %s.\n",
3476 target_pid_to_str (ptid));
3477
3478 /* We have a specific thread to check. */
3479 tp = find_thread_ptid (ptid);
3480 gdb_assert (tp != NULL);
3481 if (!tp->suspend.waitstatus_pending_p)
3482 tp = NULL;
3483 }
3484
3485 if (tp != NULL
3486 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3487 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3488 {
3489 struct regcache *regcache = get_thread_regcache (tp->ptid);
3490 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3491 CORE_ADDR pc;
3492 int discard = 0;
3493
3494 pc = regcache_read_pc (regcache);
3495
3496 if (pc != tp->suspend.stop_pc)
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: PC of %s changed. was=%s, now=%s\n",
3501 target_pid_to_str (tp->ptid),
3502 paddress (gdbarch, tp->prev_pc),
3503 paddress (gdbarch, pc));
3504 discard = 1;
3505 }
3506 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3507 {
3508 if (debug_infrun)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "infrun: previous breakpoint of %s, at %s gone\n",
3511 target_pid_to_str (tp->ptid),
3512 paddress (gdbarch, pc));
3513
3514 discard = 1;
3515 }
3516
3517 if (discard)
3518 {
3519 if (debug_infrun)
3520 fprintf_unfiltered (gdb_stdlog,
3521 "infrun: pending event of %s cancelled.\n",
3522 target_pid_to_str (tp->ptid));
3523
3524 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3525 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3526 }
3527 }
3528
3529 if (tp != NULL)
3530 {
3531 if (debug_infrun)
3532 {
3533 char *statstr;
3534
3535 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3536 fprintf_unfiltered (gdb_stdlog,
3537 "infrun: Using pending wait status %s for %s.\n",
3538 statstr,
3539 target_pid_to_str (tp->ptid));
3540 xfree (statstr);
3541 }
3542
3543 /* Now that we've selected our final event LWP, un-adjust its PC
3544 if it was a software breakpoint (and the target doesn't
3545 always adjust the PC itself). */
3546 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3547 && !target_supports_stopped_by_sw_breakpoint ())
3548 {
3549 struct regcache *regcache;
3550 struct gdbarch *gdbarch;
3551 int decr_pc;
3552
3553 regcache = get_thread_regcache (tp->ptid);
3554 gdbarch = get_regcache_arch (regcache);
3555
3556 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3557 if (decr_pc != 0)
3558 {
3559 CORE_ADDR pc;
3560
3561 pc = regcache_read_pc (regcache);
3562 regcache_write_pc (regcache, pc + decr_pc);
3563 }
3564 }
3565
3566 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3567 *status = tp->suspend.waitstatus;
3568 tp->suspend.waitstatus_pending_p = 0;
3569
3570 /* Wake up the event loop again, until all pending events are
3571 processed. */
3572 if (target_is_async_p ())
3573 mark_async_event_handler (infrun_async_inferior_event_token);
3574 return tp->ptid;
3575 }
3576
3577 /* But if we don't find one, we'll have to wait. */
3578
3579 if (deprecated_target_wait_hook)
3580 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3581 else
3582 event_ptid = target_wait (ptid, status, options);
3583
3584 return event_ptid;
3585}
3586
24291992
PA
3587/* Prepare and stabilize the inferior for detaching it. E.g.,
3588 detaching while a thread is displaced stepping is a recipe for
3589 crashing it, as nothing would readjust the PC out of the scratch
3590 pad. */
3591
3592void
3593prepare_for_detach (void)
3594{
3595 struct inferior *inf = current_inferior ();
3596 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3597 struct cleanup *old_chain_1;
3598 struct displaced_step_inferior_state *displaced;
3599
3600 displaced = get_displaced_stepping_state (inf->pid);
3601
3602 /* Is any thread of this process displaced stepping? If not,
3603 there's nothing else to do. */
3604 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3605 return;
3606
3607 if (debug_infrun)
3608 fprintf_unfiltered (gdb_stdlog,
3609 "displaced-stepping in-process while detaching");
3610
3611 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3612 inf->detaching = 1;
3613
3614 while (!ptid_equal (displaced->step_ptid, null_ptid))
3615 {
3616 struct cleanup *old_chain_2;
3617 struct execution_control_state ecss;
3618 struct execution_control_state *ecs;
3619
3620 ecs = &ecss;
3621 memset (ecs, 0, sizeof (*ecs));
3622
3623 overlay_cache_invalid = 1;
f15cb84a
YQ
3624 /* Flush target cache before starting to handle each event.
3625 Target was running and cache could be stale. This is just a
3626 heuristic. Running threads may modify target memory, but we
3627 don't get any event. */
3628 target_dcache_invalidate ();
24291992 3629
372316f1 3630 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3631
3632 if (debug_infrun)
3633 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3634
3635 /* If an error happens while handling the event, propagate GDB's
3636 knowledge of the executing state to the frontend/user running
3637 state. */
3e43a32a
MS
3638 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3639 &minus_one_ptid);
24291992
PA
3640
3641 /* Now figure out what to do with the result of the result. */
3642 handle_inferior_event (ecs);
3643
3644 /* No error, don't finish the state yet. */
3645 discard_cleanups (old_chain_2);
3646
3647 /* Breakpoints and watchpoints are not installed on the target
3648 at this point, and signals are passed directly to the
3649 inferior, so this must mean the process is gone. */
3650 if (!ecs->wait_some_more)
3651 {
3652 discard_cleanups (old_chain_1);
3653 error (_("Program exited while detaching"));
3654 }
3655 }
3656
3657 discard_cleanups (old_chain_1);
3658}
3659
cd0fc7c3 3660/* Wait for control to return from inferior to debugger.
ae123ec6 3661
cd0fc7c3
SS
3662 If inferior gets a signal, we may decide to start it up again
3663 instead of returning. That is why there is a loop in this function.
3664 When this function actually returns it means the inferior
3665 should be left stopped and GDB should read more commands. */
3666
3667void
e4c8541f 3668wait_for_inferior (void)
cd0fc7c3
SS
3669{
3670 struct cleanup *old_cleanups;
e6f5c25b 3671 struct cleanup *thread_state_chain;
c906108c 3672
527159b7 3673 if (debug_infrun)
ae123ec6 3674 fprintf_unfiltered
e4c8541f 3675 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3676
0cbcdb96
PA
3677 old_cleanups
3678 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3679 NULL);
cd0fc7c3 3680
e6f5c25b
PA
3681 /* If an error happens while handling the event, propagate GDB's
3682 knowledge of the executing state to the frontend/user running
3683 state. */
3684 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3685
c906108c
SS
3686 while (1)
3687 {
ae25568b
PA
3688 struct execution_control_state ecss;
3689 struct execution_control_state *ecs = &ecss;
963f9c80 3690 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3691
ae25568b
PA
3692 memset (ecs, 0, sizeof (*ecs));
3693
ec9499be 3694 overlay_cache_invalid = 1;
ec9499be 3695
f15cb84a
YQ
3696 /* Flush target cache before starting to handle each event.
3697 Target was running and cache could be stale. This is just a
3698 heuristic. Running threads may modify target memory, but we
3699 don't get any event. */
3700 target_dcache_invalidate ();
3701
372316f1 3702 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3703
f00150c9 3704 if (debug_infrun)
223698f8 3705 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3706
cd0fc7c3
SS
3707 /* Now figure out what to do with the result of the result. */
3708 handle_inferior_event (ecs);
c906108c 3709
cd0fc7c3
SS
3710 if (!ecs->wait_some_more)
3711 break;
3712 }
4e1c45ea 3713
e6f5c25b
PA
3714 /* No error, don't finish the state yet. */
3715 discard_cleanups (thread_state_chain);
3716
cd0fc7c3
SS
3717 do_cleanups (old_cleanups);
3718}
c906108c 3719
d3d4baed
PA
3720/* Cleanup that reinstalls the readline callback handler, if the
3721 target is running in the background. If while handling the target
3722 event something triggered a secondary prompt, like e.g., a
3723 pagination prompt, we'll have removed the callback handler (see
3724 gdb_readline_wrapper_line). Need to do this as we go back to the
3725 event loop, ready to process further input. Note this has no
3726 effect if the handler hasn't actually been removed, because calling
3727 rl_callback_handler_install resets the line buffer, thus losing
3728 input. */
3729
3730static void
3731reinstall_readline_callback_handler_cleanup (void *arg)
3732{
6c400b59
PA
3733 if (!interpreter_async)
3734 {
3735 /* We're not going back to the top level event loop yet. Don't
3736 install the readline callback, as it'd prep the terminal,
3737 readline-style (raw, noecho) (e.g., --batch). We'll install
3738 it the next time the prompt is displayed, when we're ready
3739 for input. */
3740 return;
3741 }
3742
d3d4baed
PA
3743 if (async_command_editing_p && !sync_execution)
3744 gdb_rl_callback_handler_reinstall ();
3745}
3746
243a9253
PA
3747/* Clean up the FSMs of threads that are now stopped. In non-stop,
3748 that's just the event thread. In all-stop, that's all threads. */
3749
3750static void
3751clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3752{
3753 struct thread_info *thr = ecs->event_thread;
3754
3755 if (thr != NULL && thr->thread_fsm != NULL)
3756 thread_fsm_clean_up (thr->thread_fsm);
3757
3758 if (!non_stop)
3759 {
3760 ALL_NON_EXITED_THREADS (thr)
3761 {
3762 if (thr->thread_fsm == NULL)
3763 continue;
3764 if (thr == ecs->event_thread)
3765 continue;
3766
3767 switch_to_thread (thr->ptid);
3768 thread_fsm_clean_up (thr->thread_fsm);
3769 }
3770
3771 if (ecs->event_thread != NULL)
3772 switch_to_thread (ecs->event_thread->ptid);
3773 }
3774}
3775
1777feb0 3776/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3777 event loop whenever a change of state is detected on the file
1777feb0
MS
3778 descriptor corresponding to the target. It can be called more than
3779 once to complete a single execution command. In such cases we need
3780 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3781 that this function is called for a single execution command, then
3782 report to the user that the inferior has stopped, and do the
1777feb0 3783 necessary cleanups. */
43ff13b4
JM
3784
3785void
fba45db2 3786fetch_inferior_event (void *client_data)
43ff13b4 3787{
0d1e5fa7 3788 struct execution_control_state ecss;
a474d7c2 3789 struct execution_control_state *ecs = &ecss;
4f8d22e3 3790 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3791 struct cleanup *ts_old_chain;
4f8d22e3 3792 int was_sync = sync_execution;
0f641c01 3793 int cmd_done = 0;
963f9c80 3794 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3795
0d1e5fa7
PA
3796 memset (ecs, 0, sizeof (*ecs));
3797
d3d4baed
PA
3798 /* End up with readline processing input, if necessary. */
3799 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3800
c5187ac6
PA
3801 /* We're handling a live event, so make sure we're doing live
3802 debugging. If we're looking at traceframes while the target is
3803 running, we're going to need to get back to that mode after
3804 handling the event. */
3805 if (non_stop)
3806 {
3807 make_cleanup_restore_current_traceframe ();
e6e4e701 3808 set_current_traceframe (-1);
c5187ac6
PA
3809 }
3810
4f8d22e3
PA
3811 if (non_stop)
3812 /* In non-stop mode, the user/frontend should not notice a thread
3813 switch due to internal events. Make sure we reverse to the
3814 user selected thread and frame after handling the event and
3815 running any breakpoint commands. */
3816 make_cleanup_restore_current_thread ();
3817
ec9499be 3818 overlay_cache_invalid = 1;
f15cb84a
YQ
3819 /* Flush target cache before starting to handle each event. Target
3820 was running and cache could be stale. This is just a heuristic.
3821 Running threads may modify target memory, but we don't get any
3822 event. */
3823 target_dcache_invalidate ();
3dd5b83d 3824
32231432
PA
3825 make_cleanup_restore_integer (&execution_direction);
3826 execution_direction = target_execution_direction ();
3827
0b333c5e
PA
3828 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3829 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3830
f00150c9 3831 if (debug_infrun)
223698f8 3832 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3833
29f49a6a
PA
3834 /* If an error happens while handling the event, propagate GDB's
3835 knowledge of the executing state to the frontend/user running
3836 state. */
fbea99ea 3837 if (!target_is_non_stop_p ())
29f49a6a
PA
3838 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3839 else
3840 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3841
353d1d73
JK
3842 /* Get executed before make_cleanup_restore_current_thread above to apply
3843 still for the thread which has thrown the exception. */
3844 make_bpstat_clear_actions_cleanup ();
3845
7c16b83e
PA
3846 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3847
43ff13b4 3848 /* Now figure out what to do with the result of the result. */
a474d7c2 3849 handle_inferior_event (ecs);
43ff13b4 3850
a474d7c2 3851 if (!ecs->wait_some_more)
43ff13b4 3852 {
c9657e70 3853 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3854 int should_stop = 1;
3855 struct thread_info *thr = ecs->event_thread;
388a7084 3856 int should_notify_stop = 1;
d6b48e9c 3857
0cbcdb96 3858 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3859
243a9253
PA
3860 if (thr != NULL)
3861 {
3862 struct thread_fsm *thread_fsm = thr->thread_fsm;
3863
3864 if (thread_fsm != NULL)
3865 should_stop = thread_fsm_should_stop (thread_fsm);
3866 }
3867
3868 if (!should_stop)
3869 {
3870 keep_going (ecs);
3871 }
c2d11a7d 3872 else
0f641c01 3873 {
243a9253
PA
3874 clean_up_just_stopped_threads_fsms (ecs);
3875
388a7084
PA
3876 if (thr != NULL && thr->thread_fsm != NULL)
3877 {
3878 should_notify_stop
3879 = thread_fsm_should_notify_stop (thr->thread_fsm);
3880 }
3881
3882 if (should_notify_stop)
3883 {
4c2f2a79
PA
3884 int proceeded = 0;
3885
388a7084
PA
3886 /* We may not find an inferior if this was a process exit. */
3887 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3888 proceeded = normal_stop ();
243a9253 3889
4c2f2a79
PA
3890 if (!proceeded)
3891 {
3892 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3893 cmd_done = 1;
3894 }
388a7084 3895 }
0f641c01 3896 }
43ff13b4 3897 }
4f8d22e3 3898
29f49a6a
PA
3899 /* No error, don't finish the thread states yet. */
3900 discard_cleanups (ts_old_chain);
3901
4f8d22e3
PA
3902 /* Revert thread and frame. */
3903 do_cleanups (old_chain);
3904
3905 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3906 restore the prompt (a synchronous execution command has finished,
3907 and we're ready for input). */
b4a14fd0 3908 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3909 observer_notify_sync_execution_done ();
0f641c01
PA
3910
3911 if (cmd_done
3912 && !was_sync
3913 && exec_done_display_p
3914 && (ptid_equal (inferior_ptid, null_ptid)
3915 || !is_running (inferior_ptid)))
3916 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3917}
3918
edb3359d
DJ
3919/* Record the frame and location we're currently stepping through. */
3920void
3921set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3922{
3923 struct thread_info *tp = inferior_thread ();
3924
16c381f0
JK
3925 tp->control.step_frame_id = get_frame_id (frame);
3926 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3927
3928 tp->current_symtab = sal.symtab;
3929 tp->current_line = sal.line;
3930}
3931
0d1e5fa7
PA
3932/* Clear context switchable stepping state. */
3933
3934void
4e1c45ea 3935init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3936{
7f5ef605 3937 tss->stepped_breakpoint = 0;
0d1e5fa7 3938 tss->stepping_over_breakpoint = 0;
963f9c80 3939 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3940 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3941}
3942
c32c64b7
DE
3943/* Set the cached copy of the last ptid/waitstatus. */
3944
3945static void
3946set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3947{
3948 target_last_wait_ptid = ptid;
3949 target_last_waitstatus = status;
3950}
3951
e02bc4cc 3952/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3953 target_wait()/deprecated_target_wait_hook(). The data is actually
3954 cached by handle_inferior_event(), which gets called immediately
3955 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3956
3957void
488f131b 3958get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3959{
39f77062 3960 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3961 *status = target_last_waitstatus;
3962}
3963
ac264b3b
MS
3964void
3965nullify_last_target_wait_ptid (void)
3966{
3967 target_last_wait_ptid = minus_one_ptid;
3968}
3969
dcf4fbde 3970/* Switch thread contexts. */
dd80620e
MS
3971
3972static void
0d1e5fa7 3973context_switch (ptid_t ptid)
dd80620e 3974{
4b51d87b 3975 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3976 {
3977 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3978 target_pid_to_str (inferior_ptid));
3979 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3980 target_pid_to_str (ptid));
fd48f117
DJ
3981 }
3982
0d1e5fa7 3983 switch_to_thread (ptid);
dd80620e
MS
3984}
3985
d8dd4d5f
PA
3986/* If the target can't tell whether we've hit breakpoints
3987 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3988 check whether that could have been caused by a breakpoint. If so,
3989 adjust the PC, per gdbarch_decr_pc_after_break. */
3990
4fa8626c 3991static void
d8dd4d5f
PA
3992adjust_pc_after_break (struct thread_info *thread,
3993 struct target_waitstatus *ws)
4fa8626c 3994{
24a73cce
UW
3995 struct regcache *regcache;
3996 struct gdbarch *gdbarch;
6c95b8df 3997 struct address_space *aspace;
118e6252 3998 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3999
4fa8626c
DJ
4000 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4001 we aren't, just return.
9709f61c
DJ
4002
4003 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4004 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4005 implemented by software breakpoints should be handled through the normal
4006 breakpoint layer.
8fb3e588 4007
4fa8626c
DJ
4008 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4009 different signals (SIGILL or SIGEMT for instance), but it is less
4010 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4011 gdbarch_decr_pc_after_break. I don't know any specific target that
4012 generates these signals at breakpoints (the code has been in GDB since at
4013 least 1992) so I can not guess how to handle them here.
8fb3e588 4014
e6cf7916
UW
4015 In earlier versions of GDB, a target with
4016 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4017 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4018 target with both of these set in GDB history, and it seems unlikely to be
4019 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4020
d8dd4d5f 4021 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4022 return;
4023
d8dd4d5f 4024 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4025 return;
4026
4058b839
PA
4027 /* In reverse execution, when a breakpoint is hit, the instruction
4028 under it has already been de-executed. The reported PC always
4029 points at the breakpoint address, so adjusting it further would
4030 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4031 architecture:
4032
4033 B1 0x08000000 : INSN1
4034 B2 0x08000001 : INSN2
4035 0x08000002 : INSN3
4036 PC -> 0x08000003 : INSN4
4037
4038 Say you're stopped at 0x08000003 as above. Reverse continuing
4039 from that point should hit B2 as below. Reading the PC when the
4040 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4041 been de-executed already.
4042
4043 B1 0x08000000 : INSN1
4044 B2 PC -> 0x08000001 : INSN2
4045 0x08000002 : INSN3
4046 0x08000003 : INSN4
4047
4048 We can't apply the same logic as for forward execution, because
4049 we would wrongly adjust the PC to 0x08000000, since there's a
4050 breakpoint at PC - 1. We'd then report a hit on B1, although
4051 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4052 behaviour. */
4053 if (execution_direction == EXEC_REVERSE)
4054 return;
4055
1cf4d951
PA
4056 /* If the target can tell whether the thread hit a SW breakpoint,
4057 trust it. Targets that can tell also adjust the PC
4058 themselves. */
4059 if (target_supports_stopped_by_sw_breakpoint ())
4060 return;
4061
4062 /* Note that relying on whether a breakpoint is planted in memory to
4063 determine this can fail. E.g,. the breakpoint could have been
4064 removed since. Or the thread could have been told to step an
4065 instruction the size of a breakpoint instruction, and only
4066 _after_ was a breakpoint inserted at its address. */
4067
24a73cce
UW
4068 /* If this target does not decrement the PC after breakpoints, then
4069 we have nothing to do. */
d8dd4d5f 4070 regcache = get_thread_regcache (thread->ptid);
24a73cce 4071 gdbarch = get_regcache_arch (regcache);
118e6252 4072
527a273a 4073 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4074 if (decr_pc == 0)
24a73cce
UW
4075 return;
4076
6c95b8df
PA
4077 aspace = get_regcache_aspace (regcache);
4078
8aad930b
AC
4079 /* Find the location where (if we've hit a breakpoint) the
4080 breakpoint would be. */
118e6252 4081 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4082
1cf4d951
PA
4083 /* If the target can't tell whether a software breakpoint triggered,
4084 fallback to figuring it out based on breakpoints we think were
4085 inserted in the target, and on whether the thread was stepped or
4086 continued. */
4087
1c5cfe86
PA
4088 /* Check whether there actually is a software breakpoint inserted at
4089 that location.
4090
4091 If in non-stop mode, a race condition is possible where we've
4092 removed a breakpoint, but stop events for that breakpoint were
4093 already queued and arrive later. To suppress those spurious
4094 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4095 and retire them after a number of stop events are reported. Note
4096 this is an heuristic and can thus get confused. The real fix is
4097 to get the "stopped by SW BP and needs adjustment" info out of
4098 the target/kernel (and thus never reach here; see above). */
6c95b8df 4099 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4100 || (target_is_non_stop_p ()
4101 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4102 {
77f9e713 4103 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4104
8213266a 4105 if (record_full_is_used ())
77f9e713 4106 record_full_gdb_operation_disable_set ();
96429cc8 4107
1c0fdd0e
UW
4108 /* When using hardware single-step, a SIGTRAP is reported for both
4109 a completed single-step and a software breakpoint. Need to
4110 differentiate between the two, as the latter needs adjusting
4111 but the former does not.
4112
4113 The SIGTRAP can be due to a completed hardware single-step only if
4114 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4115 - this thread is currently being stepped
4116
4117 If any of these events did not occur, we must have stopped due
4118 to hitting a software breakpoint, and have to back up to the
4119 breakpoint address.
4120
4121 As a special case, we could have hardware single-stepped a
4122 software breakpoint. In this case (prev_pc == breakpoint_pc),
4123 we also need to back up to the breakpoint address. */
4124
d8dd4d5f
PA
4125 if (thread_has_single_step_breakpoints_set (thread)
4126 || !currently_stepping (thread)
4127 || (thread->stepped_breakpoint
4128 && thread->prev_pc == breakpoint_pc))
515630c5 4129 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4130
77f9e713 4131 do_cleanups (old_cleanups);
8aad930b 4132 }
4fa8626c
DJ
4133}
4134
edb3359d
DJ
4135static int
4136stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4137{
4138 for (frame = get_prev_frame (frame);
4139 frame != NULL;
4140 frame = get_prev_frame (frame))
4141 {
4142 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4143 return 1;
4144 if (get_frame_type (frame) != INLINE_FRAME)
4145 break;
4146 }
4147
4148 return 0;
4149}
4150
a96d9b2e
SDJ
4151/* Auxiliary function that handles syscall entry/return events.
4152 It returns 1 if the inferior should keep going (and GDB
4153 should ignore the event), or 0 if the event deserves to be
4154 processed. */
ca2163eb 4155
a96d9b2e 4156static int
ca2163eb 4157handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4158{
ca2163eb 4159 struct regcache *regcache;
ca2163eb
PA
4160 int syscall_number;
4161
4162 if (!ptid_equal (ecs->ptid, inferior_ptid))
4163 context_switch (ecs->ptid);
4164
4165 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4166 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4167 stop_pc = regcache_read_pc (regcache);
4168
a96d9b2e
SDJ
4169 if (catch_syscall_enabled () > 0
4170 && catching_syscall_number (syscall_number) > 0)
4171 {
4172 if (debug_infrun)
4173 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4174 syscall_number);
a96d9b2e 4175
16c381f0 4176 ecs->event_thread->control.stop_bpstat
6c95b8df 4177 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4178 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4179
ce12b012 4180 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4181 {
4182 /* Catchpoint hit. */
ca2163eb
PA
4183 return 0;
4184 }
a96d9b2e 4185 }
ca2163eb
PA
4186
4187 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4188 keep_going (ecs);
4189 return 1;
a96d9b2e
SDJ
4190}
4191
7e324e48
GB
4192/* Lazily fill in the execution_control_state's stop_func_* fields. */
4193
4194static void
4195fill_in_stop_func (struct gdbarch *gdbarch,
4196 struct execution_control_state *ecs)
4197{
4198 if (!ecs->stop_func_filled_in)
4199 {
4200 /* Don't care about return value; stop_func_start and stop_func_name
4201 will both be 0 if it doesn't work. */
4202 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4203 &ecs->stop_func_start, &ecs->stop_func_end);
4204 ecs->stop_func_start
4205 += gdbarch_deprecated_function_start_offset (gdbarch);
4206
591a12a1
UW
4207 if (gdbarch_skip_entrypoint_p (gdbarch))
4208 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4209 ecs->stop_func_start);
4210
7e324e48
GB
4211 ecs->stop_func_filled_in = 1;
4212 }
4213}
4214
4f5d7f63
PA
4215
4216/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4217
4218static enum stop_kind
4219get_inferior_stop_soon (ptid_t ptid)
4220{
c9657e70 4221 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4222
4223 gdb_assert (inf != NULL);
4224 return inf->control.stop_soon;
4225}
4226
372316f1
PA
4227/* Wait for one event. Store the resulting waitstatus in WS, and
4228 return the event ptid. */
4229
4230static ptid_t
4231wait_one (struct target_waitstatus *ws)
4232{
4233 ptid_t event_ptid;
4234 ptid_t wait_ptid = minus_one_ptid;
4235
4236 overlay_cache_invalid = 1;
4237
4238 /* Flush target cache before starting to handle each event.
4239 Target was running and cache could be stale. This is just a
4240 heuristic. Running threads may modify target memory, but we
4241 don't get any event. */
4242 target_dcache_invalidate ();
4243
4244 if (deprecated_target_wait_hook)
4245 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4246 else
4247 event_ptid = target_wait (wait_ptid, ws, 0);
4248
4249 if (debug_infrun)
4250 print_target_wait_results (wait_ptid, event_ptid, ws);
4251
4252 return event_ptid;
4253}
4254
4255/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4256 instead of the current thread. */
4257#define THREAD_STOPPED_BY(REASON) \
4258static int \
4259thread_stopped_by_ ## REASON (ptid_t ptid) \
4260{ \
4261 struct cleanup *old_chain; \
4262 int res; \
4263 \
4264 old_chain = save_inferior_ptid (); \
4265 inferior_ptid = ptid; \
4266 \
4267 res = target_stopped_by_ ## REASON (); \
4268 \
4269 do_cleanups (old_chain); \
4270 \
4271 return res; \
4272}
4273
4274/* Generate thread_stopped_by_watchpoint. */
4275THREAD_STOPPED_BY (watchpoint)
4276/* Generate thread_stopped_by_sw_breakpoint. */
4277THREAD_STOPPED_BY (sw_breakpoint)
4278/* Generate thread_stopped_by_hw_breakpoint. */
4279THREAD_STOPPED_BY (hw_breakpoint)
4280
4281/* Cleanups that switches to the PTID pointed at by PTID_P. */
4282
4283static void
4284switch_to_thread_cleanup (void *ptid_p)
4285{
4286 ptid_t ptid = *(ptid_t *) ptid_p;
4287
4288 switch_to_thread (ptid);
4289}
4290
4291/* Save the thread's event and stop reason to process it later. */
4292
4293static void
4294save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4295{
4296 struct regcache *regcache;
4297 struct address_space *aspace;
4298
4299 if (debug_infrun)
4300 {
4301 char *statstr;
4302
4303 statstr = target_waitstatus_to_string (ws);
4304 fprintf_unfiltered (gdb_stdlog,
4305 "infrun: saving status %s for %d.%ld.%ld\n",
4306 statstr,
4307 ptid_get_pid (tp->ptid),
4308 ptid_get_lwp (tp->ptid),
4309 ptid_get_tid (tp->ptid));
4310 xfree (statstr);
4311 }
4312
4313 /* Record for later. */
4314 tp->suspend.waitstatus = *ws;
4315 tp->suspend.waitstatus_pending_p = 1;
4316
4317 regcache = get_thread_regcache (tp->ptid);
4318 aspace = get_regcache_aspace (regcache);
4319
4320 if (ws->kind == TARGET_WAITKIND_STOPPED
4321 && ws->value.sig == GDB_SIGNAL_TRAP)
4322 {
4323 CORE_ADDR pc = regcache_read_pc (regcache);
4324
4325 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4326
4327 if (thread_stopped_by_watchpoint (tp->ptid))
4328 {
4329 tp->suspend.stop_reason
4330 = TARGET_STOPPED_BY_WATCHPOINT;
4331 }
4332 else if (target_supports_stopped_by_sw_breakpoint ()
4333 && thread_stopped_by_sw_breakpoint (tp->ptid))
4334 {
4335 tp->suspend.stop_reason
4336 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4337 }
4338 else if (target_supports_stopped_by_hw_breakpoint ()
4339 && thread_stopped_by_hw_breakpoint (tp->ptid))
4340 {
4341 tp->suspend.stop_reason
4342 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4343 }
4344 else if (!target_supports_stopped_by_hw_breakpoint ()
4345 && hardware_breakpoint_inserted_here_p (aspace,
4346 pc))
4347 {
4348 tp->suspend.stop_reason
4349 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4350 }
4351 else if (!target_supports_stopped_by_sw_breakpoint ()
4352 && software_breakpoint_inserted_here_p (aspace,
4353 pc))
4354 {
4355 tp->suspend.stop_reason
4356 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4357 }
4358 else if (!thread_has_single_step_breakpoints_set (tp)
4359 && currently_stepping (tp))
4360 {
4361 tp->suspend.stop_reason
4362 = TARGET_STOPPED_BY_SINGLE_STEP;
4363 }
4364 }
4365}
4366
4367/* Stop all threads. */
4368
4369static void
4370stop_all_threads (void)
4371{
4372 /* We may need multiple passes to discover all threads. */
4373 int pass;
4374 int iterations = 0;
4375 ptid_t entry_ptid;
4376 struct cleanup *old_chain;
4377
fbea99ea 4378 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4379
4380 if (debug_infrun)
4381 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4382
4383 entry_ptid = inferior_ptid;
4384 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4385
4386 /* Request threads to stop, and then wait for the stops. Because
4387 threads we already know about can spawn more threads while we're
4388 trying to stop them, and we only learn about new threads when we
4389 update the thread list, do this in a loop, and keep iterating
4390 until two passes find no threads that need to be stopped. */
4391 for (pass = 0; pass < 2; pass++, iterations++)
4392 {
4393 if (debug_infrun)
4394 fprintf_unfiltered (gdb_stdlog,
4395 "infrun: stop_all_threads, pass=%d, "
4396 "iterations=%d\n", pass, iterations);
4397 while (1)
4398 {
4399 ptid_t event_ptid;
4400 struct target_waitstatus ws;
4401 int need_wait = 0;
4402 struct thread_info *t;
4403
4404 update_thread_list ();
4405
4406 /* Go through all threads looking for threads that we need
4407 to tell the target to stop. */
4408 ALL_NON_EXITED_THREADS (t)
4409 {
4410 if (t->executing)
4411 {
4412 /* If already stopping, don't request a stop again.
4413 We just haven't seen the notification yet. */
4414 if (!t->stop_requested)
4415 {
4416 if (debug_infrun)
4417 fprintf_unfiltered (gdb_stdlog,
4418 "infrun: %s executing, "
4419 "need stop\n",
4420 target_pid_to_str (t->ptid));
4421 target_stop (t->ptid);
4422 t->stop_requested = 1;
4423 }
4424 else
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: %s executing, "
4429 "already stopping\n",
4430 target_pid_to_str (t->ptid));
4431 }
4432
4433 if (t->stop_requested)
4434 need_wait = 1;
4435 }
4436 else
4437 {
4438 if (debug_infrun)
4439 fprintf_unfiltered (gdb_stdlog,
4440 "infrun: %s not executing\n",
4441 target_pid_to_str (t->ptid));
4442
4443 /* The thread may be not executing, but still be
4444 resumed with a pending status to process. */
4445 t->resumed = 0;
4446 }
4447 }
4448
4449 if (!need_wait)
4450 break;
4451
4452 /* If we find new threads on the second iteration, restart
4453 over. We want to see two iterations in a row with all
4454 threads stopped. */
4455 if (pass > 0)
4456 pass = -1;
4457
4458 event_ptid = wait_one (&ws);
4459 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4460 {
4461 /* All resumed threads exited. */
4462 }
4463 else if (ws.kind == TARGET_WAITKIND_EXITED
4464 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4465 {
4466 if (debug_infrun)
4467 {
4468 ptid_t ptid = pid_to_ptid (ws.value.integer);
4469
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: %s exited while "
4472 "stopping threads\n",
4473 target_pid_to_str (ptid));
4474 }
4475 }
4476 else
4477 {
4478 t = find_thread_ptid (event_ptid);
4479 if (t == NULL)
4480 t = add_thread (event_ptid);
4481
4482 t->stop_requested = 0;
4483 t->executing = 0;
4484 t->resumed = 0;
4485 t->control.may_range_step = 0;
4486
4487 if (ws.kind == TARGET_WAITKIND_STOPPED
4488 && ws.value.sig == GDB_SIGNAL_0)
4489 {
4490 /* We caught the event that we intended to catch, so
4491 there's no event pending. */
4492 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4493 t->suspend.waitstatus_pending_p = 0;
4494
4495 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4496 {
4497 /* Add it back to the step-over queue. */
4498 if (debug_infrun)
4499 {
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: displaced-step of %s "
4502 "canceled: adding back to the "
4503 "step-over queue\n",
4504 target_pid_to_str (t->ptid));
4505 }
4506 t->control.trap_expected = 0;
4507 thread_step_over_chain_enqueue (t);
4508 }
4509 }
4510 else
4511 {
4512 enum gdb_signal sig;
4513 struct regcache *regcache;
4514 struct address_space *aspace;
4515
4516 if (debug_infrun)
4517 {
4518 char *statstr;
4519
4520 statstr = target_waitstatus_to_string (&ws);
4521 fprintf_unfiltered (gdb_stdlog,
4522 "infrun: target_wait %s, saving "
4523 "status for %d.%ld.%ld\n",
4524 statstr,
4525 ptid_get_pid (t->ptid),
4526 ptid_get_lwp (t->ptid),
4527 ptid_get_tid (t->ptid));
4528 xfree (statstr);
4529 }
4530
4531 /* Record for later. */
4532 save_waitstatus (t, &ws);
4533
4534 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4535 ? ws.value.sig : GDB_SIGNAL_0);
4536
4537 if (displaced_step_fixup (t->ptid, sig) < 0)
4538 {
4539 /* Add it back to the step-over queue. */
4540 t->control.trap_expected = 0;
4541 thread_step_over_chain_enqueue (t);
4542 }
4543
4544 regcache = get_thread_regcache (t->ptid);
4545 t->suspend.stop_pc = regcache_read_pc (regcache);
4546
4547 if (debug_infrun)
4548 {
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: saved stop_pc=%s for %s "
4551 "(currently_stepping=%d)\n",
4552 paddress (target_gdbarch (),
4553 t->suspend.stop_pc),
4554 target_pid_to_str (t->ptid),
4555 currently_stepping (t));
4556 }
4557 }
4558 }
4559 }
4560 }
4561
4562 do_cleanups (old_chain);
4563
4564 if (debug_infrun)
4565 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4566}
4567
05ba8510
PA
4568/* Given an execution control state that has been freshly filled in by
4569 an event from the inferior, figure out what it means and take
4570 appropriate action.
4571
4572 The alternatives are:
4573
22bcd14b 4574 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4575 debugger.
4576
4577 2) keep_going and return; to wait for the next event (set
4578 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4579 once). */
c906108c 4580
ec9499be 4581static void
0b6e5e10 4582handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4583{
d6b48e9c
PA
4584 enum stop_kind stop_soon;
4585
28736962
PA
4586 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4587 {
4588 /* We had an event in the inferior, but we are not interested in
4589 handling it at this level. The lower layers have already
4590 done what needs to be done, if anything.
4591
4592 One of the possible circumstances for this is when the
4593 inferior produces output for the console. The inferior has
4594 not stopped, and we are ignoring the event. Another possible
4595 circumstance is any event which the lower level knows will be
4596 reported multiple times without an intervening resume. */
4597 if (debug_infrun)
4598 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4599 prepare_to_wait (ecs);
4600 return;
4601 }
4602
0e5bf2a8
PA
4603 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4604 && target_can_async_p () && !sync_execution)
4605 {
4606 /* There were no unwaited-for children left in the target, but,
4607 we're not synchronously waiting for events either. Just
4608 ignore. Otherwise, if we were running a synchronous
4609 execution command, we need to cancel it and give the user
4610 back the terminal. */
4611 if (debug_infrun)
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4614 prepare_to_wait (ecs);
4615 return;
4616 }
4617
1777feb0 4618 /* Cache the last pid/waitstatus. */
c32c64b7 4619 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4620
ca005067 4621 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4622 stop_stack_dummy = STOP_NONE;
ca005067 4623
0e5bf2a8
PA
4624 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4625 {
4626 /* No unwaited-for children left. IOW, all resumed children
4627 have exited. */
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4630
4631 stop_print_frame = 0;
22bcd14b 4632 stop_waiting (ecs);
0e5bf2a8
PA
4633 return;
4634 }
4635
8c90c137 4636 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4637 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4638 {
4639 ecs->event_thread = find_thread_ptid (ecs->ptid);
4640 /* If it's a new thread, add it to the thread database. */
4641 if (ecs->event_thread == NULL)
4642 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4643
4644 /* Disable range stepping. If the next step request could use a
4645 range, this will be end up re-enabled then. */
4646 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4647 }
88ed393a
JK
4648
4649 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4650 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4651
4652 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4653 reinit_frame_cache ();
4654
28736962
PA
4655 breakpoint_retire_moribund ();
4656
2b009048
DJ
4657 /* First, distinguish signals caused by the debugger from signals
4658 that have to do with the program's own actions. Note that
4659 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4660 on the operating system version. Here we detect when a SIGILL or
4661 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4662 something similar for SIGSEGV, since a SIGSEGV will be generated
4663 when we're trying to execute a breakpoint instruction on a
4664 non-executable stack. This happens for call dummy breakpoints
4665 for architectures like SPARC that place call dummies on the
4666 stack. */
2b009048 4667 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4668 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4669 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4670 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4671 {
de0a0249
UW
4672 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4673
4674 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4675 regcache_read_pc (regcache)))
4676 {
4677 if (debug_infrun)
4678 fprintf_unfiltered (gdb_stdlog,
4679 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4680 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4681 }
2b009048
DJ
4682 }
4683
28736962
PA
4684 /* Mark the non-executing threads accordingly. In all-stop, all
4685 threads of all processes are stopped when we get any event
e1316e60 4686 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4687 {
4688 ptid_t mark_ptid;
4689
fbea99ea 4690 if (!target_is_non_stop_p ())
372316f1
PA
4691 mark_ptid = minus_one_ptid;
4692 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4693 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4694 {
4695 /* If we're handling a process exit in non-stop mode, even
4696 though threads haven't been deleted yet, one would think
4697 that there is nothing to do, as threads of the dead process
4698 will be soon deleted, and threads of any other process were
4699 left running. However, on some targets, threads survive a
4700 process exit event. E.g., for the "checkpoint" command,
4701 when the current checkpoint/fork exits, linux-fork.c
4702 automatically switches to another fork from within
4703 target_mourn_inferior, by associating the same
4704 inferior/thread to another fork. We haven't mourned yet at
4705 this point, but we must mark any threads left in the
4706 process as not-executing so that finish_thread_state marks
4707 them stopped (in the user's perspective) if/when we present
4708 the stop to the user. */
4709 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4710 }
4711 else
4712 mark_ptid = ecs->ptid;
4713
4714 set_executing (mark_ptid, 0);
4715
4716 /* Likewise the resumed flag. */
4717 set_resumed (mark_ptid, 0);
4718 }
8c90c137 4719
488f131b
JB
4720 switch (ecs->ws.kind)
4721 {
4722 case TARGET_WAITKIND_LOADED:
527159b7 4723 if (debug_infrun)
8a9de0e4 4724 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4725 if (!ptid_equal (ecs->ptid, inferior_ptid))
4726 context_switch (ecs->ptid);
b0f4b84b
DJ
4727 /* Ignore gracefully during startup of the inferior, as it might
4728 be the shell which has just loaded some objects, otherwise
4729 add the symbols for the newly loaded objects. Also ignore at
4730 the beginning of an attach or remote session; we will query
4731 the full list of libraries once the connection is
4732 established. */
4f5d7f63
PA
4733
4734 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4735 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4736 {
edcc5120
TT
4737 struct regcache *regcache;
4738
edcc5120
TT
4739 regcache = get_thread_regcache (ecs->ptid);
4740
4741 handle_solib_event ();
4742
4743 ecs->event_thread->control.stop_bpstat
4744 = bpstat_stop_status (get_regcache_aspace (regcache),
4745 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4746
ce12b012 4747 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4748 {
4749 /* A catchpoint triggered. */
94c57d6a
PA
4750 process_event_stop_test (ecs);
4751 return;
edcc5120 4752 }
488f131b 4753
b0f4b84b
DJ
4754 /* If requested, stop when the dynamic linker notifies
4755 gdb of events. This allows the user to get control
4756 and place breakpoints in initializer routines for
4757 dynamically loaded objects (among other things). */
a493e3e2 4758 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4759 if (stop_on_solib_events)
4760 {
55409f9d
DJ
4761 /* Make sure we print "Stopped due to solib-event" in
4762 normal_stop. */
4763 stop_print_frame = 1;
4764
22bcd14b 4765 stop_waiting (ecs);
b0f4b84b
DJ
4766 return;
4767 }
488f131b 4768 }
b0f4b84b
DJ
4769
4770 /* If we are skipping through a shell, or through shared library
4771 loading that we aren't interested in, resume the program. If
5c09a2c5 4772 we're running the program normally, also resume. */
b0f4b84b
DJ
4773 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4774 {
74960c60
VP
4775 /* Loading of shared libraries might have changed breakpoint
4776 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4777 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4778 insert_breakpoints ();
64ce06e4 4779 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4780 prepare_to_wait (ecs);
4781 return;
4782 }
4783
5c09a2c5
PA
4784 /* But stop if we're attaching or setting up a remote
4785 connection. */
4786 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4787 || stop_soon == STOP_QUIETLY_REMOTE)
4788 {
4789 if (debug_infrun)
4790 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4791 stop_waiting (ecs);
5c09a2c5
PA
4792 return;
4793 }
4794
4795 internal_error (__FILE__, __LINE__,
4796 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4797
488f131b 4798 case TARGET_WAITKIND_SPURIOUS:
527159b7 4799 if (debug_infrun)
8a9de0e4 4800 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4801 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4802 context_switch (ecs->ptid);
64ce06e4 4803 resume (GDB_SIGNAL_0);
488f131b
JB
4804 prepare_to_wait (ecs);
4805 return;
c5aa993b 4806
488f131b 4807 case TARGET_WAITKIND_EXITED:
940c3c06 4808 case TARGET_WAITKIND_SIGNALLED:
527159b7 4809 if (debug_infrun)
940c3c06
PA
4810 {
4811 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4812 fprintf_unfiltered (gdb_stdlog,
4813 "infrun: TARGET_WAITKIND_EXITED\n");
4814 else
4815 fprintf_unfiltered (gdb_stdlog,
4816 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4817 }
4818
fb66883a 4819 inferior_ptid = ecs->ptid;
c9657e70 4820 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4821 set_current_program_space (current_inferior ()->pspace);
4822 handle_vfork_child_exec_or_exit (0);
1777feb0 4823 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4824
0c557179
SDJ
4825 /* Clearing any previous state of convenience variables. */
4826 clear_exit_convenience_vars ();
4827
940c3c06
PA
4828 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4829 {
4830 /* Record the exit code in the convenience variable $_exitcode, so
4831 that the user can inspect this again later. */
4832 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4833 (LONGEST) ecs->ws.value.integer);
4834
4835 /* Also record this in the inferior itself. */
4836 current_inferior ()->has_exit_code = 1;
4837 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4838
98eb56a4
PA
4839 /* Support the --return-child-result option. */
4840 return_child_result_value = ecs->ws.value.integer;
4841
fd664c91 4842 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4843 }
4844 else
0c557179
SDJ
4845 {
4846 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4848
4849 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4850 {
4851 /* Set the value of the internal variable $_exitsignal,
4852 which holds the signal uncaught by the inferior. */
4853 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4854 gdbarch_gdb_signal_to_target (gdbarch,
4855 ecs->ws.value.sig));
4856 }
4857 else
4858 {
4859 /* We don't have access to the target's method used for
4860 converting between signal numbers (GDB's internal
4861 representation <-> target's representation).
4862 Therefore, we cannot do a good job at displaying this
4863 information to the user. It's better to just warn
4864 her about it (if infrun debugging is enabled), and
4865 give up. */
4866 if (debug_infrun)
4867 fprintf_filtered (gdb_stdlog, _("\
4868Cannot fill $_exitsignal with the correct signal number.\n"));
4869 }
4870
fd664c91 4871 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4872 }
8cf64490 4873
488f131b
JB
4874 gdb_flush (gdb_stdout);
4875 target_mourn_inferior ();
488f131b 4876 stop_print_frame = 0;
22bcd14b 4877 stop_waiting (ecs);
488f131b 4878 return;
c5aa993b 4879
488f131b 4880 /* The following are the only cases in which we keep going;
1777feb0 4881 the above cases end in a continue or goto. */
488f131b 4882 case TARGET_WAITKIND_FORKED:
deb3b17b 4883 case TARGET_WAITKIND_VFORKED:
527159b7 4884 if (debug_infrun)
fed708ed
PA
4885 {
4886 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4887 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4888 else
4889 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4890 }
c906108c 4891
e2d96639
YQ
4892 /* Check whether the inferior is displaced stepping. */
4893 {
4894 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4896 struct displaced_step_inferior_state *displaced
4897 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4898
4899 /* If checking displaced stepping is supported, and thread
4900 ecs->ptid is displaced stepping. */
4901 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4902 {
4903 struct inferior *parent_inf
c9657e70 4904 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4905 struct regcache *child_regcache;
4906 CORE_ADDR parent_pc;
4907
4908 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4909 indicating that the displaced stepping of syscall instruction
4910 has been done. Perform cleanup for parent process here. Note
4911 that this operation also cleans up the child process for vfork,
4912 because their pages are shared. */
a493e3e2 4913 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4914 /* Start a new step-over in another thread if there's one
4915 that needs it. */
4916 start_step_over ();
e2d96639
YQ
4917
4918 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4919 {
4920 /* Restore scratch pad for child process. */
4921 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4922 }
4923
4924 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4925 the child's PC is also within the scratchpad. Set the child's PC
4926 to the parent's PC value, which has already been fixed up.
4927 FIXME: we use the parent's aspace here, although we're touching
4928 the child, because the child hasn't been added to the inferior
4929 list yet at this point. */
4930
4931 child_regcache
4932 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4933 gdbarch,
4934 parent_inf->aspace);
4935 /* Read PC value of parent process. */
4936 parent_pc = regcache_read_pc (regcache);
4937
4938 if (debug_displaced)
4939 fprintf_unfiltered (gdb_stdlog,
4940 "displaced: write child pc from %s to %s\n",
4941 paddress (gdbarch,
4942 regcache_read_pc (child_regcache)),
4943 paddress (gdbarch, parent_pc));
4944
4945 regcache_write_pc (child_regcache, parent_pc);
4946 }
4947 }
4948
5a2901d9 4949 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4950 context_switch (ecs->ptid);
5a2901d9 4951
b242c3c2
PA
4952 /* Immediately detach breakpoints from the child before there's
4953 any chance of letting the user delete breakpoints from the
4954 breakpoint lists. If we don't do this early, it's easy to
4955 leave left over traps in the child, vis: "break foo; catch
4956 fork; c; <fork>; del; c; <child calls foo>". We only follow
4957 the fork on the last `continue', and by that time the
4958 breakpoint at "foo" is long gone from the breakpoint table.
4959 If we vforked, then we don't need to unpatch here, since both
4960 parent and child are sharing the same memory pages; we'll
4961 need to unpatch at follow/detach time instead to be certain
4962 that new breakpoints added between catchpoint hit time and
4963 vfork follow are detached. */
4964 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4965 {
b242c3c2
PA
4966 /* This won't actually modify the breakpoint list, but will
4967 physically remove the breakpoints from the child. */
d80ee84f 4968 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4969 }
4970
34b7e8a6 4971 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4972
e58b0e63
PA
4973 /* In case the event is caught by a catchpoint, remember that
4974 the event is to be followed at the next resume of the thread,
4975 and not immediately. */
4976 ecs->event_thread->pending_follow = ecs->ws;
4977
fb14de7b 4978 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4979
16c381f0 4980 ecs->event_thread->control.stop_bpstat
6c95b8df 4981 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4982 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4983
ce12b012
PA
4984 /* If no catchpoint triggered for this, then keep going. Note
4985 that we're interested in knowing the bpstat actually causes a
4986 stop, not just if it may explain the signal. Software
4987 watchpoints, for example, always appear in the bpstat. */
4988 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4989 {
6c95b8df
PA
4990 ptid_t parent;
4991 ptid_t child;
e58b0e63 4992 int should_resume;
3e43a32a
MS
4993 int follow_child
4994 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4995
a493e3e2 4996 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4997
4998 should_resume = follow_fork ();
4999
6c95b8df
PA
5000 parent = ecs->ptid;
5001 child = ecs->ws.value.related_pid;
5002
5003 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5004 if (!detach_fork && (non_stop
5005 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5006 {
5007 if (follow_child)
5008 switch_to_thread (parent);
5009 else
5010 switch_to_thread (child);
5011
5012 ecs->event_thread = inferior_thread ();
5013 ecs->ptid = inferior_ptid;
5014 keep_going (ecs);
5015 }
5016
5017 if (follow_child)
5018 switch_to_thread (child);
5019 else
5020 switch_to_thread (parent);
5021
e58b0e63
PA
5022 ecs->event_thread = inferior_thread ();
5023 ecs->ptid = inferior_ptid;
5024
5025 if (should_resume)
5026 keep_going (ecs);
5027 else
22bcd14b 5028 stop_waiting (ecs);
04e68871
DJ
5029 return;
5030 }
94c57d6a
PA
5031 process_event_stop_test (ecs);
5032 return;
488f131b 5033
6c95b8df
PA
5034 case TARGET_WAITKIND_VFORK_DONE:
5035 /* Done with the shared memory region. Re-insert breakpoints in
5036 the parent, and keep going. */
5037
5038 if (debug_infrun)
3e43a32a
MS
5039 fprintf_unfiltered (gdb_stdlog,
5040 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5041
5042 if (!ptid_equal (ecs->ptid, inferior_ptid))
5043 context_switch (ecs->ptid);
5044
5045 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5046 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5047 /* This also takes care of reinserting breakpoints in the
5048 previously locked inferior. */
5049 keep_going (ecs);
5050 return;
5051
488f131b 5052 case TARGET_WAITKIND_EXECD:
527159b7 5053 if (debug_infrun)
fc5261f2 5054 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5055
5a2901d9 5056 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5057 context_switch (ecs->ptid);
5a2901d9 5058
fb14de7b 5059 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5060
6c95b8df
PA
5061 /* Do whatever is necessary to the parent branch of the vfork. */
5062 handle_vfork_child_exec_or_exit (1);
5063
795e548f
PA
5064 /* This causes the eventpoints and symbol table to be reset.
5065 Must do this now, before trying to determine whether to
5066 stop. */
71b43ef8 5067 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5068
17d8546e
DB
5069 /* In follow_exec we may have deleted the original thread and
5070 created a new one. Make sure that the event thread is the
5071 execd thread for that case (this is a nop otherwise). */
5072 ecs->event_thread = inferior_thread ();
5073
16c381f0 5074 ecs->event_thread->control.stop_bpstat
6c95b8df 5075 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5076 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5077
71b43ef8
PA
5078 /* Note that this may be referenced from inside
5079 bpstat_stop_status above, through inferior_has_execd. */
5080 xfree (ecs->ws.value.execd_pathname);
5081 ecs->ws.value.execd_pathname = NULL;
5082
04e68871 5083 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5084 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5085 {
a493e3e2 5086 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5087 keep_going (ecs);
5088 return;
5089 }
94c57d6a
PA
5090 process_event_stop_test (ecs);
5091 return;
488f131b 5092
b4dc5ffa
MK
5093 /* Be careful not to try to gather much state about a thread
5094 that's in a syscall. It's frequently a losing proposition. */
488f131b 5095 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5096 if (debug_infrun)
3e43a32a
MS
5097 fprintf_unfiltered (gdb_stdlog,
5098 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5099 /* Getting the current syscall number. */
94c57d6a
PA
5100 if (handle_syscall_event (ecs) == 0)
5101 process_event_stop_test (ecs);
5102 return;
c906108c 5103
488f131b
JB
5104 /* Before examining the threads further, step this thread to
5105 get it entirely out of the syscall. (We get notice of the
5106 event when the thread is just on the verge of exiting a
5107 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5108 into user code.) */
488f131b 5109 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5110 if (debug_infrun)
3e43a32a
MS
5111 fprintf_unfiltered (gdb_stdlog,
5112 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5113 if (handle_syscall_event (ecs) == 0)
5114 process_event_stop_test (ecs);
5115 return;
c906108c 5116
488f131b 5117 case TARGET_WAITKIND_STOPPED:
527159b7 5118 if (debug_infrun)
8a9de0e4 5119 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5120 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5121 handle_signal_stop (ecs);
5122 return;
c906108c 5123
b2175913 5124 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5127 /* Reverse execution: target ran out of history info. */
eab402df 5128
d1988021
MM
5129 /* Switch to the stopped thread. */
5130 if (!ptid_equal (ecs->ptid, inferior_ptid))
5131 context_switch (ecs->ptid);
5132 if (debug_infrun)
5133 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5134
34b7e8a6 5135 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5136 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5137 observer_notify_no_history ();
22bcd14b 5138 stop_waiting (ecs);
b2175913 5139 return;
488f131b 5140 }
4f5d7f63
PA
5141}
5142
0b6e5e10
JB
5143/* A wrapper around handle_inferior_event_1, which also makes sure
5144 that all temporary struct value objects that were created during
5145 the handling of the event get deleted at the end. */
5146
5147static void
5148handle_inferior_event (struct execution_control_state *ecs)
5149{
5150 struct value *mark = value_mark ();
5151
5152 handle_inferior_event_1 (ecs);
5153 /* Purge all temporary values created during the event handling,
5154 as it could be a long time before we return to the command level
5155 where such values would otherwise be purged. */
5156 value_free_to_mark (mark);
5157}
5158
372316f1
PA
5159/* Restart threads back to what they were trying to do back when we
5160 paused them for an in-line step-over. The EVENT_THREAD thread is
5161 ignored. */
4d9d9d04
PA
5162
5163static void
372316f1
PA
5164restart_threads (struct thread_info *event_thread)
5165{
5166 struct thread_info *tp;
5167 struct thread_info *step_over = NULL;
5168
5169 /* In case the instruction just stepped spawned a new thread. */
5170 update_thread_list ();
5171
5172 ALL_NON_EXITED_THREADS (tp)
5173 {
5174 if (tp == event_thread)
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: restart threads: "
5179 "[%s] is event thread\n",
5180 target_pid_to_str (tp->ptid));
5181 continue;
5182 }
5183
5184 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5185 {
5186 if (debug_infrun)
5187 fprintf_unfiltered (gdb_stdlog,
5188 "infrun: restart threads: "
5189 "[%s] not meant to be running\n",
5190 target_pid_to_str (tp->ptid));
5191 continue;
5192 }
5193
5194 if (tp->resumed)
5195 {
5196 if (debug_infrun)
5197 fprintf_unfiltered (gdb_stdlog,
5198 "infrun: restart threads: [%s] resumed\n",
5199 target_pid_to_str (tp->ptid));
5200 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5201 continue;
5202 }
5203
5204 if (thread_is_in_step_over_chain (tp))
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: restart threads: "
5209 "[%s] needs step-over\n",
5210 target_pid_to_str (tp->ptid));
5211 gdb_assert (!tp->resumed);
5212 continue;
5213 }
5214
5215
5216 if (tp->suspend.waitstatus_pending_p)
5217 {
5218 if (debug_infrun)
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: restart threads: "
5221 "[%s] has pending status\n",
5222 target_pid_to_str (tp->ptid));
5223 tp->resumed = 1;
5224 continue;
5225 }
5226
5227 /* If some thread needs to start a step-over at this point, it
5228 should still be in the step-over queue, and thus skipped
5229 above. */
5230 if (thread_still_needs_step_over (tp))
5231 {
5232 internal_error (__FILE__, __LINE__,
5233 "thread [%s] needs a step-over, but not in "
5234 "step-over queue\n",
5235 target_pid_to_str (tp->ptid));
5236 }
5237
5238 if (currently_stepping (tp))
5239 {
5240 if (debug_infrun)
5241 fprintf_unfiltered (gdb_stdlog,
5242 "infrun: restart threads: [%s] was stepping\n",
5243 target_pid_to_str (tp->ptid));
5244 keep_going_stepped_thread (tp);
5245 }
5246 else
5247 {
5248 struct execution_control_state ecss;
5249 struct execution_control_state *ecs = &ecss;
5250
5251 if (debug_infrun)
5252 fprintf_unfiltered (gdb_stdlog,
5253 "infrun: restart threads: [%s] continuing\n",
5254 target_pid_to_str (tp->ptid));
5255 reset_ecs (ecs, tp);
5256 switch_to_thread (tp->ptid);
5257 keep_going_pass_signal (ecs);
5258 }
5259 }
5260}
5261
5262/* Callback for iterate_over_threads. Find a resumed thread that has
5263 a pending waitstatus. */
5264
5265static int
5266resumed_thread_with_pending_status (struct thread_info *tp,
5267 void *arg)
5268{
5269 return (tp->resumed
5270 && tp->suspend.waitstatus_pending_p);
5271}
5272
5273/* Called when we get an event that may finish an in-line or
5274 out-of-line (displaced stepping) step-over started previously.
5275 Return true if the event is processed and we should go back to the
5276 event loop; false if the caller should continue processing the
5277 event. */
5278
5279static int
4d9d9d04
PA
5280finish_step_over (struct execution_control_state *ecs)
5281{
372316f1
PA
5282 int had_step_over_info;
5283
4d9d9d04
PA
5284 displaced_step_fixup (ecs->ptid,
5285 ecs->event_thread->suspend.stop_signal);
5286
372316f1
PA
5287 had_step_over_info = step_over_info_valid_p ();
5288
5289 if (had_step_over_info)
4d9d9d04
PA
5290 {
5291 /* If we're stepping over a breakpoint with all threads locked,
5292 then only the thread that was stepped should be reporting
5293 back an event. */
5294 gdb_assert (ecs->event_thread->control.trap_expected);
5295
5296 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5297 clear_step_over_info ();
5298 }
5299
fbea99ea 5300 if (!target_is_non_stop_p ())
372316f1 5301 return 0;
4d9d9d04
PA
5302
5303 /* Start a new step-over in another thread if there's one that
5304 needs it. */
5305 start_step_over ();
372316f1
PA
5306
5307 /* If we were stepping over a breakpoint before, and haven't started
5308 a new in-line step-over sequence, then restart all other threads
5309 (except the event thread). We can't do this in all-stop, as then
5310 e.g., we wouldn't be able to issue any other remote packet until
5311 these other threads stop. */
5312 if (had_step_over_info && !step_over_info_valid_p ())
5313 {
5314 struct thread_info *pending;
5315
5316 /* If we only have threads with pending statuses, the restart
5317 below won't restart any thread and so nothing re-inserts the
5318 breakpoint we just stepped over. But we need it inserted
5319 when we later process the pending events, otherwise if
5320 another thread has a pending event for this breakpoint too,
5321 we'd discard its event (because the breakpoint that
5322 originally caused the event was no longer inserted). */
5323 context_switch (ecs->ptid);
5324 insert_breakpoints ();
5325
5326 restart_threads (ecs->event_thread);
5327
5328 /* If we have events pending, go through handle_inferior_event
5329 again, picking up a pending event at random. This avoids
5330 thread starvation. */
5331
5332 /* But not if we just stepped over a watchpoint in order to let
5333 the instruction execute so we can evaluate its expression.
5334 The set of watchpoints that triggered is recorded in the
5335 breakpoint objects themselves (see bp->watchpoint_triggered).
5336 If we processed another event first, that other event could
5337 clobber this info. */
5338 if (ecs->event_thread->stepping_over_watchpoint)
5339 return 0;
5340
5341 pending = iterate_over_threads (resumed_thread_with_pending_status,
5342 NULL);
5343 if (pending != NULL)
5344 {
5345 struct thread_info *tp = ecs->event_thread;
5346 struct regcache *regcache;
5347
5348 if (debug_infrun)
5349 {
5350 fprintf_unfiltered (gdb_stdlog,
5351 "infrun: found resumed threads with "
5352 "pending events, saving status\n");
5353 }
5354
5355 gdb_assert (pending != tp);
5356
5357 /* Record the event thread's event for later. */
5358 save_waitstatus (tp, &ecs->ws);
5359 /* This was cleared early, by handle_inferior_event. Set it
5360 so this pending event is considered by
5361 do_target_wait. */
5362 tp->resumed = 1;
5363
5364 gdb_assert (!tp->executing);
5365
5366 regcache = get_thread_regcache (tp->ptid);
5367 tp->suspend.stop_pc = regcache_read_pc (regcache);
5368
5369 if (debug_infrun)
5370 {
5371 fprintf_unfiltered (gdb_stdlog,
5372 "infrun: saved stop_pc=%s for %s "
5373 "(currently_stepping=%d)\n",
5374 paddress (target_gdbarch (),
5375 tp->suspend.stop_pc),
5376 target_pid_to_str (tp->ptid),
5377 currently_stepping (tp));
5378 }
5379
5380 /* This in-line step-over finished; clear this so we won't
5381 start a new one. This is what handle_signal_stop would
5382 do, if we returned false. */
5383 tp->stepping_over_breakpoint = 0;
5384
5385 /* Wake up the event loop again. */
5386 mark_async_event_handler (infrun_async_inferior_event_token);
5387
5388 prepare_to_wait (ecs);
5389 return 1;
5390 }
5391 }
5392
5393 return 0;
4d9d9d04
PA
5394}
5395
4f5d7f63
PA
5396/* Come here when the program has stopped with a signal. */
5397
5398static void
5399handle_signal_stop (struct execution_control_state *ecs)
5400{
5401 struct frame_info *frame;
5402 struct gdbarch *gdbarch;
5403 int stopped_by_watchpoint;
5404 enum stop_kind stop_soon;
5405 int random_signal;
c906108c 5406
f0407826
DE
5407 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5408
5409 /* Do we need to clean up the state of a thread that has
5410 completed a displaced single-step? (Doing so usually affects
5411 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5412 if (finish_step_over (ecs))
5413 return;
f0407826
DE
5414
5415 /* If we either finished a single-step or hit a breakpoint, but
5416 the user wanted this thread to be stopped, pretend we got a
5417 SIG0 (generic unsignaled stop). */
5418 if (ecs->event_thread->stop_requested
5419 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5420 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5421
515630c5 5422 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5423
527159b7 5424 if (debug_infrun)
237fc4c9 5425 {
5af949e3
UW
5426 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5427 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5428 struct cleanup *old_chain = save_inferior_ptid ();
5429
5430 inferior_ptid = ecs->ptid;
5af949e3
UW
5431
5432 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5433 paddress (gdbarch, stop_pc));
d92524f1 5434 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5435 {
5436 CORE_ADDR addr;
abbb1732 5437
237fc4c9
PA
5438 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5439
5440 if (target_stopped_data_address (&current_target, &addr))
5441 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5442 "infrun: stopped data address = %s\n",
5443 paddress (gdbarch, addr));
237fc4c9
PA
5444 else
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: (no data address available)\n");
5447 }
7f82dfc7
JK
5448
5449 do_cleanups (old_chain);
237fc4c9 5450 }
527159b7 5451
36fa8042
PA
5452 /* This is originated from start_remote(), start_inferior() and
5453 shared libraries hook functions. */
5454 stop_soon = get_inferior_stop_soon (ecs->ptid);
5455 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5456 {
5457 if (!ptid_equal (ecs->ptid, inferior_ptid))
5458 context_switch (ecs->ptid);
5459 if (debug_infrun)
5460 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5461 stop_print_frame = 1;
22bcd14b 5462 stop_waiting (ecs);
36fa8042
PA
5463 return;
5464 }
5465
5466 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5467 && stop_after_trap)
5468 {
5469 if (!ptid_equal (ecs->ptid, inferior_ptid))
5470 context_switch (ecs->ptid);
5471 if (debug_infrun)
5472 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5473 stop_print_frame = 0;
22bcd14b 5474 stop_waiting (ecs);
36fa8042
PA
5475 return;
5476 }
5477
5478 /* This originates from attach_command(). We need to overwrite
5479 the stop_signal here, because some kernels don't ignore a
5480 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5481 See more comments in inferior.h. On the other hand, if we
5482 get a non-SIGSTOP, report it to the user - assume the backend
5483 will handle the SIGSTOP if it should show up later.
5484
5485 Also consider that the attach is complete when we see a
5486 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5487 target extended-remote report it instead of a SIGSTOP
5488 (e.g. gdbserver). We already rely on SIGTRAP being our
5489 signal, so this is no exception.
5490
5491 Also consider that the attach is complete when we see a
5492 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5493 the target to stop all threads of the inferior, in case the
5494 low level attach operation doesn't stop them implicitly. If
5495 they weren't stopped implicitly, then the stub will report a
5496 GDB_SIGNAL_0, meaning: stopped for no particular reason
5497 other than GDB's request. */
5498 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5499 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5500 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5501 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5502 {
5503 stop_print_frame = 1;
22bcd14b 5504 stop_waiting (ecs);
36fa8042
PA
5505 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5506 return;
5507 }
5508
488f131b 5509 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5510 so, then switch to that thread. */
5511 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5512 {
527159b7 5513 if (debug_infrun)
8a9de0e4 5514 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5515
0d1e5fa7 5516 context_switch (ecs->ptid);
c5aa993b 5517
9a4105ab
AC
5518 if (deprecated_context_hook)
5519 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5520 }
c906108c 5521
568d6575
UW
5522 /* At this point, get hold of the now-current thread's frame. */
5523 frame = get_current_frame ();
5524 gdbarch = get_frame_arch (frame);
5525
2adfaa28 5526 /* Pull the single step breakpoints out of the target. */
af48d08f 5527 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5528 {
af48d08f
PA
5529 struct regcache *regcache;
5530 struct address_space *aspace;
5531 CORE_ADDR pc;
2adfaa28 5532
af48d08f
PA
5533 regcache = get_thread_regcache (ecs->ptid);
5534 aspace = get_regcache_aspace (regcache);
5535 pc = regcache_read_pc (regcache);
34b7e8a6 5536
af48d08f
PA
5537 /* However, before doing so, if this single-step breakpoint was
5538 actually for another thread, set this thread up for moving
5539 past it. */
5540 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5541 aspace, pc))
5542 {
5543 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5544 {
5545 if (debug_infrun)
5546 {
5547 fprintf_unfiltered (gdb_stdlog,
af48d08f 5548 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5549 "single-step breakpoint\n",
5550 target_pid_to_str (ecs->ptid));
2adfaa28 5551 }
af48d08f
PA
5552 ecs->hit_singlestep_breakpoint = 1;
5553 }
5554 }
5555 else
5556 {
5557 if (debug_infrun)
5558 {
5559 fprintf_unfiltered (gdb_stdlog,
5560 "infrun: [%s] hit its "
5561 "single-step breakpoint\n",
5562 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5563 }
5564 }
488f131b 5565 }
af48d08f 5566 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5567
963f9c80
PA
5568 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5569 && ecs->event_thread->control.trap_expected
5570 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5571 stopped_by_watchpoint = 0;
5572 else
5573 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5574
5575 /* If necessary, step over this watchpoint. We'll be back to display
5576 it in a moment. */
5577 if (stopped_by_watchpoint
d92524f1 5578 && (target_have_steppable_watchpoint
568d6575 5579 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5580 {
488f131b
JB
5581 /* At this point, we are stopped at an instruction which has
5582 attempted to write to a piece of memory under control of
5583 a watchpoint. The instruction hasn't actually executed
5584 yet. If we were to evaluate the watchpoint expression
5585 now, we would get the old value, and therefore no change
5586 would seem to have occurred.
5587
5588 In order to make watchpoints work `right', we really need
5589 to complete the memory write, and then evaluate the
d983da9c
DJ
5590 watchpoint expression. We do this by single-stepping the
5591 target.
5592
7f89fd65 5593 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5594 it. For example, the PA can (with some kernel cooperation)
5595 single step over a watchpoint without disabling the watchpoint.
5596
5597 It is far more common to need to disable a watchpoint to step
5598 the inferior over it. If we have non-steppable watchpoints,
5599 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5600 disable all watchpoints.
5601
5602 Any breakpoint at PC must also be stepped over -- if there's
5603 one, it will have already triggered before the watchpoint
5604 triggered, and we either already reported it to the user, or
5605 it didn't cause a stop and we called keep_going. In either
5606 case, if there was a breakpoint at PC, we must be trying to
5607 step past it. */
5608 ecs->event_thread->stepping_over_watchpoint = 1;
5609 keep_going (ecs);
488f131b
JB
5610 return;
5611 }
5612
4e1c45ea 5613 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5614 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5615 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5616 ecs->event_thread->control.stop_step = 0;
488f131b 5617 stop_print_frame = 1;
488f131b 5618 stopped_by_random_signal = 0;
488f131b 5619
edb3359d
DJ
5620 /* Hide inlined functions starting here, unless we just performed stepi or
5621 nexti. After stepi and nexti, always show the innermost frame (not any
5622 inline function call sites). */
16c381f0 5623 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5624 {
5625 struct address_space *aspace =
5626 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5627
5628 /* skip_inline_frames is expensive, so we avoid it if we can
5629 determine that the address is one where functions cannot have
5630 been inlined. This improves performance with inferiors that
5631 load a lot of shared libraries, because the solib event
5632 breakpoint is defined as the address of a function (i.e. not
5633 inline). Note that we have to check the previous PC as well
5634 as the current one to catch cases when we have just
5635 single-stepped off a breakpoint prior to reinstating it.
5636 Note that we're assuming that the code we single-step to is
5637 not inline, but that's not definitive: there's nothing
5638 preventing the event breakpoint function from containing
5639 inlined code, and the single-step ending up there. If the
5640 user had set a breakpoint on that inlined code, the missing
5641 skip_inline_frames call would break things. Fortunately
5642 that's an extremely unlikely scenario. */
09ac7c10 5643 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5644 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5645 && ecs->event_thread->control.trap_expected
5646 && pc_at_non_inline_function (aspace,
5647 ecs->event_thread->prev_pc,
09ac7c10 5648 &ecs->ws)))
1c5a993e
MR
5649 {
5650 skip_inline_frames (ecs->ptid);
5651
5652 /* Re-fetch current thread's frame in case that invalidated
5653 the frame cache. */
5654 frame = get_current_frame ();
5655 gdbarch = get_frame_arch (frame);
5656 }
0574c78f 5657 }
edb3359d 5658
a493e3e2 5659 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5660 && ecs->event_thread->control.trap_expected
568d6575 5661 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5662 && currently_stepping (ecs->event_thread))
3352ef37 5663 {
b50d7442 5664 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5665 also on an instruction that needs to be stepped multiple
1777feb0 5666 times before it's been fully executing. E.g., architectures
3352ef37
AC
5667 with a delay slot. It needs to be stepped twice, once for
5668 the instruction and once for the delay slot. */
5669 int step_through_delay
568d6575 5670 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5671
527159b7 5672 if (debug_infrun && step_through_delay)
8a9de0e4 5673 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5674 if (ecs->event_thread->control.step_range_end == 0
5675 && step_through_delay)
3352ef37
AC
5676 {
5677 /* The user issued a continue when stopped at a breakpoint.
5678 Set up for another trap and get out of here. */
4e1c45ea 5679 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5680 keep_going (ecs);
5681 return;
5682 }
5683 else if (step_through_delay)
5684 {
5685 /* The user issued a step when stopped at a breakpoint.
5686 Maybe we should stop, maybe we should not - the delay
5687 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5688 case, don't decide that here, just set
5689 ecs->stepping_over_breakpoint, making sure we
5690 single-step again before breakpoints are re-inserted. */
4e1c45ea 5691 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5692 }
5693 }
5694
ab04a2af
TT
5695 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5696 handles this event. */
5697 ecs->event_thread->control.stop_bpstat
5698 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5699 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5700
ab04a2af
TT
5701 /* Following in case break condition called a
5702 function. */
5703 stop_print_frame = 1;
73dd234f 5704
ab04a2af
TT
5705 /* This is where we handle "moribund" watchpoints. Unlike
5706 software breakpoints traps, hardware watchpoint traps are
5707 always distinguishable from random traps. If no high-level
5708 watchpoint is associated with the reported stop data address
5709 anymore, then the bpstat does not explain the signal ---
5710 simply make sure to ignore it if `stopped_by_watchpoint' is
5711 set. */
5712
5713 if (debug_infrun
5714 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5715 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5716 GDB_SIGNAL_TRAP)
ab04a2af
TT
5717 && stopped_by_watchpoint)
5718 fprintf_unfiltered (gdb_stdlog,
5719 "infrun: no user watchpoint explains "
5720 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5721
bac7d97b 5722 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5723 at one stage in the past included checks for an inferior
5724 function call's call dummy's return breakpoint. The original
5725 comment, that went with the test, read:
03cebad2 5726
ab04a2af
TT
5727 ``End of a stack dummy. Some systems (e.g. Sony news) give
5728 another signal besides SIGTRAP, so check here as well as
5729 above.''
73dd234f 5730
ab04a2af
TT
5731 If someone ever tries to get call dummys on a
5732 non-executable stack to work (where the target would stop
5733 with something like a SIGSEGV), then those tests might need
5734 to be re-instated. Given, however, that the tests were only
5735 enabled when momentary breakpoints were not being used, I
5736 suspect that it won't be the case.
488f131b 5737
ab04a2af
TT
5738 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5739 be necessary for call dummies on a non-executable stack on
5740 SPARC. */
488f131b 5741
bac7d97b 5742 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5743 random_signal
5744 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5745 ecs->event_thread->suspend.stop_signal);
bac7d97b 5746
1cf4d951
PA
5747 /* Maybe this was a trap for a software breakpoint that has since
5748 been removed. */
5749 if (random_signal && target_stopped_by_sw_breakpoint ())
5750 {
5751 if (program_breakpoint_here_p (gdbarch, stop_pc))
5752 {
5753 struct regcache *regcache;
5754 int decr_pc;
5755
5756 /* Re-adjust PC to what the program would see if GDB was not
5757 debugging it. */
5758 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5759 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5760 if (decr_pc != 0)
5761 {
5762 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5763
5764 if (record_full_is_used ())
5765 record_full_gdb_operation_disable_set ();
5766
5767 regcache_write_pc (regcache, stop_pc + decr_pc);
5768
5769 do_cleanups (old_cleanups);
5770 }
5771 }
5772 else
5773 {
5774 /* A delayed software breakpoint event. Ignore the trap. */
5775 if (debug_infrun)
5776 fprintf_unfiltered (gdb_stdlog,
5777 "infrun: delayed software breakpoint "
5778 "trap, ignoring\n");
5779 random_signal = 0;
5780 }
5781 }
5782
5783 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5784 has since been removed. */
5785 if (random_signal && target_stopped_by_hw_breakpoint ())
5786 {
5787 /* A delayed hardware breakpoint event. Ignore the trap. */
5788 if (debug_infrun)
5789 fprintf_unfiltered (gdb_stdlog,
5790 "infrun: delayed hardware breakpoint/watchpoint "
5791 "trap, ignoring\n");
5792 random_signal = 0;
5793 }
5794
bac7d97b
PA
5795 /* If not, perhaps stepping/nexting can. */
5796 if (random_signal)
5797 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5798 && currently_stepping (ecs->event_thread));
ab04a2af 5799
2adfaa28
PA
5800 /* Perhaps the thread hit a single-step breakpoint of _another_
5801 thread. Single-step breakpoints are transparent to the
5802 breakpoints module. */
5803 if (random_signal)
5804 random_signal = !ecs->hit_singlestep_breakpoint;
5805
bac7d97b
PA
5806 /* No? Perhaps we got a moribund watchpoint. */
5807 if (random_signal)
5808 random_signal = !stopped_by_watchpoint;
ab04a2af 5809
488f131b
JB
5810 /* For the program's own signals, act according to
5811 the signal handling tables. */
5812
ce12b012 5813 if (random_signal)
488f131b
JB
5814 {
5815 /* Signal not for debugging purposes. */
c9657e70 5816 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5817 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5818
527159b7 5819 if (debug_infrun)
c9737c08
PA
5820 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5821 gdb_signal_to_symbol_string (stop_signal));
527159b7 5822
488f131b
JB
5823 stopped_by_random_signal = 1;
5824
252fbfc8
PA
5825 /* Always stop on signals if we're either just gaining control
5826 of the program, or the user explicitly requested this thread
5827 to remain stopped. */
d6b48e9c 5828 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5829 || ecs->event_thread->stop_requested
24291992 5830 || (!inf->detaching
16c381f0 5831 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5832 {
22bcd14b 5833 stop_waiting (ecs);
488f131b
JB
5834 return;
5835 }
b57bacec
PA
5836
5837 /* Notify observers the signal has "handle print" set. Note we
5838 returned early above if stopping; normal_stop handles the
5839 printing in that case. */
5840 if (signal_print[ecs->event_thread->suspend.stop_signal])
5841 {
5842 /* The signal table tells us to print about this signal. */
5843 target_terminal_ours_for_output ();
5844 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5845 target_terminal_inferior ();
5846 }
488f131b
JB
5847
5848 /* Clear the signal if it should not be passed. */
16c381f0 5849 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5850 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5851
fb14de7b 5852 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5853 && ecs->event_thread->control.trap_expected
8358c15c 5854 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5855 {
372316f1
PA
5856 int was_in_line;
5857
68f53502
AC
5858 /* We were just starting a new sequence, attempting to
5859 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5860 Instead this signal arrives. This signal will take us out
68f53502
AC
5861 of the stepping range so GDB needs to remember to, when
5862 the signal handler returns, resume stepping off that
5863 breakpoint. */
5864 /* To simplify things, "continue" is forced to use the same
5865 code paths as single-step - set a breakpoint at the
5866 signal return address and then, once hit, step off that
5867 breakpoint. */
237fc4c9
PA
5868 if (debug_infrun)
5869 fprintf_unfiltered (gdb_stdlog,
5870 "infrun: signal arrived while stepping over "
5871 "breakpoint\n");
d3169d93 5872
372316f1
PA
5873 was_in_line = step_over_info_valid_p ();
5874 clear_step_over_info ();
2c03e5be 5875 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5876 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5877 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5878 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5879
fbea99ea 5880 if (target_is_non_stop_p ())
372316f1 5881 {
fbea99ea
PA
5882 /* Either "set non-stop" is "on", or the target is
5883 always in non-stop mode. In this case, we have a bit
5884 more work to do. Resume the current thread, and if
5885 we had paused all threads, restart them while the
5886 signal handler runs. */
372316f1
PA
5887 keep_going (ecs);
5888
372316f1
PA
5889 if (was_in_line)
5890 {
372316f1
PA
5891 restart_threads (ecs->event_thread);
5892 }
5893 else if (debug_infrun)
5894 {
5895 fprintf_unfiltered (gdb_stdlog,
5896 "infrun: no need to restart threads\n");
5897 }
5898 return;
5899 }
5900
d137e6dc
PA
5901 /* If we were nexting/stepping some other thread, switch to
5902 it, so that we don't continue it, losing control. */
5903 if (!switch_back_to_stepped_thread (ecs))
5904 keep_going (ecs);
9d799f85 5905 return;
68f53502 5906 }
9d799f85 5907
e5f8a7cc
PA
5908 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5909 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5910 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5911 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5912 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5913 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5914 {
5915 /* The inferior is about to take a signal that will take it
5916 out of the single step range. Set a breakpoint at the
5917 current PC (which is presumably where the signal handler
5918 will eventually return) and then allow the inferior to
5919 run free.
5920
5921 Note that this is only needed for a signal delivered
5922 while in the single-step range. Nested signals aren't a
5923 problem as they eventually all return. */
237fc4c9
PA
5924 if (debug_infrun)
5925 fprintf_unfiltered (gdb_stdlog,
5926 "infrun: signal may take us out of "
5927 "single-step range\n");
5928
372316f1 5929 clear_step_over_info ();
2c03e5be 5930 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5931 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5932 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5933 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5934 keep_going (ecs);
5935 return;
d303a6c7 5936 }
9d799f85
AC
5937
5938 /* Note: step_resume_breakpoint may be non-NULL. This occures
5939 when either there's a nested signal, or when there's a
5940 pending signal enabled just as the signal handler returns
5941 (leaving the inferior at the step-resume-breakpoint without
5942 actually executing it). Either way continue until the
5943 breakpoint is really hit. */
c447ac0b
PA
5944
5945 if (!switch_back_to_stepped_thread (ecs))
5946 {
5947 if (debug_infrun)
5948 fprintf_unfiltered (gdb_stdlog,
5949 "infrun: random signal, keep going\n");
5950
5951 keep_going (ecs);
5952 }
5953 return;
488f131b 5954 }
94c57d6a
PA
5955
5956 process_event_stop_test (ecs);
5957}
5958
5959/* Come here when we've got some debug event / signal we can explain
5960 (IOW, not a random signal), and test whether it should cause a
5961 stop, or whether we should resume the inferior (transparently).
5962 E.g., could be a breakpoint whose condition evaluates false; we
5963 could be still stepping within the line; etc. */
5964
5965static void
5966process_event_stop_test (struct execution_control_state *ecs)
5967{
5968 struct symtab_and_line stop_pc_sal;
5969 struct frame_info *frame;
5970 struct gdbarch *gdbarch;
cdaa5b73
PA
5971 CORE_ADDR jmp_buf_pc;
5972 struct bpstat_what what;
94c57d6a 5973
cdaa5b73 5974 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5975
cdaa5b73
PA
5976 frame = get_current_frame ();
5977 gdbarch = get_frame_arch (frame);
fcf3daef 5978
cdaa5b73 5979 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5980
cdaa5b73
PA
5981 if (what.call_dummy)
5982 {
5983 stop_stack_dummy = what.call_dummy;
5984 }
186c406b 5985
243a9253
PA
5986 /* A few breakpoint types have callbacks associated (e.g.,
5987 bp_jit_event). Run them now. */
5988 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5989
cdaa5b73
PA
5990 /* If we hit an internal event that triggers symbol changes, the
5991 current frame will be invalidated within bpstat_what (e.g., if we
5992 hit an internal solib event). Re-fetch it. */
5993 frame = get_current_frame ();
5994 gdbarch = get_frame_arch (frame);
e2e4d78b 5995
cdaa5b73
PA
5996 switch (what.main_action)
5997 {
5998 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5999 /* If we hit the breakpoint at longjmp while stepping, we
6000 install a momentary breakpoint at the target of the
6001 jmp_buf. */
186c406b 6002
cdaa5b73
PA
6003 if (debug_infrun)
6004 fprintf_unfiltered (gdb_stdlog,
6005 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6006
cdaa5b73 6007 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6008
cdaa5b73
PA
6009 if (what.is_longjmp)
6010 {
6011 struct value *arg_value;
6012
6013 /* If we set the longjmp breakpoint via a SystemTap probe,
6014 then use it to extract the arguments. The destination PC
6015 is the third argument to the probe. */
6016 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6017 if (arg_value)
8fa0c4f8
AA
6018 {
6019 jmp_buf_pc = value_as_address (arg_value);
6020 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6021 }
cdaa5b73
PA
6022 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6023 || !gdbarch_get_longjmp_target (gdbarch,
6024 frame, &jmp_buf_pc))
e2e4d78b 6025 {
cdaa5b73
PA
6026 if (debug_infrun)
6027 fprintf_unfiltered (gdb_stdlog,
6028 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6029 "(!gdbarch_get_longjmp_target)\n");
6030 keep_going (ecs);
6031 return;
e2e4d78b 6032 }
e2e4d78b 6033
cdaa5b73
PA
6034 /* Insert a breakpoint at resume address. */
6035 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6036 }
6037 else
6038 check_exception_resume (ecs, frame);
6039 keep_going (ecs);
6040 return;
e81a37f7 6041
cdaa5b73
PA
6042 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6043 {
6044 struct frame_info *init_frame;
e81a37f7 6045
cdaa5b73 6046 /* There are several cases to consider.
c906108c 6047
cdaa5b73
PA
6048 1. The initiating frame no longer exists. In this case we
6049 must stop, because the exception or longjmp has gone too
6050 far.
2c03e5be 6051
cdaa5b73
PA
6052 2. The initiating frame exists, and is the same as the
6053 current frame. We stop, because the exception or longjmp
6054 has been caught.
2c03e5be 6055
cdaa5b73
PA
6056 3. The initiating frame exists and is different from the
6057 current frame. This means the exception or longjmp has
6058 been caught beneath the initiating frame, so keep going.
c906108c 6059
cdaa5b73
PA
6060 4. longjmp breakpoint has been placed just to protect
6061 against stale dummy frames and user is not interested in
6062 stopping around longjmps. */
c5aa993b 6063
cdaa5b73
PA
6064 if (debug_infrun)
6065 fprintf_unfiltered (gdb_stdlog,
6066 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6067
cdaa5b73
PA
6068 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6069 != NULL);
6070 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6071
cdaa5b73
PA
6072 if (what.is_longjmp)
6073 {
b67a2c6f 6074 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6075
cdaa5b73 6076 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6077 {
cdaa5b73
PA
6078 /* Case 4. */
6079 keep_going (ecs);
6080 return;
e5ef252a 6081 }
cdaa5b73 6082 }
c5aa993b 6083
cdaa5b73 6084 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6085
cdaa5b73
PA
6086 if (init_frame)
6087 {
6088 struct frame_id current_id
6089 = get_frame_id (get_current_frame ());
6090 if (frame_id_eq (current_id,
6091 ecs->event_thread->initiating_frame))
6092 {
6093 /* Case 2. Fall through. */
6094 }
6095 else
6096 {
6097 /* Case 3. */
6098 keep_going (ecs);
6099 return;
6100 }
68f53502 6101 }
488f131b 6102
cdaa5b73
PA
6103 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6104 exists. */
6105 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6106
bdc36728 6107 end_stepping_range (ecs);
cdaa5b73
PA
6108 }
6109 return;
e5ef252a 6110
cdaa5b73
PA
6111 case BPSTAT_WHAT_SINGLE:
6112 if (debug_infrun)
6113 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6114 ecs->event_thread->stepping_over_breakpoint = 1;
6115 /* Still need to check other stuff, at least the case where we
6116 are stepping and step out of the right range. */
6117 break;
e5ef252a 6118
cdaa5b73
PA
6119 case BPSTAT_WHAT_STEP_RESUME:
6120 if (debug_infrun)
6121 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6122
cdaa5b73
PA
6123 delete_step_resume_breakpoint (ecs->event_thread);
6124 if (ecs->event_thread->control.proceed_to_finish
6125 && execution_direction == EXEC_REVERSE)
6126 {
6127 struct thread_info *tp = ecs->event_thread;
6128
6129 /* We are finishing a function in reverse, and just hit the
6130 step-resume breakpoint at the start address of the
6131 function, and we're almost there -- just need to back up
6132 by one more single-step, which should take us back to the
6133 function call. */
6134 tp->control.step_range_start = tp->control.step_range_end = 1;
6135 keep_going (ecs);
e5ef252a 6136 return;
cdaa5b73
PA
6137 }
6138 fill_in_stop_func (gdbarch, ecs);
6139 if (stop_pc == ecs->stop_func_start
6140 && execution_direction == EXEC_REVERSE)
6141 {
6142 /* We are stepping over a function call in reverse, and just
6143 hit the step-resume breakpoint at the start address of
6144 the function. Go back to single-stepping, which should
6145 take us back to the function call. */
6146 ecs->event_thread->stepping_over_breakpoint = 1;
6147 keep_going (ecs);
6148 return;
6149 }
6150 break;
e5ef252a 6151
cdaa5b73
PA
6152 case BPSTAT_WHAT_STOP_NOISY:
6153 if (debug_infrun)
6154 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6155 stop_print_frame = 1;
e5ef252a 6156
99619bea
PA
6157 /* Assume the thread stopped for a breapoint. We'll still check
6158 whether a/the breakpoint is there when the thread is next
6159 resumed. */
6160 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6161
22bcd14b 6162 stop_waiting (ecs);
cdaa5b73 6163 return;
e5ef252a 6164
cdaa5b73
PA
6165 case BPSTAT_WHAT_STOP_SILENT:
6166 if (debug_infrun)
6167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6168 stop_print_frame = 0;
e5ef252a 6169
99619bea
PA
6170 /* Assume the thread stopped for a breapoint. We'll still check
6171 whether a/the breakpoint is there when the thread is next
6172 resumed. */
6173 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6174 stop_waiting (ecs);
cdaa5b73
PA
6175 return;
6176
6177 case BPSTAT_WHAT_HP_STEP_RESUME:
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6180
6181 delete_step_resume_breakpoint (ecs->event_thread);
6182 if (ecs->event_thread->step_after_step_resume_breakpoint)
6183 {
6184 /* Back when the step-resume breakpoint was inserted, we
6185 were trying to single-step off a breakpoint. Go back to
6186 doing that. */
6187 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6188 ecs->event_thread->stepping_over_breakpoint = 1;
6189 keep_going (ecs);
6190 return;
e5ef252a 6191 }
cdaa5b73
PA
6192 break;
6193
6194 case BPSTAT_WHAT_KEEP_CHECKING:
6195 break;
e5ef252a 6196 }
c906108c 6197
af48d08f
PA
6198 /* If we stepped a permanent breakpoint and we had a high priority
6199 step-resume breakpoint for the address we stepped, but we didn't
6200 hit it, then we must have stepped into the signal handler. The
6201 step-resume was only necessary to catch the case of _not_
6202 stepping into the handler, so delete it, and fall through to
6203 checking whether the step finished. */
6204 if (ecs->event_thread->stepped_breakpoint)
6205 {
6206 struct breakpoint *sr_bp
6207 = ecs->event_thread->control.step_resume_breakpoint;
6208
8d707a12
PA
6209 if (sr_bp != NULL
6210 && sr_bp->loc->permanent
af48d08f
PA
6211 && sr_bp->type == bp_hp_step_resume
6212 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6213 {
6214 if (debug_infrun)
6215 fprintf_unfiltered (gdb_stdlog,
6216 "infrun: stepped permanent breakpoint, stopped in "
6217 "handler\n");
6218 delete_step_resume_breakpoint (ecs->event_thread);
6219 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6220 }
6221 }
6222
cdaa5b73
PA
6223 /* We come here if we hit a breakpoint but should not stop for it.
6224 Possibly we also were stepping and should stop for that. So fall
6225 through and test for stepping. But, if not stepping, do not
6226 stop. */
c906108c 6227
a7212384
UW
6228 /* In all-stop mode, if we're currently stepping but have stopped in
6229 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6230 if (switch_back_to_stepped_thread (ecs))
6231 return;
776f04fa 6232
8358c15c 6233 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6234 {
527159b7 6235 if (debug_infrun)
d3169d93
DJ
6236 fprintf_unfiltered (gdb_stdlog,
6237 "infrun: step-resume breakpoint is inserted\n");
527159b7 6238
488f131b
JB
6239 /* Having a step-resume breakpoint overrides anything
6240 else having to do with stepping commands until
6241 that breakpoint is reached. */
488f131b
JB
6242 keep_going (ecs);
6243 return;
6244 }
c5aa993b 6245
16c381f0 6246 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6247 {
527159b7 6248 if (debug_infrun)
8a9de0e4 6249 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6250 /* Likewise if we aren't even stepping. */
488f131b
JB
6251 keep_going (ecs);
6252 return;
6253 }
c5aa993b 6254
4b7703ad
JB
6255 /* Re-fetch current thread's frame in case the code above caused
6256 the frame cache to be re-initialized, making our FRAME variable
6257 a dangling pointer. */
6258 frame = get_current_frame ();
628fe4e4 6259 gdbarch = get_frame_arch (frame);
7e324e48 6260 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6261
488f131b 6262 /* If stepping through a line, keep going if still within it.
c906108c 6263
488f131b
JB
6264 Note that step_range_end is the address of the first instruction
6265 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6266 within it!
6267
6268 Note also that during reverse execution, we may be stepping
6269 through a function epilogue and therefore must detect when
6270 the current-frame changes in the middle of a line. */
6271
ce4c476a 6272 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6273 && (execution_direction != EXEC_REVERSE
388a8562 6274 || frame_id_eq (get_frame_id (frame),
16c381f0 6275 ecs->event_thread->control.step_frame_id)))
488f131b 6276 {
527159b7 6277 if (debug_infrun)
5af949e3
UW
6278 fprintf_unfiltered
6279 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6280 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6281 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6282
c1e36e3e
PA
6283 /* Tentatively re-enable range stepping; `resume' disables it if
6284 necessary (e.g., if we're stepping over a breakpoint or we
6285 have software watchpoints). */
6286 ecs->event_thread->control.may_range_step = 1;
6287
b2175913
MS
6288 /* When stepping backward, stop at beginning of line range
6289 (unless it's the function entry point, in which case
6290 keep going back to the call point). */
16c381f0 6291 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6292 && stop_pc != ecs->stop_func_start
6293 && execution_direction == EXEC_REVERSE)
bdc36728 6294 end_stepping_range (ecs);
b2175913
MS
6295 else
6296 keep_going (ecs);
6297
488f131b
JB
6298 return;
6299 }
c5aa993b 6300
488f131b 6301 /* We stepped out of the stepping range. */
c906108c 6302
488f131b 6303 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6304 loader dynamic symbol resolution code...
6305
6306 EXEC_FORWARD: we keep on single stepping until we exit the run
6307 time loader code and reach the callee's address.
6308
6309 EXEC_REVERSE: we've already executed the callee (backward), and
6310 the runtime loader code is handled just like any other
6311 undebuggable function call. Now we need only keep stepping
6312 backward through the trampoline code, and that's handled further
6313 down, so there is nothing for us to do here. */
6314
6315 if (execution_direction != EXEC_REVERSE
16c381f0 6316 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6317 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6318 {
4c8c40e6 6319 CORE_ADDR pc_after_resolver =
568d6575 6320 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6321
527159b7 6322 if (debug_infrun)
3e43a32a
MS
6323 fprintf_unfiltered (gdb_stdlog,
6324 "infrun: stepped into dynsym resolve code\n");
527159b7 6325
488f131b
JB
6326 if (pc_after_resolver)
6327 {
6328 /* Set up a step-resume breakpoint at the address
6329 indicated by SKIP_SOLIB_RESOLVER. */
6330 struct symtab_and_line sr_sal;
abbb1732 6331
fe39c653 6332 init_sal (&sr_sal);
488f131b 6333 sr_sal.pc = pc_after_resolver;
6c95b8df 6334 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6335
a6d9a66e
UW
6336 insert_step_resume_breakpoint_at_sal (gdbarch,
6337 sr_sal, null_frame_id);
c5aa993b 6338 }
c906108c 6339
488f131b
JB
6340 keep_going (ecs);
6341 return;
6342 }
c906108c 6343
16c381f0
JK
6344 if (ecs->event_thread->control.step_range_end != 1
6345 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6346 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6347 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6348 {
527159b7 6349 if (debug_infrun)
3e43a32a
MS
6350 fprintf_unfiltered (gdb_stdlog,
6351 "infrun: stepped into signal trampoline\n");
42edda50 6352 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6353 a signal trampoline (either by a signal being delivered or by
6354 the signal handler returning). Just single-step until the
6355 inferior leaves the trampoline (either by calling the handler
6356 or returning). */
488f131b
JB
6357 keep_going (ecs);
6358 return;
6359 }
c906108c 6360
14132e89
MR
6361 /* If we're in the return path from a shared library trampoline,
6362 we want to proceed through the trampoline when stepping. */
6363 /* macro/2012-04-25: This needs to come before the subroutine
6364 call check below as on some targets return trampolines look
6365 like subroutine calls (MIPS16 return thunks). */
6366 if (gdbarch_in_solib_return_trampoline (gdbarch,
6367 stop_pc, ecs->stop_func_name)
6368 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6369 {
6370 /* Determine where this trampoline returns. */
6371 CORE_ADDR real_stop_pc;
6372
6373 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6374
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: stepped into solib return tramp\n");
6378
6379 /* Only proceed through if we know where it's going. */
6380 if (real_stop_pc)
6381 {
6382 /* And put the step-breakpoint there and go until there. */
6383 struct symtab_and_line sr_sal;
6384
6385 init_sal (&sr_sal); /* initialize to zeroes */
6386 sr_sal.pc = real_stop_pc;
6387 sr_sal.section = find_pc_overlay (sr_sal.pc);
6388 sr_sal.pspace = get_frame_program_space (frame);
6389
6390 /* Do not specify what the fp should be when we stop since
6391 on some machines the prologue is where the new fp value
6392 is established. */
6393 insert_step_resume_breakpoint_at_sal (gdbarch,
6394 sr_sal, null_frame_id);
6395
6396 /* Restart without fiddling with the step ranges or
6397 other state. */
6398 keep_going (ecs);
6399 return;
6400 }
6401 }
6402
c17eaafe
DJ
6403 /* Check for subroutine calls. The check for the current frame
6404 equalling the step ID is not necessary - the check of the
6405 previous frame's ID is sufficient - but it is a common case and
6406 cheaper than checking the previous frame's ID.
14e60db5
DJ
6407
6408 NOTE: frame_id_eq will never report two invalid frame IDs as
6409 being equal, so to get into this block, both the current and
6410 previous frame must have valid frame IDs. */
005ca36a
JB
6411 /* The outer_frame_id check is a heuristic to detect stepping
6412 through startup code. If we step over an instruction which
6413 sets the stack pointer from an invalid value to a valid value,
6414 we may detect that as a subroutine call from the mythical
6415 "outermost" function. This could be fixed by marking
6416 outermost frames as !stack_p,code_p,special_p. Then the
6417 initial outermost frame, before sp was valid, would
ce6cca6d 6418 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6419 for more. */
edb3359d 6420 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6421 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6422 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6423 ecs->event_thread->control.step_stack_frame_id)
6424 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6425 outer_frame_id)
885eeb5b
PA
6426 || (ecs->event_thread->control.step_start_function
6427 != find_pc_function (stop_pc)))))
488f131b 6428 {
95918acb 6429 CORE_ADDR real_stop_pc;
8fb3e588 6430
527159b7 6431 if (debug_infrun)
8a9de0e4 6432 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6433
b7a084be 6434 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6435 {
6436 /* I presume that step_over_calls is only 0 when we're
6437 supposed to be stepping at the assembly language level
6438 ("stepi"). Just stop. */
388a8562 6439 /* And this works the same backward as frontward. MVS */
bdc36728 6440 end_stepping_range (ecs);
95918acb
AC
6441 return;
6442 }
8fb3e588 6443
388a8562
MS
6444 /* Reverse stepping through solib trampolines. */
6445
6446 if (execution_direction == EXEC_REVERSE
16c381f0 6447 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6448 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6449 || (ecs->stop_func_start == 0
6450 && in_solib_dynsym_resolve_code (stop_pc))))
6451 {
6452 /* Any solib trampoline code can be handled in reverse
6453 by simply continuing to single-step. We have already
6454 executed the solib function (backwards), and a few
6455 steps will take us back through the trampoline to the
6456 caller. */
6457 keep_going (ecs);
6458 return;
6459 }
6460
16c381f0 6461 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6462 {
b2175913
MS
6463 /* We're doing a "next".
6464
6465 Normal (forward) execution: set a breakpoint at the
6466 callee's return address (the address at which the caller
6467 will resume).
6468
6469 Reverse (backward) execution. set the step-resume
6470 breakpoint at the start of the function that we just
6471 stepped into (backwards), and continue to there. When we
6130d0b7 6472 get there, we'll need to single-step back to the caller. */
b2175913
MS
6473
6474 if (execution_direction == EXEC_REVERSE)
6475 {
acf9414f
JK
6476 /* If we're already at the start of the function, we've either
6477 just stepped backward into a single instruction function,
6478 or stepped back out of a signal handler to the first instruction
6479 of the function. Just keep going, which will single-step back
6480 to the caller. */
58c48e72 6481 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6482 {
6483 struct symtab_and_line sr_sal;
6484
6485 /* Normal function call return (static or dynamic). */
6486 init_sal (&sr_sal);
6487 sr_sal.pc = ecs->stop_func_start;
6488 sr_sal.pspace = get_frame_program_space (frame);
6489 insert_step_resume_breakpoint_at_sal (gdbarch,
6490 sr_sal, null_frame_id);
6491 }
b2175913
MS
6492 }
6493 else
568d6575 6494 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6495
8567c30f
AC
6496 keep_going (ecs);
6497 return;
6498 }
a53c66de 6499
95918acb 6500 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6501 calling routine and the real function), locate the real
6502 function. That's what tells us (a) whether we want to step
6503 into it at all, and (b) what prologue we want to run to the
6504 end of, if we do step into it. */
568d6575 6505 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6506 if (real_stop_pc == 0)
568d6575 6507 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6508 if (real_stop_pc != 0)
6509 ecs->stop_func_start = real_stop_pc;
8fb3e588 6510
db5f024e 6511 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6512 {
6513 struct symtab_and_line sr_sal;
abbb1732 6514
1b2bfbb9
RC
6515 init_sal (&sr_sal);
6516 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6517 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6518
a6d9a66e
UW
6519 insert_step_resume_breakpoint_at_sal (gdbarch,
6520 sr_sal, null_frame_id);
8fb3e588
AC
6521 keep_going (ecs);
6522 return;
1b2bfbb9
RC
6523 }
6524
95918acb 6525 /* If we have line number information for the function we are
1bfeeb0f
JL
6526 thinking of stepping into and the function isn't on the skip
6527 list, step into it.
95918acb 6528
8fb3e588
AC
6529 If there are several symtabs at that PC (e.g. with include
6530 files), just want to know whether *any* of them have line
6531 numbers. find_pc_line handles this. */
95918acb
AC
6532 {
6533 struct symtab_and_line tmp_sal;
8fb3e588 6534
95918acb 6535 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6536 if (tmp_sal.line != 0
85817405
JK
6537 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6538 &tmp_sal))
95918acb 6539 {
b2175913 6540 if (execution_direction == EXEC_REVERSE)
568d6575 6541 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6542 else
568d6575 6543 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6544 return;
6545 }
6546 }
6547
6548 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6549 set, we stop the step so that the user has a chance to switch
6550 in assembly mode. */
16c381f0 6551 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6552 && step_stop_if_no_debug)
95918acb 6553 {
bdc36728 6554 end_stepping_range (ecs);
95918acb
AC
6555 return;
6556 }
6557
b2175913
MS
6558 if (execution_direction == EXEC_REVERSE)
6559 {
acf9414f
JK
6560 /* If we're already at the start of the function, we've either just
6561 stepped backward into a single instruction function without line
6562 number info, or stepped back out of a signal handler to the first
6563 instruction of the function without line number info. Just keep
6564 going, which will single-step back to the caller. */
6565 if (ecs->stop_func_start != stop_pc)
6566 {
6567 /* Set a breakpoint at callee's start address.
6568 From there we can step once and be back in the caller. */
6569 struct symtab_and_line sr_sal;
abbb1732 6570
acf9414f
JK
6571 init_sal (&sr_sal);
6572 sr_sal.pc = ecs->stop_func_start;
6573 sr_sal.pspace = get_frame_program_space (frame);
6574 insert_step_resume_breakpoint_at_sal (gdbarch,
6575 sr_sal, null_frame_id);
6576 }
b2175913
MS
6577 }
6578 else
6579 /* Set a breakpoint at callee's return address (the address
6580 at which the caller will resume). */
568d6575 6581 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6582
95918acb 6583 keep_going (ecs);
488f131b 6584 return;
488f131b 6585 }
c906108c 6586
fdd654f3
MS
6587 /* Reverse stepping through solib trampolines. */
6588
6589 if (execution_direction == EXEC_REVERSE
16c381f0 6590 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6591 {
6592 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6593 || (ecs->stop_func_start == 0
6594 && in_solib_dynsym_resolve_code (stop_pc)))
6595 {
6596 /* Any solib trampoline code can be handled in reverse
6597 by simply continuing to single-step. We have already
6598 executed the solib function (backwards), and a few
6599 steps will take us back through the trampoline to the
6600 caller. */
6601 keep_going (ecs);
6602 return;
6603 }
6604 else if (in_solib_dynsym_resolve_code (stop_pc))
6605 {
6606 /* Stepped backward into the solib dynsym resolver.
6607 Set a breakpoint at its start and continue, then
6608 one more step will take us out. */
6609 struct symtab_and_line sr_sal;
abbb1732 6610
fdd654f3
MS
6611 init_sal (&sr_sal);
6612 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6613 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6614 insert_step_resume_breakpoint_at_sal (gdbarch,
6615 sr_sal, null_frame_id);
6616 keep_going (ecs);
6617 return;
6618 }
6619 }
6620
2afb61aa 6621 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6622
1b2bfbb9
RC
6623 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6624 the trampoline processing logic, however, there are some trampolines
6625 that have no names, so we should do trampoline handling first. */
16c381f0 6626 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6627 && ecs->stop_func_name == NULL
2afb61aa 6628 && stop_pc_sal.line == 0)
1b2bfbb9 6629 {
527159b7 6630 if (debug_infrun)
3e43a32a
MS
6631 fprintf_unfiltered (gdb_stdlog,
6632 "infrun: stepped into undebuggable function\n");
527159b7 6633
1b2bfbb9 6634 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6635 undebuggable function (where there is no debugging information
6636 and no line number corresponding to the address where the
1b2bfbb9
RC
6637 inferior stopped). Since we want to skip this kind of code,
6638 we keep going until the inferior returns from this
14e60db5
DJ
6639 function - unless the user has asked us not to (via
6640 set step-mode) or we no longer know how to get back
6641 to the call site. */
6642 if (step_stop_if_no_debug
c7ce8faa 6643 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6644 {
6645 /* If we have no line number and the step-stop-if-no-debug
6646 is set, we stop the step so that the user has a chance to
6647 switch in assembly mode. */
bdc36728 6648 end_stepping_range (ecs);
1b2bfbb9
RC
6649 return;
6650 }
6651 else
6652 {
6653 /* Set a breakpoint at callee's return address (the address
6654 at which the caller will resume). */
568d6575 6655 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6656 keep_going (ecs);
6657 return;
6658 }
6659 }
6660
16c381f0 6661 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6662 {
6663 /* It is stepi or nexti. We always want to stop stepping after
6664 one instruction. */
527159b7 6665 if (debug_infrun)
8a9de0e4 6666 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6667 end_stepping_range (ecs);
1b2bfbb9
RC
6668 return;
6669 }
6670
2afb61aa 6671 if (stop_pc_sal.line == 0)
488f131b
JB
6672 {
6673 /* We have no line number information. That means to stop
6674 stepping (does this always happen right after one instruction,
6675 when we do "s" in a function with no line numbers,
6676 or can this happen as a result of a return or longjmp?). */
527159b7 6677 if (debug_infrun)
8a9de0e4 6678 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6679 end_stepping_range (ecs);
488f131b
JB
6680 return;
6681 }
c906108c 6682
edb3359d
DJ
6683 /* Look for "calls" to inlined functions, part one. If the inline
6684 frame machinery detected some skipped call sites, we have entered
6685 a new inline function. */
6686
6687 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6688 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6689 && inline_skipped_frames (ecs->ptid))
6690 {
6691 struct symtab_and_line call_sal;
6692
6693 if (debug_infrun)
6694 fprintf_unfiltered (gdb_stdlog,
6695 "infrun: stepped into inlined function\n");
6696
6697 find_frame_sal (get_current_frame (), &call_sal);
6698
16c381f0 6699 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6700 {
6701 /* For "step", we're going to stop. But if the call site
6702 for this inlined function is on the same source line as
6703 we were previously stepping, go down into the function
6704 first. Otherwise stop at the call site. */
6705
6706 if (call_sal.line == ecs->event_thread->current_line
6707 && call_sal.symtab == ecs->event_thread->current_symtab)
6708 step_into_inline_frame (ecs->ptid);
6709
bdc36728 6710 end_stepping_range (ecs);
edb3359d
DJ
6711 return;
6712 }
6713 else
6714 {
6715 /* For "next", we should stop at the call site if it is on a
6716 different source line. Otherwise continue through the
6717 inlined function. */
6718 if (call_sal.line == ecs->event_thread->current_line
6719 && call_sal.symtab == ecs->event_thread->current_symtab)
6720 keep_going (ecs);
6721 else
bdc36728 6722 end_stepping_range (ecs);
edb3359d
DJ
6723 return;
6724 }
6725 }
6726
6727 /* Look for "calls" to inlined functions, part two. If we are still
6728 in the same real function we were stepping through, but we have
6729 to go further up to find the exact frame ID, we are stepping
6730 through a more inlined call beyond its call site. */
6731
6732 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6733 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6734 ecs->event_thread->control.step_frame_id)
edb3359d 6735 && stepped_in_from (get_current_frame (),
16c381f0 6736 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6737 {
6738 if (debug_infrun)
6739 fprintf_unfiltered (gdb_stdlog,
6740 "infrun: stepping through inlined function\n");
6741
16c381f0 6742 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6743 keep_going (ecs);
6744 else
bdc36728 6745 end_stepping_range (ecs);
edb3359d
DJ
6746 return;
6747 }
6748
2afb61aa 6749 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6750 && (ecs->event_thread->current_line != stop_pc_sal.line
6751 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6752 {
6753 /* We are at the start of a different line. So stop. Note that
6754 we don't stop if we step into the middle of a different line.
6755 That is said to make things like for (;;) statements work
6756 better. */
527159b7 6757 if (debug_infrun)
3e43a32a
MS
6758 fprintf_unfiltered (gdb_stdlog,
6759 "infrun: stepped to a different line\n");
bdc36728 6760 end_stepping_range (ecs);
488f131b
JB
6761 return;
6762 }
c906108c 6763
488f131b 6764 /* We aren't done stepping.
c906108c 6765
488f131b
JB
6766 Optimize by setting the stepping range to the line.
6767 (We might not be in the original line, but if we entered a
6768 new line in mid-statement, we continue stepping. This makes
6769 things like for(;;) statements work better.) */
c906108c 6770
16c381f0
JK
6771 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6772 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6773 ecs->event_thread->control.may_range_step = 1;
edb3359d 6774 set_step_info (frame, stop_pc_sal);
488f131b 6775
527159b7 6776 if (debug_infrun)
8a9de0e4 6777 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6778 keep_going (ecs);
104c1213
JM
6779}
6780
c447ac0b
PA
6781/* In all-stop mode, if we're currently stepping but have stopped in
6782 some other thread, we may need to switch back to the stepped
6783 thread. Returns true we set the inferior running, false if we left
6784 it stopped (and the event needs further processing). */
6785
6786static int
6787switch_back_to_stepped_thread (struct execution_control_state *ecs)
6788{
fbea99ea 6789 if (!target_is_non_stop_p ())
c447ac0b
PA
6790 {
6791 struct thread_info *tp;
99619bea
PA
6792 struct thread_info *stepping_thread;
6793
6794 /* If any thread is blocked on some internal breakpoint, and we
6795 simply need to step over that breakpoint to get it going
6796 again, do that first. */
6797
6798 /* However, if we see an event for the stepping thread, then we
6799 know all other threads have been moved past their breakpoints
6800 already. Let the caller check whether the step is finished,
6801 etc., before deciding to move it past a breakpoint. */
6802 if (ecs->event_thread->control.step_range_end != 0)
6803 return 0;
6804
6805 /* Check if the current thread is blocked on an incomplete
6806 step-over, interrupted by a random signal. */
6807 if (ecs->event_thread->control.trap_expected
6808 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6809 {
99619bea
PA
6810 if (debug_infrun)
6811 {
6812 fprintf_unfiltered (gdb_stdlog,
6813 "infrun: need to finish step-over of [%s]\n",
6814 target_pid_to_str (ecs->event_thread->ptid));
6815 }
6816 keep_going (ecs);
6817 return 1;
6818 }
2adfaa28 6819
99619bea
PA
6820 /* Check if the current thread is blocked by a single-step
6821 breakpoint of another thread. */
6822 if (ecs->hit_singlestep_breakpoint)
6823 {
6824 if (debug_infrun)
6825 {
6826 fprintf_unfiltered (gdb_stdlog,
6827 "infrun: need to step [%s] over single-step "
6828 "breakpoint\n",
6829 target_pid_to_str (ecs->ptid));
6830 }
6831 keep_going (ecs);
6832 return 1;
6833 }
6834
4d9d9d04
PA
6835 /* If this thread needs yet another step-over (e.g., stepping
6836 through a delay slot), do it first before moving on to
6837 another thread. */
6838 if (thread_still_needs_step_over (ecs->event_thread))
6839 {
6840 if (debug_infrun)
6841 {
6842 fprintf_unfiltered (gdb_stdlog,
6843 "infrun: thread [%s] still needs step-over\n",
6844 target_pid_to_str (ecs->event_thread->ptid));
6845 }
6846 keep_going (ecs);
6847 return 1;
6848 }
70509625 6849
483805cf
PA
6850 /* If scheduler locking applies even if not stepping, there's no
6851 need to walk over threads. Above we've checked whether the
6852 current thread is stepping. If some other thread not the
6853 event thread is stepping, then it must be that scheduler
6854 locking is not in effect. */
856e7dd6 6855 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6856 return 0;
6857
4d9d9d04
PA
6858 /* Otherwise, we no longer expect a trap in the current thread.
6859 Clear the trap_expected flag before switching back -- this is
6860 what keep_going does as well, if we call it. */
6861 ecs->event_thread->control.trap_expected = 0;
6862
6863 /* Likewise, clear the signal if it should not be passed. */
6864 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6865 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6866
6867 /* Do all pending step-overs before actually proceeding with
483805cf 6868 step/next/etc. */
4d9d9d04
PA
6869 if (start_step_over ())
6870 {
6871 prepare_to_wait (ecs);
6872 return 1;
6873 }
6874
6875 /* Look for the stepping/nexting thread. */
483805cf 6876 stepping_thread = NULL;
4d9d9d04 6877
034f788c 6878 ALL_NON_EXITED_THREADS (tp)
483805cf 6879 {
fbea99ea
PA
6880 /* Ignore threads of processes the caller is not
6881 resuming. */
483805cf 6882 if (!sched_multi
1afd5965 6883 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6884 continue;
6885
6886 /* When stepping over a breakpoint, we lock all threads
6887 except the one that needs to move past the breakpoint.
6888 If a non-event thread has this set, the "incomplete
6889 step-over" check above should have caught it earlier. */
372316f1
PA
6890 if (tp->control.trap_expected)
6891 {
6892 internal_error (__FILE__, __LINE__,
6893 "[%s] has inconsistent state: "
6894 "trap_expected=%d\n",
6895 target_pid_to_str (tp->ptid),
6896 tp->control.trap_expected);
6897 }
483805cf
PA
6898
6899 /* Did we find the stepping thread? */
6900 if (tp->control.step_range_end)
6901 {
6902 /* Yep. There should only one though. */
6903 gdb_assert (stepping_thread == NULL);
6904
6905 /* The event thread is handled at the top, before we
6906 enter this loop. */
6907 gdb_assert (tp != ecs->event_thread);
6908
6909 /* If some thread other than the event thread is
6910 stepping, then scheduler locking can't be in effect,
6911 otherwise we wouldn't have resumed the current event
6912 thread in the first place. */
856e7dd6 6913 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6914
6915 stepping_thread = tp;
6916 }
99619bea
PA
6917 }
6918
483805cf 6919 if (stepping_thread != NULL)
99619bea 6920 {
c447ac0b
PA
6921 if (debug_infrun)
6922 fprintf_unfiltered (gdb_stdlog,
6923 "infrun: switching back to stepped thread\n");
6924
2ac7589c
PA
6925 if (keep_going_stepped_thread (stepping_thread))
6926 {
6927 prepare_to_wait (ecs);
6928 return 1;
6929 }
6930 }
6931 }
2adfaa28 6932
2ac7589c
PA
6933 return 0;
6934}
2adfaa28 6935
2ac7589c
PA
6936/* Set a previously stepped thread back to stepping. Returns true on
6937 success, false if the resume is not possible (e.g., the thread
6938 vanished). */
6939
6940static int
6941keep_going_stepped_thread (struct thread_info *tp)
6942{
6943 struct frame_info *frame;
6944 struct gdbarch *gdbarch;
6945 struct execution_control_state ecss;
6946 struct execution_control_state *ecs = &ecss;
2adfaa28 6947
2ac7589c
PA
6948 /* If the stepping thread exited, then don't try to switch back and
6949 resume it, which could fail in several different ways depending
6950 on the target. Instead, just keep going.
2adfaa28 6951
2ac7589c
PA
6952 We can find a stepping dead thread in the thread list in two
6953 cases:
2adfaa28 6954
2ac7589c
PA
6955 - The target supports thread exit events, and when the target
6956 tries to delete the thread from the thread list, inferior_ptid
6957 pointed at the exiting thread. In such case, calling
6958 delete_thread does not really remove the thread from the list;
6959 instead, the thread is left listed, with 'exited' state.
64ce06e4 6960
2ac7589c
PA
6961 - The target's debug interface does not support thread exit
6962 events, and so we have no idea whatsoever if the previously
6963 stepping thread is still alive. For that reason, we need to
6964 synchronously query the target now. */
2adfaa28 6965
2ac7589c
PA
6966 if (is_exited (tp->ptid)
6967 || !target_thread_alive (tp->ptid))
6968 {
6969 if (debug_infrun)
6970 fprintf_unfiltered (gdb_stdlog,
6971 "infrun: not resuming previously "
6972 "stepped thread, it has vanished\n");
6973
6974 delete_thread (tp->ptid);
6975 return 0;
c447ac0b 6976 }
2ac7589c
PA
6977
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: resuming previously stepped thread\n");
6981
6982 reset_ecs (ecs, tp);
6983 switch_to_thread (tp->ptid);
6984
6985 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
6986 frame = get_current_frame ();
6987 gdbarch = get_frame_arch (frame);
6988
6989 /* If the PC of the thread we were trying to single-step has
6990 changed, then that thread has trapped or been signaled, but the
6991 event has not been reported to GDB yet. Re-poll the target
6992 looking for this particular thread's event (i.e. temporarily
6993 enable schedlock) by:
6994
6995 - setting a break at the current PC
6996 - resuming that particular thread, only (by setting trap
6997 expected)
6998
6999 This prevents us continuously moving the single-step breakpoint
7000 forward, one instruction at a time, overstepping. */
7001
7002 if (stop_pc != tp->prev_pc)
7003 {
7004 ptid_t resume_ptid;
7005
7006 if (debug_infrun)
7007 fprintf_unfiltered (gdb_stdlog,
7008 "infrun: expected thread advanced also (%s -> %s)\n",
7009 paddress (target_gdbarch (), tp->prev_pc),
7010 paddress (target_gdbarch (), stop_pc));
7011
7012 /* Clear the info of the previous step-over, as it's no longer
7013 valid (if the thread was trying to step over a breakpoint, it
7014 has already succeeded). It's what keep_going would do too,
7015 if we called it. Do this before trying to insert the sss
7016 breakpoint, otherwise if we were previously trying to step
7017 over this exact address in another thread, the breakpoint is
7018 skipped. */
7019 clear_step_over_info ();
7020 tp->control.trap_expected = 0;
7021
7022 insert_single_step_breakpoint (get_frame_arch (frame),
7023 get_frame_address_space (frame),
7024 stop_pc);
7025
372316f1 7026 tp->resumed = 1;
fbea99ea 7027 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7028 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7029 }
7030 else
7031 {
7032 if (debug_infrun)
7033 fprintf_unfiltered (gdb_stdlog,
7034 "infrun: expected thread still hasn't advanced\n");
7035
7036 keep_going_pass_signal (ecs);
7037 }
7038 return 1;
c447ac0b
PA
7039}
7040
8b061563
PA
7041/* Is thread TP in the middle of (software or hardware)
7042 single-stepping? (Note the result of this function must never be
7043 passed directly as target_resume's STEP parameter.) */
104c1213 7044
a289b8f6 7045static int
b3444185 7046currently_stepping (struct thread_info *tp)
a7212384 7047{
8358c15c
JK
7048 return ((tp->control.step_range_end
7049 && tp->control.step_resume_breakpoint == NULL)
7050 || tp->control.trap_expected
af48d08f 7051 || tp->stepped_breakpoint
8358c15c 7052 || bpstat_should_step ());
a7212384
UW
7053}
7054
b2175913
MS
7055/* Inferior has stepped into a subroutine call with source code that
7056 we should not step over. Do step to the first line of code in
7057 it. */
c2c6d25f
JM
7058
7059static void
568d6575
UW
7060handle_step_into_function (struct gdbarch *gdbarch,
7061 struct execution_control_state *ecs)
c2c6d25f 7062{
43f3e411 7063 struct compunit_symtab *cust;
2afb61aa 7064 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7065
7e324e48
GB
7066 fill_in_stop_func (gdbarch, ecs);
7067
43f3e411
DE
7068 cust = find_pc_compunit_symtab (stop_pc);
7069 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7070 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7071 ecs->stop_func_start);
c2c6d25f 7072
2afb61aa 7073 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7074 /* Use the step_resume_break to step until the end of the prologue,
7075 even if that involves jumps (as it seems to on the vax under
7076 4.2). */
7077 /* If the prologue ends in the middle of a source line, continue to
7078 the end of that source line (if it is still within the function).
7079 Otherwise, just go to end of prologue. */
2afb61aa
PA
7080 if (stop_func_sal.end
7081 && stop_func_sal.pc != ecs->stop_func_start
7082 && stop_func_sal.end < ecs->stop_func_end)
7083 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7084
2dbd5e30
KB
7085 /* Architectures which require breakpoint adjustment might not be able
7086 to place a breakpoint at the computed address. If so, the test
7087 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7088 ecs->stop_func_start to an address at which a breakpoint may be
7089 legitimately placed.
8fb3e588 7090
2dbd5e30
KB
7091 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7092 made, GDB will enter an infinite loop when stepping through
7093 optimized code consisting of VLIW instructions which contain
7094 subinstructions corresponding to different source lines. On
7095 FR-V, it's not permitted to place a breakpoint on any but the
7096 first subinstruction of a VLIW instruction. When a breakpoint is
7097 set, GDB will adjust the breakpoint address to the beginning of
7098 the VLIW instruction. Thus, we need to make the corresponding
7099 adjustment here when computing the stop address. */
8fb3e588 7100
568d6575 7101 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7102 {
7103 ecs->stop_func_start
568d6575 7104 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7105 ecs->stop_func_start);
2dbd5e30
KB
7106 }
7107
c2c6d25f
JM
7108 if (ecs->stop_func_start == stop_pc)
7109 {
7110 /* We are already there: stop now. */
bdc36728 7111 end_stepping_range (ecs);
c2c6d25f
JM
7112 return;
7113 }
7114 else
7115 {
7116 /* Put the step-breakpoint there and go until there. */
fe39c653 7117 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7118 sr_sal.pc = ecs->stop_func_start;
7119 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7120 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7121
c2c6d25f 7122 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7123 some machines the prologue is where the new fp value is
7124 established. */
a6d9a66e 7125 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7126
7127 /* And make sure stepping stops right away then. */
16c381f0
JK
7128 ecs->event_thread->control.step_range_end
7129 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7130 }
7131 keep_going (ecs);
7132}
d4f3574e 7133
b2175913
MS
7134/* Inferior has stepped backward into a subroutine call with source
7135 code that we should not step over. Do step to the beginning of the
7136 last line of code in it. */
7137
7138static void
568d6575
UW
7139handle_step_into_function_backward (struct gdbarch *gdbarch,
7140 struct execution_control_state *ecs)
b2175913 7141{
43f3e411 7142 struct compunit_symtab *cust;
167e4384 7143 struct symtab_and_line stop_func_sal;
b2175913 7144
7e324e48
GB
7145 fill_in_stop_func (gdbarch, ecs);
7146
43f3e411
DE
7147 cust = find_pc_compunit_symtab (stop_pc);
7148 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7149 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7150 ecs->stop_func_start);
7151
7152 stop_func_sal = find_pc_line (stop_pc, 0);
7153
7154 /* OK, we're just going to keep stepping here. */
7155 if (stop_func_sal.pc == stop_pc)
7156 {
7157 /* We're there already. Just stop stepping now. */
bdc36728 7158 end_stepping_range (ecs);
b2175913
MS
7159 }
7160 else
7161 {
7162 /* Else just reset the step range and keep going.
7163 No step-resume breakpoint, they don't work for
7164 epilogues, which can have multiple entry paths. */
16c381f0
JK
7165 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7166 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7167 keep_going (ecs);
7168 }
7169 return;
7170}
7171
d3169d93 7172/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7173 This is used to both functions and to skip over code. */
7174
7175static void
2c03e5be
PA
7176insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7177 struct symtab_and_line sr_sal,
7178 struct frame_id sr_id,
7179 enum bptype sr_type)
44cbf7b5 7180{
611c83ae
PA
7181 /* There should never be more than one step-resume or longjmp-resume
7182 breakpoint per thread, so we should never be setting a new
44cbf7b5 7183 step_resume_breakpoint when one is already active. */
8358c15c 7184 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7185 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7186
7187 if (debug_infrun)
7188 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7189 "infrun: inserting step-resume breakpoint at %s\n",
7190 paddress (gdbarch, sr_sal.pc));
d3169d93 7191
8358c15c 7192 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7193 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7194}
7195
9da8c2a0 7196void
2c03e5be
PA
7197insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7198 struct symtab_and_line sr_sal,
7199 struct frame_id sr_id)
7200{
7201 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7202 sr_sal, sr_id,
7203 bp_step_resume);
44cbf7b5 7204}
7ce450bd 7205
2c03e5be
PA
7206/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7207 This is used to skip a potential signal handler.
7ce450bd 7208
14e60db5
DJ
7209 This is called with the interrupted function's frame. The signal
7210 handler, when it returns, will resume the interrupted function at
7211 RETURN_FRAME.pc. */
d303a6c7
AC
7212
7213static void
2c03e5be 7214insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7215{
7216 struct symtab_and_line sr_sal;
a6d9a66e 7217 struct gdbarch *gdbarch;
d303a6c7 7218
f4c1edd8 7219 gdb_assert (return_frame != NULL);
d303a6c7
AC
7220 init_sal (&sr_sal); /* initialize to zeros */
7221
a6d9a66e 7222 gdbarch = get_frame_arch (return_frame);
568d6575 7223 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7224 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7225 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7226
2c03e5be
PA
7227 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7228 get_stack_frame_id (return_frame),
7229 bp_hp_step_resume);
d303a6c7
AC
7230}
7231
2c03e5be
PA
7232/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7233 is used to skip a function after stepping into it (for "next" or if
7234 the called function has no debugging information).
14e60db5
DJ
7235
7236 The current function has almost always been reached by single
7237 stepping a call or return instruction. NEXT_FRAME belongs to the
7238 current function, and the breakpoint will be set at the caller's
7239 resume address.
7240
7241 This is a separate function rather than reusing
2c03e5be 7242 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7243 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7244 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7245
7246static void
7247insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7248{
7249 struct symtab_and_line sr_sal;
a6d9a66e 7250 struct gdbarch *gdbarch;
14e60db5
DJ
7251
7252 /* We shouldn't have gotten here if we don't know where the call site
7253 is. */
c7ce8faa 7254 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7255
7256 init_sal (&sr_sal); /* initialize to zeros */
7257
a6d9a66e 7258 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7259 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7260 frame_unwind_caller_pc (next_frame));
14e60db5 7261 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7262 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7263
a6d9a66e 7264 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7265 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7266}
7267
611c83ae
PA
7268/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7269 new breakpoint at the target of a jmp_buf. The handling of
7270 longjmp-resume uses the same mechanisms used for handling
7271 "step-resume" breakpoints. */
7272
7273static void
a6d9a66e 7274insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7275{
e81a37f7
TT
7276 /* There should never be more than one longjmp-resume breakpoint per
7277 thread, so we should never be setting a new
611c83ae 7278 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7279 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7280
7281 if (debug_infrun)
7282 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7283 "infrun: inserting longjmp-resume breakpoint at %s\n",
7284 paddress (gdbarch, pc));
611c83ae 7285
e81a37f7 7286 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7287 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7288}
7289
186c406b
TT
7290/* Insert an exception resume breakpoint. TP is the thread throwing
7291 the exception. The block B is the block of the unwinder debug hook
7292 function. FRAME is the frame corresponding to the call to this
7293 function. SYM is the symbol of the function argument holding the
7294 target PC of the exception. */
7295
7296static void
7297insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7298 const struct block *b,
186c406b
TT
7299 struct frame_info *frame,
7300 struct symbol *sym)
7301{
492d29ea 7302 TRY
186c406b 7303 {
63e43d3a 7304 struct block_symbol vsym;
186c406b
TT
7305 struct value *value;
7306 CORE_ADDR handler;
7307 struct breakpoint *bp;
7308
63e43d3a
PMR
7309 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7310 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7311 /* If the value was optimized out, revert to the old behavior. */
7312 if (! value_optimized_out (value))
7313 {
7314 handler = value_as_address (value);
7315
7316 if (debug_infrun)
7317 fprintf_unfiltered (gdb_stdlog,
7318 "infrun: exception resume at %lx\n",
7319 (unsigned long) handler);
7320
7321 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7322 handler, bp_exception_resume);
c70a6932
JK
7323
7324 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7325 frame = NULL;
7326
186c406b
TT
7327 bp->thread = tp->num;
7328 inferior_thread ()->control.exception_resume_breakpoint = bp;
7329 }
7330 }
492d29ea
PA
7331 CATCH (e, RETURN_MASK_ERROR)
7332 {
7333 /* We want to ignore errors here. */
7334 }
7335 END_CATCH
186c406b
TT
7336}
7337
28106bc2
SDJ
7338/* A helper for check_exception_resume that sets an
7339 exception-breakpoint based on a SystemTap probe. */
7340
7341static void
7342insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7343 const struct bound_probe *probe,
28106bc2
SDJ
7344 struct frame_info *frame)
7345{
7346 struct value *arg_value;
7347 CORE_ADDR handler;
7348 struct breakpoint *bp;
7349
7350 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7351 if (!arg_value)
7352 return;
7353
7354 handler = value_as_address (arg_value);
7355
7356 if (debug_infrun)
7357 fprintf_unfiltered (gdb_stdlog,
7358 "infrun: exception resume at %s\n",
6bac7473 7359 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7360 handler));
7361
7362 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7363 handler, bp_exception_resume);
7364 bp->thread = tp->num;
7365 inferior_thread ()->control.exception_resume_breakpoint = bp;
7366}
7367
186c406b
TT
7368/* This is called when an exception has been intercepted. Check to
7369 see whether the exception's destination is of interest, and if so,
7370 set an exception resume breakpoint there. */
7371
7372static void
7373check_exception_resume (struct execution_control_state *ecs,
28106bc2 7374 struct frame_info *frame)
186c406b 7375{
729662a5 7376 struct bound_probe probe;
28106bc2
SDJ
7377 struct symbol *func;
7378
7379 /* First see if this exception unwinding breakpoint was set via a
7380 SystemTap probe point. If so, the probe has two arguments: the
7381 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7382 set a breakpoint there. */
6bac7473 7383 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7384 if (probe.probe)
28106bc2 7385 {
729662a5 7386 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7387 return;
7388 }
7389
7390 func = get_frame_function (frame);
7391 if (!func)
7392 return;
186c406b 7393
492d29ea 7394 TRY
186c406b 7395 {
3977b71f 7396 const struct block *b;
8157b174 7397 struct block_iterator iter;
186c406b
TT
7398 struct symbol *sym;
7399 int argno = 0;
7400
7401 /* The exception breakpoint is a thread-specific breakpoint on
7402 the unwinder's debug hook, declared as:
7403
7404 void _Unwind_DebugHook (void *cfa, void *handler);
7405
7406 The CFA argument indicates the frame to which control is
7407 about to be transferred. HANDLER is the destination PC.
7408
7409 We ignore the CFA and set a temporary breakpoint at HANDLER.
7410 This is not extremely efficient but it avoids issues in gdb
7411 with computing the DWARF CFA, and it also works even in weird
7412 cases such as throwing an exception from inside a signal
7413 handler. */
7414
7415 b = SYMBOL_BLOCK_VALUE (func);
7416 ALL_BLOCK_SYMBOLS (b, iter, sym)
7417 {
7418 if (!SYMBOL_IS_ARGUMENT (sym))
7419 continue;
7420
7421 if (argno == 0)
7422 ++argno;
7423 else
7424 {
7425 insert_exception_resume_breakpoint (ecs->event_thread,
7426 b, frame, sym);
7427 break;
7428 }
7429 }
7430 }
492d29ea
PA
7431 CATCH (e, RETURN_MASK_ERROR)
7432 {
7433 }
7434 END_CATCH
186c406b
TT
7435}
7436
104c1213 7437static void
22bcd14b 7438stop_waiting (struct execution_control_state *ecs)
104c1213 7439{
527159b7 7440 if (debug_infrun)
22bcd14b 7441 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7442
31e77af2
PA
7443 clear_step_over_info ();
7444
cd0fc7c3
SS
7445 /* Let callers know we don't want to wait for the inferior anymore. */
7446 ecs->wait_some_more = 0;
fbea99ea
PA
7447
7448 /* If all-stop, but the target is always in non-stop mode, stop all
7449 threads now that we're presenting the stop to the user. */
7450 if (!non_stop && target_is_non_stop_p ())
7451 stop_all_threads ();
cd0fc7c3
SS
7452}
7453
4d9d9d04
PA
7454/* Like keep_going, but passes the signal to the inferior, even if the
7455 signal is set to nopass. */
d4f3574e
SS
7456
7457static void
4d9d9d04 7458keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7459{
c4dbc9af
PA
7460 /* Make sure normal_stop is called if we get a QUIT handled before
7461 reaching resume. */
7462 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7463
4d9d9d04 7464 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7465 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7466
d4f3574e 7467 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7468 ecs->event_thread->prev_pc
7469 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7470
4d9d9d04 7471 if (ecs->event_thread->control.trap_expected)
d4f3574e 7472 {
4d9d9d04
PA
7473 struct thread_info *tp = ecs->event_thread;
7474
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: %s has trap_expected set, "
7478 "resuming to collect trap\n",
7479 target_pid_to_str (tp->ptid));
7480
a9ba6bae
PA
7481 /* We haven't yet gotten our trap, and either: intercepted a
7482 non-signal event (e.g., a fork); or took a signal which we
7483 are supposed to pass through to the inferior. Simply
7484 continue. */
c4dbc9af 7485 discard_cleanups (old_cleanups);
64ce06e4 7486 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7487 }
372316f1
PA
7488 else if (step_over_info_valid_p ())
7489 {
7490 /* Another thread is stepping over a breakpoint in-line. If
7491 this thread needs a step-over too, queue the request. In
7492 either case, this resume must be deferred for later. */
7493 struct thread_info *tp = ecs->event_thread;
7494
7495 if (ecs->hit_singlestep_breakpoint
7496 || thread_still_needs_step_over (tp))
7497 {
7498 if (debug_infrun)
7499 fprintf_unfiltered (gdb_stdlog,
7500 "infrun: step-over already in progress: "
7501 "step-over for %s deferred\n",
7502 target_pid_to_str (tp->ptid));
7503 thread_step_over_chain_enqueue (tp);
7504 }
7505 else
7506 {
7507 if (debug_infrun)
7508 fprintf_unfiltered (gdb_stdlog,
7509 "infrun: step-over in progress: "
7510 "resume of %s deferred\n",
7511 target_pid_to_str (tp->ptid));
7512 }
7513
7514 discard_cleanups (old_cleanups);
7515 }
d4f3574e
SS
7516 else
7517 {
31e77af2 7518 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7519 int remove_bp;
7520 int remove_wps;
6c4cfb24 7521 enum step_over_what step_what;
31e77af2 7522
d4f3574e 7523 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7524 anyway (if we got a signal, the user asked it be passed to
7525 the child)
7526 -- or --
7527 We got our expected trap, but decided we should resume from
7528 it.
d4f3574e 7529
a9ba6bae 7530 We're going to run this baby now!
d4f3574e 7531
c36b740a
VP
7532 Note that insert_breakpoints won't try to re-insert
7533 already inserted breakpoints. Therefore, we don't
7534 care if breakpoints were already inserted, or not. */
a9ba6bae 7535
31e77af2
PA
7536 /* If we need to step over a breakpoint, and we're not using
7537 displaced stepping to do so, insert all breakpoints
7538 (watchpoints, etc.) but the one we're stepping over, step one
7539 instruction, and then re-insert the breakpoint when that step
7540 is finished. */
963f9c80 7541
6c4cfb24
PA
7542 step_what = thread_still_needs_step_over (ecs->event_thread);
7543
963f9c80 7544 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7545 || (step_what & STEP_OVER_BREAKPOINT));
7546 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7547
cb71640d
PA
7548 /* We can't use displaced stepping if we need to step past a
7549 watchpoint. The instruction copied to the scratch pad would
7550 still trigger the watchpoint. */
7551 if (remove_bp
3fc8eb30 7552 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7553 {
31e77af2 7554 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7555 regcache_read_pc (regcache), remove_wps);
45e8c884 7556 }
963f9c80
PA
7557 else if (remove_wps)
7558 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7559
7560 /* If we now need to do an in-line step-over, we need to stop
7561 all other threads. Note this must be done before
7562 insert_breakpoints below, because that removes the breakpoint
7563 we're about to step over, otherwise other threads could miss
7564 it. */
fbea99ea 7565 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7566 stop_all_threads ();
abbb1732 7567
31e77af2 7568 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7569 TRY
31e77af2
PA
7570 {
7571 insert_breakpoints ();
7572 }
492d29ea 7573 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7574 {
7575 exception_print (gdb_stderr, e);
22bcd14b 7576 stop_waiting (ecs);
de1fe8c8 7577 discard_cleanups (old_cleanups);
31e77af2 7578 return;
d4f3574e 7579 }
492d29ea 7580 END_CATCH
d4f3574e 7581
963f9c80 7582 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7583
c4dbc9af 7584 discard_cleanups (old_cleanups);
64ce06e4 7585 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7586 }
7587
488f131b 7588 prepare_to_wait (ecs);
d4f3574e
SS
7589}
7590
4d9d9d04
PA
7591/* Called when we should continue running the inferior, because the
7592 current event doesn't cause a user visible stop. This does the
7593 resuming part; waiting for the next event is done elsewhere. */
7594
7595static void
7596keep_going (struct execution_control_state *ecs)
7597{
7598 if (ecs->event_thread->control.trap_expected
7599 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7600 ecs->event_thread->control.trap_expected = 0;
7601
7602 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7603 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7604 keep_going_pass_signal (ecs);
7605}
7606
104c1213
JM
7607/* This function normally comes after a resume, before
7608 handle_inferior_event exits. It takes care of any last bits of
7609 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7610
104c1213
JM
7611static void
7612prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7613{
527159b7 7614 if (debug_infrun)
8a9de0e4 7615 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7616
104c1213 7617 ecs->wait_some_more = 1;
0b333c5e
PA
7618
7619 if (!target_is_async_p ())
7620 mark_infrun_async_event_handler ();
c906108c 7621}
11cf8741 7622
fd664c91 7623/* We are done with the step range of a step/next/si/ni command.
b57bacec 7624 Called once for each n of a "step n" operation. */
fd664c91
PA
7625
7626static void
bdc36728 7627end_stepping_range (struct execution_control_state *ecs)
fd664c91 7628{
bdc36728 7629 ecs->event_thread->control.stop_step = 1;
bdc36728 7630 stop_waiting (ecs);
fd664c91
PA
7631}
7632
33d62d64
JK
7633/* Several print_*_reason functions to print why the inferior has stopped.
7634 We always print something when the inferior exits, or receives a signal.
7635 The rest of the cases are dealt with later on in normal_stop and
7636 print_it_typical. Ideally there should be a call to one of these
7637 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7638 stop_waiting is called.
33d62d64 7639
fd664c91
PA
7640 Note that we don't call these directly, instead we delegate that to
7641 the interpreters, through observers. Interpreters then call these
7642 with whatever uiout is right. */
33d62d64 7643
fd664c91
PA
7644void
7645print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7646{
fd664c91 7647 /* For CLI-like interpreters, print nothing. */
33d62d64 7648
fd664c91
PA
7649 if (ui_out_is_mi_like_p (uiout))
7650 {
7651 ui_out_field_string (uiout, "reason",
7652 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7653 }
7654}
33d62d64 7655
fd664c91
PA
7656void
7657print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7658{
33d62d64
JK
7659 annotate_signalled ();
7660 if (ui_out_is_mi_like_p (uiout))
7661 ui_out_field_string
7662 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7663 ui_out_text (uiout, "\nProgram terminated with signal ");
7664 annotate_signal_name ();
7665 ui_out_field_string (uiout, "signal-name",
2ea28649 7666 gdb_signal_to_name (siggnal));
33d62d64
JK
7667 annotate_signal_name_end ();
7668 ui_out_text (uiout, ", ");
7669 annotate_signal_string ();
7670 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7671 gdb_signal_to_string (siggnal));
33d62d64
JK
7672 annotate_signal_string_end ();
7673 ui_out_text (uiout, ".\n");
7674 ui_out_text (uiout, "The program no longer exists.\n");
7675}
7676
fd664c91
PA
7677void
7678print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7679{
fda326dd
TT
7680 struct inferior *inf = current_inferior ();
7681 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7682
33d62d64
JK
7683 annotate_exited (exitstatus);
7684 if (exitstatus)
7685 {
7686 if (ui_out_is_mi_like_p (uiout))
7687 ui_out_field_string (uiout, "reason",
7688 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7689 ui_out_text (uiout, "[Inferior ");
7690 ui_out_text (uiout, plongest (inf->num));
7691 ui_out_text (uiout, " (");
7692 ui_out_text (uiout, pidstr);
7693 ui_out_text (uiout, ") exited with code ");
33d62d64 7694 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7695 ui_out_text (uiout, "]\n");
33d62d64
JK
7696 }
7697 else
11cf8741 7698 {
9dc5e2a9 7699 if (ui_out_is_mi_like_p (uiout))
034dad6f 7700 ui_out_field_string
33d62d64 7701 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7702 ui_out_text (uiout, "[Inferior ");
7703 ui_out_text (uiout, plongest (inf->num));
7704 ui_out_text (uiout, " (");
7705 ui_out_text (uiout, pidstr);
7706 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7707 }
33d62d64
JK
7708}
7709
fd664c91
PA
7710void
7711print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7712{
7713 annotate_signal ();
7714
a493e3e2 7715 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7716 {
7717 struct thread_info *t = inferior_thread ();
7718
7719 ui_out_text (uiout, "\n[");
7720 ui_out_field_string (uiout, "thread-name",
7721 target_pid_to_str (t->ptid));
7722 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7723 ui_out_text (uiout, " stopped");
7724 }
7725 else
7726 {
7727 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7728 annotate_signal_name ();
33d62d64
JK
7729 if (ui_out_is_mi_like_p (uiout))
7730 ui_out_field_string
7731 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7732 ui_out_field_string (uiout, "signal-name",
2ea28649 7733 gdb_signal_to_name (siggnal));
8b93c638
JM
7734 annotate_signal_name_end ();
7735 ui_out_text (uiout, ", ");
7736 annotate_signal_string ();
488f131b 7737 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7738 gdb_signal_to_string (siggnal));
8b93c638 7739 annotate_signal_string_end ();
33d62d64
JK
7740 }
7741 ui_out_text (uiout, ".\n");
7742}
252fbfc8 7743
fd664c91
PA
7744void
7745print_no_history_reason (struct ui_out *uiout)
33d62d64 7746{
fd664c91 7747 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7748}
43ff13b4 7749
0c7e1a46
PA
7750/* Print current location without a level number, if we have changed
7751 functions or hit a breakpoint. Print source line if we have one.
7752 bpstat_print contains the logic deciding in detail what to print,
7753 based on the event(s) that just occurred. */
7754
243a9253
PA
7755static void
7756print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7757{
7758 int bpstat_ret;
f486487f 7759 enum print_what source_flag;
0c7e1a46
PA
7760 int do_frame_printing = 1;
7761 struct thread_info *tp = inferior_thread ();
7762
7763 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7764 switch (bpstat_ret)
7765 {
7766 case PRINT_UNKNOWN:
7767 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7768 should) carry around the function and does (or should) use
7769 that when doing a frame comparison. */
7770 if (tp->control.stop_step
7771 && frame_id_eq (tp->control.step_frame_id,
7772 get_frame_id (get_current_frame ()))
885eeb5b 7773 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7774 {
7775 /* Finished step, just print source line. */
7776 source_flag = SRC_LINE;
7777 }
7778 else
7779 {
7780 /* Print location and source line. */
7781 source_flag = SRC_AND_LOC;
7782 }
7783 break;
7784 case PRINT_SRC_AND_LOC:
7785 /* Print location and source line. */
7786 source_flag = SRC_AND_LOC;
7787 break;
7788 case PRINT_SRC_ONLY:
7789 source_flag = SRC_LINE;
7790 break;
7791 case PRINT_NOTHING:
7792 /* Something bogus. */
7793 source_flag = SRC_LINE;
7794 do_frame_printing = 0;
7795 break;
7796 default:
7797 internal_error (__FILE__, __LINE__, _("Unknown value."));
7798 }
7799
7800 /* The behavior of this routine with respect to the source
7801 flag is:
7802 SRC_LINE: Print only source line
7803 LOCATION: Print only location
7804 SRC_AND_LOC: Print location and source line. */
7805 if (do_frame_printing)
7806 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7807}
7808
7809/* Cleanup that restores a previous current uiout. */
7810
7811static void
7812restore_current_uiout_cleanup (void *arg)
7813{
7814 struct ui_out *saved_uiout = arg;
7815
7816 current_uiout = saved_uiout;
7817}
7818
7819/* See infrun.h. */
7820
7821void
7822print_stop_event (struct ui_out *uiout)
7823{
7824 struct cleanup *old_chain;
7825 struct target_waitstatus last;
7826 ptid_t last_ptid;
7827 struct thread_info *tp;
7828
7829 get_last_target_status (&last_ptid, &last);
7830
7831 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7832 current_uiout = uiout;
7833
7834 print_stop_location (&last);
0c7e1a46
PA
7835
7836 /* Display the auto-display expressions. */
7837 do_displays ();
243a9253
PA
7838
7839 do_cleanups (old_chain);
7840
7841 tp = inferior_thread ();
7842 if (tp->thread_fsm != NULL
7843 && thread_fsm_finished_p (tp->thread_fsm))
7844 {
7845 struct return_value_info *rv;
7846
7847 rv = thread_fsm_return_value (tp->thread_fsm);
7848 if (rv != NULL)
7849 print_return_value (uiout, rv);
7850 }
0c7e1a46
PA
7851}
7852
388a7084
PA
7853/* See infrun.h. */
7854
7855void
7856maybe_remove_breakpoints (void)
7857{
7858 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7859 {
7860 if (remove_breakpoints ())
7861 {
7862 target_terminal_ours_for_output ();
7863 printf_filtered (_("Cannot remove breakpoints because "
7864 "program is no longer writable.\nFurther "
7865 "execution is probably impossible.\n"));
7866 }
7867 }
7868}
7869
4c2f2a79
PA
7870/* The execution context that just caused a normal stop. */
7871
7872struct stop_context
7873{
7874 /* The stop ID. */
7875 ULONGEST stop_id;
c906108c 7876
4c2f2a79 7877 /* The event PTID. */
c906108c 7878
4c2f2a79
PA
7879 ptid_t ptid;
7880
7881 /* If stopp for a thread event, this is the thread that caused the
7882 stop. */
7883 struct thread_info *thread;
7884
7885 /* The inferior that caused the stop. */
7886 int inf_num;
7887};
7888
7889/* Returns a new stop context. If stopped for a thread event, this
7890 takes a strong reference to the thread. */
7891
7892static struct stop_context *
7893save_stop_context (void)
7894{
7895 struct stop_context *sc = xmalloc (sizeof (struct stop_context));
7896
7897 sc->stop_id = get_stop_id ();
7898 sc->ptid = inferior_ptid;
7899 sc->inf_num = current_inferior ()->num;
7900
7901 if (!ptid_equal (inferior_ptid, null_ptid))
7902 {
7903 /* Take a strong reference so that the thread can't be deleted
7904 yet. */
7905 sc->thread = inferior_thread ();
7906 sc->thread->refcount++;
7907 }
7908 else
7909 sc->thread = NULL;
7910
7911 return sc;
7912}
7913
7914/* Release a stop context previously created with save_stop_context.
7915 Releases the strong reference to the thread as well. */
7916
7917static void
7918release_stop_context_cleanup (void *arg)
7919{
7920 struct stop_context *sc = arg;
7921
7922 if (sc->thread != NULL)
7923 sc->thread->refcount--;
7924 xfree (sc);
7925}
7926
7927/* Return true if the current context no longer matches the saved stop
7928 context. */
7929
7930static int
7931stop_context_changed (struct stop_context *prev)
7932{
7933 if (!ptid_equal (prev->ptid, inferior_ptid))
7934 return 1;
7935 if (prev->inf_num != current_inferior ()->num)
7936 return 1;
7937 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7938 return 1;
7939 if (get_stop_id () != prev->stop_id)
7940 return 1;
7941 return 0;
7942}
7943
7944/* See infrun.h. */
7945
7946int
96baa820 7947normal_stop (void)
c906108c 7948{
73b65bb0
DJ
7949 struct target_waitstatus last;
7950 ptid_t last_ptid;
29f49a6a 7951 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7952 ptid_t pid_ptid;
73b65bb0
DJ
7953
7954 get_last_target_status (&last_ptid, &last);
7955
4c2f2a79
PA
7956 new_stop_id ();
7957
29f49a6a
PA
7958 /* If an exception is thrown from this point on, make sure to
7959 propagate GDB's knowledge of the executing state to the
7960 frontend/user running state. A QUIT is an easy exception to see
7961 here, so do this before any filtered output. */
c35b1492
PA
7962 if (!non_stop)
7963 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7964 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7965 || last.kind == TARGET_WAITKIND_EXITED)
7966 {
7967 /* On some targets, we may still have live threads in the
7968 inferior when we get a process exit event. E.g., for
7969 "checkpoint", when the current checkpoint/fork exits,
7970 linux-fork.c automatically switches to another fork from
7971 within target_mourn_inferior. */
7972 if (!ptid_equal (inferior_ptid, null_ptid))
7973 {
7974 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7975 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
7976 }
7977 }
7978 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 7979 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 7980
b57bacec
PA
7981 /* As we're presenting a stop, and potentially removing breakpoints,
7982 update the thread list so we can tell whether there are threads
7983 running on the target. With target remote, for example, we can
7984 only learn about new threads when we explicitly update the thread
7985 list. Do this before notifying the interpreters about signal
7986 stops, end of stepping ranges, etc., so that the "new thread"
7987 output is emitted before e.g., "Program received signal FOO",
7988 instead of after. */
7989 update_thread_list ();
7990
7991 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7992 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
7993
c906108c
SS
7994 /* As with the notification of thread events, we want to delay
7995 notifying the user that we've switched thread context until
7996 the inferior actually stops.
7997
73b65bb0
DJ
7998 There's no point in saying anything if the inferior has exited.
7999 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8000 "received a signal".
8001
8002 Also skip saying anything in non-stop mode. In that mode, as we
8003 don't want GDB to switch threads behind the user's back, to avoid
8004 races where the user is typing a command to apply to thread x,
8005 but GDB switches to thread y before the user finishes entering
8006 the command, fetch_inferior_event installs a cleanup to restore
8007 the current thread back to the thread the user had selected right
8008 after this event is handled, so we're not really switching, only
8009 informing of a stop. */
4f8d22e3
PA
8010 if (!non_stop
8011 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8012 && target_has_execution
8013 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8014 && last.kind != TARGET_WAITKIND_EXITED
8015 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8016 {
8017 target_terminal_ours_for_output ();
a3f17187 8018 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8019 target_pid_to_str (inferior_ptid));
b8fa951a 8020 annotate_thread_changed ();
39f77062 8021 previous_inferior_ptid = inferior_ptid;
c906108c 8022 }
c906108c 8023
0e5bf2a8
PA
8024 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8025 {
8026 gdb_assert (sync_execution || !target_can_async_p ());
8027
8028 target_terminal_ours_for_output ();
8029 printf_filtered (_("No unwaited-for children left.\n"));
8030 }
8031
b57bacec 8032 /* Note: this depends on the update_thread_list call above. */
388a7084 8033 maybe_remove_breakpoints ();
c906108c 8034
c906108c
SS
8035 /* If an auto-display called a function and that got a signal,
8036 delete that auto-display to avoid an infinite recursion. */
8037
8038 if (stopped_by_random_signal)
8039 disable_current_display ();
8040
c906108c 8041 target_terminal_ours ();
0f641c01 8042 async_enable_stdin ();
c906108c 8043
388a7084
PA
8044 /* Let the user/frontend see the threads as stopped. */
8045 do_cleanups (old_chain);
8046
8047 /* Select innermost stack frame - i.e., current frame is frame 0,
8048 and current location is based on that. Handle the case where the
8049 dummy call is returning after being stopped. E.g. the dummy call
8050 previously hit a breakpoint. (If the dummy call returns
8051 normally, we won't reach here.) Do this before the stop hook is
8052 run, so that it doesn't get to see the temporary dummy frame,
8053 which is not where we'll present the stop. */
8054 if (has_stack_frames ())
8055 {
8056 if (stop_stack_dummy == STOP_STACK_DUMMY)
8057 {
8058 /* Pop the empty frame that contains the stack dummy. This
8059 also restores inferior state prior to the call (struct
8060 infcall_suspend_state). */
8061 struct frame_info *frame = get_current_frame ();
8062
8063 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8064 frame_pop (frame);
8065 /* frame_pop calls reinit_frame_cache as the last thing it
8066 does which means there's now no selected frame. */
8067 }
8068
8069 select_frame (get_current_frame ());
8070
8071 /* Set the current source location. */
8072 set_current_sal_from_frame (get_current_frame ());
8073 }
dd7e2d2b
PA
8074
8075 /* Look up the hook_stop and run it (CLI internally handles problem
8076 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8077 if (stop_command != NULL)
8078 {
8079 struct stop_context *saved_context = save_stop_context ();
8080 struct cleanup *old_chain
8081 = make_cleanup (release_stop_context_cleanup, saved_context);
8082
8083 catch_errors (hook_stop_stub, stop_command,
8084 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8085
8086 /* If the stop hook resumes the target, then there's no point in
8087 trying to notify about the previous stop; its context is
8088 gone. Likewise if the command switches thread or inferior --
8089 the observers would print a stop for the wrong
8090 thread/inferior. */
8091 if (stop_context_changed (saved_context))
8092 {
8093 do_cleanups (old_chain);
8094 return 1;
8095 }
8096 do_cleanups (old_chain);
8097 }
dd7e2d2b 8098
388a7084
PA
8099 /* Notify observers about the stop. This is where the interpreters
8100 print the stop event. */
8101 if (!ptid_equal (inferior_ptid, null_ptid))
8102 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8103 stop_print_frame);
8104 else
8105 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8106
243a9253
PA
8107 annotate_stopped ();
8108
48844aa6
PA
8109 if (target_has_execution)
8110 {
8111 if (last.kind != TARGET_WAITKIND_SIGNALLED
8112 && last.kind != TARGET_WAITKIND_EXITED)
8113 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8114 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8115 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8116 }
6c95b8df
PA
8117
8118 /* Try to get rid of automatically added inferiors that are no
8119 longer needed. Keeping those around slows down things linearly.
8120 Note that this never removes the current inferior. */
8121 prune_inferiors ();
4c2f2a79
PA
8122
8123 return 0;
c906108c
SS
8124}
8125
8126static int
96baa820 8127hook_stop_stub (void *cmd)
c906108c 8128{
5913bcb0 8129 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8130 return (0);
8131}
8132\f
c5aa993b 8133int
96baa820 8134signal_stop_state (int signo)
c906108c 8135{
d6b48e9c 8136 return signal_stop[signo];
c906108c
SS
8137}
8138
c5aa993b 8139int
96baa820 8140signal_print_state (int signo)
c906108c
SS
8141{
8142 return signal_print[signo];
8143}
8144
c5aa993b 8145int
96baa820 8146signal_pass_state (int signo)
c906108c
SS
8147{
8148 return signal_program[signo];
8149}
8150
2455069d
UW
8151static void
8152signal_cache_update (int signo)
8153{
8154 if (signo == -1)
8155 {
a493e3e2 8156 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8157 signal_cache_update (signo);
8158
8159 return;
8160 }
8161
8162 signal_pass[signo] = (signal_stop[signo] == 0
8163 && signal_print[signo] == 0
ab04a2af
TT
8164 && signal_program[signo] == 1
8165 && signal_catch[signo] == 0);
2455069d
UW
8166}
8167
488f131b 8168int
7bda5e4a 8169signal_stop_update (int signo, int state)
d4f3574e
SS
8170{
8171 int ret = signal_stop[signo];
abbb1732 8172
d4f3574e 8173 signal_stop[signo] = state;
2455069d 8174 signal_cache_update (signo);
d4f3574e
SS
8175 return ret;
8176}
8177
488f131b 8178int
7bda5e4a 8179signal_print_update (int signo, int state)
d4f3574e
SS
8180{
8181 int ret = signal_print[signo];
abbb1732 8182
d4f3574e 8183 signal_print[signo] = state;
2455069d 8184 signal_cache_update (signo);
d4f3574e
SS
8185 return ret;
8186}
8187
488f131b 8188int
7bda5e4a 8189signal_pass_update (int signo, int state)
d4f3574e
SS
8190{
8191 int ret = signal_program[signo];
abbb1732 8192
d4f3574e 8193 signal_program[signo] = state;
2455069d 8194 signal_cache_update (signo);
d4f3574e
SS
8195 return ret;
8196}
8197
ab04a2af
TT
8198/* Update the global 'signal_catch' from INFO and notify the
8199 target. */
8200
8201void
8202signal_catch_update (const unsigned int *info)
8203{
8204 int i;
8205
8206 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8207 signal_catch[i] = info[i] > 0;
8208 signal_cache_update (-1);
8209 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8210}
8211
c906108c 8212static void
96baa820 8213sig_print_header (void)
c906108c 8214{
3e43a32a
MS
8215 printf_filtered (_("Signal Stop\tPrint\tPass "
8216 "to program\tDescription\n"));
c906108c
SS
8217}
8218
8219static void
2ea28649 8220sig_print_info (enum gdb_signal oursig)
c906108c 8221{
2ea28649 8222 const char *name = gdb_signal_to_name (oursig);
c906108c 8223 int name_padding = 13 - strlen (name);
96baa820 8224
c906108c
SS
8225 if (name_padding <= 0)
8226 name_padding = 0;
8227
8228 printf_filtered ("%s", name);
488f131b 8229 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8230 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8231 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8232 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8233 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8234}
8235
8236/* Specify how various signals in the inferior should be handled. */
8237
8238static void
96baa820 8239handle_command (char *args, int from_tty)
c906108c
SS
8240{
8241 char **argv;
8242 int digits, wordlen;
8243 int sigfirst, signum, siglast;
2ea28649 8244 enum gdb_signal oursig;
c906108c
SS
8245 int allsigs;
8246 int nsigs;
8247 unsigned char *sigs;
8248 struct cleanup *old_chain;
8249
8250 if (args == NULL)
8251 {
e2e0b3e5 8252 error_no_arg (_("signal to handle"));
c906108c
SS
8253 }
8254
1777feb0 8255 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8256
a493e3e2 8257 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8258 sigs = (unsigned char *) alloca (nsigs);
8259 memset (sigs, 0, nsigs);
8260
1777feb0 8261 /* Break the command line up into args. */
c906108c 8262
d1a41061 8263 argv = gdb_buildargv (args);
7a292a7a 8264 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8265
8266 /* Walk through the args, looking for signal oursigs, signal names, and
8267 actions. Signal numbers and signal names may be interspersed with
8268 actions, with the actions being performed for all signals cumulatively
1777feb0 8269 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8270
8271 while (*argv != NULL)
8272 {
8273 wordlen = strlen (*argv);
8274 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8275 {;
8276 }
8277 allsigs = 0;
8278 sigfirst = siglast = -1;
8279
8280 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8281 {
8282 /* Apply action to all signals except those used by the
1777feb0 8283 debugger. Silently skip those. */
c906108c
SS
8284 allsigs = 1;
8285 sigfirst = 0;
8286 siglast = nsigs - 1;
8287 }
8288 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8289 {
8290 SET_SIGS (nsigs, sigs, signal_stop);
8291 SET_SIGS (nsigs, sigs, signal_print);
8292 }
8293 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8294 {
8295 UNSET_SIGS (nsigs, sigs, signal_program);
8296 }
8297 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8298 {
8299 SET_SIGS (nsigs, sigs, signal_print);
8300 }
8301 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8302 {
8303 SET_SIGS (nsigs, sigs, signal_program);
8304 }
8305 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8306 {
8307 UNSET_SIGS (nsigs, sigs, signal_stop);
8308 }
8309 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8310 {
8311 SET_SIGS (nsigs, sigs, signal_program);
8312 }
8313 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8314 {
8315 UNSET_SIGS (nsigs, sigs, signal_print);
8316 UNSET_SIGS (nsigs, sigs, signal_stop);
8317 }
8318 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8319 {
8320 UNSET_SIGS (nsigs, sigs, signal_program);
8321 }
8322 else if (digits > 0)
8323 {
8324 /* It is numeric. The numeric signal refers to our own
8325 internal signal numbering from target.h, not to host/target
8326 signal number. This is a feature; users really should be
8327 using symbolic names anyway, and the common ones like
8328 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8329
8330 sigfirst = siglast = (int)
2ea28649 8331 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8332 if ((*argv)[digits] == '-')
8333 {
8334 siglast = (int)
2ea28649 8335 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8336 }
8337 if (sigfirst > siglast)
8338 {
1777feb0 8339 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8340 signum = sigfirst;
8341 sigfirst = siglast;
8342 siglast = signum;
8343 }
8344 }
8345 else
8346 {
2ea28649 8347 oursig = gdb_signal_from_name (*argv);
a493e3e2 8348 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8349 {
8350 sigfirst = siglast = (int) oursig;
8351 }
8352 else
8353 {
8354 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8355 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8356 }
8357 }
8358
8359 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8360 which signals to apply actions to. */
c906108c
SS
8361
8362 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8363 {
2ea28649 8364 switch ((enum gdb_signal) signum)
c906108c 8365 {
a493e3e2
PA
8366 case GDB_SIGNAL_TRAP:
8367 case GDB_SIGNAL_INT:
c906108c
SS
8368 if (!allsigs && !sigs[signum])
8369 {
9e2f0ad4 8370 if (query (_("%s is used by the debugger.\n\
3e43a32a 8371Are you sure you want to change it? "),
2ea28649 8372 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8373 {
8374 sigs[signum] = 1;
8375 }
8376 else
8377 {
a3f17187 8378 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8379 gdb_flush (gdb_stdout);
8380 }
8381 }
8382 break;
a493e3e2
PA
8383 case GDB_SIGNAL_0:
8384 case GDB_SIGNAL_DEFAULT:
8385 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8386 /* Make sure that "all" doesn't print these. */
8387 break;
8388 default:
8389 sigs[signum] = 1;
8390 break;
8391 }
8392 }
8393
8394 argv++;
8395 }
8396
3a031f65
PA
8397 for (signum = 0; signum < nsigs; signum++)
8398 if (sigs[signum])
8399 {
2455069d 8400 signal_cache_update (-1);
a493e3e2
PA
8401 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8402 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8403
3a031f65
PA
8404 if (from_tty)
8405 {
8406 /* Show the results. */
8407 sig_print_header ();
8408 for (; signum < nsigs; signum++)
8409 if (sigs[signum])
aead7601 8410 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8411 }
8412
8413 break;
8414 }
c906108c
SS
8415
8416 do_cleanups (old_chain);
8417}
8418
de0bea00
MF
8419/* Complete the "handle" command. */
8420
8421static VEC (char_ptr) *
8422handle_completer (struct cmd_list_element *ignore,
6f937416 8423 const char *text, const char *word)
de0bea00
MF
8424{
8425 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8426 static const char * const keywords[] =
8427 {
8428 "all",
8429 "stop",
8430 "ignore",
8431 "print",
8432 "pass",
8433 "nostop",
8434 "noignore",
8435 "noprint",
8436 "nopass",
8437 NULL,
8438 };
8439
8440 vec_signals = signal_completer (ignore, text, word);
8441 vec_keywords = complete_on_enum (keywords, word, word);
8442
8443 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8444 VEC_free (char_ptr, vec_signals);
8445 VEC_free (char_ptr, vec_keywords);
8446 return return_val;
8447}
8448
2ea28649
PA
8449enum gdb_signal
8450gdb_signal_from_command (int num)
ed01b82c
PA
8451{
8452 if (num >= 1 && num <= 15)
2ea28649 8453 return (enum gdb_signal) num;
ed01b82c
PA
8454 error (_("Only signals 1-15 are valid as numeric signals.\n\
8455Use \"info signals\" for a list of symbolic signals."));
8456}
8457
c906108c
SS
8458/* Print current contents of the tables set by the handle command.
8459 It is possible we should just be printing signals actually used
8460 by the current target (but for things to work right when switching
8461 targets, all signals should be in the signal tables). */
8462
8463static void
96baa820 8464signals_info (char *signum_exp, int from_tty)
c906108c 8465{
2ea28649 8466 enum gdb_signal oursig;
abbb1732 8467
c906108c
SS
8468 sig_print_header ();
8469
8470 if (signum_exp)
8471 {
8472 /* First see if this is a symbol name. */
2ea28649 8473 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8474 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8475 {
8476 /* No, try numeric. */
8477 oursig =
2ea28649 8478 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8479 }
8480 sig_print_info (oursig);
8481 return;
8482 }
8483
8484 printf_filtered ("\n");
8485 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8486 for (oursig = GDB_SIGNAL_FIRST;
8487 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8488 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8489 {
8490 QUIT;
8491
a493e3e2
PA
8492 if (oursig != GDB_SIGNAL_UNKNOWN
8493 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8494 sig_print_info (oursig);
8495 }
8496
3e43a32a
MS
8497 printf_filtered (_("\nUse the \"handle\" command "
8498 "to change these tables.\n"));
c906108c 8499}
4aa995e1 8500
c709acd1
PA
8501/* Check if it makes sense to read $_siginfo from the current thread
8502 at this point. If not, throw an error. */
8503
8504static void
8505validate_siginfo_access (void)
8506{
8507 /* No current inferior, no siginfo. */
8508 if (ptid_equal (inferior_ptid, null_ptid))
8509 error (_("No thread selected."));
8510
8511 /* Don't try to read from a dead thread. */
8512 if (is_exited (inferior_ptid))
8513 error (_("The current thread has terminated"));
8514
8515 /* ... or from a spinning thread. */
8516 if (is_running (inferior_ptid))
8517 error (_("Selected thread is running."));
8518}
8519
4aa995e1
PA
8520/* The $_siginfo convenience variable is a bit special. We don't know
8521 for sure the type of the value until we actually have a chance to
7a9dd1b2 8522 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8523 also dependent on which thread you have selected.
8524
8525 1. making $_siginfo be an internalvar that creates a new value on
8526 access.
8527
8528 2. making the value of $_siginfo be an lval_computed value. */
8529
8530/* This function implements the lval_computed support for reading a
8531 $_siginfo value. */
8532
8533static void
8534siginfo_value_read (struct value *v)
8535{
8536 LONGEST transferred;
8537
c709acd1
PA
8538 validate_siginfo_access ();
8539
4aa995e1
PA
8540 transferred =
8541 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8542 NULL,
8543 value_contents_all_raw (v),
8544 value_offset (v),
8545 TYPE_LENGTH (value_type (v)));
8546
8547 if (transferred != TYPE_LENGTH (value_type (v)))
8548 error (_("Unable to read siginfo"));
8549}
8550
8551/* This function implements the lval_computed support for writing a
8552 $_siginfo value. */
8553
8554static void
8555siginfo_value_write (struct value *v, struct value *fromval)
8556{
8557 LONGEST transferred;
8558
c709acd1
PA
8559 validate_siginfo_access ();
8560
4aa995e1
PA
8561 transferred = target_write (&current_target,
8562 TARGET_OBJECT_SIGNAL_INFO,
8563 NULL,
8564 value_contents_all_raw (fromval),
8565 value_offset (v),
8566 TYPE_LENGTH (value_type (fromval)));
8567
8568 if (transferred != TYPE_LENGTH (value_type (fromval)))
8569 error (_("Unable to write siginfo"));
8570}
8571
c8f2448a 8572static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8573 {
8574 siginfo_value_read,
8575 siginfo_value_write
8576 };
8577
8578/* Return a new value with the correct type for the siginfo object of
78267919
UW
8579 the current thread using architecture GDBARCH. Return a void value
8580 if there's no object available. */
4aa995e1 8581
2c0b251b 8582static struct value *
22d2b532
SDJ
8583siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8584 void *ignore)
4aa995e1 8585{
4aa995e1 8586 if (target_has_stack
78267919
UW
8587 && !ptid_equal (inferior_ptid, null_ptid)
8588 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8589 {
78267919 8590 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8591
78267919 8592 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8593 }
8594
78267919 8595 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8596}
8597
c906108c 8598\f
16c381f0
JK
8599/* infcall_suspend_state contains state about the program itself like its
8600 registers and any signal it received when it last stopped.
8601 This state must be restored regardless of how the inferior function call
8602 ends (either successfully, or after it hits a breakpoint or signal)
8603 if the program is to properly continue where it left off. */
8604
8605struct infcall_suspend_state
7a292a7a 8606{
16c381f0 8607 struct thread_suspend_state thread_suspend;
16c381f0
JK
8608
8609 /* Other fields: */
7a292a7a 8610 CORE_ADDR stop_pc;
b89667eb 8611 struct regcache *registers;
1736ad11 8612
35515841 8613 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8614 struct gdbarch *siginfo_gdbarch;
8615
8616 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8617 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8618 content would be invalid. */
8619 gdb_byte *siginfo_data;
b89667eb
DE
8620};
8621
16c381f0
JK
8622struct infcall_suspend_state *
8623save_infcall_suspend_state (void)
b89667eb 8624{
16c381f0 8625 struct infcall_suspend_state *inf_state;
b89667eb 8626 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8627 struct regcache *regcache = get_current_regcache ();
8628 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8629 gdb_byte *siginfo_data = NULL;
8630
8631 if (gdbarch_get_siginfo_type_p (gdbarch))
8632 {
8633 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8634 size_t len = TYPE_LENGTH (type);
8635 struct cleanup *back_to;
8636
8637 siginfo_data = xmalloc (len);
8638 back_to = make_cleanup (xfree, siginfo_data);
8639
8640 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8641 siginfo_data, 0, len) == len)
8642 discard_cleanups (back_to);
8643 else
8644 {
8645 /* Errors ignored. */
8646 do_cleanups (back_to);
8647 siginfo_data = NULL;
8648 }
8649 }
8650
41bf6aca 8651 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8652
8653 if (siginfo_data)
8654 {
8655 inf_state->siginfo_gdbarch = gdbarch;
8656 inf_state->siginfo_data = siginfo_data;
8657 }
b89667eb 8658
16c381f0 8659 inf_state->thread_suspend = tp->suspend;
16c381f0 8660
35515841 8661 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8662 GDB_SIGNAL_0 anyway. */
8663 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8664
b89667eb
DE
8665 inf_state->stop_pc = stop_pc;
8666
1736ad11 8667 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8668
8669 return inf_state;
8670}
8671
8672/* Restore inferior session state to INF_STATE. */
8673
8674void
16c381f0 8675restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8676{
8677 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8678 struct regcache *regcache = get_current_regcache ();
8679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8680
16c381f0 8681 tp->suspend = inf_state->thread_suspend;
16c381f0 8682
b89667eb
DE
8683 stop_pc = inf_state->stop_pc;
8684
1736ad11
JK
8685 if (inf_state->siginfo_gdbarch == gdbarch)
8686 {
8687 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8688
8689 /* Errors ignored. */
8690 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8691 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8692 }
8693
b89667eb
DE
8694 /* The inferior can be gone if the user types "print exit(0)"
8695 (and perhaps other times). */
8696 if (target_has_execution)
8697 /* NB: The register write goes through to the target. */
1736ad11 8698 regcache_cpy (regcache, inf_state->registers);
803b5f95 8699
16c381f0 8700 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8701}
8702
8703static void
16c381f0 8704do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8705{
16c381f0 8706 restore_infcall_suspend_state (state);
b89667eb
DE
8707}
8708
8709struct cleanup *
16c381f0
JK
8710make_cleanup_restore_infcall_suspend_state
8711 (struct infcall_suspend_state *inf_state)
b89667eb 8712{
16c381f0 8713 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8714}
8715
8716void
16c381f0 8717discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8718{
8719 regcache_xfree (inf_state->registers);
803b5f95 8720 xfree (inf_state->siginfo_data);
b89667eb
DE
8721 xfree (inf_state);
8722}
8723
8724struct regcache *
16c381f0 8725get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8726{
8727 return inf_state->registers;
8728}
8729
16c381f0
JK
8730/* infcall_control_state contains state regarding gdb's control of the
8731 inferior itself like stepping control. It also contains session state like
8732 the user's currently selected frame. */
b89667eb 8733
16c381f0 8734struct infcall_control_state
b89667eb 8735{
16c381f0
JK
8736 struct thread_control_state thread_control;
8737 struct inferior_control_state inferior_control;
d82142e2
JK
8738
8739 /* Other fields: */
8740 enum stop_stack_kind stop_stack_dummy;
8741 int stopped_by_random_signal;
7a292a7a 8742 int stop_after_trap;
7a292a7a 8743
b89667eb 8744 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8745 struct frame_id selected_frame_id;
7a292a7a
SS
8746};
8747
c906108c 8748/* Save all of the information associated with the inferior<==>gdb
b89667eb 8749 connection. */
c906108c 8750
16c381f0
JK
8751struct infcall_control_state *
8752save_infcall_control_state (void)
c906108c 8753{
8d749320
SM
8754 struct infcall_control_state *inf_status =
8755 XNEW (struct infcall_control_state);
4e1c45ea 8756 struct thread_info *tp = inferior_thread ();
d6b48e9c 8757 struct inferior *inf = current_inferior ();
7a292a7a 8758
16c381f0
JK
8759 inf_status->thread_control = tp->control;
8760 inf_status->inferior_control = inf->control;
d82142e2 8761
8358c15c 8762 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8763 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8764
16c381f0
JK
8765 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8766 chain. If caller's caller is walking the chain, they'll be happier if we
8767 hand them back the original chain when restore_infcall_control_state is
8768 called. */
8769 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8770
8771 /* Other fields: */
8772 inf_status->stop_stack_dummy = stop_stack_dummy;
8773 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8774 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8775
206415a3 8776 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8777
7a292a7a 8778 return inf_status;
c906108c
SS
8779}
8780
c906108c 8781static int
96baa820 8782restore_selected_frame (void *args)
c906108c 8783{
488f131b 8784 struct frame_id *fid = (struct frame_id *) args;
c906108c 8785 struct frame_info *frame;
c906108c 8786
101dcfbe 8787 frame = frame_find_by_id (*fid);
c906108c 8788
aa0cd9c1
AC
8789 /* If inf_status->selected_frame_id is NULL, there was no previously
8790 selected frame. */
101dcfbe 8791 if (frame == NULL)
c906108c 8792 {
8a3fe4f8 8793 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8794 return 0;
8795 }
8796
0f7d239c 8797 select_frame (frame);
c906108c
SS
8798
8799 return (1);
8800}
8801
b89667eb
DE
8802/* Restore inferior session state to INF_STATUS. */
8803
c906108c 8804void
16c381f0 8805restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8806{
4e1c45ea 8807 struct thread_info *tp = inferior_thread ();
d6b48e9c 8808 struct inferior *inf = current_inferior ();
4e1c45ea 8809
8358c15c
JK
8810 if (tp->control.step_resume_breakpoint)
8811 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8812
5b79abe7
TT
8813 if (tp->control.exception_resume_breakpoint)
8814 tp->control.exception_resume_breakpoint->disposition
8815 = disp_del_at_next_stop;
8816
d82142e2 8817 /* Handle the bpstat_copy of the chain. */
16c381f0 8818 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8819
16c381f0
JK
8820 tp->control = inf_status->thread_control;
8821 inf->control = inf_status->inferior_control;
d82142e2
JK
8822
8823 /* Other fields: */
8824 stop_stack_dummy = inf_status->stop_stack_dummy;
8825 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8826 stop_after_trap = inf_status->stop_after_trap;
c906108c 8827
b89667eb 8828 if (target_has_stack)
c906108c 8829 {
c906108c 8830 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8831 walking the stack might encounter a garbage pointer and
8832 error() trying to dereference it. */
488f131b
JB
8833 if (catch_errors
8834 (restore_selected_frame, &inf_status->selected_frame_id,
8835 "Unable to restore previously selected frame:\n",
8836 RETURN_MASK_ERROR) == 0)
c906108c
SS
8837 /* Error in restoring the selected frame. Select the innermost
8838 frame. */
0f7d239c 8839 select_frame (get_current_frame ());
c906108c 8840 }
c906108c 8841
72cec141 8842 xfree (inf_status);
7a292a7a 8843}
c906108c 8844
74b7792f 8845static void
16c381f0 8846do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8847{
16c381f0 8848 restore_infcall_control_state (sts);
74b7792f
AC
8849}
8850
8851struct cleanup *
16c381f0
JK
8852make_cleanup_restore_infcall_control_state
8853 (struct infcall_control_state *inf_status)
74b7792f 8854{
16c381f0 8855 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8856}
8857
c906108c 8858void
16c381f0 8859discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8860{
8358c15c
JK
8861 if (inf_status->thread_control.step_resume_breakpoint)
8862 inf_status->thread_control.step_resume_breakpoint->disposition
8863 = disp_del_at_next_stop;
8864
5b79abe7
TT
8865 if (inf_status->thread_control.exception_resume_breakpoint)
8866 inf_status->thread_control.exception_resume_breakpoint->disposition
8867 = disp_del_at_next_stop;
8868
1777feb0 8869 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8870 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8871
72cec141 8872 xfree (inf_status);
7a292a7a 8873}
b89667eb 8874\f
ca6724c1
KB
8875/* restore_inferior_ptid() will be used by the cleanup machinery
8876 to restore the inferior_ptid value saved in a call to
8877 save_inferior_ptid(). */
ce696e05
KB
8878
8879static void
8880restore_inferior_ptid (void *arg)
8881{
8882 ptid_t *saved_ptid_ptr = arg;
abbb1732 8883
ce696e05
KB
8884 inferior_ptid = *saved_ptid_ptr;
8885 xfree (arg);
8886}
8887
8888/* Save the value of inferior_ptid so that it may be restored by a
8889 later call to do_cleanups(). Returns the struct cleanup pointer
8890 needed for later doing the cleanup. */
8891
8892struct cleanup *
8893save_inferior_ptid (void)
8894{
8d749320 8895 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8896
ce696e05
KB
8897 *saved_ptid_ptr = inferior_ptid;
8898 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8899}
0c557179 8900
7f89fd65 8901/* See infrun.h. */
0c557179
SDJ
8902
8903void
8904clear_exit_convenience_vars (void)
8905{
8906 clear_internalvar (lookup_internalvar ("_exitsignal"));
8907 clear_internalvar (lookup_internalvar ("_exitcode"));
8908}
c5aa993b 8909\f
488f131b 8910
b2175913
MS
8911/* User interface for reverse debugging:
8912 Set exec-direction / show exec-direction commands
8913 (returns error unless target implements to_set_exec_direction method). */
8914
32231432 8915int execution_direction = EXEC_FORWARD;
b2175913
MS
8916static const char exec_forward[] = "forward";
8917static const char exec_reverse[] = "reverse";
8918static const char *exec_direction = exec_forward;
40478521 8919static const char *const exec_direction_names[] = {
b2175913
MS
8920 exec_forward,
8921 exec_reverse,
8922 NULL
8923};
8924
8925static void
8926set_exec_direction_func (char *args, int from_tty,
8927 struct cmd_list_element *cmd)
8928{
8929 if (target_can_execute_reverse)
8930 {
8931 if (!strcmp (exec_direction, exec_forward))
8932 execution_direction = EXEC_FORWARD;
8933 else if (!strcmp (exec_direction, exec_reverse))
8934 execution_direction = EXEC_REVERSE;
8935 }
8bbed405
MS
8936 else
8937 {
8938 exec_direction = exec_forward;
8939 error (_("Target does not support this operation."));
8940 }
b2175913
MS
8941}
8942
8943static void
8944show_exec_direction_func (struct ui_file *out, int from_tty,
8945 struct cmd_list_element *cmd, const char *value)
8946{
8947 switch (execution_direction) {
8948 case EXEC_FORWARD:
8949 fprintf_filtered (out, _("Forward.\n"));
8950 break;
8951 case EXEC_REVERSE:
8952 fprintf_filtered (out, _("Reverse.\n"));
8953 break;
b2175913 8954 default:
d8b34453
PA
8955 internal_error (__FILE__, __LINE__,
8956 _("bogus execution_direction value: %d"),
8957 (int) execution_direction);
b2175913
MS
8958 }
8959}
8960
d4db2f36
PA
8961static void
8962show_schedule_multiple (struct ui_file *file, int from_tty,
8963 struct cmd_list_element *c, const char *value)
8964{
3e43a32a
MS
8965 fprintf_filtered (file, _("Resuming the execution of threads "
8966 "of all processes is %s.\n"), value);
d4db2f36 8967}
ad52ddc6 8968
22d2b532
SDJ
8969/* Implementation of `siginfo' variable. */
8970
8971static const struct internalvar_funcs siginfo_funcs =
8972{
8973 siginfo_make_value,
8974 NULL,
8975 NULL
8976};
8977
372316f1
PA
8978/* Callback for infrun's target events source. This is marked when a
8979 thread has a pending status to process. */
8980
8981static void
8982infrun_async_inferior_event_handler (gdb_client_data data)
8983{
372316f1
PA
8984 inferior_event_handler (INF_REG_EVENT, NULL);
8985}
8986
c906108c 8987void
96baa820 8988_initialize_infrun (void)
c906108c 8989{
52f0bd74
AC
8990 int i;
8991 int numsigs;
de0bea00 8992 struct cmd_list_element *c;
c906108c 8993
372316f1
PA
8994 /* Register extra event sources in the event loop. */
8995 infrun_async_inferior_event_token
8996 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8997
1bedd215
AC
8998 add_info ("signals", signals_info, _("\
8999What debugger does when program gets various signals.\n\
9000Specify a signal as argument to print info on that signal only."));
c906108c
SS
9001 add_info_alias ("handle", "signals", 0);
9002
de0bea00 9003 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9004Specify how to handle signals.\n\
486c7739 9005Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9006Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9007If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9008will be displayed instead.\n\
9009\n\
c906108c
SS
9010Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9011from 1-15 are allowed for compatibility with old versions of GDB.\n\
9012Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9013The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9014used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9015\n\
1bedd215 9016Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9017\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9018Stop means reenter debugger if this signal happens (implies print).\n\
9019Print means print a message if this signal happens.\n\
9020Pass means let program see this signal; otherwise program doesn't know.\n\
9021Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9022Pass and Stop may be combined.\n\
9023\n\
9024Multiple signals may be specified. Signal numbers and signal names\n\
9025may be interspersed with actions, with the actions being performed for\n\
9026all signals cumulatively specified."));
de0bea00 9027 set_cmd_completer (c, handle_completer);
486c7739 9028
c906108c 9029 if (!dbx_commands)
1a966eab
AC
9030 stop_command = add_cmd ("stop", class_obscure,
9031 not_just_help_class_command, _("\
9032There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9033This allows you to set a list of commands to be run each time execution\n\
1a966eab 9034of the program stops."), &cmdlist);
c906108c 9035
ccce17b0 9036 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9037Set inferior debugging."), _("\
9038Show inferior debugging."), _("\
9039When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9040 NULL,
9041 show_debug_infrun,
9042 &setdebuglist, &showdebuglist);
527159b7 9043
3e43a32a
MS
9044 add_setshow_boolean_cmd ("displaced", class_maintenance,
9045 &debug_displaced, _("\
237fc4c9
PA
9046Set displaced stepping debugging."), _("\
9047Show displaced stepping debugging."), _("\
9048When non-zero, displaced stepping specific debugging is enabled."),
9049 NULL,
9050 show_debug_displaced,
9051 &setdebuglist, &showdebuglist);
9052
ad52ddc6
PA
9053 add_setshow_boolean_cmd ("non-stop", no_class,
9054 &non_stop_1, _("\
9055Set whether gdb controls the inferior in non-stop mode."), _("\
9056Show whether gdb controls the inferior in non-stop mode."), _("\
9057When debugging a multi-threaded program and this setting is\n\
9058off (the default, also called all-stop mode), when one thread stops\n\
9059(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9060all other threads in the program while you interact with the thread of\n\
9061interest. When you continue or step a thread, you can allow the other\n\
9062threads to run, or have them remain stopped, but while you inspect any\n\
9063thread's state, all threads stop.\n\
9064\n\
9065In non-stop mode, when one thread stops, other threads can continue\n\
9066to run freely. You'll be able to step each thread independently,\n\
9067leave it stopped or free to run as needed."),
9068 set_non_stop,
9069 show_non_stop,
9070 &setlist,
9071 &showlist);
9072
a493e3e2 9073 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9074 signal_stop = XNEWVEC (unsigned char, numsigs);
9075 signal_print = XNEWVEC (unsigned char, numsigs);
9076 signal_program = XNEWVEC (unsigned char, numsigs);
9077 signal_catch = XNEWVEC (unsigned char, numsigs);
9078 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9079 for (i = 0; i < numsigs; i++)
9080 {
9081 signal_stop[i] = 1;
9082 signal_print[i] = 1;
9083 signal_program[i] = 1;
ab04a2af 9084 signal_catch[i] = 0;
c906108c
SS
9085 }
9086
4d9d9d04
PA
9087 /* Signals caused by debugger's own actions should not be given to
9088 the program afterwards.
9089
9090 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9091 explicitly specifies that it should be delivered to the target
9092 program. Typically, that would occur when a user is debugging a
9093 target monitor on a simulator: the target monitor sets a
9094 breakpoint; the simulator encounters this breakpoint and halts
9095 the simulation handing control to GDB; GDB, noting that the stop
9096 address doesn't map to any known breakpoint, returns control back
9097 to the simulator; the simulator then delivers the hardware
9098 equivalent of a GDB_SIGNAL_TRAP to the program being
9099 debugged. */
a493e3e2
PA
9100 signal_program[GDB_SIGNAL_TRAP] = 0;
9101 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9102
9103 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9104 signal_stop[GDB_SIGNAL_ALRM] = 0;
9105 signal_print[GDB_SIGNAL_ALRM] = 0;
9106 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9107 signal_print[GDB_SIGNAL_VTALRM] = 0;
9108 signal_stop[GDB_SIGNAL_PROF] = 0;
9109 signal_print[GDB_SIGNAL_PROF] = 0;
9110 signal_stop[GDB_SIGNAL_CHLD] = 0;
9111 signal_print[GDB_SIGNAL_CHLD] = 0;
9112 signal_stop[GDB_SIGNAL_IO] = 0;
9113 signal_print[GDB_SIGNAL_IO] = 0;
9114 signal_stop[GDB_SIGNAL_POLL] = 0;
9115 signal_print[GDB_SIGNAL_POLL] = 0;
9116 signal_stop[GDB_SIGNAL_URG] = 0;
9117 signal_print[GDB_SIGNAL_URG] = 0;
9118 signal_stop[GDB_SIGNAL_WINCH] = 0;
9119 signal_print[GDB_SIGNAL_WINCH] = 0;
9120 signal_stop[GDB_SIGNAL_PRIO] = 0;
9121 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9122
cd0fc7c3
SS
9123 /* These signals are used internally by user-level thread
9124 implementations. (See signal(5) on Solaris.) Like the above
9125 signals, a healthy program receives and handles them as part of
9126 its normal operation. */
a493e3e2
PA
9127 signal_stop[GDB_SIGNAL_LWP] = 0;
9128 signal_print[GDB_SIGNAL_LWP] = 0;
9129 signal_stop[GDB_SIGNAL_WAITING] = 0;
9130 signal_print[GDB_SIGNAL_WAITING] = 0;
9131 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9132 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9133
2455069d
UW
9134 /* Update cached state. */
9135 signal_cache_update (-1);
9136
85c07804
AC
9137 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9138 &stop_on_solib_events, _("\
9139Set stopping for shared library events."), _("\
9140Show stopping for shared library events."), _("\
c906108c
SS
9141If nonzero, gdb will give control to the user when the dynamic linker\n\
9142notifies gdb of shared library events. The most common event of interest\n\
85c07804 9143to the user would be loading/unloading of a new library."),
f9e14852 9144 set_stop_on_solib_events,
920d2a44 9145 show_stop_on_solib_events,
85c07804 9146 &setlist, &showlist);
c906108c 9147
7ab04401
AC
9148 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9149 follow_fork_mode_kind_names,
9150 &follow_fork_mode_string, _("\
9151Set debugger response to a program call of fork or vfork."), _("\
9152Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9153A fork or vfork creates a new process. follow-fork-mode can be:\n\
9154 parent - the original process is debugged after a fork\n\
9155 child - the new process is debugged after a fork\n\
ea1dd7bc 9156The unfollowed process will continue to run.\n\
7ab04401
AC
9157By default, the debugger will follow the parent process."),
9158 NULL,
920d2a44 9159 show_follow_fork_mode_string,
7ab04401
AC
9160 &setlist, &showlist);
9161
6c95b8df
PA
9162 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9163 follow_exec_mode_names,
9164 &follow_exec_mode_string, _("\
9165Set debugger response to a program call of exec."), _("\
9166Show debugger response to a program call of exec."), _("\
9167An exec call replaces the program image of a process.\n\
9168\n\
9169follow-exec-mode can be:\n\
9170\n\
cce7e648 9171 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9172to this new inferior. The program the process was running before\n\
9173the exec call can be restarted afterwards by restarting the original\n\
9174inferior.\n\
9175\n\
9176 same - the debugger keeps the process bound to the same inferior.\n\
9177The new executable image replaces the previous executable loaded in\n\
9178the inferior. Restarting the inferior after the exec call restarts\n\
9179the executable the process was running after the exec call.\n\
9180\n\
9181By default, the debugger will use the same inferior."),
9182 NULL,
9183 show_follow_exec_mode_string,
9184 &setlist, &showlist);
9185
7ab04401
AC
9186 add_setshow_enum_cmd ("scheduler-locking", class_run,
9187 scheduler_enums, &scheduler_mode, _("\
9188Set mode for locking scheduler during execution."), _("\
9189Show mode for locking scheduler during execution."), _("\
c906108c
SS
9190off == no locking (threads may preempt at any time)\n\
9191on == full locking (no thread except the current thread may run)\n\
856e7dd6
PA
9192step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9193 In this mode, other threads may run during other commands."),
7ab04401 9194 set_schedlock_func, /* traps on target vector */
920d2a44 9195 show_scheduler_mode,
7ab04401 9196 &setlist, &showlist);
5fbbeb29 9197
d4db2f36
PA
9198 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9199Set mode for resuming threads of all processes."), _("\
9200Show mode for resuming threads of all processes."), _("\
9201When on, execution commands (such as 'continue' or 'next') resume all\n\
9202threads of all processes. When off (which is the default), execution\n\
9203commands only resume the threads of the current process. The set of\n\
9204threads that are resumed is further refined by the scheduler-locking\n\
9205mode (see help set scheduler-locking)."),
9206 NULL,
9207 show_schedule_multiple,
9208 &setlist, &showlist);
9209
5bf193a2
AC
9210 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9211Set mode of the step operation."), _("\
9212Show mode of the step operation."), _("\
9213When set, doing a step over a function without debug line information\n\
9214will stop at the first instruction of that function. Otherwise, the\n\
9215function is skipped and the step command stops at a different source line."),
9216 NULL,
920d2a44 9217 show_step_stop_if_no_debug,
5bf193a2 9218 &setlist, &showlist);
ca6724c1 9219
72d0e2c5
YQ
9220 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9221 &can_use_displaced_stepping, _("\
237fc4c9
PA
9222Set debugger's willingness to use displaced stepping."), _("\
9223Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9224If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9225supported by the target architecture. If off, gdb will not use displaced\n\
9226stepping to step over breakpoints, even if such is supported by the target\n\
9227architecture. If auto (which is the default), gdb will use displaced stepping\n\
9228if the target architecture supports it and non-stop mode is active, but will not\n\
9229use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9230 NULL,
9231 show_can_use_displaced_stepping,
9232 &setlist, &showlist);
237fc4c9 9233
b2175913
MS
9234 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9235 &exec_direction, _("Set direction of execution.\n\
9236Options are 'forward' or 'reverse'."),
9237 _("Show direction of execution (forward/reverse)."),
9238 _("Tells gdb whether to execute forward or backward."),
9239 set_exec_direction_func, show_exec_direction_func,
9240 &setlist, &showlist);
9241
6c95b8df
PA
9242 /* Set/show detach-on-fork: user-settable mode. */
9243
9244 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9245Set whether gdb will detach the child of a fork."), _("\
9246Show whether gdb will detach the child of a fork."), _("\
9247Tells gdb whether to detach the child of a fork."),
9248 NULL, NULL, &setlist, &showlist);
9249
03583c20
UW
9250 /* Set/show disable address space randomization mode. */
9251
9252 add_setshow_boolean_cmd ("disable-randomization", class_support,
9253 &disable_randomization, _("\
9254Set disabling of debuggee's virtual address space randomization."), _("\
9255Show disabling of debuggee's virtual address space randomization."), _("\
9256When this mode is on (which is the default), randomization of the virtual\n\
9257address space is disabled. Standalone programs run with the randomization\n\
9258enabled by default on some platforms."),
9259 &set_disable_randomization,
9260 &show_disable_randomization,
9261 &setlist, &showlist);
9262
ca6724c1 9263 /* ptid initializations */
ca6724c1
KB
9264 inferior_ptid = null_ptid;
9265 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9266
9267 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9268 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9269 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9270 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9271
9272 /* Explicitly create without lookup, since that tries to create a
9273 value with a void typed value, and when we get here, gdbarch
9274 isn't initialized yet. At this point, we're quite sure there
9275 isn't another convenience variable of the same name. */
22d2b532 9276 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9277
9278 add_setshow_boolean_cmd ("observer", no_class,
9279 &observer_mode_1, _("\
9280Set whether gdb controls the inferior in observer mode."), _("\
9281Show whether gdb controls the inferior in observer mode."), _("\
9282In observer mode, GDB can get data from the inferior, but not\n\
9283affect its execution. Registers and memory may not be changed,\n\
9284breakpoints may not be set, and the program cannot be interrupted\n\
9285or signalled."),
9286 set_observer_mode,
9287 show_observer_mode,
9288 &setlist,
9289 &showlist);
c906108c 9290}
This page took 2.258858 seconds and 4 git commands to generate.